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ABSTRACT

The prevalence of conducting statistical inference for the mean of the beta distri-

bution has been rising in various fields of academic research, such as in immunology

that analyzes proportions of rare cell population subsets. For our purposes, we will

address this statistical inference problem by using likelihood-based applications to

hypothesis testing, along with a relatively new statistical method called saddlepoint

approximations. Through simulation work, we will compare the performance of these

statistical procedures and provide both the statistical and scientific communities with

recommendations on best practices.
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1 INTRODUCTION

The beta distribution is a highly flexible probability model in regards to random

phenomena that are bounded above and below on a continuous interval. This distri-

bution was first introduced by one of the founding fathers of statistical science, Karl

Pearson, and was often distinguished as the Pearson Type I distribution in earlier

literature. As is the case for many popular distributions, there is a plethora of pa-

rameterizations of the beta model. For statistical inference purposes, this manuscript

will use the “mean/precision” parameterization.

Upon reparameterization, the probability density function (PDF) for a random

variable X that follows the beta distribution is

f(x;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
xµφ−1(1− x)(1−µ)φ−1, 0 < x < 1, (1.1)

where 0 < µ = E(X) < 1 is the mean of X and the variance-controlling parameter

φ > 0 is the precision. The variance of X is Var(X) = µ(1−µ)
φ+1

, which elucidates the

fact that for any fixed value of µ, the variance decreases as φ increases [7].

As the parameters µ and φ vary, the beta distribution manifests different types of

shapes. To illustrate the flexibility of the beta model, Figure 1.1 provides the PDFs

for specific combinations of these parameters. The PDF can become the standard

uniform distribution (µ = 0.5, φ = 2), be strictly decreasing (µ = 0.1, φ = 10),

skewed-right (µ = 0.25, φ = 10), or symmetric (µ = 0.5, φ = 20).

This versatility of the beta distribution is applicable in a myriad of settings, such as

immunology research, quality control, multivariate analysis of variance (MANOVA),

and soil composition analysis (Butler [4], Gupta and Nadarajah [9]). The correspon-

dence between this distribution and flow cytometry (FCM) data from immunology

research serves as the main motivation for this manuscript.
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Figure 1.1: Graphs of PDFs for the Beta Distribution

FCM is an automated process for identifying, counting, and sorting through spe-

cific cells of interest from an aggregation of cells in a given sample. These cells are

stained with various phosphorous fluorescence tags that bind to specific molecules,

where these molecules provide information about the cells in a functional capacity,

both within and on the cell itself. For example, the lymphocyte cell population has

numerous sub-types, including T-cells, B-cells, and natural killers (NK), that serve

different roles in the immune system’s response to various perturbations, such as

getting a virus, obtaining a flu vaccine, or taking a drug [13].

The primary instrument in the FCM technique is the flow cytometer. It mea-

sures the light intensity emitted from the fluorescence as each cell individually passes

through the machine. This light intensity is quantified and software is then used to

2



identify the cell type for each individual cell. Once the cell populations have been

defined on the roughly 100000 cells in the sample, the proportion, or percentage, of

cells is recorded for each cell population. This process is then repeated, as many

samples are needed for the study.

In accordance with the previous process, Figure 1.2 provides a panel of FCM data

for four different cell populations from a study of cynomolgus macaques that were

challenged with Mycobacterium tuberculosis [8]. CD20 is a marker for B-cells while

the remaining three differentiate a few sub-populations of T-cells.
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Figure 1.2: FCM Data

These histograms resemble some of the different forms of the beta distribution

provided in Figure 1.1, although on the scale of (0, 100). This can easily be trans-

formed to a proportion on the scale of (0, 1) through simple division. Due to this

3



transformation and the previous resemblance, there is a growing interest in conduct-

ing statistical inference for the mean of the beta distribution. To our knowledge, there

does not exist any literature directly coinciding with this type of statistical inference

problem. Therefore, this manuscript attempts to address this question of interest.

Our approach to addressing the previous question resembles standard statistical

methodology. For the purposes of this manuscript, we will assume that φ is known and

µ is the parameter of interest. While having a known value of φ is eminently unlikely,

we are also operating with the assumption that we are able to acquire an estimate

of φ from previous studies, such as pilot studies in immunology research. Essentially,

this manuscript serves as the base case for our statistical inference problem in the

same capacity as the Z-test does for conducting statistical inference for the mean of

the normal distribution assuming the population standard deviation, σ, is known in

advance. As for the subsequent case, where φ is not known in advance, the natural

approach is to estimate the value of φ through the actual data itself. The Student’s

t-test used this same approach in solving the analogous problem in terms of the

normal distribution, but required formulating an innovative strategy to derive the

distribution of the t test statistic. As this is also true for the original case with the

beta distribution where φ is unknown, we will not address this testing procedure in

this manuscript.

Now, with the assumption of φ being known, we will proceed to derive different

types of statistical tests using traditional large sample likelihood theory and a rela-

tively new statistical method called saddlepoint approximations. From there, we will

investigate different aspects of these tests, such as their Type I error rates and statis-

tical power via simulations conducted with the statistical software R. In addition to

hypothesis testing, we will also explore the performance of interval estimation using

coverage probabilities and interval width. Through this simulation work, we will be

able to obtain empirical evidence as to which tests outperform others under various

4



scenarios and eventually summarize our results in order to provide insight to both

the statistical and scientific communities. We will also offer some examples of direct

applications of our methods to real world problems, which include a FCM data set

for hypothesis testing and sample size determination in terms of good study design.
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2 STATISTICAL THEORY WITH ONE-PARAMETER

EXPONENTIAL FAMILIES

This chapter introduces a general family of probability models known as one-

parameter exponential families. These families have a vast amount of relevant, math-

ematical properties that make statistical inference problems computationally appeas-

ing and straightforward to implement in practice. Throughout this chapter, we discuss

the traditional statistical inference methods through maximum likelihood estimation,

sufficient statistics, and confidence intervals along with the necessary connections to

how these procedures are simplified in relation to exponential families.

2.1 Definition and Examples of One-Parameter Exponential Families

Let X be a random variable and suppose that the distribution of X is a member

of a parametric class of probability density functions (PDFs) or probability mass

functions (PMFs) with parameter ξ of the form

f(x; ξ) = h(x) exp{θ(ξ)t(x)− c(ξ)}, x ∈ X , ξ ∈ Ξ, (2.1)

where X and Ξ are the sample and parameter space, respectively. Furthermore,

h(x) ≥ 0, t(x), and X cannot depend on ξ while θ(ξ) and c(ξ) cannot depend on x.

Then, the parametric class {f( · ; ξ)|ξ ∈ Ξ} is a one-parameter exponential family of

distributions [4].

For an exponential family, the mapping ξ 7→ θ is one-to-one and the notation

may be simplified by working with the canonical parameterization of ξ, θ(ξ) = θ, and

expressing the exponential family as

f(x; θ) = h(x) exp{θt(x)− c(θ)}, x ∈ X , θ ∈ Θ, (2.2)

6



where c(θ) is c(ξ(θ)) [4].

Example 2.1. The PMF of the Poisson distribution, given as

f(x;λ) =
e−λλx

x!
, 0 ≤ λ <∞, x = 0, 1, . . . , (2.3)

is of exponential family form with canonical parameter θ = ln{λ} if we define h(x) =

I{0,1,...}(x)/x! with the indicator function I, t(x) = x, and c(θ) = λ = exp{θ} upon

reparameterization. By substituting these functions into (2.2), we obtain

f(x; θ) =
I{0,1,...}(x)

x!
exp{θx− exp{θ}}. (2.4)

Example 2.2. The PDF of the beta distribution with φ as a known constant is

also of exponential family form with canonical parameter θ = µ if we define h(x) =

Γ(φ)I(0,1)(x)(1− x)φ−1/x, t(x) = φ ln {x/(1− x)}, and

c(µ) = ln {Γ(µφ)}+ ln {Γ((1− µ)φ)}.

2.2 Sufficiency

The class of exponential families produces a great deal of mathematical framework

in regards to statistical inference. These results are contingent on using what is called

a sufficient statistic. Now, to sufficiently describe this type of statistic, we first provide

a brief introduction to sufficient statistics, along with their relation to exponential

families, and then an account of some of their distributional properties.

2.2.1 Sufficient Statistics

Suppose that we have a random sample X1, . . . , Xn from a probability model

whose PDF or PMF is f(xi; θ) for each Xi and define X = (X1, . . . , Xn)T . Then, the

joint distribution of X is defined as

f(x; θ) =
n∏
i=1

f(xi; θ). (2.5)

7



A statistic, T (X), is a sufficient statistic for the parameter θ if the conditional

distribution of the sample X given the value of T (X) does not depend on θ. The

idea behind this definition is relatively straightforward. From a sample X, a statistic

should contain all of the necessary information about θ. Since the statistic typi-

cally, but not always, maps the sample from n dimensions down to a single value

for one-parameter models, then this is often referred to as a data reduction strategy.

Additionally, the reduction also highlights the idea that if working with two different

data sets X and Y that yield the same sufficient statistics T (X) = T (Y ), the same

conclusions should be made about θ.

Determining whether a statistic is sufficient is typically done by way of the Fac-

torization Theorem [5], which states that T (X) is sufficient for θ if and only if the

joint density function for the random sample can be factored in the following way:

f(x; θ) = g(T (x)|θ)h(x). (2.6)

If the probability model in question is a member of the exponential family with

canonical parameter θ, then we will show that proving T (X) =
∑n

i=1 t(Xi) is a

sufficient statistic is a fairly straightforward exercise [5]:

By incorporating the functional form of exponential families into (2.5), the joint

density function can be expressed as

f(x; θ) =
n∏
i=1

f(xi; θ) =

{ n∏
i=1

h(xi)

}
exp

{
θ

n∑
i=1

t(xi)− nc(θ)
}
. (2.7)

If we define h(x) =
∏n

i=1 h(xi) and g(T (x)|θ) = exp

{
θ
∑n

i=1 t(xi)− nc(θ)
}

, then the

sufficiency of
∑n

i=1 t(xi) is clear by the factorization theorem.

2.2.2 Distribution Theory for Sufficient Statistics

Under the same conditions as in Section 2.2.1, consider the canonical sufficient

statistic T (X). Since T (X) is a function of random variables, then T (X) is also a

8



random variable and for notational purposes, we will denote this random variable as

T = T (X). The PDF or PMF of T has the form

f(t; θ) = R(t) exp {θt− nc(θ)}, t ∈ XT , θ ∈ Θ, (2.8)

where XT and Θ are the sample and parameter space, respectively, for some function

R(t) and neither XT nor R(t) depend on θ [10]. From the definition of exponential

families, we can immediately see that the distribution of the sufficient statistic T is

of exponential family form.

Obtaining the function R(t) requires a multivariate transformation followed by a

(n−1)-tuple multiple integral. In many cases, this can be done with relative ease, such

as the case for the normal distribution. However, there are some cases where the inte-

gral does not have a closed form solution. This is where an alternative approach that

characterizes the random variable through its moment generating function (MGF)

rather than directly through its PDF or PMF comes into play.

The MGF of T is defined by

MT (s) = E(esT ) =

∫ ∞
−∞

estf(t) dt (2.9)

over values of s for which the integral converges [4]. Furthermore, we presume that

MT (s) converges over an open neighborhood of 0, which we denote by (a, b), and that

this interval is the largest such neighborhood of convergence. This idea stems from

the fact that if the MGF exists in an open neighborhood of 0, then the distribution

of T is uniquely determined [5]. That is, for two arbitrary random variables X and

Y all of whose moments exist, let FX(x) and FY (y) be two CDFs. If the MGFs exist

and MX(u) = MY (u) for all u in some neighborhood of 0, then FX(v) = FY (v) for all

v.

