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Abstract

This paper presents the details of a collaborative robot cell assembled with off-the-shelf components designed for random bin-picking and robotic
assembly applications. The proposed work investigates the benefits of combining an advanced RGB-D vision system and deep learning policies with
a collaborative robot for the assembly of a mobile phone. An optimised version of YOLO is used to detect the arbitrarily placed components of the
mobile phone on the working space. In order to overcome the challenges of grasping the various components of the mobile phone, a multi-gripper
switching strategy is implemented using suction and multiple fingertips. Finally, the preliminary experiments performed with the proposed robot
cell demonstrate that the increased learning capabilities of the robot achieve high performance in identifying the respective components of the
mobile phone, grasping them accurately and performing the final assembly successfully.
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1. Introduction

Since the introduction of robots in the manufacturing domain
and the evolution of automated production systems there has
been a desire to fully automate and introduce intelligence to
the majority of manufacturing procedures. The fourth industrial
revolution has further increased this desire for intelligence and
learning capabilities in collaborative robots. A major proof of in-
telligence in collaborative robots and one of the hardest problems
to solve in automated production is the accurate detection and ro-
bust manipulation of random industrial parts. Especially in cases
where the parts are diverse and multiple grasping techniques
are required the problem of bin-picking becomes even more
challenging to tackle. In this paper, a collaborative robot cell
is built, based on off-the-shelf components, to perform random
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table-picking and assembly of dummy mobile phones directly
from a box full of the components. The final scope of this system
is to demonstrate how an intelligent bin-picking system can be
designed and deployed in a collaborative robot cell based on
deep learning policies to identify the components and a multi-
gripper design to accommodate the grasping of the diverse parts
of the phone. This project is based around the FESTO Cyber-
Physical (CP) Factory [1] and its mockup mobile phones which
are illustrated in Figures 1 and 2. The FESTO CP Factory is an
educational production-line setup which is used to demonstrate
various manufacturing processes and encapsulate an Industry 4.0
environment. It consists of several different modules which can
be re-arranged as desired. In this case the FESTO CP Factory
is set up as seen in Figure 1 and is responsible for manufactur-
ing mockup mobile phones [3]. The facility receives an order
from a Manufacturing Execution System (MES) and the person-
alised customer order in the system proceeds with picking a blue,
black or white bottom cover depending on given instructions
and places it onto a pallet. This pallet is then moved through the
production line either on a conveyor belt or with the means of a
mobile robot [4] where different assembly operations are carried
out. In a confined robot cell containing a KUKA KR 6 R700
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Fig. 1: FESTO Cyber-physical Factory.

Fig. 2: The parts of the mock up mobile phone. [2]

sixx industrial manipulator, a PCB, and two fuses are added
onto the back cover. Later in the production line, a black top
cover is added and snapped together with the bottom cover to
complete the assembly. The full assembly process is illustrated
in Figure 4.

While the FESTO CP Factory can produce the mockup mo-
bile phones in a structured matter, errors can still happen. A
system for disassembly of these phones has been previously
built [2], to identify these errors and any missing components.
The proposed system in this paper, is built as the next step in an
Industry 4.0 production environment built for circular economy
and recycling purposes. At first, the FESTO CP Factory executes
the personalised order from the customer and delivers a fully
assemble phone. In case of a report from a customer that there
is an error on the phone, the dual-arm robot [2] can disassemble
the phone and deliver the parts in an unstructured way inside a
bin. Finally the current system can refurbish the phone, assemble
it again and introduce it back to the production by picking the
parts which are randomly placed on a table.

2. Related research

There has been a great amount of research and experimen-
tation done in the field of bin-picking of industrial parts [5].
Systems such as the one developed by Tuan-Tang Le and Chyi-
Yeu Lin [6] achieve more than 99% success-rate, by utilising
semantic segmentation and depth data around the segmented
objects to compute 3D poses. However, they only use suction
grasping which limits the system’s capabilities in terms of inter-
acting with different shapes and sizes.

A different, more versatile system is the one developed for
the 2017 Amazon Robotics Challenge by Andy Zeng et al. [7].
This system uses a multi-gripper which allows for more dexter-
ous grasping capabilities. Furthermore, it is a quite fast system
having a processing speed of 0.05 x n seconds, where n is the
number of possible grasp angles. The speed of the system is,
however, penalised by the lower accuracy of approximately 89%.
The system uses deep learning to find grasp-success probability
maps for 4 different grasping options (suction down, suction
side, grasp down, flush grasp).

