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Abstract—The application of multiterminal (MT), high-voltage dc (HVdc) (MTdc) grid technology requires test procedures for the 

operation and implementation of the protection solutions. The test procedures are usually derived from experience and from extensive 

measurement data, which, at present, are still not widely available. Based on a hardware-in-the-loop (HIL) method, advanced dc protection 

testing strategies, utilizing existing experience for ac grids and requirements for MTdc grids, may overcome this gap.  

This article proposes procedures and guidelines for testing system-level dc protection based on the functionality of MTdc grids for both 

primary and backup dc protection. Specific performance criteria have been defined, based on multicase testing and statistical analysis, with 

the considerations of related critical testing parameters for each functional requirement of the dc protection. Accordingly, procedures for a 

dc protection testing environment and various fault scenarios are defined. The proposed algorithm test procedures will contribute to the 

standardization of dc protection system design and testing. 

I. BACKGROUND

enewable energy sources (RESs)  have many advantages for the environment and sustainable energy development. The 

replacement of traditional fossil fuels by RESs is an energy development trend and energy policy requirement for future power 

systems [1]. In northern Europe, in particular, the installation of offshore wind power is ever increasing; hence, the development 

of HVdc systems to support wind power integration is becoming more urgent. The evolution of HVdc systems from point-to-point 

connections and radial HVdc grids to meshed MTdc grids by making use of voltage source converter (VSC) technology, especially 

modular multilevel converter (MMC)-based schemes, is also a significant subject for the European power utilities and governments [2]. 

Worldwide, there are already many relevant projects commissioned or being developed, such as the Québec–New England three-ter-

minal HVdc system [3], Nan’ao four-terminal HVdc system [4], and Zhoushan five-terminal grids [5]. 

One of the main challenges of the implementation of HVdc power grids is the unavailability of standardized approaches for grid 

protection, which is a significant barrier for the secure operations of new HVdc grids [5]. dc fault currents in MTdc networks increase 

rapidly in amplitude, and outages can be easily cascaded from one converter station to another. Thus, protection against these faults is 

very important to provide safety for the HVdc grid operation and to pave the way for the integration of bulk offshore wind power to the 

ac grid [6], [7]. 
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 2 
Existing HVdc protection concepts are derived from the well-known HVac protection concepts, as illustrated in Figure 1 [8]. Three 

kinds of protection philosophies are adopted in MTdc protection, i.e., fully selective, nonselective, and partially selective. In the fully 

selective philosophy, each line is protected using HVdc circuit breakers (dc CBs) at both ends, so power flow remains uninterrupted in 

the rest of the grid. In the nonselective philosophy, the whole HVdc grid is protected as one zone by converters with fault-blocking 

capability or by using ac-side CBs (ac CBs). The partially selective philosophy is a compromise between the two former ones, in which 

the grid is divided into several protection zones based on the placement of dc CBs, the converters with fault-blocking capability, and ac 

CBs [9]. 

A simple illustration can be seen in Figure 2. When fault F1 occurs in the middle of lines 2 and 3 in the three-terminal HVdc grid, 

this faulty line will be only disconnected by the dc CB4 and dc CB5 at both line ends in the fully selective philosophy. In the partially 

selective philosophy, with an insufficient installation of dc CBs, subgrid2 will be disconnected due to F1 only if dc CB4 and dc CB6 

are installed. The red elements [ac CBs, full-bridge (FB) converters, or dc CBs behind converter terminals] will be used to clear F1 in 

the nonselective philosophy, in which the whole dc grid will be isolated. 

There have been many different HVdc grid protection algorithms proposed by academia and industry so far, which can be categorized 

as unit protection and nonunit protection. Unit protection algorithms are based on double-ended detection, which makes use of closed 

protection zones; nonunit protection algorithms are realized with single-ended detection and open zones. The nonunit protection 

algorithms are mainly used for the primary protection functions, which can be current/current derivative- [10], [11], voltage/voltage 

derivative- [12], [13], and traveling wave-based approaches [14]–[16]; different combinations of these approaches [17], [18]; and 

frequency or time domain approaches [19]–[21]. 

The unit protection algorithms mainly include the current differential [22] and traveling wave differential [23]. Since communication 

is required for unit protection, it is used for the primary protection functions of the bus bar or for the protection of short lines and as a 

backup protection function of longer dc lines [24]. Possible protection failures (including breaker failure and relay failure) need to be 

considered in backup protection functions of an MTdc grid protection system [25]. 
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(a) ac grid protection                                                                              (b) MTdc grid protection 
Figure 1 Categories of protection philosophies and examples of algorithms 
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Figure 2 The different MTdc grid protection philosophies 

There are no consensus and standards, so far, about how the dc protection algorithms perform and how they could be used for practical 

implementation [8]. Considering that today’s dc CBs can operate in several milliseconds, fault detection realized by the protection 

algorithms should also be within the same timescale, which also depends on the speed of fault current development and the withstand 

capability of system components [26]. 

In HVdc systems, the current source converter (CSC)-based HVdc, which is known as classic HVdc, can control the dc current during 

a dc fault. However, the CSC HVdc is, currently, mainly limited to the applications of point-to-point connections, since the reversal of 

the power flow direction requires a change of voltage polarity on all terminals, and there are other bottlenecks associated with the control 

systems. The application of dc CBs in CSC HVdc systems is limited, and the maximum ratings are 250 kV, 8 kA or 500 kV, 4 kA, 

which are not more than 1.6 times the rated nominal current. An interruption time on the order of 35 ms is sufficiently fast for CSC 

HVdc systems, where large inductors serve to limit the rate of rise of the fault current. These dc CBs are very large and more expensive 

than the ac CBs for comparable current and voltage ratings. Therefore, for point-to-point CSC HVdc connections, the controlled 

converter stations or installed ac CBs at the ac side of CSCs are applied to disconnect the HVdc from the ac side [27]. 

Regarding the fault current characteristics, VSC HVdc systems are mainly distinguished from the CSC HVdc systems by the higher 

rates of rise and large magnitudes of the fault currents as well as the lower current withstand capability of VSC power electronics [27]. 

