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Abstract: In this paper, a coordinated control scheme is proposed for sharing harmonics compensation effort among 
Voltage and Current Controlled Mode (VCM and CCM) inverters in islanded microgrids. In this method, the voltage 
harmonics compensation of Sensitive Bus (SB) is achieved by using secondary control as well as virtual impedance and 
admittance loops in primary control of VCM and CCM units. The limited capacity of the inverter is taken into account for 
harmonics compensation. Photovoltaic (PV) systems are considered as CCM units. The harmonics compensation is mainly 
performed by VCM inverters. However, in order to prevent these units from overloading, the PV interfacing inverters (CCM 
units) are called to collaborate in harmonics compensation whenever needed. The results of simulation study in in 
Matlab/Simulink show the effectiveness of this method in coordination of CCM and VCM units.   

1. Introduction

Voltage Source Inverters (VSIs) are widely utilized 

for integration of Distributed Generation units (DGs) 

including Renewable Energy Resources (RESs) to 

distribution systems and Microgrids (MG) [1-6]. The control 

approaches of the VSIs in an MG can be classified to 

Current and Voltage Control Modes (CCM and VCM) 

depending on the prime-mover type of DGs [7]. In an 

islanded MG, the interfacing inverters of some energy 

storage systems and dispatchable (controllable) DG units 

(e.g. micro turbines, fuel cell, etc.) are operated as VCM 

units while the interfacing inverters of intermittent RES-

based DGs such as photovoltaic (PV) systems and wind 

turbines (WT) are controlled as CCM units [8-10]. In 

islanded MGs, the VCM units which are known as grid 

forming units are responsible of voltage and frequency 

regulation. The harmonics compensation in MGs by using 

the VCM units is proposed in [9]-[22]. These methods can 

be classified to local-data- [9-15] or communication-based 

compensation [16-21].  

Virtual impedance is most commonly used local-

data-based compensation method for VCM units [13]. 

Compensation based on measuring the sensitive load bus 

data and applying hierarchical communication-based control 

methods are proposed in [17] and [18-21], respectively. 

Using Secondary Control (SC) for voltage quality 

enhancement can increase the accuracy and effectiveness; 

however, a communication system is required. In [22] and 

[23], a coordinated control of VCM DG units and active 

power filters is proposed while a supervisory control scheme 

of VCM DG units and active power filter is proposed in [24], 

for power quality improvement of multi-area MG. In [9-24], 

only the VCM units are considered while in an MG, CCM 

inverters are also present; furthermore, the limited capacity 

of VCM units should be considered. 

On other hand, the multifunctional CCM inverters 

are proposed for harmonics compensation in microgrids and 

distribution systems [25-31]. In [29] and [30], the harmonics 

compensation is achieved by direct compensation of the 

nonlinear load harmonic current. The methods of [28] and 

[29] can be applied only when nonlinear loads and DG

interfacing inverters are near to each other. Using virtual

impedance is proposed in [30] and [31] for harmonics

compensation. In this method, harmonics compensation is

achieved by measuring voltage and creating a low

impedance path for harmonics current.

In [32], an SC-based coordinated control of VCM and CCM

units is proposed. In this method, the limited capacity of

inverters is not considered. In [33], the coordinated control

of VCM and CCM units for harmonic and reactive power

sharing based on local data is proposed. In this control

method, capacitive virtual impedance and conductive virtual

admittance are respectively used in VCM and CCM units for

harmonics compensation. Although the limited capacity of

the CCM inverters is taken into account, this limitation is

not considered in [33] for VCM units. A unified voltage

harmonics control method for coordinated harmonic

"This paper is a postprint of a paper submitted to and accepted for publication in IET Renewable Power Generation and is subject to Institution 
of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library".
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Fig. 1. General schematic of an MG with SC scheme for power quality enhancement 

compensation of VCM and CCM inverters is proposed in 

[34] where similar to [33], the harmonics compensation of 

DG bus is achieved; however, in islanded microgrids, 

sensitive bus may be located relatively far from DG units. 