Other systems also suggested using CAD-based pose-
estimation such as the ones developed by Kai-Tai Song et al. [8]
and Yu-Kai Chen et al. [9] who achieved an error of 1.06 mm
(X), 1.48 mm (Y), 0.72 mm (Z), 4.58◦ (Rotation) and 0.998 mm
(X), 1.036 mm (Y), 0.912 mm (Z), 2.126◦ (Rotation) respec-
tively. D. Morrison et al. [10] proposed a multi-gripper system
which achieved a grasp success rate of 72% using point-cloud
computed surface-normals for suction and grasped parallel to
the principal-axis of the RGB-segmented objects. Their system
required 7 training images for a novel object.

The proposed prototype has a few distinct differences com-
pared to other related research. One significant aspect is the dy-
namic camera calibration using fiducial ArUco markers, which
is not common in Bin Picking applications where the robots
are usually manually calibrated to their working stations. Paired
with no requirement for a depth camera, this enables a cheap
and flexible camera setup, which is fast to setup, lightweight in
terms of complexity and computational power and can be moved
as the user desires - as long as all four ArUco markers remain
inside the camera’s field of view. At the same time, this proto-
type can be trained quickly to handle multiple industrial parts at
once with the multi-gripper design and it demonstrates how an
effective low-cost alternative can be used and implemented in
today’s factories.

Fig. 3: Setup of the collaborative robot cell with coordinate frames attached to
the robot, camera and gripper.
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Fig. 4: Assembly flow of the mockup phone assembly process.[2]

3. System overview

The proposed collaborative robot cell consists of two tables
with a UR5 robotic manipulator attached on top of one, a Schunk
WSG 50-110 electronic gripper, custom alignment and assembly
fixtures and an Intel RealSense D415 camera mounted above
the main worktable, as can be seen in Figure 3. There is also
a suction tool mounted on the side of the gripper. The main
worktable is covered in yellow paper to provide a flat, reflection-
free surface that has good contrast against all the parts’ colours.
The four ArUco markers printed on the four corners of the work
table are used for camera calibration purposes. The camera pole
also houses a LED panel for even lighting. A Hokuyo URG-
04LX-UG01 laser scanner is mounted on the corner of the main
table to to increase safety and detect if people are getting close
to the cell. Finally, coloured LEDs are placed around the table to
signal the status of the system when humans approach the cell
or are moving away.

The prototype uses deep learning algorithms to locate the
objects in 3D space in order to enable the handling of the ob-
jects using the UR5 manipulator. The individual objects are
detected using the YOLOv3 object detection network, more
specifically the YOLOv3-tiny version, due to the available pro-
cessing power not being powerful enough for the full YOLOv3
architecture [11]. Furthermore, a second CNN is later used in
the pipeline for detecting the orientation of the parts relative to
the camera.

The extrinsic camera calibration are done using fiducial
ArUco markers placed on the worktable [12]. This enables the
camera mounting to be more agnostic to its placement relative
to the worktable and the robot.

The different parts have different shape, size and material, as
can be seen in Figure 2, which means that they cannot be picked
up using the same end-effector attachment. To solve this problem
a multi-purpose gripper and multiple fixtures for aligning the
parts are designed and used in the proposed robot cell.

The system was programmed in Python, with the main li-
braries used being: urx for sending direct commands to the UR5
robot, OpenCV for camera calibration and a YOLO wrapper to
interface with the natively running YOLO implementation.

The codebase was deployed on a Thinkpad P50 laptop (Intel
i7-6820HQ, Nvidia Quadro M1000M, 16 GB RAM). Both the
YOLO network and the custom-made orientation detection CNN
run both on the CPU due to size. This resulted in an approximate
inference time of 5 and 2 seconds respectively.

The robot and the gripper were connected to the laptop via
Ethernet, the camera was connected via USB 3.0 and the Hokuyo
laser scanner via serial over USB. The coloured LEDs were
controlled by an Arduino Uno which received commands via
serial over USB.