With the definition of the MGF, we can also define the cumulant generating

function (CGF) of T as

KT (s) = ln {MT (s)}, s ∈ (a, b), (2.10)
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provided that MT (s) exists on the same interval [4]. Upon examining the Maclau-

rin series for the CGF, we are able to derive the first two moments of T , which are

K ′T (0) = E(T ) and K ′′T (0) = Var(T ). Now, by recognizing that T is a summation of

independent, identically distributed (i.i.d.) random variables, we have an approxima-

tion to the distribution of T dictated by the Central Limit Theorem. In the context

of T , this theorem gives us that for sufficiently large sample sizes, the distribution of

T is approximately normal with mean E(T ) = K ′T (0) and variance Var(T ) = K ′′T (0).

In accordance with all of the preceding properties for the sufficient statistic T

regarding its MGF and CGF, suppose that our random sample is now from an ex-

ponential family under the canonical parameterization with parameter θ. Due to the

functional form of exponential families, the MGF of T can now be expressed as

MT (s) = exp {n[c(s+ θ)− c(θ)]}, s ∈ Sθ, (2.11)

where Sθ = {s|s+ θ ∈ Θ}. After applying a logarithmic transformation to MT (s), we

have that the CGF of T is

KT (s) = n[c(s+ θ)− c(θ)], s ∈ Sθ. (2.12)

Due to properties of exponential families, KT is differentiable and the previous ex-

pression of KT (s) allows us to write the rth derivative of KT as

K
(r)
T (s) = n

d r

dθr
c(s+ θ). (2.13)

Thus, E(T ) = K ′T (0) = nc′(θ) and Var(T ) = K ′′T (0) = nc′′(θ). The reformulated

distributional statement for T derived from the Central Limit Theorem now states

that the distribution of T is approximately normal with mean E(T ) = nc′(θ) and

variance Var(T ) = nc′′(θ) for sufficiently large sample sizes.

Now, since the beta distribution for the case where φ is known is a member

of the one-parameter exponential family, we can find these same properties for the
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canonical sufficient statistic for µ, T = φ
∑n

i=1 ln {Xi/(1−Xi)}. By using that fact

that c(µ) = ln {Γ(µφ)}+ ln {Γ((1− µ)φ)}, the CGF of T is

KT (s) = n[ln {Γ((s+ µ)φ)}+ ln {Γ((1− (s+ µ))φ)} − ln {Γ(µφ)}

− ln {Γ((1− µ)φ)}].
(2.14)

The first and second derivative of KT are, respectively,

K ′T (s) = nφ[γ((s+ µ)φ)− γ((1− (s+ µ))φ)], (2.15)

where γ(x) = d
dx

ln Γ(x) = Γ′(x)
Γ(x)

is known as the digamma function, and

K ′′T (s) = nφ2[γ′((s+ µ)φ) + γ′((1− (s+ µ))φ)], (2.16)

where γ′(·) is the trigamma function. Therefore,

E(T ) = K ′T (0) = nφ[γ(µφ)− γ((1− µ)φ)] (2.17)

and

Var(T ) = K ′′T (0) = nφ2[γ′(µφ) + γ′((1− µ)φ)]. (2.18)

2.3 Point Estimation with Maximum Likelihood Estimators

There is a plethora of methods for obtaining estimators of a parameter of interest

θ in an exponential family. The method of maximum likelihood is an eminent tech-

nique for deriving estimators and the results are referred to as maximum likelihood

estimators (MLEs). In this section, we will provide the derivation of MLEs through

maximum likelihood estimation, which will exemplify its coincidence with sufficient

statistics, along with the asymptotic properties of MLEs that will be used in sub-

sequent sections to formulate hypothesis tests and their corresponding confidence

intervals.
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2.3.1 Maximum Likelihood Estimation

Suppose that we have a random sample X1, . . . , Xn from an exponential family

with canonical parameter θ and define X = (X1, . . . , Xn)T to be the random vector

representing the unobserved data. Furthermore, suppose that we are interested in

obtaining an estimate of θ based on the observed values of X denoted by x. The

principle idea behind maximum likelihood estimation is choosing the value of θ that

aligns with the observed data points in such a way that it produces the “most likely”

situation for observing said data. This “most likely” value of θ is denoted by θ̂ and

is, in fact, the maximum likelihood estimator (MLE).

The derivation of the MLE under the previously defined conditions is contingent

on the likelihood function L(θ;x). The likelihood function L(θ;x) is defined by

L(θ;x) =
n∏
i=1

f(xi; θ) (2.19)

and is essentially the joint density function of X evaluated at the observed values x,

which implies it is only a function of the unknown value of θ. Note that when working

with the likelihood function, we reduce the notation by writing L(θ) = L(θ;x). This

emphasizes the fact that the values of x are known, or that the data set has been

observed, and treated as a constant in the likelihood function. Now, by using the

exponential family form of f(xi; θ) in (2.2) for each i = 1, . . . , n, we can express the

likelihood function L(θ) as

L(θ) =

{ n∏
i=1

h(xi)

}
exp

{
θ

n∑
i=1

t(xi)− nc(θ)
}
. (2.20)

Since the maximum likelihood approach encapsulates the idea of obtaining the

value of θ the makes the observed data the “most likely” to see, then an estimate

for θ should be chosen so that L(θ) is maximized. If such a value exists, then we

formally define the MLE of θ, θ̂, to be the value of θ such that L(θ̂) ≥ L(θ) for
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all possible values of θ. It is typically mathematically advantageous to consider the

log-likelihood function, l(θ) = ln {L(θ)}. Since the natural logarithm function is

monotonically increasing, then the MLE may be obtained through maximizing the

log-likelihood function. Additionally, if l(θ) is differentiable, then θ̂ is obtained by

solving the normal equation

l′(θ) = 0. (2.21)

Applying the natural logarithmic transformation to (2.7) and then differentiating

yields the following normal equation

nc′(θ) =
n∑
i=1

t(Xi) = T. (2.22)

This form of the normal equation illustrates the well known fact that the MLE θ̂ is a

function of the data only through the sufficient statistic T . Now, there are some cases

where θ̂ has a closed-form solution as the inverse of c′(θ) is easily obtained. However,

in many situations, θ̂ has to be solved numerically through a root-finding algorithm.

Example 2.3. The likelihood equation in the form of (2.22) for the beta distribution

is

nφ[γ(µφ)− γ((1− µ)φ)] = φ
n∑
i=1

ln

{
Xi

1−Xi

}
. (2.23)

From this, we identify T = φ
∑n

i=1 ln {Xi/(1−Xi)} as the canonical sufficient statis-

tic for µ. Due to the digamma functions present in this equation, there does not

exist a closed-form solution for the MLE µ̂. Therefore, we must obtain a numerical

approximation of µ̂ by using numerical methods, such as Newton’s method. Gupta

and Nadarajah [9] elaborate on the different numerical techniques that can be used

to find µ̂. Also, Minka [12] describes the various types of routines in terms of the

dirichlet distribution, which is a multivariate generalization of the beta distribution.
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2.3.2 Asymptotic Properties of MLEs

As previously discussed in Section 2.3.1, MLEs maximize the likelihood function

L(θ), or equivalently the log likelihood function l(θ), and they are also a function of

the sufficient statistic T , which implies that MLEs are random variables before the

random sample is collected. Determining their distributions, means, and variances are

extremely beneficial for statistical hypothesis tests and interval estimation. While the

distribution of an MLE can be difficult to obtain or is unknown in many situations, we

have key asymptotic results for the sampling distribution of MLEs. Before providing

those results, we first introduce an important metric used in large sample theory

known as Fisher’s information.

Fisher’s information for a random sample of n observations, denoted by i(θ), is

defined as

i(θ) = E{l′(θ;X)2}. (2.24)

Computing this information measure can be quite taxing in many statistical problems

and it is often helpful to express it in a different form when applicable. Under certain

regularity conditions that are enumerated in [5], which exponential families possess,

the above equation can be expressed as

i(θ) = −E{l′′(θ;X)}. (2.25)

The previous expression for Fisher’s information provides a more intuitive insight as to

what “information” this metric actually brings to the table. The Fisher Information

measure is essentially a weighted mean of the second derivative of the log-likelihood

function, where the weights are given by the PDF f(x; θ) [10]. So, in a sense, we

are seeing the amount of concavity that the log-likelihood function has on average.

If the concavity is quite large, then the MLEs obtained from random sampling are

more consistent; that is, they do not vary as much as compared to other scenarios
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where the concavity is smaller. This interpretation alludes to the fact that Fisher’s

information tells us something about the uncertainty, or the variability, that the

likelihood function has under random sampling. Its most famous application is in

the Cramér-Rao Inequality Theorem, which provides the Cramér-Rao Lower Bound

(CRLB). It states that the variance for each unbiased estimator of θ cannot be smaller

than 1/i(θ).

With Fisher’s information i(θ) defined and intuitively explained, we can now in-

troduce the key distributional result of MLEs. This result, under sufficient regularity

conditions enumerated in [5], can be summarized into the following distributional

statement: √
i(θ)(θ̂n − θ)

d−→ N(0, 1). (2.26)

By recognizing that the quantity on the left-hand side of the arrow is simply the

Z-score of the MLE for a random sample with n observations, θ̂n, and this Z-score

follows the standard normal distribution as n → ∞, then this distributional state-

ment indirectly states that the distribution of θ̂n converges in distribution to a normal

random variable with mean θ and variance 1/i(θ). This shows that θ̂n is an asymp-

totically unbiased estimator of θ and the CRLB is asymptotically achieved by θ̂n as

n → ∞, or more formally, θ̂n is asymptotically efficient [14]. Furthermore, we have

by Slutsky’s theorem, also provided in Young and Smith [14], that√
i(θ̂n)(θ̂n − θ)

d−→ N(0, 1), (2.27)

where i(θ̂n) is the information measure evaluated at θ̂n and serves as an estimate of

Fisher’s information. This allows for the same large sample theory to apply, even if

one estimates Fisher’s information using θ̂n.

At this point, we have provided the pertinent details regarding Fisher’s informa-

tion and the resulting distributional statements for the MLEs. Now, to help solidify

these theoretical results, we present the same information, but in the context of one-

parameter exponential families.
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The growing theme with exponential families is that numerous technical results

can be provided if one simply obtains the various components of the exponential

family in question. The derivation of Fisher’s Information i(θ) encapsulates this idea

revolving around exponential families. For organizational purposes, we present this

derivation as a theorem and provide a short proof to exemplify the relative ease of

working with exponential families. Then, we demonstrate an implementation of this

theorem.

Theorem 2.4. Fisher’s information for a sample of n independent, identically dis-

tributed random variables from an exponential family under the canonical parameter-

ization is i(θ) = nc′′(θ).

Proof. Starting with (2.25) and using (2.20), we obtain

i(θ) = −E{l′′(θ)}

= −
∫
· · ·
∫ [

∂2

∂θ2
ln{f(x; θ)}

]
f(x; θ) dx1 . . . dxn

= −
∫
· · ·
∫ [

∂2

∂θ2
ln

{ n∏
i=1

h(xi)

}
+ θ

n∑
i=1

t(xi)− nc(θ)
]
f(x; θ) dx1 . . . dxn

= −
∫
· · ·
∫
−nc′′(θ)f(x; θ) dx1 . . . dxn

= nc′′(θ)

∫
· · ·
∫
f(x; θ) dx1 . . . dxn

= nc′′(θ).

Thus, the desired result is established.