In the present paper, in comparison to the methods 

presented in [10-23], CCM units are also considered and a 

coordinated control of VCM and CCM interfacing inverters 

are presented. The CCM units are fed by PV units. The 

VCM units are responsible of harmonics compensation in 

their normal situation. The harmonics sharing among these 

inverters is achieved by using resistive virtual impedance 

while the SC is used for harmonics compensation. As soon 

as any VCM inverter is overloaded, the existing PV 

multifunctional inverters as CCM units start to compensate 

harmonics in order to reduce the overload of VCM units; 

hence in comparison to [32] and [33], the limited capacity of 

both of CCM and VCM inverters is considered. The 

harmonic sharing of VCM units is achieved by virtual 

impedance which is a more common method for VCM than 

using virtual admittance proposed in [32]. Furthermore, in 

comparison to the methods proposed in [33] and [34] which 

are based on local measurement, the harmonics 

compensation of sensitive bus can be achieved. The change 

of sun irradiance and load is also investigated in this study. 

The main contributions of the paper can be listed as follow: 

 

• Proposing a secondary-control-based coordinated 

control of CCM and VCM inverters.  

• Considering the limited capacity of both VCM and 

CCM units while both sun irradiance and load may change. 

The rest of the paper is organized as follows: In 

Section II, secondary-control-based power quality 

enhancement will be described. The control details of VCM  

and CCM (PV) units interfacing inverters will be presented 

in Section III. Section IV is dedicated to simulation results. 

Finally, the paper is concluded in Section V. 

 

2. Secondary control based power quality 
enhancement   

Fig. 1 shows the general scheme of an islanded MG 

with multifunctional DG interfacing inverters and 

communication-based SC. As depicted in this figure, DGs 

including VCM and CCM units are connected to DG buses 

and Sensitive Bus (SB) via their LCL filters and lines, 

respectively. For CCM units, PV system is used as prime 

mover; DC/DC boost converters are used for Maximum 

Power Point Tracking (MPPT) and stepping up PV output 

voltage. Nonlinear loads are also connected to DG terminals 

(Local Load) and sensitive buses. The fundamental and 

harmonic components of the SB voltage are extracted using 

the method described in [25]. The extracted data is 

transferred to SC via a low bandwidth communication (LBC) 

system. SC is used for power quality enhancement. For 

VCM units, the power quality enhancement comment 

(CVCM
h
) and overloading alert signal (KAl,i ) are transferred 

between VCM units and SC. As discussed later, KAl,i is used 

to inform SC about overloading of VCM units. The power 

quality enhancement comments of PV systems as CCM 

units (CPV
h
) are also transferred from SC to their control 

systems. The overloading limitation of CCM inverters are 

achieved in their control structure as mentioned in [25]. 
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Fig. 2 Secondary control for coordinated control of VCM 

and CCM units in islanded microgrid. 

 

As mentioned before, VCM units are expected to take part 

in compensation of power quality problems, too. Power 

quality enhancement occupies some part of VCM inverters 

capacity; hence, a coordinated control is required in order to 

prevent overloading of these units. 

If VCM units reach to their full capacity, the CCM 

units will contribute in power quality enhancement in order 

to prevent the VCM units from overloading. In other words, 

the SC control system not only compensates the harmonics 

voltage of PCC but also can prevent the overloading of 

VCM units by CCM units harmonic compensation.  

The architecture of SC is shown in Fig. 2. As 

depicted in this figure, harmonic index of each harmonic (Hh) 

is compared to the reference value (Hh
*
) and the error is fed 

to a PI controller. A deadband block is utilized to prevent 

DG units from power quality enhancement when it is 

unnecessary, i.e. Hh is less than Hh
*
. It should be mentioned 

that the value of Hh
*
 can be determined based on related 

standard or the desirable value of operator. In this condition, 

the harmonic compensation signals to both VCM and PV 

units (CVCM 
h
 and CPV

h
 ) are zero. The outputs of PI 

controllers are multiplied to the respective harmonic 

voltages (Vdq,h). The data (CVCM
h
) is sent to VCM units for 

power quality enhancement.   

