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Spatially Correct Rate-Constrained Noise Reduction
For Binaural Hearing Aids in Wireless Acoustic

Sensor Networks
Jamal Amini, Richard C. Hendriks, Richard Heusdens, Meng Guo and Jesper Jensen

Abstract—Compared to monaural hearing aids (HAs), binaural
hearing aid systems, in which there is a communication link be-
tween the two devices, have improved noise reduction capabilities
and the ability to preserve binaural spatial information. However,
the limited HA battery lifetime puts constraints on the amount of
information that can be shared between the two devices. In other
words, the rate of transmission between the devices is an impor-
tant constraint that needs to be considered, while preserving the
spatial information. In this paper, a linearly constrained noise
reduction problem is proposed, which jointly finds the optimal
rate allocation and the optimal estimation (beamforming) weights
across all sensors and frequencies, while preserving the binaural
spatial cues of point sources. The proposed method considers
a rate constraint together with linear constraints to preserve
the binaural spatial cues of point sources. Minimizing the mean
square error on the estimated target speech at the left and the
right side beamformers, the optimal weights are found to be rate-
constrained linearly constrained minimum variance (LCMV)
filters, and the optimal rates are found to be the solutions to
a set of reverse water filling problems. The performance of
the proposed method is evaluated using the averaged binaural
signal-to-noise ratio (SNR), the interaural level difference (ILD)
error and the interaural time difference (ITD) error. The results
show that the proposed method outperforms spatially correct
noise reduction approaches that use naive/random rate allocation
strategies.

Index Terms—Wireless acoustic sensor networks, multi-
microphone noise reduction, rate-distortion trade-off.

I. INTRODUCTION

Multi-microphone noise reduction techniques, e.g., [1], [2],
can be used to increase the speech quality and intelligibility
of hearing aids (HAs). One way to use multi-microphone
noise reduction techniques in modern HAs is to enable the
left-ear and right-ear mounted HAs to collaborate through a
wireless link, leading to a binaural HA setup. The binaural
HA system provides increased spatial diversity and may result
in better noise suppression, compared to the case where the
monaural HAs perform noise reduction independently [3],
[4]. In addition to better noise suppression, multi-microphone
processing in the binaural HA setup can preserve binaural
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spatial information if taken care of, see e.g., [5]–[7]. These
spatial information preserving noise reduction algorithms typ-
ically aim to preserve the interaural level differences (ILDs)
and the interaural time differences (ITDs) of the relevant
signal components. ILDs and ITDs are known to help humans
determine the perceived location of the sound sources [6].

A common approach to achieve multi-microphone noise
reduction is to combine the spatial observations captured by
the microphones at a fusion center (FC) to estimate the sources
of interest, while reducing the amount of environmental noise
[2]. In the binaural HA setup, it is often considered that there
are two FCs, one at each HA. Over the last decade, several
binaural multi-microphone noise reduction algorithms have
been proposed (see e.g., [6], [8] for overview). Typically they
differ in the objective function they optimize and whether they
can preserve the spatial cues of the target source, interferers,
and the diffuse noise component. They can also differ in the
types of constraints used to preserve the spatial cues. Equality
constraints (see e.g., [5], [9]–[11]) are used to preserve exactly
the spatial cues of the sources, while inequality constraints
(see e.g., [12], [13]) are used to approximately preserve the
spatial cues of the sources. The latter category can typically
achieve a larger amount of noise suppression. In this paper,
we will focus on equality-constrained binaural multi-channel
noise reduction filters.

A well known binaural minimum mean square error
(MMSE)-based noise reduction algorithm is the binaural
multi-channel Wiener filter (MWF) [14], which aims at mini-
mizing the MSE of the target signal estimated at the reference
microphones of the two FCs without imposing any source
preserving constraints. This may result in significant noise
reduction, but a distorted target signal. In contrast to the
binaural MWF, the binaural minimum variance distortionless
response (BMVDR) beamformer [8] minimizes the output
noise power under two linear distortionless constraints that
preserve the target signal at the two reference microphones
leading to preservation of the binaural cues of the target
source. These two constraints, however, reduce the noise re-
duction performance of the BMVDR, compared to the binaural
MWF. Another example is the binaural linearly constrained
minimum variance (BLCMV) beamformer [5], [15], which
can preserve the ILDs and ITDs of the source of interest
and multiple interferers. As another example, the optimal
BLCMV (OBLCMV) [9] can achieve better noise reduction,
compared to the BLCMV, however, can only preserve the
ILD and ITD of one interferer. An LCMV-based approach
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is proposed in [10], [11] which tries to increase the degree
of freedom of the optimization problem by introducing a
set of linear equality constraints (firstly introduced in [16])
to enable preserving more interferers, for a given number
of microphones, compared to the BLCMV and the optimal
BLCMV. Most of the binaural LCMV-based methods differ in
how the set of linear constraints is designed.

In all the above-mentioned methods, the two FCs of the
binaural beamformers each estimate the target source with
respect to their corresponding reference microphone. To cal-
culate these estimates, both FCs are in need of the microphone
recordings from all sensors. This means that observations from
the contralateral devices, and potentially any other device
included in the setup, should be transmitted to the FCs. As the
devices have a limited amount of resources (here transmission
bandwidth) due to the limited battery lifetime, the total bit-
rate used for transmission should be constrained. Several
methods have been proposed in the literature to cope with this
problem [17]–[20]. In [19] a binaural rate-constrained noise
reduction approach is proposed which finds the optimal trade-
off between the rate of transmission and the amount of noise
reduction. The method finds the bound on the performance in
case there are only two processing nodes. In the present con-
text, these two processing nodes are the HAs. Scenarios with
more than two nodes are not considered in [19]. Besides this,
the inevitable requirement of the knowledge of the, generally
time varying, joint statistics of all microphone signals at both
HAs and using impractical infinitely long vector quantization
limit the application of the method in practice. As alternatives
to the optimal solution, several sub-optimal methods have been
presented [21]–[23]. In [24], such algorithms were described
in a unified framework. These sub-optimal methods try to
pre-filter the observation before quantization without knowing
the joint statistics, which enables the process to be faster
and simpler. For example, this pre-filtering could be done
to obtain a local estimate of the target or the interferer by
combining the local microphone signals at the corresponding
device. However, the pre-filtering stage combines the multi-
microphone observations into a single observation, which may
lead to a loss of some important information that needs to
be known to retrieve the signals at high rates. As a result,
even at an infinitely high rate of transmission, some important
information may be lost and the performance will not approach
that of the optimal algorithm presented in [19], not even
asymptotically.