Example 2.5. Suppose that we have a random sample of size n from the beta

distribution under the “mean/precision” parameterization. We proved that the PDF

is of exponential family form in Section 2.1 and with the expression for c(µ), we have

that Fisher’s information is

i(µ) = nc′′(µ) = nφ2[γ′(µφ) + γ′((1− µ)φ)]. (2.28)
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Now, by using Theorem 2.4, the distributional statement for the MLE can be

expressed as √
nc′′(θ)(θ̂n − θ)

d−→ N(0, 1). (2.29)

In a similar manner as before, this statement conveys the fact that θ̂n is approxi-

mately normally distributed with mean θ and variance 1/(nc′′(θ)) for relatively large

sample sizes. The asymptotic efficiency of the MLE still allows us to have the same

distributional statement with nc′′(θ̂n) as the estimate for Fisher’s information.

2.4 Likelihood-Based Hypothesis Tests and Interval Estimation

The previous elaboration of the asymptotic properties of MLEs is now used to

demonstrate the various formulations of hypothesis tests for a parameter of interest

θ and their corresponding confidence intervals. As the basis for the likelihood-based

approaches, suppose we are interested in testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1,

where Θ0 and Θ1 are two disjoint subsets of Θ satisfying Θ0∪Θ1 = Θ. When Θ0 only

contains a single member of Θ and makes a specific statement about the parameter

θ, we have the following set of hypotheses: H0 : θ ∈ Θ0 = {θ0} (H0 : θ = θ0)

against H1 : θ ∈ Θ1 = {θ | θ 6= θ0} (H1 : θ 6= θ0), where H1 is referred to as a

two-sided alternative. There are also one-sided alternatives of the form H1 : θ ∈

Θ1 = {θ | θ <> θ0} (H1 : θ <> θ0), which implies that H0 : θ ∈ Θ0 = {θ | θ ≥≤ θ0}

(H0 : θ ≥≤ θ0). Based on the inequality sign in H1, the hypothesis tests with

the previous alternatives are referred to as left and right-tailed tests, respectively.

With this structure of the hypotheses under consideration, we now proceed to briefly

elucidate the key hypothesis testing and interval estimation features regarding both

the likelihood-ratio test and the Wald test.
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2.4.1 Likelihood-Ratio Test

Letting L(θ) denote the likelihood function defined in Section 2.3.1, we write

L0 = sup{L(θ)|θ ∈ Θ0}, L1 = sup{L(θ)|θ ∈ Θ}

and define the likelihood-ratio statistic Λn as

Λn = 2 ln

{
L1

L0

}
, (2.30)

where the notation indicates the dependence on the sample size n. Note that the

likelihood-ratio statistic is a function of X only through the sufficient statistic T and

while an exact test based on Λn can be constructed for the likelihood-ratio test (LRT),

it is often quite difficult to obtain the exact distribution of T , and thus Λn, under H0.

Therefore, the following asymptotic property of Λn alleviates this requirement.

Under the same regularity conditions that are needed for the asymptotic properties

of the MLEs [5] coupled with the assumption that H0 is true, then, as n → ∞, the

likelihood ratio test statistic Λn converges in distribution to a chi-square distribution

with 1 degree of freedom, Λn
d−→ χ2

1 [14].

With this distributional statement, an approximate size α test of H0 : θ = θ0

against H1 : θ 6= θ0 is to reject H0 if Λn > χ2
1,α, where χ2

1,α denotes the upper-α

point of the χ2
1 distribution. (See Section 2.5.1 for the definition of the size of a test.)

This rejection region alludes to the presumption that Λn is large if H1 is true. As for

the computation of Λn with the previous set of hypotheses, the likelihood-ratio test

statistic can be expressed as

Λn = 2 ln

{
L(θ̂)

L(θ0)

}
, (2.31)

where θ̂ is referred to as the unrestricted maximum likelihood estimator.

Upon examining (2.31), one might immediately recognize the technical simplifi-

cation offered by the natural logarithmic function if the PDF associated with the
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parameter of interest θ is of exponential family form,

Λn = 2[(θ̂ − θ0)T − n(c(θ̂)− c(θ0))]. (2.32)

Since θ̂ is a function of X only through T , then the previous expression explicitly

shows that Λn also satisfies this same property.

2.4.2 Wald Test

To compute the likelihood-ratio test statistic presented in Section 2.4.1, we had

to find the unrestricted maximum likelihood estimator θ̂. Naturally, we can use this

calculation to construct another likelihood-based hypothesis test that is commonly

referred to as the Wald test. This hypothesis test exhausts all of the asymptotic

properties of MLEs provided in Section 2.3.2.

Under H0, the distributional statement for the Z-score of the MLE of θ, θ̂n, from

(2.26) can be expressed as

√
i(θ0)(θ̂n − θ0)

d−→ N(0, 1). (2.33)

Therefore, an approximate size α test of H0 : θ = θ0 against H1 : θ 6= θ0 is to reject

H0 if
√
i(θ0) | θ̂n− θ0 |> zα/2, where zβ denotes the upper-β quantile of the standard

normal distribution [14]. Note that for one-sided alternatives, H1 : θ <> θ0, the

rejection regions are
√
i(θ0)(θ̂n − θ0) > zα and

√
i(θ0)(θ̂n − θ0) < −zα, respectively.

Another valid formulation of these tests can be made by replacing i(θ0) with i(θ̂n)

due to asymptotic efficiency of θ̂n. Furthermore, to continue with the growing theme

of exponential families presented in Section 2.3.2, we are, in this case, able to replace

i(θ0) and i(θ̂n) with nc′′(θ0) and nc′′(θ̂n), respectively, by using Theorem 2.4.
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2.4.3 Interval Estimation

In this section, we first demonstrate the direct correspondence between hypothesis

testing and interval estimation through a theorem taken from Casella and Berger [5].

Then, we provide the pertinent details that parallel this result in the context of the

LRT along with an abridged derivation of the Wald confidence interval that will help

solidify interval estimation.

Theorem 2.6. For each θ0 ∈ Θ, let A(θ0) be the acceptance region of a level α test

(See Section 2.5.1) of H0 : θ = θ0 and for each x ∈ X , define a set C(x) in the

parameter space by

C(x) = {θ0|x ∈ A(θ0)}.

Then, the random set C(X) is a 1− α confidence set.

Before interpreting the preceding theorem, it should be noted that the term con-

fidence set is used deliberately as it potentially may not be an interval. However, in

many cases, like the ones considered in this manuscript, the confidence sets are indeed

intervals. A more intricate discussion of the other cases can be found in Casella and

Berger [5].

The mathematically rigorous statement presented in Theorem 2.6 alludes to the

fact that a confidence set C(X) provides us with a set of values for θ in which the

given data set X yields a “fail to reject H0” decision, which is contingent on the

acceptance region A(θ). In a sense, confidence sets address the question of what

values of the parameter of interest make the given data set most tenable.

This theorem also alludes to the general process of inverting a test statistic.

In terms of the two-sided LRT, the acceptance region of this test is of the form

Λn = 2 ln{L(θ̂)/L(θ0)} ≤ χ2
1,α. Inverting the likelihood-ratio test statistic to obtain a

confidence interval for θ is often achieved numerically with a root-finding algorithm.

However, the inversion of the two-sided Wald test statistic has a closed-form solution
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due to the symmetry of the normal distribution under H0. Therefore, by using i(θ̂n) as

an estimate for Fisher’s information, the acceptance region,

√
i(θ̂n) | θ̂n − θ0 |> zα/2,

can be inverted to derive the following (1− α)100% confidence interval for θ:

θ̂n ± zα/2
√
i(θ̂n).

2.5 Sufficiency and Uniformly Most Powerful Tests

When working with exponential families, there is a plethora of literature, such

as Young and Smith [14], on the support of constructing hypothesis tests using the

sufficient statistic for the parameter of interest θ. The objective of this section is

to expatiate the major results regarding this formulation. (We also refer the reader

to Young and Smith [14] for a more exhaustive and rigorous explanation.) Now, to

achieve this objective, we first provide some of the terminology and concepts from

decision theory under a specific framework, which will then lead us to the definition

of statistical power and the eventual construction of Uniformly Most Powerful Tests

(UMP) in regards to one-parameter exponential families.

2.5.1 Statistical Power

Under the general structure of the hypotheses provided in Section 2.4, we are

interested in testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. Deriving a hypothesis test

from this set of hypotheses is to obtain a test statistic W (X) that is a function of the

observed data X = x and define a critical region Cα, where 0 < α < 1, that satisfies

Prθ{W (X) ∈ Cα} ≤ α for all θ ∈ Θ0. This critical region is then used to determine

when we reject H0; more specifically, we reject H0 if and only if W (X) ∈ Cα.

To be consistent with the above definitions and terminology, statistical power is

the probability of rejecting H0 when H0 is false. This concept provides us with a

basis for characterizing the power function of a test.
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The power function of a test is defined to be

β(θ) = Prθ{W (X) ∈ Cα|θ ∈ Θ}, (2.34)

where the subscript on the probability function indicates that the resulting probabil-

ities are a function of θ over all possible values in Θ.

When β(θ) is evaluated over values within Θ1, this function produces the power

of the test for some θ ∈ Θ1, which is consistent with the concept of statistical power.

As for the values of θ ∈ Θ0, we have a corresponding concept. Under this notation,

a hypothesis test with a defined W (X) and Cα is a size α test, where 0 < α < 1,

if supθ∈Θ0
β(θ) = α [5]. If this property is satisfied, then supθ∈Θ0

β(θ) ≤ α and the

test is also a level α test. Now, by using the definition of the power function β(θ)

in the context of the mathematical statement pertaining to size, α essentially acts

as the least upper bound for the probability of rejecting H0 given that H0 is true,

or the probability of committing a Type I error. In a practical setting, this allows

researchers to impose some control on the Type I error rate by specifying the value

of α.

2.5.2 Uniformly Most Powerful Tests for One-Parameter Exponential

Families

The previous definition of the power function β(θ) allows for the comparison of

multiple tests of size α to determine which tests are “better” for a given statistical

inference problem. It is quite common for one particular test to have higher power

over a specific region of Θ1, while the others have more power over a different region.

It would be very appealing if one could construct a test such that its power function

is uniformly greater amongst all other power functions of tests with the same size. If

this property indeed exists amongst the class of all hypothesis tests of size α, then

this test is said to be Uniformly Most Powerful (UMP).

22



Now that we have covered some the technicalities regarding finding the optimal

test, we now consider one-parameter exponential families to remain consistent with

the overarching theme of this chapter. According to Young and Smith [14], with

details omitted, one-parameter exponential families are said to be of monotone like-

lihood ratio, which, in the context of this parametric class, simply means that the

likelihood-ratio is a non-decreasing function of the sufficient statistic subject to an

inequality based on the parameter of interest. This property facilitates the existence

of a UMP test for one-sided tests. More specifically, a one-sided test of size α based

on the sufficient statistic is, in fact, a UMP test.

It should be noted that two-sided tests can also be constructed with this idea of

uniformity in statistical power, but there is the additional requirement of the test

being unbiased. We refer the reader to Young and Smith [14] for further explanation

and possible research ideas.

2.6 Discussion

Even though a hypothesis test based on the sufficient statistic for the parameter

of interest is mathematically equivalent to the one with likelihood-ratio test statistic

provided that the exact distributions of these test statistics are known, there are still

some advantages of using the sufficient statistic rather than the likelihood-ratio test

statistic in the case of one-parameter exponential families. Therefore, the purpose of

this discussion is to provide insight into these advantages in accordance with some

of the challenges that arise in these formulations and potential solutions to these

problems.

