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ABSTRACT 

Along with the acceptance of Service-Oriented Architecture (SOA) as a promising style of 

software design, the role that Quality of Service (QoS) plays in the success of SOA-based software 

systems has become much more significant than ever before. When QoS is documented as a 

Service-Level Agreement (SLA), it specifies the commitment between a service provider and a 

client, as well as monetary penalties in case of any SLA violations. To avoid and reduce the 

situations that may cause SLA violations, service providers need tools to intuitively analyze if their 

service design provokes SLA violations and to automatically guide them preventing SLA 

violations. Due to the dynamic nature of service interaction during the operation of SOA-based 

software systems, the avoidance of SLA violations requires prompt detection of potential 

violations before prevention takes place at real-time. To overcome the low latency time in practice, 

this thesis research develops an approach of using Machine Learning techniques to not only predict 

SLA violations but also prevent them by means of optimization. This research discusses the 

algorithm and framework, along with the results of the experiments, which will help to examine 

its usefulness for service providers working on the construction and refinement of services. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Overview 

 

Over the last four decades, software architectures have attempted to deal with 

increasing levels of software complexity. As the level of complexity continues to evolve, 

traditional architectures do not seem to be capable of dealing with the current problems. 

Service-Oriented Architecture (SOA) is being advocated in the industry as the next 

evolutionary step in software architecture to aid IT organizations meet their complex set of 

challenges that traditional architectures cannot meet. A service-oriented architecture is 

essentially a collection of services, among which communication can involve either simple 

data transfer or could involve two or more services coordinating some activity, thereby 

requiring a means of connecting other services to each other.  

 

Figure 1.1: Service Oriented Architecture 
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In recent years, Web services have become the technology of choice for realizing 

Service-Oriented Architecture and its associated set of strategic goals [1]. A service is a 

function that is well defined, self-contained, and does not fully depend on the context or 

state of other services [10]. A Web Service is a software system that is designed to support 

interoperable machine-to-machine interaction through a network. The superiority of SOA 

comes from the fact that it promises the highly desired benefits of improved reusability, 

increased reliability, and reduced costs for development and deployment in a scalable and 

dynamic environment. In a service-level agreement (SLA), QoS is documented to 

guarantee that services fulfill their official commitments in terms of both functionality and 

quality [3]. 

 

"Quality of service (QoS) represents the set of those quantitative and qualitative 

characteristics of a distributed multimedia system necessary to achieve the required 

functionality of an application” [4]. In order to guarantee a basic level of QoS, careful 

management of IT resources is essential. Management of assets and taking care of variable 

volumes of client necessities are a piece of SLA between consumer and service provider. 

However, obeying SLA has been proven to be a challenging task as QoS is influenced by 

a variety of different factors. Because of variations in workload, computing resources, and 

even network conditions, it is common for Web services to exhibit fluctuation in 

performance, leading to the possibility of violating SLA [6]. 

 

QoS management includes assisting users to find the essential characteristics of the 

wanted service and adaptation of IT assets in such a manner that it considers SLA and 

enhances the system performance and efficiency. In a situation that the effective QoS 

doesn't conform to the base QoS concurred in SLA, the QoS manager gives a case of SLA 

violation. Any service provider who does not take action to prevent SLA violations will 

have to face monetary penalties and lost revenue due to a damaged relationship with clients 

[10]. Therefore, service providers are in desperate need of such tools that can not only help 

them in predicting if their service design provokes SLA violation, but also guides them in 

optimizing service design to prevent the violation from happening. 
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SLA violation forecast benefits both service providers and clients. From a service 

provider’s point of view, SLA violation results in paying fines in terms of both, reputations 

as well as money. By foreseeing the violations ahead of time, providers can re-allocate the 

needs and resources to avoid future violations [8]. All the process of resource allocation is 

done behind the scene in this manner; thus, from a client’s perspective, better resource 

allocation brings about a reliable supplier. Additionally, customers would like to receive 

the service on-demand and with no interference. Thus, a system wherein a service supplier 

or a third party could give the expectation of SLA infringement for the client can be 

exceptionally canny. 

 

It is worth mentioning that violations do happen in the real world. For instance, Amazon 

Elastic Cloud confronted a blackout in 2011 when it crashed, and numerous clients, for 

example, Reddit and Quora, were down for more than one day [5]. 

1.2 Motivation and Problem Statement 

 

SOA's exceptional capacity in software development has driven ongoing work within 

the academic community and software industry explorations. To improve the design of 

Web services, encouraging progress has been achieved for the evaluation of QoS, 

prediction of SLA violations, and QoS optimization. For example, most of the approaches 

use the technique of collaborative filtering to evaluate SOA systems with historical datasets 

obtained from other systems running a similar application and to predict the possibility of 

SLA violations based upon the calculation of QoS values for existing services [48, 49, 50]. 

For QoS optimization, some approaches work for groups of services by maximizing 

aggregated utility values and others for individual services by allocating more resources 

[28, 29]. However, current methods still lack objective evaluation of software operating in 

different application domains, and their separation of related processes has resulted in 

limited success in practice.  

 

A couple of recent publications proposed an innovative framework that tackles the main 

issues of SLA violation by combining three techniques into a unified process to analyze, 

predict, and prevent SLA violation [1] [2]. However, a manual process is used in their 
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proposed framework for an SLA prediction, which is time-consuming. It also uses a basic 

fitted response model, which cannot tackle complex real-world data. Furthermore, for 

optimization, only one controllable factor i.e. cache level is used, which will not lead to the 

optimization of complex systems. SLA violation prevention must be performed in real-time 

to detect violations quickly and hence, avoid them. However, there is a very low latency 

time to avoid. Thus, to tackle such a scenario, an automated technique is required.  

 

In this thesis, we propose to utilize Machine Learning to predict and prevent SLA 

violations into unified framework to help service providers analyze, predict, and prevent 

SLA violations. Machine Learning techniques can be used to automate their proposed 

framework, which will eliminate many manual steps. Violation prediction and avoidance 

can be viewed as a regression problem in the terminology of Machine Learning. Past 

research mostly relies on heuristic methods for prediction of violations. Even though 

Machine Learning (ML) has been utilized in different territories of QoS management, the 

experiments done for the most part are in a confined setting, which isn't ascendable to real-

world data. Nonetheless, this research adopts a systematic machine learning approach 

applied on real-world data that provides an insightful set of experiments. This automated 

process will greatly enhance other requirements in terms of availability, performance, 

robustness, response time, and cost. 

1.3 Thesis Contributions 

 

Major contributions of this research work can be summarized as follows: 

 

• To construct and train the system using Machine Learning techniques in a way that 

enables them to not only predict the SLA violations but also prevent them by 

optimizing the service into unified framework.  

• To predict the response time of an incoming for detecting SLA violation. 

• To achieve the required response time and to prevent a violation by using a multi-

control optimization technique. 

• To conduct a series of experiments for verifying that the proposed ML model can 

achieve a robust SLA violation detection and prevention efficiency, get a satisfying 
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performance and reduce the monetary cost.  

 

1.4 Organization of this thesis 

 

In this thesis, Chapter 2 introduces the main concepts of Service Oriented Architecture 

and discusses the important role that service level agreements play in quality of services. 

Chapter 3 clarifies the terminologies and basic concepts in machine learning in which 

various machine learning models such as regression and classification are discussed. It also 

presents the method of measuring the performance of a model in machine learning. Chapter 

4 presents an outline of existing contributions on SLA violation prediction; specifically, it 

will introduce the confinements of these contributions and how our proposed model aims 

to overcome them. Chapter 5 displays the proposed method that is utilized to predict and 

prevent SLA violations in unified framework. Chapter 6 exhibits the details of the 

assessment and the execution of our proposal. Finally, Chapter 7 concludes the thesis and 

presents future work. 
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CHAPTER 2  

Service Oriented Architecture 
 

 
Service Oriented Architecture (SOA) is being advocated in the industry as the next 

evolutionary step in software architecture to aid IT organizations meet their complex set of 

challenges. A service-oriented architecture is essentially a collection of services, among 

which communication can involve either simple data transfer or could involve two or more 

services coordinating some activity, thereby requiring a means of connecting other 

services.  

 

Figure 2.1: Service Oriented Architecture 

 

SOA offers the much-needed benefits like easier component reuse, increased productivity, 

improved reliability, shorter time-to-market, and reduced deployment costs [3]. It is one of 

the most successful architectural styles, in which applications make use of reusable services 

via internet. In the next decade, the SOA principles will be at the core of a new era of 

business engagements that transact at Internet scale across locations, devices, people, 
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processes and information [6]. 

The principles of service-orientation are independent of any product, vendor or 

technology. SOA just makes it easier for software components over various networks to 

work with each other. 

 

There are two major roles within Service-oriented Architecture: 

1. Service provider: The service provider is the maintainer of the service and the 

organization that makes one or more services available for others to use. To 

advertise services, the provider can publish them in a registry, together with a 

service contract that specifies the nature of the service, how to use it, the 

requirements for the service, and the fees charged. 

2. Service consumer: The service consumer has the ability to consume (use) the 

SOA through a program or an individual, who requests a service [3]. 

 

 

Figure 2.2: Relation between Service Provider and Service Consumer 

 

Each service may be offered by various providers and can be used by one or more 

customers. A service consumer can be a service or application that reuses other services. 
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As per the SOA frameworks that service consumers are developing, they pick the most 

reasonable administrations from various applicants with comparable functionality and use 

them to make their application. A service provider, on the other hand, can be an individual 

or an association that creates and keeps reusable services. These services are accessible for 

service consumers to reuse. Competition is incredibly fierce between different service 

providers as there are others available consistently with the similar highlights. If a service 

is not fit for fulfilling service consumers in terms of quality and usefulness, service 

customers may surrender this service and pick another service provider [8]. 

