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Abstract
In this paper, we present a novel supervised Non-negative Ma-
trix Factorization (NMF) speech enhancement method, which
is based on Hidden Markov Model (HMM) and Kullback-
Leibler (KL) divergence (NMF-HMM). Our algorithm applies
the HMM to capture the timing information, so the temporal dy-
namics of speech signal can be considered by comparing with
the traditional NMF-based speech enhancement method. More
specifically, the sum of Poisson, leading to the KL divergence
measure, is used as the observation model for each state of
HMM. This ensures that the parameter update rule of the pro-
posed algorithm is identical to the multiplicative update rule,
which is quick and efficient. In the training stage, this update
rule is applied to train the NMF-HMM model. In the online en-
hancement stage, a novel minimum mean-square error (MMSE)
estimator that combines the NMF-HMM is proposed to con-
duct speech enhancement. The performance of the proposed
algorithm is evaluated by perceptual evaluation of speech qual-
ity (PESQ) and short-timeobjective intelligibility (STOI). The
experimental results indicate that the STOI score of proposed
strategy is able to outperform 7% than current state-of-the-art
NMF-based speech enhancement methods.
Index Terms: speech enhancement, non-negative matrix fac-
torization, hidden markov model, minimum mean-square error

1. Introduction
The aim of single-channel speech enhancement (SE) is to re-
move background noise from the noisy environment to improve
quality and intelligibility of noisy speech. Nowadays, SE has
achieved a wide range of applications in hearing aids, mobile
communication, robust speech recognition (ASR) [1], telecon-
ferencing and speech coding etc. Therefore, during the past
decades, many different approaches have been proposed [2].

In an environment with additive noise, the spectral sub-
traction algorithm [3] is the simplest strategy to achieve SE,
which subtracts the noise spectrum from the observed signal.
Furthermore, some unsupervised algorithms like Wiener filter-
ing [4], signal subspace algorithm [5], minimum mean-square
error (MMSE) spectral amplitude estimator [6] and log-MMSE
spectral amplitude estimator [7] are also the effective strate-
gies to conduct the SE. However, these methods cannot always
achieve satisfactory performance in the non-stationary noisy en-
vironment because they are usually based on some inaccurate
assumptions and do not apply the prior information of clean
speech and noise.

As a result, some supervised SE methods have been de-
veloped. These approaches usually consider to train a model
and the model parameters are acquired by using the speech and

noise signals. These methods include codebook-based algo-
rithms [8], Hidden Markov Model (HMM)-based strategies [9]
and Deep Neural Network (DNN)-based approaches [10–12]
etc. These algorithms can make use of the prior information
of clean speech and noise, so they can achieve better speech
enhancement performance in practical noisy environments.

Non-negative Matrix Factorization (NMF)-based [13] [14]
SE method can be also viewed as such a kind of supervised
speech enhancement strategy. In paper [15], a mask-based NMF
SE was proposed, which trained the basis matrix of clean speech
and noise during offline stage. On the enhancement stage, the
activation matrix could be acquired by combining the trained
basis matrix and noisy signal. After that, the mask was esti-
mated for the application of speech enhancement. In paper [16],
an NMF-based denoising scheme was proposed. This method
added a heuristic term to the cost function, so the NMF co-
efficient can be adjusted according to the long-term levels of
signals. Smaragdis et al. [17] proposed a supervised and unsu-
pervised NMF speech enhancement method. In [17], the noise
basis matrix could be acquired by combining the HMM during
the enhancement stage. Thus, this method could mitigate the
problem of noise mismatch. Furthermore, a NMF-based source
separation approach was proposed in paper [18], which consid-
ers the HMM.

