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Physical Layer Security of Large Reflecting Surface Aided
Communications with Phase Errors

José David Vega Sánchez, Pablo Ramı́rez-Espinosa and F. Javier López-Martı́nez

Abstract—The physical layer security (PLS) performance of a
wireless communication link through a large reflecting surface
(LRS) with phase errors is analyzed. Leveraging recent results
that express the LRS-based composite channel as an equivalent
scalar fading channel, we show that the eavesdropper’s link
is Rayleigh distributed and independent of the legitimate link.
The different scaling laws of the legitimate and eavesdroppers
signal-to-noise ratios with the number of reflecting elements,
and the reasonably good performance even in the case of
coarse phase quantization, show the great potential of LRS-aided
communications to enhance PLS in practical wireless set-ups.

Index Terms—Fading channels, large reflecting surfaces, phase
errors, physical layer security, wireless communications.

I. INTRODUCTION

Recently, large reflecting surfaces (LRSs) have been pro-

posed as a new paradigm to noticeably improve the perfor-

mance of emerging networks in terms of system performance

and energy-efficiency. An LRS consists of a large number

of low-cost passive reflecting units, where each element can

adaptively adjust the amplitude reflection and/or the phase shift

of the incident signals [1]. These smart passive devices can be

integrated into the infrastructure of future wireless networks to

control the radio propagation environment. In practice, effects

associated to the imperfect phase-shift capabilities need to be

considered for a proper system design [2–5].

On the other hand, physical layer security (PLS) has drawn

full attention for ensuring secure wireless communications in a

low complexity manner. Specifically, PLS intelligently exploits

the inherent randomness of the wireless medium to protect the

information in the physical layer [6]. From an information-

theoretic perspective, LRS is a new approach to improve the

PLS performance by reconfiguring the wireless environment

for the benefit of the legitimate user. In this sense, several

researchers have addressed their efforts to investigate PLS on

LRS-aided wireless communications systems [7–10]. Because

of the rather complex nature of the LRS composite fading

model, the analytical characterization of PLS performance
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metrics is utterly unfeasible and most works often resort to

optimization techniques to maximize the secrecy rates.

In this paper, we investigate the performance of an LRS-

aided communication system with imperfect phase compensa-

tion in terms of its PLS performance. Because of the intricate

characterization of PLS in the context of LRS, we leverage

the recent formulation of the LRS composite fading channel

as an equivalent scalar channel [11] to gain an understanding

of the potential of LRS-based communications for PLS. The

key contributions of this paper are: first, we prove that despite

the equivalent channels at both receivers share a number of

components, they are statistically independent under some

mild conditions. We also show that the distribution of the

eavesdropper’s equivalent scalar fading channel is Rayleigh

distributed and its average signal-to-noise ratio (SNR) scales

with n, while the average SNR at the legitimate receiver

scales with n2. Finally, we exemplify the limitations of the

equivalent scalar channel approximations for asymptotic high-

SNR analyses, which should be interpreted with caution for

outage-based performance metrics. Notations: Throughout this

letter, fZ(·) and FZ(·) denote the PDF and the CDF of a

random variable (RV) Z, respectively. W ∼ U [−π, π) means

that the RV W is uniformly distributed on [−π, π). E{} is the

expectation operator.

II. SYSTEM MODEL

We consider an LRS-assisted wireless communication set-

up consisting of one source node Alice (A), one legitimate

node Bob (B), one eavesdropper Eve (E), and an LRS, which

assists the communication between the legitimate nodes. In

the system, the direct link is neglected1, and all terminals are

assumed to be equipped with a single antenna, while the LRS

has n low-cost passive reflecting elements R1 . . . Rn. We de-

note as Hi,1 the fading channel coefficient between the source

A and the reflecting element Ri, whereas Hi,b and Hi,e are

the fading channel coefficients between Ri and the legitimate

receiver B and the eavesdropper E, respectively. Without loss

of generality, we consider normalized fading coefficients with

unitary power, and the corresponding average magnitudes are

given ∀i = 1 . . . n by a1 = E{|Hi,1|}, a2,b = E{|Hi,b|}
and a2,e = E{|Hi,e|}. We note that {a1, a2,b, a2,e} ≤ 1 in

all instances, where the equality only holds in the limit of

a deterministic fading channel, i.e., in the absence of fading.