2.1 Web Service 

 

A service is a function that is well defined, self-contained and does not fully depend on 

the context or state of other services [10]. A Web Service is a software system that is 

designed to support interoperable machine-to-machine interaction through a network. The 

technology of Web services is most likely the go-to connection option of service-oriented 

architecture. Web services offer a potential solution for developing distributed business 

processes and applications that can be accessed via the Internet. The use of Web services 

in SOA systems have many benefits for the development of new applications [8].  It also 

has the benefits of lower cost, higher reliability, and lesser time to market for further 

development of new applications. There are four primary tasks in web services: publish, 

discovery, request, and response. Publish is a process by which a service provider 

announces its service as well as the service associated interfaces. Generally, a service 

provider announces its service by entering service information into a specialized registry 

[6]. The consumers of the services discover the services in various ways. Discovery is a 

process of finding an appropriate service that provides the required functionality. Upon 

discovery, the consumer requests the functionality by providing the required input. The 

service responds to the consumer with the desired output.  
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Figure 2.3: Web Service Architecture Diagram 

 

The above diagram shows a very simplistic view of how a web service would work. The 

client invokes a series of web service calls via requests to a server that would host the actual 

web service. 

 

Web services play three major roles in an SOA system: 

• Service Directory 

• Service Provider 

• Service Consumer 

Figure 2.4: Three Web Service Roles 
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With service directory acting as a centralized directory, service providers publish 

information of Web services for service consumers to select according to their preferences 

of software development. For example, a Web Service can help consumers to identify the 

top 10 webpage links for different e-commerce websites that offer the lowest price for a 

certain product [1]. 

 

2.2 Quality of Service (QoS) 

 

 "Quality of service represents the set of those quantitative and qualitative characteristics 

of a distributed multimedia system necessary to achieve the required functionality of an 

application" [4]. QoS plays an important role in service selection in an SOA environment. 

It specifies how a component is supposed to behave. Through QoS, consumers can select 

an SOA service provider based on the quality of service. As more competitive web services 

have become available for the consumers, QoS has become a decisive factor to distinguish 

the reputation of various service providers [11]. By estimating the QoS of a system, the 

performance can be enhanced and guaranteed ahead of time. Subsequently, QoS 

measurement expands the dependability and accessibility of the system. In SOA systems, 

QoS is a fundamental viewpoint, as service consumers’ needs to have a measure of the 

service performance and a service provider needs to find the best exchange off between the 

provided service and the expense.  

 

QoS manager distributes different measures of resources (CPU, memory, or storage) 

and further decides the agreements in SLA based on four sources of information: (1) The 

accessible resources of the computing system, (2) The requested IT resources for each user 

task, (3) Information about the least possible QoS agreed in SLA, and (4) The historical 

information about the system’s load. QoS manager, usually using a heuristic method, 

decides how to prevent SLA violation. For example, in the application of video streaming 

such as YouTube, the QoS manager may delay the video by a couple of moments to buffer 

and prevent interruption in the middle of the video. On the other hand, in some other 

applications such as video conference of Google Hangouts, in which significant delay is 
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not tolerable, QoS manager may diminish the resolution of the video or the sound quality 

to avoid any violation of the service [13]. Hence, it is necessary to be able to forecast when 

an SLA violation may happen beforehand. 

 

At the infrastructure level of computing, several QoS parameters can be measured as stated 

below [14]: 

• Compute: outage length, availability, server reboot time 

• Network: packet loss, availability, latency, mean/max jitter, bandwidth  

• Storage: input/output per second, availability, processing time, max restore time, 

latency with internal compute resource. 

 

Service providers guarantee the QoS with Service Level Agreements (SLAs). We discuss 

the definition of SLA and SLA management life cycle in the following sections. 

2.3 Service Level Agreements 

 

The association between a service provider and a customer is governed with a Service 

Level Agreement (SLA). SLA is negotiated between parties and a level of the service, QoS 

and its related expenses are agreed upon. SLA is an official document of QoS which 

contains specific parameters and a minimum level of quality of service. It is mutually 

agreed between a service provider and prospective consumers. This is a part of the contract 

and is an assurance to the service consumers that they will get the services that they pay 

for, by obligating service providers to fulfill contractual promises [15]. Service Level 

Objectives (SLOs) are a key element of SLA, which are the qualitative parameters of an 

SLA that includes availability, throughput, and response time. SLA clearly defines 

monetary penalties in case of any violation of the written agreement. Hence, service 

providers have a strong interest in keeping their commitments to avoid and reduce the 

situations that may cause SLA violation.  

 

Any SLA mainly describes two things:  

• Different Service Level Objectives (SLOs) in terms of values for Quality of Service 

metrics. 
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• The penalties to be applied if the objectives have not been accomplished [5]  

 

From an application facilitating perspective, SLA has two different types: Application 

SLA and Infrastructure SLA. Infrastructure SLA ensures a level of consistency on 

infrastructures such as power, data center, latency and so forth by dedicating resources 

exclusively to the customer. An example is shown in Table 2.2. Application SLA is suitable 

for hosting models on which numerous applications are co-located. In such a setting, 

service resources are available to applications according to the application demands. Thus, 

in application SLA, service providers guarantee meeting application demands. An example 

of application SLA is shown in Table 2.3. 

 

For instance, SLA can demonstrate 99.99 % accessibility for requests of disk, CPU, 

and memory. An SLA might also contain constraints on the response time for each request. 

 

SLA is a significant piece of each agreement because a provider would like to allocate 

the minimal amount of resources for each customer to reduce the expense of its server 

infrastructure. Simultaneously, the provider needs to avoid having penalties due to the 

failure of providing the contracted service. The failure of providing a service is called an 

SLA violation. The client would like to receive the service on request and with no 

interference. Regardless of these high accessibility rates, infringement does occur in a 

genuine world and has caused both the provider and the client’s substantial expenses [18]. 
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Table 2.1 – Components of a Web Service Level Agreement [16] 

 

Table 2.2 – An example of infrastructure SLA [16] 

 

 

 

Service-Level 

Parameter 

Describes a noticeable property of a service whose value is 

measurable 

Metrics Measures to assess, compare or track performances 

Availability and 

uptime 

The duration and frequency for which the services provided must 

be available to the customer. Uptime percentage is usually 

measured and reported monthly. 

Performance 

standards 

Specific benchmarks that are determined by the client. Actual 

vendor service-level performance is measured against these values 

to ensure the performance standards have been met 

Response time Defines the minimum and maximum amount of time allotted to the 

service provider for responding to a request or issue 

Resolution time States the minimum and maximum amount of time that a vendor is 

given to resolve a particular task or issue 

Availability of Hardware 99 % uptime in a month 

Availability of Power 

 

99.99 % of the time in a month 

Availability of data center network 

 

99.99 % of the time in a month 

Availability of Backbone network 

 

99.99 % of the time in a month 

Credit for Service unavailability 

 

Refund of service credit for downtime period 

Blackout notification guarantee 

 

Notification to customers within 1 hour of downtime 

Internet latency guarantee 

 

When latency is measured at 5-min intervals to an 

upstream provider, the average doesn’t exceed 60 msec. 

 

Packet loss guarantee 

 

Shall not exceed 1 % in a calendar month. 
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Table 2.3 – An example of application SLA [16] 

 

 

2.3.1 SLA Management Life Cycle 

 

Each SLA goes through a sequence of steps starting from identification of terms and 

conditions, activation and monitoring of the stated terms and conditions, and eventual 

termination of the contract once the hosting relationship ceases to exist. Such a sequence 

of steps is called the SLA life cycle. 

  

According to [17], it consists of the following six phases: 

• Discover Service Provider 

• SLA Contract Definition 

• Establish Agreement 

Service-level parameter metric Website response time (e.g., max of 3.5 sec per user 

request). 

Function 

 

Latency of web server (WS) (e.g., max of 0.2 sec per 

request).  

 

Latency of DB (e.g., max of 0.5 sec per query)  

 

Average latency of WS = (latency of web server 1 + 

latency of web server 2 ) /2  

 

Website response time = Average latency of web server + 

latency of database 

 

Measurement directive 

 

DB latency available via http://mgmtserver/em/latency. WS 

latency available via 

http://mgmtserver/ws/instanceno/latency 

 

Penalty 

 

Website latency < 1 sec when concurrent connection < 

1000.  

 

1000 USD for every minute while the SLO was breached. 

 

Credit for Service unavailability 

 

Refund of service credit for downtime period 

http://mgmtserver/ws/instanceno/latency
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• SLA Monitoring  

• SLA Violation Detection  

• SLA Enforcement 

 

 

Figure 2.6: SLA Management Life Cycle 

 

Discover Service Provider 

In this period, the service provider publicizes these base service contributions through 

standard publication media, and the customers should be able to locate the service provider 

by searching the catalog. The customers can look through different competitive offerings 

and choose a few that fulfill their pre-requisites for further negotiation. 

 

SLA Contract Definition 

In this section, the service and its equivalent price, QoS parameters with a fundamental 

schema and the penalty rule is defined. SLAs are commonly defined using standard/base 

formats or by customization of these base layouts. 

 

Establish Agreement 

In this stage, a customer finds a service provider that meets the customer’s needs. The 

terms and conditions of the SLA are negotiated and settled upon. A service provider needs 
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to evaluate the SLA in terms of scalability, availability, and performance of its services to 

avoid fines before approving the specification of SLA. By the completion of this phase, 

parties start to commit to the agreement. 

