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Abstract: The installation of smart meters at customer premises provides opportunities for the
monitoring of distribution grids. This paper addresses the problem of improving the observability of
low-voltage distribution grids using smart metering infrastructure. In particular, this paper deals
with the application of state estimation algorithm using smart meter measurements for near-real-time
monitoring of low-voltage distribution grids. This application is proposed to use a nonlinear weighted
least squares method-based algorithm for estimating the node voltages from minimum number of
smart meter measurements. This paper mainly deals with sensitivity analysis of the state estimation
algorithm with respect to multiple uncertainties for, e.g., measurements errors, line parameter errors,
and pseudo-measurements. Simulation studies are conducted to estimate the accuracy of the DSSE
under various operating scenarios of a real-life low-voltage grid, and cost-effective ways to improve
the accuracy of the state estimation algorithm are also evaluated. The paper concludes that by
using smart meter measurements from few locations, voltage profiles of the low-voltage grid can be
estimated with reasonable accuracy in near-real-time.

Keywords: distribution system state estimation; grid observability; sensitivity analysis; smart meters;
weighted least squares method

1. Introduction

Power distribution systems are undergoing a radical change from passive power consumption
mode to active participation of loads and generators [1]. An active distribution grid experiences wide
variations in the power flows and voltage profiles making its monitoring and control a challenging
task [2,3]. In the past, distribution system operators (DSOs) were not monitoring the low-voltage (LV)
distribution grids as there were no requirements and operational challenges. Furthermore, the technical
reason for poor observability of LV grids was the unavailability of measuring devices, except at primary
and secondary distribution substations [4]. However, the recent operational scenarios with widespread
residential PVs and increasing power intensive loads such as electric vehicles are causing bottlenecks
in the grid operation [5,6]. In order to take corrective actions and maintain the quality of power at
all times, close to real-time monitoring of LV grids is becoming more and more important [7].

Residential customers of LV grids are provided only three-phase supply connection in Nordic
countries, while in some countries in Europe and the rest of the world, those customers have
single- or three-phase connections. Load imbalances at LV grids could be high due to the increasing
presence of single-phase loads such as heat, ventilation, and air-conditioning systems (HVAC) systems;
electric vehicles (EVs); etc. Smart meters are being deployed at many countries around the world.
The roll-out of smart meters is not evenly distributed across Europe. Nordic countries have achieved
almost 100% deployment of smart meters, while in other countries the numbers are increasing.
At present, smart meters are used mainly for billing, although DSOs are starting to analyze the
historical smart meter data to gain knowledge on their infrastructure. The existing AMI in Nordic
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countries is a bottleneck for real-time monitoring of LV grids due to the data collection mechanisms
and the players involved [8]. Data from smart meters are first collected in data concentrators, which are
communicated to a head-end server and then to the respective DSO control center. It may take about
six hours or even more to get data from all smart meters to the DSO control center depending on the
communication network and associated infrastructure [9].

Smart meters can be utilized with the required modifications in the AMI set-up to improve
the grid observability [10]. The present day smart meters have the capability to accurately measure
various electrical parameters along with the energy consumption and communicate the information
to the DSO’s control center [11]. Smart meters can record and communicate measured data at time
steps of few minutes (typically 15 min) which improves the time resolution of the recorded data [9].
This paper deals with employing a state estimation technique that uses smart meter data for estimating
the grid voltages with reasonable accuracy. In the next subsections, the state-of-the-art, assumptions,
and contributions of this paper are provided.

Distribution system state estimation (DSSE) is an important tool for DSOs to monitor the
grid variables (voltages, currents, and powers) and grid assets such as cables and transformers.
A state-of-the-art review of DSSE can be found in [12–14]. In [12], the technological barriers and
challenges for implementation of the DSSE are analyzed. While in [13], various mathematical
formulations, meter placement techniques, and cyber-security issues related to DSSE implementation
are elaborated. Some of the advanced theoretical formulations that provide optimal solutions of the
DSSE algorithm are reviewed in [14]. In all the review papers above, the importance of state estimation
algorithm to improve grid observability is clearly illustrated. However, a detailed study about the
sensitivity of the DSSE algorithm applied to monitoring of a practical LV grid using smart meter data
is missing in the literature, which will be addressed in this paper.

