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Grid congestion mitigation and battery degradation
minimisation using model predictive control in
PV-based microgrid

Unnikrishnan Raveendran Nair, Monika Sandelic, Ariya Sangwongwanich, Member, IEEE, Tomislav Dragicevic,
Member, IEEE, Ramon Costa-Castellé Senior member, IEEE and Frede Blaabjerg, Fellow, IEEE

Abstract—Increasing integration of photovoltaic (PV) system
in electric grids cause congestion during peak power feed-in.
Battery storage in PV systems increases self-consumption, for
consumer’s benefit. However with conventional maximising self
consumption (MSC) control for battery scheduling, the issue
of grid congestion is not addressed. The batteries tend to be
fully charged early in the day and peak power is still fed-in to
grid. This also increases battery degradation due to increased
dwell time at high state of charge (SOC) levels. To address
this issue, this work uses a model predictive control (MPC) for
scheduling in PV system with battery storage to achieve multiple
objectives of minimising battery degradation, grid congestion,
while maximising self consumption. In order to demonstrate the
improvement, this work compares the performances of MPC and
MSC schemes when used in battery scheduling. The improvement
is quantified through performance indices like self consumption
ratio, peak power reduction and battery capacity fade for
one-year operation. An analysis on computation burden and
maximum deterioration in MPC performance under prediction
error is also carried out. It is concluded that, compared to MSC,
MPC achieves similar self consumption in PV systems while also
reducing grid congestion and battery degradation.

Index Terms—Model predictive control, energy management,
grid congestion, PV system, battery storage, degradation.

I. INTRODUCTION

HE last decade has seen more than doubling of renewable

generation capacity, mainly driven by photovoltaic (PV)
and wind power systems integrated in power grids [1]. This
increased penetration of load-decoupled intermittent renewable
sources has caused grid congestions, voltage regulation and
stability issues [2]-[4] in power networks.

The negative impacts can be overcome by using energy stor-
age systems (ESS) like batteries, which are being increasingly
adopted in PV systems [6]-[8]. However, integration of ESS
alone will not solve the issues arising from the addition of
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Fig. 1: Typical BESS, SOC and grid feed-in profile with
maximising self-consumption strategy for high PV generation
scenario. Early full charging of BESS and ensuing peak PV
power feed-in is shown. Profiles are based on data from [5].

renewable sources. An effective control (energy scheduling)
strategy for the battery ESS (BESS) is also essential to ensure
that PV systems are grid friendly. In many European countries
the extend of PV integration in the grid has resulted in a
grid parity where, for a consumer it is cheaper to utilise
their own PV generation than buying from the grid [9]-[11].
As per existing studies [7], meeting at least 65-75% of total
load demand from the PV power generated at consumer’s
premises provide economic benefit for the consumer. This
has resulted in the widely used maximising self-consumption
control (MSC) in PV-BESS system [7] to maximize PV power
usage by consumer. In the MSC strategy, PV power is stored
in BESS as soon as surplus power is available until full charge
of BESS as shown in Fig.1. Though economically beneficial,
MSC may lead to grid congestion. The reason being charging
BESS as soon as surplus power is available forces BESS to
reach fully charged state early in the day as shown in Fig.1.
Therefore when peak PV generation occurs BESS capacity
cannot be used, resulting in peak power being fed-in to grid.
Such power injection from many PV systems can lead to grid
congestion and voltage rise at PCC if there is no sufficient
load demand in the grid [12].

Another major drawback with the MSC strategy is related
to BESS degradation. The major ageing mechanisms in BESS
are the calendar and cycling ageing. The calendar ageing arises
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in Li-ion batteries being kept at high SOC for long durations
[13], [14] whereas cycling ageing arises from repeated deep
charging/discharging cycles of BESS [15], [16]. In PV BESS
system eliminating charge/discharge cycles is inevitable. How-
ever, triggering factors for calendar ageing can be reduced. In
MSC strategy the early full charging of BESS results in longer
dwell times at high state of charge (SOC) levels as shown
in Fig.1, thereby accelerating calendar ageing. Furthermore,
charging of BESS whenever surplus power is available also
results in a charging behaviour without accounting for load
demand. This can lead to BESS storing more charge than
demanded by the load for a particular day. As a result, at
the end of the day the BESS may not completely discharged
leading to residual charge in it. This residual charge can be
observed in Fig.1 at the beginning of the day. This residual
charge also leads to increased dwell time of BESS at a charged
state, further aggravating the calendar ageing. Therefore, grid
congestion and battery degradation are the two major concerns
when employing a MSC strategy.