 

Monitor SLA violation 

In this part, the provider’s presentation in delivery of the service is estimated against 

the agreement. A crucial part of SLA monitoring is to be able to envisage violations, 

assisting providers to reallocate the resources accordingly before the violations happen. 

 

SLA Violation Detection 

In this stage, the factors inside SLA are estimated and any deviation is determined. In 

the case of SLA violation, SLA enforcement is conducted. 

 

SLA Enforcement 

This segment is to implement penalties for SLA infringement. In this period, suitable 

actions are taken when the violation has been identified in the earlier phase. The concerning 

parties are notified and penalty charges are taken. After SLA implementation, SLA may 

end due to break or violation. 

 

2.3.2 Cause of SLA Violations 

Failure of service providers to render an agreed service as described in an SLA is 

called an SLA violation. Due to variation in workload, computing resources, and network 

conditions, it is common for Web services to exhibit fluctuation in performance, leading to 

the possibility of violation of an SLA [2]. SLA assurance is a critical objective for every 

provider, as violation will lead to heavy penalties for the provider, in terms of money and 

reputation [2]. In terms of availability, when Amazon Elastic Cloud crashed in 2011, it 

faced an outage and many big customers such as Quora and Reddit were down for more 

than a day. Such crashes affect service providers and service consumers. Predicting the 

occurrence of an SLA violation has become an important research topic. This subject can 

be viewed either from the perspective of the service consumer or from that of the service 

provider. 
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CHAPTER 3 

PREDICTION MODELS 
 

 

Machine learning is the research and formation of programs and algorithms that can 

study from historical data and make a prediction when exposed to new data. There are three 

common types of algorithms used in machine learning to solve different problems: 

supervised learning algorithms, unsupervised learning algorithms, and reinforcement 

learning [19].  

 

• Supervised Learning intents to find a function, mapping the input to the output given 

to the labeled dataset.  

• Unsupervised Learning aims to recognize structures and trends within an unlabeled 

dataset provided input. 

• Reinforcement Learning targets at discovering a role that generates a sequence of 

acts that optimizes costs or rewards. 

 

The focus of this thesis is on supervised learning. Consequently, supervised learning 

is applied in more profundity after an investigation of certain terminologies of machine 

learning. First, primary concepts such as Generalization, Bias-Variance Trade Off, and 

Cross Validation are addressed in machine learning. Finally, we will discuss how a model 

is evaluated in machine learning and specifically discuss Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), R2 and Adjusted R2. 

 

3.1 Terminology 

In this segment, we introduce the basic machine learning terminology that is utilized 

in the rest of this chapter. A dataset is given in a set of rows and columns in a typical 

supervised machine learning task. Each dataset row corresponds to one single data point, 

which is called an example of training or an instance of training. Input variables, functions, 
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or attributes are called columns. Each data point has at least one or more label(s), targets, 

or output variables linked with each other. 

 

The dataset is characteristically split into two sets: training set and test set. The training 

set is utilized to learn the underlying variance factors in the data, while the test set is used 

for the final assessment. To start with, given the training set, the model is trained, and, 

during testing, the model is provided with an example described by its features, and the 

output is the expected label. 

 

3.2 Supervised Machine Learning: Concepts and Definitions 

Two pieces of information are given to the algorithm in supervised machine learning: 

a set of input instances X = {x1, x2, ..., xm} and a relating set of targets Y = {y1, y2, ..., ym}. 

Classically, each of these m input instances contains a set of n features x = {x1, x2, ..., xn}. 

Generally speaking, every xi function can take any value, either numerical (values are real 

numbers) or categorical (values are unordered set members). Nevertheless, features may 

be expected to be converted to certain forms depending on the task at hand.  

There is constantly a true function f∗(.), which maps each conceivable x to the most 

ideal y. In any case, we never have access to this unknown function. Supervised learning, 

therefore, amounts to approximating function f∗(.) based on the information provided in the 

sets of X and Y. The process of approximating f∗(.) using a function fθ(.) in which θ is a set 

of parameters is called learning.  

Learning algorithms become familiar with the parameters θ of the function fθ(.) by 

limiting the errors that the model makes. Formally, a function that maps the discrepancy 

between the output prediction of the model and the true target into a real number is called 

the loss function [19]. 

If the true target y is a discrete variable, the prediction task is called Classification. On 

the other hand, if y is continuous, the task is called Regression. In the accompanying 

subsections, we discuss these two types of supervised learning algorithms in more detail 

after formally presenting learning. 
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3.2.1 Learning 

Approximating function f∗(.) using function fθ(.) corresponds to extracting the 

underlying factors of variation from data instances and mapping them to the output. These 

underlying factors could be a probability table, a graph structure, or weights depending on 

which learning algorithm is utilized to find the data. Generally, learning adds up to finding 

the best parameters θ to minimize a loss function over all the examples in the dataset [19]. 

Therefore, the learning process can be formulated as follows, 

 

 

 

 

(3.1) 

 

in which  is the learned set of parameters, yi and oi are the target and output of the model 

for the ith sample. 

 

3.2.2 Classification 

In a supervised classification task, the prediction output y is from one of the total C 

distinct classes {1, 2, ..., C}. To get a forecast for new examples, the model can simply 

output a class label, or the output can be a set of probabilities. Each probability corresponds 

to one of C classes that indicates how probable it is that the unseen input x belongs to a 

specific class. In models that output probabilities, to get a discrete prediction out of the 

model, either the class with the highest probability is chosen or the class label is drawn by 

sampling from the output distribution. 

  

3.2.3 Regression 

Similar to a classification task, in regression problems, the objective is to learn a 

mapping function from an n-dimensional vector x into a real-valued number O as the 

prediction. A regression model uses the historical relationship between an independent and 

a dependent variable to predict the future values of the dependent variable. Mathematically, 

regression is about learning a model f(y) = f(x) + ε, where ε is a noise/error term that 

describes everything that cannot be captured by the model.   
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A simple regression model shows the relationship between the magnitude of one 

variable and that of a second - for example, as X increases, Y also increases or as X 

increases, Y decreases. It estimates exactly how much Y will change when X changes by a 

certain amount. 

 

3.3   Generalization 

The goal of machine learning is to train models that can predict the labels for new 

examples that are not seen previously. Consequently, generalization to new examples is an 

important aspect of every learning algorithm. Usually, we are looking for models that 

perform well on testing data as well as on training data. As a consequence, we must prevent 

learning algorithms from merely memorizing training data; instead, such algorithms must 

learn the underlying variation factors. 

 

3.3.1 Bias-Variance Trade off 

To decide how reliable a model is, we must comprehend the reasons behind errors. 

Bias and variance of a prediction model help us formally measure these errors. Bias and 

variance of a prediction model allow us to compute these errors formally. To define bias 

and variance over a model, we must assume that we can train the same model multiple 

times with different randomly selected data points. In this thesis, each trained model is 

called a model instance. Errors in bias and variance predictions are called errors due to bias 

and error due to variance respectively [20].  

 

Bias corresponds to the distance between the expected prediction of the model and the 

true target [22]. Considering f(x) as the model, the bias is defined as follows: 

   

 bias = | E[f(x)] – y |2, (3.2) 

 

where E[.] is the expectation and y is the true target. On the other hand, variance 

corresponds to the variability in different predictions of multiple instances of a model [22]: 

 

 variance = | f(x) − E[f(x)] |2 (3.3) 
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The total error of a model in terms of bias and variance is defined as follows: 

 

 error = E[(f(x)−y) 2] = bias2 + variance. (3.4) 

 

Given the limited amount of data, there is always a trade-off between bias and 

variance. The trade-off happens in a way that reducing one may lead to increasing the other. 

As a result, minimizing the total error requires a careful balance between bias and variance. 

A graphical illustration of this trade-off is shown in Figure 3.1. 

 

Figure 3.1 - Dart chart: A graphical illustration of bias-variance trade-off 

 

3.3.2 Cross Validation 

To find the parameters of the model that generalize the best, we need to know if the 

model has been overfit. Cross validation helps us to find an overfit model. Overfitting 

happens when the error rate in the training set decreases but the error on the test set 

increases. As shown in Figure 3.2, as we increase the complexity of the model, the error 

rate in the training set decreases but at some point, the error in the test set passes the 

minimum and increases. When the error in the test set increases with higher model 

complexity, the model is overfit. In cross validation, the dataset is divided into training and 

validation sets. To increase the validity of the model, k-fold cross validation is used where 
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the dataset is partitioned into k equal subsets. We define d as the complexity order of the 

model. For each order-d hypothesis class: 

 

— Repeat k times:  

— Set aside one of the subsets. 

— Use the rest of the data points to find θ (model parameters).  

— Compute prediction error on the held-out subset.  

— Average the prediction error over the k rounds/folds. Use this as the estimated true 

prediction error for the order-d hypothesis class [19]. 

 

Figure 3.2 – Test & training error as the function of model complexity. 

 

The goal is to find d with the lowest estimated true prediction error. It is worth 

mentioning that k-fold cross validation increases computation k-times. Thus, with larger 

datasets or complex models, a smaller value of k is preferred [19]. 

 

3.4 Performance Evaluation 

In this subsection, we introduce the common error metrics used for evaluating a 

regression model: (1) Root Mean Square Error, (2) Mean Absolute Error, (3) R2, and (4) 

Adjusted R2 [23]. Error metrics help us indicate how good the model will perform when 

exposed to unseen data. Thus, after the model is trained on the training set and the best 

performing model is chosen, it will be tested on an intact test set. This approach helps us 
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select a model that will have a good performance on unseen data.  

 

3.4.1 Root Mean Square Error (RMSE) 

The root-mean-squared error (RMSE) is a measure of how well our model performed. 