3.1. Object detection

To ensure that the object detection subsystem will provide
accurate and robust detection rate, multiple images of all parts
were acquired. Each image contained one of each of the cov-
ers, one PCB and two fuses, totaling to 7 objects appearing in
each training image. An example such training image prior to
labelling is depicted in Figure 5. All possible parts were placed
in multiple, arbitrary locations on the worktable and in all pos-
sible orientations. It was also important to flip the parts and
gather equally as many images with flipped parts as non-flipped
parts. The images were then labelled using the OpenLabeling
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software [13]. For each image labelled using OpenLabeling,
the software outputs a text file containing the coordinates of
the bounding box and the object classification contained in that
bounding box. This is then used by the DarkNet framework.

Fig. 5: An example of a training image, containing the back cover, PCB, two
fuses and the 3 colored front covers.

The object detection neural network currently consists of a
dataset with approximately 1000 images with a total of roughly
7000 labels. These images were captured over a period of several
months, to acquire images with different lighting conditions due
to season change and different interior lighting. This way the
system is built in such way that can work in as many environ-
ments as possible without overfitting e.g. due to specific lighting
conditions. The neural network was then trained on the Darknet
framework using the pre-existing YOLOv3 weights for transfer
learning, to reduce training time and reduce overfitting since the
dataset is small relative to the network’s trainable parameters.
An output of the YOLOv3 can be seen in Figure 6. The network

Fig. 6: An example of the output labels from the YOLOv3 network on an image
from the test set.

was evaluated using the intersection over union (IoU) and mean
average precision (mAP) metrics, which are common metrics for
evaluating an object detection neural network [14]. The equation
for computing the IoU is:

IoU =
area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

(1)

where Bp denotes the predicted bounding box, and Bgt denotes
the groundtruth bounding box. The mAP can be computed by
calculating the average precision of all the classes, and then
computing the mean of all these averages. The average precision
can be computed by calculating the area under the precision-
recall curve. This can be done by interpolating for the area under
the curve.

AP =
1∑

r=0

(rn+1 − rn)ρinterp(rn+1) (2)

with

ρinterp(rn+1) = max
r̃:r̃≥rn+1

ρ(r̃) (3)

where ρ(r̃) is the measured precision at recall r̃. These metrics
are automatically calculated by the Darknet framework. After
training the custom YOLOv3 network it performed well with
an average IoU score of 85.4% and a mAP score of 98.29%. An
example of IoU on the test set is depicted in Figure 7.

Fig. 7: An example of the IoU score of the PCB in one of the test images. The
prediction is illustrated with a purple rectangle while the ground truth with a
brown one.

3.2. Detecting final orientation of parts

After the object detection step the label of a part and whether
the part is flipped or not (excluding fuses) is known, which
means that the robot is able to flip and align the part the cor-
rect way using the alignment fixtures. To place the part in the
assembly fixture correctly, the orientation of the part has to be
determined. The possible configurations are with an offset of
180◦ from each other. The orientation is measured around the
normal to the main plane of the part. To determine this orienta-
tion, a simple Convolutional Neural Network (CNN) based on
the VGG-16 network was trained on a custom dataset for the
mockup phones to predict whether a part is facing left or right
as viewed from the camera. The network was trained on 2647
images and achieved an accuracy of 99.99% on the test-set.
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3.3. Alignment fixtures

The alignment fixtures serve two purposes: To align the
grasped parts of the phone in such way that they will have a
fixed location in relation to the robot, and to flip the parts if it is
needed. The front-cover and back-cover fixture is slightly tilted
and slanted fixture that allows the part to slide into the same spot
for correct alignment. The PCB fixture takes on a funnel design,
where it will slide down to the correct position independent of
the orientation. The fuse fixture is designed to compliment the
cylinder form of the object. Models of the fixtures are illustrated
in Figure 8.

3.4. Multi-gripper

A multi-gripper strategy has been implemented in order to
enable more robust ways to grasp objects. It consists of 3 dif-
ferent methods of grasping: a large grasp for the phone covers,
small and narrow grasp for the fuses and suction grasp for the
PCB board. These grippers are oriented with a 90◦ angle off-
set to each other. The benefits of using a multi-gripper instead
of a tool-changer is faster switching of tools and no need for
taking up extra space for a tool-changer, reducing clutter in the
workspace. Naturally, a sophisticated end-effector such as the
one proposed also results to more singularities that had to be
taken into consideration for the optimal path planning of the
robot to achieve the fastest assembly procedure.