The works in [10,11] deal with utilizing smart metering infrastructure for state estimation in
LV grids. It is pointed out in [10–13] that the accuracy of the DSSE is of utmost concern for the
estimated results to be useful to DSOs. Estimation of grid voltages/currents by the DSSE algorithm
is affected by uncertainty in measurement data and grid topology data. To study the impacts of the
uncertainty, a sensitivity analysis of the state estimation algorithm from a power system point of view
is presented in [15,16]. The above references acknowledge that measurement errors, poor knowledge
of grid parameters, and using pseudo-measurements deteriorate the accuracy of the DSSE. The line
parameters are difficult to obtain with high accuracy because the cable data are missing in most cases,
the database of cable information is not properly maintained, cable lengths are not exactly known,
and the aging phenomenon of cables. However, the ways to improve accuracy of the DSSE with
additional voltage/current measurements by smart meters, using pseudo-measurements at nodes
where smart meters are unavailable, and additional measurement devices such as RTUs are not studied.
This paper tries to address the above problem by considering the assumptions stated below.

In this paper, uncertainty in smart meter measurements and grid parameters are assumed to be
bounded. In other words, the meters are assumed to be in good working condition ruling out bad data,
loss of communication, and cyber-attacks. The errors in grid parameters are assumed to be within a
known interval, which means that the grid topology is known.

Although smart meter measurements can be utilized for a variety of smart grid applications,
real-time monitoring of distribution grids is one of the important requirements of DSOs at present.
This is possible by implementation of a DSSE algorithm using the available smart meter measurements
to estimate grid voltages with reasonable accuracy. Keeping this in mind, this paper makes the
following main contributions.

1. Application of a DSSE algorithm for near-real-time monitoring of LV grids by using fewer
smart meter measurements. It is to be noted that the proposed DSSE algorithm takes voltage
measurements from few nodes thus avoiding installation of additional measurement devices
such as RTUs making the deployment of the DSSE easier and uses pseudo-measurements at
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locations in which smart meter measurements are either unavailable or cannot be accessed close
to real-time.

2. Sensitivity analysis of the DSSE algorithm with respect to uncertainty in measurement errors,
number and type of measurements, and grid parameters.

3. Proposal for practical deployment and utilization of DSSE algorithm for near-real-time
monitoring.

This paper is organized as follows. Architecture of the grid along with ICT infrastructure is
discussed in Section 2. In Section 3, details of the DSSE algorithm, such as its challenges, types,
methods, comparisons, and applications, are provided. An application of the DSSE algorithm, namely,
the near-real-time monitoring of LV grids is explained in Section 4. Sensitivity analysis of the proposed
DSSE algorithm with respect to uncertainty in measurements and parameters are carried out in
Section 5. Simulation studies conducted on a Danish LV network using the proposed DSSE algorithm
are also presented in this section. A discussion about the implementation of DSSE in a real-life LV grid
is provided in Section 6 and the paper concludes in Section 7.

2. System Architecture and AMI Utilization at Present

A detailed knowledge of the grid architecture with underlying infrastructure for measurements,
communications, and control is required to implement new functionalities such as state estimation.
In this section, a high level structure of a typical LV distribution grid with an ICT infrastructure typical
for Nordic countries is studied whose schematic diagram is shown in Figure 1. It is to be noted that
the advanced metering infrastructure (AMI) acts as the backbone of the data collection mechanism
from the customer premises to the DSO control centre [9].
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Visualization Analytics
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Figure 1. Schematic layout of a typical advanced metering infrastructure (AMI) infrastructure in
Nordic countries.

As shown in Figure 1, the AMI comprises smart meters, data concentrators, communication
channels, and data management systems that enable communication between customers and the DSO.
Measurements from smart meters of a particular LV grid are collected at a data concentrator which is
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usually present at the distribution substation. The collected data are then sent to the AMI head-end
via a wide-area network (WAN) [8]. The control center hosts the human–machine interface (HMI),
visualization applications, and a data analytics module. The analytics module processes the received
measurement data and displays the required information to the operators using the visualization tools.
The communication technologies could be of many types such as cellular, meshed radio-frequency
(MRF) networks, or PLC. In order to minimize the cost of the ICT infrastructure, the DSOs, particularly
in Europe, deploy RM networks instead of the fastest Ethernet or fiber based networks. Moreover,
these networks are designed to measure only the power consumption of customers for billing purposes
only [17].

In the following sections, recommendations on how to use existing AMI infrastructure and smart
meter measurements for grid monitoring and their details are provided.

3. DSSE Algorithm

As explained in Section 2, high-resolution data from multiple locations of a LV grid can be
obtained using the AMI. However, the measured data are prone to uncertainty which need filtering
and further processing. It is pointed out in Section 1 that a DSSE algorithm is able to process the
measurement information and estimate the grid states reliably.

3.1. Challenges of DSSE

Challenges in estimating the grid states are mainly related to uncertainty in the line parameters,
errors in smart meter measurements, number, type, and location of smart meter measurements [2].
The following are to be considered while designing a proper DSSE algorithm to overcome the above
said challenges are provided below.