For the sake of compactness, ab =
√
a1a2,b is defined. The

received signal at B can be expressed as

Yb =
√

PTLb

n
∑

i=1

Hi,1e
jφiHi,bX +Wb, (1)

1This assumption is related to one of the key use cases of LRS, which is
overcoming non-LOS scenarios [12].
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where X is the transmitted symbol, PT indicates the transmit

power at A, Lb encompasses the path losses for the A-R and

R-B links, the antenna gains and reflection losses, and Wb

is the additive white Gaussian noise (AWGN) term with N0

power. Now, the LRS designs the phase shifts for each element

φi so that all phase contributions due to ∠Hi,1 and ∠Hi,b are

compensated2 However, the imperfect phase estimation and

the limited quantization of phase states at the LRS causes

that a residual random phase error Θi still persists [11], i.e.,

φi = −∠Hi,1 −∠Hi,b +Θi. The equivalent complex channel

observed by the legitimate receiver can hence be expressed as

Hb =
1

n

n
∑

i=1

|Hi,1‖Hi,b| ejΘi , (2)

and (1) is reformulated as:

Yb = n
√

PTLbHbX +Wb (3)

Now, the received signal at E can be expressed as

Ye =
√

PTLe

n
∑

i=1

Hi,1e
jφiHi,eX +We, (4)

where the Le and We are defined in a similar way as Lb and

Wb. Because the phase shifts φi are designed to compensate

for the effect of the fading channel coefficients of the legiti-

mate link, the residual phase errors Ψi affecting the eavesdrop-

per link will be much larger than the legitimate counterpart

and, whenever ∠Hi,e ∼ U [−π, π), then Ψi ∼ U [−π, π) [14]

regardless of the phase distribution of ∠Hi,1. We can define

the equivalent complex channel observed by E as

He =
1

n

n
∑

i=1

|Hi,1‖Hi,e| ejΨi , (5)

that yields

Ye = n
√

PTLeHeX +We (6)

With the previous definitions, the instantaneous SNR at the

legitimate and eavesdropper’s links are given by

γb = n2γ0,b|Hb|2, (7)

γe = n2γ0,e|He|2, (8)

where we defined γ0,b = PTLb/N0 and γ0,e = PTLe/N0 as

the average SNRs at the legitimate and eavesdropper’s sides

in the case of a single reflector LRS (i.e., n = 1).

We aim to determine the system performance in terms of

its achievable secrecy rate CS defined as [15]

CS =max {Cb − Ce, 0} , (9)

where Cb = log2(1 + γb) and Ce = log2(1 + γe) are the

capacities of the main and eavesdropper channels, respectively.

We first consider a passive eavesdropper for which Alice does

not have channel state information (CSI) knowledge. Under

2Neglecting the eavesdropper’s phase information for the phase-shift design
maximizes the SNR at the legitimate receiver, although it is suboptimal for
PLS performance [13]. However, this choice avoids the inherent optimization
problem related to phase-shift design while achieving nearly as good per-
formance when the eavesdropper’s channel becomes more degraded than the
legitimate one.

this premise, Alice can only transmit at a constant secrecy rate

RS and security will be compromised whenever RS exceeds

CS. The secrecy outage probability (SOP) is formulated as the

probability that the instantaneous CS falls below such rate RS,

i.e., P = Pr {CS < RS} =
∫∞
0

Fγb
(τγe + τ − 1) fγe

(γe)dγe,

where τ
∆
= 2RS . We also study the active eavesdropping case,

in which the CSI of both the main and the eavesdropper

channels is available at Alice. Therefore, Alice can use such

information to adapt her rate. In this setup, the average secrecy

rate (ASR) RS = E{CS} is the usual metric to evaluate the

secrecy performance. To derive the ASR’s analytical expres-

sions in this letter, we have used the formulations proposed

in [16, Proposition 3].