To address the aforementioned limitations, an operational
rate-constrained noise reduction framework was proposed in
[25], which estimates the optimal rate allocation across differ-
ent frequencies and sensors using an operational rate-distortion
trade-off [26]. Unlike [19], it allows considering scenarios with
some additional assistive devices along with the binaural HA
setup , thereby forming a small-size wireless acoustic sensor
network (WASN) with more than two nodes. Furthermore,
for the two-node case, the performance of the algorithm in
[25] approaches that of the optimal algorithm in [19] at high
rates without any mismatch, as the observations are not pre-
filtered before quantization and necessary information will not
be removed. However, the exhaustive search, which is used in

[25] to find the optimal allocation across sensors, becomes
intractable when the size of the WASN grows. Therefore, this
method is suitable for small-size networks only. To address
this scalability issue, another approach based on non-convex
optimization was proposed in [27]. This method jointly finds
the best rate allocation and the best estimation (beamforming)
weights across all frequencies and sensors for arbitrary sized
WASNs. Based on the MSE criterion, the optimal estimation
weights are found to be rate-dependent Wiener filters and
the optimal rates are the solution to a filter-dependent “water
filling” problem. An alternating optimization approach which
is used in this method avoids an exhaustive search to find the
best allocations and performs almost as good as the exhaustive
search-based approach, in most practical scenarios, at the
benefit of a much lower computational complexity [27].

The above-mentioned methods deal with the rate-distortion
trade-off in the noise reduction problem based on the MSE
criterion. However, these methods do not take into account the
preservation of spatial information (cues) when dealing with
rate-constrained noise reduction problems. The noise reduction
performance is optimal when minimizing the MSE, but the
spatial information may be destroyed and the estimated signals
may sound unnatural and spatially incorrect. Therefore, this
raises the question of how to incorporate spatial information
preservation into the rate-constrained noise reduction problem
proposed in [27].

In this paper, inspired by [27], we propose and solve
a multi fusion-center spatially correct rate-constrained noise
reduction problem, to find the best rate allocation and the
best estimation (beamforming) weights across all sensors and
frequencies such that the spatial information of the sources is
preserved. The method links the LCMV-based beamformers to
data compression by including a set of linear constraints to the
original rate-distortion problem. Unlike [27], here, there are
two FCs, therefore, the objective function is to minimize the
sum of the distortions of the target estimation at both hearing
aids, while considering the total rate budget and simultane-
ously preserving the spatial information of the sources. Using
an alternating optimization approach, the optimal estimation
weights are found to be the rate-dependent LCMV filters, and
the rates for both fusion centers are the solutions to two water-
filling problems. The performance of the proposed method
is evaluated using output signal-to-noise ratio (SNR) gain
measures, and ILD and ITD error measures. Simulation results
show that the proposed method outperforms the methods with
equal/random rate allocation strategies.

II. PROBLEM STATEMENT

A. Signal Model

In this paper, a generalized binaural hearing aid system
is considered, which consists of two collaborating hearing
aids along with a number of additional assistive devices. We
assume that these assistive devices can only communicate
with the two HAs and not with each other. In total M =
ML +MR +MA microphones are assumed to be embedded in
the HAs and the assistive devices, including ML microphones
for the left HA, MR microphones for the right HA, and MA
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microphones for additional assistive devices. It is assumed here
that no pre-filtering is applied to the unprocessed microphone
signals to be transmitted to the FC, i.e., the microphone signals
per device are not combined (pre-filtered) to a single signal.

Each microphone records a version of the target speech
signal filtered by the position dependent room impulse re-
sponse. The recorded target signal is degraded by a number
of interfering point sources present in the room, diffuse noise
and/or microphone self noise. The target signal, in the short-
time Fourier transform (STFT) domain, is denoted by Sk ∈ C,
where k denotes the discrete frequency index. The interfering
point sources are indicated by Iki ∈ C, where i denotes the
point noise source index. All other sources of noise captured
at a particular microphone are indicated by Ukm ∈ C, with m
the microphone index. All sources are assumed to be additive
and mutually uncorrelated.

Let the subscript (·)m denote the microphone index. The
signal model can then be written as

Ykm = AkmSk +

Nkm︷ ︸︸ ︷
b∑
i=1

BkmiIki + Ukm, (1)

where Akm ∈ C is the acoustic transfer function (ATF)
between the target signal and the mth microphone, and
Bkmi ∈ C is the acoustic transfer function (ATF) between the
ith point noise source and the mth microphone. The number
of interferers is denoted by b.

Stacking all microphone signals in a vector, the signal model
can be rewritten in vector notation as

yk =

xk︷ ︸︸ ︷
akSk +

nk︷ ︸︸ ︷
b∑
i=1

bkiIki + uk = xk + nk, (2)

where
yk =[(yL

k )T, (yA
k )T, (yR

k )T]T,

yL
k =[Yk1, . . . , YkML ]T,

yA
k =[Yk(ML+1), . . . , Yk(ML+MA)]

T,

yR
k =[Yk(ML+MA+1), . . . , YkM ]T,

and similarly for ak, bki and nk. Let yL
k , yA

k , and yR
k

denote the microphone signal vectors captured by the left side
HA microphones, assistive microphones, and the right side
microphones, respectively. The superscript (·)T denotes the
transpose operator on vectors/matrices, and the power spectral
density (PSD) matrix Φyk

= E[yky
H
k ] of vector yk is given

by
Φyk

= Φxk
+ Φnk

, (3)

where
Φxk

=E[xkx
H
k ] = ΦSk

aka
H
k ,

Φnk
=

b∑
i=1

ΦIki
bkib

H
ki + E[uku

H
k ],

(4)

and where ΦIki
= E[|Iki|2] ∈ R is the PSD of the ith

interferer, ΦSk
= E[|Sk|2] ∈ R is the PSD of the clean

target speech, and E[·] denotes the expectation operator. The
conjugate transpose operator on complex vectors/matrices is
denoted by the superscript (·)H.