Scheduling PV-BESS system aided by forecast of generation
and load profiles can alleviate these drawbacks. The knowl-
edge of generation, load profiles can be used to improve the en-
ergy scheduling and thereby reduce peak power injection and
BESS degradation. These approaches have been implemented
in [9], [17], [18] where the decision on BESS scheduling was
done offline based on forecast value of generation and load.

Model predictive controller (MPC) provide a solution for
optimal scheduling using forecast values while allowing for an
online implementation. Unlike offline solutions, MPC makes
decisions based on the current system data and updated
forecast values at any instance allowing for more optimal
results. Though MSC can be modified to include the forecast
information, this does not necessarily guarantee an optimal
solution. The MSC is a rule based method, where the explicit
rules determine the optimality of the solution which in turn
requires prior understanding of system behaviour. The MPC
on the other hand generates decision by solving an optimi-
sation problem which always guarantee an optimal solution.
Apart from this the required system behaviour can be defined
implicitly though the optimisation problem without relying
extensively on prior knowledge of system behaviour.

In [19]-[23], the MPC has been applied for optimal eco-
nomic energy scheduling in grids either to achieve operating
cost minimisation or energy arbitrage. In [24] the MPC was
used in smoothing the output from a wind farm using a
battery system. The utilisation of MPC for management of
plug-in hybrid vehicle charging was demonstrated in [25].
Predominantly the application of MPC in electrical systems,
based on previous works, had been limited to economic
optimisation of the system operation. However, the ability of
MPC can be extended beyond the above mentioned works
to a PV BESS system in improving the electrical perfor-
mance (grid congestion), ESS lifetime (degradation) while also
maintaining economic PV BESS operation (self consumption).
Such a multi objective scheduling with MPC that modifies the
charging profile of BESS in a PV system have not been carried
out before. The long term improvements that can be achieved
with MPC have not either been quantified or demonstrated in
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Fig. 2: Schematic of the test case microgrid [5].

previous works.

In this context the major contribution of this work is the
application of MPC in energy scheduling of a PV BESS
system to achieve the objectives of grid congestion mitigation,
minimising BESS degradation and maximising self consump-
tion. The PV BESS system is emulated using the data from
a test case microgrid in Lindenberg, Germany [5]. One year’s
data have been used in this work. This utilisation of one year
data allows for demonstrating and quantifying the long term
improvements achieved with MPC in comparison to MSC
strategy applied to the same system. The work also tries to
quantify the maximum deterioration in performance that can
arise in MPC under the prediction error of generation, load
forecast, so as to highlight the worst case scenario. Finally,
the work also analyses the computational requirement needed
for the online implementation of MPC.

The rest of the paper is organised as follows. Section II
presents the PV-BESS system considered in this work. The
MPC based energy management framework is introduced in
Section III along with the optimisation problem formulation
for MPC. The results are discussed in Section IV and the work
is concluded in Section V.

II. SYSTEM DESCRIPTION

The PV BESS system considered in this work is shown in
Fig.2. It represents a DC coupled configuration where both the
PV and BESS are connected to the same DC bus via interfac-
ing DC/DC converters. The PV converter is unidirectional and
works in boost mode with power flow to the grid. The BESS
converter is capable of bi-directional operation allowing for
compensating the imbalance power in the DC bus. The BESS
converter will work in buck-boost mode. The main grid is
interfaced to the system through a DC/AC converter and filter.
The converters allow control of power flow from the PV, BESS
and grid.

The PV profile is obtained from the irradiation and ambient
temperature data measured at Lindenberg, Germany [5] and
will be used as set points for the PV converter. It should be
noted that, in this work, the PV system is always assumed
to be working at the maximum power point (MPP). The PV
converter in Fig.2 is considered to be implemented with the
maximum power point tracking (MPPT) control [26] which
always ensure the maximum possible power from the PV array.
The energy management problem considered in this work will
only deal with the set point generation of BESS converter and
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TABLE I: Parameter values for PV BESS system.

