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Abstract

In this paper, we propose an energy-efficient optimal altitude for an aerial access point (AAP), which acts as a flying
base station to serve a set of ground user equipment (UE). Since the ratio of total energy consumed by the aerial vehicle to
the communication energy is very large, we include the aerial vehicle’s energy consumption in the problem formulation. After
considering the energy consumption model of the aerial vehicle, our objective is translated into a non-convex optimization problem
of maximizing the global energy efficiency (GEE) of the aerial communication system, subject to altitude and minimum individual
data rate constraints. At first, the non-convex fractional objective function is solved by using sequential convex programming (SCP)
optimization technique. To compare the result of SCP with the global optimum of the problem, we reformulate the initial problem
as a monotonic fractional optimization problem and solve it using polyblock outer approximation algorithm. Numerical results
show that the candidate solution obtained from SCP is the same as the global optimum found using the monotonic fractional
programming technique. Furthermore, the impact of the aerial vehicle’s energy consumption on the optimal altitude determination
is also studied.

Index Terms

Global energy efficiency, altitude Optimization, sequential convex programming, monotonic optimization.

I. INTRODUCTION

The role of uninhabited AAP in the deployment of emergency networks such as deploying aerial base stations to provide
reliable connectivity in disaster areas [1] or in social events such as concerts is vital. In Japan, earthquake affected areas were
provided with internet access with the help of unmanned aerial vehicles (UAV) [2]. Cellular coverage extension using drone
deployed base stations by Nokia’s F-cell technology is another proven application of portable access points [3]. The mobility
and ability of aerial vehicles to adjust their altitude to improve the probability of line-of-sight (LoS) communication channel
to the ground UEs makes them suitable for acting as relays in the internet of things (IoT) applications [4]. Despite all these
applications, the efficiency of an aerial communication system (ACS) is highly dependent on the limited energy available at
the aerial vehicle [5]. Any improvement in the energy efficiency of ACS implies longer aerial vehicle hovering, hence more
information bits transmitted to UEs.

Compared to the conventional cellular communication systems, the total energy required by ACS is very high. This is
because, in ACS, in addition to the communication-related energy, the aerial vehicle consumes energy during vertical climb
and hovering. Most of the works in the literature only consider communication-related energy, which is suboptimal in the
case of an ACS. In [6], the authors present an analytical approach to optimize the altitude of low altitude aerial platforms
to maximize the radio coverage area. The authors of [7] jointly optimize the flying altitude and the antenna beamwidth for
throughput maximization. A new 3-dimensional deployment plan for the drone-based station, while minimizing the number of
them, to serve the users based on their service requirements is presented in [8]. The work [9], proposes a new polynomial-time
complex spiral mobile bases station placement algorithm in UAV-UE communications. The works in [10], [11] finds the optimal
altitude for UAV-base stations that maximizes the number of covered users using the minimum transmit power.

None of the above works consider the energy consumption of the aerial vehicle in the optimization problem. Since the ratio
of communication energy to the total energy consumed by the aerial vehicle is negligible, the results proposed in the above
works are suboptimal for the global energy efficiency maximization of ACS. When the altitude of an AAP increases, the LoS
coverage area increases, the LoS channel gain decreases and the energy consumed by the aerial vehicle also increases. With
these facts, we can say that the GEE of an ACS, defined as the ratio of the total number of data bits transmitted to the total

This work is supported by the project PAINLESS which has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 812991.
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Fig. 1: AAP enabled downlink broadcast transmission scenario.

energy consumed, will not be maximum either at maximum or minimum permitted AAP altitudes. We exploit this tradeoff
between the number of bits transmitted and the energy consumed to determine an energy-efficient hovering altitude for the
AAP. Some of the works which consider the aerial vehicle’s energy consumption includes [12], [13], [14]. An energy-efficient
3D trajectory of a UAV deployed to serve a set of IoT nodes is investigated in [15]. Optimal trajectories, which minimize the
fixed and rotary-wing UAV associated energy are designed in [13] and [14] respectively. The authors in [12] maximizes the
minimum average rate and energy efficiency through joint optimization of trajectory, velocity, and acceleration of UAV flying
at a fixed altitude. An altitude dependent energy consumption model is used by the authors of [16] to find drone locations that
minimize the cost while ensuring the surveillance of all the targets.