The gripper was designed through multiple iterations, since
initially a different actuator for the fingers were used, the
pneumatic SMC MHZ2-20D, which did not have an adequate
actuation displacement, and thus it was decided to use the
Schunk WSG-50-110-B electrical gripper instead. The final
multi-gripper was designed for the Schunk gripper to be mounted
on the wrist of the UR5. Fingers for the covers and the fuses were
designed to be mounted on the actuating plates on the Schunk
gripper as well. The mounting for the suction was designed sep-
arately to be mounted to the side of the Schunk gripper, on the
mounting plates used between the Schunk gripper and the UR5
wrist. The gripper and suction can be seen in Figure 8d.

3.5. Programmed logic

The program can be divided into 4 phases: detection of parts,
grasping of the parts, alignment of the parts and correct place-
ment of the parts. The detection phase refers to the acquisition
of an image of the worktable, and processing the image through
the trained YOLO network. YOLO outputs the width and height
of the bounding box which is then used to find the x and y coor-
dinates of the centre of the object. The grasping phase refers to
the movement of the robot arm above the x and y coordinates
of the object it has to grasp. This is done by converting the im-
age coordinates to world coordinates using ArUco markers. The
markers are used to solve the Perspective-n-Point (PnP) problem
to calculate world coordinates from image coordinates using the
pin-hole camera model. The simplified pin-hole camera model

is used, since z � 0 in this application:


x
y
z

 = R


X
Y
Z

 + t (4)

Where x, y, z is the camera’s principal point, R the rotation ma-
trix, X, Y and Z the location of the point in the world coordinate
system and t is the translation vector for the camera.

Additionally:

x′ =
x
z

y′ =
y
z

u = fx ∗ x′ + cx

v = fy ∗ y′ + cy

(5)

Here u and v is the image coordinates and fx, fy, cx and cy are
intrinsic camera parameters.

The intrinsic camera parameters are already known from the
internal calibration specifications of the Intel Realsense camera.
The rotation matrix, R, and the translation vector t are computed
using OpenCV which utilises the ArUco markers to solve the
PnP problem. Knowing these variables the world coordinates
can be computed from images coordinates using equations 4
and 5.

The robot can grasp in two orientations: horizontal and verti-
cal. These orientations are decided by comparing the width to the
height from the bounding boxes, where it will grasp the largest
side. The robot will then enter the alignment phase, where it
will place the grasped object in the respective alignment fixtures.
In the placement phase, the robot will move the aligned object
up to the camera for a final inspection of orientation, where the
camera will capture an image to determine if the grasped object
is rotated by 180◦ or not. The exact orientation and position of
the grasped object is then known and it can be placed in the
assembled unit. A flowchart demonstrating the presented steps
of the overall assembly procedure is shown in Figure 9.

Finally, a supplementary safety feature was implemented by
mounting a laser scanner on one of the corner of the worktable.
A safety module was then implemented which continuously
checked the laser scanner data for movement. In case an object
or a human worker approached the system within the one meter
threshold, the system would slow down to the EU accepted TCP
speed of 250 mm/s. Furthermore, if an object or a human worker
approached the system within the 0.5 meter threshold the system
would slow down to 0.5% of its full speed. A complete stop
is effectively the same as 0.5%, however, in order to allow the
system to run smoothly when people are entering and exiting
the zone continuously, a complete safety stop of the system was
undesired. In addition to the adjustments of the speed of the
robot according to the laser scanner readings, LED strips were
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(a) Cover alignment fix-
ture

(b) PCB alignment fixture (c) Fuse alignment fixture (d) The multi-gripper design equipped with small fingers for grasp-
ing fuses, larger fingers for grasping covers and a suction tool for
handling the PCBs

Fig. 8: (a-c) The 3 alignment fixtures and (d) the multi-gripper design.
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Fig. 9: Flowchart of the implemented procedure

also added to the system to provide indications of what mode
the system was operating in:

• Green indicates that no humans are detected and the system
is running full speed.
• Yellow indicates that one or more humans/obstacles have

been detected within the 0.5 meter and 1 meter range, and
the system is running with 250 mm/s.
• Red indicates that one ore more humans/obstacles have

been detected within the 0 and 0.5 meter range, and the
system is running at 0.5% speed.