Parameter Value
Rated power of PV array 6 kW
PV converter rated power, pcr 6
BESS capacity, ¢ 9.375 kWh
BESS converter rated power, pcp,- 3kW
Load inverter rated power, p;;, 3kW
Grid interfacing inverter rated power, p; g TkW
DC link voltage, vgq. 450 V
Nominal voltage (AC), vqc 230 V
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Fig. 3: Flow-chart showing the MPC scheduling process in the
PV BESS system.

grid converter of Fig. 2. The aspects of MPPT control is not
assessed here as it is beyond the scope of this paper.

The load emulated represents a 4-person household with
an annual consumption of 4.5 MWh. As the objective of this
work is on improving the self-consumption in a PV-BESS by
improving the control strategy, the problem of optimal sizing
of BESS is not considered in detail in this work. Nevertheless,
based on the guidelines presented in [9], [12], [27] the BESS
sized such that there was 1.55 kWh capacity per kW of
installed PV power. The relevant parameters of the PV BESS
system and converter ratings are given in Table 1.

III. ENERGY MANAGEMENT FRAMEWORK WITH MPC

The objective of a generic control system for the PV BESS
system in Fig.2 will be to ensure a stable operation and
optimal management of energy in the system. The stable
system operation will be ensured by the real-time low-level
controllers that ensures voltage, frequency regulation (AC
side) by keeping these parameters within prescribed limits.
The energy management (considered in this work) will be
handled by the high-level controllers and the output from this
stage will be provided to low-level control to guide them. A
detailed assessment of the low-level controllers are not carried
out in this work for the sake of brevity as they are beyond the
scope as energy is the main focus. It should be noted that the
MPPT will be implemented in the low level control of the PV
converter.

In the high-level controller for energy management, an
implicit receding horizon MPC is considered in this work [28].
At every sampling instant, 7, MPC is provided with forecast
of generation and load for a fixed window length, defined by
N points, called prediction horizon. The sampled system state,

generation/load value at instant ¢ along with the available fore-
cast will then be used by the controller to predict the system
evolution for the prediction window using set points generated
by MPC. The set points pertaining to the system trajectory that
define the optimal behaviour based on a defined criteria will
be selected. Therefore, for a prediction horizon of length N
the MPC will generate N + 1 set points ugj;, %1);, Uz;----UN];
where wuy; = u(i + k) Vk = 0,1,2.N. Among the
set points generated, the first one, wugj;, will be applied to
PV BESS system. The ug; in this case comprises of BESS
(pv) and grid (pg) converters’ power set-points. This process
will be repeated at every sampling instance with the current
system states, generation/load values and updated predictions
[29]. Therefore, at every sampling instant the MPC makes
its decision considering a prediction window shifted by one
sampling time resulting in the receding nature of MPC. This
decision making process with MPC is demonstrated through
flow-chart in Fig.3. Analytically the process of identifying the
optimal trajectory set points with MPC is done by solving a
constrained optimisation problem.

In the case of application of MPC in PV BESS system the
sampled system state (SOC of BESS) can be obtained using
a dynamic model as shown in [30]. The set points generated
from the MPC can be the input to the dynamic model. Such
a dynamic modelling approach has shown to be sufficiently
accurate for energy management problem [9]. Additionally,
such model can easily include updates on faded capacity and
evaluate the battery dynamics with the respect to the available
capacity at any given state of health (SOH) of the BESS [30].

A. Cost function for energy management problem

The energy scheduling objective is to minimise grid conges-
tion, BESS degradation while maximising the self consump-
tion. The cost function chosen to ensure the same is

i+ N

J =Y (Ja(k) + Jp (k). )
k=1

The first term, J; in the above cost function is given by
Ta(k) = A1 - pg(k)* 2

where A; is a weighting factor. As it can be seen, J; penalises
power exchange with the grid, the effect of which is twofold.
Firstly by penalising grid power, the controller tries to reduce
the peak power value that is being injected to the grid. This
aims to reduce grid congestion. Secondly, this forces the PV
power generated to be utilised, as much as possible, by the
consumer thus promoting self-consumption.
The second term in (1) J, is chosen as