1. Time required to get measurements from smart meters: It is to be noted that smart meter data
need to be collected and communicated to the headend server and then to the DSO control center.
If radio-meshed communication networks are part of the AMI, it may take about six hours or more
to collect data from all smart meters in a typical LV grid [9]. For near-real-time monitoring of LV
grid, it may be desirable to obtain data from few smart meters and utilize pseudo-measurements
for the rest of the locations [8].

2. Line parameters: There is an uncertainty with respect to line parameters, due to lack of complete
knowledge of cable type, aging of cables, changes in grid topology, etc. [18]. Parametric uncertainty
may have an impact on the DSSE accuracy which has to be assessed [16].

3. State variables of DSSE: Typically voltage phasors are considered as state variables in
DSSE algorithm. However, for asset management application of DSSE, choosing branch currents
in rectangular coordinates may be more convenient and have less computational burden compared
to voltage phasors [19].

4. Method of DSSE: The nonlinear weighted least squares method may be more appropriate for
asset management application because of its simplicity and accuracy [20]. For near-real-time
monitoring, either recursive least squared method of Kalman filter may be preferred, as the data
available for processing will not be static and the method should be able to accept sequential data
from sensors [21].

5. Type of DSSE: Single-phase DSSE may be performed if the LV grid is assumed to be balanced
which is preferable for near real-time monitoring application for its fast execution. For asset
management application, three-phase DSSE may be considered for better accuracy and accounting
the inherent unbalancing in LV grids with residential loads [22,23].

3.2. Applications of DSSE

In a typical distribution grid, DSSE may be used for the following applications.
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1. Near real-time monitoring: The objective of this application is to achieve full observability of
distribution grids close to real-time. To minimize the communication bandwidth, only the
critical smart meter measurements could be made available to the DSO control center.
These measurements in addition to pseudo measurements can be used by the DSSE algorithm to
estimate the node voltage phasors. The voltage violations will become detectable prompting the
DSO to activate suitable control measures.

2. Asset management: Primary responsibility of a DSO is to monitor the health of grid assets and
manage their utilization optimally. The power consumption data communicated from smart
meters are stored in a database. From this data, the DSO can perform offline power flow analysis
using the DSSE algorithm. The aim of such analysis is to estimate the energy efficiency of the grid,
loading of the grid assets such as cables and transformer.

Comparison of the requirements of the proposed DSSE algorithm for the above applications
are summarized in Table 1. Let M be the number of measurements which includes smart meter
and pseudo-measurements and S be the number of grid states which are typically the node voltage
magnitudes and phase-angles.

Table 1. Comparison of requirements of DSSE algorithm.

Near Real-Time Grid Monitoring Grid Asset Management

Measurements Synchronous or asynchronous Synchronous
Number of measurements M ≤ S M ≥ S
Observability analysis Required Not applicable
Sensitivity analysis Required Required
Type Single-phase DSSE Three-phase DSSE
Grid model Nonlinear model (exact) or linear

model (approximate)
Nonlinear model (exact)

Method Nonlinear WLS or Extended
Kalman filter

Nonlinear WLS

State variables Voltage phasors Voltage phasors or branch currents
Accuracy requirement Moderate High

3.3. Inputs to the DSSE Algorithm

Figure 2 shows the block diagram of the DSSE algorithm for improving the observability of
distribution grids. The inputs to the DSSE are the grid topology and the line parameters along with
power measurements from smart meters. The grid topology information is obtained from the database
of the respective DSO. It may not be an easy task to gather these data unless the DSO maintains all the
grid information in a single database with a standard format such as the common information model
(CIM) [24]. The line parameters are obtained from the information about the cable types and respective
data sheets. The measurements are assumed to be provided by smart meters. There could be other
devices such as RTUs and PMUs whose measurements can also be used to improve accuracy. The work
reported in this paper is limited to the usage of smart meter measurements for the DSSE algorithm.
Some of the measurements given as inputs to the DSSE may be virtual, if they are generated from the
historical data and are called pseudo-measurements.

Distribution 
System State 

Estimator

Grid topology

Smart meter 
measurements

Pseudo 
measurements

Grid voltages 
and powers

RTU/PMU 
measurements

Line parameters

Figure 2. Block diagram of the DSSE algorithm.
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The DSSE estimates the grid voltages and power flows which can be further processed and used
for many applications including power loss calculation and voltage regulation. The discussions
in this paper are limited to inputs from smart meter measurements only. To minimize the
communication overhead, pseudo-measurements are considered in this work in some of the LV
grid nodes.

As mentioned in Section 1, this paper focuses on the near-real-time monitoring application of the
DSSE algorithm. Taking the above into account, in this work, the nonlinear WLS method is chosen
for the DSSE algorithm because it is a simple method and its accuracy is similar to that of Kalman
filter [25] and its details are provided below.