KAl,1,…, KAl,N show the status of the overcurrent problem of 

VCM units (subscript N denotes the number of VCM units). 

Fig. 3 depicts the variation of KAl,i as a function of a VCM 

inverter output current (Irms) where KAl,i changes linearly 

from zero to 1 between rated current (Ir) and 1.2Ir; hence the 

KAl,i =0 means that the overcorrect of VCM units does not 

happen while KAl,i =1  denotes that the current is equal or 

more than 120% of rated current. As shown in Fig. 2, if the 

values of all KAl,i are zero, compensation references of PV 

units (CPV
h
) will be zero. If one of VCM units are 

overloaded, this coefficients is increased and thus, PV units 

contribute in harmonics compensation. In Fig. 2, M denotes 

the number of CCM units.  

 

KAl,i 

Ir 

1

1.2Ir 
Irms 

 
Fig. 3. KAl,i coefficient  

 

3. Control of VCM and CCM inverters  

The control and power stages of VCM and CCM 

units are depicted in Figs. 4(a) and 4(b), respectively. 

A. VCM inverter 

As depicted in Fig 4(a), the control scheme is implemented 
in αβ (stationary) frame. In MGs, VCM units are responsible 
of controlling voltage amplitude and frequency. In other 
words, the voltage amplitude and frequency of the MG is 
regulated by VCM inverter. The droop control which is  
expressed in following equation is widely used for VCM 
inverters [33]: 
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(b) 
Fig. 4. Power and control stages of VCM and PV 

interfacing inverters: (a) VCM, (b) PV interfacing inverter 
(CCM) 
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Fig. 6. Harmonics compensation block of PV interfacing 

inverters 

where E0 and E denote the rated and actual voltage amplitude 
values. ω0 and ω are rated and actual angular frequencies. 
The proportional coefficients related to active and reactive 
powers droops are represented by mp and np, respectively. 

In this paper, inductive virtual impedance for fundamental 

frequency is used for decoupling power droops; furthermore, 

Virtual resistive impedances are utilized to share the 

nonlinear load current among DG units. Using resistive 

virtual resistances at harmonics frequencies increases 

harmonic distortion; however using SC can compensate the 

effect [23]. 

Fig. 5 shows the harmonic compensation effort block 

of the VCM unit. As depicted in this figure, after harmonics 

extraction, the harmonics indexes of DG current (Hh,I) are  

calculated. The resulted harmonic index is subtracted to its 

maximum value (Hh,MAX) in order to create a droop 

characteristics  for harmonics compensation effort among 

DG units and it is not similar to error calculation we usually 

have before PI controllers. The DG units can contribute 

more in harmonic compensation if the difference of 

harmonics indexes and its maximum value is high. In order 

to share the compensation effort of VCM inverter according 

to their rated apparent power, the resulted signal is multiple 

to the ratio of rated capacity of the DG (Si) to overall 

capacity of DGs (∑Sj). The overload alert signal (KAl,i ) is 

calculated according  to Fig. 3 and is subtracted to 1 (1- KAl,i) 

in order to create the harmonics  compensation limitation 

signal (Li).  If the overloading happens, the amount of KAl,i 

will increase and as a result, the value of  Li will decrease; 

hence, the harmonics compensation effort of this DG will 

decrease. On the other hand, if the DG does not face 

overcurrent problem, the value of Li is 1 (KAl,i =0) and the 

DG unit contributes in harmonics compensation with its 

maximum capacity. If the Li is zero, according to Fig. 5, the 

DG cannot contribute in harmonic compensation to prevent  

the DG unit from overloading. After that, the resultant signal 

(Ah,i) is multiplied to the signal CVCM
h
 received from 

secondary control. Then, a dq/αβ transformation is applied. 

Finally, compensation reference signals (VCom,h) in different  

frequencies are added to form the compensating voltage 

(VCom).   

B. CCM inverter 

Since CCM inverter is connected via an LCL filter as 

depicted in Fig. 4(b), resonance damping is required [35] 

and [36]. In this paper, the active damping is implemented 

by using the capacitor current feedback with the damping 

gain KD [37] and [38].   