B. Linearly Constrained Estimation

A binaural beamformer estimates the signal of interest at
both left side and right side reference positions by combining
all the available noisy observations into a single estimate for
each HA. Notice that in this paper we do not only consider the
presence of the two HAs, but also the presence of additional
assistive microphones. The two resulting beamformer outputs
are constructed such that a fidelity criterion is satisfied and
the binaural information is preserved. The target signals at the
left and right HA, i.e., SL

k and SR
k , respectively, are estimated

as
ŜL
k = (wL

k)Hyk, , ŜR
k = (wR

k)Hyk, (5)

where wL
k ∈ CM and wR

k ∈ CM are the filter coefficients
of the left and right beamformers, respectively. Minimizing
the sum of the output noise powers, for both beamformers,
the binaural linearly constrained beamforming problem can
be formulated as [5]

min
wi

wH
k Φkwk

subject to ΛH
k wk = fk,

(6)

where

wk = [wL
k

T
wR
k

T
]T ∈ C2M×1,

Φk =

[
Φnk

0
0 Φnk

]
∈ C2M×2M ,

and Λk ∈ C2M×d is the constraint matrix, with d the
number of linear constraints. Different binaural LCMV-based
beamformers can be constructed by changing the entries of
Λk. In this paper, we use the methodology from [10], [11],
having an increased amount of degrees of freedom compared
to [9]. These additional degrees of freedom can then be used to
cancel more interferers, given a fixed number of microphones.
Following [10], [11] matrix Λk and vector fk are given by

Λk =

[
ak 0 b1B

R
k1 . . . bbB

R
kb

0 ak −b1B
L
k1 . . . −bbB

L
kb

]
∈ C2M×(b+2),

fHk =[ALk A
R
k 0 . . . 0] ∈ C1×(b+2),

(7)
respectively. Solving the problem in (6), the optimal weights
are computed as [10]

w?
k = Φ−1

k Λk(ΛH
k Φ−1

k Λk)−1fk, (8)

and the optimal beamformer outputs are given by

ŜL?
k = (wL?

k )Hyk, , ŜR?
i = (wR?

k )Hyk. (9)

In order to compute the binaural outputs ŜL?
k and ŜR?

k , the
actual signal realizations yk should be available error-free
at both HAs. However, due to limited battery power, and
therefore, limited transmission power, in practice, the bit-
rate, denoted by rkm bits per sample (bps), which is used to
represent the transmitted signals must be constrained. Using a
fixed bit-rate over frequencies and microphones can be shown
to be sub-optimal, see e.g., [27]. Instead, the bit-rate dependent
quantization noise should be included in the signal model, and
optimized for.
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C. Quantization Aware Estimation

In this sub-section, we introduce bit-rate dependent quan-
tization noise in the signal model in (1). In this paper, we
assume that the microphone signals from all nodes in the
WASN are being quantized using a uniform quantizer before
transmission to the corresponding FC (HA). Note that for
each FC, the local observations at the FC are assumed to
be quantized at the highest possible resolution, such that
additional quantization noise on microphone signals at the FC
can be neglected. In other words, only quantization noise with
respect to the observations from other nodes in the WASN will
be considered.

Consider an arbitrary signal denoted by x and its quantized
version denoted by x̃, with quantization noise q = x − x̃. If
subtractive dithering is applied to the signal to be quantized at
lower rates or under high bit rate assumptions [28], [29], the
quantization error q will be uniformly distributed and uncorre-
lated to signal x. In this case, the variance of the quantization
noise is given by [28] σ2

q = ∆2

12 , where ∆ = 2xmax

2r is the
quantization step size, which depends on the range of the
signal (maximum absolute value xmax) and the quantization
rate r.

Taking into account the quantization noise, the signal model
for each side can be modified as

Ỹ L
km =Ykm +QL

km = AkmSk +

Nkm︷ ︸︸ ︷
b∑
i=1

BkmiIki + Ukm +QL
km,

Ỹ R
km =Ykm +QR

km = AkmSk +

Nkm︷ ︸︸ ︷
b∑
i=1

BkmiIki + Ukm +QR
km,

(10)
where QL

km and QR
km denote the quantization noise w.r.t. the

left and right side FCs, with Ỹ L
km and Ỹ R

km being the quantized
microphone signals for the left and right side FCs, respectively.
Using vector notation, we have

ỹL
k =yk + qL

k = xk + nk + qL
k,

ỹR
k =yk + qR

k = xk + nk + qR
k ,

(11)

where the quantization noise vector qL
k =

[QL
k1, Q

L
k2, · · · , QL

kM ]T is uncorrelated to the microphone
signal vector yk, under the above-mentioned assumptions
[28], [29], and similarly for qR

k . Note that the bit-rates at
which the left side signals are quantized are not necessarily
the same as those at which the right side signals are
quantized and transmitted to the left side FC. Under the
above assumptions, and using ∆ =

2Y L,max
km

2rL
km

, the CPSD matrix
of the quantization noise vector qL

k will be diagonal with
elements

ΦQL
km

=
∆2

12
=

(Y L,max
km )2

3 22 rL
km

=
kL
km

22 rL
km

, (12)

where kkm =
(Y L,max

km )2

3 . Similar expressions can be derived for
the right side beamformer.

Applying the above mentioned quantization approach to the
beamforming task, versions of the signal of interest SL

k and SR
k

are estimated, given the quantized noisy microphone signals
ỹL
k and ỹR

k , as

ŜL
k = (wL

k)HỹL
k, , ŜR

k = (wR
k)HỹR

k . (13)

The beamformer outputs ŜL
k and ŜR

k depend on wL
k, wR

k , and
on the rates rL

km and rR
km, respectively.

III. PROPOSED SPATIALLY CORRECT RATE-CONSTRAINED
NOISE REDUCTION

In this sub-section, we propose and solve an optimization
problem to jointly optimize the rates and the estimation
weights across the sensors and frequencies. The FCs at the
left and right HA have a limited total channel capacity of
RL

tot and RR
tot bps, respectively, to receive information from

the other nodes in the network, as argued in [30]. In addition
to the transmission rate, in this paper, we also take into
account the preservation of spatial information, beneficial for
binaural hearing aids. Altogether, in this paper, we address the
problem of joint rate-constrained noise reduction and spatial
cue preservation to find the optimal filter coefficients and rate
allocation for all sensors and frequencies.