3.4. Nonlinear Weighted Least Squares Based DSSE Algorithm

This paper employs nonlinear weighted least squares (NWLS) method [26] for the state estimation
with synchronized measurements from smart meters for estimation of grid voltage phasors by
single-phase DSSE. Let us assume that there are M number of smart meters measuring the active
and reactive powers represented by the vector z ∈ R2M. Let us assume that there are N nodes in
the LV grid and the system states be the voltage magnitudes and phase angles be the state variables
represented by the vector x ∈ R2N . The measurements and state variables are related by the expression
in (1).

z = h(x) + ε (1)

where h(·) : R2N → R2M is a vector-valued nonlinear function, and the vector ε of size 2M denotes
the random measurement noise, which is assumed to be white with the normal probability distribution
p(ε) ∼ N (0, R). The measurement covariance matrix R is assumed to be constant.

Let the expected measurement be expressed as ẑ = h(x) and let us define the residual vector r as
provided in (2).

r = z− ẑ (2)

The objective of the WLS method is defined to be minimizing the sum of squares of the residuals
as provided in (3).

min
x

J =
2M

∑
i=1

1
σ2

i
r2

i = (z− ẑ(x))T W (z− ẑ(x)) (3)

The weighting matrix W is defined as follows.

W =


1

σ2
1
· · · 0

...
. . .

...
0 · · · 1

σ2
2M

 (4)

The diagonal elements of the above matrix are the inverse of the variances of the errors (σ2
i is

the variance of the error between the true value and the ith smart meter measurement). The solution
to (3) is obtained by application of Gauss–Newton method which involves solving iterative equations
in (5a)–(5c).

rk = zk − h(x)k (5a)

∆xk = (HTWH)−1HTWrk (5b)

xk+1 = xk + ∆xk (5c)

where, k is the iteration index, H is the Jacobian matrix computed from h(x). Utilization of this method
for near-real-time monitoring application of the DSSE is described in the following section.
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4. DSSE for Near-Real-Time Monitoring

This paper focuses on the near real-time monitoring application of the DSSE algorithm using
nonlinear WLS method. The other applications of the DSSE such as asset management are reserved for
our future works. A flowchart showing the inputs and the data flow in the proposed DSSE is provided
in Figure 3.

Grid topology and line parameters are obtained from the database maintained by the DSO.
In order to generate pseudo measurements for some of the nodes of the LV grid, either load profiles
from historical database or a standard load profile can be used. Artificial intelligence techniques
can be applied on historical load data to forecast load consumption that can be used as pseudo
measurements [27,28]. A standard load profile represent the power consumption behavior of a
particular consumer category (e.g., residential, industrial, and commercial) [29]. The standard load
profile can be used as a pseudo-measurement for that category of customers if their measurements
cannot be obtained in near real-time or if we want to deliberately avoid their measurements to minimize
communication overhead.

Start

Get grid topology 
&  line 

parameters 

Generate pseudo-
measurements 

Get data from 
selected smart 

meters 

Enable 
DSSE?

Estimate voltages 
based on 

Equation (5)

Wait for next 
time-step

yes

Stop

no

Figure 3. Flowchart of the proposed smart meter data-based DSSE.

A Danish LV grid which has smart meters installed at all customer premises is chosen for the
case studies conducted in this paper. The details of the LV grid, modeling, and simulation setup are
provided in the below subsections.

4.1. Details of the LV Grid Used for Case Study

Figure 4 shows the schematic diagram of the LV distribution grid in Thisted, Denmark, which is
used in this study. This LV grid consists of a secondary substation with 5 feeders. The main and the
longest feeder, named Feeder 5, with 13 nodes can be seen in Figure 4, while the other four feeders are
represented as a lump load at the secondary side of the 10/0.4 kV, 630 KVA substation transformer.
Feeder 5 caters to 23 customers who belong to the categories of residential loads and non-residential
loads such as a school, farm, pumping station, etc.
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3011-L3011-H 11506

11507 11510 11511

11508 11509

11512
11513

11501 11502 11503 11504 11505

10/0.4 kV
630 KVA

Lumped
load

Legend

Non-residential 
load

Residential load

Figure 4. Schematic diagram of a simplified radial LV feeder in Thisted, Denmark.

4.2. Grid Model for DSSE Simulations

The LV grid shown in Figure 4 is assumed to be balanced. This assumption is based on the
analysis of one year data of node voltages. Phase voltage unbalance rates (PVUR) were calculated and
it was found that PVUR ≤ 1% for more than 95% of the time. Therefore, a single-phase equivalent
model of the LV grid is considered in this paper. The parameters of the cables of the LV grid are
provided in Table 2.

Table 2. Cable parameters of the LV grid.