The PV model proposed in [39] is used in this study. 

The PV system is connected to the DC link of inverter by 

using a DC/DC converter. The MPPT is implemented by 

using Perturb and Observe (P&O) algorithm [40, 41]. The 

DC link voltage is controlled by using a Proportional-

Integral (PI) controller. Proportional-Resonant (PR) 

controllers are used for tracking harmonics and fundamental 

component of current. The PR controllers are tuned at 

fundamental, fifth and seventh order harmonic frequencies.  

Fig. 6 shows the harmonics compensation block of 

PV interfacing inverters. In this figure, the virtual 

admittance (conductance) at h
th

 harmonic is represented by 

Yh. The gain Si/∑Sj is used in order to share harmonics 

compensation effort according to the power capacities of the 

units. A saturation block is used to limit the virtual 

admittance for preventing DG units from over current. The 

maximum values of the virtual admittance are calculated 

based on the method presented in [33]. Then, the obtain 

signal (Yh
*
) is multiplied by the compensation reference 

from secondary control (CPV
h
). Afterward, the compensation 

current in dq form at h
th

 harmonic frequency (Idqh,PV) should 

be transferred  to αβ frame (Iαβh,PV). Finally, compensating 

currents in different frequencies (Iαβh,PV) are added to 

generate compensation current (ICom,PV) . 

4. Simulation Study  

The system which is depicted in Fig. 7 is used for 

simulation study. Four DG units including two VCM and 

two PV units (CCM units) are used. The parameters of the 

power stage, PV and control systems are listed in 1, 2 and 3, 
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Fig. 7. Test system  

 

Table 1.  Parameters of power system 

DC link voltage LCL filter (L1/C/L2) Voltage/ 

Frequency 

650V For all DGs: 

8.6mH/4.5μF/1.8mH 

230V/50Hz 

Local Nonlinear Loads 

 

SB Nonlinear Load 

 

CNL(μF) RNL(Ω) LNL(mH) CNL(μF) RNL(

Ω) 

LNL(mH) 

235 114 0.084 235 50 0.084 

 Line impedance 

ZL1(Ω)  ZL2(Ω) ZL3(Ω) ZL4(Ω) ZNL (Ω) 

0.1+0.5j 0.1+0.5j 0.1+0.5j 0.2+j 0.1+0.5j 

 

Table 2. Parameters of PV system [34] 

 

Definition  Symbol  Value 
Number of 

series cells 
NS 56 

Number of 
parallel cells 

NP 1 

Temperature 

coefficient  

KI 0.0032 

Open circuit 
voltage in 

normal 

condition  

VOC 33 

Short circuit 

current 
ISC 8.214 

Reference 

temperature  
Tref 25 

Parallel 

resistance 

RSH,cell 415 

Series 
resistance 

RS,cell 0.221 

Ideality 

factor 

m 3.3 

 

Table 3. Control system parameters 

Virtual admittance 

For CCM (PV) units 

Desirable 

(reference) value 

of harmonics 

Virtual 

impedance 

for VCM 

units 

Yh5, Yh7, Yh11 H5
*, H7

* ZV1, ZV5, ZV7 

0.0025, 0.0025, 0.0025 0.5, 0.5 1j, 3, 3 

DC link voltage controller VCM harmonics 

compensation effort block 

VDC
*, kp, ki H5,MAX, H7,MAX 

650, 0.002, 0.005 1,1 

 

respectively. The rated currents of VCM units are assumed to 
be 5 A; furthermore, the rated apparent powers of the PV 
interfacing inverters are 1650 VA. 