A. Problem Formulation

Let K indicate the number of frequency bins. Let the rate
matrix RL be defined as

RL =


rL

1
T

rL
2

T

...
rL
K

T

 =


rL
11 rL

12 . . . rL
1M

rL
21 rL

22 . . . rL
2M

...
...

. . .
...

rL
K1 rL

K2 . . . rL
KM

 ,
which includes rates rL

km to be allocated to frequency bin
k and microphone signal m, for the left side FC. Please
note that, here, the kth row of the matrix RL is defined as
rL
k

T
= [(rLL

k )T, (rLA
k )T, (rLR

k )T]T, where (rLA
k )T includes the

rates at which the assistive microphones must be quantized
and transmitted to the left side FC, and (rLR

k )T includes the
rates at which the right-side HA microphone signals must be
quantized and transmitted to the left side FC, at kth frequency.
A similar definition holds for the right side rate matrix RR.

The weight matrix WL is similarly defined as

WL =


wL

1
T

wL
2

T

...
wL
K

T

 =


wL

11 wL
12 . . . wL

1M

wL
21 wL

22 . . . wL
2M

...
...

. . .
...

wL
K1 wL

K2 . . . wL
KM

 ,
which includes the left side beamformer coefficients wL

km.
A similar definition holds for the the right side beamformer
coefficient matrix WR.

Inspired by [27], we propose to formulate a spatially correct
noise reduction problem, which tries to minimize a sum-
distortion function given by

D(RL,RR,WL,WR) = D(RL,WL) +D(RR,WR), (14)
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where

D(RL,WL)=
1

K

K∑
k=1

d(rL
k,w

L
k)=

1

K

K∑
k=1

E[|SL
k − ŜL

k |2|rL
k,w

L
k],

D(RR,WR)=
1

K

K∑
k=1

d(rR
k ,w

R
k)=

1

K

K∑
k=1

E[|SR
k − ŜR

k |2|rR
k ,w

R
k ].

Here, d(rL
k,w

L
k) denotes the PSD of the estimation error at

the kth discrete frequency bin for the left side fusion center,
and similarly for d(rR

k ,w
R
k).

To address the rate-constrained noise reduction problem, we
need constraint functions over the rates. Let R(RL) simply be
defined as the sum-rate over all frequency bins and micro-
phones with respect to the left HA, given by

R(RL) =
K∑
k=1

M∑
m=ML+1

rL
km. (15)

and similarly for R(RR).
To address the spatially correct noise reduction problem, we

use the set of linear equality constraints defined in the previous
section as

ΛH
k wk = fk, k = 1, · · · ,K, (16)

where,
wk = [(wL

k)T, (wL
k)T]T.

Then, the proposed problem is defined as minimizing the
estimation error, while satisfying the above-mentioned con-
straints. That is

min
RL,RR,WL,WR

D(RL,WL) +D(RR,WR)

subject to R(RL) ≤ RL
tot,

R(RR) ≤ RR
tot,

ΛH
k wk = fk, k = 1, · · · ,K.

(17)

The distortion function D(RL,WL) = 1
K

∑K
k=1 d(rL

k,w
L
k)

is parameterized as a function of the estimator weights and
allocated rates with d(rL

k,w
L
k) defined as

d(rL
k,w

L
k) = E[|SL

k − ŜL
k |2|rL

k,w
L
k]

= E[|SL
k − (wL

k)HỹL
k|2]

= E[|SL
k − (wL

k)HakSk − (wL
k)Hnk − (wL

k)HqL
k|2]

=|AL
k−(wL

k)Hak|2ΦSk
+(wL

k)H

ΦL
k(rL

k)︷ ︸︸ ︷
[Φnk

+ΦqL
k
(rL
k)] wL

k,
(18)

and similarly for the right side distortion function
D(RR,WR). Assuming a distortion-less response in the target
signal direction, i.e., using the constraint (wL

k)Hak = AL
k,

which is included in the linear equality constraints in (16),
(17), and the fact that ΦqL

k
(rL
k ) is diagonal (see (12)), the

distortion function d(rL
k,w

L
k) can be rewritten as

d(rL
k,w

L
k) = (wL

k)HΦnk
wL
k +

M∑
m=ML+1

|wL
km|2 kL

km

22 rL
km

. (19)

A similar expression can be written for the right side beam-
former. Stacking both the variables for the left and the right
FCs into matrices, we have

wk = [(wL
k )T, (wR

k )T]T ∈ C2M×1,

Φk =

[
ΦL
k 0

0 ΦR
k

]
∈ C2M×2M .

It is natural to assume positive rates, rkm ≥ 0 (e.g. rmin =
0 and rmax = ∞). Therefore, the reformulated problem can
further be written as

min
RL,RR,W

1

K

K∑
k=1

[wH
k Φk(rL

k, r
R
k)wk]

s.t.
K∑
k=1

M∑
m=ML+1

rL
km ≤ RL

tot,

K∑
k=1

ML+MA∑
m=1

rR
km ≤ RR

tot,

rL
km ≥ 0, rR

km ≥ 0,

ΛH
k wk = fk,

(20)

where the objective function includes the distortion function
in (19), and also, includes a similar distortion function for
the right-side FC. The function in (19) includes two terms: 1)
the residual noise power (wL

k)HΦnk
wL
k, which is a quadratic

(convex) function of the weights and 2) the residual quanti-
zation noise

∑M
m=ML+1

|wL
km|

2 kL
km

22 rL
km

, which is a summation of
“quadratic-over-nonlinear” functions, which are non-convex.
Therefore the problem in (20) is a non-convex optimization
problem. However, fixing either W or R, the problem will be
convex in the remaining variable.

B. Proposed Solution
Although the problem formulated in (20) is non-convex, we

can still find the necessary optimality conditions by writing
the Karush-Kuhn-Tucker (KKT) conditions [31]. Considering
the first and second inequality rate constraint functions in
(20), it can be shown that the rate solutions actually lie on
the boundary of the feasibility sets defined by the global
rate budget constraints which are the first and the second
constraints in (20) [27].

We solve the KKT conditions and the solution will be given
in the following proposition.