Cable Resistance Series Reactance Shunt Admittance
(Ω/km) (Ω/km) (µS/km)

Type 1 0.207 0.072 204.2
Type 2 0.320 0.075 175.9
Type 3 0.727 0.087 125.6

The cables from the substation to node 11503 are of type 1, while those from 11503 to 11509 are
of type 2, and the remaining cables are of type 3. The average lengths of the type 1 cable is 0.057 km,
type 2 cable is 0.08 km, and that of type 3 cable is 0.082 km. The cable parameters provided in Table 2
are obtained from the respective cable datasheets. There is an uncertainty in the cable parameters as
the actual parameters may be different due to inaccuracy in the cable lengths, aging of cable, and so on.
The private cables of the customers from each node to the respective load terminals are ignored in the
grid model, which introduces additional errors. The data of these cables are generally not known to
the DSOs as they are laid in the customer premises.

The cables may be represented using a lumped π-model [30] as shown in Figure 5 which includes
the cable shunt admittances. As seen from Table 2, the shunt admittances are so small that their
inclusion in the grid model may not cause a significant error in the power flow calculations.

i ij ijr x j j

2 cijxj2 cijxj

Figure 5. Single-phase equivalent circuit diagram of the lumped π-model of a cable between two nodes.

To verify the effect of shunt admittance parameter in the grid modeling, a load flow study was
conducted using the Newton–Raphson method on the LV grid. A typical daily load profile of time-step
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15 min is used for the study with and without the shunt admittance parameters. The results of the
load flow and their comparison are shown in Figure 6. It can seen from Figure 6 that the inclusion of
cable shunt admittance in the grid modeling has very less impact on the calculated node voltages.
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Figure 6. Plot of node voltages obtained from load flow results (a) without including cable shunt
admittances and (b) with cable shunt admittances.

Therefore, in this study the shunt admittances of the cables are ignored in the grid model.

4.3. Simulation Set-Up

The simulation set-up to numerically validate the DSSE algorithm involves the two steps shown
in Figure 7. The first step that involves calculating the node voltages from smart meter power
measurements and it is required in this work because the smart meters are not configured to measure
voltages in the LV grid under study. If the node voltages are measured simultaneously with powers
this step can be skipped.

As mentioned above, in the first step, the true values of the system states (i.e., node voltages)
are found from simulations using ePHASORsim module of OPAL-RT real-time simulator. A detailed
three-phase circuit model that includes shunt admittances of the cables and private cables from the
connection box to the point of connection of the customer loads is used in the ePHASORsim to perform
load flow studies. Historical smart meter data of one year duration with 15 min time step measured on
all three phases at all customer locations are fed as inputs for the load flow analysis. Load flow analysis
was performed in offline mode to get the grid states, i.e., voltage magnitudes and phase angles at all
three phases in the connection boxes, i.e., nodes. If there are two or more customers connected to the
same node, the net active, and reactive power consumption are computed at each node. These values
are assumed to be the true values for comparison with the results of the DSSE.

The grid model used in the DSSE algorithm is developed using the modeling approach described
in Section 4.2. The positive sequence voltages at all nodes are calculated from the three-phase voltages
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which are compared with the estimated values from DSSE algorithm. The three-phase active and
reactive powers at the connection boxes obtained from the OPAL-RT offline simulations are summed
up and fed as single-phase equivalent power inputs to the DSSE algorithm.

A sensitivity analysis of the DSSE algorithm is done to study the impact of uncertainty on its
estimation accuracy in the next section.

Load flow in 
OPAL-RT

(ePHASORSIM)

Detailed grid 
parameters

Three-phase powers 
at load terminals

Three-phase node 
voltage phasors

(a) 

DSSE in Matlab/
Simulink

Summed up single-
phase powers at nodes

Node voltage 
phasors (single-

phase equivalent)

(b) 

Three-phase 
voltage phasors 
(from OPAL-RT)

Positive sequence 
calculation

Positive sequence 
node voltages

Standard load profile as 
pseudo measurements

Grid parameters 
(uncertain)

Figure 7. (a) Offline simulation using smart meter data in OPAL-RT and (b) simulation of DSSE in
Matlab/Simulink.

5. Sensitivity Analysis of DSSE

In this paper, the transformer tap settings and states of reactive power compensators such as
capacitor banks are assumed to be known. Therefore, their influence on the accuracy of the DSSE
algorithm are not evaluated. Performance of the DSSE algorithm is dependent on the type and accuracy
of inputs and model parameters [16]. To assess the impact of inaccuracies in inputs and parameters on
the DSSE, errors of known magnitudes are added to the measurements and line parameters.

