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Abstract—Over the past decades, privacy-preservation has
received considerable attention, not only as a consequence of
regulations such as the General Data Protection Regulation in
the EU, but also from the fact that people are more concerned
about data abuse as the world is becoming increasingly digitized.
In this paper we propose a convex optimization-based subspace
perturbation approach to solve privacy-preserving distributed
least squares problems. Based on the primal-dual method of
multipliers, the introduced dual variables will only converge
in a subspace determined by the graph topology and do not
converge in its orthogonal complement. We, therefore, propose
to exploit this property for privacy-preservation by using the non-
converging part of the dual variables to perturb the private data,
thereby protecting it from being revealed. Moreover, we prove
that the proposed approach is secure under both eavesdropping
and passive adversaries. Computer simulations are conducted to
demonstrate the benefits of the proposed approach through its
convergence properties and accuracy.

Index Terms—Distributed least squares, subspace, privacy,
noise perturbation, convex optimization

I. INTRODUCTION

In modern systems, such as smart grids and smart internet-
of-things, the trend is to have collaborations between different
parties. This distributed processing has a number of advantages
over centralised processing, like avoiding a single point of fail-
ure and being robust against changes in the network topology.
Such distributed systems usually require data exchange among
the parties. These data, more often than not, contain sensitive
information about individual parties/agents. For example, it
was shown in [1] that even electricity consumption data can
reveal sensitive information about the consumers’ privacy such
as whether the consumer has illnesses/disabilities or not. To
address such privacy issues in distributed processing, in this
paper we focus on privacy-preserving distributed least squares
as it is a fundamental problem and serves as a building block
to many other problems such as robust signal de-noising and
linear regression in machine learning.

The privacy issue in distributed processing has been ad-
dressed in the literature by either protecting the private data
using secure multiparty computation (SMPC) techniques or by
perturbing it with noise insertion. SMPC [2] aims to jointly
compute a function among a group of parties while keeping
each party’s input private. Popular SMPC protocols like secret
sharing, homomorphic encryption, garbled circuits and hybrid
methods have been applied in linear regression problems
in machine learning [3]–[6]. However, these SMPC-based

frameworks usually assume either a non-colluding trusted third
party (TTP) or a small network with only a few computing
parties. Consequently, they are quite far from being applied
in large scale networks such as wireless sensor networks and
many other applications where a TTP is hard to implement.
To alleviate these problems, both distributed computation and
SMPC were employed in [7] for solving the privacy-preserving
recursive least squares problems. Unfortunately, it comes at the
cost of high communication complexity.

Noise insertion can be an attractive alternative as it is
lightweight and usually does not require a TTP. A noise
insertion framework for perturbing private data by balancing
the privacy level with the output accuracy (referred to as
differential privacy (DP) [8]), has been applied in many
applications like robust statistic [9], Kalman filtering [10] and
distributed average consensus [11], etc. In principle, it can also
be applied to the distributed least squares problem. However,
as stated in [11], there is an inherent trade-off between privacy
and accuracy, and they can not be achieved simultaneously.

To address the above mentioned limitations, we here pro-
pose a novel convex optimization-based subspace perturbation
approach which protects the private data by adding noise
in a particular subspace. We use the primal-dual method of
multipliers (PDMM) [12], [13], a distributed algorithm for
solving constrained convex optimization problems, to illustrate
the main idea of subspace perturbation, but the approach will
work with other algorithms, like ADMM, as well. A number
of attractive properties of the proposed approach are: 1) it is
fundamentally different from the DP approaches as it is able
to achieve both privacy and accuracy at the same time; 2) it
requires no TTP and has a low computational complexity; 3)
it converges at a rate independent of the privacy level and 4)it
is secure under both passive and eavesdropping adversaries.

II. FUNDAMENTALS AND PROBLEM SETUP

In this section, we will first recall the fundamentals of
the distributed least squares and explain the motivation for
privacy-preservation. Next, we introduce the so-called adver-
sary models, an essential concept when considering privacy,
and then state the problem setup.