The first advantage is that the problem of deriving the exact distribution of the

likelihood-ratio statistic is typically reduced to working directly with the sufficient

statistic. This can be seen through the monotone likelihood-ratio property of one-
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parameter exponential families, as is mentioned in Section 2.5.2. However, there are

still challenges in determining the exact distribution of the sufficient statistic, as well

as with the LRT in situations where asymptotic properties of the test statistic are not

necessarily maintained. One could resort to approximating the PDF of the sufficient

statistic using a normal distribution. However, this test could potentially suffer in

the same way as in the case of the LRT due to the fact that these approximations are

only viable in large sample size situations.

To illustrate this issue in the context of the beta distribution, we simulated the

sampling distribution of both the sufficient statistic, T = φ
∑n

i=1 ln {Xi/(1−Xi)},

and MLE, µ̂, by taking random samples of size 5 from a beta distribution with mean

µ = 0.1 and precision φ = 10. The resulting histograms can be found in Figure 2.1.

Using the normal approximations for the distribution of T and µ̂, we overlaid

their approximate density functions, which are indicated by the red-dashed lines. It

is apparent that these approximations do not perform particularly well, especially in

the tails of the sampling distributions where rejection regions are defined. These dis-

crepancies can consequently influence both the actual size of a test and its statistical

power.

The second advantage is that the CGF of the sufficient statistic is feasible, as

depicted in Section 2.2.2. Therefore, if the CGF is identifiable, then the exact dis-

tribution is given for free and a UMP test can then be constructed. An additional

strategy, which we will introduce in the subsequent chapter, is approximating PDFs

by expressing the PDF solely in terms of its CGF. These approximations, referred

to as saddlepoint approximations, have been shown to provide near exact approxi-

mations in a wide variety of settings, as well as for small sample sizes. We hope to

utilize these approximations in developing highly accurate, approximate UMP tests.
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Figure 2.1: Sampling Distribution of the Sufficient Statistic T and the MLE µ̂ (µ =

0.1, φ = 10, n = 5)
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3 SADDLEPOINT APPROXIMATIONS

As is discussed in Chapter 2, obtaining the exact PDF of a sufficient statistic for

a parameter of interest can be a difficult process, even if the PDF is of exponential

family form. However, we are still able to characterize the sufficient statistic through

its respective MGF or CGF due to their uniqueness. This result alludes to the essence

of saddlepoint approximations in that they are used to approximate a PDF from its

associated MGF or CGF [6].

In this chapter, we will introduce the saddlepoint approximation for PDFs along

with an example of a popular continuous distribution that emphasizes how to im-

plement this approximation. This subtle introduction is beneficial for newcomers as

the saddlepoint formula can be a bit illusive. We will then immediately proceed to

present the mathematically rigorous derivation of the saddlepoint density, which will

further exemplify the intricacies involved in this type of approximation, along with

an illustration of the degree of accuracy of this approximation. Due to the strong

correspondence between PDFs and CDFs, we will naturally conclude this chapter

with a description of the saddlpoint approximation for CDFs.

3.1 Saddlepoint Approximation for PDFs

For a continuous random variable X with CGF KX(s) and unknown density f(x),

the saddlepoint density approximation to f(x) is given as

f̂(x) =
1√

2πK ′′X(ŝ)
exp{KX(ŝ)− ŝx}, (3.1)

where ŝ = ŝ(x) denotes the unique solution to the equation

K ′X(ŝ) = x (3.2)
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over the range ŝ ∈ (a, b) and is an implicitly defined function of x. Equation (3.2)

is referred to as the saddlepoint equation and ŝ as the saddlepoint associated with

the value of x [4]. Since f̂(x) is an approximation, then it is typically not a proper

density function, which implies that
∫
f̂(x) dx 6= 1. However, this approximation can

be normalized in order to obtain a proper density with the appropriate choice of scale:

f̃(x) = c−1f̂(x), (3.3)

where c =
∫
f̂(x) dx, is a proper density on the domain of X. In many cases, c is

obtained through numerical integration.

Example 3.1. A normally distributed random variable X has CGF of the form

KX(s) = µs + σ2s2

2
for s ∈ R. With KX(s), we can define the following components

in the saddlepoint approximation:

KX(ŝ) = µŝ+ σ2ŝ2

2
;

K ′X(ŝ) = µ+ σ2ŝ;

K ′′X(ŝ) = σ2.

The saddlepoint equation can then be expressed as K ′X(ŝ) = µ + σ2ŝ = x, which

can also be explicitly written as ŝ = x−µ
σ2 . Through algebraic manipulation, we obtain

the following saddlepoint density:

f̂(x) =
1√

2πσ2
eµ((x−µ)/σ2)+σ2((x−µ)/σ2)2/2−((x−µ)/σ2)x

=
1√
2πσ

e−(x−µ)2/2σ2

,

which is the exact reproduction of the normal density.

Remark 3.2. One thing that a first-time user should keep in mind with the saddlepoint

approximation in (3.1) is the relationship between ŝ and x, which is defined by the

saddlepoint equation in (3.2). This example illustrates this relationship explicitly by

showing the saddlepoint density is solely a function of x upon solving for ŝ in the

saddlepoint equation.
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3.2 Derivation of the Saddlepoint Density

For consistency, we provide a derivation that parallels the one presented in [4]

with slight modification. Instead of working with an average of random variables,

we only work with a single random variable. (The saddlepoint approximation can

be easily applied to a sum of independent and identically distributed (i.i.d.) random

variables, since its CGF is readily obtained.)

Since the saddlepoint density is derived from a clever application of Laplace’s

approximation, then we present Laplace’s approximation, which is provided in Butler

[4], as a theorem to aid readers before proceeding with the actual derivation.

Theorem 3.3. Suppose that g is a twice continuously differentiable and concave

function on (c, d) with a global minimum at x̂ ∈ (c, d). Then,∫ d

c

e−g(x) dx '
√

2πe−g(x̂)√
g′′(x̂)

. (3.4)

3.2.1 Derivation

Let X denote a continuous random variable with CGF KX(s). Since the MGF of

X is exp{KX(s)}, which by definition may be expressed as an integral involving the

density of X, f , then

eKX(s) =

∫ ∞
−∞

esx+ln{f(x)} dx. (3.5)

Letting g(s, x) = −sx− ln{f(x)}, we have

eKX(s) =

∫ ∞
−∞

esx+ln{f(x)} dx (3.6)

=

∫ ∞
−∞

e−g(s,x) dx. (3.7)

Holding s fixed, Laplace’s approximation for the integral in (3.7) is

eKX(s) '

√
2π

g′′(s, xs)
esxsf(xs), (3.8)
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where xs minimizes g(s, x) over x for a fixed s and

g′′(s, xs) = ∂2g(s, xs)/∂x
2
s = −∂2 ln{f(xs)}/∂x2

s > 0. The critical value xs solves

−g′(s, xs) = s+
∂ ln{f(xs)}

∂xs
= 0. (3.9)

This implies that

−∂
2 ln{f(xs)}

∂x2
s

=
∂s

∂xs
. (3.10)

An approximation to ∂ ln{f(xs)}/∂xs may be determined by first solving for ln{f(xs)}

in (3.8) and then substituting in the expression for g′′(s, xs) to obtain

ln{f(xs)} ' KX(s)− sxs −
1

2
ln

{
2π

−∂2 ln{f(xs)}/∂x2
s

}
. (3.11)

If the last term is assumed to be approximately constant in xs and therefore negligible

upon differentiation with respect to xs, then

∂ ln{f(xs)}
∂xs

' K ′X(s)
∂s

∂xs
−
[
s+ xs

∂s

∂xs

]
(3.12)

= [K ′X(s)− xs]
∂s

∂xs
− s (3.13)

follows from both the chain and product rules. To the degree of the approximation

made in obtaining Equation (3.13),

∂ ln{f(xs)}
∂xs

+ s = 0 ⇐⇒ [K ′X(s)− xs]
∂s

∂xs
= 0.

Since it can be shown through (3.9) that there is a monotone increasing relationship

between s and xs, ∂s/∂xs > 0, then this implies that K ′X(s)− xs = 0 or K ′X(s) = xs.

Therefore, s and xs must be related through K ′X(s) = xs, which is referred to as the

saddlepoint equation.

By using (3.10) and K ′′X(s) = ∂xs/∂s, we can express g′′(s, xs) as

g′′(s, xs) = −∂
2 ln{f(xs)}

∂x2
s

=
∂s

∂xs
=

(
∂xs
∂s

)−1

= (K ′′X(s))−1. (3.14)
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By exponentiating both sides of (3.11) and substituting in the expression for−∂2 ln{f(xs)}/∂x2
s

in (3.14), we obtain

f(xs) '

√
1

2πK ′′X(s)
exp{KX(s)− sxs}, (3.15)

where K ′X(s) = xs. This is the saddlepoint density defined in (3.1) with its associated

saddlepoint equation, K ′X(s) = xs.

3.2.2 Degree of Accuracy

The saddlepoint approximation is often discussed in literature as being “second

order” asymptotic in relation to the classical “first order” asymptotic theory used

in the CLT, MLEs, and LRTs. The classical approximations are typically of order

O(n−1/2) while the saddlepoint approximations are of order O(n−1), which is partially

due to Laplace’s approximation. However, there are some cases of order O(n−3/2).

This added boost in accuracy is beneficial when dealing with smaller sample sizes [4].

To provide further insight into the degree of accuracy of the saddlepoint density,

we will refer to the reoccurring example of the Beta distribution and consider the

PDF of the sufficient statistic for µ, T = φ
∑n

i=1 ln {Xi/(1−Xi)}. If we consider

the simple case when n = 1, then T is a function of a single Beta random variable,

T = T (X) = φ ln {X/(1−X)}. Furthermore, the distribution of the random variable,

X/(1 −X), is commonly referred to as Pearson’s Type VI distribution, or the Beta

Prime distribution [11]. The density function for the natural log of a Beta Prime

random variable can then be easily derived through standard transformation theory,

since the natural log is a strictly increasing function [5]. Therefore, the PDF of T can

be expressed as

f(t) =
Γ(φ) exp{t/φ}µφ(1 + exp{t/φ})−µφ−(1−µ)φ

φΓ(µφ)Γ((1− µ)φ)
, t ∈ (−∞,∞).

Figure 3.1 provides a histogram of one million draws of T with n = 1 and X
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following a beta distribution with µ = 0.1 and φ = 10. Now, to illustrate the level of

accuracy of the saddlepoint approximation, we have overlaid the histogram with the

exact density (solid red), the saddlepoint approximation (dot-dashed), the normalized

saddlepoint density (dashed), and a Normal approximation (two-dashed) derived in

Section 2.2.2 by using the mean and variance obtained through the CGF of T . Upon

examination, the unnormalized saddlepoint density captures some of the shape of

the theoretical curve, but not to the correct scaling. As this approximation only in-

tegrates to approximately 0.09663219, and not 1, over the domain of the simulated

sampling distribution of T , this highlights the fact that saddlepoint approximations,

in general, are not “true” density functions. However, they are easily normalized to

become proper density functions. This is typically achieved, as is discussed in Section

3.1, by computing a normalization constant through numerical integration. By accu-

rately scaling the saddlepoint approximation, the exact density and the normalized

saddlepoint density are virtually indistinguishable.
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Figure 3.1: Sampling Distribution of the Sufficient Statistic T (µ = 0.1, φ = 10, n = 1)

Overlaid with the Theoretical Curve (Solid Red), the Saddlepoint Approximation

(Dot-Dashed), the Normalized Saddlepoint Density (Dashed), and the Normal Ap-

proximation (Two-Dashed)
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While we now have some theoretical support for the exact distribution of T ,

we still could not obtain a closed-form distributional statement for the sum of n

independent natural logarithm of Beta Prime random variables ourselves or find any

insights through literature. We can approximate this distribution via the CLT for

relatively large samples, but for small samples, the results of this approximation vary,

which has already been demonstrated in Figure 3.1 for n = 1.