Proposition. The solution to the problem in (20) is given by
1)w?

k(rL?
k , rR?

k ) = Φ−1
k Λk(ΛH

k Φ−1
k Λk)−1fk,

2) rL?
km(λ′?L , w

L?
km) = [ 1

2 log2(
|wL?

km|
2 kLkm

λ′?L
)]+,

3) rR?
km(λ′?R , w

R?
km) = [ 1

2 log2(
|wR?

km|
2 kRkm

λ′?R
)]+,

(21)

where λ′?L =
Kλ?

L
2 ln2 and λ′?R =

Kλ?
R

2 ln2 are parameters, which
satisfy the following equality constraints, respectively

K∑
k=1

M∑
m=ML+1

rL
km(λ′?L ) = RL

tot,
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K∑
k=1

ML+MA∑
m=1

rR
km(λ′?R) = RR

tot.

Proof. See Appendix A.

The rates are non-zero valued for λ′?L ≤ |wL?
km|2 kL

km and
λ′?R ≤ |wR?

km|2 kR
km and are zero-valued otherwise. The non-

linear operator [·]+ projects all negative valued rates to zero and
the positive valued rates will remain unchanged, satisfying the
set of inequality constraints in (20) (rL

km ≥ 0, rR
km ≥ 0,).

As shown in the proposition, the optimal weights w?
k are the

rate-constrained BLCMV coefficients, which, as a special case
of the BLCMV coefficients, can be expressed as the BMVDR
solutions. Note that, in general, Φ−1

k is a function of the bit-
rates rL?

k and rR?
k . The optimal rates rL

km and rR
km are the

solution to the weighted reverse water filling problem. In other
words, looking at the system of equations in (21), it turns out
that to allocate the rates, we need to follow the reverse water
filling approach while using the BLCMV filter coefficients. As
explained, the BLCMV filters, when there is no quantization,
can guarantee the preservation of the spatial cues of the target
signal. Also here in (21), it is possible to preserve the spatial
cues of the target signal, even when imperfect data, which
is quantized at finite rate, is received by the corresponding
beamformer and used to compute Φ−1

k . Unlike the original
water filling problem, where the rate allocation depends only
on the microphone signal power, here, the rate allocation not
only depends on the microphone signal power but also on
the importance of the corresponding frequency component
of the microphone signal to the estimation process. That is,
the frequency bins which are more important in the target
estimation stage, i.e., more informative, will be allocated more
bits.

To solve the system of equations in (21), a similar approach
as in [27] is used. The approach is based on alternating
optimization, where the system is initialized with, for example,
equal rate allocation across all components for both the left
and right FCs, say RL

0 and RR
0 , respectively. Then the weight

equation is computed based on the equal rates and the weight
matrix W1 is updated. Then, the rates will be updated based
on the computed weights to RL

1 and RR
1 . This process will

be repeated until a certain stopping criterion is met. As the
problem in (20) is component-wise convex, it is shown in
[32] that any limit point, which is the solution after sufficient
iterations. is a critical point. This means that the obtained
critical point is not necessarily globally optimal. However, as
shown in [27], based on MSE and STOI measures, for certain
types of noise reduction methods, the performance is almost
as good as the method which uses an exhaustive search, but
at the benefit of much lower computational complexity.

1) Special Cases of the Proposed Solution: In Table I, we
highlight several special cases of the proposed solution in (21).
As shown, (A) if the rate budgets go to infinity, then the
solution will be equal to the joint BLCMV (JBLCM) filters
[10], [11], using (7). (B) If the rate budgets go to infinity, and
the matrix Λk is given by

TABLE I: Special cases of the proposed solution in (21).

Method Total Rate Constraint Matrix Λ

(A): JBLCMV [10], [11] RL
tot → ∞

RR
tot → ∞ Λk as in (7)

(B): BMVDR [8] RL
tot → ∞

RR
tot → ∞ Λk as in (22)

(C): ProposedAO-BMVDR RL
tot is finite

RR
tot is finite

Λk as in (22)

(D): ProposedAO-JBLCMV RL
tot is finite

RR
tot is finite

Λk as in (7)

Λk =

[
ak 0
0 ak

]
∈ C2M×2,

fHk =[AL
k A

R
k ] ∈ C1×2.

(22)

then the solution will become equal to the BMVDR filters
[8]. (C) If the rate budgets are finite numbers, and the above-
mentioned Λk in (22) is used, then the weight solution will
be the rate-constrained BMVDR filters, which we refer to as
“Proposed alternating optimization (AO)-BMVDR” in the next
section. (D) Finally, when the rate budgets are finite, solving
the equations in (21) and using (7) will lead to the proposed
method, which we refer to as “ProposedAO-JBLCMV”.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed method as a
function of the total bit rate budget by carrying out simulations
in different acoustic scenarios. The proposed method will be
compared to some existing methods using the binaural output
SNR, and the ILD and ITD error measures, which will be
defined in the next part of this section. In the evaluation,
we will consider two different acoustic scenarios discussed
in Sections IV-B and IV-C, respectively.

A. Performance Measures

We use the definitions presented in [6], [9], [10] for binaural
input and output SNRs and ITD and ILD errors.

1) Binaural SNRs: The binaural input SNR and the binaural
output SNR are defined as [9]

SNRin(k) =10log10(
eT

LΦxk
eL + eT

RΦxk
eR

eT
LΦL

keL + eT
RΦR

k eR
),

SNRout(k) =10log10(
(wL

k )HΦxk
wL
k + (wR

k )HΦxk
wR
k

(wL
k )HΦL

kwL
k + (wR

k )HΦR
kwR

k

),

(23)
where k denotes the frequency index, and

eT
L =[1, 0, . . . , 0] ∈ RM ,

eT
R =[0, . . . , 0︸ ︷︷ ︸

ML+MA

, 1, 0 . . . , 0] ∈ RM .

The performance measure we use is defined as the binaural
SNR gain, SNRgain(k), and is given by

SNRgain(k) =SNRout(k)− SNRin(k). (24)
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2) ILD and ITD Errors: To define the ILD and ITD errors,
we first define the input and output interaural transfer functions
(ITFs) w.r.t. the source of interest as [6], [10]

ITFin
X(k) =

XL
k

XR
k

=
AL
k

AR
k

,

ITFout
X (k) =

wL
k

H
xk

wR
k

H
xk

=
wL
k

H
ak

wR
k

H
ak
.