Jp(k) = Ao - SOCL(E)? + A3 - ASOCy, (k)? (3)

where Ao, A3 are weighting factors and SOC}, is the BESS
SOC. This term deals with minimising rate of degradation
of BESS. The penalisation SOC}, tries to limit high SOC
values in the BESS thus limiting the calendar ageing. The
ASOC, = SOCy(k+1)—SOC, (k) minimises the change in
SOC thus indirectly reduces excessive charge/discharge cycle
which affect the cycling ageing in BESS. The exact analytical
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equation that represents BESS degradation [15] is highly non-
linear. An explicit utilisation of the same will result in a
complex non-linear optimisation problem that can be difficult
to solve [31]. In order to avoid this, the quadratic formulation
in (3) has been maintained. The resulting quadratic problem,
though non-linear, has very efficient algorithms for solving
them and guarantees a global optimum [32].

B. Constraints

The cost functions having been defined, the system con-
straints are discussed next to ensure that the operating limits
are not violated, SOC evolution in BESS is accounted for and
power balance in the system is maintained.

1) BESS model: The BESS model utilised is based on
the Coulomb counting approach [30] which demonstrates
the SOC}, evolution based on BESS power set point py.
Considering SOC}, as the system state x, the BESS model
is defined as

k) = T po(i) ifpy <0
Bl = {x(k) ~ 2o im0 P

where 7 is the power converter efficiency and 7T is sampling
time. The above model is a hybrid representation of BESS
wherein the system behaviour differs based on the nature of
pp. It should be noted that typically 7 for the converter system
can vary based on the operating point (py) of the converter.
Nevertheless, in the optimisation problem formulation a con-
stant value is chosen for 7. This is to prevent a very non
linear formulation of the above constraint which can arise from
defining 1 as a function of py,. The use of a constant 7 can
also be justified, as typical converter systems have a near equal
efficiency curve from 20% of rated power output [33].

2) Grid model: The grid is represented as a static model
using equality constraint to ensure power balance given by

Po(K) + pg(k) + ppv (k) +pi(k) = 0 (5)

where py,,,p1 are PV and load power respectively. The pp, in
the above represents the MPP of the PV array at any instance.
3) Physical operating constraints: The physical constraint
to ensure that BESS is not over-charged or deep-discharged,
which increases its rate of degradation [16] can be given as

zho < x(k) < 2" 6)

where, !°, 7P are the permissible lower and upper limits of
SOC),. The above represents a hard constraint on the system
state which can, in some cases, lead to a non-feasible solution
in the optimisation problem. In this scenario, in order to ensure
that the on-line implementation of MPC is reliable the above
hard constraints are replaced with soft constraints [34]. The
soft constraints allow for constraint violation but at a high
penalty to the cost function. This ensures that under most of
the conditions the SOC operating limits are not violated. The
soft constraint implementation of (6) can be given as

2l — (k) < x(k) < 2P + e (k) (7)

4

where ¢, is the violation of the SOC bounds. In order to ensure
that the violations are rare an additional term is added to the
cost function (1) given by

Jvio(k) = My - €2 (k) (8)

where A4 is weighting the €;,. Choosing a high value for Ay
will ensure that €, value is kept minimal during the scheduling
while also ensuring the feasibility of optimisation problem. In
practice this can be decided through trial and error such that
the violation represented by ¢, is minimised.

4) Electrical operating constraints: The electrical con-
straints ensure that operating points of DC/DC converters are
kept within their rated values. This is given by

—Pcbr S pb(k) S Dcbr

©))
—DPigr < pg(k) < Digr

where pcpr, pigr are as shown in Table 1.

5) Mixed Logical Dynamics formulation: The hybrid BESS
model of (4) cannot be directly utilised in the optimisation
problem. In order to use them they need to be transformed
into a mixed logical dynamic (MLD) model, that provides a
linear equality representation of (4). The guidelines in [35]
is used in this transformation to MLD. In (4) the value of
pp defines the BESS behaviour. A boolean variable J; is now
introduced to define the nature of py, such that when [0, (i) =
1] <+ [pu(3) > 0]. This MLD representation of this condition
is given by

Pcbr * 6b<k) S pb(k) +pcb7‘
— Pebr - 0p(k) < —pu(k).