III. SNR DISTRIBUTIONS

A. Distribution of γb

For sufficiently large n, [11] proved that the distribution of

Hb is that of a non-circularly symmetric complex Gaussian

random variable (RV) with Ub = ℜ(Hb) and Vb = ℑ(Hb),
so that Ub ∼ N

(

µ, σ2
Ub

)

and Vb ∼ N
(

0, σ2
Vb

)

, where the

parameters of µ = ϕ1a
2
b, σ2

Ub
= 1

2n

(

1 + ϕ2 − 2ϕ2
1a

4
b

)

and

σ2
Vb

= 1
2n (1− ϕ2), and ϕj are the jth circular moments

of Θi. This implies that Rb = |Hb| follows the Beckmann

distribution [17] and hence, the average SNR at the legitimate

receiver γb follows a (squared) Beckmann distribution which

is fully characterized by the following set of parameters

K = µ2/(σ2
Ub

+ σ2
Vb
), q = σUb

/σVb
and γb = E{γb}. We

note that the parameters K and q have a similar definition as

those of the Rician and Hoyt [18] distributions, respectively.

In the scenario under consideration, we have that

K = n
ϕ2

1a
4
b

1−ϕ2
1a

4
b

, (10)

q =

√

1+ϕ2−2ϕ2
1a

4
b

1−ϕ2
, (11)

γb = n2γ0,b

[

ϕ2
1a

4
b + 1

n

(

1− ϕ2
1a

4
b

)]

. (12)

As stated in [11], the average SNR scales with n2. We also

observe that the line-of-sight (LOS) condition of the equivalent

scalar channel, captured by K, grows with n. Notably, the

non-circular symmetry caused by the phase errors captured

by q ∈ [1,∞) is independent of the number of elements of

the LRS. We note that in the absence of phase errors, then

Hb becomes a real Gaussian RV and hence |Hb| follows a

folded normal (FN) distribution [19] with parameter K given

by (10) with ϕ1 = 1, and for which the PDF and CDF

have a simple closed-form expression. The distribution of Rb

is well approximated by a Nakagami-m distribution in [11],

and hence γb can be approximated by a gamma distribution

with shape parameter m = n
2

ϕ2
1a

4
b

1+ϕ2−2ϕ2
1a

4
b

and scale parameter

γb = n2γ0,bϕ
2
1a

4
b. This can be seen as a generalization of

the well-known approximation of the Rician distribution by a

Nakagami-m distribution [20]. We see that similarly to K, m
also scales with n. Because of the dissimilar behavior of the

FN, the Beckmann and the Nakagami-m distributions in terms

of diversity order [21], we will consider all such distributions

in the derivation of the PLS performance metrics, in order

to obtain insights on when these distributions are useful to

approximate the true distribution of γb.
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B. Distribution of γe

When the LRS designs its phase shifts according to the

legitimate link, the resulting phase distributions for each of

the eavesdropper’s R-E links Ψi are uniformly distributed by

virtue of [14]. This implies that the distribution of Re = |He|
is Rayleigh distributed according to [11, Corol. 2] with vari-

ance E{R2
e} = 1/n. Hence, γe is exponentially distributed

with γe = nγ0,e.

Remark 1 (Scaling law for γe). Notably, the average SNR at

the eavesdropper scales with n, whereas the average SNR at

the legitimate receiver scales with n2. Hence, the scaling law

for the ratio of legitimate and wiretap SNRs is

γb

γe

∣

∣

∣

∣

n↑
= n

γ0,b

γ0,e

[

ϕ2
1a

4
b +

1

n

(

1− ϕ2
1a

4
b

)

]

(13)

This implies that, as long as the operational assumptions for

the LRS hold, the use of a larger LRS can provide an SNR

boost to the legitimate link compared to the eavesdropper’s

counterpart.

Inspection of (2) and (5) reveals that the legitimate and

eavesdropper’s links share a common part through Hi,1.

However, we will now prove that both equivalent channels

are statistically independent. This will allow to reformulate

the PLS problem as a simpler one based on scalar channel

representations, with evident analytical benefits as stated in

the next Section.