To further demonstrate the approximation problem, we have provided a similar

graphic for the distribution of T with n = 5 in Figure 3.2. The normalized saddle-

point density provides a better approximation to this distribution over the Normal

approximation, particularly in the tails of this distribution. This further alludes to

the application of saddlepoint approximations in small sample situations, which are

exceedingly prevalent in this manuscript’s main motivational application of immunol-

ogy research with FCM data as FCM projects are often faced with moderately low

sample sizes. We will provide the details for the saddlepoint approximation for T in

the next chapter.
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Figure 3.2: Sampling Distribution of the Sufficient Statistic T (µ = 0.1, φ = 10, n = 5)

with the Normalized Saddlepoint Density (Black Dashed) and the Normal Approxi-

mation (Gray Dot-Dashed)
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3.3 Lugannani and Rice Saddlepoint Approximation for CDFs

Suppose X is a continuous random variable that has CDF F (x) and CGF KX

with mean µ = E(X). The saddlepoint approximation for F (x), F̂ (x), provided by

Lugannani and Rice is

F̂ (x) =

Φ(ŵ) + φ(ŵ)(1/ŵ − 1/û) x 6= µ

1
2

+
K′′′

X (0)

6
√

2πK′′
X(0)3/2

x = µ

, (3.16)

where

ŵ = sgn(ŝ)
√

2(ŝx−KX(ŝ)) and û = ŝ
√
K ′′X(ŝ)

are functions of x and the saddlepoint ŝ that is the unique solution to the saddlepoint

equation K ′X(s) = x. The symbols φ and Φ denote the standard normal density and

CDF, respectively, and sgn(ŝ) captures the sign for ŝ.

Recall from the properties of the CGF that K ′X(0) = E(X) = µ, which implies

that ŝ = 0 when x = µ. Furthermore, if ŝ = 0, then ŵ = 0 = û. This essentially

causes the second term in the expression for the first case in the piece-wise function

(3.16) to be undefined. Therefore, the second case represents the limiting value as

x→ µ, or as ŝ→ 0. Butler provides the mathematically rigorous details for proving

that limŝ→0 1/ŵ − 1/û exists and limŝ→0 1/ŵ − 1/û = K ′′′X(0)/6K ′′X(0)3/2 [4]. With

this and the limiting properties of continuous functions, we obtain the expression

for the second case. Thus, there is a removable singularity at x = µ, which implies

that F̂ is continuously differentiable or theoretically ”smooth”. There is, however,

the potential for numerical instability when computing F̂ (x) for values of x relatively

close to µ in software.

Remark 3.4. The derivation of the saddlepoint approximation for a CDF involves

not only using a Temme approximation and the intricate properties of a particular

mapping, but examining various limiting properties that require multiple Taylor series
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expansions. Therefore, due to its extensiveness, we will not provide this derivation.

However, an exhaustive and rigorous one can be found in [4].
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4 STATISTICAL INFERENCE FOR THE MEAN OF THE BETA

DISTRIBUTION

Throughout the previous two chapters, we have discussed various results from dis-

tribution theory and reviewed some of the methods for conducting statistical inference

with exponential families. We used the beta distribution under the “mean/precision”

parameterization, with φ as a known constant and µ as the parameter of interest, to

illustrate many of these results. This was specifically due to the main motivation for

this manuscript which is, in fact, to conduct statistical inference for the mean of the

beta distribution, µ. Therefore, this chapter serves to provide a concise description

of the hypothesis tests and corresponding confidence intervals for µ. To achieve this,

we will first remind the readers of any pertinent details regarding the beta distribu-

tion that were provided in the previous chapters. We will then recast the hypothesis

testing procedures, such as the LRT, a Z-score based test using the MLE, and an

approximate UMP test via a saddlepoint approximation, under the beta distribution

model. As for the approximate UMP test, we will also provide the full details of this

approximation and describe the manner in which the computations were performed

in software.

4.1 An Account of Key Results

The PDF of the beta distribution is of exponential family form with canonical

parameter µ if we define h(x) = Γ(φ)I(0,1)(x)(1−x)φ−1/x, t(x) = φ ln {x/(1− x)}, and

c(µ) = ln {Γ(µφ)}+ ln {Γ((1− µ)φ)}. With reference to t(x), the canonical sufficient

statistic for µ based on a simple random sample is T = φ
∑n

i=1 ln {Xi/(1−Xi)}.
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The CGF of T is

KT (s) = n[ln {Γ((s+ µ)φ)}+ ln {Γ((1− (s+ µ))φ)} − ln {Γ(µφ)}

− ln {Γ((1− µ)φ)}].

The MLE of µ, µ̂, is the unique solution to the normal equation

nc′(µ) = T,

which is

nφ[γ(µφ)− γ((1− µ)φ)] = φ

n∑
i=1

ln

{
Xi

1−Xi

}
,

and is obtained by a numerical root-finder, such as uniroot in R. Fisher’s information

is then used to obtain the asymptotic variance of µ̂. For a simple random sample of n

observations from the beta distribution with unknown mean µ and known precision

φ, Fisher’s information is

i(µ) = nc′′(µ) = nφ2[γ′(µφ) + γ′((1− µ)φ)].

4.2 Hypothesis Testing and Interval Estimation with Respect to µ

In this section, we enumerate and elaborate on the previously mentioned hypoth-

esis testing and interval estimation procedures in terms of our statistical inference

problem.

4.2.1 LRT

In accordance with Section 2.4.1, an approximate size α test of H0 : µ = µ0 against

H1 : µ 6= µ0 for some prescribed µ0 is to reject H0 if Λn > χ2
1,α, where

Λn = 2

{
(µ̂− µ0)

[
φ

n∑
i=1

ln {Xi/(1−Xi)}
]
− n(c(µ̂)− c(µ0))

}
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and χ2
1,α denotes the upper-α point of the χ2

1 distribution.

As for the corresponding confidence interval for µ, we proceeded to invert the

likelihood-ratio test statistic of the previously defined test, as is described in Section

2.4.3. This interval was achieved numerically with uniroot in R., as there does not

exists a closed-form solution.

4.2.2 Wald Test

Recall from Section 2.4.2 that under H0, the distributional statement for the Z-

score of the MLE of µ, µ̂n, where the subscript is used to indicate a dependence on

the sample size n, can be expressed as√
i(µ̂n)(µ̂n − µ0)

d−→ N(0, 1),

where i(µ̂n) is an estimate for Fisher’s information, i(µ). Therefore, an approximate

size α test of H0 : µ = µ0 against H1 : µ 6= µ0 for some prescribed µ0 is to reject H0

if
√
i(µ̂n) | µ̂n − µ0 |> zα/2, where zβ denotes the upper-β quantile of the standard

normal distribution. Note that for one-sided alternatives, H1 : µ <> µ0, the rejection

regions are
√
i(µ̂n)(µ̂n − µ0) > zα and

√
i(µ̂n)(µ̂n − µ0) < −zα, respectively.

Also, recall that inversion of the two-sided Wald test statistic has a closed-form

solution and the (1− α)100% confidence interval for µ can thus be expressed as

µ̂n ± zα/2
√
i(µ̂n).

4.2.3 Approximate UMP Test Using a Saddlepoint Approximation

Since the PDF of the beta distribution is of exponential family form, then this

distribution is of monotone likelihood ratio with respect to the canonical sufficient

statistic for µ, T = φ
∑n

i=1 ln {Xi/(1−Xi)}. This implies that there exists a UMP

test based on T for each set of hypotheses. More specifically, the test of H0 : µ ≤ µ0
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against H1 : µ > µ0 for some prescribed µ0 is to reject H0 if T > tu, where tu is

defined to be upper-α quantile of the distribution of T , and is UMP amongst all tests

of size α. Similarly, the UMP test of H0 : µ ≥ µ0 against H1 : µ < µ0 amongst all

tests of size α is to reject H0 if T < tl, where tl is defined to be the lower-α quantile

of the distribution of T . Note that we cease with the conventional notation regarding

quantiles in favor of unique subscripts to emphasize the fact that, unlike the standard

normal distribution, the distribution of T is typically not symmetric.

Even though we have now derived the UMP tests for the sets of hypotheses with

one-sided alternatives, the quantiles tl or tu still must be determined by using the

distribution of T . Specifically, if we let FT (t) denote the “true” CDF of T , then the

values of tl and tu are determined by solving the equations FT (tl) = α and 1−FT (tu) =

α, respectively. However, as is discussed in Section 2.6, the distribution of T is not

known. Therefore, we approximate the CDF of T using the saddlepoint approximation

methods discussed in Chapter 3. For consistency and completeness, we now provide

the necessary information to compute both the saddlepoint approximation to the

PDF and CDF of T .

With the CGF of T defined in Section 4.1, the first and second derivatives with

respect to s are:

K ′T (s) = nφ[γ((s+ µ)φ)− γ((1− (s+ µ))φ)];

K ′′T (s) = nφ2[γ′((s+ µ)φ) + γ′((1− (s+ µ))φ)].

By substituting these functions into (3.1), we obtain the following saddlepoint

density for T :

f̂T (t) =
1√

2πK ′′T (ŝ)
exp{KT (ŝ)− ŝt},

where ŝ solves the saddlepoint equation

K ′T (ŝ) = nφ[γ((ŝ+ µ)φ)− γ((1− (ŝ+ µ))φ)]

= t.
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Due to the natural logarithm of the gamma functions present in the saddlepoint

equation, there does not exist a closed-form solution to ŝ. This can be numerically

approximated in a similar manner as computing µ̂; however, if one has already com-

puted µ̂, then we can actually obtain the value of ŝ for free. Upon further examination

of the saddlepoint equation, it can verified that that K ′T (ŝ) = t is related to the nor-

mal equation defined in Section 4.1 by the way of K ′T (ŝ) = nc′(ŝ + µ) = t. Since we

know that µ̂ solves the normal equation, then we can express ŝ as µ̂ − µ. (We refer

the reader to Butler [4] for more details.) This particular relationship was compu-

tationally efficient when we programmed all of the statistical inference components

in software, as the MLE had already been computed for the more traditional testing

procedures.

Now, by substituting the properties specified in Section 4.1, along with K ′′′T (0) =

nφ3[γ′′(µφ)− γ′′((1− µ)φ)], into (3.16), we obtain the following saddlepoint approxi-

mation for the CDF of T :

F̂T (t) =

Φ(ŵ) + φ(ŵ)(1/ŵ − 1/û) t 6= E(T )

1
2

+
K′′′

T (0)

6
√

2πK′′
T (0)3/2

t = E(T )

,

where

ŵ = sgn(ŝ)
√

2(ŝt−KT (ŝ)) and û = ŝ
√
K ′′T (ŝ)

are functions of t and the saddlepoint solution ŝ.