These differences necessitate higher fault current-breaking capabilities within shorter interruption times of the dc CBs in VSC-based 

HVdc grids. 

For VSC HVdc, the MMC, as the most promising option to develop an MTdc grid, can adopt either a half-bridge (HB) or FB structure 

for each submodule. The HB MMC with freewheeling diodes is unable to stop ac grid contribution to the dc fault currents, and the 

excessive current stresses may damage the freewheeling diodes. Therefore, the requirement for fast dc CBs becomes inevitable. More-

over, to realize a fully selective protection philosophy and provide power supplying continuity for the healthy part of HVdc grids, more 
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dc CBs are required to be installed to protect each line and bus in the grid, even though the FB MMC can block current flow in the 

converter during dc faults. 

The objective of the protection testing is to determine whether the performance of an intelligent electronic device (IED) can meet the 

industry requirements before it can be commissioned in practical applications [28]. Since the converter self-protection scheme is vendor 

dependent, the scope of the future MTdc grid protection for MTdc grids, here, excludes converter protection. For ac protection testing, 

well-established designs and methods can be adopted according to IEEE and International Electrotechnical Commission (IEC) standards 

[29], [30]. In these ac protection standards, the performance test (or type testing) is normally conducted by IED vendors to verify, 

describe, and certify the performance of protection IEDs used in a specific application, which is normally tested by a simple power 

system model.  

The application tests are normally driven by the users to determine the suitability of an IED for a specific protection system design 

application. The tests are based on a detailed model of the power system in question and include performance testing against a wide 

variety of possible fault conditions. The goal of application tests is to ensure that a specific protection IED can perform adequately for 

a specific application or location before actual installation. These general concepts and classifications of protection testing will be 

continuously applied in MTdc grids, even though the challenges and requirements are different for dc protection testing [31]. 

In this article, MTdc grids are the target test power systems, and the application tests are mainly focused from users’ viewpoints to 

provide reasonable test procedures for dc protection testing. Although the fault dynamics and the related protection algorithms of MTdc 

grids have been investigated and designed by many researchers [10]–[25], no certified HVdc protection IED has been commissioned so 

far. Moreover, the relatively new testing considerations and methods of MTdc grid protection have rarely been discussed, and many 

published articles are mainly focused on one specific protection algorithm [32]–[37].  

A fault detection and location scheme using the rate of change of voltage measured for an HVdc grid is proposed and tested in [32], 

where the different fault types and locations have been mainly considered in testing, and a systematic procedure for calibrating the 

protection threshold values is designed. A transient measured impedance-based protection scheme for HVdc line faults is proposed in 

[33], where numerous simulations on the power systems CAD/ electromagnetic transients including dc (PSCAD/EMTDC) platform and 

field fault recording data-based tests have been utilized with the consideration of fault types, fault locations, and sampling frequency. A 

similar PSCAD/EMTDC-based test has been used in [34] for a generalized protection strategy of HB MMC-based MTdc grids with a 

fault current limiter branch and hybrid dc CBs, where the different fault resistances, line inductors, and types of dc CBs are considered 

during the testing.  

The types of dc lines and prefault operation points of MTdc grids were used to test a proposed new protection method in [35]. A real-

time OPAL-RT-based HIL testing platform was developed in [36] to demonstrate and validate an integrated control and protection 

scheme for HV ac/dc grids, where the fault types, locations, and combinations are mainly considered. In [37], HIL-based testing was 

regarded as an ideal choice to simulate the transients of MMC stations and to test the dynamic performance of a complete control and 
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protection system for the Nan’ao VSC-MTdc grid (i.e., application test). 

The aforementioned testing methods are normally introduced together with the new dc protection algorithms, which only consider 

several important factors or requirements about the specific protection algorithms simulated in the simulation software or hardware 

environment. They are not appropriate or efficient for industrial testing on multifunctional protection IEDs. In this article, one user-

oriented application testing approach for industrial applications of HVdc grid protection is developed based on three steps: 

• a systematic investigation and summary of new requirements along with testing considerations for HVdc grid protection in 

both component and system levels; 

• New systematic test procedures for protection IEDs in HVdc grids, based on the statistical analysis of dc fault cases and 

performance criterion checking; 

• a new systematic assessment method for possible protection algorithms implemented in multifunction protection IEDs. 

Thus, the main contribution of this article is to develop dc protection testing methods for systematic testing and assessment of the 

newly proposed MTdc grid protection algorithms. In this way, it can be determined whether the proposed algorithms can meet the 

operation requirements of the MTdc grids [38]. 

II.  NEW CHALLENGES AND REQUIREMENTS 

A.  General considerations 

The choice of a specific MTdc grid protection philosophy, i.e., fully selective, partially selective, and nonselective, fundamentally 

determines the size of the grid part that will be isolated from the rest of the grid during a fault at a particular location. Moreover, since 

the protection of MTdc grids deals with complex fault scenarios and fast operational performance and takes into account the performance 

of the dc CBs, the system-level protection of MTdc grids is regarded as one of the most difficult remaining technical challenges in the 

power system. Some related considerations for future dc applications can be listed as follows [8]: 

• multivendor solutions with the proper consideration of interoperability; 

• the much quicker response of MTdc grid protection for the dc faults without current zero crossings; 

• the development and implementation of dc protection testing methods for the newly available dc protection algorithms. 
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Figure 3 Typical time of primary and backup protection in ac and dc systems 

 
In addition to the general differences from ac protection shown in Figure 1, the fault-clearing times of both the primary and backup 

protections in MTdc grids are typically one order of magnitude faster compared to those in ac grids. For example, the fault-clearing time 

of the primary protection is, typically, in the range of several milliseconds, from which 2 ms are allocated for the protection IED 

processing time and several milliseconds for the dc CB operation time [31]. A related comparison of the time sequences of ac and dc 

protections can be observed in Figure 3 [8]. As there are only a few practical dc CB prototypes applicable for HVdc grids and there is 

not much experience in this area, the term a few milliseconds is adopted based on the interruption time of the existing prototypes. 

