
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

7-7-2020

An Approach of SLA Violation Prediction and QoS Optimization An Approach of SLA Violation Prediction and QoS Optimization

using Regression Machine Learning Techniques using Regression Machine Learning Techniques

Saurav Agarwal
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Agarwal, Saurav, "An Approach of SLA Violation Prediction and QoS Optimization using Regression
Machine Learning Techniques" (2020). Electronic Theses and Dissertations. 8342.
https://scholar.uwindsor.ca/etd/8342

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8342?utm_source=scholar.uwindsor.ca%2Fetd%2F8342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Approach of SLA Violation Prediction and QoS

Optimization using Regression Machine Learning Techniques

By

Saurav Agarwal

A Thesis

Submitted to the Faculty of Graduate Studies

through Computer Science

In Partial Fulfillment of the Requirements

for the Degree of Master of Science

 at the University of Windsor

Windsor, Ontario, Canada

2020

© 2020 Saurav Agarwal

An Approach of SLA Violation Prediction and QoS

Optimization using Regression Machine Learning Techniques

by

Saurav Agarwal

APPROVED BY:

H. Wu

Department of Electrical and Computer Engineering

__

J. Lu

School of Computer Science

__

X. Yuan, Advisor

School of Computer Science

May 08th, 2020

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights. Any ideas, techniques, quotations, or any other

material from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office and that this thesis has not been submitted for a

higher degree to any other University or Institution.

iv

ABSTRACT

Along with the acceptance of Service-Oriented Architecture (SOA) as a promising style of

software design, the role that Quality of Service (QoS) plays in the success of SOA-based software

systems has become much more significant than ever before. When QoS is documented as a

Service-Level Agreement (SLA), it specifies the commitment between a service provider and a

client, as well as monetary penalties in case of any SLA violations. To avoid and reduce the

situations that may cause SLA violations, service providers need tools to intuitively analyze if their

service design provokes SLA violations and to automatically guide them preventing SLA

violations. Due to the dynamic nature of service interaction during the operation of SOA-based

software systems, the avoidance of SLA violations requires prompt detection of potential

violations before prevention takes place at real-time. To overcome the low latency time in practice,

this thesis research develops an approach of using Machine Learning techniques to not only predict

SLA violations but also prevent them by means of optimization. This research discusses the

algorithm and framework, along with the results of the experiments, which will help to examine

its usefulness for service providers working on the construction and refinement of services.

v

DEDICATION

Dedicated to God, my grandparents, my beloved mummy and papa without whose support, I would

not have made it this far, my loving brother, my supportive sister-in-law, my girlfriend, my

adorable nephew, and the rest of my family and friends.

vi

ACKNOWLEDGEMENTS

First and foremost, I would like to express profound thankfulness to my supervisor, Dr. Xiaobu

Yuan, who has supported me throughout my thesis with his knowledge and expertise on this

exciting field of research. His ideas and suggestions have helped me become more creative,

without which I would not have been able to complete this research.

I would like to offer my sincere gratitude to the advisory group members, Dr. Jianguo Lu and Dr.

Huapeng Wu for their significant remarks and recommendations for my research.

I would like to thank all my friends especially Rajasi and Anjali, who have supported and helped

me throughout my studies, here in Canada. I also thank my brother and sister-in-law for their

motivation and financial support which enabled me to complete my studies successfully.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

DEDICATION.. v

ACKNOWLEDGEMENTS... vi

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS/SYMBOLS... x

LIST OF FIGURES .. xii

CHAPTER 1 INTRODUCTION .. 1

1.1 Overview ... 1

1.2 Motivation and Problem Statement ... 3

1.3 Thesis Contributions .. 4

1.4 Organization of this Thesis .. 5

CHAPTER 2 SERVICE ORIENTED ARCHITECTURE 6

2.1 Web Service ... 8

2.2 Quality of Service (QoS) .. 10

2.3 Service Level Agreements ... 11

2.3.1 SLA Managements Life Cycle .. 14

2.3.2 Cause of SLA Violations... 16

 CHAPTER 3 PREDICTION MODELS ... 17

3.1 Terminology ... 17

3.2 Supervised Machine Learning: Concepts and Definitions 18

3.2.1 Learning .. 19

3.2.2 Classification ... 19

3.2.3 Regression ... 19

3.3 Generalization .. 20

3.3.1 Bias-Variance Trade off .. 20

3.3.2 Cross Validation .. 21

3.4 Performance Evaluation ... 22

3.4.1 Root Mean Square Error (RMSE) ... 22

3.4.2 Mean Absolute Error (MAE) .. 23

3.4.3 R2 ... 24

3.4.4 Adjusted R2 ... 25

CHAPTER 4 RELATED WORKS ... 27

viii

4.1 SLA Violation Prediction ... 27

4.2 SLA Violation Prevention .. 28

4.3 Related Work .. 30

CHAPTER 5 PROPOSED METHODOLOGY ... 35

5.1 Data Analysis ... 38

5.2 SLA Violation Prediction ... 41

5.2.1 Fitted Model with Machine Learning.. 45

5.3 SLA Violation Prevention .. 47

5.3.1 Heatmaps ... 49

5.3.2 Process of SLA Prevention ... 50

5.4 Manual vs Automated Unified Framework of SLA prevention 51

CHAPTER 6 IMPLEMENTATION AND EXPERIMENTS 54

6.1 Environments and Toolkits .. 54

6.2 A Unified Framework Model Experiments .. 55

 6.2.1 Data Analysis .. 55

 6.2.2 SLA Violation Prediction .. 59

 6.2.3 SLA Violation Prevention ... 68

6.3 Comparison and Discussion ... 71

CHAPTER 7 CONCLUSION AND FUTURE WORK 73

7.1 Conclusion .. 73

7.2 Future work .. 73

REFERENCES ... 75

VITA AUCTORIS .. 81

ix

LIST OF TABLES

Table 2.1 – Components of a Web Service Level Agreement...……………………………………13

Table 2.2 – An example of infrastructure SLA……………………………………………………..13

Table 2.3 – An example of application SLA………….…………………………………………….14

Table 6.1 – Comparison based on Different Models………….…………………………………….60

x

LIST OF ABBREVIATIONS/SYMBOLS

IT Information Technology

SOA Service Oriented Architecture

QoS Quality of Service

SLA Service Level Agreement

ML Machine Learning

CPU Central Processing Unit

SLO Service Level Objectives

WS Web Server

DB Database

RMSE Root Mean Square Error

MAE Mean Absolute Error

SVM Support Vector Machine

NN Neural Networks

LR Linear Regression

xi

LIST OF FIGURES

Figure 1.1: Service Oriented Architecture ………………………………………………………01

Figure 2.1: Service Oriented Architecture ………………………………………………………06

Figure 2.2: Relation between Service Provider & Service Consumer ……………………………07

Figure 2.3: Web Service Architecture Diagram …………………………………………………09

Figure 2.4: Three Web Service Roles ……………………………………………………………09

Figure 2.5: SLA Management Life Cycle ……………………………………………………….15

Figure 3.1: Dart chart- A graphical illustration of bias-variance trade-off ………………………21

Figure 3.2: Test & training error as the function of model complexity …………………………22

Figure 3.3: RMSE – Predicted vs Observed values ………………………………………………23

Figure 3.4: R-Squared Explanation ………………………………………………………………25

Figure 5.1: A Unified Framework of SLA Violation Prediction and Prevention…………………37

Figure 5.2: Data Analysis………………………………………………………………………...38

Figure 5.3: SLA Violation Prediction……………………………………………………………42

Figure 5.4: SLA Violation Prevention……………………………………………………………48

Figure 5.5: Heatmap generated on a sample image…………………………………………….....50

Figure 5.6: Overall flowchart for manual vs automated process………………………………….52

Figure 6.1: Google’s cluster trace dataset ERD………………………………………………….57

Figure 6.2: Memory analysis graph……………………………………………………………...58

Figure 6.3: CPU analysis graph…………………………………………………………………..59

Figure 6.4: R2 value comparison between all fitted models………………………………………61

Figure 6.5: Adjusted R2 value comparison between all fitted models……………………………61

Figure 6.6: MAE value comparison between all fitted models…………………………………...61

Figure 6.7: RMSE value comparison between all fitted models ………………………………….62

Figure 6.8: Predicted VS. Actual…………………………………………………………………66

Figure 6.9: Predicted VS. Actual for VARMAX model…………………………………………67

Figure 6.10: Different influential factor values for feature imp technique………………………..68

Figure 6.11: Heatmap result in respect to response time………………………………………….69

Figure 6.12: ARIMAX model result with changed influential factor values ……………………70

Figure 6.13: Actual VS. Optimized response time value…………………………………………70

Figure 6.14: Performance evaluation between different approach ……………………………….72

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Over the last four decades, software architectures have attempted to deal with

increasing levels of software complexity. As the level of complexity continues to evolve,

traditional architectures do not seem to be capable of dealing with the current problems.

Service-Oriented Architecture (SOA) is being advocated in the industry as the next

evolutionary step in software architecture to aid IT organizations meet their complex set of

challenges that traditional architectures cannot meet. A service-oriented architecture is

essentially a collection of services, among which communication can involve either simple

data transfer or could involve two or more services coordinating some activity, thereby

requiring a means of connecting other services to each other.

Figure 1.1: Service Oriented Architecture

2

In recent years, Web services have become the technology of choice for realizing

Service-Oriented Architecture and its associated set of strategic goals [1]. A service is a

function that is well defined, self-contained, and does not fully depend on the context or

state of other services [10]. A Web Service is a software system that is designed to support

interoperable machine-to-machine interaction through a network. The superiority of SOA

comes from the fact that it promises the highly desired benefits of improved reusability,

increased reliability, and reduced costs for development and deployment in a scalable and

dynamic environment. In a service-level agreement (SLA), QoS is documented to

guarantee that services fulfill their official commitments in terms of both functionality and

quality [3].

"Quality of service (QoS) represents the set of those quantitative and qualitative

characteristics of a distributed multimedia system necessary to achieve the required

functionality of an application” [4]. In order to guarantee a basic level of QoS, careful

management of IT resources is essential. Management of assets and taking care of variable

volumes of client necessities are a piece of SLA between consumer and service provider.

However, obeying SLA has been proven to be a challenging task as QoS is influenced by

a variety of different factors. Because of variations in workload, computing resources, and

even network conditions, it is common for Web services to exhibit fluctuation in

performance, leading to the possibility of violating SLA [6].

QoS management includes assisting users to find the essential characteristics of the

wanted service and adaptation of IT assets in such a manner that it considers SLA and

enhances the system performance and efficiency. In a situation that the effective QoS

doesn't conform to the base QoS concurred in SLA, the QoS manager gives a case of SLA

violation. Any service provider who does not take action to prevent SLA violations will

have to face monetary penalties and lost revenue due to a damaged relationship with clients

[10]. Therefore, service providers are in desperate need of such tools that can not only help

them in predicting if their service design provokes SLA violation, but also guides them in

optimizing service design to prevent the violation from happening.

3

SLA violation forecast benefits both service providers and clients. From a service

provider’s point of view, SLA violation results in paying fines in terms of both, reputations

as well as money. By foreseeing the violations ahead of time, providers can re-allocate the

needs and resources to avoid future violations [8]. All the process of resource allocation is

done behind the scene in this manner; thus, from a client’s perspective, better resource

allocation brings about a reliable supplier. Additionally, customers would like to receive

the service on-demand and with no interference. Thus, a system wherein a service supplier

or a third party could give the expectation of SLA infringement for the client can be

exceptionally canny.