It does this by measuring the difference between predicted values and the actual values. It 

is the standard deviation of the residuals (prediction errors). 

Figure 3.3: RMSE – Predicted vs Observed values  

 

Residuals are a measure of how far from the regression line data points are. RMSE is 

a measure of how spread out these residuals are. It shows how concentrated the data is 

around the line where it fits best. Root mean square error is commonly used in climatology, 

forecasting, and regression analysis to verify experimental results. 

 

 

                              

 

                    (3.5) 

 

3.4.2 Mean Absolute Error (MAE) 

MAE measures the average magnitude of the errors in a set of predictions, without 

considering their direction. It’s the average over the test sample of the absolute differences 

between prediction and actual observation where all individual differences have equal 

weight. 
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(3.6) 

 

It is a measure of the difference between two continuous variables. Assume 

X and Y are variables of paired observations that express the same phenomenon. Examples 

of Y versus X include comparisons of predicted versus observed, subsequent time versus 

initial time, and one technique of measurement versus an alternative technique of 

measurement. Consider a scatter plot of n points, where point i has coordinates (xi, yi). 

Mean Absolute Error (MAE) is the average vertical distance between each point and 

the identity line. MAE is also the average horizontal distance between each point and the 

identity line. 

 

3.4.3 R2 

It is a statistical measure that represents the usefulness or fit of a regression model. 

The ideal value for r-square is 1. The closer the value of r-square to 1, the better the model 

will be fitted. R-square is a comparison of the residual sum of squares (SSresiduals) with a 

total sum of squares (SStotal). A total sum of squares is calculated by summation of squares 

of perpendicular distance between data points and the average line [19]. 

 

 

 

 

(3.7) 

 

It is a statistical measure that represents the proportion of the variance for a dependent 

variable that is explained by an independent variable or variables in a regression model. 

Whereas, correlation explains the strength of the relationship between an independent and 

dependent variable, R-squared explains to what extent the variance of one variable explains 

the variance of the second variable. So, if the R2 of a model is 0.50, then approximately 

half of the observed variation can be explained by the model's inputs. 
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Figure 3.4: R-Squared Explanation  

 

3.4.3 Adjusted R2 

It is a modified version of R-squared that has been adjusted for the number of 

predictors in the model. The adjusted R-squared increases only if the new term improves 

the model more than would be expected by chance and if not understood. It only decreases 

if a predictor improves the model and the amount that is less expected by chance. It is 

always lower than the R-squared [10]. 

 

Adjusted R-squared measures the variation in the dependent variable (or target), 

explained by only the features which help make predictions. Unlike R-squared, the 

Adjusted R-squared would penalize for adding features that are not useful for predicting 

the target. 

Let us mathematically understand how this feature is accommodated in Adjusted R-

Squared. Here is the formula for adjusted r-squared: 
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(3.8) 

 

(3.9) 

 

Here R2 is the r-squared calculated, N is the number of rows and M is the number of 

columns. As the number of features increases, the value in the denominator decreases.   
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CHAPTER 4 

Related Works 
 

 

This chapter discusses the relevant background of recent works in SLA violation prediction 

and prevention. 

4.1 SLA Violation Prediction 

 

SLA violation prediction is an essential task in web service as an SLA violation might 

cause interruptions for the clients’ accessibility of service and force penalties on the 

supplier. An assortment of contributions has been proposed for SLA violation prediction. 

For SLA violation prediction from the perspective of the service provider, several 

approaches have been proposed in recent years. Publications surveyed in this direction, with 

highlights of their contributions and limitations, are listed below. 

Rafael et al. [40] proposed a technique which focuses on anticipating the demand of the 

future resources for meeting SLA requirement. The author used business-level SLAs 

(throughput and response time) as input parameters to the chosen prediction approaches. 

Machine Learning techniques like Support Vector Machine (SVM), Neural Networks (NN), 

and Linear Regression (LR) were used for prediction. However, no real-world data was 

considered or was probed on, for simulating a realistic scenario.  

Authors in Jules et al. [39] use an intelligent and dynamic Service Level Agreement 

(SLA) based on a probabilistic ontology that detects and alerts potential violations of 

contract parameters for a cloud computing environment. Despite its good performance, the 

dataset generated using simulation does not necessarily represent a real environment. It 

contains 40% violations and dismisses the way that in a genuine world, infringement is 

extremely uncommon (∼2.0%). 

In a similar work for predicting SLA violations in composite services, in Leitner et al. 
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[24], propose a regression machine learning model; the regression model is implemented 

using the WEKA framework, which cannot be scaled to real-world environments. In [25], 

the authors introduce an efficient system that predicts SLA violation before it occurs and 

recommends how to mitigate those violations to avoid any penalties. A profile-based model 

of SLA violation prediction from the provider’s perspective was proposed. It helps service 

providers in making decisions about whether to form SLA and avoiding SLA violations. 

To achieve service level agreements, a prediction method based on Bayes model was 

designed by Zhang et al. [26] to predict the mean load over a long-term time interval as well 

as the mean load in consecutive future time intervals by identifying novel predictive features 

of host load that capture the expectation, predictability, trends and patterns of host load. 

This prediction model of the workload can help a service provider estimate the possibility 

of whether SLA violation will occur. 

 Wong et al. [27] proposed to use the SVM model to predict possible SLA violations 

before any issue emerges so that remedial action can be taken. While the approaches in [26] 

and [27] can help a service provider know beforehand whether SLA violation will take 

place, it lacks the capability of helping service providers evaluate QoS quantitatively. 

Recently, Cheng et al. [1] [2] have proposed a framework to utilize the sensitivity 

analysis for the identification of influential factors with dominating impacts on QoS. They 

used metamodel-based analysis to select a fitted surrogate model for domain-independent 

prediction of SLA violation. The residual error between predicted and validated response 

time are calculated to select the best-fitted model for prediction. In the suggested method, 

the process of evaluation can be used by service consumers for service selection, and it can 

be used by service providers to study SLA violations [1]. However, in the proposed 

framework for SLA prediction, a manual process is employed, which is time-consuming 

and cannot tackle complex real-world data. 

4.2 SLA Violation Prevention 

The subject of SLA violation prevention can be either composite services or individual 

services. For individual services, resource provision is employed to analyze workloads, to 

classify them based on common patterns, and to plan for workloads before actual 

scheduling. For composite services, several approaches suggest calculating aggregated QoS 
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values of all possible service combinations and choosing the one that maximizes the 

aggregated utility value while satisfying global constraints. Many different approaches have 

been proposed for SLA violation prevention. 

For individual services, resource provision has been utilized in [28] to analyze 

workloads, to categorize them on the basis of common patterns, and to plan for workloads 

before actual scheduling. The authors of [28] later enhanced their work with automated 

processing in [29]. Although these methods can optimize QoS by allocating more resources, 

no attention has been given to resource over-provision, which is a serious issue for Web 

services as it wastes resources and causes an increase in operational cost [30]. 

Wu et al. [31] proposed ProfminVMminAvaiSpace, an algorithm that maps users' 

requirements into infrastructure resources to provide a reliable service, and at the same time, 

maximize resource allocation to prevent violations. 

Uriarte et al. [32] used unsupervised learning to cluster the resource usage and duration 

of services to avoid violations of the Google Cluster trace dataset. If a violation happens 

inside a cluster of services, the other services inside the cluster will be assigned to other 

resources, to avoid the violation. This helps in violation avoidance in the cluster, but there 

is no explicit prediction of SLA violation for each service. 

Chana et al. [28] proposed an approach where they enhanced their work with automated 

processing. Although these methods can optimize QoS by allocating more resources, no 

attention has been given to resource over-provision, which is a serious issue for Web 

services, since resources are wasted, and operational cost becomes exorbitant. 

Cheng et al. [2] presented a new approach for QoS optimization to improve the quality 

of Web services. In this approach, four procedures were performed: identifying influential 

factors, collecting observed data, fitting collected data with the MARS model, and 

identifying global optimum till SLA is prevented. However, for optimization, only one 

controllable factor (cache level) is used, which will not lead to optimization for a complex 

system. So, there is a need to automate the proposed approach using Machine Learning 

techniques, which can easily adapt to any complex system and overcome the limitation of 

these approaches. The automated process will greatly enhance other requirements in terms 
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of availability, performance, robustness, response time, and cost. 

As a result, this thesis will develop a novel approach to help a service provider 

intuitively analyze if their service design provokes SLA violation. If it does, then this 

approach will guide them for optimizing the service to prevent violation because SLA 

violation will lay a hefty penalty to the provider. As part of the proposed unified framework, 

this approach uses Machine Learning models to construct and train the system in a way that 

enables them to not only predict the violations but also prevent them by optimizing the 

service. 

 

4.3 Related Work 

 

SLA Violation Prediction 

Paper Contribution Limitations 

Hemmat et al. 

(2016), “SLA 

Violation 

Prediction In 

Cloud Computing: 

A Machine 

Learning 

Perspective” [33] 

- In this paper, two machine learning 

classification models: Naive Bayes 

and Random Forest classifiers, were 

used to predict SLA violations. 

- Several re-sampling methods such as 

Random Over and Under Sampling, 

SMOTE, NearMiss (1,2,3), One-sided 

Selection were used to re-balance the 

dataset. 

- Two classes- violated and unviolated 

were generated for the prediction 

problem. 

- Accuracy, ROC area, Precision, 

Recall, and F value were used for 

model performance evaluation. 

- No continuous 

prediction was 

done, as only task 

violation is 

predicted using the 

classification 

technique. 