Sensitivity analysis of the DSSE algorithm is carried out using the inputs that contain
errors with respect to various uncertainties such as measurement errors, pseudo measurements
and grid parameters in the next subsections. In order to quantify the accuracy of the DSSE,
two metrics—percentage absolute error (PAE) and mean absolute error (MAE)—with the below
expressions are used.

PAEκ =
|vκ

true − v̂κ |
vκ

true
× 100 (6)

MAE =
1
N

N

∑
i=1
|vtrue − v̂| (7)

where κ is the time instant, vtrue is the true value of node voltage obtained from OPAL-RT offline
simulation, and v̂ is the estimated voltage by DSSE algorithm from Matlab/Simulink simulation. It is
to be noted that PAE is calculated using the results of DSSE at each time instant and at each node.
On the other hand, MAE is calculated over a period N of the results of the DSSE for every node.
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5.1. Sensitivity of DSSE to Measurement Errors

Measurement devices such as smart meters do have some errors in their measurements. As per
the European measurement instruments directive, the maximum permissible errors for electricity
meters are ±2.5% and ±2.0% at the minimum and maximum current flows, respectively [31].

In this paper, a stochastic model of the measurement noise is employed by adding a Gaussian
white noise with a standard deviation (σ) of 0.01 to the smart meter energy measurements. The value
σ = 0.01 corresponds to a maximum error of 0.03 pu in the magnitude of energy values.

DSSE algorithm is executed using the active and reactive power measurements from smart meters
of the year 2018 with and without measurement errors and the PAE in estimated node voltages are
calculated at each time step. Three test cases are conducted with no errors in power measurements,
with Gaussian noise of σ = 0.01 and a fixed systematic error of +0.03 pu. The last case is conducted
to calculate the PAE of the DSSE algorithm if a hypothetical systematic error of 0.03 pu magnitude is
added to measurements. The results of all three cases are tabulated in Table 3. The probability of PAE
to be equal to or higher than 0.5 pu and 1.0 pu are provided in the last two columns, respectively.

Table 3. Performance of DSSE with measurement errors for the year 2018 data.

Case Error Type Error Magnitude (pu) Maximum PAE (%) P(PAE) ≥ 0.5 P(PAE) ≥ 1.0

Case 1 No errors - 2.09 0.192 0.025
Case 2 Stochastic error σ = 0.01 2.15 0.194 0.026
Case 3 Systematic error +0.03 2.35 0.257 0.042

The above results show that the more noise present in measurements, the higher the errors in
voltage estimation, though the increase in errors are not significant. It is to be noted that in Case 1,
although there are no measurement errors, the PAE is above 2%. This is due many factors that are
included in the DSSE algorithm such as simplified grid model based on single phase equivalent circuit,
ignoring the private cables from node terminal to load connection point which contribute to the errors
in voltages estimation.

Figure 8 shows the results of a simulation done with measurements made on 7 January 2018,
the day which recorded the peak power consumption in the LV grid. A white Gaussian noise (σ = 0.01)
was added to the measurement values for this simulation. It can be seen that the PAE is high when the
power consumption is high. The maximum MAE for this day is calculated to be 0.337 pu at node 11511.
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Figure 8. Plot of DSSE simulation with measurement errors (a white Gaussian noise of σ = 0.01) using
measurements recorded on 7 January 2018 (a) PAE in node voltages and (b) node active powers.
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5.2. Sensitivity of DSSE to Pseudo Measurements

As pointed out in Sections 3 and 4, not all smart meter measurements may be available to the
DSSE for near-real-time monitoring. Therefore, pseudo-measurements will be used as a substitution
for the load connection points from which near-real-time measurements are not available. Impact on
the accuracy of the DSSE algorithm due to usage of pseudo-measurements has to be estimated.

In order to study the sensitivity of DSSE to pseudo measurements, it is assumed that
measurements of all residential loads connected from node 11506 to 11513 (i.e., around 60% of loads in
the LV grid shown in Figure 4) are pseudo-measurements to the DSSE. Standard load profile for the
residential customers of the LV grid was obtained from the respective DSO. The typical active and
reactive powers of the standard power profile of residential customers are shown in Figure 9.
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Figure 9. Plot of standard power profiles of residential customers on a typical day.

In Figure 10, the results of the simulation with standard profile as pseudo measurements for
the year 2018 is shown. The maximum PAE is increased from 2.09 pu (refer to the base case without
pseudo-measurements in Section 5.1) to 7.9 pu with pseudo-measurements. Compared to the cases
with measurement errors, pseudo-measurements affects the accuracy of DSSE to a larger extent.

Figure 10. Plot of percentage absolute error in node voltages estimation with standard load profile
as pseudo-measurements.
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5.3. Sensitivity of DSSE to Grid Parameters

The sensitivity of DSSE to variations in the line parameters (line resistances and reactances) are
studied in this subsection. A simulation was done with uniform distribution of errors with a standard
deviation σ = 0.028 pu which corresponds to a maximum variation of ±10% in the line resistances and
reactances. Another simulation with a 10% increase in line resistances and reactances was conducted.
The results of both cases are compared with the base case (without errors) in Table 4.