(25)

Note that to find the ITFs for the interferers, the signal Xk

and the transfer function Ak should be replaced by Iki and
Bki, respectively, in (25). With this, the input and output ILDs
are defined as the squared magnitudes of the input and output
ITFs. That is

ILDin
X(k) = |ITFin

X(k)|2, ILDout
X (k) = |ITFout

X (k)|2,
(26)

and the input and output ITDs defined as the phase of the
input and output ITFs. That is

ITDin
X(k) = ∠ITFin

X(k), ITDout
X (k) = ∠ITFout

X (k). (27)

The ILD and ITD errors are then defined as

ERILDout
X

(k) = |ILDout
X (k)− ILDin

X(k)|,

ERITDout
X

(k) =
|ITDout

X (k)− ITDin
X(k)|

π
.

(28)

Note that 0 ≤ ERITDout
X

(k) ≤ 1. Please note that, in this
paper, all defined measures will be rate-constrained, meaning
that the measures are computed for a given total bit budgets
RL

tot and RR
tot, which will become more clear in the simulation

results.

B. Example Binaural HA Setup using Head-Related Transfer
Functions

1) Acoustic Scene 1: The first acoustic scene is based
on the setup described in [33] and depicted in Fig. 1. The
green circle in Fig. 1 denotes the target speech source, which
is positioned at 3 m distance from the origin ((0,0)), in
front of the binaural HA system. The binaural HA system
consists of two HAs with two microphones per HA, with thus
M = 4 microphones in total, mounted on a virtual head and
denoted by the red “+” symbol. The zero degree corresponds
to the looking direction of the virtual head and the angles are
computed counterclockwise. The planar distance between the
two microphones per HA is 0.76 cm and the radius of the
typical head is 8.2 cm [33]. Interferers are indicated by the
black triangles, assumed to be located at different positions
in space, with a spatial resolution of 5◦. The number and
location of the interferers may vary in different experiments.
Uncorrelated flat PSD noise is also added to the microphone
signals at an SNR of 40 dB with respect to the corresponding
reference microphones to simulate internal microphone noise.

The left and right side HAs are considered as two FCs. For
example, for the left side FC, the observations recorded at
its microphones are thought as the local observations and the

+
+

+
+ x

y

-θ

Fig. 1: Example acoustic scene. The target signal, the interfer-
ers, and the four HA microphones (two microphones per HA)
are denoted by the green circle, the black triangles , and the
red “+”, respectively.

contralateral right side microphone signals are quantized and
transmitted to the left side FC. A similar explanation holds
for the right side FC. Welch’s method is used to estimate the
PSD of the target speech, using 512-discrete Fourier transform
(DFT) points, which is computed frame-by-frame using 50%
overlapping speech frames. Around 12s of recorded sampled
speech (at Fs = 16 KHz) from the “CMU-ARCTIC” database
[34] is used for the PSD estimation process. The head-related
transfer functions (HRTFs) from the database in [33], with a
spatial resolution of 5◦, are used in this experiment. For the
point noise sources, flat PSDs ΦIk(ω) over the interval ω ∈
[−π, π] are considered. The cross-PSD matrices with respect
to the target signal and the noises are computed using the
estimated/computed PSDs and the HRTFs.

2) Competing Methods: The following methods are chosen
as reference methods: a) EQ-BMVDR: the rate-constrained
BMVDR. In this approach, we assume equal rate allocation
across all sensors and frequencies, i.e., no optimization is
done here. Note that when there is no quantization noise,
this approach is equal to the BMVDR beamformer [8]. b)
EQ-JBLCMV: The rate-constrained variation of the method
proposed in [10], [11]. The equal rate allocation across all
sensors and frequencies is considered in this approach. Note
that when there is no quantization noise, which happens at
infinitely high rates, this method will be the same as the
one proposed in [10], [11]. c) ProposedAO-BMVDR: In
this approach, the special case of the proposed alternating
optimization (AO) method described in Sec. III-B will be used
to allocate the rates in the BMVDR beamforming setup. The
constraint matrix Λ will simply have two columns, taking into
account the distortion-less response constraints with respect to
the target signal. d) ProposedAO-JBLCMV: In this approach,
the proposed method described in Sec. III-B will be used to
allocate the rates with the constraint matrix Λ mentioned in
(7). Please note that to run the proposed algorithm, as well
as the competing methods, the ATFs and the joint statistic
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Fig. 2: SNR gain [dB] versus total rate [bit per sample] based
on a binaural setup in Fig. 1 (Acoustic Scene 1).

are assumed to be known. Under stationary assumptions, and
assuming that the spectral shape of the signal does not rapidly
change over time, the over-head cost which is needed to inform
the transmitters, on which bit-rate they should transmit the
data, can be averaged out over consecutive frames.

3) Simulation Results: In this section, we will compare the
methods described in the previous sub-section based on the
measures introduced in Sec. IV-A. We consider the acous-
tical setup, shown in Fig. 1 with five interferers located at
(3m, {−80◦,−60◦,−20◦, 40◦, 85◦}). The signal to interferer
ratio (SIR) with respect to both FCs are set to approximately
0 dB. Fig. 2 shows the SNR gains as a function of total bit
budget for the above-mentioned scenario. Please note that in
Fig. 2 and all the remaining results in this paper, the total
bit-rate is normalized by the number of frequency samples,
which is 512. The black horizontal dashed-line shows the
upper bound on the performance of the BMVDR beamforming
when there is no quantization noise, i.e., at infinitely high
rates. Similarly, the black dashed-dotted horizontal line shows
the upper bound on the performance of the JBLCMV beam-
forming at infinitely high rates. In fact, the BMVDR performs
better than the JBLCMC in terms of SNR as it has more
degrees of freedom for noise reduction, at the cost of losing
some binaural information, which will be shown later in this
section. The performance of the both the “EQ-BMVDR” and
the “ProposedAO-BMVDR” approach that of the BMVDR at
high rates without any mismatch. As shown, the proposed
method significantly outperforms the methods with equal rate
allocation as the alternating optimization approach is used to
jointly optimize the rates and weights. A similar argument
holds for the “ProposedAO-JBLCMV”. The performance of
the “ProposedAO-JBLCMV” is always worse than that of the
“ProposedAO-BMVDR” as less degrees of freedom remain for
the noise reduction, compared to BMVDR beamforming.