4. Testing results

The prototype was tested through six different tests, five of
which focused on separate aspects of the system and a final test
assessing the overall performance.

The first test measured the performance of the object detec-
tion module, namely if it can predict the correct object with a
correct bounding box. The test was performed 20 times with
an overall success rate of 89.17%. More detailed results can be
seen in Table 1. The second test focused on the system’s ability
to pick things up from the table after recognising them. Out of
the 20 trials for each part, the system was 100% successful. As
all five of sub-tests, this test was also isolated, meaning it does
not rely on the previous steps to be successful. This explains
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Back cover PCB Fuse
Front cover

All parts
Black Blue White

Correct prediction 70% 95% 100% 90% 100% 90% 90.83%
Correct bounding box 100% 100% 90% 100% 100% 100% 98.33%
Everything successful 70% 95% 90% 90% 100% 90% 89.17%

Table 1: Summarised results from object detection performance test. The test
was carried out 20 times and the percentages displayed in the table correspond to
the average success rate for that part. The columns represent the different phone
parts and the rows show the various aspects that were tested.

the high performance score of 96% in this test, even though the
object detection test only reached 89.17%.

The third test measured the ability of the system to align the
parts using the alignment fixtures after they have been picked up.
To align the covers correctly and the PCB the object orientation
must also be known, so this test also measures the performance
of the CNN responsible for detecting the orientation of the parts.
Out of 10 runs the system achieved an overall success rate of
96%. More detailed results can be seen in Table 2. The fourth

B. cover PCB Fuse
Front cover

All parts
Black Blue White

Orientation recognition 100% 80% N/A 100% 100% 100% 96%
Orientation alignment 100% 80% N/A 100% 100% 100% 96%
Placement 100% 100% 100% 100% 100% 100% 100%
Order 100% 100% 100% 100% 100% 100% 100%
Everything successful 100% 80% 100% 100% 100% 100% 96%

Table 2: Summarised results from alignment test. The test was carried out 10
times and the percentages displayed in the table correspond to the average
success rate for that part. The columns represent the different phone parts and
the rows show the different aspects that were tested. Orientation recognition
means that the CNN did output the correct orientation, orientation alignment
means that the system was able to align the phone part to the correct orientation,
placement means that the system placed the phone part correctly in the alignment
fixture and finally, order means that the system aligned the parts in the correct
order.

test focused on the performance of the system in the assembly
of the phone after the parts have been aligned. Out of 5 runs,
the only error was one of the fuses being misplaced by 1-2mm,
which pushed the overall performance down to 95%.

The safety of the system was tested as well. More specifically,
the test involved the evaluation of the capability of the robot
to slow down and then stop as people or objects get closer to
the laser scanner mounted on the robot platform. Out of 5 runs
the system slowed down and stopped at the respective threshold
distances 100% of the time.

The final full system integration test, examined the overall
performance of the prototype. The test was performed 30 times,
10 times each for the different front cover colours. The results of
the full integration can be seen in Table 3. It is important to note
that the data was recorded in such a way, that if a step failed
during the process, the run was stopped and the next steps in
the assembly procedure were considered a failure. This delivers
an accurate number of the overall performance, but skews the
performance of the individual aspects in favour of the earlier
steps in the pipeline.

B. cover PCB Fuse
Front cover

All parts
Black Blue White

Correct classification 93% 100% 90% 100% 100% 90% 96%
Correct bounding box 100% 100% 83% 100% 100% 90% 96%
Successful pickup 97% 97% 88% 70% 100% 90% 90%
Successful flip 90% 80% N/A 70% 100% 90% 85%
Successful orientation 97% 80% N/A 70% 100% 90% 87%
Correct assembly 97% 70% 73% 50% 100% 80% 78%
Everything successful 90% 63.3% 70% 55.6% 100% 72.7% 47%

Table 3: Summarised results of from the final tests. The table illustrates the
averaged results from the 30 tests done. Correct classification means the system
correctly classified the part as well as if it were flipped or not. Correct bounding
box means if the bounding box was accurate enough. Successful pick describes
if the part was successfully picked up. Successful flip is whether the part was
flipped accordingly. Successful orientation is whether the system recognised the
correct orientation. Correct assembly placement is whether the part was placed
correctly in the assembly fixture.