It is worth mentioning that violations do happen in the real world. For instance, Amazon

Elastic Cloud confronted a blackout in 2011 when it crashed, and numerous clients, for

example, Reddit and Quora, were down for more than one day [5].

1.2 Motivation and Problem Statement

SOA's exceptional capacity in software development has driven ongoing work within

the academic community and software industry explorations. To improve the design of

Web services, encouraging progress has been achieved for the evaluation of QoS,

prediction of SLA violations, and QoS optimization. For example, most of the approaches

use the technique of collaborative filtering to evaluate SOA systems with historical datasets

obtained from other systems running a similar application and to predict the possibility of

SLA violations based upon the calculation of QoS values for existing services [48, 49, 50].

For QoS optimization, some approaches work for groups of services by maximizing

aggregated utility values and others for individual services by allocating more resources

[28, 29]. However, current methods still lack objective evaluation of software operating in

different application domains, and their separation of related processes has resulted in

limited success in practice.

A couple of recent publications proposed an innovative framework that tackles the main

issues of SLA violation by combining three techniques into a unified process to analyze,

predict, and prevent SLA violation [1] [2]. However, a manual process is used in their

4

proposed framework for an SLA prediction, which is time-consuming. It also uses a basic

fitted response model, which cannot tackle complex real-world data. Furthermore, for

optimization, only one controllable factor i.e. cache level is used, which will not lead to the

optimization of complex systems. SLA violation prevention must be performed in real-time

to detect violations quickly and hence, avoid them. However, there is a very low latency

time to avoid. Thus, to tackle such a scenario, an automated technique is required.

In this thesis, we propose to utilize Machine Learning to predict and prevent SLA

violations into unified framework to help service providers analyze, predict, and prevent

SLA violations. Machine Learning techniques can be used to automate their proposed

framework, which will eliminate many manual steps. Violation prediction and avoidance

can be viewed as a regression problem in the terminology of Machine Learning. Past

research mostly relies on heuristic methods for prediction of violations. Even though

Machine Learning (ML) has been utilized in different territories of QoS management, the

experiments done for the most part are in a confined setting, which isn't ascendable to real-

world data. Nonetheless, this research adopts a systematic machine learning approach

applied on real-world data that provides an insightful set of experiments. This automated

process will greatly enhance other requirements in terms of availability, performance,

robustness, response time, and cost.

1.3 Thesis Contributions

Major contributions of this research work can be summarized as follows:

• To construct and train the system using Machine Learning techniques in a way that

enables them to not only predict the SLA violations but also prevent them by

optimizing the service into unified framework.

• To predict the response time of an incoming for detecting SLA violation.

• To achieve the required response time and to prevent a violation by using a multi-

control optimization technique.

• To conduct a series of experiments for verifying that the proposed ML model can

achieve a robust SLA violation detection and prevention efficiency, get a satisfying

5

performance and reduce the monetary cost.

1.4 Organization of this thesis

In this thesis, Chapter 2 introduces the main concepts of Service Oriented Architecture

and discusses the important role that service level agreements play in quality of services.

Chapter 3 clarifies the terminologies and basic concepts in machine learning in which

various machine learning models such as regression and classification are discussed. It also

presents the method of measuring the performance of a model in machine learning. Chapter

4 presents an outline of existing contributions on SLA violation prediction; specifically, it

will introduce the confinements of these contributions and how our proposed model aims

to overcome them. Chapter 5 displays the proposed method that is utilized to predict and

prevent SLA violations in unified framework. Chapter 6 exhibits the details of the

assessment and the execution of our proposal. Finally, Chapter 7 concludes the thesis and

presents future work.

6

CHAPTER 2

Service Oriented Architecture

Service Oriented Architecture (SOA) is being advocated in the industry as the next

evolutionary step in software architecture to aid IT organizations meet their complex set of

challenges. A service-oriented architecture is essentially a collection of services, among

which communication can involve either simple data transfer or could involve two or more

services coordinating some activity, thereby requiring a means of connecting other

services.

Figure 2.1: Service Oriented Architecture

SOA offers the much-needed benefits like easier component reuse, increased productivity,

improved reliability, shorter time-to-market, and reduced deployment costs [3]. It is one of

the most successful architectural styles, in which applications make use of reusable services

via internet. In the next decade, the SOA principles will be at the core of a new era of

business engagements that transact at Internet scale across locations, devices, people,

7

processes and information [6].

The principles of service-orientation are independent of any product, vendor or

technology. SOA just makes it easier for software components over various networks to

work with each other.

There are two major roles within Service-oriented Architecture:

1. Service provider: The service provider is the maintainer of the service and the

organization that makes one or more services available for others to use. To

advertise services, the provider can publish them in a registry, together with a

service contract that specifies the nature of the service, how to use it, the

requirements for the service, and the fees charged.

2. Service consumer: The service consumer has the ability to consume (use) the

SOA through a program or an individual, who requests a service [3].

Figure 2.2: Relation between Service Provider and Service Consumer

Each service may be offered by various providers and can be used by one or more

customers. A service consumer can be a service or application that reuses other services.

8

As per the SOA frameworks that service consumers are developing, they pick the most

reasonable administrations from various applicants with comparable functionality and use

them to make their application. A service provider, on the other hand, can be an individual

or an association that creates and keeps reusable services. These services are accessible for

service consumers to reuse. Competition is incredibly fierce between different service

providers as there are others available consistently with the similar highlights. If a service

is not fit for fulfilling service consumers in terms of quality and usefulness, service

customers may surrender this service and pick another service provider [8].

2.1 Web Service

A service is a function that is well defined, self-contained and does not fully depend on

the context or state of other services [10]. A Web Service is a software system that is

designed to support interoperable machine-to-machine interaction through a network. The

technology of Web services is most likely the go-to connection option of service-oriented

architecture. Web services offer a potential solution for developing distributed business

processes and applications that can be accessed via the Internet. The use of Web services

in SOA systems have many benefits for the development of new applications [8]. It also

has the benefits of lower cost, higher reliability, and lesser time to market for further

development of new applications. There are four primary tasks in web services: publish,

discovery, request, and response. Publish is a process by which a service provider

announces its service as well as the service associated interfaces. Generally, a service

provider announces its service by entering service information into a specialized registry

[6]. The consumers of the services discover the services in various ways. Discovery is a

process of finding an appropriate service that provides the required functionality. Upon

discovery, the consumer requests the functionality by providing the required input. The

service responds to the consumer with the desired output.

9

Figure 2.3: Web Service Architecture Diagram

The above diagram shows a very simplistic view of how a web service would work. The

client invokes a series of web service calls via requests to a server that would host the actual

web service.

Web services play three major roles in an SOA system:

• Service Directory

• Service Provider

• Service Consumer

Figure 2.4: Three Web Service Roles

10

With service directory acting as a centralized directory, service providers publish

information of Web services for service consumers to select according to their preferences

of software development. For example, a Web Service can help consumers to identify the

top 10 webpage links for different e-commerce websites that offer the lowest price for a

certain product [1].

2.2 Quality of Service (QoS)

 "Quality of service represents the set of those quantitative and qualitative characteristics

of a distributed multimedia system necessary to achieve the required functionality of an

application" [4]. QoS plays an important role in service selection in an SOA environment.

It specifies how a component is supposed to behave. Through QoS, consumers can select

an SOA service provider based on the quality of service. As more competitive web services

have become available for the consumers, QoS has become a decisive factor to distinguish

the reputation of various service providers [11]. By estimating the QoS of a system, the

performance can be enhanced and guaranteed ahead of time. Subsequently, QoS

measurement expands the dependability and accessibility of the system. In SOA systems,

QoS is a fundamental viewpoint, as service consumers’ needs to have a measure of the

service performance and a service provider needs to find the best exchange off between the

provided service and the expense.

QoS manager distributes different measures of resources (CPU, memory, or storage)

and further decides the agreements in SLA based on four sources of information: (1) The

accessible resources of the computing system, (2) The requested IT resources for each user

task, (3) Information about the least possible QoS agreed in SLA, and (4) The historical

information about the system’s load. QoS manager, usually using a heuristic method,

decides how to prevent SLA violation. For example, in the application of video streaming

such as YouTube, the QoS manager may delay the video by a couple of moments to buffer

and prevent interruption in the middle of the video. On the other hand, in some other

applications such as video conference of Google Hangouts, in which significant delay is

11

not tolerable, QoS manager may diminish the resolution of the video or the sound quality

to avoid any violation of the service [13]. Hence, it is necessary to be able to forecast when

an SLA violation may happen beforehand.

At the infrastructure level of computing, several QoS parameters can be measured as stated

below [14]:

• Compute: outage length, availability, server reboot time

• Network: packet loss, availability, latency, mean/max jitter, bandwidth

• Storage: input/output per second, availability, processing time, max restore time,

latency with internal compute resource.

Service providers guarantee the QoS with Service Level Agreements (SLAs). We discuss

the definition of SLA and SLA management life cycle in the following sections.

2.3 Service Level Agreements

The association between a service provider and a customer is governed with a Service

Level Agreement (SLA). SLA is negotiated between parties and a level of the service, QoS

and its related expenses are agreed upon. SLA is an official document of QoS which

contains specific parameters and a minimum level of quality of service. It is mutually

agreed between a service provider and prospective consumers. This is a part of the contract

and is an assurance to the service consumers that they will get the services that they pay

for, by obligating service providers to fulfill contractual promises [15]. Service Level

Objectives (SLOs) are a key element of SLA, which are the qualitative parameters of an

SLA that includes availability, throughput, and response time. SLA clearly defines

monetary penalties in case of any violation of the written agreement. Hence, service

providers have a strong interest in keeping their commitments to avoid and reduce the

situations that may cause SLA violation.

Any SLA mainly describes two things:

• Different Service Level Objectives (SLOs) in terms of values for Quality of Service

metrics.

12

• The penalties to be applied if the objectives have not been accomplished [5]

From an application facilitating perspective, SLA has two different types: Application

SLA and Infrastructure SLA. Infrastructure SLA ensures a level of consistency on

infrastructures such as power, data center, latency and so forth by dedicating resources

exclusively to the customer. An example is shown in Table 2.2. Application SLA is suitable

for hosting models on which numerous applications are co-located. In such a setting,

service resources are available to applications according to the application demands. Thus,

in application SLA, service providers guarantee meeting application demands. An example

of application SLA is shown in Table 2.3.

For instance, SLA can demonstrate 99.99 % accessibility for requests of disk, CPU,

and memory. An SLA might also contain constraints on the response time for each request.

SLA is a significant piece of each agreement because a provider would like to allocate

the minimal amount of resources for each customer to reduce the expense of its server

infrastructure. Simultaneously, the provider needs to avoid having penalties due to the

failure of providing the contracted service. The failure of providing a service is called an

SLA violation. The client would like to receive the service on request and with no

interference. Regardless of these high accessibility rates, infringement does occur in a

genuine world and has caused both the provider and the client’s substantial expenses [18].