This introduction of boolean variable allows (4) to be repre-
sented as

(10)

(i) - (n— 1) — LT

z(k+1)= ; C

-po (k)
(11)

The multiplicative term above is eliminated using an auxiliary
variable z;(7) = d,(7) - pp(¢) to maintain a linear formulation
of (11). This multiplication is realised in MLD domain as

Zb k) < Debr - 517( )

T .
z(k) + Cy < 0p(1) - o

(

zp(k) = —pebr - b(k) (12)

2(k) < pu(k) + pepr - (1 = dp(k))

Zb(k) > pb( ) + —Debr - (1 - 5b(k))

resulting in (4) represented as
o+ s by Tt
(k+1) = 2(k) + k) - (0 - ) = =L pulh)

(13)

The cost functions, constraints having been defined, the
resulting optimisation problem considered in MPC based
scheduling in PV-BESS system is summarised by

k+N
min | J(py, pg, ) £ Y [Jo(k) + Jo(k) + Juio(R)] | (14)
Pb,Pg i
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IV. RESULTS

The optimisation problem in MPC is a mixed integer
quadratic problem (MIQP) which is solved with Branch and
bound algorithms using Gurobi [36] as solver in MATLAB.
The MPC was run in an Intel i7 2 core, 2.5 GHz machine
with 8 GB RAM. The data used from Lindenberg, Germany
[5] which emulated load and generation was sampled at 5 min.

A. Performance indices

Prior to presenting the results some performance indices
are introduced which allows for quantifying the PV BESS
system behaviour achieved with energy scheduling. The self
consumption is quantified using the annual self-consumption
ratio (ASCR) defined as the following

ASCR = 2Yeons 100(%)
DPUgen
where pucons is the amount of PV energy generated that has
been utilised by the consumer through the load demand and
BESS storage, while pvg., is the total annual PV energy
generated. In order to ensure maximum economic benefit for
the consumer, this value should be as high as possible.

The BESS end-of-life is defined when the capacity has faded
to 80% of the nominal rated value (C},). Under this scenario,
the effect of scheduling on BESS degradation is quantified
by assessing the capacity loss in the battery after one year’s
scheduling. The degradation model of Li-ion battery provided
in [15] will be used. The BESS SOC profile from the different
scheduling methods will be used to calculate annual capacity
fade (C'y) of BESS due to its utilisation. The entire process
in the calculation of C'y from BESS SOC profile (SOCy) is
represented using the flow chart shown in Fig. 4 where T}, is
ambient temperature, also available in the Lindenberg data.

Finally, the electrical performance associated with grid
congestion will be assessed through the peak power injected
into the grid using the index, annual average peak power
reduction (APPR). This index is defined as

(16)

D
APPR= L 3 (pI’V““)pgp(‘“) 100(%) (17
D =1 Ppvp(n)

5

TABLE II: Parameter values used in MPC.

Parameter value
Sampling time (7%) 5 min

N 288

zto 0.1

P 0.9

A1, A2, A3 500,400,3
A4 1000

o 100

D 365

n 0.95
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Fig. 5: Scheduling results with (a) MSC, (b) MPC strategy for
the PV BESS systems.

where D is the total of days in a year, pyyp(n) is the peak
PV power injected to grid for the n** day without BESS
integration, and pgpn) the peak grid power on the nth day
with BESS integration under a scheduling strategy (MSC or
MPC). This index gives the percentage reduction in peak
power achieved with a scheduling method in comparison to
the case where the BESS integration was not available. The
parameters for MPC based BESS scheduling is given in Table
II. The prediction horizon value, N, was chosen to be 24 hours
considering the daily periodicity of the PV and load profiles.

B. Analysis of the scheduling results with MPC

The results for the annual scheduling in the PV BESS sys-
tem achieved with MSC and MPC is shown in Fig. 5a, Fig.5b
respectively. The results presented in this section considers
the deterministic case where it is assumed that the system
behaviour follows the predicted generation and load profile.
The improvement in scheduling performance achieved with
MPC can be better conceived through Fig. 6 which shows
the BESS charging profile for the same day as in Fig. 1. The
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Fig. 6: Battery energy scheduling with MPC for the same day
as in Fig. 1.