To the best of our knowledge, we are the first to determine an optimal altitude which maximizes the GEE for an ACS
considering both the energy required for communication and energy consumed by the aerial vehicle. The rest of the paper is
organized as follows. In section II, we model the system and the energy consumption of the aerial vehicle. Section IV defines
the system’s global energy efficiency, formulates the optimization problem and solves it using SCP and monotonic fractional
programming techniques. The numerical results are discussed in section V. Finally, our findings are concluded in section VI.

In this paper, scalars are represented by lowercase letters. Boldface lowercase letters are used to denote vectors. RM denotes
the set of M dimensional real-valued vectors.

II. SYSTEM MODEL AND AERIAL VEHICLE ENERGY CONSUMPTION MODEL

A. System Model

We consider an orthogonal multiple access downlink broadcast transmission scenario enabled by an AAP acting as a
flying base station, where each user is allocated with a fixed bandwidth. We assume there is always a sufficient number of
orthogonal channels (e.g., narrowband frequency division multiple access systems [17]). As shown in Fig.2, we assume a
uniform distribution of N UEs in the AAP coverage area Aue = πr2 such that N = ρue ∗Aue, where ρue and r = hAcot(φ)
represents the density of UEs and the radius of the AAP coverage area respectively, and φ represents the minimum elevation
angle required for the LoS channel between the edge UE and the AAP [6]. The AAP is employed at an altitude of hA meters
(m) with the horizontal plane coordinates the same as the center of Aue. In addition to this, we consider the deployment of this
system in rural areas where the channel between the AAP and UE is dominated by the LoS link. In real life, this represents
the access segment of an ACS in which an AAP is deployed for cellular coverage extension in a rural area. Given this, the
LoS channel gain between the UE located at a distance r from the center of the coverage area and the AAP is given by

h(r) =
h0

r2 + h2
A

(1)

where h0 represents the channel gain at reference distance of 1m. The signal-to-noise ratio (SNR) γr, at the edge UE is given
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by

γr =
PTh0

N(r2 + h2
A)σ

2
(2)

where the total data transmission power PT available at the AAP is divided equally among the N UEs and σ2 represents the
variance of the zero-mean additive white gaussian noise at the corresponding receiver.

Hence the total number of bits transmitted per unit Hz of bandwidth from the AAP to the considered UE through a channel
of bandwidth W in T seconds is expressed as

R(r) = T log2(1 + γr) bits/Hz (3)

Through (3) and (2), the data rate of a UE depends on distance r from the center of the coverage area. Because of the inverse
relationship between γr and r, the data rate of any UE is lower bounded by the data rate of edge UE. That is

R(r) ≥ R(r) = R(hA) ∀r ≤ r (4)

Since maximizing R(r) is equivalent to maximizing R(r) and for ease of explanation, we consider the sum of minimum
rate, R(r), in the definition of the GEE of the considered aerial communication system(ACS) in section III. The algorithm
developed in section IV applies to the maximization of GEE defined in terms of the sum of actual rate R(r).

III. GLOBAL ENERGY EFFICIENCY OF THE ACS

The global energy efficiency of the considered ACS is given by

GEE[bits/Joule.Hz] =
R(hA)[bits/Hz]

(E(hA, T ))[Joule]
(5)

where R(hA) is the sum of the minimum number of data bits transmitted per Hz from the AAP to the N UEs in T seconds;
E(hA, T ) = EA(hA, T ) + EC(T ) is the total energy consumed by the AAP in which EC(T ) is the energy required for data
communication and EA(hA, T ) given by (11), is the total energy consumed by the mechanical parts of the AAP during vertical
climb and hovering. We consider a climb-hover communicate scheme in which the AAP climbs a specific altitude and then
communicates with N UEs while hovering.