B.  Requirements and constraints for dc protection and testing 

The system-level protection of MTdc grids needs to consider the coordination between IEDs, dc CBs, and converters to secure the 

operation of a large meshed MTdc grid. If the whole operation environment of dc protection is considered, the requirements or 

constraints for the operation of ac/ dc power grids need to be checked [9], [24]. The development and the investment of MTdc grid 

protection is a tradeoff between the costs and the availability. The constraints for MTdc grid protection are imposed by the following. 

 (i) The limits of MTdc system components: The maximum acceptable time for dc fault clearing is mainly limited by the overcurrent 

capability of the power electronics of the HVdc converters, and it also depends on the converter topology. Moreover, the dc CBs applied 

at HV levels must be able to absorb the energy of the fault current by the surge arresters during the fault current interruption.  

(ii) The stability of the control system in the MTdc grid: The control system responsible for the control of the voltage and the power 

flow to ensure stability of the MTdc grid imposes a limit on system-level protection. The related criteria and the stability limits have 

been discussed in CIGRE technical brochure 657 [9].  

(iii) The stability of ac systems: The loss of power due to a dc fault should not exceed the maximum loss of infeed as designed, 

according to the ac grid codes of specific power systems. Furthermore, dc faults should be cleared in a timely manner to avoid instability 

issues in the ac grid.  
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When local dc protection is considered, the requirements can be listed as follows: 

• Functional requirements, as described in Table 1 

TABLE 1 Functional requirements for dc protection [24] 
 

Protection Functional 
requirement 

Definition 

Sensitivity Detection of every dc fault including high impedance faults 
Selectivity Operating only after fault occurence, and only if the fault is 

in related protection zone 
Speed To be fast enough to interrupt faults before they may damage 

grid equipment 
Reliability To perform a required function under given conditions for a 

given time interval, i.e. security and dependability 
Robustness Having the ability to detect dc faults in normal operation 

mode as in degraded operation mode, and to discriminate 
faults from any other operation occurrence (set-point 
changes, etc) 

Seamlessness After the fault clearance, the remaining part of the system 
should continue operating in a secure steady state 

 

• Requirements on protection system components 

The requirements for the components such as measuring, detecting and acting components can be determined according to how long 

the system can sustain a particular disturbance. The MTdc grid protection philosophy is fundamentally determined by the selectivity of 

the protection devices and the way of dc fault current interruption development. In order to effectively implement dc protection 

algorithms and meet the speed requirement, the non-conventional instrument transformers with a few megahertz bandwidth, e.g., fibre 

optic current/voltage sensors [39], need to be adopted.  

The main technologies and the bandwidth of today’s instrument transformers are summarized in Table 2. As an example, the 

Rogowski coil has attracted much attention in the electric power industry, as it can meet the requirements of dc protection for frequency 

bandwidth and dynamic accuracy due to its superior performance, inherent linearity, outstanding dynamic response, wide bandwidth, 

and without magnetic saturation. These features can support accurate and reliable data measurement to trace the faulty dynamics in the 

dc system for those protection applications when the Rogowski coil is combined with the shunt capacitor [8]. 

The digital interface of instrument transformers for both ac and dc applications is specified by IEC 61869-9 [40]. To perform general 

measurement and protective data processing, the typical sampling rates for ac and dc measurements are 4.8 kilo samples (ksa)/s and 96 

ksa/s, respectively. The fault current interruption capability of the dc protection system is determined not only by the capability of dc 

CBs but also by the system design of the converter and the current limiter. The speed requirement and the interaction between the dc 

CB and dc protection can be briefly observed in Figure 3. If more details and testing of dc protection are considered, the specific 

hardware, software, and communication protocols should be investigated [9], [29]: 

• hardware platform: e.g., an HIL testing platform based on the real-time digital simulator (RTDS), protection IEDs, physical 

interfaces, and connections  

• software platform: i.e. power system and control function models, reasonable test cases, protective function algorithms, and dc CB 

models; 
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• communication: a hardware or software-defined data transmission network for the links between any combinations of the hardware 

platforms and software platforms. 

 
TABLE 2 Technologies and bandwidth of instrument transformers [8] 

Type  Technology Bandwidth Application 

CT 

Electromagnetic (iron-core) few kHz ac 

Hybrid electro-optical (combined shunt and Rogowski coil) few MHz ac/dc 

Fiber optic current sensor (magneto-optic effect) few MHz ac/dc 

Zero-flux (dc Current Transformer) few hundred kHz dc 

dc Zero-flux (Hall-effect current transformer) few hundred kHz dc 

VT 

Inductive voltage transformer few kHz ac 

Capacitor voltage transformer few kHz ac 

Compensated RC-divider few MHz ac/dc 

Fibre optic voltage sensor (magneto-optic effect) few MHz ac/dc 

 
Fiber Optic

IEC 61850

GTNETx2

GTFPGA

HMI-RSCAD-control center, 
Wireshark network monitor

RTDS Electric Power 
System Simulator

Ethernet 
switch

TCP/IP

IEDs under test for 
AC/DC systems

      

Real time 
simulator

Work station

SIL

HIL

Both physical test system and objects/IEDs under test 
under will be simultated
The phys ical  tes t sys te m wi ll be s imula ted, and 
objects/IEDs under test will be real ones.

Protection Controller

Communication

Power component to be 
controlled

Objects/IEDs 
under test

 
(a) One example based on RTDS and IEC 61850 based ICT infrastructure                    (b) General groups of real time simulation: SIL and HIL 

Figure 4 Real time simulation platforms  
 

An example of a real-time cyberphysical testing platform can be seen in Figure 4(a). The test MTdc grid is first developed in RSCAD 

software and then simulated in real time using RTDS [41]. To simulate detailed models of HB MMC converters, dc CBs [26], [42] in 

small time-steps, and new dc protection algorithms, new generations of processors in RTDS are preferred. Furthermore, the IEC 61850- 

9-2LE sample value communication [43] has been developed based on one GTFPGA unit and one GTNETx2 card, together with the 

related software interface configuration within the RTDS racks. 