13

Table 2.1 – Components of a Web Service Level Agreement [16]

Table 2.2 – An example of infrastructure SLA [16]

Service-Level

Parameter

Describes a noticeable property of a service whose value is

measurable

Metrics Measures to assess, compare or track performances

Availability and

uptime

The duration and frequency for which the services provided must

be available to the customer. Uptime percentage is usually

measured and reported monthly.

Performance

standards

Specific benchmarks that are determined by the client. Actual

vendor service-level performance is measured against these values

to ensure the performance standards have been met

Response time Defines the minimum and maximum amount of time allotted to the

service provider for responding to a request or issue

Resolution time States the minimum and maximum amount of time that a vendor is

given to resolve a particular task or issue

Availability of Hardware 99 % uptime in a month

Availability of Power

99.99 % of the time in a month

Availability of data center network

99.99 % of the time in a month

Availability of Backbone network

99.99 % of the time in a month

Credit for Service unavailability

Refund of service credit for downtime period

Blackout notification guarantee

Notification to customers within 1 hour of downtime

Internet latency guarantee

When latency is measured at 5-min intervals to an

upstream provider, the average doesn’t exceed 60 msec.

Packet loss guarantee

Shall not exceed 1 % in a calendar month.

14

Table 2.3 – An example of application SLA [16]

2.3.1 SLA Management Life Cycle

Each SLA goes through a sequence of steps starting from identification of terms and

conditions, activation and monitoring of the stated terms and conditions, and eventual

termination of the contract once the hosting relationship ceases to exist. Such a sequence

of steps is called the SLA life cycle.

According to [17], it consists of the following six phases:

• Discover Service Provider

• SLA Contract Definition

• Establish Agreement

Service-level parameter metric Website response time (e.g., max of 3.5 sec per user

request).

Function

Latency of web server (WS) (e.g., max of 0.2 sec per

request).

Latency of DB (e.g., max of 0.5 sec per query)

Average latency of WS = (latency of web server 1 +

latency of web server 2) /2

Website response time = Average latency of web server +

latency of database

Measurement directive

DB latency available via http://mgmtserver/em/latency. WS

latency available via

http://mgmtserver/ws/instanceno/latency

Penalty

Website latency < 1 sec when concurrent connection <

1000.

1000 USD for every minute while the SLO was breached.

Credit for Service unavailability

Refund of service credit for downtime period

http://mgmtserver/ws/instanceno/latency

15

• SLA Monitoring

• SLA Violation Detection

• SLA Enforcement

Figure 2.6: SLA Management Life Cycle

Discover Service Provider

In this period, the service provider publicizes these base service contributions through

standard publication media, and the customers should be able to locate the service provider

by searching the catalog. The customers can look through different competitive offerings

and choose a few that fulfill their pre-requisites for further negotiation.

SLA Contract Definition

In this section, the service and its equivalent price, QoS parameters with a fundamental

schema and the penalty rule is defined. SLAs are commonly defined using standard/base

formats or by customization of these base layouts.

Establish Agreement

In this stage, a customer finds a service provider that meets the customer’s needs. The

terms and conditions of the SLA are negotiated and settled upon. A service provider needs

16

to evaluate the SLA in terms of scalability, availability, and performance of its services to

avoid fines before approving the specification of SLA. By the completion of this phase,

parties start to commit to the agreement.

Monitor SLA violation

In this part, the provider’s presentation in delivery of the service is estimated against

the agreement. A crucial part of SLA monitoring is to be able to envisage violations,

assisting providers to reallocate the resources accordingly before the violations happen.

SLA Violation Detection

In this stage, the factors inside SLA are estimated and any deviation is determined. In

the case of SLA violation, SLA enforcement is conducted.

SLA Enforcement

This segment is to implement penalties for SLA infringement. In this period, suitable

actions are taken when the violation has been identified in the earlier phase. The concerning

parties are notified and penalty charges are taken. After SLA implementation, SLA may

end due to break or violation.

2.3.2 Cause of SLA Violations

Failure of service providers to render an agreed service as described in an SLA is

called an SLA violation. Due to variation in workload, computing resources, and network

conditions, it is common for Web services to exhibit fluctuation in performance, leading to

the possibility of violation of an SLA [2]. SLA assurance is a critical objective for every

provider, as violation will lead to heavy penalties for the provider, in terms of money and

reputation [2]. In terms of availability, when Amazon Elastic Cloud crashed in 2011, it

faced an outage and many big customers such as Quora and Reddit were down for more

than a day. Such crashes affect service providers and service consumers. Predicting the

occurrence of an SLA violation has become an important research topic. This subject can

be viewed either from the perspective of the service consumer or from that of the service

provider.

17

CHAPTER 3

PREDICTION MODELS

Machine learning is the research and formation of programs and algorithms that can

study from historical data and make a prediction when exposed to new data. There are three

common types of algorithms used in machine learning to solve different problems:

supervised learning algorithms, unsupervised learning algorithms, and reinforcement

learning [19].

• Supervised Learning intents to find a function, mapping the input to the output given

to the labeled dataset.

• Unsupervised Learning aims to recognize structures and trends within an unlabeled

dataset provided input.

• Reinforcement Learning targets at discovering a role that generates a sequence of

acts that optimizes costs or rewards.

The focus of this thesis is on supervised learning. Consequently, supervised learning

is applied in more profundity after an investigation of certain terminologies of machine

learning. First, primary concepts such as Generalization, Bias-Variance Trade Off, and

Cross Validation are addressed in machine learning. Finally, we will discuss how a model

is evaluated in machine learning and specifically discuss Root Mean Square Error (RMSE),

Mean Absolute Error (MAE), R2 and Adjusted R2.

3.1 Terminology

In this segment, we introduce the basic machine learning terminology that is utilized

in the rest of this chapter. A dataset is given in a set of rows and columns in a typical

supervised machine learning task. Each dataset row corresponds to one single data point,

which is called an example of training or an instance of training. Input variables, functions,

18

or attributes are called columns. Each data point has at least one or more label(s), targets,

or output variables linked with each other.

The dataset is characteristically split into two sets: training set and test set. The training

set is utilized to learn the underlying variance factors in the data, while the test set is used

for the final assessment. To start with, given the training set, the model is trained, and,

during testing, the model is provided with an example described by its features, and the

output is the expected label.

3.2 Supervised Machine Learning: Concepts and Definitions

Two pieces of information are given to the algorithm in supervised machine learning:

a set of input instances X = {x1, x2, ..., xm} and a relating set of targets Y = {y1, y2, ..., ym}.

Classically, each of these m input instances contains a set of n features x = {x1, x2, ..., xn}.

Generally speaking, every xi function can take any value, either numerical (values are real

numbers) or categorical (values are unordered set members). Nevertheless, features may

be expected to be converted to certain forms depending on the task at hand.

There is constantly a true function f∗(.), which maps each conceivable x to the most

ideal y. In any case, we never have access to this unknown function. Supervised learning,

therefore, amounts to approximating function f∗(.) based on the information provided in the

sets of X and Y. The process of approximating f∗(.) using a function fθ(.) in which θ is a set

of parameters is called learning.

Learning algorithms become familiar with the parameters θ of the function fθ(.) by

limiting the errors that the model makes. Formally, a function that maps the discrepancy

between the output prediction of the model and the true target into a real number is called

the loss function [19].

If the true target y is a discrete variable, the prediction task is called Classification. On

the other hand, if y is continuous, the task is called Regression. In the accompanying

subsections, we discuss these two types of supervised learning algorithms in more detail

after formally presenting learning.

19

3.2.1 Learning

Approximating function f∗(.) using function fθ(.) corresponds to extracting the

underlying factors of variation from data instances and mapping them to the output. These

underlying factors could be a probability table, a graph structure, or weights depending on

which learning algorithm is utilized to find the data. Generally, learning adds up to finding

the best parameters θ to minimize a loss function over all the examples in the dataset [19].

Therefore, the learning process can be formulated as follows,

(3.1)

in which is the learned set of parameters, yi and oi are the target and output of the model

for the ith sample.

3.2.2 Classification

In a supervised classification task, the prediction output y is from one of the total C

distinct classes {1, 2, ..., C}. To get a forecast for new examples, the model can simply

output a class label, or the output can be a set of probabilities. Each probability corresponds

to one of C classes that indicates how probable it is that the unseen input x belongs to a

specific class. In models that output probabilities, to get a discrete prediction out of the

model, either the class with the highest probability is chosen or the class label is drawn by

sampling from the output distribution.

3.2.3 Regression

Similar to a classification task, in regression problems, the objective is to learn a

mapping function from an n-dimensional vector x into a real-valued number O as the

prediction. A regression model uses the historical relationship between an independent and

a dependent variable to predict the future values of the dependent variable. Mathematically,

regression is about learning a model f(y) = f(x) + ε, where ε is a noise/error term that

describes everything that cannot be captured by the model.

20

A simple regression model shows the relationship between the magnitude of one

variable and that of a second - for example, as X increases, Y also increases or as X

increases, Y decreases. It estimates exactly how much Y will change when X changes by a

certain amount.

3.3 Generalization

The goal of machine learning is to train models that can predict the labels for new

examples that are not seen previously. Consequently, generalization to new examples is an

important aspect of every learning algorithm. Usually, we are looking for models that

perform well on testing data as well as on training data. As a consequence, we must prevent

learning algorithms from merely memorizing training data; instead, such algorithms must

learn the underlying variation factors.

3.3.1 Bias-Variance Trade off

To decide how reliable a model is, we must comprehend the reasons behind errors.

Bias and variance of a prediction model help us formally measure these errors. Bias and

variance of a prediction model allow us to compute these errors formally. To define bias

and variance over a model, we must assume that we can train the same model multiple

times with different randomly selected data points. In this thesis, each trained model is

called a model instance. Errors in bias and variance predictions are called errors due to bias

and error due to variance respectively [20].

Bias corresponds to the distance between the expected prediction of the model and the

true target [22]. Considering f(x) as the model, the bias is defined as follows:

 bias = | E[f(x)] – y |2, (3.2)

where E[.] is the expectation and y is the true target. On the other hand, variance

corresponds to the variability in different predictions of multiple instances of a model [22]:

 variance = | f(x) − E[f(x)] |2 (3.3)

21

The total error of a model in terms of bias and variance is defined as follows:

 error = E[(f(x)−y) 2] = bias2 + variance. (3.4)

Given the limited amount of data, there is always a trade-off between bias and

variance. The trade-off happens in a way that reducing one may lead to increasing the other.

As a result, minimizing the total error requires a careful balance between bias and variance.

A graphical illustration of this trade-off is shown in Figure 3.1.

Figure 3.1 - Dart chart: A graphical illustration of bias-variance trade-off

3.3.2 Cross Validation

To find the parameters of the model that generalize the best, we need to know if the

model has been overfit. Cross validation helps us to find an overfit model. Overfitting

happens when the error rate in the training set decreases but the error on the test set

increases. As shown in Figure 3.2, as we increase the complexity of the model, the error

rate in the training set decreases but at some point, the error in the test set passes the

minimum and increases. When the error in the test set increases with higher model

complexity, the model is overfit. In cross validation, the dataset is divided into training and

validation sets. To increase the validity of the model, k-fold cross validation is used where

22

the dataset is partitioned into k equal subsets. We define d as the complexity order of the

model. For each order-d hypothesis class:

— Repeat k times:

— Set aside one of the subsets.

— Use the rest of the data points to find θ (model parameters).

— Compute prediction error on the held-out subset.