MPC scheduling with its knowledge of future generation and
load profile shifts the BESS charging to the period of peak
generation. This allows MPC to minimise the cost function of
(14) and achieve the desired performance criteria. This shifting
results in BESS being fully charged later in the day leading
to lower dwell times at high SOC levels which is also evident
from Fig. 6. Another important observation in MPC scheduling
is the absence of residual charge in BESS at the beginning of
the day which is seen in the MSC scheduling shown in Fig.1.
During high PV generation months (summer), the load demand
may not be high enough to fully utilise the stored energy in
the BESS in a day. In MSC scheduling, this will result in
BESS being kept at high SOC at the end of the day. In MPC
due to the penalising of the SOC value in (3) the controller
is forced to reduce the BESS SOC levels. The MPC achieves
this by slowly discharging the BESS back to the grid in the
night (from O hours- 4hours), when load demand is low, in
a gradual manner as shown in Fig. 6. The level to which
the MPC discharges the BESS depends on the availability
of PV power next day in order to ensure maximum self
consumption. The elimination of residual charge with MPC
is demonstrated in Fig.7 where the SOC}, cycling with the
different scheduling schemes are shown. During the high PV
generation months (April- August), it can be seen that BESS
is kept in a persistently charged state in the MSC scheme in
comparison to the MPC.

The shifting of BESS charging to the peak generation period
provides the advantage that BESS capacity is available to
handle the peak power. This allows for significant reduction
in the peak PV power being injected into the grid with the
MPC scheme, thus promoting grid congestion mitigation. Fig.
8 shows the grid power feed-in profile with MPC and MSC for
the whole year. The elimination of peak power injection with
MPC is clearly observable here. In comparison to the MSC, the
power injection to grid with MPC is more uniform, distributed
over a larger time window and exhibits a smoother profile.
Fig. 9 shows bar plot highlighting the dwell times at various
power levels of interaction with the grid. It highlights that with
MPC the peak power injection to grid is limited to be within
3 kW in comparison to the MSC scheme. The improvement
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Fig. 7: Annual BESS SOC cycling under (a) MPC, (b)
maximum self consumption strategy.
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Fig. 8: Annual daily grid feed-in power with (a) MPC, (b)
maximum self consumption strategy

in peak power injection is quantified using APPR as given
in Table. III. Comparing to PV system without any BESS
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Fig. 9: Bar-plot comparing the dwell times of the grid power
exchanged with MPC and maximum self consumption method.

integration, the MPC was capable of reducing the peak power
injection by 80.38% while MSC was able to achieve only
49.72% reduction. This highlights the significant improvement
in grid congestion mitigation that can be achieved by using
MPC. It should also be noticed that the MPC also reduces the
peak power drawn in from the grid (< —5kW). This can be
explained using Fig.8a. It can be noticed in the figure that in
the winter months when the irradiation is low the MPC still
stores energy in the BESS. Since the PV generation is low
in these months, the BESS capacity is underutilised during
this period. The MPC then uses the BESS capacity to charge
from the grid during low load demand period and then use it
during high load demand period in the evening. This enables
a reduction in annual peak power drawn-in from the grid.

It should be considered that the reduction in peak power
injection with MPC can result in the grid inverter (Fig.2)
operating at lower power levels than the rated power. Typically
converters achieve higher efficiencies at around 20% rated
power [33]. However, at very low power levels the efficiency
tends to be lower. In Fig.9 it can be seen that MPC has higher
dwell time for the grid inverter at low power level (<1 kw)
compared to MSC. Though the efficiency at these power levels
are lower, the absolute losses for the grid inverter operation is
also lower since the converter is operating at a lower power
point. Also, from the perspective of entire PV BESS system
this does not result in overall economic loss for consumer, as
PV energy yield is still maintained at the MPP and the excess
power is stored in the BESS instead of being delivered to grid.

Regarding the peak power injection with MSC, it can also be
considered that increasing the BESS capacity or curtailment of
power injected to the grid can improve the MSC performance.
However, it should be noted that both methods have their
drawbacks. The high storage costs associated with BESS [37]
will result in a significantly higher initial investment for the
consumer when BESS capacity is increased. Also increased
sizing of BESS without accounting for average load demand
of consumer can be detrimental to BESS lifetime. In scenarios
where the average load demand is lesser than average PV
power generated, a higher capacity of BESS can lead to BESS
being kept in a persistently charged state [9]. This can lead

7

TABLE III: Comparison of performance indices values for
different scheduling schemes

Method ASCR (%) : Annual Cy (%): | APPR (%):
MSC 54.60 3.94 49.72
MPC 54.32 3.71 80.38
MPC (worst- 52.73 3.65 72.96
case)
50 0@ o
< 49
< &
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Q48
<
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Fig. 10: Variation of annual self-consumption rate with C
for different weighting sets of (A1, A2, A3, A4). The highlighted
point (red) corresponds to the value shown in Table II.

to increased calender ageing. In the case of power curtail-
ment, limiting the power injection to grid will lead to lesser
utilisation of PV power generated and economic benefit for
the PV array owner. The MPC, on the contrary, demonstrated
improved performance in PV BESS system without the need
for increased BESS capacity or power curtailment.