A. Distributed least squares

Given a distributed network G = (V, E) with V =
{1, . . . , n} the set of nodes and E = {e1, . . . , em} the



set of edges. The neighbourhood of node i is denoted as
Ni = {j|(i, j) ∈ E} and di = |Ni|. Let B ∈ Rm×n denote
the incidence matrix defined as Bli = Bi|j = 1 if and only if
el = (i, j) ∈ E and i < j, Bli = Bi|j = −1 if and only if
el = (i, j) ∈ E and i > j.

The goal of distributed least squares is to find a solution of
an overdetermined system (set of equations in which there are
more equations than unknowns), where each node only knows
part of the equations and is only able to exchange information
with its neighbours. Let Qi ∈ RNi×u, Ni > u, denote a matrix
containing the input observations of node i. That is, each node
i has Ni observations and each observation contains an u-
dimensional feature vector. Moreover, let yi ∈ RNi denote
the decision vector observed by node i. Stacking all the local
information such that Q = [QT1 , . . . , Q

T
n ]T ∈ RN×u and y =

[yT1 , . . . , y
T
n ]T ∈ RN where N =

∑
i∈V Ni, the least-squares

problem is given by

min
x

1

2
‖y −Qx‖22.

We can formulate the least-squares problem as a distributed
linearly-constrained convex optimization problem given by

min
{xi}

f(x) =
∑
i∈V

1

2
‖yi −Qixi‖22

s.t. xi − xj = 0,∀(i, j) ∈ E , (1)

where xi ∈ Ru denotes the local estimated least-squares
solution at node i. A number of distributed optimizers (e.g.,
ADMM, PDMM) has been proposed to solve the above
problem by only exchanging information in the local neigh-
bourhood. At every iteration k, each node i updates its local
estimate x(k)

i based on a certain local updating function and
then sends it to its neighbours. Generally, this local updating
function requires local information of node i (that is, Qi, yi) to
guarantee that x(k)

i converges to the global optimum solution
x∗ = arg minx

1
2‖y −Qx‖

2
2.

B. Privacy concerns

The local information (input observations Qi and decision
vector yi) of each node is considered as private data and
should be protected from being revealed. This is because it
usually contains sensitive private information about individ-
uals. For example, assume a number of hospitals participate
in a research project with the aim of obtaining a predictive
model by collaboratively learning all the data in their medical
data sets. However, releasing this medical data violates the
privacy regulation as it contains sensitive information of the
patients such as their health conditions and insurance records.
As mentioned earlier, at each iteration of the distributed
computation, each node will send out the updated x(k)

i where
the related updating function usually takes the private data
Qi and yi as inputs. As a consequence, the updated x

(k)
i

carries information about the concerned private data and thus
revealing it will inevitably cause loss of privacy. Such privacy
issues will be investigated and addressed in the rest of the
paper.

C. Adversary model

The adversary model qualifies the robustness of a privacy-
preserving algorithm under security attacks. An adversary
usually works by colluding a number of nodes to conduct
certain malicious behaviours, such as learning the private
data and manipulating the outputs of the computations. These
colluded nodes will be referred to as corrupted nodes and while
the others will be referred to as honest nodes. Here we consider
two general adversary models that are often encountered in
real applications: passive and eavesdropping. In the former
case, all nodes follow the instructions of the algorithm but
they are curious about knowing the private data held by other
honest nodes. The eavesdropping adversary, either internal or
external, aims to infer the private data by eavesdropping the
communication channels between honest nodes. This adver-
sary has not received much attention in privacy-preserving
distributed computation as it is commonly solved by assuming
securely encrypted communication channels [14]. Encryption,
however, incurs high computational complexity which is par-
ticularly cumbersome using iterative algorithms such as the
ones we are using here, because communication channels are
used many times. In this paper, we alleviate this problem
and assume all the communication is done through non-secure
channels except for the initialization.

D. Privacy-preserving distributed least squares

Combining things together, we conclude that there are two
key requirements to be satisfied simultaneously:

1) Output correctness: all nodes are able to obtain the
optimum solution x∗ = arg minx

1
2‖y−Qx‖

2
2 when the

algorithm converges.
2) Individual privacy: the concerned private data (Qi, yi)

held by each node is protected from being revealed to
others against both passive and eavesdropping adver-
saries, throughout the whole algorithm execution.