5. Discussion

While the success rate of the final assembly is not ideal, the
initial approach revealed multiple sources of potential errors
in the system. Some of the encountered errors include, among
others, the PCB getting stuck in the alignment funnel, the fix-
tures getting misaligned due to vibrations and the suction not
turning off (likely due to a lost network packet). Naturally, en-
countered errors were also stemming from object detection, but
as the first test indicates, that part of the prototype performs at
a reasonable level and is not a major source for the errors. The
aforementioned small errors had a more severe impact on the
full system integration test, since the prototype has to complete
about 20 discrete steps in succession, so there is a higher chance
of encountering one of these placement errors.The system also
currently lacks error handling capabilities, meaning even small,
detectable errors cause the whole test to fail.

In terms of implementing the proposed system in a real man-
ufacturing setting, there are additional limitations. Initially, a
company would have to gather training data on their own parts
and train the YOLO-network and the orientation CNN on those
parts. Furthermore, in more low-level aspects of the system it
will necessary to manufacture tailored assembly and alignment
fixtures for the specific parts. Additionally, the working surface
of the robot should be enhanced with ArUco markers and cali-
brate them accordingly. Finally, the proposed approach handles
the assembly of mock-up phones without performing actual man-
ufacturing processes. In the production of a real product, these
manufacturing processes would have to be added, raising the
complexity of the system and subsequently, a more advanced
assembly procedure would have to be performed.

6. Future work

The work of this project lays the foundation of a future project
where 3D information will be included in the process pipeline,
in order to do layered bin-picking, as opposed to table-picking
which is examined in this paper. To accomplish this, pose esti-
mation in 3D space will need to be incorporated, which might
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be done using semantic segmentation instead of object detec-
tion, while also incorporate the depth information in the learning
algorithm or as a post-processing step before the final pose is
estimated.

Currently the prototype only picks up the objects by orienting
the gripper in 90◦ offset relative to the XY-plane in the world
coordinate system (the worktable plane). This works well in
most cases since the objects are placed flat on the worktable.
Future improvements will also include an implementation of
error handling techniques, making the setup resistant to vibra-
tions and the inclusion of more training data for the YOLOv3
network. To enable 3D bin-picking with objects that can have
random orientation in 3D space, a new method for calculating
a reliable grasp will need to be implemented. A way to do this
could be to train a learning algorithm to predict the best grasps,
for example similar to Dex-Net, after the pose of the object has
been estimated [15].

Finally the current safety measures using the laser scanner
does not cover the full work area and does not have enough
redundancy, which will also be improved in the next project to
further develop the safety of the system.

7. Conclusion

This paper presents a Table-Picking solution able to pick up
mockup phone parts and assemble them into a mockup phone
using an UR5 collaborative robot manipulator. The system uses
a version of YOLOv3 in order to detect and locate the different
parts and another CNN to fine tune the orientation of the part
in order to assemble the phone. The paper presents a design
for a multi-purpose gripper which enables picking up larger
objects, such as phone covers, smaller objects, such as fuses and
non-porous flat surfaces using suction. This enables the robot to
quickly change tool, by just reorienting the end-effector in order
to pick up the desired object.

The prototype presented in this paper achieves a high suc-
cess rate in the individual subsystems but a number of failed
assembly attempts reduced the overall success rate of the system
to 47% for the performed tests. While this number seems very
low, it is caused by the fact that even small errors on one part
in the assembly pipeline, will most likely not enable the rest of
the phone to be assembled. Since not all parts had equal amount
of performance, the performance of the system as a whole was
determined by the lowest denominator. As described in the dis-
cussion improvements for better success rate for the individual
parts can be improved to reach a potential of 99+% success rate.

The prototype successfully demonstrates how the different
components can be integrated in order to perform a table-picking
task, even though the overall success rate is worse than desired.
Using this prototype as the foundation, an addition of the pro-
posed improvements from Section 6 and with better error check-
ing and handling a robust bin-picking solution can be developed.
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