The sample values of the critical measurement points in the MTdc grids are provided by GTFPGA-based merging unit functions to 

the local Ethernet network, while the GTNETx2 card is configured to obtain the sample values from the local network for the protection 

functions modeled in RTDS. The related message flows can be monitored and analyzed based on the manageable Ethernet switch and 

Wireshark network analyzer [44]. If the protection IEDs under test for ac/dc systems are available with the required communication 

interfaces, then the application performances of IED under test can be easily testified based on this simulation platform in Figure 4(a). 
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There are many different schemes using real time simulation for the testing and commissioning of protection, control, and 

communication systems, which can be mainly categorized into two groups, i.e., software in the loop (SIL) and HIL. A simple illustration 

can be seen in Figure 4(b). In an SIL scheme, both the controller and the physical test system are simulated by RTDS, when it is difficult 

to access IEDs. In an HIL scheme, the IED under test is accessed and connected to the real-time simulator through specific interface 

converters, e.g., amplifiers and sensors [45]. The test platform shown in Figure 4(a) can be regarded as SIL with additional 

communication links for IEC 61850-9-2LE, when the object under test is the simulated relay model in RTDS. When the object under 

test is the protection IEDs, then the related testing schemes based on the test platform in Figure 4(a) belong to HIL schemes. 

In an RTDS-based simulation platform, the network solution technique is performed by nodal analysis. This is different from the 

OPAL-RT-based simulation, which is realized by a state–space nodal method to perform network calculations [46]. For every real-time 

simulator, the online simulation is discrete time based. With a large number of data points computed within a given power system cycle, 

the online simulation approximates the continuous time power system appropriately [47]. 

III.  TEST PROCEDURES FOR MTDC GRID PROTECTION 

A.  The structure of test procedures for dc protection 

The script of protection performance testing is depicted in Figure 5. The blocks with black arrows represent the normal progress of 

fault development and protection performance, whilst the blocks with red arrows represent the evaluation and testing progress. 

 

Figure 5 The general script of protection performance testing 

The general testing steps for the dc protection can be described as follows: 

Step 1: Fault scenarios: simulation based fault studies 

Step 2: Statistical analysis of system level performance 

Step 3: Threshold setting adjustment 

Step 4: Criteria checking 

Step 5: Report and trouble shooting. 

The details of these five steps are different when the dc protection function is different, e.g., primary protection testing and backup 

protection testing are conducted with different fault scenarios, which will be introduced later. 
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B.  Test circuit and fault scenarios 

Figure 6 shows an example of a simulated dc fault current in the four-terminal meshed HVdc grid based on the testing platform in 

Figure 4(a). This MTdc grid is built on an HB MMC and cable lines, and each cable is terminated by mechanical dc CBs [6] and series 

inductors. The related specification of the MTdc grids is included in Table 3, and more data on the system and controllers can be found 

in CIGRE technical brochure 604 [48]. It should be noted that the MTdc test system, fault scenarios, and the current waveforms are 

simulated and produced based on the RTDS simulation platform, which aims to testify the system-level performances of studied 

protection IEDs. The main time-step in RTDS is set as 50 μs, while VSCs and dc CBs make use of a small time-step of 3.124 μs. 

3AC 
Grid D     YY     D

Line13-200km

Line24-200km

Line34-200km

Line12-200km

Fault
X (km)1AC

Grid

4AC 
Grid D     YY     D

2AC
Grid

MMC A1

MMC A2

MMC C1

MMC C2

A1

A2

C1

C2

 

(a) Four-terminal HVdc test system in RTDS                                                        (b) Fault interruption progress 

Figure 6 Fault interruption progress in the 4-terminal HVdc grid 

TABLE 3 The ac grids and MMCs parameters 

Parameter Converter 
MMCs 1, 2, 4  MMC 3  

dc voltage ±200kV ±200kV 
Converter ac voltage 220kV 220kV 
Rated Power 800MW 1200MW 
Number of SMs per arm 400 400 
Arm resistance Rarm 0.54Ω 0.36Ω 
Arm reactor Larm 29mH 19mH 
Arm capacitance Carm 25µF 37.5µF 
Transformer leakage reactance 0.18p.u. 0.18p.u. 

ac grids 
1ac grid and 2ac grid 380kV 
3ac grid and 4ac grid 145kV 

 

When a fault occurs at the end of the line between converter A1 and C1 at time t0=0.1s, the related travelling wave reaches the 

terminal A1 at t1=0.1056s. Then, the dc fault current quickly increases, and its rate of rise is limited by the series inductors. In the first 

millisecond, successive reflections (e.g., at t2) occur, caused by waves traveling along the line between the fault location and the 

protection system location. Furthermore, other terminals start to feed into the fault current. At t3, converter A1 blocks its insulated-gate 

bipolar transistors (IGBTs), and the dc fault current is fed by the ac side. All converters in the system are blocked around t3. At t4, the 

mechanical dc CB located at A1 opens to interrupt the fault current increment. Eventually, after t5, the fault is completely cleared by dc 

CBs installed in the faulty line between A1 and C1. A detailed overview of the phenomena, which occur during the fault, is given in 

Figure 7. 
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It should be noted that the dc grid protection considered in this paper excludes the converter protection that is normally designed 

by different converter vendors. However, in the real or simulated cases, these two protection systems are incorporated with each other. 

In the simulation example in Figure 6 and 7, the recommended parameters from [48] are directly adopted for the converter protection, 

e.g. the valve current threshold of 6 kA and dc bus voltage threshold of 0.9 per unit are considered. The fault current withstand capability 

of the freewheeling diodes is set based on their own design parameters, e.g. the thermal capability limits.  

To deal with a possible current imbalance in the combination of diodes for MMC, the thermal capability limit could be calculated 

based on the minimum current thermal limit of each diode, which could resort to related reliability test. Moreover, when a hybrid dc CB 

is applied instead of mechanical dc CB, the break time can be improved from 8 to 2 ms approximately [8], which can release the thermal 

stress on the remaining components in the fault current loop. 