To see how the methods affect the preservation of the
binaural spatial information, we compute the ILD and ITD
errors, introduced in (28). The ILD and ITD errors are shown
in Fig. 3. In this paper, the ILD and ITD errors are averaged

among the target signal and the interferes.
The black dashed-line in both figures shows the asymptotic

ILD and ITD errors for BMVDR beamforming, at infinitely
high rates. Please note that the BMVDR method cannot
preserve the spatial information with respect to the interferers,
therefore there will be always ILD and ITD errors remaining in
the processed signal. However, the JBLCMV beamformer can
preserve the spatial information for up to 2M − 3 interferers,
therefore, there is no ILD or ITD error with respect to
the JBLCMV-based methods here. As shown in (21), in the
proposedAO-JBLCMV method, as the weights are actually
computed by the LCMV equations, it can also preserve the
spatial information of 2M − 3 (which is five for M = 4)
interferers. As shown in Fig. 3a, in this specific scenario,
the proposedAO-BMVDR method can perform better than the
EQ-BMVDR method in terms of ILD errors at most total
rates. However, as the problem proposed in (20) does not
aim at optimizing the ILD or ITD errors, in general, it is not
guaranteed to perform better than the equal rate allocation.
The ILD and ITD errors w.r.t. both methods will approach
that of the BMVDR beamforming at sufficiently high rates.

C. Example Generalized Binaural HA Setup Using Body-
Related Transfer Functions

1) Acoustic Scene 2: In this section, we will compare
the methods based on the generalized binaural HA setup
from [35]. In addition to the binaural HA setup with four
microphones as in Sec. IV-B, here, there is an assistive
microphone, assumed to be mounted on the HA user’s body
(close to the left wrist). Therefore, this example includes
five microphones. We use the body-related transfer functions
(BRTFs) generated from the database presented in [35]. These
impulse responses are measured with an adult human in an
acoustically treated laboratory (T60 ≈ 200 ms). All sources
are assumed to be located at a planar distance of 2 m from the
HA user. The target speech source is assumed to be located in
front of the HA user and the six interferers are assumed to be
located at (2m, {−15◦,−30◦,−60◦, 30◦, 60◦, 90◦}) with SIR
set approximately to 0 dB w.r.t. both the left side and the
right side reference microphones. Uncorrelated flat PSD noise
is also added to the microphone signals with the SNR set to
40 dB to simulate internal microphone self noise. The PSD of
the target speech and the other sources are estimated/assumed
in the same fashion as described in the previous example setup
in Sec. IV-B1.

2) Simulation Results: The SNR gain is shown in Fig. 4
Similar to Sec. IV-B3, The black horizontal dashed and

the black dash-dotted lines denote the asymptotic BMVDR
beamforming and JBLCMV beamforming SNR gains, re-
spectively, at infinitely high rates. The performance of both
“EQ-BMVDR” and “ProposedAO-BMVDR” follow a similar
trend as in Fig. 2. Note that in this section, in addition to
the generalized setup where there are five microphones (four
microphones for the binaural HA setup and one additional
assistive microphone), we also show the simulation results for
the same acoustic scene, but with four microphones (without
the assistive microphone), to show the benefit of having extra
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Fig. 3: ILD and ITD errors versus total rate [bit per sample] based on the setup in Fig. 1 (Acoustic Scene 1).
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Fig. 4: SNR gain [dB] versus total rate [bit per sample] based
on the generalized binaural setup using BRTFs (Acoustic
Scene 2).

assistive microphone to increase the SNR gains. The methods
which are based on the generalized setup are denoted by “x-
5Mics”, and the methods that are based on the binaural setup
are denoted by “x-4Mics”.

As shown in Fig. 4, with four microphones, the performance
is always less than the case with five microphones. In fact, with
six interferers, in this simulation with four microphones, all
JBLCMV-based methods spend all their degrees of freedom
to preserve the spatial cues of the sources and hence, there
is no control over the noise reduction (i.e., no SNR gain
in this case). However, the BMVDR-based methods with
four microphones still have control over the amount of noise
reduction. Using the proposed alternating optimization method
allows for optimal rate allocation for generalized-extended
binaural setups where the additional assistive microphone can
help to increase the averaged SNR gain, compared to the

binaural configuration with four microphones.
The ILD and ITD errors based on the generalized setup

with five microphones, as well as for the binaural setup with
four HA microphones, are shown in Fig. 5. As shown, All
JBLCMV-based methods can guarantee the preservation of the
spatial cues (the yellow, green, blue, and gray-colored curves
lie on top of each other with zero ILD and ITD errors), where
the BMVDR-based methods suffer from spatial cue errors. Es-
pecially, the BMVDR-based methods with five microphones,
focus more on the noise reduction task, and therefore, they
have slightly more ILD and ITD errors compared to the case
with four microphones.

With a similar explanation as in Sec. IV-B3, the
proposedAO-BMVDR, and the EQ-BMVDR methods are not
able to preserve the spatial cues for all interferers as they do
not impose any constraints to preserve the spatial cues of the
interferers. As shown in Fig. 5b the proposedAO-BMVDR and
the EQ-BMVDR methods have similar ITD errors at almost
all rates, meaning that, if a certain amount of ITD error is of
interest, then there is no need to send the high rate realizations
to the FC, and hence, the observation can be quantized at lower
rates and then transmitted. However, this argument is scenario-
dependent.

Please note that similar to [27], here the proposed frame-
work does not suffer from the scalability issue and can
be applied to the more generalized scenarios including any
number of microphones which can be located in random
positions.

V. CONCLUSION

In this paper, we proposed a spatially correct rate-
constrained noise reduction problem which jointly finds the
best rate allocation and estimation weights across all frequen-
cies and sensors. The problem is based on the modified rate-
distortion trade-off where the optimization problem is modified
to incorporate the preservation of binaural cues, which is an
important factor for increasing the speech intelligibility for
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5 10 15 20 25 30 35 40 45
Normalized Total Rate [bps]

0

0.1

0.2

0.3

0.4

0.5

0.6

A
v

e
ra

g
e

d
 I

T
D

 e
rr

o
rs

EQ-JBLCMV-5Mics
EQ-BMVDR-5Mics
proposedAO-JBLCMV-5Mics
proposedAO-BMVDR-5Mics
EQ-JBLCMV-4Mics
EQ-BMVDR-4Mics
proposedAO-JBLCMV-4Mics
proposedAO-BMVDR-4Mics

(b) ITD errors (Acoustic Scene 2).