With the saddlepoint CDF, we can directly derive an approximate UMP test of

H0 : µ ≤ µ0 against H1 : µ > µ0. Let Tobs denote the observed sufficient statistic

for µ from a given data set. The decision rule associated with this test is to reject

H0 if Tobs > tu, where tu satisfies 1 − F̂T (tu) = α. Similarly, the approximate UMP

test of H0 : µ ≥ µ0 against H1 : µ < µ0 is to reject H0 if Tobs < tl, where tl satisfies

F̂ (tl) = α. Since F̂T (t) is a monotonically increasing function, then both tl and tu

can be determined numerically.
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Perhaps a more efficient approach to the previously defined tests is the p-value ap-

proach to hypothesis testing, as this requires computing probabilities directly through

F̂T (t) without the need for inversion. Succinctly, the p-value, in the context of these

tests, is defined to be the probability of observing a sufficient statistic T as extreme or

more extreme than the observed sufficient statistic Tobs, given that the null hypothesis

is true. Therefore, for the test of H0 : µ ≤ µ0 against H1 : µ > µ0, the p-value is

obtained by calculating 1 − F̂T (Tobs) with µ = µ0. Similarly, with a left-sided alter-

native, H1 : µ < µ0, the p-value is F̂T (Tobs) with µ = µ0. The resulting decision for

either test would be to reject H0 if the respective p-value is less than α.

Now that we have elaborated on tests with one-sided alternatives, we now consider

two-sided tests of the form H0 : µ = µ0 against H1 : µ 6= µ0. Recall from Section 2.5.2

that two-sided tests can be constructed to exhibit uniformity in statistical power,

as in the case of one-sided tests. However, there is an additional requirement of

the test being unbiased. Note that the implementation of this property in software

was a bit more rigorous due to the asymmetry of the distribution of T and there

were computational difficulties caused by the numerical instability of a derivative. To

circumvent this, we adopted the “double” p-value approach to this test. The rejection

region of this size α test is determined in a similar manner as the one-sided tests by

selecting tl and tu such that their respective tail probabilities are each α/2, which

implies that the p-vales are obtained by doubling the smallest one-sided p-value.

As for the confidence interval for µ, this is obtained through the inversion of

the previously defined two-sided hypothesis test. In accordance with Theorem 2.6,

for each µ0 ∈ (0, 1), define A(µ0) = {Tobs|tl < Tobs < tu}, where Tobs is the observed

sufficient statistic for µ given a data set, to be the acceptance region of this size α test.

Note that both tl and tu depend on the value of µ0. Now, for each Tobs ∈ (−∞,∞),

the corresponding 1 − α confidence set is the set C(Tobs) = {µ0|Tobs ∈ A(µ0)}. This

implies that the lower and upper limits of the (1− α)100% confidence interval for µ
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are determined by essentially finding the smallest and largest values of µ such that

Tobs falls in the acceptance region. As there does not exist a closed-form solution to

this interval, we used numerical routines to acquire these values.

Remark 4.1. Recall from Section 3.3 that F̂T (t) has a removable discontinuity at

t = E(T ), as this implied that ŵ = 0 = û. Theoretically, this does not present a

problem. However, there is numerical instability when computing F̂T (t) for values of

t relatively close to E(T ) in software, such as R. In order to alleviate this instability,

we employed a computationally equivalent approximation for the saddlepoint CDF

of T and used a specific mapping. We use Figure 4.1 to demonstrate this approach

that was developed by Jacob Turner, Ph.D, for the purposes of this manuscript.
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Figure 4.1: Transformation Associated with F̂T (t) (Black Dotted) for (µ = 0.1, φ =

10, n = 5)
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The far-left plot of F̂T (t), for the case where µ = 0.1, φ = 10, and n = 5, in

Figure 4.1 illustrates the major concern when implementing F̂T (t) in R. As we nu-

merically evaluate F̂T (t) at values close to E(T ) = 5(10)[γ(0.1(10))−γ((1−0.1)10)] ≈

−135.8929, we can see that it starts to become unstable and lose its monotonicity.

This is problematic when numerically solving for the quantiles, tl or tu, of the rejection

regions associated with our approximate hypothesis tests and obtaining the limits of

the confidence interval for µ. To circumvent this issue and provide an approximation

for the CDF of T that preserves its monotonicity in software, we took the following

ad hoc approach.

An alternative form of the saddlepoint approximation for the CDF of T is the

r∗ approximation (Barndorff-Nielsen [1], [2], [3]). The saddlepoint CDF of T can

be expressed as F̂T (t) ≈ Φ(r∗), where Φ is the standard normal CDF and r∗ =

ŵ− (1/ŵ) ln{ŵ/û}. The numerical differences between the original saddlepoint CDF

of T and the r∗ version are negligible, as they are related by Taylor series expansion,

and they typically coincide with each other in terms of accuracy.

With this approximation, we now need to identify an interval where the numerical

instability occurs. Essentially, F̂T (t) is unstable for values of t that correspond to

values of ŵ in −0.03 ≤ ŵ ≤ 0.03. (Note that this interval is conservative as the

instability occurs in a much tighter neighborhood about ŵ = 0.) After determining

this interval, we then modified the implementation of F̂T (t) in R by checking if t

produced a ŵ in this problematic interval. If this was the case, then we approximated

F̂T (t) using Φ(ŵ), as ŵ is the first term in r∗ and the instability is caused by the

second term due to the fact that ŵ ≈ 0 ≈ û. This essentially created a “shifted

segment” of the approximation over the problematic interval, as is indicated by the

shifted solid red line in the middle graph of Figure 4.1. However, this segment can be

shifted and scaled to the endpoints of F̂T (t), since we can directly obtain the values

of t that correspond to ŵ = −0.03 and ŵ = 0.03. The final result of this mapping
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produced the solid red line in the far-right graph of Figure 4.1, which shows that the

adjusted approximation for the CDF of T is now strictly monotonic, although not

continuous.

This ad hoc approach has served us well in performing the necessary computations

involved in hypothesis testing and constructing confidence intervals for µ in R, as we

will see in our simulation studies provided in the next chapter.
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5 SIMULATION STUDIES

The purpose of this chapter is to empirically provide further insight into the

different aspects of the hypothesis tests, along with their corresponding confidence

intervals, for the mean of the beta distribution, µ, discussed in Chapter 4. These tests

include the likelihood-based tests, such as the asymptotic LRT and the Wald test,

and the saddlepoint approximation approach to the tests derived from the sufficient

statistic for µ. Even though the LRT and the Wald test are asymptotically equivalent,

it is still practical to examine the discrepancies, if any exist, between these tests

for different sample sizes. In addition to the tests specified previously, we will also

consider the one-sample Student’s t-test as a benchmark due to its prevalence in

applied settings. As there are an infinite number of possible scenarios to generate the

preliminary estimates required for each test, we chose to present the simulation results

that exhibited significant discrepancies between the tests in terms of their estimated

Type I error rates, simulated power curves, or the estimated coverage probabilities

for their corresponding confidence intervals.

5.1 Scenarios

Recall from Section 2.5.1 that in the context of our statistical inference problem,

a test is of size α if supµ∈M0
β(µ) = α, where M0 is the set of values of µ under H0

and β(µ) is the power function of the test. The previous mathematical statement

conveys that fact that α represents the least upper bound of β(µ) for µ ∈M0. Now,

for hypotheses of the following form: H0 : µ ∈ M0 = {µ0} (H0 : µ = µ0) against

H1 : µ 6= µ0 (two-sided tests), the supremum over M0 is achieved at the prescribed

value, µ0, as M0 only consists of a single point. This is also true for the hypotheses
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of the form: H0 : µ ∈M0 = {µ|µ ≥≤ µ0} (H0 : µ ≥≤ µ0) against H1 : µ <> µ0 (Left

and right-tailed tests, respectively) due to the fact that β(µ) is a strictly decreasing

and increasing function over M0 for left and right-tailed tests, respectively.

Now, by using the definition of the power function presented in Section 2.5.1, α

acts as the least upper bound for the probability of committing a Type I error, or

the probability of rejecting a true null hypothesis. For our purposes, we will impose

some control on the Type I error rate and set α = 0.05. Essentially, we want the tests

under consideration to maintain this rate; more specifically, have this rate be equal

to 0.05 at µ0, as was stated previously in the context of power functions. Through

simulation work, we will be able to acquire empirical evidence as to whether or not

this rate is being sufficiently controlled for each test.

As for the Type I error rate simulations, we will consider the previously stated

sets of hypotheses, where µ0 = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, with φ = 2, 10 and n =

5, 10, 25. Under each scenario, we conducted 10000 simulations to obtain an estimate

of the Type I error rate for each test. Then, we proceeded to provide graphical

representations of these rates based on the value of φ. A more detailed description of

the figures will be presented later in this chapter.

An alternative approach for assessing the control of the Type I error rate for a test

is through the construction of its power function and we can graphically indicate if the

supremum over M0, α, is actually achieved at µ0, or if the Type I error rate is being

controlled. As this assessment only applies to values of µ under H0, the behavior of

β(µ) across the values in H1 is of some interest. Essentially, we want β(µ) to exhibit

higher values of power over the alternative region, as this would indicate a higher

probability of correctly rejecting H0.

Now, to generate a simulated power curve for each test, we first considered testing

H0 : µ ≥≤ 0.1 against H1 : µ <> 0.1 at α = 0.05 with φ = 2, 10 and n = 5, 10, 25.

(We will expound upon the choice of the prescribed value of µ0 later on in this chap-
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ter.) Under each scenario, we conducted 10000 simulations for each µ in a specified

interval, [0.05, 0.3] for right-tailed tests and[0.05, 0.25] for left-tailed tests, to obtain

an estimate of the power and then plotted the power estimates against their respective

values for µ.

As we have enumerated the scenarios associated with different aspects of two-

sided tests, we will naturally want to consider the behavior of their corresponding

confidence intervals for µ. Recall from Theorem 2.6 that a confidence interval is

obtained by inverting the acceptance region of a two-sided test of size α for a given

data set. As a result, the confidence interval provides a set of values for µ in which

the data set yields a “fail to reject H0” decision. With this, we define the coverage

probability of a confidence interval for µ as the probability that the random interval

covers the true parameter, µ [5]. Since the Type I error rate is specified at 0.05, the

coverage probability for each confidence interval for µ should be maintained at 0.95.

Now, as for the technicalities of the coverage probability simulations, we did not

consider scenarios that had both values of µ0 relatively close to 0 and low precision

values due to computational difficulties. To our knowledge, these difficulties arose in

the practical implementation of our code. For instance, we experienced problems that

appeared to stem from the degenerate samples generated in the simulation studies,

which essentially caused numerical instability in the root-finding algorithms provided

in R. However, for the time being, we believe that a majority of these situations do

not reflect real world phenomenon. As part of future research, we plan on attempting

to develop an approach that will circumvent some of these complications.

With this in mind, we specifically set µ0 = 0.2, 0.3, 0.4, 0.5 and φ = 10. We also

varied the sample size, n = 5, 10, 25, and then proceeded to conduct 10000 simulations

under each scenario in order to obtain an estimate for the coverage probability of a

specified confidence interval for µ.
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5.2 Type I Error Rate Simulations

For a fixed φ, the estimated Type I error rates across varying sample sizes for each

test are displayed in a plot, where the x-axis represents the values of µ0 and the y-axis

represents the estimated Type I error rates. Each plot has a solid-black horizontal

line at 0.05 along with simulation error bounds, which are indicated by black-dashed

horizontal lines. These lower and upper limits are determined by using the fact that

the decisions associated with a hypothesis test based on a generated sample can be

viewed as a Bernoulli trial with a probability of success of 0.05 under H0. We can then

use the binomial distribution to construct a confidence interval for this proportion.

Specifically, 0.05 ± 1.959964
√

0.05(1− 0.05)/10000 ≈ [0.0457, 0.0543]. After these

bounds have been obtained, an estimated Type I error rate that falls outside this

region is deemed as not controlled.