 

Figure 7 The progress of fault clearance 

Based on the progress and mechanism analysis during the dc fault development and interruption, the critical parameters influencing 

the dc fault current and the related dc protection system can include the type of transmission lines, fault resistance, dc-side inductance, 

dc-side capacitance, converter blocking instant, ac system strength, earthing system, converter topology [24]. The impact of these 

parameters is briefly explained in Table 4. In addition, the sampling frequency is critical for the signal processing and the operation 

speed of dc protection; a sampling frequency of 96 ksa/s is assumed here, considering the IEC 61869 standards [40]. 

TABLE 4 The critical parameters influencing the dc fault current 
Critical parameters Influence analysis 

Transmission line 
type 

The characteristic impedance of OHL is larger than for cables, which causes current waves to be smaller in amplitude. The traveling 
wave speed of OHL is about the speed of light, whereas for cables this is half of to 2/3 the speed of light. 

Fault resistance An increasing fault resistance leads to a smaller prospective steady-state fault current. 

dc side inductance Increasing the dc side inductance decreases the rate of rise of the current but does not make impact to the prospective steady-state 
fault current. 

dc side capacitance A dc side capacitance (as e.g. used in two-level topologies) initially provides a large discharge current. 

Converter blocking 
instant 

The converter blocking instant determines the amount of discharge of submodule capacitors. Delaying the converter blocking instant 
increases the capacitor discharge. 

ac system strength The ac system strength mainly determines the value of the prospective steady-state current. An increased ac system strength leads to 
an increased value of the prospective steady-state current only limited by the short circuit impedance of the connecting equipment 
such as transformers. 

System earthing Low impedance earthing results in higher fault current and high impedance earthing leads to a lower fault current. Earthing 
impedance and topology also has effect on fault transient behaviour. 

Converter topology With new VSC converter topology concerned, HB MMC cannot block the fault current, since there is always an uncontrolled current 
path via the freewheeling diodes in this topology; and FB MMC can block the fault current and reach current zero, since there are no 
fault current paths avaiable when IGBTs has been switched off during the fault period. 
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C.  Test procedures 

For the testing of a specific protection IED, the specifications of the protection functions should be provided by the IED vendor first. 

The critical ratings and the performance limitations of the basic protection functions, e.g., input, output, detection, directional de-

termination, measurement accuracy, sampling rate, and so on, should be declared by the IED vendor as well. According to IEC 60255-

1 [30], the general type (unit) testing is used to verify the new hardware/software designs against the product specifications and the 

standards. However, the verification procedure for the overall system is important to ensure that equipment is in accordance with its 

specifications, all functions perform correctly during the initial measurement at the beginning of the test sequence, and it maintains its 

design characteristics throughout all of the specified tests. 

With the consideration of the fully selective fault-clearing strategy, the primary protection algorithms should be implemented together 

with the suitable dc CB models. The operation time and the sequences of the protection system can be obtained directly based on the 

RTDS models, as shown in Figure 5. Then, the failure rate of the primary protection can be easily obtained based on the simulated 

performances. Different test scenarios will be required for different dc system configurations. It is assumed that the testing system is 

developed for a symmetric, monopole, HB MTdc grid, a fully selective fault-clearing strategy, and related dc CBs. The general testing 

progress of the primary protection’s system-level performance is depicted in Figure 8. The detailed procedures of the related testing 

steps are listed as follows: 

 

Figure 8 The general process of primary protection performance testing 

TABLE 5 The critical testing parameter for performance testing 
Testing 
parameter 

Typical values Testing 
parameter 

Typical values 

Fault 
resistance 

0-400 Ohm 
Variation: 0, 25, 50, 100, 150, 200, 250, 300, 350, 
400 Ohm 

Fault location 0%-100% of the line with reasonable interval, 
0%L-, 0%L+, 20%, 40%, 60%, 80%, 100%L+, 100%L-, 110% 
‘L+’: the fault is applied at the end of the line before the series inductor. 
‘L-’: the fault is applied after the series inductor close to the bus. 

Fault type PTP1: pole-to-pole permanent fault 
PTP2: pole-to-pole self clearing fault 
PTG1: pole-to-ground permanent fault 
PTG2: pole-to-ground self clearing fault 
PTG11: positive pole-to-ground permanent fault 
PTG12: negative pole-to-ground permanent fault 
PTG21: positive pole-to-ground self clearing fault 
PTG22: negative pole-to-ground self clearing fault 

Series line 
inductor 

0-200 mH with reasonable interval, 
0, 10, 50, 80, 100, 120, 160, 200 mH 

Step 1: Fault scenarios simulation-based fault studies 

Table 5 shows the critical testing parameters and the related typical values, which could be different according to different testing 

systems and testing objectives. In order to perform multi-case testing and to record the responses of the objective protection systems or 

protection IEDs, these critical testing parameters can be changed in the proposed scopes. However, the choice of these parameters are 
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system dependent and are generally decided by the user/vendor through the knowledge of system studies and operations. 

Step 2: Statistical analysis of system level performance 

The basic accuracy checking of protection characteristics and the operation time based on the performance analysis will be mainly 

conducted in this step. The statistical analysis of IED system level performance is important in order to find a fault type based probability 

distribution, which is the precondition to obtain and check the related criteria. The classical method-transient overreach analysis used in 

IEC 60255-121 [49] is adopted here for the accuracy testing.  

An example of the testing procedures can be seen in Figure 9 (a).  With the chosen testing parameters in Figure 9 (a), the multi-case 

testing can be easily conducted. The repeating sequence of 5 times is a common practice in the IED testing in terms of reliability 

checking. 

Based on the recorded test performances, the operation times can be determined in a statistical form. For example, the test data at the 

three fault positions (0 %L+, 50 % and 80 %) and with L = 100 mH for the line inductor will be considered. This will result in a total of 

1800 (600 operation times for the cable line tests, 600 operation times for overhead line (OHL) tests, and 600 operation times for hybrid 

line tests) obtained operation times. This is equal to 450 operation times for each fault type. To create a fault type distribution in the 

operation time statistics, the following weights are given to the available data according to the fault categories defined in [50].  

1) Test results for PTP1, will be weighted by a factor of four.  