Table 4. Performance of DSSE with grid parameters for the year 2018 data.

Case Error Type Error Magnitude (pu) Maximum PAE (%) P(PAE) ≥ 0.5 P(PAE) ≥ 1.0

Case 1 No errors - 2.09 0.192 0.025
Case 2 Uniform distribution σ = 0.028 2.49 0.297 0.048
Case 3 Fixed error +0.1 2.77 0.387 0.083

Compared to the simulation case with pseudo-measurements, variations in grid parameters have
less effect on the results of state estimation. However, the results show that DSSE algorithm is more
sensitive to grid parameters than the measurement errors.

5.4. Sensitivity of DSSE to Multiple Uncertainties Including Pseudo-Measurements

In the previous subsections, simulations cases that assessed the performance of DSSE to individual
uncertainty were presented. In reality, there could be several type of uncertainties impacting the
accuracy of the DSSE algorithm simultaneously. Therefore, a simulation case is performed to study the
combined effect of uncertainty in measurements and line parameters and pseudo-measurements on
the accuracy of the DSSE algorithm. The results of this simulation plotted in Figure 11 show that the
maximum PAE is around 8.3%.

Figure 11. Plot of PAE for the simulation of DSSE with multiple uncertainties.

For most of the voltage control applications, the above errors in voltage estimation are not
acceptable. Moreover, the demand response programs that control the power consumption of flexible
resources such as heat pumps and EVs are dependent on the highly accurate results of the state
estimation as mentioned in [32]. The maximum voltage deviation allowed in distribution grids as per
EN50160 standard [33] is ±10%. If the voltage estimation error is higher (≥1%), the voltage control
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algorithms and demand response control may not function properly. The methods to improve the
accuracy of the DSSE algorithm is investigated in the next subsection.

5.5. Improving Accuracy of the DSSE

Accuracy of the DSSE algorithm can be improved by having additional measurements which
could be node voltages/currents or branch voltages/currents. Some possible ways of increasing
the measurements as per the works in [34–36] are (i) installing RTUs/PMUs at nodes where
smart meter measurements cannot be obtained in real-time, (ii) additional voltage and/or current
measurements by smart meters along with active and reactive energy values, and (iii) generation of
pseudo-measurements using more accurate methods instead of using standard power profiles.

As pointed out in [34], additional measurements in the form branch voltages or currents are not
possible in LV grids as the cables are laid underground. Furthermore, installation of additional
measurement devices (RTUs/PMUs) involves costs which the DSOs may not be able to afford.
Smart meters can be configured to measure voltages or currents along with power measurements
which involves no costs.

This paper proposes to measure voltages close to the far end nodes using the existing smart
metering infrastructure and use them as additional inputs to the DSSE algorithm. Instead of currents,
voltage measurements are preferred because of two reasons: (i) accuracy of current measurements
highly depend on the sensors used and presence of harmonics may have an impact on the accuracy,
and (ii) voltage measurements can be easily accommodated in the formulation of the nonlinear
WLS method.

Simulation cases were conducted with voltage measurements at the end nodes 11509, 11511 and
11513 as additional inputs to the DSSE algorithm. A simulation case, assuming the standard deviation
of the errors for the voltage measurements equal to that of the power measurements (i.e., σv = 0.03 pu),
was performed. The value of σv is an important parameter as it acts as a weight to the objective
function of the DSSE algorithm (please refer to Equation (3)). Although, the accuracy of the DSSE
is improved from 8.32 % to 0.98%, a reasonable value should be chosen for σv. In general, the smart
meters are more accurate in measuring voltages compared to the powers, therefore variances of
errors in their measurements in Equation (3) should be considered lesser than that of the errors in
power measurements. Due to above reason, another simulation case was done assuming the standard
deviation of errors of the voltage measurements equal to 0.01 pu, the value that is used also in [16].
Figure 12 shows the PAE of the estimated node voltages for this case.

The numerical analysis of the above simulation cases are provided in Table 5. It is evident from
the results that DSSE algorithm becomes more accurate with additional voltage measurements as
inputs in spite of the errors in measurements and line parameters.

Table 5. Evaluation of the DSSE algorithm with multiple uncertainties using the 2018 data.