5.2.1 Right-Tailed Tests

As depicted in the far-left panel of Figure 5.1, the estimated Type I error rate

for the test derived from the sufficient statistic for µ that used saddlepoint approxi-

mations, which recall from Section 4.2.3 is an approximate UMP test, appears to be

controlled for low precision, φ = 2, and across all sample sizes. This essentially pro-

vides empirical evidence substantiating the theory provided in Section 2.5.2 regarding

the optimality of tests based on the sufficient statistic for µ.

The middle panel in Figure 5.1 corresponds to the likelihood-based Wald test,

which uses the asymptotic properties of the MLE for µ, µ̂. The apparent deflation in

the estimated Type I error rate for values of µ0 relatively close to 0 is attributed to

the fact that the previously mentioned asymptotic properties of µ̂ are not necessarily

maintained under these scenarios due to the asymmetry of the sampling distribution

of µ̂. However, this error rate does become more controlled for larger sample sizes, as
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large sample theory would suggest.

As for the far-right panel in Figure 5.1, the estimated Type I error rates for the

t-test are deflated, which is similar to the case of the Wald test, but with a different

degree of severity. Recall from Chapter 1 that φ is the variance-controlling parameter

and the variance of the beta distribution increases as φ decreases. Therefore, these

scenarios are indicative of high variability. Also, recall that the beta distribution does

not exhibit symmetry for values of µ0 relatively close to 0. Therefore, the coupling of

these two specifications alludes to severe departures from normality and as the t-test

is not robust to these types of departures, the estimated Type I error rates are indeed

not controlled.
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Figure 5.1: Estimated Type I Error Rates for Right-Tailed Tests (φ = 2)

Now, by increasing the precision to φ = 10, we obtained Figure 5.2. The approx-
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imate UMP test still maintains the appropriate Type I error rate and the Wald test

becomes more controlled for values of µ0 near the boundary of 0. Even though the

error rate for the t-test is still not controlled for these same values of µ0, there is an

apparent horizontal shift in the error rates across the sample sizes, which is attributed

to the fact that there is less variability and skewness in the beta distribution for these

scenarios.
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Figure 5.2: Estimated Type I Error Rates for Right-Tailed Tests (φ = 10)
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5.2.2 Left-Tailed Tests

A similar phenomenon exists for the estimated Type I error rates for left-tailed

tests. Figure 5.3 demonstrates that for φ = 2, the saddlepoint-derived approximate

UMP test maintains the Type I error rate across all of the specified values of µ0 and

n. As for the Wald and t-test, their estimated Type I error rates are inflated for

values of µ0 relatively close to 0. (Recall that under the same settings, the rates for

these two tests with a right-sided alternative were deflated.) Essentially, the Wald

and t-test only appear to control the Type I error rate for varying neighborhoods

about µ0 = 0.5. The distinction between the error rates of these two tests lies in the

degree of inflation, as it is staggering for the t-test.
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Figure 5.3: Estimated Type I Error Rates for Left-Tailed Tests (φ = 2)
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Now, for φ = 10, Figure 5.4 provides the Type I error rate estimates for same type

of test. Recall from previous simulations that higher values of φ abate the variance of

the beta distribution, which is why there is a significant improvement in the severity

of Type I error rate inflation for both the Wald and t-tests. As is to be expected, the

error rate for the approximate UMP test still remains in a steady-state.
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Figure 5.4: Estimated Type I Error Rates for Left-Tailed Tests (φ = 10)

5.2.3 Two-Sided Tests

For two-sided testing, we also considered the asymptotic LRT in addition to the

other tests. Figure 5.5 provides the Type I error rate estimates, from left to right,

for the saddlepoint-derived test based on the “double” p-value approach, which was

discussed in Section 4.2.3, followed by the LRT, the Wald test, and the t-test when

φ = 2. The most interesting observation in this simulation study is that all of the

likelihood-based approaches maintained the error rate reasonably well for values of µ0

relatively close to 0, with the LRT being slightly more conservative in some situations

as compared to the Wald test. This was quite surprising to us at first given the nature
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of the one-sided test results. Essentially, it appears that while each individual one-

sided test performs poorly in terms of the Type I error rate, the deflation of the error

rate in the right-tailed test is counter-balanced by the inflation of the error rate in

the left-tailed test. As for values of µ0 in an open neighborhood about 0.5, it appears

the inflation in the error rate is caused by the slight inflation in the one-sided tests.

Now, in regards to the t-test, there is still strong inflation in the Type I error rate,

except now there is the inclusion of the scenario with µ0 = 0.5 and n = 5, which has

the same line of reasoning as the Wald test.
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Figure 5.5: Estimated Type I Error Rates for Two-Tailed Tests (φ = 2)

With φ = 10, Figure 5.6 provides the simulation results. The saddlepoint-derived

test, the LRT, and the Wald test all appropriately maintain the error rate, as the error

rates for values of µ0 relatively close to 0 are still counter-balnaced and relatively no
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inflation in the one-sided Wald tests. The inflation in the error rate for the t-test has

also decreased with respect to the scenarios with φ = 2 in Figure 5.5.
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Figure 5.6: Estimated Type I Error Rates for Two-Tailed Tests (φ = 10)
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5.3 Power Simulations

As stated in Section 5.1, we solely focus on one-sided tests, where the prescribed

value µ0 is relatively close to 0, for the power simulations due to the fact that these

tests exhibited significant discrepancies in terms of their estimated Type I error rates,

while the ones for the two-sided tests were less notable.

Now, for a fixed value of φ, we present the simulated power curves for each test

in a three-panel graph, where each panel considers a different sample size. We also

use a solid-black horizontal line at 0.05 to help visualize whether or not the Type I

error rate is being controlled.

5.3.1 Right-Tailed Tests

In the far-left panel of Figure 5.7, we can see that for φ = 2, the Type I error

rate is controlled for the saddlepoint-derived approximate UMP test (0.0496), but is

significantly deflated for the Wald test (0.0267) and the t-test (0.0041). Due to these

discrepancies, we cannot compare the tests in terms of statistical power, as they do

not all achieve a size of 0.05. However, it is still enlightening to examine the power

estimates at specific points in the alternative region. For instance, when µ = 0.175,

the saddlepoint-derived approximate UMP test has a power estimate of 0.3069, the

Wald test has 0.2081, and the t-test has 0.0485.

A similar phenomenon occurs in terms of the estimated Type I error rates for each

test as n increases, which can be seen in the middle and far-right panel of Figure 5.7.

The absolute difference in the power estimates, with n = 10 at µ = 0.175, for the

approximate UMP test (0.5397) and the Wald test (0.4445) are relatively small as

compared to the small sample scenario, while the t-test is still significantly different

(0.1473). As for n = 25, the power estimates at µ = 0.175 are relatively high and

become virtually indistinguishable for the approximate UMP and Wald tests.
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Figure 5.7: Simulated Power Curves for Right-Tailed Tests (µ0 = 0.1, φ = 2, n =

5, 10, 25)

With φ = 10 in Figure 5.8, the estimated Type I error rate for the approximate

UMP test is controlled across all sample sizes, while the Wald and t-test exhibit some

deflation. Therefore, the power curves are not comparable; however, we still examine

the power estimates at µ = 0.175 for consistency. With n = 5, the power estimates

for the approximate UMP test, the Wald test, and the t-test are 0.5448, 0.4924,

and 0.2576, respectively. If n increases to 10, then the power estimates are 0.817,

0.7897, and 0.6157, respectively. When n = 25, the power estimates for all three

tests increase and become virtually indistinguishable. Essentially, as the sample size

increases, the simulated power curves for the Wald and the t-test start to converge

to the approximate UMP test.
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Figure 5.8: Simulated Power Curves for Right-Tailed Tests (µ0 = 0.1, φ = 10, n =

5, 10, 25)
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5.3.2 Left-Tailed Tests

As is stated in the Type I error simulations, the estimated Type I error rates for

the saddlepoint-derived approximate UMP test are controlled, while the rates for the

Wald and the t-test are inflated rather than deflated. With n = 5, as in the far-left

panel of Figure 5.9, the power estimates for the approximate UMP test (0.0005) and

the Wald test (0.0008) at µ = 0.175 are virtually indistinguishable, while the t-test is

discrepant (0.0746). By increasing n, as is demonstrated in the middle and far-right

panel of Figure 5.9, the power estimate for the t-test starts to approach the estimate

for the previous two tests.
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Figure 5.9: Simulated Power Curves for Left-Tailed Tests (µ0 = 0.1, φ = 2, n =

5, 10, 25)
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Now, if φ = 10, then a similar story can be depicted in terms of the estimated

Type I error rates and the power estimates at µ = 0.175 from Figure 5.10. The power

estimate for the approximate UMP test that controls the Type I error rate is virtually

indistinguishable from the Wald test, which exhibits some inflation in the Type I error

rate, across the values of n. As for the t-test with the significantly inflated error rate,

the power estimate eventually approaches the rates of the previous two tests as n

increases.
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Figure 5.10: Simulated Power Curves for Left-Tailed Tests (µ0 = 0.1, φ = 10, n =

5, 10, 25)
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5.4 Coverage Probability Simulations

Since each confidence interval for µ is an inversion of the acceptance region for a

two-sided test, then the results obtained in this simulation study should be consistent

with the previously acquired empirical evidence for the two-sided tests. Now, in

order to assess the scope of the consistency with the results, the coverage probability

estimates under the scenarios specified in Section 5.1 are presented in a similar manner

as in the Type I error rate simulations.

With Figure 5.11 as a reference, the confidence interval for µ in regards to the

saddlepoint-derived test based on the “double” p-value approach provides appropri-

ate coverage. Since φ = 10, then the LRT and the Wald confidence intervals for

µ also exhibit sufficient coverage probabilities for their respective intervals in most

scenarios. The Wald confidence interval did tend to have slightly smaller coverage

probabilities for values of µ0 relatively close to 0.5 and small sample sizes. As for

the the corresponding confidence interval for µ with respect to the two-sided t-test,

there was not control in the coverage probabilities for small sample situations, which

is consistent with Type I error simulations.

In addition to conducting coverage probability simulations, we also examined the

widths of the confidence intervals for µ corresponding to each two-sided test. Figure

5.12 provides boxplots of the confidence interval widths for each method over 10000

simulations with µ0 = 0.2, φ = 10, and n = 5. The confidence intervals for the

saddlepoint, the LRT, and the Wald methods each have a consistent average width

of around 0.2. These confidence intervals are also much more narrow than the t-

interval, which addresses a negative property of this type of interval. The t-interval

produced coverage probabilities that were lower than nominal, while simultaneously

generating wider intervals as compared to the other procedures. Typically, an interval

that provides this type of coverage produces more narrow intervals on average.

62



0.93

0.94

0.95

0.96

0.2 0.3 0.4 0.5
µ0

E
s
ti
m

a
te

d
 C

o
ve

ra
g
e
 P

ro
b
a
b
ili

ty

Saddlepoint

0.93

0.94

0.95

0.96

0.2 0.3 0.4 0.5
µ0

E
s
ti
m

a
te

d
 C

o
ve

ra
g
e
 P

ro
b
a
b
ili

ty
LRT

0.93

0.94

0.95

0.96

0.2 0.3 0.4 0.5
µ0

E
s
ti
m

a
te

d
 C

o
ve

ra
g
e
 P

ro
b
a
b
ili

ty

Wald

0.93

0.94

0.95

0.96

0.2 0.3 0.4 0.5
µ0

E
s
ti
m

a
te

d
 C

o
ve

ra
g
e
 P

ro
b
a
b
ili

ty

t

n = 5 n = 10 n = 25

Figure 5.11: Estimated Coverage Probabilities of the Confidence Intervals for µ (φ =

10)
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Figure 5.12: Boxplots of the Widths of the Confidence Intervals for µ (µ0 = 0.2, φ =

10, n = 5)
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5.5 Summary

The primary objective of our simulation studies was to inform the statistical com-

munity of some of the different aspects of the hypothesis tests and their corresponding

confidence intervals for µ under consideration. Essentially, we were comparing the

standard likelihood-based procedures to a relatively new method that incorporates

the implementation of saddlepoint approximations. Our selection of these tests each

had their advantages and disadvantages under specific scenarios. For values of µ0 rel-

atively close to 0, low precision, or small sample situations, the saddlepoint-derived

approximate UMP test provided a sufficient alternative to the likelihood-based tests

when working with one-sided tests, as this procedure exhibited control in the Type I

error rate with equivalent or higher power estimates as compared to the procedures

that roughly controlled this error rate.