— Average the prediction error over the k rounds/folds. Use this as the estimated true

prediction error for the order-d hypothesis class [19].

Figure 3.2 – Test & training error as the function of model complexity.

The goal is to find d with the lowest estimated true prediction error. It is worth

mentioning that k-fold cross validation increases computation k-times. Thus, with larger

datasets or complex models, a smaller value of k is preferred [19].

3.4 Performance Evaluation

In this subsection, we introduce the common error metrics used for evaluating a

regression model: (1) Root Mean Square Error, (2) Mean Absolute Error, (3) R2, and (4)

Adjusted R2 [23]. Error metrics help us indicate how good the model will perform when

exposed to unseen data. Thus, after the model is trained on the training set and the best

performing model is chosen, it will be tested on an intact test set. This approach helps us

23

select a model that will have a good performance on unseen data.

3.4.1 Root Mean Square Error (RMSE)

The root-mean-squared error (RMSE) is a measure of how well our model performed.

It does this by measuring the difference between predicted values and the actual values. It

is the standard deviation of the residuals (prediction errors).

Figure 3.3: RMSE – Predicted vs Observed values

Residuals are a measure of how far from the regression line data points are. RMSE is

a measure of how spread out these residuals are. It shows how concentrated the data is

around the line where it fits best. Root mean square error is commonly used in climatology,

forecasting, and regression analysis to verify experimental results.

 (3.5)

3.4.2 Mean Absolute Error (MAE)

MAE measures the average magnitude of the errors in a set of predictions, without

considering their direction. It’s the average over the test sample of the absolute differences

between prediction and actual observation where all individual differences have equal

weight.

24

(3.6)

It is a measure of the difference between two continuous variables. Assume

X and Y are variables of paired observations that express the same phenomenon. Examples

of Y versus X include comparisons of predicted versus observed, subsequent time versus

initial time, and one technique of measurement versus an alternative technique of

measurement. Consider a scatter plot of n points, where point i has coordinates (xi, yi).

Mean Absolute Error (MAE) is the average vertical distance between each point and

the identity line. MAE is also the average horizontal distance between each point and the

identity line.

3.4.3 R2

It is a statistical measure that represents the usefulness or fit of a regression model.

The ideal value for r-square is 1. The closer the value of r-square to 1, the better the model

will be fitted. R-square is a comparison of the residual sum of squares (SSresiduals) with a

total sum of squares (SStotal). A total sum of squares is calculated by summation of squares

of perpendicular distance between data points and the average line [19].

(3.7)

It is a statistical measure that represents the proportion of the variance for a dependent

variable that is explained by an independent variable or variables in a regression model.

Whereas, correlation explains the strength of the relationship between an independent and

dependent variable, R-squared explains to what extent the variance of one variable explains

the variance of the second variable. So, if the R2 of a model is 0.50, then approximately

half of the observed variation can be explained by the model's inputs.

25

Figure 3.4: R-Squared Explanation

3.4.3 Adjusted R2

It is a modified version of R-squared that has been adjusted for the number of

predictors in the model. The adjusted R-squared increases only if the new term improves

the model more than would be expected by chance and if not understood. It only decreases

if a predictor improves the model and the amount that is less expected by chance. It is

always lower than the R-squared [10].

Adjusted R-squared measures the variation in the dependent variable (or target),

explained by only the features which help make predictions. Unlike R-squared, the

Adjusted R-squared would penalize for adding features that are not useful for predicting

the target.

Let us mathematically understand how this feature is accommodated in Adjusted R-

Squared. Here is the formula for adjusted r-squared:

26

(3.8)

(3.9)

Here R2 is the r-squared calculated, N is the number of rows and M is the number of

columns. As the number of features increases, the value in the denominator decreases.

27

CHAPTER 4

Related Works

This chapter discusses the relevant background of recent works in SLA violation prediction

and prevention.

4.1 SLA Violation Prediction

SLA violation prediction is an essential task in web service as an SLA violation might

cause interruptions for the clients’ accessibility of service and force penalties on the

supplier. An assortment of contributions has been proposed for SLA violation prediction.

For SLA violation prediction from the perspective of the service provider, several

approaches have been proposed in recent years. Publications surveyed in this direction, with

highlights of their contributions and limitations, are listed below.

Rafael et al. [40] proposed a technique which focuses on anticipating the demand of the

future resources for meeting SLA requirement. The author used business-level SLAs

(throughput and response time) as input parameters to the chosen prediction approaches.

Machine Learning techniques like Support Vector Machine (SVM), Neural Networks (NN),

and Linear Regression (LR) were used for prediction. However, no real-world data was

considered or was probed on, for simulating a realistic scenario.

Authors in Jules et al. [39] use an intelligent and dynamic Service Level Agreement

(SLA) based on a probabilistic ontology that detects and alerts potential violations of

contract parameters for a cloud computing environment. Despite its good performance, the

dataset generated using simulation does not necessarily represent a real environment. It

contains 40% violations and dismisses the way that in a genuine world, infringement is

extremely uncommon (∼2.0%).

In a similar work for predicting SLA violations in composite services, in Leitner et al.

28

[24], propose a regression machine learning model; the regression model is implemented

using the WEKA framework, which cannot be scaled to real-world environments. In [25],

the authors introduce an efficient system that predicts SLA violation before it occurs and

recommends how to mitigate those violations to avoid any penalties. A profile-based model

of SLA violation prediction from the provider’s perspective was proposed. It helps service

providers in making decisions about whether to form SLA and avoiding SLA violations.

To achieve service level agreements, a prediction method based on Bayes model was

designed by Zhang et al. [26] to predict the mean load over a long-term time interval as well

as the mean load in consecutive future time intervals by identifying novel predictive features

of host load that capture the expectation, predictability, trends and patterns of host load.

This prediction model of the workload can help a service provider estimate the possibility

of whether SLA violation will occur.

 Wong et al. [27] proposed to use the SVM model to predict possible SLA violations

before any issue emerges so that remedial action can be taken. While the approaches in [26]

and [27] can help a service provider know beforehand whether SLA violation will take

place, it lacks the capability of helping service providers evaluate QoS quantitatively.

Recently, Cheng et al. [1] [2] have proposed a framework to utilize the sensitivity

analysis for the identification of influential factors with dominating impacts on QoS. They

used metamodel-based analysis to select a fitted surrogate model for domain-independent

prediction of SLA violation. The residual error between predicted and validated response

time are calculated to select the best-fitted model for prediction. In the suggested method,

the process of evaluation can be used by service consumers for service selection, and it can

be used by service providers to study SLA violations [1]. However, in the proposed

framework for SLA prediction, a manual process is employed, which is time-consuming

and cannot tackle complex real-world data.

4.2 SLA Violation Prevention

The subject of SLA violation prevention can be either composite services or individual

services. For individual services, resource provision is employed to analyze workloads, to

classify them based on common patterns, and to plan for workloads before actual

scheduling. For composite services, several approaches suggest calculating aggregated QoS

29

values of all possible service combinations and choosing the one that maximizes the

aggregated utility value while satisfying global constraints. Many different approaches have

been proposed for SLA violation prevention.

For individual services, resource provision has been utilized in [28] to analyze

workloads, to categorize them on the basis of common patterns, and to plan for workloads

before actual scheduling. The authors of [28] later enhanced their work with automated

processing in [29]. Although these methods can optimize QoS by allocating more resources,

no attention has been given to resource over-provision, which is a serious issue for Web

services as it wastes resources and causes an increase in operational cost [30].

Wu et al. [31] proposed ProfminVMminAvaiSpace, an algorithm that maps users'

requirements into infrastructure resources to provide a reliable service, and at the same time,

maximize resource allocation to prevent violations.

Uriarte et al. [32] used unsupervised learning to cluster the resource usage and duration

of services to avoid violations of the Google Cluster trace dataset. If a violation happens

inside a cluster of services, the other services inside the cluster will be assigned to other

resources, to avoid the violation. This helps in violation avoidance in the cluster, but there

is no explicit prediction of SLA violation for each service.

Chana et al. [28] proposed an approach where they enhanced their work with automated

processing. Although these methods can optimize QoS by allocating more resources, no

attention has been given to resource over-provision, which is a serious issue for Web

services, since resources are wasted, and operational cost becomes exorbitant.

Cheng et al. [2] presented a new approach for QoS optimization to improve the quality

of Web services. In this approach, four procedures were performed: identifying influential

factors, collecting observed data, fitting collected data with the MARS model, and

identifying global optimum till SLA is prevented. However, for optimization, only one

controllable factor (cache level) is used, which will not lead to optimization for a complex

system. So, there is a need to automate the proposed approach using Machine Learning

techniques, which can easily adapt to any complex system and overcome the limitation of

these approaches. The automated process will greatly enhance other requirements in terms

30

of availability, performance, robustness, response time, and cost.

As a result, this thesis will develop a novel approach to help a service provider

intuitively analyze if their service design provokes SLA violation. If it does, then this

approach will guide them for optimizing the service to prevent violation because SLA

violation will lay a hefty penalty to the provider. As part of the proposed unified framework,

this approach uses Machine Learning models to construct and train the system in a way that

enables them to not only predict the violations but also prevent them by optimizing the

service.

4.3 Related Work

SLA Violation Prediction

Paper Contribution Limitations

Hemmat et al.

(2016), “SLA

Violation

Prediction In

Cloud Computing:

A Machine

Learning

Perspective” [33]

- In this paper, two machine learning

classification models: Naive Bayes

and Random Forest classifiers, were

used to predict SLA violations.

- Several re-sampling methods such as

Random Over and Under Sampling,

SMOTE, NearMiss (1,2,3), One-sided

Selection were used to re-balance the

dataset.

- Two classes- violated and unviolated

were generated for the prediction

problem.

- Accuracy, ROC area, Precision,

Recall, and F value were used for

model performance evaluation.

- No continuous

prediction was

done, as only task

violation is

predicted using the

classification

technique.

- Basic

classification

techniques were

applied to complex

data to predict

violation.

31

Zhu et al. (2017),

“Online QoS

Prediction for

Runtime Service

Adaptation via

Adaptive Matrix

Factorization” [34]

- This paper proposed a collaborative

QoS prediction approach, namely

adaptive matrix factorization (AMF)

- AMF method has been presented and

evaluated on a real-world QoS dataset

of Web services.

- Median Relative Error (MRE) and

Ninety-Percentile Relative Error

(NPRE) were used to evaluate AMF

approach.

- Due to incurred

service

invocations, this

approach is costly,

especially when

applied to a large

number of

candidate services.

- Evaluations are

conducted offline,

which is not

desirable on real

large-scale

applications.

SLA Violation Prevention

Paper Contribution Limitations

Khan et al. (2016),

“An Adaptive

Monitoring

Framework for

Ensuring

Accountability and

Quality of Services

in Cloud

Computing” [35]

- In this paper, a framework to

dynamically monitor QoS

metrics and performance

measures to verify compliances

for respective SLAs is

proposed.

- Three main components

namely, a component for the

digitization of SLA parameters;

interactive components for

dynamic monitoring of QoS

- No new technique is

proposed for QoS

optimization.

- This method optimizes

QoS by allocating more

resources but no

attention has been given

to resource over-

provision.

32

and core component for

dynamic detection of violation

and adaptive remedy

rectification are advised.