Theorem 1 (Independence of legitimate and wiretap links).

Let us consider the equivalent legitimate and wiretap channels

in (2) and (5). Then, Hb and He are independent if ∠Hi,e ∼
U [−π, π). This is the case, e.g., of considering Rayleigh fading

for the LRS to eavesdropper’s links.

Proof. See Appendix A.

IV. PLS PERFORMANCE

We now derive analytical expressions for the chief PLS

performance metrics defined previously. We consider three

different scenarios for our analysis, which imply different ap-

proximations for the legitimate/wiretap links, respectively: (a)

no phase errors – FN/Rayleigh case; (b) phase errors – Beck-

mann/Rayleigh case; (c) phase errors – Nakagami/Rayleigh

case. We will refer to these scenarios with the subindices FR,

BR and NR, respectively.

A. SOP Analysis

Lemma 1 (SOP in FNR scenario). The SOP and the asymp-

totic SOP expressions (γb → ∞) in the absence of phase

errors for LRS-aided communications are given by

PFR = 1−Q0.5 (a0, b0) + e
τ−1

τγe
+cs as√

K
Q0.5 (as, bs) , (14)

P∞
FR ≃ e

−K/2+
τ−1
τγe

√

τγe(1+K)
2γb

Γ̃
(

1.5, τ−1
τγe

)

, (15)

with τ = 2RS , Γ̃(·, ·) is the regularized upper incomplete

Gamma function, as =
√

K(K+1)
K+1−2γbs

, bs =

√

2
(

K+1
2γb

− s
)

z,

s = − 1
τγe

, z = τ − 1 and cs = Kγbs
K+1−2γbs

. The Marcum Q-

function of order 0.5 can be easily computed with the help of

the Gaussian Q function as Q0.5(a, b) = Q(b−a)+Q(b+a).

Proof. First, (14) is obtained from [22] by specializing the

parameter of the κ-µ distribution to µκ-µ = 0.5 and some

manipulations. Then, (15) is obtained by using the approach

in [23] with µκ-µ = 0.5, and then substituting in the definition

of SOP followed by some manipulations.

Lemma 2 (SOP in BR scenario). The SOP and the asymptotic

SOP expressions (γb → ∞) considering phase errors in the

LRS-aided communications are given by

PBR = Fγb
(τ − 1) + exp

(

τ−1
τγe

)

Mu
γb

(

− 1
τγe

, τ − 1
)

. (16)

P∞
BR ≃ exp

(

−K(1+q2)
2q2

)

(1+K)(1+q2)(γeτ+τ−1)

2qγb
(17)

where Fγb
(·) [22, Eq. (7)] is the CDF of a squared Beck-

mann distribution, and Mu
γb

(·, ·) [22, Eq. (3)] is the upper-

incomplete moment generating function (MGF) of the RV γb,

which follows a squared Beckmann distribution.

Proof. PBR can be obtained directly from [22, Eq. (21)] with

the respective substitutions. On the other hand, the P∞
BR is

derived by using [21, Proposition 3], in which d = 1, using

the MGF of γb.

Lemma 3 (SOP in NR scenario). The SOP and the asymptotic

SOP expressions (γb → ∞) considering phase errors in the

LRS-aided communications can be approximated as

PNR = γ̃
(

m, (τ−1)m
γb

)

+ e
τ−1
τγe

Γ̃

(

m,(τ−1)

(

m
γb

+ 1
τγe

))

(

1+
γb

mτγe

)m , (18)

P∞
NR ≃ e

τ−1
τγe

(

τmγe

γb

)m

Γ̃
(

m+ 1, τ−1
τγe

)

. (19)

where γ̃(·, ·) is the regularized lower incomplete Gamma

functions [24, Eq. (8.350.1)].