A. Sum of the minimum number of data bits transmitted, R(hA)

Considering the uniform distribution of UEs over Aue, the sum of the minimum number of data bits transmitted per Hz
from the AAP to the N UEs in T seconds through orthogonal channels of bandwidth W Hz is expressed as

R(hA) = T

∫ 2π

0

∫ r̄

0

ρueR(r)rdrdθ

= T

∫ 2π

0

∫ hAcotφ

0

ρuelog2

(
1 +

PTh0

N(r2 + h2
A)σ

2

)
rdrdθ

= Tρueπh
2
Acot2φlog2

(
1 +

PTh0

N(r2 + h2
A)σ

2

)
= Tρueπh

2
Acot2φlog2

(
1 +

β

h4
A

)
(6)

where β =
PTh0sin2φ

πρuecot2φσ2
.

B. Aerial vehicle energy consumption

The total energy consumed by an aerial vehicle (E(hA, T )) is composed of three main parts:
1) Energy required for data communication (EC(T ).
2) Energy consumed by the rotor of the aerial vehicle during climbing from ground to an altitude of hA (Ecl(hA)).
3) Energy consumed by rotor during hovering at altitude hA (Eho(hA, T )).

The energy required for data communication is given by

EC(T ) = (PT + PH)T (7)

where PT is the total power used for the symbol transmission and PH , is the total power consumption by all the hardware
circuits in the transmitter section of the AAP.
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Fig. 2: Total energy consumed by the rotor of the aerial vehicle

The energy parts Ecl(hA) and Eho(hA, T ) follows the energy consumption model presented by authors of [18]. In [18],
the authors presented different power/energy consumption factors based on the field experiments performed on the Intel Aero
Ready to Fly Drone. Unlike fixed and rotary-wing unmanned aerial vehicles [13], [14], the energy consumed by the rotor of
a quadropter/drone during hovering is dependent on the hovering altitude [18], [16]. According to [18], the energy consumed
by the quadropter during climbing from the ground to an altitude of hA with a constant climb rate is given by

Ecl(hA) = αclhA + βcl (8)

and the energy consumed during hovering at an altitude hA for T seconds is given by

Eho(hA, T ) = (αhohA + βho)T (9)

where the constants αcl, βcl, αho, βho are constants determined from the curve fitting performed on the measured power/energy
values.

Hence the total energy consumed by the rotor of AAP to climb to an altitude of hA m and hover for T seconds is given by

EA(hA, T ) = Ecl(hA) + Eho(hA, T ) (10)

Figure 2 shows the increasing nature of EA(hA, T ) with altitude for a fixed time of operation with constants αcl = 315, βcl =
−211.261, αho = 4.917, βho = 275.204 [18] and T = 400s.

Hence the total energy consumed by the AAP is given by

E(hA, T ) = Ecl(hA) + Eho(hA, T ) + EC(T ) (11)

IV. PROBLEM FORMULATION

Our objective is to find the optimum altitude for the AAP, which maximizes the system’s global energy efficiency (GEE)
subject to minimum data rate and altitude constraints. By using (5),(6) and (11), our main objective is formulated as an
optimization problem and is expressed as follows:

(P1) : maximize
hA

R(hA)

E(hA, T )
s.t. hmin ≤ hA ≤ hmax (12)

W log2

(
1 +

β

h2
A(r

2 + h2
A)

)
≥ R0 (13)

where (12) represents the permitted AAP altitude range specified by the aviation regulatory board, R0 is the minimum data
rate required by the UE in bits-per-second (bps).

The objective function of (P1) forms part of fractional programming problems [19]. It can be globally solved using
Dinkelbach’s algorithm [20], provided R(hA) is concave, and E(hA, T ), (12), (13) are convex functions of hA. From (11),
(12), we find that the denominator of the objective function and AAP altitude constraint are convex function of hA while
the numerator R(hA) in (6), is neither convex nor concave in nature. Also, the minimum individual data rate constraint
(13) is non-convex. Hence (P1) cannot be globally solved with polynomial time complexity. As a means to obtain an efficient
solution that fulfills the Karush Kuhn Tucker (KKT) conditions of (P1), we use the polynomial-time complex sequential convex
programming (SCP) technique [21]. Besides, to obtain the global optimum of (P1), we exploit the monotonic structure of the
objective function in the general framework of monotonic fractional programming (MFP) optimization [22] [23].
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A. GEE Maximization using SCP

In this part, we find the optimal altitude of AAP which maximizes the GEE of the ACS using sequential convex programming.
The fundamental idea of SCP is to iteratively solve a sequence of convex approximated problems of the original non-convex
problem so that the feasible solution points converge to the KKT point of the original non-convex problem [21]. Here
we approximate the non-concave numerator, R(hA) of (P1) as a concave function using a first-order Taylor approximation
technique.