Inspired by these previous studies, in this paper, we pro-
posed a novel NMF-HMM speech enhancement algorithm,
which applies the Kullback-Leibler (KL) divergence. Com-
pared to most NMF-based methods [13] [14], our method can
utilize the temporal dynamics of speech signals to conduct the
speech enhancement, so the time information of speech signal
can be considered. Moreover, we used the sum of Poisson dis-
tribution as the state conditioned likelihood for the HMM rather
than the general Gaussian Mixture Model (GMM), because the
sum of Poisson distribution leads to the KL divergence mea-
sure, which is a mainstream measure in NMF, and its parameter
update rule is identical to the multiplicative update rule. This
ensures the parameter update is fast and efficient. On the en-
hancement stage, a minimum mean-square error (MMSE) esti-
mator was derived to conduct SE, which was based on the NMF
and HMM. The benefit of this algorithm is that the update of ac-
tivation matrix can be conducted by parallel computing, which
reduces the computation time.

2. NMF-based Speech Enhancement with
KL divergence

In this section, we will briefly review the NMF-based speech en-
hancement method with KL divergence. In this work, we only
consider to achieve speech enhancement in the additive noisy



environment. Thus, the noisy signal model can be represented
as following:

y(t) = s(t) +m(t), (1)

where y(t), s(t) and m(t) are the noisy speech, clean speech
and noise, respectively. The t is the time index. The short time
Fourier transform (STFT) of y(t) can be written as

Y (f, n) = S(f, n) +M(f, n), (2)

where Y (f, n), S(f, n) and M(f, n) are the complex STFT
parameters of y(t), s(t) and m(t), respectively. The f denotes
frequency bin index and the n is the time frame index. For the
sake of simplicity, we omit the frequency bin index, so their
magnitude can be rewritten as the vectors Yn, Sn and Mn.

For the NMF analysis, the magnitude of a signal V can be
represented as

V ≈WH, (3)

where W denotes the basis matrix and H denotes the activation
matrix. Based on KL divergence, W and H can be estimated
using iterative multiplicative update rules [14]

W←W �

V

WH
HT

1HT
, (4)

H← H�
WT V

WH
WT1

, (5)

where the � and all divisions are element-wise multiplication
and division operations, respectively. The 1 is the matrix of
ones with the same size of V and T is the matrix transpose.
For the application of speech enhancement, the speech basis
matrix W and noise basis matrix Ẅ can be estimated from
clean speech and noise during the training stage. On the en-
hancement stage, the noisy speech basis matrix can be acquired
by W = [W,Ẅ]. Additionally, the activation matrix H of
noisy speech can be estimated by (5). After obtaining H and
W, the speech enhancement an be conducted by various algo-
rithms [15] [16] [17] [18].

Furthermore, the [19] proves that the NMF with the KL di-
vergence can be also motivated from the following hierarchical
probability model

V =

K∑
k=1

C(k), (6)

cf,n ∼ PO(cf,n(k);Wf,kHk,n), (7)

where the Poisson distribution PO(x;λ) =
λxe−λ

Γ(x+ 1)
, and

Γ(x + 1) = x! is the Gamma function, K is the number of
basis vectors, and cf,n is the latent variable of C(k) for Pois-
son distribution. Note, the V is assumed Poisson-distributed
and integer-valued. In practice, the factorial is approximated
by the Gamma function [19]. It has been shown that [19] the
iterative update of the parameters H and W using Expecta-
tion–Maximization (EM) algorithm is identical to the multi-
plicative update rules (4) and (5).

3. NMF-HMM-based Speech Enhancement
In this section, the details of the proposed algorithm will be
illustrated, which includes the proposed signal model, offline
parameter learning and online speech enhancement.

3.1. HMM-based signal models with the KL divergence

In our proposed approach, we need to acquire the three differ-
ent signal models. They are namely clean speech model, noise
model and noisy speech model. They will be separately intro-
duced in this part. We use the overbar and double dots to repre-
sent the clean speech and noise, respectively.