Case Error Type Voltage Measurements Maximum PAE (%) P(PAE) ≥ 0.5 P(PAE) ≥ 1.0

Case 1 No errors No 2.09 0.192 0.025
Case 2 Mixed errors No 8.32 0.247 0.053
Case 3 Mixed errors Yes with σv = 0.03 0.98 0.003 0.000
Case 4 Mixed errors Yes with σv = 0.01 0.41 0.000 0.000
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Figure 12. Plot of PAE in estimated node voltages for the case with mixed errors and standard deviation
of voltage measurements σv = 0.01.

6. Discussion

From the results of the sensitivity analysis of the DSSE algorithm conducted in this paper with
respect to measurement errors, type and location of additional measurements, pseudo-measurements,
and grid parameters, the following facts are revealed.

• Sensitiveness of DSSE to uncertainties in the order from high to low level can be stated as
(1) location and type of measurements as inputs (e.g., voltage measurements at end nodes),
(2) pseudo-measurements, (3) grid parameters, and (4) measurement errors in smart meters.

• Voltage measurements from selected few nodes (the end nodes of the feeder) as additional inputs
are highly valuable to minimize the sensitivity of DSSE to multiple uncertainties.

In LV grids where smart meters are not installed on all customer premises, installation
of RTUs or PMUs at key locations is recommended. The method used for generation of
pseudo-measurements plays a critical role in the quality of the prediction and the accuracy of the
DSSE. Short-term load forecasting using artificial intelligence techniques can be used for generating
pseudo-measurements. In case of smart meter failures or constraints on communication network
bandwidth, pseudo-measurements play an important role in LV grids to provide estimates of the
missing measurements. Smart meters have the capability to detect voltage violation and send an alarm
signal to the control center. This feature can be used to execute DSSE algorithm on ad hoc basis to
estimate the voltage problems and take corrective actions.

Referring to Figure 1, if DSSE has to be implemented for near real-time monitoring application,
the most suitable place will be at the data concentrator at the LV substation for the following reason.
Smart meter data can be quickly communicated to the data concentrator than to the DSO’s control
center and they can be immediately processed for near real-time estimation of node voltages (once in
15 min). The expected time delay for the data transfer from smart meters to the data concentrator
is about 1–2 min. The execution time of the DSSE algorithm is negligible and it will be around
few seconds. The above time delays are not considered in our work as the objective is to monitor the
LV grids and the above time delays are not critical.

Implementation of the DSSE at data concentrators needs collaboration between DSOs who have
the knowledge of the grid topology, customers and other related parameters and AMI providers
who owns the communication infrastructure and access to smart meter measurements. DSSE can be
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gradually implemented starting with those substations facing challenges such as voltage unbalances
or transformer overloading etc.

Some points for future exploration on this topic are as follows.

• The impact on the accuracy of DSSE algorithm due to significant errors in line parameters and
grid topology.

• The performance of the DSSE algorithm with abnormal communication network conditions
(such as failure of communication, delays in communication, cyber-attacks, etc.).

• The possibilities to use DSSE for asset management which includes power loss calculation,
monitoring the loading of cables and transformers.

• The development of adapters responsible for accessing and collect required information from the
existing databases and making it available for the DSO to implement many smart grid applications.

• The scalability and applicability of the DSSE algorithm to thousands of secondary substations.

7. Conclusions

In this paper, the possibility of using a DSSE algorithm with smart meter data for real-monitoring
of LV grids is explored. It is pointed out that the existing AMI infrastructure based on the
communication network may be a bottleneck for the above-mentioned application. The proposed DSSE
algorithm takes smart meter measurements as inputs and makes use of a simplified single-phase model
of the grid and the nonlinear weighted least squares method to compute the node voltages. Simulation
studies of the DSSE algorithm using one year smart meter data are performed to evaluate the sensitiveness
towards various types of uncertainties. Sensitivity analysis of the DSSE algorithm is done using the model
of a small-scale Danish LV grid and it reveals that accuracy of the DSSE algorithm is affected to about
8.3% (worst case scenario) by the use of pseudo-measurements followed by uncertainty in line parameters
and smart meter measurements. It is found that including voltage measurements from end nodes as
inputs drastically improves the accuracy of the DSSE algorithm to about 0.5%.

From the practical deployment point of view, it is recommended to implement the DSSE algorithm
in the data concentrator to get the measurements from smart meters which enables to monitor the
node voltages close to real-time. Though the discussion in this paper is limited to using the DSSE
for near real-time monitoring of LV grids, the estimated states can be used for control purposes
(e.g., coordinated control of flexible resources and demand response). Future works include extending
the DSSE algorithm for other smart grid applications such as demand response, automatic voltage
regulation, asset management, etc.
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The following abbreviations are used in this manuscript.

DSO Distribution system operator
DSSE Distribution system state estimation
ICT Information and communication technologies
MAE Mean absolute error



Energies 2020, 13, 5367 17 of 18

PAE Percentage absolute error
PMU Phasor measurement unit
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