2) Test results for the fault type PTP2, PTG1, PTG2, will be weighted by a factor of two.  

3) Test results for other faults will be weighted by a factor of one. These factors are defined according to the fault occurrence 

probability and its impact on the system. 

Choose line type (cable or overhead or hybrid)

Choose line inductor
(10, 50, 80, 100, 120, 160, 200 mH)

Choose fault location
(0%L-, 0%L+, 20%, 40%, 60%, 80%, 100%L+, 100%L-, 110%)

Choose fault type
(PTP1, PTP2, PTG1, PTG2)

Repeat the fault scenario 5 times

Any other fault types?

Any other fault locations

Any other Line inductors?

End

Choose fault resistance
(0, 25, 50, 100, 150, 200, 250, 300, 350, 400 ohm)

Any other fault resistance?
Yes

Yes

Yes

Yes

No

No

No

No

             

450 PTP1 faults

450 PTP1 faults

450 PTP1 faults

450 PTP1 faults

450 PTP2 faults

450 PTP2 faults

450 PTG1 faults

450 PTG1 faults

450 PTG2 faults

450 PTG2 faults

450 PTP1 faults

450 PTP2 faults

450 PTG1 faults

450 PTG2 faults

1800 tests and 
1800 operation 

times

4500 tests 
and 4500 
operation 

times

2

2

2

4

Fault test developing for 
typical operation time

Stastics for typical 
operation time

 
(a) System level accuracy testing                                                          (b) The statistics for typical operation time 

Figure 9 The general procedures for system level performance analysis 
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The weighting is done by simply repeating the available results. Figure 9 (b) shows the fault statistics of the typical operation time. 

Totally, 4500 operation times are available for the statistics. 

These tests are aimed at determining the accuracy of the operation times of primary functions. They are based on monitoring the time 

difference between the arriving instant of the first fault travelling wave to the line end and the operation output signals of the IED. The 

time range and the associated classes based on the operation time could be defined based on the collected data set. For example, the 

minimum and maximum operation times in the data set are: min_T=1512 us, max_T=4167 us. Thus, a range of operation time could be 

defined as [1500, 4200] us, similar to that reported in [30]. The classes of the performances of the IED under testing can be defined by 

making average groups with an interval of 300 us, as can be seen in Table 6. Here, it is necessary to point out that under IED class, a 

particular operation time range is chosen. 

TABLE 6 The operation time classes of target IED 
Class From t ≥ [us] To t ≤ [us] N % N 
Class 1 (min=1500 us) min  min + 300 The number of operation 

times belonging to each 
class (n) 

The probability of N for each 
class (n) Class 2  min + 300 min + 600 

Class 3  min + 600 min + 900 
Class 4  min + 900 min + 1200 
…   
Class n  min + (n-1)×300 min + n×300 
…   
Class M (max=4200 us) min + (M-1)×300 max 

The number of operation times belonging to each class (N), with 300-us resolution, is counted to show the probability distribution of 

the operation times. The probability of N for each class is calculated and the values can be filled in Table 6. These procedures are related 

generally for all IEDs, and the table refers to the IED that will be tested. 

Step 3: Threshold setting adjustment 

The setting rules, variation range and the accuracy of the thresholds will be introduced and analyzed in the type testing of protection 

IED specifications. However, for the system level testing, more influencing factors will be involved and the corresponding thresholds 

can be optimally adjusted to achieve better system-level performance. Thus, the test settings of the thresholds can be expressed as 

percentages of the available range, with 0 % representing the minimum available setting and 100 % representing the maximum available 

setting. Similarly, 50 % would represent the mid-point of the available setting range. The actual setting to be used can be calculated 

using the following formula: 

SAV = (SMAX – SMIN)X + SMIN                                            (1) 

where SAV is the actual setting value to be used in the test; SMAX is the maximum available setting value; SMIN is the minimum available 

setting value; and X is the test point percentage value expressed in the test methodology. For example, assuming the available setting 

range is 0.1-5 A and 40% test point percentage, the actual operating current settings will be 2.06 A. 

To tune the threshold setting, the testing procedures can be performed with the consideration of variable threshold setting values that 

will result in the determination of the most accurate threshold setting. For example, if the pre-calculated threshold setting is 63.5%, 

threshold setting values change from 62 to 65 % by 0.5 %, then the related testing procedures can be seen in Figure 10. The statistics 
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data analysis can be conducted using weighting factors of step 2 to obtain the best threshold settings corresponding to the highest 

probability of correct operation. 

Choose line type (cable or overhead or hybrid)

Choose setting value
(62%, 62.5%, 63%, 63.5%, 64%, 64.5%, 65% )

Choose fault location
(0%L-, 0%L+, 20%, 40%, 60%, 80%, 100%L+, 100%L-, 110%)

Choose fault type
(PTP1, PTP2, PTG1, PTG2)

Repeat the fault scenario 5 times

Any other fault types?

Any other fault locations

Any other setting values?

End

Choose fault resistance
(0, 25, 50, 100, 150, 200, 250, 300, 350, 400 ohm)

Any other fault resistance?
Yes

Yes

Yes

Yes

No

No

No

No

 
Figure 10 The testing procedures for threshold setting adjustment 

Step 4: Criteria checking 

After the verification of the accuracy and the threshold settings for the specific system operation conditions, the primary protection 

functions need to be tested when the objectives of protection system performance are met. The critical criteria are speed, sensitivity, 

selectivity, reliability, seamlessness and robustness, which have been mentioned in Section II. To develop these criteria, the performance 

of the dc protection is divided in three different operations: 

• Correct operations: The protection system operates for faults in its protection zone within the required time 

• Failed operations: The protection system does not operate for faults in its protection zone within the required time 

• Incorrect operations: The protection system operates for faults out of its protection zone 

Then, the related qualification criteria can be expressed as follows: 

Pclasses.speed = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜

                                 (2) 

Pclasses.sensitivity = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜

                          (3) 

Pclasses.selectvitiy = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜

                          (4) 

Pclasses.security = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑎𝑎 𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

  (5) 