In this work, there is the same signal model for the clean
speech and the noise signal, so we will illustrate them just using
clean speech signal. In order to model clean speech Sn, we
propose to a novel NMF-HMM-based method. To acquire a
HMM model, there are three parameters [20] to be estimated.
They are initial state probability π, transition probability matrix
A and state conditioned likelihood function. In addition, there
are total J hidden states for this model. Thus, based on (6), we
propose to model Sn as

Sn =

K∑
k=1

cn(k), (8)

By applying the (7) and HMM [16], for the jth (j =
1, 2, · · · , J) state, we can be defined

p(cn|xn) =

F∏
f=1

K∏
k=1

PO(cf,n(k);W
xn
f,kH

xn
k,n), (9)

where the xn is the hidden state and xn ∈ {1, 2, · · · , J}. K is
the number of basis of clean speech and F is the total number
of frequency bins. W

xn
k,n and H

xn
k,n is corresponding to the el-

ements of the basis and activation for clean speech. Thus, the
conditioned likelihood function at the jth state can be finally
written as

p(Sn|xn) =

F∏
f=1

PO(S(f, n);

K∑
k=1

W
xn
f,kH

xn
k,n), (10)

where we use the superposition property of Poisson random
variable. From (9), it can be found that there are J basis matri-
ces for speech modelling, instead of one basis matrix in the tra-
ditional NMF, which is able to effectively capture the temporal
dynamics of speech signals. The benefits of choosing the sum
of Poission distribution as the state conditioned likelihood func-
tion is that its parameters update rules using EM algorithm is
identical to the multiplicative update rules leading to low com-
putational complexity. In addition, it is based on non-negative
data by comparing with traditional HMM.

To sum up, the proposed model includes four parameters
(A, π, W

xnand H
xn ). The H

xncan be estimated by online
speech enhancement and the other three parameters can be ob-
tained by offline learning.

Based on proposed clean speech, noise signal model and
(2), the noisy speech model can be defined. We assume that
there are J̈ hidden states for noise and the hidden state of noise
is ẍn(ẍn ∈ {1, 2, · · · , J̈}). The π̈ and Ä represent the initial
state probability and transition probability matrix of the noise.
Thus, there are total J × J̈ hidden states for noisy speech. The
initial state and transition probabilities matrix of noisy speech
can be expressed as π⊗ π̈ and A⊗Ä, where the⊗ denotes the
Kronecker product. Finally, the conditioned likelihood function
of noisy speech can be written as

p(Yn|xn, ẍn) =

F∏
f=1

PO(Y (f, n);

K∑
k=1

W
xn
f,kH

xn
k,n +

K̈∑
k=1

Ẅ ẍn
f,kḦ

ẍn
k,n),

(11)



where K̈, Ẅk,n and Ḧk,n is the number of basis, elements of
the basis matrices and activation for noise.

3.2. Offline NMF-HMM parameter learning

In offline training stage, the aim is to find the parameter set
Φ to maximize the likelihood function, which is based on the
HMM and EM algorithm [20]. There is the similar process
for the parameter learning of clean speech and noise, so we
will use the clean speech as the example to illustrate this pro-
cess. At first, we define the complete data set (SN,XN,CN),
where SN = [S1,S2, · · · ,SN ], XN = [x1, x2, · · · , xN ]T and
CN = [c1, c2, · · · , cN ]. Thus, the complete data likelihood
can be written as

p(SN,XN,CN) =

N∏
n=1

p(Sn|cn)p(cn|xn)p(xn|xn−1).

(12)
By applying the EM algorithm in the expectation step, we first
calculate the exact posterior state probability and joint posterior
probability, which can be written as

q(xn) = p(xn|SN; Φi−1), (13)

q(xn, xn−1) = p(xn, xn−1|SN; Φi−1), (14)

where i is the iteration number. The calculation of (13)
and (14) can be performed using forward-backward algorithm
[20]. Then, we need to evaluate the posterior Expectation
Ecn|SN,xn;Φi−1(cn), which will be used in M-step. By us-
ing Bayesian rule and conditional independence property of the
proposed HMM model, combining (8), (9) and following the
derivation in paper [19], we have

q(cn|xn) =

F∏
f=1

M(cf,n(1), · · · , cf,n(K);S(f, n), pxnf,n(1), · · · , pxnf,n(K)),

(15)
whereM(·) is the multinomial distribution [19].