Zhou et al. (2018),

“Minimizing SLA

violation and power

consumption in

cloud data centers

using adaptive

energy-aware

algorithms” [36]

- This paper proposes two novel

adaptive energy-aware

algorithms for maximizing

energy efficiency and

minimizing the SLA violation

rate in Cloud datacenters.

- Application types, as well as

the CPU and memory

resources, are also considered

during the deployment of VMs.

- Experimental analysis is

performed using a real-world

workload, which comes from

more than a thousand

PlanetLab VMs.

- Predicts future resource

requirements, and

arranges appropriate

additional virtual

resources in advance,

before the peak occurs.

This is done to maximize

performance and avoid

service violations, but it

always wastes resources

and causes an increase in

operational cost.

33

Model Construction

Paper Contribution Applicability

Joseph et al. (2015),

“Construction and

Use of Linear

Regression Models

for Processor

Performance

Analysis” [37]

- The paper proposes an

iterative process for

constructing accurate

regression models of processor

consisting of all significant

main effects and interaction

terms using a reasonable

number of simulations.

- It constructs and obtains

accurate estimates of all

significant coefficients with the

minimum number of

simulations.

- Regression model

construction steps include:

Obtaining the Best Model,

Determining Model Adequacy

and an interactive procedure to

obtain linear models at any

specified level of accuracy.

- This iterative method

can be used for

constructing regression

models to predict SLA

Violations.

- It can be extended to

various applications like:

 - Sales forecasting

 - Weather forecasting

 - House Price Prediction

34

Adhikari et al.

(2013), “An

Introductory Study

on Time Series

Modeling and

Forecasting,” [38]

- This paper proposes how a

time series regression model is

constructed and applied in a

different real-world domain.

- To evaluate forecast accuracy

as well as to compare among

different models fitted to a time

series, five performance

measures are used: MSE,

MAD, RMSE, MAPE and

Theil's U-statistics.

- Applied Time Series

forecasting on the following

domains: Stochastic models,

Artificial Neural Networks,

Support Vector Machines

A combined Time Series

regression model can be

used for SLA prediction

and prevention.

- It can be extended to

various applications like:

 -Economic Forecasting

 - Budgetary Analysis

 - Stock Market Analysis

 - Yield Projections

 - Process and Quality

Control

 - Inventory Studies

35

CHAPTER 5

PROPOSED METHODOLOGY

The idea of this thesis is to automate the unified framework for the prediction and

prevention of SLA developed by Cheng et al. [1] [2]. To automate the existing process, the

proposed approach uses various machine learning models and techniques. Prior projects

working on SLA violation prediction or avoidance have generally neglected the challenges

of using real-world data. In the proposed framework, a real-world dataset is used to

construct machine learning models for efficient analysis of the unseen data. SLA violation

prediction and prevention can be simply considered as a regression problem.

Data analysis, SLA violation prediction, and design optimization are three crucial, yet

typically separate techniques for QoS evaluation and optimization [52]. As illustrated in

Figure 5.1, this thesis proposes an innovative framework to solve the main issues of SLA

violation by automating these three techniques into a unified framework, which analyzes,

predicts, and prevents SLA violations.

The process of data analysis in this framework initiates the construction of a single

dataset table through data selection and preprocessing, which is responsible for cleaning and

preparing data to address the machine learning problem. With the number of features

reduced to only those influential to the service’s performance, the second process fits a

machine learning model to predict SLA violation. The development of a model starts with

a candidate in a specific type and form, such as a regression model, from a pool of choices.

The process of SLA violation prediction then checks the adequacy of this chosen candidate

with new experiments. Unless a rejection results in the choice of another candidate, the

model is ready to be used for quantitative analysis of service quality and for the prediction

of situations when SLA violations could take place.

The last process of QoS optimization is necessary to avoid the predicted SLA violations

by adjusting the values of controllable factors by service providers, such as CPU, storage,

36

and cache. This process includes three steps as below:

• Identifying the most influential controllable factors

• Fitting new data with a machine learning regression model

• Conducting experiments with single/multiple factors and collecting observational data

This three-step procedure is either repeated until SLA prevention is achieved, or the list

of controllable factors is exhausted. In the latter case, a re-design of the web service by the

provider is a practical recommendation.

The rest of this chapter is organized as follows. Section 5.1 first discusses data analysis,

which helps to understand its characteristics, features, and class distribution; this facilitates

the discovery of models that can effectively make predictions with such features. Then, it

discusses the approach of data selection and preprocessing. Section 5.2 presents the machine

learning models that can efficiently address the regression task of SLA violation prediction

on a skewed dataset. Finally, Section 5.3 presents our approach for preventing the predicted

SLA violation using multi-factor optimization on a selected machine learning model.

37

Figure 5.1: A Unified Framework of SLA Violation Prediction and Prevention

38

5.1 Data Analysis

Figure 5.2 illustrates the first module of the proposed framework for data analysis, with

details presented in Algorithm 1. Since the availability rate is very high (97.8%) and

violations are rare, machine learning models tend to predict the absence of violations.

However, this is not desirable in a real-world scenario. Thus a few re-sampling techniques

are applied in machine learning to handle the skewness of data.

Figure 5.2 – Data Analysis

39

40

The process of data analysis is responsible for the selection and examination of raw data.

Due to the fact that datasets always contain irrelevant information for SLA analysis, it is

necessary to group raw data into labelled columns and keep only relevant columns by

filtering out the others. If an original dataset uses spaces or commas to separate data, they

need to be removed to avoid false prediction results. This results in a well-formatted table

with useful information after Algorithm 1 finishes the first step of processing. However,

datasets collected from real-world applications always contain null and duplicated data.

Therefore, the proposed algorithm examines the table in the second step and remove the null

or duplicated columns and rows. This cleanup applies to columns and rows that have unique

values as they do not add any value to the prediction of SLA violations.

In order to make the dataset more useful and productive after preprocessing, data

transformation is applied in the third step. Machine Learning is all about data, and the

training success of any model depends on the way data is transformed and fed into the

machine learning algorithm. Feature transformation is a function that transforms features

from one representation to another.

There are several reasons for transforming the features:

• Data types are not suitable to be fed into a machine learning algorithm, e.g., text,

categories.

• Feature values may cause problems during the learning process, e.g., data

represented on different scales.

• Reduce the number of features to plot and visualize data, speed up training or

improve the accuracy of a specific model.

 In the proposed approach for transformation, normalization technique is applied to

rescale data from the original range to a new range between 0 and 1. Normalization is only

applied to the data when the data has input values with differing scales. The required features

taken from the data set through the normalization process can vary. Since predicting the

response time of the incoming request is needed in this case, the information of resources

used by the user is gathered.

41

After preprocessing, a single dataset is generated to use it further in the SLA process of

violation prediction and prevention. In the fourth step of the algorithm, several graphs are

generated. The adequacy and compatibility of processed data are checked in the fifth step

so that features such as the amount of requested CPU, disk, and memory of violated tasks

and available resources at the time of request can be studied to predict future violations.

5.2 SLA Violation Prediction

In the process of data analysis, the performance model is treated as a BlackBox, as the

features are identified by analyzing only the outputs of selective inputs. As the prediction

of SLA violation is expected to work in all use cases of the service, the proposed framework

fits various machine learning models and predicts service performance by evaluating these

fitted models. As illustrated in Figure 5.3, the overall process goes through the following

activities whose details are presented in Algorithm 2.

The processed data is used as input in the Fitted Machine Learning module. Initially,

based on the data analysis result, a threshold value is selected for the maximum response

time (line 3). If the response time is close or above the threshold, it implies that SLA is

violated. First, the processed data is split into two parts: training and testing dataset. Two-

third of the dataset is used as the training set and fed to the model in each training, while the

remaining one-third is applied as the test set (line 7). The aggregate of the model is

considered for reporting as the final result.

42

Figure 5.3 – SLA Violation Prediction

43

In a machine learning dataset, a training set is used to build up a model, while a test set

is applied to validate the built model in a dataset. Data in the training set is excluded from

the test set. Hence, in the proposed method, the training set is selected at first, and then

different regression models like Random Forest Regressor, Kernel Ridge, Gradient

Boosting Regressor, and Time Series are applied to train the model for prediction (line 8).

While training the data, various measures are taken to check if the chosen training data

44

results are sufficient to validate their application on testing data. The split performance of

training data as a result of checking high bias and high variance leads to choosing a new

model as the selected model is not capable of predicting or changing model rules value like

a number of auto-regressive lags, moving average, number of iterations, trends, etc., and

training the model any longer. In case the performance results into high variance, either a

different model is selected, or more data is considered in order to train the model again and

check the performance. The entire process is repeated until a model is applied with low bias

and low variance results for training set performance (lines 11-22).

Once the model is trained, the same model is used to predict using the testing data, i.e.,

the unseen data. Tested data performance is evaluated to see if the model is appropriate for

real-time prediction based on different evaluation factors. This step checks the fitting quality

of the chosen model in the selected form with experiments. At this point, the dataset which

was put aside earlier comes into play. Evaluation allows testing of the model against the

data that has never been used for training. This should reflect as to how the model will

actually perform in the real world. If the candidate model lacks the required quality, the

process of model-based analysis repeats the work to choose another model (lines 22-27). A

different range of performance metrics, such as R2 in Eq. 3.7, adjusted R2 in Eq. 3.9, MAE

in Eq. 3.6, and RMSE in Eq. 3.5 is applied to check the performance of a model on unseen

data. The complete process is repeated until a model with good performance is selected.

Finally, the residual error between predicted and validated response time are calculated

to check how well the fitted model predicts the response time in the future. In situation when

a rejection occurs, the whole process starts again from making a model selection to the

validation of the fitted model and then the prediction of the response time. The prediction

will be accurate when the new observed response time lies within the 90% prediction

interval, and the residual errors are less than 5%.

At this time, the model is ready to be used for quantitative analysis of the influence of

different factors on service quality and the prediction of situations when SLA could be

violated. After the model is selected, it is ready to make SLA violation prediction. While

doing so, if the predicted response time is close to a threshold value or above the predicted

value, then SLA is violated else the process continues to work normally.

45

A time-series regression model is proposed for continuous checking of SLA violation.

The Time series model is an effective fitted model for this problem as this model makes a

continuous prediction of violation in real-time, which is the main requirement for any

service provider.

5.2.1 Fitted Model with Machine Learning

This section introduces the machine learning models that are used for the task of SLA

violation prediction and prevention. Those models are ARIMAX (Autoregressive Integrated

Moving Average with Explanatory Variable) time series regression model and VARMAX

(Vector Autoregressive Moving Average with eXogenous) regression model.

Time series models use the past movements of variables in order to predict their future

values. Unlike structural models that relate the variable, we want to forecast with a set of

other variables. However, in terms of forecasting, the reliability of the estimated equation

should be based on out-of-sample performance [21]. The time series model can mostly

produce quite accurate forecasts, especially in the case that there are multidimensional

relationships among variables. Time-series refers to an ordered series of data. It usually

forecasts what comes next in the series using the Box-Jenkins approach.

 Time series models are divided into two part:

• Univariate Time Series: Only one variable is varying over time; for example, the

data collected from a sensor that measures the temperature of a room every second.

Therefore, each second, there is only a one-dimensional value, which is temperature.

• Multivariate Time Series: Multiple variables are varying over time, for example, a

tri-axial accelerometer. There are three accelerations, one for each axis (x, y, z), and

they vary simultaneously over time. Considering the data that you showed in the

question, you are dealing with a multivariate time series,

where value_1, value_2, and value_3 are three variables changing simultaneously

over time.