Proof. As in the proof of Lemma 2, (18) is obtained from

[22] by setting the parameters of the κ-µ distribution κ = 0
and µ = m. Then, (19) is obtained as a particular case of [16,

Eq. (21)] with the respective substitutions.
All performance metrics in Lemmas 1-3 are given in closed-

form except for (16), for which the evaluation of Mu
γb

(·, ·) is

carried out numerically through an inverse Laplace transforma-

tion [25] over a shifted and scaled version of the (conventional)

MGF of γb, as in [22, Eq. 4], which is obtained from [20,

Eq. (2.41)] with r → ∞. Inspection of (15), (17) and (19)

reveals a different secrecy diversity order for each of the

approximations, i.e., 1/2, 1 and m for the FR, BR and

NR cases, respectively. The implications arising from this

observation will be discussed in the Numerical Results section.

B. ASR Analysis

For compactness, we use a common formulation for the

ASR metrics in the FR, NR and BR scenarios.

Lemma 4. The ASR and the asymptotic ASR (γb → ∞)

formulations over Z/Rayleigh fading channels for LRS-aided

communications can be obtained as

RS =CB − CE + GZ (γb, γe) (20)

R∞
S ≈ CB − CE, (21)

≈ log2 (γb)− tZ − CE, (22)
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where Z={Folded Normal,Beckmann,Nakagami} indicates

the distribution of the legitimate link, and tZ is a constant

value that captures the fading severity loss of the legitimate

link [16]. We note that CE = e1/γe

ln 2 E1

(

1
γe

)

denotes the aver-

age capacity of the wiretap link under the Rayleigh approxima-

tion, with E1 (·) being the Exponential integral function, and

the term GZ (γb, γe) =
e1/γe

ln 2

∫ 1

0
1
ue

−1/(uγe)Mγb

(

−1
uγe

)

du ≥
0, where Mγb

(·) is the (conventional) MGF of γb.

Proof. See Appendix B.

The previous Lemma allows us to evaluate the ASR in

the investigated scenario in a compact form. Analytical ex-

pressions for CB can be derived in all instances using a

similar approach as in [26, 27], although they are not explicitly

reproduced due to space limitation. We note that as pointed

out in [16], the term GZ (γb, γe) vanishes as γb grows, which

in our case happens as n is increased.

V. NUMERICAL EVALUATION

We now evaluate the effect of phase errors on the secrecy

performance metrics in the investigated scenario, as well as the

goodness of the scalar approximations for the equivalent com-

posite channel in LRS-assisted communications. For the links

between A and the LRS, and between the LRS and B, we con-

sider Rician fading with parameter K = 1. The links between

the LRS and E are assumed to be Rayleigh distributed, so

that a1 = a2,b =
√

π/(4(K + 1))1F1 (−1/2, 1,−K), where

1F1(·) is Kummer hypergeometric’s function, and a2,e =√
π/2. For compactness, we consider phase errors due to the

finite number of phase shifts available at the LRS; similar

conclusions can be extracted by using the phase error model

[11], based on the Von Mises distribution. Hence, the phase

errors are uniformly distributed in the interval [−unb
, unb

]
with unb

= −2−nbπ, where nb is the number of quantization

bits used to encode the phase shifts. Thus, from [11] we have

ϕi =
sin(unb+1−i)

unb+1−i
for i = {1, 2}.

In the next figures, we set γ0,e = 10 dB, a fixed transmit

power PT , and study the effect of increasing nb; the ideal

case of no phase errors is included as a reference in all

instances. The exact values for the secrecy metrics are obtained

through Monte Carlo (MC) simulations. The analytical secrecy

performance metrics in the FR, NR, and BR cases are included

using the results in Section IV. These have also been double-

checked offline with additional MC simulations, which are not

included in the figures for the sake of readability.

Fig. 1 shows the ASR as a function of γ0,b, for different

values of nb and number of elements at the LRS through

n. Theoretical values have been evaluated with the analytical

expressions for (20) and are represented using solid lines.

Asymptotic values are computed with (21) for the BR case,

and as (22) for the FR and NR cases with tFR and tNR in [27,

Table II]. We extract important insights from the observation

of Fig. 1: (i) increasing n allows for improving the ASR for a

fixed γ0,b, thanks to the different scaling laws of the legitimate

and wiretap average SNRs; (ii) FR (no phase errors) and BR

(phase errors) equivalent scalar approximations work pretty

well regardless of n, while the NR one underestimates the true
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Fig. 2. SOP as a function of γ0,b for different values of n with nb = 2 and
nb → ∞. Markers correspond to the legitimate and eavesdropper channels
in (2) and (5).