III. PRIMAL-DUAL METHOD OF MULTIPLIERS

We use PDMM as an example to explain the main idea
of subspace perturbation. PDMM, like ADMM, is a dis-
tributed optimizer for solving constrained convex optimization
problems. As an instance of Peaceman-Rachford splitting of
the extended dual problem (see [13] for details), PDMM
is characterised by a faster convergence rate compared to
ADMM. The update equations of PDMM are given by

x(k+1) = arg min
x

(
f(x) + λ(k)TPCx+

c

2
‖Cx+ PCx(k)‖22

)
,

λ(k+1) = Pλ(k) + c(Cx(k+1) + PCx(k)), (2)

where f(x) denotes the objective function to be minimised, k
the iteration index, x(k) ∈ Rn is the primal variable, λ(k) ∈
R2m the dual variable, P ∈ R2m×2m a symmetric permutation
matrix which exchanges the first m with the last m rows and
C ∈ R2m×n a matrix related to the incidence matrix B. The
constant c > 0 controls the convergence rate. The vector λ
contains the dual variables for the constraints; there are two
dual variables λi|j and λj|i, one for each node i and j, for



each edge (i, j) ∈ E; where λ(l) = λi|j and Cli = Bi|j if
and only if el = (i, j) ∈ E and i < j, and λ(l + m) = λi|j ,
C(l+m)i = Bi|j if and only if el = (i, j) ∈ E and i > j. Note
that C + PC = [BT BT ]T and ∀(i, j) ∈ E : λj|i =

(
Pλ
)
i|j .

The λ-updates of two successive iterations is given by

λ(k+2) = λ(k) + c(Cx(k+2) + 2PCx(k+1) + Cx(k)), (3)

as P 2 = I . Let H = ran(C) + ran(PC) and H⊥ =
null(CT ) ∩ null((PC)T ) where ran(·) and null(·) denote
the range and nullspace, respectively. Note that [C,PC] ∈
R2m×2n can be viewed as an incidence matrix of a new
graph having 2n nodes and 2m edges. Therefore, we have
dim(H) ≤ 2n − 1 and thus H⊥ is always non-empty. Let
ΠH denote the orthogonal projection onto H . From (3) we
can see that every two λ-updates only affect ΠHλ ∈ H and
leave (I − ΠH)λ ∈ H⊥ unchanged. As a consequence, the
component (I−ΠH)λ will not converge and only be permuted
every iteration. We can thus divide the dual variable λ(k) into
two parts given by

λ(k) = ΠHλ
(k) +

{
(I −ΠH)λ(0), k even,
P (I −ΠH)λ(0), k odd.

(4)

It is proven in [13] that ΠHλ
(k) converges to the optimum λ∗

given by

λ∗ = −
(

CT

(PC)T

)†( ∇f(x∗) + cCTCx∗

∇f(x∗) + cCTPCx∗

)
+ cCx∗, (5)

where (·)† denotes the Moore-Penrose pseudo inverse. We
thus denote ΠHλ and (I −ΠH)λ as the converging and non-
converging component of the dual variable, respectively. Simi-
larly, H and H⊥ are referred to as the converging subspace and
non-converging subspace of PDMM. It is worthy to mention
that this non-converging component (I − ΠH)λ would not
affect the x-update in (2) since λT (I −ΠH)PC = 0.

IV. PROPOSED APPROACH

Having introduced PDMM, we will now proceed to describe
the proposed approach. For the problem at hand, the PDMM
updating functions for node i become

x
(k+1)
i = (QTi Qi + cdiI)−1(QTi yi +

∑
j∈Ni

(cx
(k)
j −Bi|jλ

(k)
j|i ))

∀j ∈ Ni : λ
(k+1)
i|j = λ

(k)
j|i + cBi|j

(
x

(k+1)
i − x(k)

j

)
, (6)

whereas the update of dual variable λ
(k+1)
i|j only depends

on λ
(k)
j|i , x

(k)
j and x

(k+1)
i , of which λ

(k)
j|i and x

(k)
j are local

information held by node j. Therefore, x(k+1)
i is the only

information needs to be transmitted by node i to its neigh-
bours. After broadcasting x(k+1)

i , all neighbouring nodes can
construct λ(k+1)

i|j themselves and the dual variables do not need
to be transmitted at all, except for the first iteration where the
initialized λ(0)

j|i s need to be transmitted.