- Basic 

classification 

techniques were 

applied to complex 

data to predict 

violation. 
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Zhu et al. (2017), 

“Online QoS 

Prediction for 

Runtime Service 

Adaptation via 

Adaptive Matrix 

Factorization” [34] 

- This paper proposed a collaborative 

QoS prediction approach, namely 

adaptive matrix factorization (AMF) 

- AMF method has been presented and 

evaluated on a real-world QoS dataset 

of Web services. 

- Median Relative Error (MRE) and 

Ninety-Percentile Relative Error 

(NPRE) were used to evaluate AMF 

approach. 

- Due to incurred 

service 

invocations, this 

approach is costly, 

especially when 

applied to a large 

number of 

candidate services. 

- Evaluations are 

conducted offline, 

which is not 

desirable on real 

large-scale 

applications. 

 

 

SLA Violation Prevention 

Paper Contribution Limitations 

Khan et al. (2016), 

“An Adaptive 

Monitoring 

Framework for 

Ensuring 

Accountability and 

Quality of Services 

in Cloud 

Computing” [35] 

- In this paper, a framework to 

dynamically monitor QoS 

metrics and performance 

measures to verify compliances 

for respective SLAs is 

proposed.  

- Three main components 

namely, a component for the 

digitization of SLA parameters; 

interactive components for 

dynamic monitoring of QoS 

- No new technique is 

proposed for QoS 

optimization.  

- This method optimizes 

QoS by allocating more 

resources but no 

attention has been given 

to resource over-

provision. 
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and core component for 

dynamic detection of violation 

and adaptive remedy 

rectification are advised. 

Zhou et al. (2018), 

“Minimizing SLA 

violation and power 

consumption in 

cloud data centers 

using adaptive 

energy-aware 

algorithms” [36]  

 

- This paper proposes two novel 

adaptive energy-aware 

algorithms for maximizing 

energy efficiency and 

minimizing the SLA violation 

rate in Cloud datacenters. 

- Application types, as well as 

the CPU and memory 

resources, are also considered 

during the deployment of VMs. 

- Experimental analysis is 

performed using a real-world 

workload, which comes from 

more than a thousand 

PlanetLab VMs. 

- Predicts future resource 

requirements, and 

arranges appropriate 

additional virtual 

resources in advance, 

before the peak occurs. 

This is done to maximize 

performance and avoid 

service violations, but it 

always wastes resources 

and causes an increase in 

operational cost. 
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Model Construction 

Paper Contribution Applicability 

Joseph et al. (2015), 

“Construction and 

Use of Linear 

Regression Models 

for Processor 

Performance 

Analysis” [37] 

- The paper proposes an 

iterative process for 

constructing accurate 

regression models of processor 

consisting of all significant 

main effects and interaction 

terms using a reasonable 

number of simulations. 

- It constructs and obtains 

accurate estimates of all 

significant coefficients with the 

minimum number of 

simulations. 

- Regression model 

construction steps include: 

Obtaining the Best Model, 

Determining Model Adequacy 

and an interactive procedure to 

obtain linear models at any 

specified level of accuracy. 

- This iterative method 

can be used for 

constructing regression 

models to predict SLA 

Violations. 

- It can be extended to 

various applications like:  

 - Sales forecasting 

 - Weather forecasting 

 - House Price Prediction 
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Adhikari et al. 

(2013), “An 

Introductory Study 

on Time Series 

Modeling and 

Forecasting,” [38] 

 

- This paper proposes how a 

time series regression model is 

constructed and applied in a 

different real-world domain. 

- To evaluate forecast accuracy 

as well as to compare among 

different models fitted to a time 

series, five performance 

measures are used: MSE, 

MAD, RMSE, MAPE and 

Theil's U-statistics. 

- Applied Time Series 

forecasting on the following 

domains: Stochastic models, 

Artificial Neural Networks, 

Support Vector Machines 

A combined Time Series 

regression model can be 

used for SLA prediction 

and prevention. 

- It can be extended to 

various applications like:  

  -Economic Forecasting 

  - Budgetary Analysis 

  - Stock Market Analysis 

  - Yield Projections 

  - Process and Quality 

Control 

  - Inventory Studies 
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CHAPTER 5 

PROPOSED METHODOLOGY 
 

 

The idea of this thesis is to automate the unified framework for the prediction and 

prevention of SLA developed by Cheng et al. [1] [2]. To automate the existing process, the 

proposed approach uses various machine learning models and techniques. Prior projects 

working on SLA violation prediction or avoidance have generally neglected the challenges 

of using real-world data. In the proposed framework, a real-world dataset is used to 

construct machine learning models for efficient analysis of the unseen data. SLA violation 

prediction and prevention can be simply considered as a regression problem. 

Data analysis, SLA violation prediction, and design optimization are three crucial, yet 

typically separate techniques for QoS evaluation and optimization [52]. As illustrated in 

Figure 5.1, this thesis proposes an innovative framework to solve the main issues of SLA 

violation by automating these three techniques into a unified framework, which analyzes, 

predicts, and prevents SLA violations.  

The process of data analysis in this framework initiates the construction of a single 

dataset table through data selection and preprocessing, which is responsible for cleaning and 

preparing data to address the machine learning problem. With the number of features 

reduced to only those influential to the service’s performance, the second process fits a 

machine learning model to predict SLA violation. The development of a model starts with 

a candidate in a specific type and form, such as a regression model, from a pool of choices. 

The process of SLA violation prediction then checks the adequacy of this chosen candidate 

with new experiments. Unless a rejection results in the choice of another candidate, the 

model is ready to be used for quantitative analysis of service quality and for the prediction 

of situations when SLA violations could take place.  

The last process of QoS optimization is necessary to avoid the predicted SLA violations 

by adjusting the values of controllable factors by service providers, such as CPU, storage, 
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and cache. This process includes three steps as below: 

• Identifying the most influential controllable factors 

• Fitting new data with a machine learning regression model 

• Conducting experiments with single/multiple factors and collecting observational data 

This three-step procedure is either repeated until SLA prevention is achieved, or the list 

of controllable factors is exhausted. In the latter case, a re-design of the web service by the 

provider is a practical recommendation.  

The rest of this chapter is organized as follows. Section 5.1 first discusses data analysis, 

which helps to understand its characteristics, features, and class distribution; this facilitates 

the discovery of models that can effectively make predictions with such features. Then, it 

discusses the approach of data selection and preprocessing. Section 5.2 presents the machine 

learning models that can efficiently address the regression task of SLA violation prediction 

on a skewed dataset. Finally, Section 5.3 presents our approach for preventing the predicted 

SLA violation using multi-factor optimization on a selected machine learning model. 
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Figure 5.1: A Unified Framework of SLA Violation Prediction and Prevention 
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5.1 Data Analysis 

Figure 5.2 illustrates the first module of the proposed framework for data analysis, with 

details presented in Algorithm 1. Since the availability rate is very high (97.8%) and 

violations are rare, machine learning models tend to predict the absence of violations. 

However, this is not desirable in a real-world scenario. Thus a few re-sampling techniques 

are applied in machine learning to handle the skewness of data. 

 

 

 

Figure 5.2 – Data Analysis 
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The process of data analysis is responsible for the selection and examination of raw data. 

Due to the fact that datasets always contain irrelevant information for SLA analysis, it is 

necessary to group raw data into labelled columns and keep only relevant columns by 

filtering out the others. If an original dataset uses spaces or commas to separate data, they 

need to be removed to avoid false prediction results. This results in a well-formatted table 

with useful information after Algorithm 1 finishes the first step of processing. However, 

datasets collected from real-world applications always contain null and duplicated data. 

Therefore, the proposed algorithm examines the table in the second step and remove the null 

or duplicated columns and rows. This cleanup applies to columns and rows that have unique 

values as they do not add any value to the prediction of SLA violations.  

In order to make the dataset more useful and productive after preprocessing, data 

transformation is applied in the third step. Machine Learning is all about data, and the 

training success of any model depends on the way data is transformed and fed into the 

machine learning algorithm. Feature transformation is a function that transforms features 

from one representation to another.  

There are several reasons for transforming the features: 

• Data types are not suitable to be fed into a machine learning algorithm, e.g., text, 

categories. 

• Feature values may cause problems during the learning process, e.g., data 

represented on different scales. 

• Reduce the number of features to plot and visualize data, speed up training or 

improve the accuracy of a specific model. 

 In the proposed approach for transformation, normalization technique is applied to 

rescale data from the original range to a new range between 0 and 1. Normalization is only 

applied to the data when the data has input values with differing scales. The required features 

taken from the data set through the normalization process can vary. Since predicting the 

response time of the incoming request is needed in this case, the information of resources 

used by the user is gathered.  
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After preprocessing, a single dataset is generated to use it further in the SLA process of 

violation prediction and prevention. In the fourth step of the algorithm, several graphs are 

generated. The adequacy and compatibility of processed data are checked in the fifth step 

so that features such as the amount of requested CPU, disk, and memory of violated tasks 

and available resources at the time of request can be studied to predict future violations.  

5.2 SLA Violation Prediction 

In the process of data analysis, the performance model is treated as a BlackBox, as the 

features are identified by analyzing only the outputs of selective inputs. As the prediction 

of SLA violation is expected to work in all use cases of the service, the proposed framework 

fits various machine learning models and predicts service performance by evaluating these 

fitted models. As illustrated in Figure 5.3, the overall process goes through the following 

activities whose details are presented in Algorithm 2. 