pxnf,n(k) =
W

xn
f,kH

xn
k,n∑K

l=1W
xn
f,lH

xn
l,n

. (16)

Finally, we have

E(cf,n(k)|SN, xn) = S(f, n)
W

xn
f,kH

xn
k,n∑K

l=1W
xn
f,lH

xn
l,n

. (17)

In the maximization step, the purpose is to find parameters to
maximize the expected value of complete data likelihood, i.e.,

Φi = arg max
Φ

EXN,CN|SN;Φi−1 [log p(SN,XN,CN)].

(18)
By using (18), the estimation of A and π is the same as the tra-
ditional HMM model [20]. To obtain W

xnand H
xn , we can set

the derivatives in (18) to zero. Thus, the update of parameters
can be written as following:

πj =
q(x1 = j)∑J
o=1 q(x1 = o)

, (19)

Ao,j =

∑N
n=2 q(xn = j, xn−1 = o)∑J

j=1

∑N
n=2 q(xn = j, xn−1 = o)

, (20)

where 1 ≤ o, j ≤ J .

W
xn ←W

xn �

SN

W
xn

H
xn

Λ(j)(H
xn

)T

1(H
xn

)T
, (21)

H
xn ← H

xn �
(W

xn
)T

SN

W
xn

H
xn

(W
xn

)T1
, (22)

where Λ(j) = diag(q(x1 = j), q(x2 = j), · · · , q(xN = j)).
From (21) and (22), we can find that the parameters update of
proposed algorithm is identical to the multiplicative update rule.
This ensures that our method is efficient and quick.

3.3. MMSE-based online speech enhancement

In this work, we proposed to combine the NMF-HMM model
with MMSE estimator to conduct online speech enhancement.
Thus, the estimated signal can be represented as

Ŝn = ESn|Yn(Sn) =

∫
Snp(Sn|Yn) dSn, (23)

where Yn is defined similar to SN. We ignore specific details
of derivation, the enhanced speech can be represented as

Ŝn = Yn �

( ∑
xn,ẍn

ωxn,ẍnpn(xn, ẍn)

)
, (24)

where ωxn,ẍn is the weight, which can be written as

ωxn,ẍn =
p(Yn|xn, ẍn)p(xn, ẍn|Yn−1)∑

xn,ẍn
p(Yn|xn, ẍn)p(xn, ẍn|Yn−1)

. (25)

p(xn, ẍn|Yn−1)

=
∑

xn−1,ẍn−1

p(xn, ẍn|xn−1, ẍn−1)p(xn−1, ẍn−1|Yn−1)

(26)
In (26), the first term can be acquired by the transition probabil-
ities matrix of noisy speech and the second term is the forward
probability that can be calculated by forward algorithm [20].
Additionally, pn(xn, ẍn) can be represented as

pn(xn, ẍn) =
W

xn
H
xn

W
xn

H
xn

+ ẄẍnḦẍn
. (27)

In enhancement stage, the Ḧẍn and H
xn can be acquired by

(5). After that, the enhanced speech can be estimated from (24)
to (27). The equation (24) shows that there are more than one
basic and activation matrix to be applied to acquire gain to con-
duct speech enhancement. This is because the proposed algo-
rithm utilize the HMM and consider the temporal aspect. Ad-
ditionally, the update of activation matrix (Ḧẍn and H

xn ) can
be conducted by parallel computing. This means that our algo-
rithm can reduce the time assumption during the online stage.

4. Experiments and results
4.1. Experimental database preparation

In this study, the proposed algorithm is expected to be evalu-
ated by TIMIT [21] and NOISEX-92 [22] database. During the
training stage, all the 4620 utterances from the training TIMIT



Figure 1: PESQ score of proposed algorithm in babble noise
with different numbers of state.

database are used to train the clean NMF-HMM model. Ad-
ditionally, the Babble, F16, Factory and White noise from the
NOISEX-92 is also used to train the noise NMF-HMM model.
During the test stage, the 200 utterances from the TIMIT test set
are randomly chosen to build the test database. Then, four types
of noise are added at three different SNR levels (0, 5 and 10dB).
The test noise types are F16, Babble, Factory, and White.