Fig. 5: ILD and ITD errors versus total rate [bit per sample] based on the generalized binaural HA setup (Acoustic Scene 2).

L(RL,RR,WL,WR, λL, λR,V
L,VR,M) =

1

K

K∑
k=1

wH
k Φkw + λL

 K∑
k=1

M∑
m=ML+1

[rLkm]−RL
tot

+ λR

 K∑
k=1

ML+MA∑
m=1

[rRkm]−RR
tot


−

K∑
k=1

M∑
m=ML+1

[vLkmr
L
km]−

K∑
k=1

ML+MA∑
m=1

[vRkmr
R
km] +

K∑
k=1

(
Re{µk}TRe{ΛH

k wk} − Re{µk}TRe{fk}
)

+

K∑
k=1

(
Im{µk}TIm{ΛH

k wk} − Im{µk}TIm{fk}
)
.

(29)

hearing aid users. Solving the proposed optimization problem,
based on the set of linear cue preservation constraints, the
estimation (beamformer) weights are found to be the rate-
dependent LCMV filters, and the rates are the solutions to
the set of water filling problems. We chose two different
acoustic scenes to evaluate the performance of the proposed
methods: 1) The binaural HA setup with four microphones
using HRTFs. 2) The generalized binaural HA setup with
five microphones using BRTFs, where an additional assistive
microphone is collaborating with HAs. We compared the
BMVDR-based methods with the JBLCMV-based methods.
The performance of the proposed method is evaluated using
SNR gains and ILD and ITD errors. The results showed
that the proposed method outperforms the methods with
naive/equal choices of rates. In addition, as shown in Fig. 2
and Fig. 4, the BMVDR-based methods perform better than
JBLCMV-based methods in terms of SNR in both scenarios
as there is more degree of freedom for noise reduction, at the
cost of losing some spatial information of the sources. This
behavior is consistent across different scenarios.

APPENDIX A
DERIVATIONS OF THE PROPOSED SOLUTION IN (21)

The solution to the optimization problem in (20) is given by
(21). In this section, we show the derivations leading to (21).
We solve the KKT conditions, derived based on the problem
in (20).

The Lagrangian function is given by (29). The matrix
M includes the multipliers µk, i.e., M = [µ1, . . . ,µK ],
and matrices VL and VR includes entries vL

km and vR
km,

respectively. Given that

Re{ΛH
k wk} =

ΛH
k wk + ΛT

kw∗k
2

,

Im{ΛH
k wk} =

ΛH
k wk −ΛT

kw∗k
2i

,

(30)

the KKT condition w.r.t. the Lagrangian function in (29) is
given by

Lw∗k
=

1

K
Φkwk +

ΛkRe{µk}
2

− ΛkIm{µk}
2i

= 0, (31a)

LrLkm
=
−2ln2|wL

km|2 kL
km

K22rLkm

+ λL − vL
km = 0, (31b)

LrRkm
=
−2ln2|wR

km|2 kR
km

K22rRkm

+ λR − vR
km = 0, (31c)

K∑
k=1

M∑
m=ML+1

rL
km ≤ RL

tot, (31d)

K∑
k=1

ML+MA∑
m=1

rR
km ≤ RR

tot, (31e) K∑
k=1

M∑
m=ML+1

rL
km −RL

tot

λL = 0, (31f)
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 K∑
k=1

ML+MA∑
m=1

rR
km −RR

tot

λR = 0, (31g)

λL ≥ 0, λR ≥ 0, (31h)

rL
km ≥ 0, rR

km ≥ 0, (31i)

rL
kmv

L
km = 0, rR

kmv
R
km = 0, (31j)

vL
km ≥ 0, vR

km ≥ 0. (31k)

ΛH
k wk = fk. (31l)

First, we solve the KKT conditions w.r.t. the estimation
weights wk. Solving (31a) for wk, we have

w?
k = KΦ−1

k Λk(
Re{µ?}+ iIm{µ?}

2
) =

K

2
Φ−1
k Λkµ

?.

(32)
Substituting (32) into the linear constraint (31l) and solving
(31l), the optimal µ? is given by

µ? =
2

K
(ΛH

k Φ−1
k Λk)−1fk. (33)

Finally, substituting (33) back into (32), the optimal weights
are given by

w?
k(rL?

k , rR?
k ) = Φ−1

k Λk(ΛH
k Φ−1

k Λk)−1fk. (34)

Note that, unlike the original BLCMV solution, here the
optimal weights w?

k, as well as the PSD matrix Φk are
functions of the optimal bit-rates, which will be derived in
the following.

As the constraint functions for rL
km and rR

km are separable,
we can independently solve the KKT equations w.r.t. the cor-
responding rates. We start with the solution for rL

km. Solving
(31b) for vL

km, and substituting it into the complementary
slackness condition in (31j), we have

(
−2ln2|wL

km|2 kL
km

K22rLkm

+ λL)rL
km = 0. (35)

Looking at (35), there are two cases here: 1) the optimal rate
rL
km is set to zero, when based on (31j), the variable vL

km has
to be strictly greater than zero, which, by looking at (31b),
implies λLK

2ln2 ≥ |w
L
km|2 kL

km. 2) vL
km = 0, then solving (31b)

for rL
km, the optimal non-zero valued rates are given by

rL?
km =

1

2
log2(

|wL?
km|2 kL

km
Kλ?

L

2ln2

), (36)

which implies λLK
2ln2 < |wL

km|2 kL
km. Combining cases 1 and 2,

we have

rL?
km(λ′?L , w

L?
km) = [

1

2
log2(

|wL?
km|2 kL

km

λ′?L
)]+, (37)

where λ′?L =
Kλ?

L

2ln2 . The operator [·]+ assures positive rates
and projects all negative values onto zero. The parameter λ′?L
must satisfy the KKT condition (31d) with equality, as argued
in [27]. Note that the rates are functions of the weights wL?

km

and the water-falling threshold parameter λ?L. Therefore, the
alternating optimization is proposed to be used to solve theses
equations in (37) and (34). A similar proof holds for rR?

km.
Finally to find the optimal λ?L and λ?R, a similar water-filling

approach, as proposed in [27] (in the last part of the proof in
the appendix), can be used.
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