The processed data is used as input in the Fitted Machine Learning module. Initially, 

based on the data analysis result, a threshold value is selected for the maximum response 

time (line 3). If the response time is close or above the threshold, it implies that SLA is 

violated. First, the processed data is split into two parts: training and testing dataset. Two-

third of the dataset is used as the training set and fed to the model in each training, while the 

remaining one-third is applied as the test set (line 7). The aggregate of the model is 

considered for reporting as the final result. 
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Figure 5.3 – SLA Violation Prediction 
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In a machine learning dataset, a training set is used to build up a model, while a test set 

is applied to validate the built model in a dataset. Data in the training set is excluded from 

the test set. Hence, in the proposed method, the training set is selected at first, and then 

different regression models like Random Forest Regressor, Kernel Ridge, Gradient 

Boosting Regressor, and Time Series are applied to train the model for prediction (line 8). 

While training the data, various measures are taken to check if the chosen training data 
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results are sufficient to validate their application on testing data. The split performance of 

training data as a result of checking high bias and high variance leads to choosing a new 

model as the selected model is not capable of predicting or changing model rules value like 

a number of auto-regressive lags, moving average, number of iterations, trends, etc., and 

training the model any longer. In case the performance results into high variance, either a 

different model is selected, or more data is considered in order to train the model again and 

check the performance. The entire process is repeated until a model is applied with low bias 

and low variance results for training set performance (lines 11-22).  

Once the model is trained, the same model is used to predict using the testing data, i.e., 

the unseen data. Tested data performance is evaluated to see if the model is appropriate for 

real-time prediction based on different evaluation factors. This step checks the fitting quality 

of the chosen model in the selected form with experiments. At this point, the dataset which 

was put aside earlier comes into play. Evaluation allows testing of the model against the 

data that has never been used for training. This should reflect as to how the model will 

actually perform in the real world. If the candidate model lacks the required quality, the 

process of model-based analysis repeats the work to choose another model (lines 22-27). A 

different range of performance metrics, such as R2 in Eq. 3.7, adjusted R2 in Eq. 3.9, MAE 

in Eq. 3.6, and RMSE in Eq. 3.5 is applied to check the performance of a model on unseen 

data. The complete process is repeated until a model with good performance is selected.  

Finally, the residual error between predicted and validated response time are calculated 

to check how well the fitted model predicts the response time in the future. In situation when 

a rejection occurs, the whole process starts again from making a model selection to the 

validation of the fitted model and then the prediction of the response time. The prediction 

will be accurate when the new observed response time lies within the 90% prediction 

interval, and the residual errors are less than 5%.  

At this time, the model is ready to be used for quantitative analysis of the influence of 

different factors on service quality and the prediction of situations when SLA could be 

violated. After the model is selected, it is ready to make SLA violation prediction. While 

doing so, if the predicted response time is close to a threshold value or above the predicted 

value, then SLA is violated else the process continues to work normally.   
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A time-series regression model is proposed for continuous checking of SLA violation. 

The Time series model is an effective fitted model for this problem as this model makes a 

continuous prediction of violation in real-time, which is the main requirement for any 

service provider. 

5.2.1 Fitted Model with Machine Learning 

This section introduces the machine learning models that are used for the task of SLA 

violation prediction and prevention. Those models are ARIMAX (Autoregressive Integrated 

Moving Average with Explanatory Variable) time series regression model and VARMAX 

(Vector Autoregressive Moving Average with eXogenous) regression model. 

Time series models use the past movements of variables in order to predict their future 

values. Unlike structural models that relate the variable, we want to forecast with a set of 

other variables. However, in terms of forecasting, the reliability of the estimated equation 

should be based on out-of-sample performance [21]. The time series model can mostly 

produce quite accurate forecasts, especially in the case that there are multidimensional 

relationships among variables. Time-series refers to an ordered series of data. It usually 

forecasts what comes next in the series using the Box-Jenkins approach. 

    Time series models are divided into two part: 

• Univariate Time Series: Only one variable is varying over time; for example, the 

data collected from a sensor that measures the temperature of a room every second. 

Therefore, each second, there is only a one-dimensional value, which is temperature. 

• Multivariate Time Series: Multiple variables are varying over time, for example, a 

tri-axial accelerometer. There are three accelerations, one for each axis (x, y, z), and 

they vary simultaneously over time. Considering the data that you showed in the 

question, you are dealing with a multivariate time series, 

where value_1, value_2, and value_3 are three variables changing simultaneously 

over time. 

ARIMAX (AutoRegressive Integrated Moving Average with Explanatory Variable) 

The standard ARIMA (AutoRegressive Integrated Moving Average) model allows 
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making forecasts based only on the past values of the forecast variable. The model assumes 

that future values of a variable linearly depend on its past values, as well as on the values of 

past (stochastic) shocks. The ARIMAX model is an extended version of the ARIMA model. 

It also includes other independent (predictor) variables. The model is also referred to as the 

vector ARIMA or the dynamic regression model. The ARIMAX model is similar to a 

multivariate regression model. Additionally, it allows taking advantage of autocorrelation 

that may be present in residuals of the regression to improve the accuracy of a forecast. 

For obtaining a non-seasonal ARIMAX model, it is required to combine differencing 

with autoregression and a moving average model. The full model can be written as:  

    

        

  

(5.1) 

where y't is the differenced series (it may have been differenced more than once). The 

predictors on the right-hand side include both lagged values of yt and lagged errors. This is 

called an ARIMAX (p, d, q) model. In the model, the variables or parameters are listed as 

below: 

• p is the number of autoregressive terms, 

• d is the number of nonseasonal differences needed for stationarity, and 

• q is the number of lagged forecast errors in the prediction equation. 

VARMAX (Vector Autoregressive Moving Average with eXogenous) 

The Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX) 

is an extension of the VARMA model that also includes the modeling of exogenous 

variables. It is a multivariate version of the ARMAX method. Exogenous variables are also 

called covariates and can be thought of as parallel input sequences that have observations at 

the same time steps as the original series. The primary series are referred to as endogenous 

data to contrast it from the exogenous sequence(s). The observations for exogenous 

variables are included in the model directly at each time step and are not modeled in the 

same way as the primary endogenous sequence (e.g., as an AR, MA, etc. process). The 

VARMAX method can also be used to model the subsumed models with exogenous 
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variables, such as VARX and VMAX. The method is suitable for multivariate time series 

without trend and seasonal components with exogenous variables. 

     The below formula represents a VARMAX model: 

 

Where, 

• Yt is a vector of n response variables (dependent) 

• Xt is a vector of m exogenous variables (independent) 

• p is the number of previous periods of the endogenous variables included in the 

model 

• q is the number of previous periods included in the moving average 

• b is the number of previous periods of exogenous variables included 

• Φi is an n * n matrix of autoregressive parameters 

• Bi is an n * m matrix of exogenous variable parameters 

• Θi is an n * n matrix of moving average parameters 

• Et is the difference between the actual and the predicted value of Yt, (Yt - Ŷt ) 

 

5.3 SLA Violation Prevention 

  Once the selected model predicts SLA violation, the final step is to avoid SLA violation 

through QoS optimization. Figure 5.4 illustrates the last module of the proposed framework 

for SLA Prevention, with details presented in Algorithm 3. For optimization, the response 

time of the job is reduced and kept below a threshold to avoid violation. The response time 

of incoming jobs is optimized by selecting single or multiple controllable factors and 

increasing or decreasing their value to reduce response time and avoid violation.   

The proposed approach of QoS optimization goes through the following steps to prevent 

SLA violation: 

• Identifying the most influential controllable factors 

• Fitting new data with a machine learning regression model 

• Conducting experiments with single/multiple factors and collecting observational data 
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This procedure is repeated until SLA prevention is achieved, or the list of controllable 

factors are exhausted. 

Figure 5.4 – SLA Violation Prevention 
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5.3.1 Heatmaps 

 

Heatmap is a data matrix, visualizing values in the cells using a color gradient. This 

gives a good overview of the largest and smallest values in the matrix. Rows and/or columns 

of the matrix are often clustered so that users can interpret sets of rows or columns rather 

than individual ones [41].        

In other words, a heatmap is a type of graphical representation of data that consists of a 

set of cells, in which each cell is painted with a specific color according to a specific value 

attributed to the cell. The term “heat” in this context is seen as a high concentration of 

geographical objects in a particular place. Heatmaps show the distribution of objects or 

phenomena across the entire surface. More generally, heatmaps can be viewed as the 

surfaces of densities. Such surface density fairly illustrates the location of the concentration 
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of points or linear objects [41]. An example of a heatmap is shown below in Figure 5.5.  

At a fundamental level, heatmaps are implemented as spatial matrices with cells colored 

after their values. Explicitly, they encode a continuous quantitative variable as a color in 

space through a color transfer function to a sequential color scheme [42].  

Broadly speaking, they fall into two classes:  

• Image-based heat maps and  

• Data-matrix heat maps.  

Image-based heat maps display numerical information that is mapped over an image, an 

object, or a geographic location. On the other hand, data-matrix heat maps display numerical 

data in a pseudo-colored tabular or matrix format. The data may be subsequently clustered 

using various measures of similarity or dissimilarity [43]. 

 

Figure 5.5 – Heatmap generated on a sample image [42] 
 

 

5.3.2 Process of SLA Prevention 
 

The selection of the right influential factor is the most crucial step, as this factor helps 

most in preventing SLA violations with optimization. Influential factors can be categorized 

either as controllable or uncontrollable ones [44]. Controllable factors refer to the ones that 

service providers can control or configure during the execution of web services, such as 

CPU, storage, cache, etc. Uncontrollable factors are those that cannot be controlled by 

service providers, such as workload, network environment, or the requirements of services 

consumers. Controllable factors can be further subdivided into two groups. One group 

includes factors that cause an increase or decrease in the operational cost while changing 

their values. Another group contains factors that have no impact on the operational cost 
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while their levels are modified. The objective of the proposed approach is to achieve design 

optimum without causing an unnecessary increase in the operational cost while 

reconfiguring web services and optimizing its QoS. The feature importance or heatmap 

technique is applied to find the right influential factor from the list of controllable elements 

(lines 4-7). By using this technique, the list of influential factors affecting the response time 

is acquired.  