In our experiments, all the signals are down-sampled to 16
kHz. The frame length is 1024 samples (64 ms) with a frame
shift of 512 samples (32 ms). The size of short time Fourier
transform (STFT) is 1024 points with a Hanning window.

4.2. Performance evaluation of speech enhancement

In order to evaluate the performance of the proposed algorithm,
there are two test stages. In the first stage, we will investigate
the effects of different parameters for NMF-HMM model. This
test will be conducted on the babble noise. More specifically,
we will investigate the effect of different numbers of state of
clean speech for the performance of speech enhancement. In
this experiment, the dimension of clean speech and noise mix-
ture is fixed to 25 and 70, respectively, which is based on the
previous research [15]. The state of noise is fixed to 2 be-
cause we want to show that the proposed algorithm can apply
the different noise state to conduct speech enhancement. In this
stage, the test result will be evaluated by PESQ [23] and we
apply the traditional NMF-based [15] speech enhancement al-
gorithm (T-NMF) as reference method. The aim of this experi-
ment is to acquire the most suitable parameters of NMF-HMM
model. Figure 1 shows the experimental result. We can find
that the proposed method can achieve the better performance
the T-NMF. Additionally, the 40 states for clean speech can
achieve the highest score under the all three SNRs. In second
stage, the proposed algorithm is expected to be conducted on the
more types of noise, which is Babble, F16, Factory and White
noise, respectively. We apply the traditional NMF-based [15]
speech enhancement algorithm (T-NMF), Optimally-Modified
Log-Spectral Amplitude (OM-LSA) method [24] with IMCRA
noise estimator [25], linear span filters method [26] (SLF-NMF)
that applies the parametric NMF [27] and Log-MMSE [28] al-
gorithm as the reference method. STOI [29] is used to evaluate
the performance. For the SLF-NMF, the maximum SNR filter
is chosen to conduct the speech enhancement. Furthermore, for
the SLF-NMF, the codebook size of clean speech and noise is 64
entries and 8 entries, respectively. The dimension of basic ma-
trix for T-NMF is the same as NMF-HMM. Figure 2 shows the
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(c) enhanced by T-NMF
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(d) enhanced by SLF-NMF
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(e) enhanced by NMF-HMM
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Figure 2: Spectrum comparison of various NMF-based meth-
ods: (a)clean speech, (b)noisy speech with 5dB Babble noise,
(c)(d)(e)enhanced speech by T-NMF, SLP-NMF and NMF-
HMM,respectivelys

Figure 3: Average STOI score for four types of noise under three
SNRs.

spectrum comparison of various NMF-based methods. It can be
found that the proposed NMF-HMM method is able to remove
more noise than other NMF-based method. Meanwhile, NMF-
HMM can also recover the more speech information. Figure 3
indicates the average STOI result with the 95% confidential in-
terval (There are four types of noise under three SNRs, each
situation includes 200 utterances. Therefore, the average score
is acquired by 200×3×4=2400 utterances.) This result shows
that NMF-HMM can effectively improve the more speech intel-
ligibility than T-NMF and other reference methods.

5. Conclusions
In this paper, a novel HMM-NMF speech enhancement method
is proposed. The core idea is to apply the sum of Poisson as
the observation model for each state of HMM because it can
ensure that the parameter update rule is identical to the multi-
plicative update rule. This is quick and efficient. In addition,
this method can consider the temporal dynamics of speech sig-
nal because of the application of HMM. Furthermore, we pro-
posed a novel HMM-NMF-based MMSE estimator to conduct
the online speech enhancement. The experimental results in-
dicate that the proposed algorithm can achieve better speech
enhancement performance than these state-of-the-art statistic-
based and NMF-based methods.
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