The annual BESS degradation with the MPC and MSC is
given in Table III. As expected with the shifting of the BESS
charging to peak generation period and the elimination of high
SOC dwell times as shown in Fig. 5 the capacity fade with
MPC is lesser than that of the MSC. The C; with MPC at
3.71% is a 6% reduction in comparison to the MSC.

Finally the economic performance is assessed through the
self-consumption given by the annual ASCR in Table III. It
can be seen that with MPC, the ASCR is lower than the
MSC consumption case. The ASCR value for MPC at 54.32%
is 99.5% compared to MSC. This slight drop arises due to
multi-objective optimisation which is considered in MPC.
The ASCR, C; exhibits complementary behaviour resulting
in deterioration of one performance with the improvement
in another. This can best be demonstrated through Fig.10,
showing the variation of ASCR and Cy with MPC when sub-
jected to a parameter sweep in weighting set (A1, Aa, A3, Ag)
values (only high ASCR scenarios shown in Fig.10). It can
be seen that when the ASCR is high, C¢ tends to be higher
leading to increase in degradation of BESS and vice versa. The
performance for the weighting set values, A1, A2, A3, Ay, given
in Table II is highlighted in Fig. 10 (red point). It represents
an optimal trade-off between ASCR and C as can be seen
from results. It should also be noted that even though there
is a 0.5% drop in ASCR for MPC, in comparison to MSC,
the performance improvements in terms of APPR and C are
significantly higher in MPC scheme.

It should be noted that the determination of the weighting set
values, A1, A2, A3, A4, as mentioned above through a random
parameter sweep may not result in the identification of the
most optimal weights. This can be only identified through
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more exhaustive methods like Pareto optimisation [38]. How-
ever, the problem of optimal weighting set determination in a
multi-objective optimisation problem is not the main scope of
this work and is not assessed in detail here. The approximate
optimal weighting determination as discussed above facilitates
the demonstration of the improvement achieved with MPC.

C. Analysis of MPC performance under worst case scenario

The results discussed so far presents MPC scheduling where
actual generation and load profiles were used in prediction
window (deterministic system). This allows MPC to have
complete knowledge about the future generation, load demand
and make decision accordingly. In the practical case forecast is
bound to deviate from the predicted values. Under this scenario
the performance with MPC can deteriorate. Corrective mea-
sures like stochastic MPC with chance constraining or con-
straint tightening [29] can improve the performance. The worst
case performance arises when there are no corrective measures
in place. This worst case performance is analysed in this work
to quantify the maximum deterioration in performance. In
order to do this, instead of actual values of generation, load
demand the predicted values from a forecasting unit is used in
MPC. The predictions were generated using a Neural Network
(NN) trained with actual data from Lindenberg [5]. A detailed
discussion on forecasting with NN is not provided here for
the sake of brevity and considering the scope of the work.
The forecast being available, at any instant i, uglé will be
sampled system values and uq|i, ugli...un|¢ will be forecast
values. The error in forecast will not be corrected and annual
scheduling performance with MPC is assessed though indices
value given in Table III.