For the kth iteration, let hk be the feasible solution from the previous iteration. Then the first order Taylor approximation
of R(hA) about hk is

R(hA) ≈ R(hk) +R
′
(hk)(hA − hk) (14)

where

R
′
(hk) = Tρueπcot2φ2hklog2

(
1 +

β

h4
k

)
−Tρueπcot2φ

4βhk

loge(2)
(
β4 + hk

4
) (15)

(16)

Similarly, the non-convex nature of (13) is tackled with the following Taylor approximation:

W log2

(
1 +

β

h4
k

)
− 4Wβ(hA − hk)
hk(β + h4

k)loge2
≥ R0 (17)

Using (14) and (17), (P1) can be reformulated as

(P2) : maximize
hA

R(hk) +R
′
(hk)(hA − hk)

E(hA, T )
s.t. (12), (17) (18)

Algorithm 1: GEE Maximization using SCP

1 Initialize h1, ls1 =
S(h1, h1)

E(h1, T )
, k = 1.

2 while (1) do
3 hsopt = hk and vsopt = lsk
4 Determine the optimal solution hs∗k by solving

maximize
hA

S(hA, hk)− lskE(hA, T )

s.t (12), (17)

5 lsk+1 =
S(hs∗k , hk)

E(hs∗k , T )
6 if (lsk+1 − lsk/lsk+1) < ζ then
7 break;

8 hk+1 = hs∗k
9 k = k + 1

10 Output: Optimal AAP Altitude= hsopt , Maximum GEE= vsopt

Note that (P2) is a single ratio fractional maximization problem with a concave numerator S(hA, hk) = R(hk)+R
′
(hk)(hA−

hk), convex denominator E(hA, T ) = EA(hA, T ) + EC(T ) and convex constraints. Therefore (P2) can be efficiently solved
by using polynomial time complex algorithm 1. In every iteration of algorithm 1, the optimal solution in step 4 is determined
by using standard convex optimization tools like CVX [24]. In section V, we show that the efficient solution of (P1) obtained
by solving (P2) through algorithm 1 matches with the global optimum obtained using the monotonic fractional program
optimization technique.
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B. GEE maximization using monotonic fractional programming

The candidate solution obtained from SCP cannot be considered as the global optimum of (P1). Therefore, to obtain the global
optimum of (P1), we exploit the monotonic behavior of the objective function using the monotonic fractional programming
technique [22] [23]. The key idea is that the global optimum of an increasing objective function of a maximization problem
lies in the outer boundary of the feasible set formed by the constraints. Following the fundamental definitions from [23], a
maximization problem takes the canonical form of monotonic optimization problem, if it can be formulated as

(P3) : maximize
X

f(X)

s.t. X ∈ G ∩H

where f : RM → R is an increasing function of X, G ⊂ [0,a] is a compact normal set with nonempty interior, and H is a
closed conormal set on [0,a]. For exact definitions of monotonicity, normal and co-normal sets please refer to [23].

The optimization problem (P1) fits in the class of fractional problems, which can be globally solved by Algorithm 2. For a
given positive lk, in every kth iteration of algorithm 2, we need to solve the following maximization problem in step 4:

(P4) : maximize
hA

R(hA)− lk {EA(hA, T ) + EC(T )} (19)

s.t. (12)− (13) (20)

It should be noted that, on the first view, (P4) doesn’t take the canonical form of monotonic optimization problem defined in
(P3). However, (P4) can be expressed as the maximization of differences of increasing functions of hA which allows us to
reformulate (P4) as a monotonic optimization problem. For the ease of reformulation, we equivalently represent the minimum
individual data rate constraint as

hmax =

 β

2

R0

W − 1


1/4

(21)