Pclasses.dependability = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇𝑁𝑁𝑎𝑎 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

         (6) 

Pclasses.reliability = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜

                            (7) 

Pclasses.seamless = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑁𝑁𝑜𝑜𝑜𝑜𝑁𝑁𝑐𝑐𝑐𝑐𝑜𝑜𝑒𝑒𝑁𝑁 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜

                          (8) 

Pclasses.robustness = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑛𝑛 𝑜𝑜𝑜𝑜𝑁𝑁𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑜𝑜𝑐𝑐𝑜𝑜𝑇𝑇 𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑁𝑁𝑜𝑜𝑐𝑐𝑜𝑜

                     (9) 
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where Pclasses.speed, Pclasses.sensitivity, Pclasses.selectvitiy, Pclasses.security, Pclasses.dependability, Pclasses.reliability, 

Pclasses.seamless, Pclasses.robustness represent the probabilities of related operations for the checking of speed, sensitivity, selectivity, 

security, dependability, reliability, seamless and robustness on the protection IED under the test, respectively.  

For the checking of each criterion, the critical testing parameters are revised according to specific requirements, which can be 

compared and observed from Figure 11. The testing procedures on speed, sensitivity, selectivity, and security can be seen from Figure 

11(a), (b), (c), and (d), respectively. Thus, the meanings of (2), (3), (4) and (7) are different with different testing parameters, even 

though they are in the same form. 

Since the speed of the primary protection is related to the time when the current reaches the dc CB interruption capability, a fast 

breaker could allow more complex and time-consuming algorithms to be applied.  Thus, the different dc CB types are considered in the 

test procedures of speed checking as shown in Figure 11 (a). For the sensitivity checking in Figure 11 (b), those testing parameters, 

which have big impacts on operation quantities to give the possible minimum faulty condition, will be considered more, e.g., high fault 

impedances, different line inductors, converter blocking instants and fault locations.  

PTG faults will be mainly considered in the sensitivity checking. For the selectivity checking, the fault resistance, the fault location, 

the fault type and the line inductor will be chosen as critical testing parameters with the focus to consider more on the borders of 

protection zones. The related changes on the related parameters can be found in Figure 11 (c).  

For the security checking, the unnecessary protection operations could result from the loss of selectivity and sensitivity due to wrong 

thresholds or operation condition changing, e.g., dc line outage (dcL), energization/de-energization of a converter, and so on. Thus, in 

an addition to the testing parameters considered for selectivity and sensitivity, the operation condition changes due to dc line outage and 

energization/de-energization of a converter that needs to be considered in the security related testing. Neighboring dcL1 and de-

energization of a local converter [converter event 1 (COE1)] are added in the fault type block in Figure 11 (d). 

After these multi-case tests conducted by the corresponding testing procedures, the fault data statistics analysis will be derived based 

on the user-defined ranges of testing parameters, which have been described in the former steps. Then, the related probabilities can be 

calculated based on (2)-(5). For the latter, the four criteria checking are related to (6)-(9), and the testing procedures or work flowcharts 

are similar to the first four criteria checking, but with different focus. The Dependability is highly related to the Sensitivity and the 

Speed. Thus, in the related testing, the similar testing parameters and critical time ranges based on dc CB types can be chosen as critical 

testing parameters. For the reliability, the total number of tests is the sum of the tests performed for the criteria of Dependability and 

Security. 
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(a) Speed checking                                                                     (b) Sensitivity checking 
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(c) Selectivity checking                                                (d) Security checking 

Figure 11 The testing procedures for the checking of different criteria 
 

The Seamlessness of the MTdc grid protection refers to the ability of holding the remaining part of the grid to continue operating in 

a secure state after the fault clearance [51]. This is related to the continuous adaptability of the MTdc grid protection when the system 

transfers from a normal operation condition to N-1 or N-k conditions due to a fault clearance. In this case, the effective operations in (8) 

mean the correct operations of the protection with predefined settings (for specific operation conditions) in a post-fault stage, such as 

N-1 or N-k stages. 
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The Robustness of the MTdc grid protection refers to the detection of faults in normal or degraded mode and the discrimination 

from other operational events in the grid [50]. The difference with respect to Seamlessness is that the adaptability to both normal and 

degraded operational modes is required but continuous operation transition is not. Moreover, the discrimination from any other 

operational events causes the Robustness to become a kind of reliability as well. Accordingly, in this case, the necessary operations in 

(9) mean the correct operation of the protection with different predefined settings for different stages; those being adaptive and available 

for several operation conditions. 

Step 5: Report and trouble shooting 

In this step, the summary of the data analysis should be given based on the work steps above, the limitations and related trouble 

shooting should be registered as illustrated in Figure 8, so that this can be improved for all work steps in the future work. For the backup 

protection testing from the viewpoint of the IED under test, the different actions of the backup protection should be mapped to the 

backup fault clearing options given for fault interruption and based on categories in Figure 2 [52].  

Due to rigorous requirements on the time of fault clearance and communication delays, only local backup will be considered here for 

the dc protection system. The general testing progress of the backup protection performance is depicted in Figure 12. The testing 

considerations and steps are similar to those in the primary protection testing, but the failure detection is a critical function of backup 

protection. Here, two kinds of failures have been considered, i.e. the failure of primary protection and the failure of dc CB operations. 