 

In order to evaluate the proposed method, the 

following scenario is used:  

Step 1 (3s≤t<6s): Activation of virtual impedance without 

SC 

Step 2 (6s≤t<9s): Activation of SC without considering the 

CCM units compensation  

Step 3 (9s≤t<12s): Decreasing the power generated by PV 

system 

Step 4 (12s≤ t<16s): Activation of secondary control 

considering the limited capacity of VCM inverter   
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Step 5 (16s≤t≤20s): Decreasing the load  

Fig. 8 shows the active power delivered by VCM 

units. Since the rating capacities of these units are the same, 

equal droop coefficients are used for these units and as a 

result, their delivered active powers are equal in different 

steps. This figure depicts that when the powers of PV 

systems are decreased in Step 3, the VCM units deliver 

more power in order to regulate the frequency of the MG 

and in Step 5, and the delivered active powers of the VCM 

units are decreased. 
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Fig. 8.  Delivered active power of VCM units. 
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Fig. 9. Delivered active power of PV unit. 

Step 1 Step 2 Step 3 Step 4 Step 5 

R
M

S
 v

a
lu

es
 o

f 
V

C
M

 u
n

it
s 

c
u

rr
en

t 
(A

)

Time (s)

 

Fig. 10. Delivered currents of VCM units 
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Fig. 11. The values of KAl,1 and KAl,2 of VCM units in 
different steps 

 

Fig. 9 shows the active power delivered by PV 

interfacing inverters. As depicted in this figure, after 

changing the sun irradiance from 1000 Watt/m
2
 to 600 

Watt/m2 the MPPT and control systems of PV units can 

track the change. 

Figs. 10 and 11 show the RMS value of VCM units 

currents and their over loading alert coefficients (KAl,1 and 

KAl,2), respectively. As depicted in Fig. 10, when the sun 

irradiance is changed from 1000 Watt/m
2
 to 600 Watt/m

2
  in 

Step 3, the RMS values of VCM currents are increased. 

Since the RMS values of these currents are more than 5 A in 

this Step, the amounts of KAl,1 and  KAl,2 are increased after 

considering the limited capacity of these inverters in Step 4. 

Increasing KAl,1 and  KAl,2 leads to contribution of PV 

interfacing inverter into harmonics compensation and 

reduced compensation efforts of VCM. As a result, the 

overcurrent problem of VCM units is mitigated as it is 

shown in Fig. 10.  Finally after decreasing the load in Step 5, 

since the required load is decreased, the RMS values of 

VCM units are decreased. In this condition, since the VCM 

units do not face the overload problem, the KAl,1 and  KAl,2  

are 0 (i.e. L1 and L2 are 1)  and they contribute in harmonics 

compensation with their full capacity. 

 

The injected current of the PV interfacing inverters is 

also depicted in Fig. 12 for Steps 2, 4 and 5. As shown in 

this figure, since the values of KAl,1 and  KAl,2 are 0 in Steps 2 

and 5, the PV interfacing inverters do not contribute to 

harmonics compensation while in Step 4, they make an 

effort for compensation in order to mitigate the overload 

problem of VCM units. 

Fig. 13 shows the fifth and seventh harmonics of SB. 

As mentioned before, since resistive virtual impedance is 

used for VCM units, the amounts of these harmonic 

components of SB bus are increased in Step 1. After 

secondary control activation in Step 2 the fifth and seventh 

orders harmonics of SB voltage are decreased and can track 

the reference (desirable) value 0.5% which is defined in 

Table. 3 (i.e. H5
*
 = H7

*
=0.5%). 
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Fig. 12. Injected currents of PV interfacing inverters in 

different steps: a) Step 2, b) Step 4, c) Step 5 
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5. Conclusions  

In this paper, a coordinated secondary-control-based 

method is proposed for VCM and CCM  units in an islanded 

microgrid. In this approach, the VCM units are responsible 

of power quality compensation as well as supporting 

frequency and voltage; however, the PV interfacing 

inverters contribute to harmonics compensation when VCM 

units are overloaded due to compensation. Simulation 

results showed that by using the secondary control approach, 

the overloading problem of VCM units is solved by 

harmonics contribution of CCM units.  

Furthermore, the results showed that by using the 

secondary control, harmonics compensation is achieved and 

SB fifth and seventh orders harmonic voltages is reduced to 

approximately 0.5% which is defined as desirable values., so 

long as they follow the same style.  
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