Note that (19) can be rewritten as

(P5) : maximize
hA

R1(hA)−R2(hA, lk) (22)

s.t. (12) (23)

where

R1(hA) = Tρueπcot2φh2
klog2

(
β + h4

A

)
R2(hA, lk) = Tρueπcot2φh2

klog2

(
h4
A

)
+ lk(E(hA, T )) (24)

are monotonically increasing functions of hA, and hmax of (12) is given by (21). In order to write (P5) in canonical form, we
introduce the additional variable S = R2(hmax, lk)−R2(hA, lk), which allows (P5) to be reformulated as

(P6) : maximize
hA,S

R1(hA) + S (25)

s.t. (hA, S) ∈ G ∩H (26)

where

G =

{
(hA, S) : hA ≤ hmax,

S ≤ R2(hmax, lk)−R2(hA, lk)

}
(27)

H = {(hA, S) : hA ≥ hmin, S ≥ 0} (28)

By the monotonically increasing behavior of R2(hA, lk) we can relate

R2(hmin, lk) ≤ R2(hA, lk) (29)

By [proposition 2, [22]], (27) defines a normal set and (28) defines a co-normal set in the polyblock with the vertx set v.

[hmin, hmax]×
[
0, R2(hmax, lk)−R2(hmin, lk)

]
(30)
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Fig. 3: Optimal solutions obtained from SCP and monotonic optimization.

Hence by using (25)-(28) we represent (P4) in the canonical form of monotonic optimization problem, with f(x) = R1(x(1))+
x(2), which can be globally solved by using the polyblock outer approximation algorithm as explained in algorithm 3 [23].
Even though the complexity of this global optimization algorithm is exponential in the number of variables, it is much lower
compared to other global optimization techniques which exhaustively search over the entire feasible set. Hence the globally
optimal AAP altitude is obtained by solving (P1) using algorithm 2 in which, at each iteration, step 4 is solved by using
algorithm 3.

Algorithm 2: GEE Maximization using MFP

1 Initialize h1, lm1 =
R(h1)

E(h1, T )
, k = 1.

2 while (1) do
3 hmopt = hk and vmopt = lmk
4 Determine the optimal solution hm∗k by solving the monotonic optimization problem (P6) using algorithm 3

5 lmk+1 =
R(hm∗k )

E(hm∗k , T )
6 if (lmk+1 − lmk /lmk+1) < ζ then
7 break;

8 hk+1 = hm∗k
9 k = k + 1

10 Output: Optimal AAP Altitude= hmopt , Maximum GEE= vmopt

V. NUMERICAL EVALUATION

In this section, we compare the optimal altitude values obtained through SCP and monotonic fractional programming
optimization techniques. The variation of GEE and optimal altitude with minimum data rate requirement is provided. We
consider h0 = 1.42 × 104, PT = 10 dBm, W = 20MHz, σ2

0 = −169dBm/Hz , φ = 43◦ and ρ = 0.005UEs/m2, PH = 5W,
T = 400s, Ro = 20Mbps.

The reason for this behavior is that, at low hA, the number of UEs covered (N = ρueπh
2
Acot2φ) by the AAP decreases with

decreasing hA, leading to a decrease in the total number of bits transmitted, thereby to reduced GEE. At high altitude regions,
the LoS channel gain between the UE and AAP decreases, the no of UEs covered by AAP increases, and EA(hA, T ) increases.
In addition to this, with an increase in the number of users, power alloted for a single UE decreases. So in the high altitude
region, the increase in the number of UEs is highly compensated by the sum effect of the decrease in channel gain, decrease
in power per UE and increase in EA(hA, T ), which result in a low GEE. Figure 3 also shows that the optimal AAP altitude
obtained by the SCP is very close to the globally optimal altitude obtained from the monotonic fractional programming
technique. Hence the global optimum of our objective can be obtained by the polynomial-time complex sequential convex
optimization technique.