Critical fault 
scenario 

simulations

Performance analysis and criteria checking
Report and 

trouble shooting

Fault detection, 
location and 
identification

Backup protection functions

Speed Sensitivity Selectivity

Reliability Seamlessness Robustness

Fault interruption

Detection of failure on protection

Detection of failure on DCCB

  

Figure 12 The testing progress of backup protection performance testing 

Moreover, the test cases for the backup protection testing need to be processed based on previous cases in the primary protection 

testing. The cases used in the testing of Dependability checking can be adopted directly here, since some non-dependable operations 

(e.g. non-tripping signals) in the required time interval are regarded as the failure of primary protection. Inversely, the failures of dc CB 

operations will be tested with those dependable cases, which are mainly induced by dc CB’ own capabilities and features. Thus, when 

the failure of primary protection and the failure of dc CB operation are identified, the backup protection functions will be initiated to 

choose one of the backup options of fault interruption to execute suitably. These two types of failures and their derived rules can be seen 

in Figure 13. Based on the obtained cases, similar performance analysis of related backup protection functions can be undertaken 

accordingly. 
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Figure 13 The evolution from primary protection to backup protection testing 

IV.  SUGGESTIONS ON TECHNICAL GUIDELINES FOR DC PROTECTION TESTING 

A.  Definitions of Test Environment and Scenarios 

The critical requirements and testing parameters of the test environment and fault scenarios are varied, as the target MTdc grid under 

study and applied protection algorithms are changed. In case a reduction of the number of test scenarios is needed from several tens of 

thousands scenarios [Figure 9 (b)] to a reasonable number, it is proposed to define test scenarios considering the limitations of the 

protection algorithms. For example, when an algorithm is intrinsically limited with respect to the fault resistance, the fault scenarios are 

determined with more focus on this parameter. 

If more practical parameters are considered in the test environment, some standard or proposed models can be improved and adapted 

to the actual grid under study with the consideration of: 

• The types of transmission lines including cable, overhead and hybrid lines 

• The length, parameters (resistance, inductance and capacitance) and structure of transmission lines 

• More fault types and resistances (e.g., self-clearing fault in case of overhead lines, and faults involving metallic return wire in bipolar HVdc grids 

with metallic return) 

• More MMC converter station structure including monopolar and bipolar 

• The converter station earthing including earthed (earth return or metallic return) and unearthed systems, and earthing method 

• More converter topology including two level and MMC (FB, HB and so on) 

• The dc side capacitance 

• The control methods and control modes of the converters (PV, PQ etc.) 

• More type of dc CBs and other switchgears 

• HVdc grid ratings such as voltage, current and transferred power  

• Different ac side equivalent system 

With respect to fault scenarios, besides those parameters mentioned in Section III, (i.e. fault resistance, fault location, dc-side 

inductance, and converter blocking instant) the measurement accuracy, sampling rate and noise level on voltage and current can be 

considered as well. 

B.  System Level Assessment of dc Protection 

After a test of different protection algorithms is carried out, the performance of the algorithms can be analyzed. The algorithms will 
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show different performance in terms of different requirements. Therefore, it is necessary to classify the performance of the protection 

algorithms considering each requirement or criterion. Here, the performance obtained by performed tests in Section III, can be classified 

into low, medium and high performance classes for all protection algorithms based on the value of corresponding qualification criteria. 

In order to determine the range of qualification criterion values of these classes for each requirement, the computed qualification criteria 

of each requirement for all protection algorithms are sorted in a decreasing order. Then, these qualification criteria (of a particular 

requirement) and their corresponding algorithms are divided into three groups with equal (in the case of an odd number of algorithms) 

or almost equal (in the case of an even number of algorithms) members; group 1, 2 and 3. An example with the consideration of nine 

algorithms and speed criterion has been given in Table 7. 

The range of each performance class is defined by taking into account an average value of these three groups in the following way: 

• High Performance ≥ average of group 1 

• average of group 2 ≤ Medium Performance < average of group 1 

• Low  Performance < average of the group 2 

It is also possible to use minimum and maximum values of the groups instead of average values: 

• High Performance ≥ minimum of group 1 

• minimum of group 2 ≤ Medium Performance < minimum of group 1 

• Low  Performance < minimum of the group 2 

This classification method can be applied to all the requirements in Table 1. Then, the performances of the algorithms can be 

compared considering each requirement. It should be noted that the range of classes of each requirement may be different from other 

requirements, and may also differ for different IEDs. Because the test procedures and assessment methods are designed in a systematic 

way, the efficiency for the full performance assessment of IEDs will be higher and more difficult to quantify than the simple testing 

methods used in [32]-[37] for only single protection algorithms. By comparing to single protection algorithm testing with less 

performance requirement, the computation efforts of the proposed testing method will be made to systematically consider all the 

requirement criteria, i.e. speed, sensitivity, selectivity, security, dependability, seamless and robustness, which are necessary for the 

industrial application and the certification of protection IEDs. Compared to IEEE and IEC standards for ac protection testing, the 

proposed methods are more advanced and applicable for dc protection IEDs. The extra system level assessment method proposed in the 

paper can help evaluate the different kinds of dc protection algorithms implemented in the protection IEDs.  It should be noted that the 

efficiency of the proposed method can be quantified by comparing the test results and practical results recorded in practical multi-

terminal HVdc grids. However, performing such a study needs a reasonable amount of practical information about the performance of 

IEDs and the protection algorithms, which implies longer time exploitation and operation of multi-terminal HVdc grids. At this moment, 

such information is not available because there are a few newly commissioned practical multi-terminal HVdc grids and even fewer 

protection IEDs equipped with different protection algorithms. 

 



 21 
TABLE 7 An example for the determination of performance classes on speed 

Groups Algorithms Pclasses.speed (%) Classes Range (%) 
(Average method) 

Range (%) 
(Min & Max method) 

Group 1 
Alg. 5 99 

High ≥ 97.66 ≥ 96 Alg. 3 98 
Alg. 4 96 

Group 2 
Alg. 1 94 

Medium 91.66 - 97.66 89 - 96 Alg. 6 92 
Alg. 8 89 

Group 3 
Alg. 2 85 

Low 91.66 < 89 < Alg. 9 83 
Alg. 7 80 

V.  CONCLUSION 

 This paper first identifies challenges for system-level testing of MTdc grid protection, and it exploits the already available standard 

procedures for ac protection system testing in order to develop MTdc grid protection testing procedures. It also applies the knowledge 

of dc protection testing, and makes recommendations based on the developed procedures and guidelines for both primary and backup 

dc protection functions. The specific performance criteria are designed, based on multi-case testing and statistical analysis, with the 

considerations of related critical testing parameters for the functional requirements of dc protection. Suggestions for dc protection testing 

environment and fault scenarios and the assessment methods of the algorithms’ performance are provided, which will be important for 

the future standardization of MTdc grid development and related protection testing. 
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