ASR for low n; (iii) asymptotic ASR expressions are tight for a

wide range of SNR values; (iv) RS exhibits a linear behavior

in log-scale for a wide range of SNRs, and such range of

SNRs widens with n; and (v) the performance degradation

with nb = 2 bits is small, which confirms that state-of-the-

art solutions for LRS surfaces [28] may be enough to obtain

a secrecy performance close to the case of no phase errors.

Indeed, all previous remarks hold as long as the operating

assumptions of the LRS in terms of size as n grows are valid.

Fig. 2 shows the SOP as a function of γ0,b, for different

values of n and nb = {2,∞}. Theoretical values have been

evaluated with the expressions included in Lemmas 1 to 3.

Similar conclusions as in the ASR can be extracted, especially

confirming that nb = 2 bits allow for a good performance

compared to the ideal case. However, some relevant differ-

ences are observed: while the equivalent scalar approximations

work well in all instances for large n, there are substantial dif-

ferences between the exact simulated results and the FR, BR,

and NR cases for lower n. More importantly, the asymptotic

results for the SOP may induce to confusion if not interpreted
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properly: while all asymptotic results are tight (i.e., they all

coincide with the analytical SOP expressions for each case),

the different secrecy diversity order inherent to each of the

equivalent scalar approximations is translated into a different

decay of the high-SNR slopes. Because of the high line-of-

sight condition of the FR and BR scalar approximations, the

asymptotes kick-in at very low SOP values; conversely, the

NR asymptote seems to better capture the abrupt decay of

the SOP for the operating range of probability values. In any

case, asymptotic analyses for the SOP should be exercised with

caution when using the equivalent scalar approximations, as

they may not be representative of the actual behavior of the

real LRS-assisted channel.
VI. CONCLUSIONS

The potential of LRS for PLS and the usefulness of equiva-

lent scalar channel approximations for performance evaluation

in such contexts have been exemplified, both theoretically

and by simulation. Even when the LRS has a limited phase

resolution of 2 bits, the different scaling laws for the desired

and eavesdropper’s SNRs allows for improving the PLS perfor-

mance in LRS-assisted communications. Relevant aspects such

as the consideration of multiantenna terminals and multiple

agents, the optimal design of beamforming and phase-shifts,

the effect of a direct link between the legitimate users, and the

impact of spatial correlation and imperfect amplitude reflection

in the LRS are key problems to be further investigated.
APPENDIX A

PROOF OF THEOREM 1

Using the law of total expectation, and condition-

ing on the set Z = {Hi,1, Hi,b,Θi}, we can write

E{HbHe} = E{E {HbHe|Z}} = E{HbE {He|Z}}. Now,

the inner expectation can be expanded as E {He|Z} =
1
n

∑n
i=1 |Hi,1|E

{

|Hi,e|ejΨi
}

. Now, by virtue of [14] the

distribution of Ψi is uniform in any interval of length 2π
provided that ∠Hi,e is uniformly distributed in the same

interval. Under the mild assumption that |Hi,e| and ejΨi are

independent, which is the case for instance of |Hi,e| being

Rayleigh distributed, then it yields that E {He|Z} = 0. Hence,

the independence between Hb and He is stated.
APPENDIX B

PROOF OF LEMMA 4

From the definitions in [16, Eq. (29)] and [16, Eq. (30)], we

use the expression of the CDF of the exponential distribution

for the wiretap link. After integration by parts, two terms are

identified; the first one corresponds to CE in (20), whereas

the second one reduces to GZ (γb, γe) after: (i) leveraging the

integral definition of the Exponential integral function in [24]

in (20), (ii) changing the order of integration, and (iii) using

the definition of the MGF. As for the asymptotic ASR results,

they hold by virtue of [16, eq. (43)].
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