Figure 4 shows the convergence behavior of polyblock outer approximation algorithm in the last iteration of MFP. The
converging nature of upper(fmax) and lower(fmin) bounds of PA algorithm guarantees the evaluation of the global optimum of
GEE in a finite number of convex evaluations, with the number of convex evaluation much greater than that required SCP. The
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optimal altitude plots of MFP and SCP says that the locally optimal altitude value obtained using SCP is equal to the globally
optimal altitude obtained using MFP. In addition to this, figure 4 shows the error in determining the optimal altitude without
considering the rotor energy consumption, EA(hA, T ). It is observed that the optimal altitude determined with EA(hA, T ) = 0,
is 18.2m higher than the actual optimal value. Hence, according to figure 3, hovering at an altitude higher than the actual
optimal value yields low GEE. Therefore, in order to achieve the maximum GEE value, the rotor energy consumption of the
aerial vehicle should be considered while formulating the optimization problem.

Figure 5 represents the variation of GEE with the minimum data rate requirement. The two GEE plots correspond to the
variation of GEE with Ro when AAP is hovering at the optimal altitude obtained, (a) without considering energy consumed
by the rotor of the aerial vehicle(hhover = hopt(EA(hA) = 0) ); (b) with energy consumed by the rotor of the aerial vehicle
(hhover = hopt(EA(hA) 6= 0) ). As said before, the GEE of the ACS with hhover = hopt(EA(hA) 6= 0) is more than that with
hhover = hopt(EA(hA) = 0). This gain in GEE reflects the effect of considering aerial vehicle’s rotor energy consumption
in altitude optimization which is the novel aspect of this paper. In the plot, the value of GEE is constant for a range of Ro
and then it starts decreasing with increase in Ro. From (21), the value of the maximum allowed altitude, hmax decreases
with increase in Ro. It is because, a higher minimum individual data rate of the considered system can be achieved only by
increasing the LoS channel gain, which is achieved by decreasing the AAP altitude. When hmax(Ro) is greater than the hA
corresponding to the global optimum of GEE (GEEglobal), the optimal altitude is equal to hA(GEEglobal) and GEE remains
constant and for hmax(Ro) ≤ hA(GEEglobal), optimal altitude is equal to hmax, results in decrease in GEE with increase in
Ro. The decrease in GEE with increase in Ro(decrease in hmax) shows the monotonically increasing property of GEE which
is exploited in MFP.

VI. CONCLUSION

In this work, we found the optimal energy efficient altitude of an aerial access point which acts as a flying base station
for an orthogonal multiple access downlink broadcast transmission scenario. The modeled energy consumption is the sum of
energy consumed by the aerial vehicle and the energy required for the communication between the AAP and the UEs. An
efficient solution to the formulated GEE maximization problem with individual data rate constraint and altitude constraint is
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obtained using sequential convex programming and is compared with the global optimum achieved by a monotonic fractional
programming technique. One can see that the altitude value of the solution from the polynomial time complex SCP matches
the globally optimal altitude value obtained from the monotonic fractional programming. Further, we observed that there is
a gain in GEE when the aerial access point is hovering at an optimal altitude determined by considering the rotor energy
consumption of the aerial vehicle. In addition to this, the optimal altitude and hence GEE decrease with an increase in the
minimum individual data rate constraint. Joint altitude and power optimization in a non orthogonal multiple access transmission
scheme with multiple AAPs, in a Rayleigh fading urban environment is left as our future work.

Algorithm 3: PA Algorithm [25]

1 Initialize i = 1, Vi as the vertexset of polyblock (30)
2 Set vmin = argmin{f(v) | v ∈ Vi}
3 vmax = argmax{f(v) | v ∈ Vi}.
4 Set fmax = maxv∈Vif(vi) and fmin = f(vmin)
5 while ((fmax − fmin)/fmax > e) do
6 Obtain vo, the intersecting point of line drawn from vmin to vmax with the normal region G using bisection

method [Algorithm 1 [25]].
7 Update the vertex set, Vi+1 according to Lemma 2.16 of [25].
8 if f(vo) > fmin) then
9 fmin = f(vo)

10 vmin = vo

11 set i = i+ 1
12 Set fmax = maxv∈Vif(v)
13 remove all v ∈ Vi with f(v) ≤ fmin + e

14 Output: hm∗k = vo(1)
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