Since x(k+1)
i is the only revealed information, by inspecting

the x-update in (6) we can see that x(k+1)
i is dependent

of node i’s private data Qi, yi and the data x
(k)
j , λ

(k)
j|i from

its neighbours. We therefore propose to initialize the dual

variables in a way such that the non-converging component
(I − ΠH)λ sufficiently perturbs the private data Qi, yi. Thus
the private data cannot be inferred and meanwhile the primal
variable will still converge to x∗, as long as there is at least
one honest neighbouring node. In what follows we will give
a formal proof of this claim.

A. Output correctness

As proved in [13], the primal variable x(k+1) is guaranteed
to converge to x∗ geometrically given arbitrary initialization
x(0) and λ(0), thereby guaranteeing the output correctness.

B. Individual privacy

Now we turn to analyse the individual privacy under both
passive and eavesdropping adversaries. Under the passive
adversary model, let Vc and Vh denote the set of corrupted
and honest nodes, respectively. Without loss of generality,
assume the passive adversary attempts to infer the private
data of honest node i ∈ Vh. As mentioned earlier, as the
only information transmitted from node i after initialization
is the primal variable x

(k+1)
i , the problem thus becomes to

analyse how much information about Qi and yi would the
passive adversary obtain by observing x

(k+1)
i . Using (4) we

can express x(k+1)
i as

(QTi Qi + cdiI)−1

 ∑
j∈Ni∩Vh

(
cx

(k)
j −Bi|j

(
P kΠHλ

(k)
)
j|i

)

−
∑

j∈Ni∩Vh

Bi|j
(
P k(I −ΠH)λ(0)

)
j|i +QTi yi + cp

 , (7)

where cp =
∑
j∈Ni∩Vc

(
cx

(k)
j − Bi|jλ

(k)
j|i
)

can be considered
constant as it is known by the passive adversary. As k →∞,
x∗ will be known and ΠHλ

(k) → λ∗ given by (5). Thus
we conclude that, as long as Ni ∩ Vh 6= ∅, we can perturb
the private data by introduce noise in (I − ΠH)λ(0). More
specifically, let sqi = (QTi Qi + cdiI)−1, syi = QTi yi and
λ(0) denote realizations of the random variables S̄qi , S̄yi and
Λ̄(0), respectively. Note that Λ̄(0) is independent of both S̄qi
and S̄yi as the initialization of dual variables is independent
of the inputs. From (7), we can see that the information
leakage regarding to Qi and yi can be represented by the
mutual information [15] I(S̄qi , X̄

(k+1)
i ) and I(S̄yi , X̄

(k+1)
i ). To

analyse both of them we need the following result.

Proposition 1. Consider the continuous random variables
{X̄1, . . . , X̄n} having mean and variance µX̄i

and σ2
X̄i

, re-
spectively. Let {Ȳ1, . . . , Ȳn} be independent random variables
independent of {X̄1, . . . , X̄n}. That is, I(X̄i, Ȳj) = 0 for
all (i, j) ∈ V . Let Z̄i = X̄i + Ȳi and W̄i = X̄iȲi, and let
Z̄ ′i = Z̄i/σZ̄i

and W̄ ′i = W̄i/σW̄i
be the normalised variables

having unit variance. We then have

lim
σ2
Ȳi
→∞

I(X̄1, . . . , X̄n; Z̄1, . . . , Z̄n) = 0,

lim
σ2
Ȳi
→∞

I(X̄1, . . . , X̄n; W̄1, . . . , W̄n) = 0.



Proof.