SLA Violation Prevention can be modeled as a 4-tuple (Factor, QoS, Model, Result), in 

which: 

• Factor is the input variable of the local model, such as CPU, cache level, etc. 

• QoS is the output response (variable) of the fitted model, such as response time. 

• Model is the selected model that reflects the relationship between one controllable 

factor and the response. It is done either using one or multiple influential factors. 

• Result is the reduced response time. 

Based on the generated heatmap results, the maximum value is the most influential 

factor for service optimization; hence its value is changed (line 8). Initially, experiments are 

performed using a single most influential factor, and if response time is not reduced as 

required to avoid SLA violation, then multiple influential factors are considered. For 

multiple influential factors, the value of more than one influential factor is changed and 

applied for prediction. The newly selected controllable factor value is put in the selected 

machine learning model to predict the new response time (line 9). In case the new predicted 

response time is below the threshold, the SLA is prevented, and resources are applied to the 

system. However, if the predicted response time is not sufficient to avoid SLA, the whole 

process is repeated with varied influential factors and diverse values until the SLA is 

avoided or the list of influential factors is exhausted (lines 10-16). 

 

 

5.4 Manual Versus Automated Unified Framework of SLA prevention 

 

Among a diverse range of approaches working on QoS optimization, the Sensitivity 

analysis, SLA violation prediction, and Design optimization are three crucial, yet normally 
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separated techniques. Presented in Figure 5.6 is a manual versus automated framework that 

tackles the main issue of SLA violation by combining these three techniques into a unified 

process to analyze, predict, and prevent SLA violations. 

 

 

Figure 5.6 – Overall flowchart for Manual versus Automated process 

 

The overall goal of the manual and automated process is to predict and prevent SLA 

violations. Recently, Cheng et al. [1] proposed a framework to utilize the Sensitivity 

analysis for the identification of influential factors with dominating impacts on QoS, as 

shown in the manual process. They used metamodel-based analysis to select a fitted 

surrogate model for domain-independent prediction of SLA violation. The residual error 



53  

between predicted and validated response time is calculated to select the best-fitted model 

for prediction. In the suggested method, the process of evaluation can be used by service 

consumers for service selection, and it can be used by service providers to study SLA 

violations [1]. However, in the proposed framework for SLA prediction, a manual process 

is employed, which is time-consuming and cannot tackle complex real-world data. 

Cheng et al. [2] also presented a new approach for QoS optimization to improve the 

quality of web services. In this approach, four procedures were performed: identifying 

influential factors, collecting observed data, fitting collected data with the MARS model, 

and identifying global optimum till SLA is prevented. However, for optimization, only one 

controllable factor (cache level) is used, which will not lead to optimization for a complex 

system. So, there is a need to automate the proposed approach using Machine Learning 

techniques, which can easily adapt to any complex system and overcome the limitation of 

these approaches.  

This thesis proposes to utilize Machine Learning to predict and prevent SLA violations 

into a unified framework to help service providers analyze, predict, and prevent SLA 

violations. Machine Learning techniques are used to automate their proposed framework, 

which eliminates many manual steps. Past research mostly relies on heuristic methods for 

the prediction of violations. Even though Machine Learning has been utilized in different 

territories of QoS management, the experiments done for the most part come under a 

confined setting, which isn't ascendable to real-world data. Nonetheless, this research adopts 

a systematic machine learning approach applied to real-world data that provides an 

insightful set of experiments. This automated process significantly enhances other 

requirements in terms of availability, performance, robustness, response time, and cost. 
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CHAPTER 6 

IMPLEMENTATION AND EXPERIMENTS 
 

 

In the previous chapters, several methods and algorithms for the regression task of SLA 

violation prediction and prevention were introduced. In this chapter, section 6.1 explains the 

toolkit and environments in which the experiments are performed. Later, section 6.2, reports 

and analyzes the results of several machine learning techniques. As an assessment of the 

proposed approach, section 6.3 examines accuracy, efficiency and robustness in comparison 

with existing methods. 

6.1 Environments and Toolkits 

In this section, the details of the environment and toolkit that were used for the 

implementation are described.  

Software and Hardware Requirement 

The implementation of proposed methodology was performed on Processor: Intel (R) 

Core (TM) i7-5820K CPU @ 3.30GHz, 3301 Mhz, 6 Core(s), 12 Logical Processor(s)  

 

Hardware 1 GPU 

Operating System Windows 10 (64-bit) 

Programming Language Python 3.7 

Markup Language XML (eXtensible Markup Language) 

Integrated Development Environment Jupyter Notebook 5.5.0 

Source Code Editor Notepad++ 

Libraries Keras, numpy, metplot, statsmodels.api, etc 
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Python 

Python is a general-purpose, interpreted, dynamic programming language that is widely 

used for data analysis. The robust collection of scientific, statistical and mathematical tools 

in python allow easier implementation of machine learning models. Libraries such as 

NumPy (Python’s Numerical Library) [44], SciPy (Python’s scientific library) [45], Scikit-

Learn and Imbalanced-learn are built on top of python to provide easy computation and 

analysis on data. In this work, we have used Python 3.7 along with many other libraries has 

been used. 

Scikit-Learn 

Scikit-Learn is a machine learning library built on top of Python, Scipy, and NumPy 

[46]. Scikit-Learn provides various tools for data mining and analysis and is also an open 

source and commercially usable. It features different classifications, regression, and 

clustering algorithms such as Random Forests, Gradient Boosting, k-means, and Naive 

Bayes. 

Imbalanced-learn 

Imbalanced-learn is a python library built on top of Scikit-Learn, Scipy, and Numpy 

[47]. It offers many re-sampling techniques for unbalanced data such as over-sampling, 

under-sampling, and combination of both. 

6.2 A Unified Framework Model Experiments 

To examine the effectiveness of the proposed approach, experiments have been 

conducted on different user’s application, which submits its required resources as jobs to 

the cluster in which each job contains several tasks. For readability, results are presented in 

the following three subsections: Data Analysis, SLA violation prediction, and prevention.  

6.2.1 Data Analysis 

Dataset 

The dataset used contains a 29-day trace of Google’s Cloud Compute, which was 
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published in 2011. For security reasons, part of the trace has been omitted or obfuscated. 

For example, the values for CPU, disk, and memory have been rescaled by dividing each 

value with their corresponding largest value in the trace. Also, the names of the users’ 

applications have been hashed. The trace has six separate tables: Job Events, Task Events, 

Task Usage, Machine Events, Machine Attributes, and Task Constraints. The entity-

relationship diagram of the database is shown in Figure 6.1. 

The user’s application submits its required resources as jobs to the cluster. Each job has 

several tasks. The entity-relationship diagram of jobs and tasks is depicted in Figure 6.1. 

The Job Events table traces the event cycle of the jobs that were submitted to the cluster. 

The tasks inside each job are tracked in the Tasks Events table. Each task is then assigned 

to a specific machine. Machine Events table shows the removal or addition of a machine to 

the cluster or update of its resources. Machine Attributes table shows the attributes of each 

machine, such as kernel version, clock speed, and presence of an external IP address [51]. 

Tasks can have constraints (e.g., A task may have zero or more task placement constraints, 

which restrict the machines on which the task can run.) on machine attributes, which are 

recorded in the Tasks Constraints table.  

Metrics such as requested CPU requested memory, requested disk space, scheduling 

class, and priority of the task are all recorded in the Tasks Events table. The Task Usage 

table contains the actual usage of resources for each task. It contains information such as 

assigned memory and memory usage [51].  

The features requested CPU, requested memory, requested disk space, scheduling class, 

and priority for each task are supplied to the regression model. A different set of data points 

are used for training and validation of the model. In three-fold cross-validation, one-third of 

data is used for validation, and the rest is used for training. These features are considered as 

high-level features that can semantically represent each task thoroughly. Other criteria, such 

as state and load of each machine, can also be considered as features when a request takes 

place. However, to prevent the model from overfitting, the use of too many features is 

avoided. 
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Figure 6.1 – Google’s cluster trace dataset ERD (Entity Relationship Diagram) 

 

Experiments 

The first three steps of data analysis produce a single dataset. From the first three steps, 

the newly generated dataset is appropriate to apply in machine learning models by removing 

unnecessary columns, rows, and features from the dataset as it largely affects the response 

time of the incoming job request. From the single dataset, different graphs are generated to 

check the adequacy of the dataset and understand the relationship between various 
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resources. Through the generated graph, violated tasks and available resources at the time 

of the request are studied to predict future violations. The average response time is taken 

from the dataset to select the threshold value.  

Figure 6.2 illustrates the mechanism of resource allocation in Google’s Cluster Dataset. 

It shows the state of the cluster at 500 random snapshots. Snapshot is defined as a moment 

in time when the total sum of the requested resources is calculated. Similarly, available or 

allocated resources are calculated at each snapshot. In Figure 6.2, the total requested 

memory, assigned memory, memory usage, and available memory of the cluster at each 

snapshot is reckoned using Task Events, Task Usage, and Machine Events tables. Since all 

the requested resources are not used at the same time, it is the nature of the cloud to allocate 

fewer resources than requested resources and accept more requests than its available 

resources. Figure 6.2 shows that at all the 500 snapshots, the requested memory to the cluster 

is much higher than the actual usage of memory. Google scheduler has reserved a safe 

margin between the assigned memory and usage of memory at these snapshots. Thus, the 

availability rate is very high, and violations are rare. 