For the two-sided tests and their corresponding confidence intervals for µ, the

choice of procedure appeared to be less concerning based on our studies of the Type

I error rate. However, due to various computational difficulties discussed in Section

5.1, we were unable to extensively analyze the performance of the confidence intervals

for values of µ0 relatively close to 0, where the hypothesis tests based on saddlepoint

approximations tended to perform more efficiently in small sample size situations.

Therefore, we leave this for future developmental work.

Lastly, our simulations demonstrated how poorly the t-test performed under the

specified scenarios of the beta model, which predominantly consisted of small sample

situations coupled with highly skewed and variable distributions. As these are very

scenarios we have observed in real FCM derived data sets in Chapter 1, we wanted

to provide data analysts that work with this type of data, or any data with bounded

support, with additional empirical evidence as to the discrepancies associated with

the t-test under these scenarios.
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6 APPLICATIONS

6.1 Hypothesis Testing in Immunology Research

Changes in cell compositions within the blood of humans and other mammals

provide a lens into understanding the kinetics of how the immune system responds

to foreign bodies. At the time of this manuscript’s completion, the massive impact of

the disease COVID-19 is weighing heavily on the nation. It highlights the importance

of accurate and sound statistical practices to help researchers understand how viruses

can impact our immune system.

In a true research system, an analysis would involve conducting experiments in-

volving multiple groups to justify a two-sample procedure to compare population

means. Although the methods discussed in this manuscript do not address this ques-

tion directly, the work presented here provides the necessary information to easily

transition to more complicated study designs involving beta models.

To illustrate the utility of our developed methods discussed in Chapter 4, we pro-

vide a simple modified example from a longitudinal study of cynomolgus macaques

that were challenged with Mycobacterium tuberculosis. (This example is for educa-

tional purposes only and does not reflect a scientifically rigorous hypothesis.) Our

data set consists of measurements taken from a blood draw. By using a flow cy-

tometer, the percentages of CD20+ B-cells were observed 180 days after tuberculosis

infection was induced. The 17 data points are listed here: (3.83, 1.59, 3.64, 1.94,

4.65, 2.83, 4.37, 2.57, 0.684, 13.5, 4.91, 4.84, 2.77, 2.2, 8.97, 3.87, 3.43). The distri-

bution of CD20+ B-cells among healthy humans, and arguably healthy cynomolgus

macaques as well, is known to be skewed-right and have an average percent of around

8%. Also, through rigorous inspections of previously derived FCM data sets amongst
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various settings performed by Turner [13], a conservative value for the precision pa-

rameter associated with the beta model for CD20+ B-cell percentages was established

at φ = 10.

Now, suppose that a researcher is interested in testing if the average proportion

of healthy macaques’ CD20+ B-cell composition, which were obtained 180 days after

tuberculosis infection, is less than 0.08. Formally, we will test the following set of

hypotheses: H0 : µ ≥ 0.08 against H1 : µ < 0.08.

The sufficient statistic for µ in the context of the data set is

T = 10
∑17

i=1 ln{Xi/(1 − Xi)} = −568.234. As this is a left-tailed test, the p-value

using the saddlepoint CDF, F̂T , under H0 is F̂T (−568.234) = 0.273. The MLE of

µ is µ̂ = 0.072 and the corresponding Wald Z-statistic is Z = −0.567. By using

the standard normal CDF, Φ, the p-value is Φ(−0.567) = 0.285. Lastly, the t-test

produces a p-value of 0.00004.

The comparison of these three tests essentially alludes to the general trend of our

simulations regarding left-tailed tests. Recall that with a modest precision parameter

and sample size, the t-test had a drastically inflated Type I error rate, which explains

the discrepancy between the statistically significant p-value for the t-test and the

more conservative results produced by the other two procedures. Even though the

simulations results indicated that there was a slight inflation in the Type I error rate

for the Wald test, the saddlepoint-derived approximate UMP test and Wald test are

generally more comparable.

6.2 Sample Size Logistic

To obtain grants funded by the National Institutes of Health (NIH) for FCM

research projects, grant proposals must justify that the immunologists will obtain

an adequate number of samples in order to increase the chances of concluding the
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research hypothesis if this hypothesis is indeed true. A typical specification associated

with these types of proposals is stating the sample size required to ensure that the

statistical power of the hypothesis test is 0.80, or higher, for a specified value of µ

that is clinically relevant under the research hypothesis.

As a motivating example, suppose that we are interested in testing H0 : µ ≤ 0.1

against H1 : µ > 0.1 at α = 0.05 with φ = 10 and we want to obtain the value

of the sample size n that yields a power estimate of 0.80 at µ = 0.12 for both the

saddlepoint-derived approximate UMP test and the t-test. We will now derive the

mathematical statements needed for each power calculation.

Recall that the rejection region for the t-test under the structure of our statistical

inference problem is to reject H0 if

X̄ − µ0

sµ0/
√
n
> tn−1,α,

where sµ0 =
√

µ0(1−µ0)
φ+1

and tn−1,α denoted the upper-α point of the t-distribution

with n− 1 degrees of freedom. With this rejection region, the power function for the

t-test, βt(µ), is defined as

βt(µ) = Prµ

{
X̄ − µ0

sµ0/
√
n
> tn−1,α|µ = µ

}
,

and by algebraically rearranging the rejection region, βt(µ) can also be expressed as

βt(µ) = Prµ

{
X̄ > tn−1,α

sµ0√
n

+ µ0|µ = µ

}
,

Now, to impose the condition that the true parameter is µ rather than µ0, we can

standardize X̄ by using the following distributional statement: X̄∼̇N
(
µ = µ, s2

µ =

µ(1−µ)
φ+1

)
, which accurately reflects the true value of the parameter. After the proper

standardization of X̄ and through algebraic manipulation, we obtain

βt(µ) = Pr

{
tn−1 > tn−1,α

sµ0
sµ

+ (µ0 − µ)

√
n

sµ

}
. (6.1)
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As for the approximate UMP test, we reject H0 if Tn = φ
∑n

i=1 ln {Xi/(1−Xi)} >

tu, where the subscript n in Tn is used to indicate a dependence on n and the critical

point tu is defined to be upper-α quantile of the distribution of T that satisfies Pr{Tn >

tu|µ = µ0} = α. With this rejection region, we can define the power function for the

approximate UMP test, βTn(µ), as

βTn(µ) = Prµ{Tn > tu|µ = µ}.

As algebraic manipulation is not practical in terms of this rejection region, we impose

the condition that the true value of the parameter is µ, rather than µ0, by substituting

this value into the saddlepoint CDF of Tn; more specifically,

βTn(µ) = 1− F̂Tn(tu;µ = µ, φ = φ). (6.2)

Since we want both (6.1) and (6.2) to be 0.80 and n is the unknown value, as all

of the other variables are defined for this problem, then we can use the same one-

dimensional root-finding algorithm as mentioned in previous chapters. With this, we

were able to determine that the required sample size is approximately 136 for the

t-test and 101 for the approximate UMP test. We can visualize this discrepancy by

rendering a plot of the power estimates for the two tests against a sequence of values

for the sample size n, which is provided in Figure 6.1, and identify the two intersections

with the solid-black horizontal line at 0.80. This is a significant discrepancy not only

for this scenario, but for other prescribed power levels in Figure 6.1.

Now, in the context of funding for FCM projects, this result essentially signifies

that they ensure the required statistical power for the clinically relevant value of µ

with a much smaller sample size when using the approximate UMP test. A smaller

sample size is advantageous for immunologists, as experiments in this area of research

are often expensive.
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7 CONCLUSIONS AND FUTURE RESEARCH

The purpose of this research was to expound upon the mathematics pertinent to

conducting statistical inference for the mean of beta distribution based on a simple

random sample and to assess the efficacy of our statistical methods. For our purposes,

we formulated the standard likelihood-based procedures for hypothesis testing and

confidence intervals, along with other testing procedures that were derived from the

implementation of saddlepoint approximations.

Through simulation work, we were able to provide empirical evidence for various

aspects of the hypothesis tests and their corresponding confidence intervals for µ

under consideration. The saddlepoint-derived approximate UMP test controlled the

Type I error rate across all of the versatile scenarios coinciding with FCM projects,

which include values of µ0 relatively close to 0, low precision, and small sample size

situations. The one-sided asymptotic LRT and Wald tests exhibited some control in

their respective error rates for sufficiently large sample sizes. When the alternative

was two-sided and for values of µ0 relatively close to 0 and low precision, the error

rates from the right-tailed tests negated the error rates from the left-sided tests. As for

the t-test, there was not appropriate control in the error rate, especially in situations

prevalent in FCM projects.

Based on the simulation results, our overarching recommendation is to use the

saddlepoint approximation method given that the saddlepoint approximations can

be implemented numerically. Recall from Section 5.1 that there were difficulties

in practical computations for values of µ0 exceedingly close to 0 due to degenerate

samples that caused non-finite values in preliminary estimates and thus numerical

instability in root-finding algorithms. As these situations most likely do not exhibit
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real world phenomenon, we do not expect this to significantly hinder conducting

statistical inference in a practical setting. Furthermore, we also suggest using the

either the LRT and the Wald test as an alternative, as there were some disadvantages

in the settings used in immunology research. As for the Student’s t-test, we do

not recommend using this type of hypothesis testing procedure, especially in FCM

projects.

After acquiring a sense of the scope of the applicability for each hypothesis testing

procedure, we proceeded to provide a simple example using FCM data to demonstrate

the utility of the hypothesis tests as seen through our simulation studies. In addition

to this example, we also highlighted a significant property of the saddlepoint approx-

imation method, which is its readily available approximate power functions. This

allows for more expeditious and accurate sample size determinations using a method

that not only appropriately controls the Type I error rate, but essentially gives a more

realistic view of the sample sizes needed to obtain highly powerful study designs.

Now, as for future research, recall that the basis of this manuscript is contingent

upon the assumption that φ is known in advanced, or that we can at least obtain an

estimate for φ from previous studies. Since a known value of φ is highly unlikely in

new areas of research, we intend to extend our testing procedures, particularly with

the saddlepoint approximation method, to construct both approximate UMP and

Uniformly Most Powerful Unbiased (UMPU) tests, while accounting for the nuisance

parameter, φ. Fortunately, the beta distribution under the two-parameter model,

where both µ and φ are unknown, is still a member of the exponential family. There-

fore, marginal and joint CGFs will be easily obtained through a multivariate exten-

sion of the results provided in this manuscript. The continuation of this manuscript

is currently being executed by Jacob Turner, Ph.D.

Upon completion of this future work, we will have effectively created a set of

procedures for the beta distribution that is analogous to the standard Z and t-tests for
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the normal distribution. From there, we will proceed to the more general two-sample

comparisons and ANOVA study design settings, which will be more directly applicable

in studies performed by data analysts and researchers in the FCM community.
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