I(X̄1, . . . , X̄n; Z̄1, . . . , Z̄n)

= h(Z̄1, . . . , Z̄n)− h(Z̄1, . . . , Z̄n|X̄1, . . . , Xn)
(a)
= h(Z̄1, . . . , Z̄n)− h(Ȳ1, . . . , Ȳn)

(b)
=

n∑
i=1

h
(
Z̄i|Z̄1, . . . , Z̄i−1

)
−

n∑
i=1

h
(
Ȳi
)

(c)
≤

n∑
i=1

h
(
Z̄i)−

n∑
i=1

h(Ȳi)

(d)
=

n∑
i=1

I(X̄i; Z̄i)

(e)
=

n∑
i=1

I(X̄i/σZ̄i
; Z̄ ′i),

where h(·) denotes the differential entropy of the random
variable, assuming it exists. Step (a) follows from h(Z̄i|X̄i) =
h(Ȳi), (b) follows from the chain rule for differential entropy
and the fact that the Ȳi’s are independent random variables, (c)
follows from the fact that conditioning decreases entropy, (d)
follows from h

(
Z̄i)−h(Ȳi) = h(Z̄i)−h(Z̄i|X̄i) = I(X̄i; Z̄i)

and (e) holds as mutual information is invariant under scaling.
As a consequence

lim
σ2
Ȳi
→∞

n∑
i=1

I(X̄i; Z̄i) = lim
σZ̄i
→∞

n∑
i=1

I(X̄i/σZ̄i
; Z̄ ′i)

=

n∑
i=1

I(0; Z̄ ′i) = 0.

For the case W̄i = X̄iȲi, we have

h(W̄i|X̄i) =

∫
p(x̄i)h(W̄i|X̄i = x̄i)dx̄i

=

∫
p(x̄i)h(x̄iȲi|X̄i = x̄i)dx̄i

(a)
=

∫
p(x̄i)h(Ȳi)dx̄i = h(Ȳi),

where (a) holds since the probability measure of the event
X̄i = 0 is zero. Hence, the proof of our second claim goes
along the same lines as the one presented above, and we
conclude that

lim
σ2
Ȳi
→∞

I(X̄1, . . . , X̄n; W̄1, . . . , W̄n)

≤ lim
σW̄i
→∞

n∑
i=1

I(X̄i/σW̄i
; W̄ ′i ) = 0,

thereby proving our claims. �

By applying Proposition 1 to I(S̄qi , X̄
(k+1)
i ) and

I(S̄yi , X̄
(k+1)
i ), we conclude that both mutual information

can be made arbitrarily small by increasing the variance
of the random variable (I − ΠH)Λ(0). We thus have both
I(S̄qi , X̄

(k+1)
i ) = 0 and I(S̄yi , X̄

(k+1)
i ) = 0 if

∃j ∈ Ni ∩ Vh : var
(
((I −ΠH)Λ(0))j|i

)
→∞. (8)

Hence, the proposed approach is able to achieve asymptoti-
cally perfect security.

Algorithm 1 Privacy-preserving distributed least squares
based on PDMM

1: Every node i ∈ V initializes its primal variable arbitrarily,
and initializes the dual variables with random numbers
having sufficiently large variance (specified by the re-
quired privacy level).

2: Every node i sends the initialized dual variables λ(0)
i|j to its

neighbours j ∈ Ni through securely encrypted channels.
3: while ‖x(k) − x∗‖2 < threshold do
4: Randomly activate a node, say node i, update its primal

variable x(k+1)
i using the x-update in (6).

5: Node i broadcasts x
(k+1)
i to its neighbours j ∈ Ni

through non-secure channels.
6: Each neighbour uses x(k+1)

i to update the dual variable
λ

(k+1)
i|j based on the λ-update in (6).

7: end while

Now we consider an eavesdropping adversary. As we al-
ready proved that the transmitted primal variable does not con-
tain information about the private data, the proposed method
is also secure against eavesdropping. The communications can
therefore be conducted in non-secure channels except for the
first iteration where the initialized dual variables λ(0) should
be communicated through secure channels. The details of the
proposed approach are summarised in Algorithm 1.