ARIMAX (AutoRegressive Integrated Moving Average with Explanatory Variable)

The standard ARIMA (AutoRegressive Integrated Moving Average) model allows

46

making forecasts based only on the past values of the forecast variable. The model assumes

that future values of a variable linearly depend on its past values, as well as on the values of

past (stochastic) shocks. The ARIMAX model is an extended version of the ARIMA model.

It also includes other independent (predictor) variables. The model is also referred to as the

vector ARIMA or the dynamic regression model. The ARIMAX model is similar to a

multivariate regression model. Additionally, it allows taking advantage of autocorrelation

that may be present in residuals of the regression to improve the accuracy of a forecast.

For obtaining a non-seasonal ARIMAX model, it is required to combine differencing

with autoregression and a moving average model. The full model can be written as:

(5.1)

where y't is the differenced series (it may have been differenced more than once). The

predictors on the right-hand side include both lagged values of yt and lagged errors. This is

called an ARIMAX (p, d, q) model. In the model, the variables or parameters are listed as

below:

• p is the number of autoregressive terms,

• d is the number of nonseasonal differences needed for stationarity, and

• q is the number of lagged forecast errors in the prediction equation.

VARMAX (Vector Autoregressive Moving Average with eXogenous)

The Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX)

is an extension of the VARMA model that also includes the modeling of exogenous

variables. It is a multivariate version of the ARMAX method. Exogenous variables are also

called covariates and can be thought of as parallel input sequences that have observations at

the same time steps as the original series. The primary series are referred to as endogenous

data to contrast it from the exogenous sequence(s). The observations for exogenous

variables are included in the model directly at each time step and are not modeled in the

same way as the primary endogenous sequence (e.g., as an AR, MA, etc. process). The

VARMAX method can also be used to model the subsumed models with exogenous

47

variables, such as VARX and VMAX. The method is suitable for multivariate time series

without trend and seasonal components with exogenous variables.

 The below formula represents a VARMAX model:

Where,

• Yt is a vector of n response variables (dependent)

• Xt is a vector of m exogenous variables (independent)

• p is the number of previous periods of the endogenous variables included in the

model

• q is the number of previous periods included in the moving average

• b is the number of previous periods of exogenous variables included

• Φi is an n * n matrix of autoregressive parameters

• Bi is an n * m matrix of exogenous variable parameters

• Θi is an n * n matrix of moving average parameters

• Et is the difference between the actual and the predicted value of Yt, (Yt - Ŷt)

5.3 SLA Violation Prevention

 Once the selected model predicts SLA violation, the final step is to avoid SLA violation

through QoS optimization. Figure 5.4 illustrates the last module of the proposed framework

for SLA Prevention, with details presented in Algorithm 3. For optimization, the response

time of the job is reduced and kept below a threshold to avoid violation. The response time

of incoming jobs is optimized by selecting single or multiple controllable factors and

increasing or decreasing their value to reduce response time and avoid violation.

The proposed approach of QoS optimization goes through the following steps to prevent

SLA violation:

• Identifying the most influential controllable factors

• Fitting new data with a machine learning regression model

• Conducting experiments with single/multiple factors and collecting observational data

48

This procedure is repeated until SLA prevention is achieved, or the list of controllable

factors are exhausted.

Figure 5.4 – SLA Violation Prevention

49

5.3.1 Heatmaps

Heatmap is a data matrix, visualizing values in the cells using a color gradient. This

gives a good overview of the largest and smallest values in the matrix. Rows and/or columns

of the matrix are often clustered so that users can interpret sets of rows or columns rather

than individual ones [41].

In other words, a heatmap is a type of graphical representation of data that consists of a

set of cells, in which each cell is painted with a specific color according to a specific value

attributed to the cell. The term “heat” in this context is seen as a high concentration of

geographical objects in a particular place. Heatmaps show the distribution of objects or

phenomena across the entire surface. More generally, heatmaps can be viewed as the

surfaces of densities. Such surface density fairly illustrates the location of the concentration

50

of points or linear objects [41]. An example of a heatmap is shown below in Figure 5.5.

At a fundamental level, heatmaps are implemented as spatial matrices with cells colored

after their values. Explicitly, they encode a continuous quantitative variable as a color in

space through a color transfer function to a sequential color scheme [42].

Broadly speaking, they fall into two classes:

• Image-based heat maps and

• Data-matrix heat maps.

Image-based heat maps display numerical information that is mapped over an image, an

object, or a geographic location. On the other hand, data-matrix heat maps display numerical

data in a pseudo-colored tabular or matrix format. The data may be subsequently clustered

using various measures of similarity or dissimilarity [43].

Figure 5.5 – Heatmap generated on a sample image [42]

5.3.2 Process of SLA Prevention

The selection of the right influential factor is the most crucial step, as this factor helps

most in preventing SLA violations with optimization. Influential factors can be categorized

either as controllable or uncontrollable ones [44]. Controllable factors refer to the ones that

service providers can control or configure during the execution of web services, such as

CPU, storage, cache, etc. Uncontrollable factors are those that cannot be controlled by

service providers, such as workload, network environment, or the requirements of services

consumers. Controllable factors can be further subdivided into two groups. One group

includes factors that cause an increase or decrease in the operational cost while changing

their values. Another group contains factors that have no impact on the operational cost

51

while their levels are modified. The objective of the proposed approach is to achieve design

optimum without causing an unnecessary increase in the operational cost while

reconfiguring web services and optimizing its QoS. The feature importance or heatmap

technique is applied to find the right influential factor from the list of controllable elements

(lines 4-7). By using this technique, the list of influential factors affecting the response time

is acquired.

SLA Violation Prevention can be modeled as a 4-tuple (Factor, QoS, Model, Result), in

which:

• Factor is the input variable of the local model, such as CPU, cache level, etc.

• QoS is the output response (variable) of the fitted model, such as response time.

• Model is the selected model that reflects the relationship between one controllable

factor and the response. It is done either using one or multiple influential factors.

• Result is the reduced response time.

Based on the generated heatmap results, the maximum value is the most influential

factor for service optimization; hence its value is changed (line 8). Initially, experiments are

performed using a single most influential factor, and if response time is not reduced as

required to avoid SLA violation, then multiple influential factors are considered. For

multiple influential factors, the value of more than one influential factor is changed and

applied for prediction. The newly selected controllable factor value is put in the selected

machine learning model to predict the new response time (line 9). In case the new predicted

response time is below the threshold, the SLA is prevented, and resources are applied to the

system. However, if the predicted response time is not sufficient to avoid SLA, the whole

process is repeated with varied influential factors and diverse values until the SLA is

avoided or the list of influential factors is exhausted (lines 10-16).

5.4 Manual Versus Automated Unified Framework of SLA prevention

Among a diverse range of approaches working on QoS optimization, the Sensitivity

analysis, SLA violation prediction, and Design optimization are three crucial, yet normally

52

separated techniques. Presented in Figure 5.6 is a manual versus automated framework that

tackles the main issue of SLA violation by combining these three techniques into a unified

process to analyze, predict, and prevent SLA violations.

Figure 5.6 – Overall flowchart for Manual versus Automated process

The overall goal of the manual and automated process is to predict and prevent SLA

violations. Recently, Cheng et al. [1] proposed a framework to utilize the Sensitivity

analysis for the identification of influential factors with dominating impacts on QoS, as

shown in the manual process. They used metamodel-based analysis to select a fitted

surrogate model for domain-independent prediction of SLA violation. The residual error

53

between predicted and validated response time is calculated to select the best-fitted model

for prediction. In the suggested method, the process of evaluation can be used by service

consumers for service selection, and it can be used by service providers to study SLA

violations [1]. However, in the proposed framework for SLA prediction, a manual process

is employed, which is time-consuming and cannot tackle complex real-world data.

Cheng et al. [2] also presented a new approach for QoS optimization to improve the

quality of web services. In this approach, four procedures were performed: identifying

influential factors, collecting observed data, fitting collected data with the MARS model,

and identifying global optimum till SLA is prevented. However, for optimization, only one

controllable factor (cache level) is used, which will not lead to optimization for a complex

system. So, there is a need to automate the proposed approach using Machine Learning

techniques, which can easily adapt to any complex system and overcome the limitation of

these approaches.

This thesis proposes to utilize Machine Learning to predict and prevent SLA violations

into a unified framework to help service providers analyze, predict, and prevent SLA

violations. Machine Learning techniques are used to automate their proposed framework,

which eliminates many manual steps. Past research mostly relies on heuristic methods for

the prediction of violations. Even though Machine Learning has been utilized in different

territories of QoS management, the experiments done for the most part come under a

confined setting, which isn't ascendable to real-world data. Nonetheless, this research adopts

a systematic machine learning approach applied to real-world data that provides an

insightful set of experiments. This automated process significantly enhances other

requirements in terms of availability, performance, robustness, response time, and cost.

54

CHAPTER 6

IMPLEMENTATION AND EXPERIMENTS

In the previous chapters, several methods and algorithms for the regression task of SLA

violation prediction and prevention were introduced. In this chapter, section 6.1 explains the

toolkit and environments in which the experiments are performed. Later, section 6.2, reports

and analyzes the results of several machine learning techniques. As an assessment of the

proposed approach, section 6.3 examines accuracy, efficiency and robustness in comparison

with existing methods.

6.1 Environments and Toolkits

In this section, the details of the environment and toolkit that were used for the

implementation are described.

Software and Hardware Requirement

The implementation of proposed methodology was performed on Processor: Intel (R)

Core (TM) i7-5820K CPU @ 3.30GHz, 3301 Mhz, 6 Core(s), 12 Logical Processor(s)

Hardware 1 GPU

Operating System Windows 10 (64-bit)

Programming Language Python 3.7

Markup Language XML (eXtensible Markup Language)

Integrated Development Environment Jupyter Notebook 5.5.0

Source Code Editor Notepad++

Libraries Keras, numpy, metplot, statsmodels.api, etc

55

Python

Python is a general-purpose, interpreted, dynamic programming language that is widely

used for data analysis. The robust collection of scientific, statistical and mathematical tools

in python allow easier implementation of machine learning models. Libraries such as

NumPy (Python’s Numerical Library) [44], SciPy (Python’s scientific library) [45], Scikit-

Learn and Imbalanced-learn are built on top of python to provide easy computation and

analysis on data. In this work, we have used Python 3.7 along with many other libraries has

been used.

Scikit-Learn

Scikit-Learn is a machine learning library built on top of Python, Scipy, and NumPy

[46]. Scikit-Learn provides various tools for data mining and analysis and is also an open

source and commercially usable. It features different classifications, regression, and

clustering algorithms such as Random Forests, Gradient Boosting, k-means, and Naive

Bayes.

Imbalanced-learn

Imbalanced-learn is a python library built on top of Scikit-Learn, Scipy, and Numpy

[47]. It offers many re-sampling techniques for unbalanced data such as over-sampling,

under-sampling, and combination of both.

6.2 A Unified Framework Model Experiments

To examine the effectiveness of the proposed approach, experiments have been

conducted on different user’s application, which submits its required resources as jobs to

the cluster in which each job contains several tasks. For readability, results are presented in

the following three subsections: Data Analysis, SLA violation prediction, and prevention.