In the worst case scenario the ASCR value came down to
52.73% which is 96.5% of the MSC scheme. This 3.5% drop
will be the maximum possible reduction in ASCR and can be
considered as a lower bound for the ASCR value. Therefore,
when formulating MPC accounting for the stochastic nature of
the load, generation prediction errors, it can be ensured that
the ASCR value will lie between the worst and deterministic
case value. The reduction in ASCR arises, as in some days
the forecast of PV generation will be higher than actual value.
Under this scenario, as the MPC expects more PV generation
it reserves BESS capacity without charging it earlier in the
day which leads to lesser self consumption. Formulating the
MPC accounting for the stochastic behaviour of generation,
load profiles will ensure improved performance in the ASCR.
In terms of BESS C' the worst case performance is better than
ideal MPC and MSC scheme. This arises as the energy handled
by BESS in worst case scenario is lesser, as evident from the
lower ASCR values. This leads to lower dwell times at charged
levels in BESS causing a reduction in calendar ageing. Finally,
the APPR in worst case MPC (72.96%) is still higher than
the MSC scheme (49.72%) implying that the grid congestion
mitigation with MPC even in the worst case scenario is
superior to the MSC scheme. Therefore, to conclude the MPC
even in worst case scenario is capable of delivering improved
performance in multiple objectives (APPR and C'¢) over the
MSC without excessively deteriorating self consumption.

TABLE IV: Analysis of computation time with varying lengths
of prediction horizon.

Prediction horizon | Average time (s) | Worst case time (s)
length

3 hours 0.0146 0.3413

6 hours 0.0246 0.1932

12 hours 0.0549 0.4493

24 hours 0.1096 1.2513

D. Computational time analysis

The prediction horizon of 24 hours was considered in the
MPC considering daily periodicity. The MPC in comparison
to the MSC can be computationally intensive. In the 24 hour
prediction horizon the number of decision variables for which
the optimisation problem in MPC is solved is 3 - 288 = 864
(py, Po, SOCY). In comparison the MSC always have to solve
for 2 decision variables. Therefore an analysis based on com-
putational time complexity is necessary with MPC to ensure
the feasibility of an online implementation of the scheme.

The MIQP optimisation problem considered in this work
is NP complete [39]. The upper bound for computation time
of branch and bound algorithm, used in solving MIQP, is
O(27-N), where j is the number of boolean variables in the
MIQP. In this work j = 1. This highlights that as the number
of decision variables increases the computational time involved
can reach very high values. However, solvers like Gurobi
use techniques like presolving, cutting planes, heuristics, and
parallelism that significantly improve the capabilities of the
algorithms [36]. Nevertheless, it is necessary to analyse the
average and the worst case computational time when solving
MIQP. This is given in Table IV where the computation times
for varying lengths of prediction horizons are given. These
times were obtained after doing an annual scheduling for PV-
BESS system using the different prediction horizon lengths.
The worst case computational time occurs in the 24 hour
window and is very low (1.2513 s) compared to a 5 min
sampling time. This ensures that for a PV BESS considered
in this work, the MPC scheduling is affordable for online
implementation with 24 hour prediction window.

It can be seen from Table IV the average computation time
with smaller prediction horizons were less. Nevertheless, the
24 hour case was considered in this work as it was giving best
performance in terms of ASCR. The smaller horizons resulted
in lower ASCR values as the scheduler had lesser information
of future generation, load profiles.

V. CONCLUSION

The MPC scheduling was developed for the PV BESS
system to overcome the issues with grid congestion and
BESS degradation that arises using the MSC strategy. An
MIQP optimisation problem was developed for the MPC based
scheduling. A performance comparison between the MPC and
MSC scheme was carried out, when used in annual scheduling
of a PV BESS system, using various performance indices.
The MPC demonstrated significant reduction of the peak
power injection to grid (grid congestion) and capacity fade
in BESS. This was achieved as MPC caused shifting of BESS
charging to peak generation period thus reducing the dwell
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times at charged levels and power injection to grid. In terms
of self consumption, the MPC achieved a similar performance
compared to MSC scheme were the ASCR reduced by only
0.6%. These results emphasised the capability of MPC to
achieve improved performance over the MSC in multiple
objectives, while achieving similar self-consumption.

The MPC, being a scheduling method that uses generation
and load forecast in its decision making, the work also tried to
quantify the maximum performance deterioration that can arise
during forecast errors. The analysis of the same demonstrated
that under forecast errors, the ASCR with MPC will only
be reduced by 3.5% compared to the MSC scheme while
APPR and C; of BESS was better than MSC scheme Finally
the work also confirmed the feasibility of practical online
implementation of MPC through computational time analysis.

In terms of future work, focus can be on optimum weight
determination for multi-objective optimisation problem in
MPC. Apart from this, investigation can be done on stochastic
MPC to address the issue of prediction errors in forecast and
experimental validations.
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