Several remarks are in place here. Firstly, (8) requires
λ(0)∩H⊥ 6= ∅. Recall that the non-converging subspace H⊥ is
non-empty, so that by randomly initializing the dual variables
λ(0), we have λ(0) ∩ H⊥ 6= ∅ with probability 1. Secondly,
it is important to note that the adversary does not have the
knowledge of the subspace noise (I −ΠH)λ(0) as it does not
know the converging subspace H , due to the fact that both the
total number of nodes and the connectivity between the honest
nodes are unknown to the adversary. Thirdly, although we
proved that both I(S̄qi , X̄

(k+1)
i ) and I(S̄yi , X̄

(k+1)
i ) are zero if

the inserted noise has infinitely large variance, in practical sit-
uation the noise variance will be finite. To quantify the amount
of information leakage when dealing with finite variance noise,
we consider the simple case of a random variable Z̄ = X̄+ Ȳ ,
where X̄ and Ȳ are independent Gaussian distributed random
variables. For a Gaussian random variable with variance σ2,
the differential entropy is given by 1

2 log(2πeσ2), so that
I(X̄; Z̄) = h(Z̄) − h(Ȳ ) = 1

2 log(1 + σ2
X̄
/σ2

Ȳ
). Hence, the

information loss is only 0.007 bits if σ2
Ȳ
/σ2

X̄
= 100 (the range

of Ȳ is approximately 10 times the range of X̄). Lastly, we
note that the proposed approach is also applicable to other dis-
tributed optimizers, e.g. ADMM, where the update equations
of the dual variables have a similar structure as (2) and there
also exists a non-converging subspace. To demonstrate this
general applicability, in what follows we will show numerical
results for both PDMM and ADMM.

V. NUMERICAL RESULTS

We now evaluate the performance of the proposed algorithm
by computer simulations. We simulated a random geometric



(a) (b) (c)

Fig. 1: Convergence of the primal variable, the converging component and non-converging component of the dual variable
for two initializations of (a) PDMM and (b) ADMM. (c) Convergence of the primal variable of the proposed algorithm for
ADMM and PDMM for three different privacy levels.

graph with n = 20 nodes, and set the wireless transmission
radius as

√
2 logn

n to obtain a connected graph with probability
at least 1− 1/n2 [16]. We set Ni = 20, u = 10 and generated
all the entries of Q and y randomly according to a zero-mean,
unit-variance Gaussian distribution.

Fig. 1a and 1b show the convergence behaviour of PDMM
and ADMM, respectively (mean-squared error versus number
of transmissions). The blue lines denote the proposed privacy-
preserving approaches (p-PDMM and p-ADMM) where the
dual variables are randomly initialized from a Gaussian distri-
bution with variance 1000, while the red lines denote the non-
private approaches (n-PDMM and n-ADMM) where the dual
variables are initialized within the converging subspace, that
is λ(0) ∈ H . We can see that both x(k) and ΠHλ

(k) converge
to the optimum solution while

(
I − ΠH

)
λ(k) does not. Note

that the lines with red triangle markers are not shown as(
I−ΠH

)
λ(k) = 0 in this case. Hence, the proposed approach

is able to obfuscate the private data while not affecting the
output correctness.

To inspect the performance of the proposed approach under
different privacy levels, we considered three cases where the
variances of the associated dual variables were set at 10, 100,
and 1000, which corresponds to an approximated privacy loss
of 7×10−3, 7×10−5, and 7×10−7 bits, respectively. As shown
in Fig. 1c, for both PDMM and ADMM, the convergence rate
is independent of the privacy level (note that the x-axis is on
a log scale). This is because the convergence rate of these
algorithms only depends on the graph topology and not on
the initialization (the initial error does). Therefore, increasing
the amount of noise will not affect the convergence rate but
only results in a higher initial error.

VI. CONCLUSIONS

In this paper, we proposed a lightweight yet general convex
optimization-based subspace perturbation method to achieve
privacy-preserving distributed least squares. In particular, we
show that the concerned private data can be protected by in-
serting noise in a particular subspace determined by the graph
topology. The proposed approach is proven secure under both
eavesdropping and passive adversaries. More specifically, the

individual privacy of any honest node is protected as long as it
has one honest neighbour and no securely encrypted channels
are required except the initialization step. Additionally, it is
able to achieve both privacy and accuracy simultaneously, and
its convergence rate is independent of the privacy level.
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