6.2.1 Data Analysis

Dataset

The dataset used contains a 29-day trace of Google’s Cloud Compute, which was

56

published in 2011. For security reasons, part of the trace has been omitted or obfuscated.

For example, the values for CPU, disk, and memory have been rescaled by dividing each

value with their corresponding largest value in the trace. Also, the names of the users’

applications have been hashed. The trace has six separate tables: Job Events, Task Events,

Task Usage, Machine Events, Machine Attributes, and Task Constraints. The entity-

relationship diagram of the database is shown in Figure 6.1.

The user’s application submits its required resources as jobs to the cluster. Each job has

several tasks. The entity-relationship diagram of jobs and tasks is depicted in Figure 6.1.

The Job Events table traces the event cycle of the jobs that were submitted to the cluster.

The tasks inside each job are tracked in the Tasks Events table. Each task is then assigned

to a specific machine. Machine Events table shows the removal or addition of a machine to

the cluster or update of its resources. Machine Attributes table shows the attributes of each

machine, such as kernel version, clock speed, and presence of an external IP address [51].

Tasks can have constraints (e.g., A task may have zero or more task placement constraints,

which restrict the machines on which the task can run.) on machine attributes, which are

recorded in the Tasks Constraints table.

Metrics such as requested CPU requested memory, requested disk space, scheduling

class, and priority of the task are all recorded in the Tasks Events table. The Task Usage

table contains the actual usage of resources for each task. It contains information such as

assigned memory and memory usage [51].

The features requested CPU, requested memory, requested disk space, scheduling class,

and priority for each task are supplied to the regression model. A different set of data points

are used for training and validation of the model. In three-fold cross-validation, one-third of

data is used for validation, and the rest is used for training. These features are considered as

high-level features that can semantically represent each task thoroughly. Other criteria, such

as state and load of each machine, can also be considered as features when a request takes

place. However, to prevent the model from overfitting, the use of too many features is

avoided.

57

Figure 6.1 – Google’s cluster trace dataset ERD (Entity Relationship Diagram)

Experiments

The first three steps of data analysis produce a single dataset. From the first three steps,

the newly generated dataset is appropriate to apply in machine learning models by removing

unnecessary columns, rows, and features from the dataset as it largely affects the response

time of the incoming job request. From the single dataset, different graphs are generated to

check the adequacy of the dataset and understand the relationship between various

58

resources. Through the generated graph, violated tasks and available resources at the time

of the request are studied to predict future violations. The average response time is taken

from the dataset to select the threshold value.

Figure 6.2 illustrates the mechanism of resource allocation in Google’s Cluster Dataset.

It shows the state of the cluster at 500 random snapshots. Snapshot is defined as a moment

in time when the total sum of the requested resources is calculated. Similarly, available or

allocated resources are calculated at each snapshot. In Figure 6.2, the total requested

memory, assigned memory, memory usage, and available memory of the cluster at each

snapshot is reckoned using Task Events, Task Usage, and Machine Events tables. Since all

the requested resources are not used at the same time, it is the nature of the cloud to allocate

fewer resources than requested resources and accept more requests than its available

resources. Figure 6.2 shows that at all the 500 snapshots, the requested memory to the cluster

is much higher than the actual usage of memory. Google scheduler has reserved a safe

margin between the assigned memory and usage of memory at these snapshots. Thus, the

availability rate is very high, and violations are rare.

Similarly, the available CPU and its usage are shown in the CPU analysis graph. As

shown in Figure 6.3, there is a large gap between CPU availability and its usage, which

means a lot of operational costs is wasted just to avoid the SLA violation.

Figure 6.2 – Memory analysis graph. It shows the requested, available, assigned and

used memory of the cluster

59

Figure 6.3 – CPU Analysis Graph

Through the generated graph, violated tasks and available resources at the time of the

request are studied to predict future violations. Average response time is taken from the

dataset to select the threshold value and is further used for SLA violation prediction.

6.2.2 SLA Violation Prediction

The first step is to perform data analysis to generate a single dataset that has a significant

feature for predicting the response time of an incoming task. The next step is to perform

experiments based on these features, to specify an appropriate type of model and to fit its

surrogate model. The experiment data is a generated table from data analysis, which will be

used to fit the surrogate model. It can be found that the performance behavior, in this case,

is low-order nonlinearity by an initial analysis of these experimental data. As a result, the

regression models are selected as the selected model type.

The eight models listed in the first column of Table 6.1, become the candidate forms of

a regression model. Each of the eight candidate forms, fitting with the method of least

squares, produces their R2, adjusted R2, MAE, and RMSE values (Table 6.1). As VARMAX

yields the largest value of R2, it is selected to predict the performance of the web service. In

the cell some are NULL values as ARIMAX is univariant model and VARMAX is

multivariant model, so value is not applicable for them in some cases.

60

Table 6.1: Comparison based on Different Models

Model R2 R2(Adj) MAE

(Univariant)

RMSE

(Univariant)

MAE

(Multivariant)

RMSE

(Multivariant)

Random Forest

Regressor

0.801 0.781 5.7 2.39 6.06 2.46

Kernel Ridge 0.901 0.875 3.94 1.98 7.16 2.68

Gradient Boosting

Regressor

0.821 0.802 5.79 2.41 6.47 2.54

Linear model

Ridge(alpha=.5)

0.781 0.726 5.99 2.45 6.98 2.64

Linear model

RidgeCV()

0.651 0.611 5.49 2.45 6.94 2.63

XGB Regressor 0.856 0.822 5.46 2.34 6.08 2.47

ARIMAX 0.938 0.901 2.32 1.52 NULL NULL

VARMAX 0.962 0.931 NULL NULL 1.75 1.32

The value of R2 determines how well a model will predict the response time for new

observations. According to the largest R2 value of the VARMAX model shown in Figure

6.4, it is selected as the most appropriate form of the model to predict response time and is

expected to have a better prediction accuracy than the other seven models. The smallest

RMSE and MAE values of the VARMAX model, shown in Figure 6.6 and Figure 6.7,

suggest that it outperforms the other models in terms of prediction accuracy. As a result, it

is essential to use the R2 to select the most appropriate one from a series of candidate forms

for the model.

61

Figure 6.4 – R2 value comparison between all fitted models

Figure 6.5 – Adjusted R2 value comparison between all fitted models

Figure 6.6 – MAE value comparison between all fitted models

0 2 4 6 8

Random Forest Regressor

Kernel Ridge

Gradient Boosting Regressor

Linear model Ridge(alpha=.5)

Linear model RidgeCV()

XGB Regressor

VARMAX

MAE

62

Figure 6.7 – RMSE value comparison between all fitted models

In addition to residual normality, it should also be checked as to how accurate the fitted

model is. The plot of predicted vs. actual shown in Figure 6.9 for VARMAX is used to show

that this fitted model is accurate. Consequently, there is a strong correlation between the

predicted response time of the fitted model and the observed corresponding results. A

visualized comparison between data with univariant and multivariant techniques is also

shown in Figure 6.8.

0 0.5 1 1.5 2 2.5 3

Random Forest Regressor

Kernel Ridge

Gradient Boosting Regressor

Linear model Ridge(alpha=.5)

Linear model RidgeCV()

XGB Regressor

VARMAX

RMSE

63

64

65

66

Figure 6.8 – The comparison between different selected regression models for Predicted

Vs. Actual

67

Figure 6.9 – Predicted Vs. Actual for VARMAX model

The results of the analysis bolstered with consistent evidence insinuate that the selected

model can be used for predicting the response time of the web service under examination.

As a result, this model can be used to analyze the effect of change in resource and their

interaction on response time and to predict SLA violation.

After conducting experiments on several different regression models, the results show

that time series models like ARIMAX and VARMAX predict accurate response time

compared to some other interpolation techniques without overfitting of data. Even with the

comparison of univariant and multivariant parameters, the multivariant model shows better

results. As per the results, the machine learning model that can detect the SLA violation is

selected.

The process of SLA violation prediction can be used by service consumers to select the

most appropriate services while constructing an SOA system. Meanwhile, service providers

can use the evaluation results to find out if and when SLA might be violated due to the

fluctuation in different factors, to better understand the performance of a service with its

fitted model, and to identify performance bottlenecks caused by influential factors.

In conducted experiments, response time is predicted to check the SLA violation

detection. Using the same approach, different resources that are part of the SLA agreement

68

can check if the regulation of the SLA is met or not can be predicted, e.g., predict CPU

assigned by a provider and check if violate the rules or not.

The next step is to avoid SLA violation detected through multi-factor QoS optimization.

If the violation is not avoided, then a heavy penalty will be laid on the service provider, and

it can harm the provider’s reputation and business.

6.2.3 SLA Violation Prevention

The proposed approach of QoS optimization goes through the following steps to prevent

SLA violation:

• Identifying the most influential controllable factors

• Fitting new data with the selected machine learning models

• Conducting experiments with single/multiple factors and collecting observational data

Identifying the most influential controllable factors

For selecting the right influential factor to reduce response time, feature importance, and

heatmap technique is applied.

Figure 6.10 – Different influential factor values from feature importance technique

Figure 6.10 shows feature importance results, in which the highest value from all the

results is considered to be the most influential factor for predicting the response time, which

is the CPU rate. The list of influential factors goes on from highest to lowest value as per

result.

69

Heatmap:

Similarly, Figure 6.11 shows the relation between the parameters for predicting the

response time, which helps to select a controllable factor. So, by getting this list of

parameters through a graph, the parameter can be tuned to reduce response time.

Figure 6.11 – The Comparison between different influential factors in respect to response

time

Fit new data and Conduct experiments with single/multiple factors:

Once the influential factors are selected, the new different value is applied to the

VARMAX model, which is used for SLA violation prediction. Figure 6.12 shows that once

the influential factor value is changed and applied to ARIMAX model, the prediction is

accurate for the new unseen data which denotes that the selected model is good for

continuous SLA violation detection and prevention.

70

Figure 6.12 – ARIMAX model result with changed influential factor values

Figure 6.13 – Actual Vs. Optimized response time value

Figure 6.13 clearly shows that once multiple factors value is tuned, the response time of

the incoming job reduces to a great extent.

71

6.3 Comparison and Discussion

The service provider is always in need of tools that intuitively analyze if their service

design provokes SLA violations and the ones that automatically guide them in preventing

SLA violations. The proposed automated process will meet this requirement of a service

provider.

To check the adequacy of this approach, the proposed SLA violation prediction model

is compared with the different proposed approaches. For SLA violation prediction, the result

of the proposed approach is compared with the approach used by Cheng et al. [1]. In a

selected dataset, the models used in different approaches are applied, and the performance

result of those models is shown in Figure 6.14. From the result, it is evident that our

approach can deal with complex data. The proposed model is capable of making a

continuous prediction while other approaches are not capable of doing that for SLA

violation prediction.

SLA violation prevention approach is compared with Cheng et al. [2]. In their approach,

only one controllable factor is used to prevent the violation, which won’t deal with big

complex real-time service, while our proposed approach is capable of using multiple

controllable factors to optimize the service and avoid violation easily.

A unified process proposed by Cheng et al. [1] [2] can tackle the main issues of SLA

violation by combining three techniques (analyze, predict, and prevent SLA violation).