Similarly, the available CPU and its usage are shown in the CPU analysis graph. As 

shown in Figure 6.3, there is a large gap between CPU availability and its usage, which 

means a lot of operational costs is wasted just to avoid the SLA violation. 

Figure 6.2 – Memory analysis graph. It shows the requested, available, assigned and 

used memory of the cluster 
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Figure 6.3 – CPU Analysis Graph  

Through the generated graph, violated tasks and available resources at the time of the 

request are studied to predict future violations. Average response time is taken from the 

dataset to select the threshold value and is further used for SLA violation prediction. 

6.2.2 SLA Violation Prediction 

The first step is to perform data analysis to generate a single dataset that has a significant 

feature for predicting the response time of an incoming task. The next step is to perform 

experiments based on these features, to specify an appropriate type of model and to fit its 

surrogate model. The experiment data is a generated table from data analysis, which will be 

used to fit the surrogate model. It can be found that the performance behavior, in this case, 

is low-order nonlinearity by an initial analysis of these experimental data. As a result, the 

regression models are selected as the selected model type. 

The eight models listed in the first column of Table 6.1, become the candidate forms of 

a regression model. Each of the eight candidate forms, fitting with the method of least 

squares, produces their R2, adjusted R2, MAE, and RMSE values (Table 6.1). As VARMAX 

yields the largest value of R2, it is selected to predict the performance of the web service. In 

the cell some are NULL values as ARIMAX is univariant model and VARMAX is 

multivariant model, so value is not applicable for them in some cases. 



60  

 

Table 6.1: Comparison based on Different Models 

Model R2 R2(Adj) MAE 

(Univariant) 

RMSE 

(Univariant) 

MAE 

(Multivariant) 

RMSE 

(Multivariant) 

Random Forest 

Regressor 

0.801 0.781 5.7 2.39 6.06 2.46 

Kernel Ridge 0.901 0.875 3.94 1.98 7.16 2.68 

Gradient Boosting 

Regressor 

0.821 0.802 5.79 2.41 6.47 2.54 

Linear model 

Ridge(alpha=.5) 

0.781 0.726 5.99 2.45 6.98 2.64 

Linear model 

RidgeCV() 

0.651 0.611 5.49 2.45 6.94 2.63 

XGB Regressor 0.856 0.822 5.46 2.34 6.08 2.47 

ARIMAX 0.938 0.901 2.32 1.52 NULL NULL 

VARMAX 0.962 0.931 NULL NULL 1.75 1.32 

 

 

The value of R2 determines how well a model will predict the response time for new 

observations. According to the largest R2 value of the VARMAX model shown in Figure 

6.4, it is selected as the most appropriate form of the model to predict response time and is 

expected to have a better prediction accuracy than the other seven models. The smallest 

RMSE and MAE values of the VARMAX model, shown in Figure 6.6 and Figure 6.7, 

suggest that it outperforms the other models in terms of prediction accuracy. As a result, it 

is essential to use the R2 to select the most appropriate one from a series of candidate forms 

for the model. 
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Figure 6.4 – R2 value comparison between all fitted models 

Figure 6.5 – Adjusted R2 value comparison between all fitted models  

Figure 6.6 – MAE value comparison between all fitted models 
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Figure 6.7 – RMSE value comparison between all fitted models  

In addition to residual normality, it should also be checked as to how accurate the fitted 

model is. The plot of predicted vs. actual shown in Figure 6.9 for VARMAX is used to show 

that this fitted model is accurate. Consequently, there is a strong correlation between the 

predicted response time of the fitted model and the observed corresponding results. A 

visualized comparison between data with univariant and multivariant techniques is also 

shown in Figure 6.8. 
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Figure 6.8 – The comparison between different selected regression models for Predicted 

Vs. Actual 
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Figure 6.9 – Predicted Vs. Actual for VARMAX model 

The results of the analysis bolstered with consistent evidence insinuate that the selected 

model can be used for predicting the response time of the web service under examination. 

As a result, this model can be used to analyze the effect of change in resource and their 

interaction on response time and to predict SLA violation. 

After conducting experiments on several different regression models, the results show 

that time series models like ARIMAX and VARMAX predict accurate response time 

compared to some other interpolation techniques without overfitting of data. Even with the 

comparison of univariant and multivariant parameters, the multivariant model shows better 

results. As per the results, the machine learning model that can detect the SLA violation is 

selected.  

The process of SLA violation prediction can be used by service consumers to select the 

most appropriate services while constructing an SOA system. Meanwhile, service providers 

can use the evaluation results to find out if and when SLA might be violated due to the 

fluctuation in different factors, to better understand the performance of a service with its 

fitted model, and to identify performance bottlenecks caused by influential factors. 

In conducted experiments, response time is predicted to check the SLA violation 

detection. Using the same approach, different resources that are part of the SLA agreement 



68  

can check if the regulation of the SLA is met or not can be predicted, e.g., predict CPU 

assigned by a provider and check if violate the rules or not. 

The next step is to avoid SLA violation detected through multi-factor QoS optimization. 

If the violation is not avoided, then a heavy penalty will be laid on the service provider, and 

it can harm the provider’s reputation and business. 

6.2.3 SLA Violation Prevention 

The proposed approach of QoS optimization goes through the following steps to prevent 

SLA violation: 

• Identifying the most influential controllable factors 

• Fitting new data with the selected machine learning models 

• Conducting experiments with single/multiple factors and collecting observational data 

Identifying the most influential controllable factors 

For selecting the right influential factor to reduce response time, feature importance, and 

heatmap technique is applied. 

Figure 6.10 – Different influential factor values from feature importance technique 

Figure 6.10 shows feature importance results, in which the highest value from all the 

results is considered to be the most influential factor for predicting the response time, which 

is the CPU rate. The list of influential factors goes on from highest to lowest value as per 

result. 



69  

 

Heatmap: 

Similarly, Figure 6.11 shows the relation between the parameters for predicting the 

response time, which helps to select a controllable factor. So, by getting this list of 

parameters through a graph, the parameter can be tuned to reduce response time. 

Figure 6.11 – The Comparison between different influential factors in respect to response 

time 

 

Fit new data and Conduct experiments with single/multiple factors: 

Once the influential factors are selected, the new different value is applied to the 

VARMAX model, which is used for SLA violation prediction. Figure 6.12 shows that once 

the influential factor value is changed and applied to ARIMAX model, the prediction is 

accurate for the new unseen data which denotes that the selected model is good for 

continuous SLA violation detection and prevention. 
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Figure 6.12 – ARIMAX model result with changed influential factor values 

Figure 6.13 – Actual Vs. Optimized response time value 

Figure 6.13 clearly shows that once multiple factors value is tuned, the response time of 

the incoming job reduces to a great extent. 

 



71  

6.3 Comparison and Discussion 

The service provider is always in need of tools that intuitively analyze if their service 

design provokes SLA violations and the ones that automatically guide them in preventing 

SLA violations. The proposed automated process will meet this requirement of a service 

provider. 

To check the adequacy of this approach, the proposed SLA violation prediction model 

is compared with the different proposed approaches. For SLA violation prediction, the result 

of the proposed approach is compared with the approach used by Cheng et al. [1]. In a 

selected dataset, the models used in different approaches are applied, and the performance 

result of those models is shown in Figure 6.14. From the result, it is evident that our 

approach can deal with complex data. The proposed model is capable of making a 

continuous prediction while other approaches are not capable of doing that for SLA 

violation prediction.  

SLA violation prevention approach is compared with Cheng et al. [2]. In their approach, 

only one controllable factor is used to prevent the violation, which won’t deal with big 

complex real-time service, while our proposed approach is capable of using multiple 

controllable factors to optimize the service and avoid violation easily.  

A unified process proposed by Cheng et al. [1] [2] can tackle the main issues of SLA 

violation by combining three techniques (analyze, predict, and prevent SLA violation). 

However, for each technique, a different method is proposed, which is time-consuming. It 

also uses a basic fitted model, which, when applied in our dataset, shows that it cannot tackle 

complex real-world data. Furthermore, for optimization, only single controllable factor is 

used, which does not lead to the optimization of complex systems. Also, their proposed 

framework uses only a single web service to conduct experiments and collect results, which 

is not reliable. Our proposed automated technique can easily tackle this issue while 

consuming less time, as the same machine learning model is used to handle both the issues. 

Compared to other proposed models, our proposed approach successfully handles other 

requirements in terms of availability, performance, robustness, response time, and cost. 
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Figure 6.14: Performance evaluation between different approaches 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 
 

 

7.1 Conclusion 

This thesis research proposes an approach of using Machine Learning techniques to not 

only predict SLA violations but also prevent them through optimization. It helps the service 

provider to intuitively analyze if their service design provokes SLA violations and to 

automatically guide them from preventing SLA violations. Service providers can use the 

evaluation results to find out if and when SLA could be violated due to fluctuation in the 

incoming request.  

The process of QoS evaluation can be used by a service provider to select the value of 

the most appropriate resources when preventing violation. If SLA is violated during run 

time check, the optimization strategy presented in this approach can be used to prevent a 

violation by selecting the right influential factor and apply the value to the same selected 

model. In addition to details of the proposed method, this thesis also includes a set of 

experiments, which will help to examine its usefulness for service providers working on 

the construction and refinement of services. 

7.2 Future work 

This research work provides some more possibilities for further improvement: 

• One of the future works might be to explore other models that can be easily 

updated when receiving more training data.  

• This work can also be extended, which includes experiments on more web 

services or SOA applications and the development of a working tool for use in 

practice. 
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• Experiments can also be extended using other machine learning models such as 

Support Vector Machines and Neural Networks. 
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