However, for each technique, a different method is proposed, which is time-consuming. It

also uses a basic fitted model, which, when applied in our dataset, shows that it cannot tackle

complex real-world data. Furthermore, for optimization, only single controllable factor is

used, which does not lead to the optimization of complex systems. Also, their proposed

framework uses only a single web service to conduct experiments and collect results, which

is not reliable. Our proposed automated technique can easily tackle this issue while

consuming less time, as the same machine learning model is used to handle both the issues.

Compared to other proposed models, our proposed approach successfully handles other

requirements in terms of availability, performance, robustness, response time, and cost.

72

0

2

4

6

8

10

12

14

16

18

MAE

MAE

VARMAX Polynomial Regression

Figure 6.14: Performance evaluation between different approaches

0

0.2

0.4

0.6

0.8

1

1.2

R2

R-square comparison

VARMAX Polynomial Regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Adjused R2

Adjusted R-square comparison

VARMAX Polynomial Regression

0

1

2

3

4

5

6

7

RMSE

RMSE

VARMAX Polynomial Regression

73

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis research proposes an approach of using Machine Learning techniques to not

only predict SLA violations but also prevent them through optimization. It helps the service

provider to intuitively analyze if their service design provokes SLA violations and to

automatically guide them from preventing SLA violations. Service providers can use the

evaluation results to find out if and when SLA could be violated due to fluctuation in the

incoming request.

The process of QoS evaluation can be used by a service provider to select the value of

the most appropriate resources when preventing violation. If SLA is violated during run

time check, the optimization strategy presented in this approach can be used to prevent a

violation by selecting the right influential factor and apply the value to the same selected

model. In addition to details of the proposed method, this thesis also includes a set of

experiments, which will help to examine its usefulness for service providers working on

the construction and refinement of services.

7.2 Future work

This research work provides some more possibilities for further improvement:

• One of the future works might be to explore other models that can be easily

updated when receiving more training data.

• This work can also be extended, which includes experiments on more web

services or SOA applications and the development of a working tool for use in

practice.

74

• Experiments can also be extended using other machine learning models such as

Support Vector Machines and Neural Networks.

75

REFERENCES

[1] Yuan, X., & Cheng, P. (2019). An approach of sensitivity and metamodel-based

analyses for SLA violation prediction. In 2019 Canadian Conference of Electrical

and Computer Engineering.

[2] Yuan, X., & Cheng, P. (2019, May). A Strategy of QoS Optimization for Web

Services. In 2019 IEEE Canadian Conference of Electrical and Computer

Engineering (CCECE) (pp. 1-6). IEEE.

[3] Unnamalai, V. E., & Thresphine, J. R. (2014). Service-oriented architecture for cloud

computing. International Journal of Computer Science and Information

Technologies, 5(1), 251-255.

[4] Vogel, A., Kerherve, B., von Bochmann, G., & Gecsei, J. (1995). Distributed

multimedia and QoS: A survey. IEEE multimedia, 2(2), 10-19.

[5] Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N.

(2014). Mobile cloud computing: A survey, state of art and future directions. Mobile

Networks and Applications, 19(2), 133-143.

[6] Bani-Ismail, B., & Baghdadi, Y. (2018, August). A literature review on service

identification challenges in service oriented architecture. In International Conference

on Knowledge Management in Organizations (pp. 203-214). Springer, Cham.

[7] Huang, A. F., Lan, C. W., & Yang, S. J. (2009). An optimal QoS-based Web service

selection scheme. Information Sciences, 179(19), 3309-3322.

[8] Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice.

Addison-Wesley Professional.

[9] Rozanski, N., & Woods, E. (2012). Software systems architecture: working with

stakeholders using viewpoints and perspectives. Addison-Wesley.

[10] Woodside, C. M. (2001). Software resource architecture. International Journal of

76

Software Engineering and Knowledge Engineering, 11(04), 407-429.

[11] Heckel, R., & Lohmann, M. (2005). Towards contract-based testing of web

services. Electronic Notes in Theoretical Computer Science, 116, 145-156.

[12] Yuan, X., Duan, S., & Huang, T. (2006, May). Analysis of service-oriented

architectures with sensitivity analysis. In 2006 IEEE International Conference on

Electro/information Technology (pp. 372-376). IEEE.

[13] Darmann, A., Pferschy, U., & Schauer, J. (2010). Resource allocation with time

intervals. Theoretical Computer Science, 411(49), 4217-4234.

[14] John, M., Gurpreet, S., Steven, W., Venticinque, S., Rak, M., David, H., ... & Ryan,

K. (2012). Practical Guide to Cloud Service Level Agreements.

[15] Casalicchio, E., & Silvestri, L. (2013). Mechanisms for SLA provisioning in cloud-

based service providers. Computer Networks, 57(3), 795-810.

[16] Buyya, R., Broberg, J., & Goscinski, A. M. (Eds.). (2010). Cloud computing:

Principles and paradigms (Vol. 87). John Wiley & Sons.

[17] Gallizo, G., Kuebert, R., Oberle, K., Menychtas, A., & Konstanteli, K. (2009,

October). Service level agreements in virtualised service platforms. In eChallenges

2009.

[18] Leavitt, N. (2009). Is cloud computing really ready for prime time?. Computer, (1),

15-20.

[19] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

[20] Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of machine learning.

Springer Science & Business Media.

[21] Geurts, P. (2002). Contributions to decision tree induction: bias/variance tradeoff

and time series classification (Doctoral dissertation, University of Liège Belgium).

77

[22] Wasserman, L. (2013). All of statistics: a concise course in statistical inference.

Springer Science & Business Media.

[23] Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification

accuracy. Remote sensing of Environment, 62(1), 77-89.

[24] Leitner, P., Michlmayr, A., Rosenberg, F., & Dustdar, S. (2010, July). Monitoring,

prediction and prevention of sla violations in composite services. In 2010 IEEE

International Conference on Web Services (pp. 369-376). IEEE.

[25] Hussain, W., Hussain, F. K., Hussain, O., & Chang, E. (2015, November). Profile-

based viable service level agreement (SLA) violation prediction model in the cloud.

In 2015 10th international conference on P2P, parallel, grid, cloud and internet

computing (3PGCIC) (pp. 268-272). IEEE.

[26] Zhang, Y., Zheng, Z., & Lyu, M. R. (2014). An online performance prediction

framework for service-oriented systems. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 44(9), 1169-1181.

[27] Wong, T. S., Chan, G. Y., & Chua, F. F. (2018, May). A Machine Learning Model

for Detection and Prediction of Cloud Quality of Service Violation. In International

Conference on Computational Science and Its Applications (pp. 498-513). Springer,

Cham.

[28] Singh, S., & Chana, I. (2015). Q-aware: Quality of service based cloud resource

provisioning. Computers & Electrical Engineering, 47, 138-160.

[29] Singh, S., Chana, I., & Buyya, R. (2017). STAR: SLA-aware autonomic management

of cloud resources. IEEE Transactions on Cloud Computing.

[30] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ... &

Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4),

50-58.

[31] Wu, Q., Zhang, X., Zhang, M., Lou, Y., Zheng, R., & Wei, W. (2014). Reputation

78

revision method for selecting cloud services based on prior knowledge and a market

mechanism. The Scientific World Journal, 2014.

[32] Uriarte, R. B., Tsaftaris, S., & Tiezzi, F. (2015, May). Service clustering for

autonomic clouds using random forest. In 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (pp. 515-524). IEEE.

[33] Hemmat, R. A., & Hafid, A. (2016). SLA violation prediction in cloud computing: A

machine learning perspective. arXiv preprint arXiv:1611.10338.

[34] Zhu, J., He, P., Zheng, Z., & Lyu, M. R. (2017). Online QoS prediction for runtime

service adaptation via adaptive matrix factorization. IEEE Transactions on Parallel

and Distributed Systems, 28(10), 2911-2924.

[35] Khan, H. M., Chan, G. Y., & Chua, F. F. (2016, January). An adaptive monitoring

framework for ensuring accountability and quality of services in cloud computing.

In 2016 International Conference on Information Networking (ICOIN) (pp. 249-

253). IEEE.

[36] Zhou, Z., Abawajy, J., Chowdhury, M., Hu, Z., Li, K., Cheng, H., ... & Li, F. (2018).

Minimizing SLA violation and power consumption in Cloud data centers using

adaptive energy-aware algorithms. Future Generation Computer Systems, 86, 836-

850.

[37] Joseph, P. J., Vaswani, K., & Thazhuthaveetil, M. J. (2006, February). Construction

and use of linear regression models for processor performance analysis. In The

Twelfth International Symposium on High-Performance Computer Architecture,

2006. (pp. 99-108). IEEE.

[38] Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series

modeling and forecasting. arXiv preprint arXiv:1302.6613.

[39] Jules, O., Hafid, A., & Serhani, M. A. (2014, October). Bayesian network, and

probabilistic ontology driven trust model for sla management of cloud services.

In 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet) (pp.

79

77-83). IEEE.

[40] Uriarte, R. B., Tsaftaris, S., & Tiezzi, F. (2015, May). Service clustering for

autonomic clouds using random forest. In 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (pp. 515-524). IEEE.

[41] Kulyk, V., & Sossa, R. (2018). Determining the tourist attractive regions by GIS

analysis using heatmaps. Geodesy and Cartography, 44(1), 22-27.

[42] Pryke, A., Mostaghim, S., & Nazemi, A. (2007, March). Heatmap visualization of

population based multi objective algorithms. In International Conference on

Evolutionary Multi-Criterion Optimization (pp. 361-375). Springer, Berlin,

Heidelberg.

[43] Roa Rodríguez, R., & Lundin, R. (2016). Heatmap Visualization of Neural Frequency

Data.

[44] Walt, S. V. D., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a structure

for efficient numerical computation. Computing in Science & Engineering, 13(2), 22-

30.

[45] Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scientific tools for

Python.

[46] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine

learning research, 12(Oct), 2825-2830.

[47] Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python

toolbox to tackle the curse of imbalanced datasets in machine learning. The Journal

of Machine Learning Research, 18(1), 559-563.

[48] Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2010). Qos-aware web service

recommendation by collaborative filtering. IEEE Transactions on services

computing, 4(2), 140-152.

80

[49] Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2012). Collaborative web service qos

prediction via neighborhood integrated matrix factorization. IEEE Transactions on

Services Computing, 6(3), 289-299.

[50] Su, K., Xiao, B., Liu, B., Zhang, H., & Zhang, Z. (2017). TAP: A personalized trust-

aware QoS prediction approach for web service recommendation. Knowledge-Based

Systems, 115, 55-65.

[51] Reiss, C., Wilkes, J., & Hellerstein, J. L. (2011). Google cluster-usage traces: format+

schema. Google Inc., White Paper, 1-14.

[52] Orta, E., Ruiz, M., Hurtado, N., & Gawn, D. (2014). Decision-making in IT service

management: a simulation based approach. Decision Support Systems, 66, 36-51.

81

VITA AUCTORIS

NAME: Saurav Subhash Agarwal

PLACE OF BIRTH: West Bengal, India

YEAR OF BIRTH:

1993

EDUCATION:

Bachelor of Engineering, 2011-2015

Gujarat Technological University, Ahmedabad,

Gujarat, India

Master of Science in Computer Science, co-op, 2018-

2020

University of Windsor, Windsor, ON

	An Approach of SLA Violation Prediction and QoS Optimization using Regression Machine Learning Techniques
	Recommended Citation

	tmp.1594143007.pdf.toXp1

