

Aalborg Universitet

A spring search algorithm applied to engineering optimization problems

Dehghani, Mohammad; Montazeri, Zeinab; Dhiman, Gaurav; Malik, O. P.; Morales-
Menendez, Ruben; Ramirez-Mendoza, Ricardo A.; Dehghani, Ali; Guerrero, Josep M.; Parra-
Arroyo, Lizeth
Published in:
Applied Sciences (Switzerland)

DOI (link to publication from Publisher):
10.3390/APP10186173

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Dehghani, M., Montazeri, Z., Dhiman, G., Malik, O. P., Morales-Menendez, R., Ramirez-Mendoza, R. A.,
Dehghani, A., Guerrero, J. M., & Parra-Arroyo, L. (2020). A spring search algorithm applied to engineering
optimization problems. Applied Sciences (Switzerland), 10(18), [6173]. https://doi.org/10.3390/APP10186173

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.3390/APP10186173
https://vbn.aau.dk/en/publications/f1b8532d-34fe-418c-8db1-0a963b4a80cc
https://doi.org/10.3390/APP10186173

applied
sciences

Article

A Spring Search Algorithm Applied to Engineering
Optimization Problems

Mohammad Dehghani 1 , Zeinab Montazeri 1 , Gaurav Dhiman 2 , O. P. Malik 3 ,
Ruben Morales-Menendez 4 , Ricardo A. Ramirez-Mendoza 4,* , Ali Dehghani 5,
Josep M. Guerrero 6 and Lizeth Parra-Arroyo 4

1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 71557-13876,
Iran; m.dehghani@sutech.ac.ir (M.D.); Z.Montazeri@sutech.ac.ir (Z.M.)

2 Department of Computer Science, Government Bikram College of Commerce, Patiala, Punjab 147004, India;
gaurav.dhiman@thapar.edu

3 Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
maliko@ucalgary.ca

4 School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico;
rmm@tec.mx (R.M.-M.); A01036078@itesm.mx (L.P.-A.)

5 Department of Civil Engineering, Islamic Azad Universities of Estahban, Estahban 74, Iran;
adanbax2@gmail.com

6 CROM Center for Research on Microgrids, Department of Energy Technology, Aalborg University,
9220 Aalborg, Denmark; joz@et.aau.dk

* Correspondence: ricardo.ramirez@tec.mx; Tel.: +52-81-2001-5597

Received: 18 August 2020; Accepted: 2 September 2020; Published: 4 September 2020
����������
�������

Abstract: At present, optimization algorithms are used extensively. One particular type of such
algorithms includes random-based heuristic population optimization algorithms, which may be
created by modeling scientific phenomena, like, for example, physical processes. The present
article proposes a novel optimization algorithm based on Hooke’s law, called the spring search
algorithm (SSA), which aims to solve single-objective constrained optimization problems. In the
SSA, search agents are weights joined through springs, which, as Hooke’s law states, possess a
force that corresponds to its length. The mathematics behind the algorithm are presented in the
text. In order to test its functionality, it is executed on 38 established benchmark test functions
and weighed against eight other optimization algorithms: a genetic algorithm (GA), a gravitational
search algorithm (GSA), a grasshopper optimization algorithm (GOA), particle swarm optimization
(PSO), teaching–learning-based optimization (TLBO), a grey wolf optimizer (GWO), a spotted hyena
optimizer (SHO), as well as an emperor penguin optimizer (EPO). To test the SSA’s usability, it is
employed on five engineering optimization problems. The SSA delivered better fitting results than
the other algorithms in unimodal objective function, multimodal objective functions, CEC 2015,
in addition to the optimization problems in engineering.

Keywords: heuristic algorithms; optimization; spring force; spring search; spring

1. Introduction

As the demand for quick and accurate solutions to ever increasingly complex problems expands,
classical methods are being substituted for more robust approaches. One proposal is the use of heuristic
random-based algorithms in place of searching the defined problem space exhaustively [1–5]. Heuristic
algorithms are applicable to a variety of scientific fields, such as: logistics [6], bioinformatics [7],
data mining [8], chemical physics [9], energy [10], security [11], electrical engineering [12–16], energy
carriers [17,18] as well as other fields that aim to discover the optimal solution.

Appl. Sci. 2020, 10, 6173; doi:10.3390/app10186173 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8051-5976
https://orcid.org/0000-0003-0989-2431
https://orcid.org/0000-0002-6343-5197
https://orcid.org/0000-0003-4925-1276
https://orcid.org/0000-0003-0498-1566
https://orcid.org/0000-0002-5122-507X
https://orcid.org/0000-0001-5236-4592
https://orcid.org/0000-0001-8614-9014
http://dx.doi.org/10.3390/app10186173
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/18/6173?type=check_update&version=2

Appl. Sci. 2020, 10, 6173 2 of 21

Each population-based algorithm may represent the conveying of data along with the interlinkage
between elements in a different way. For example, genetic algorithms simulate evolution [19]
while annealing algorithms, thermodynamics [20]; immunity algorithms, the human immune
system [21]; colony optimization strategies, ants’ search for food [22]; and particle swarm optimization
approaches, the behavior of birds while searching for food [23].

There are many laws of nature that may serve as inspiration, such as Newton’s universal law of
gravitation, Hooke’s spring law, the laws of motion, the laws of energy and mass conservation, as well
as the laws that dictate the electromagnetic force. A novel optimization algorithm was proposed based
on Hooke’s spring law, with its corresponding precursory results detailed in [24]. Such algorithm is
detailed and analyzed in the current paper with its improved equations. The SSAs capabilities were
evaluated through 23 benchmark test functions, as well as a group of problems mentioned in the
Constrained Single Objective Real-Parameter Optimization Technical Report, ‘CEC’2015’. The SSA was
further corroborated by being weighed against eight established algorithms found in the literature,
as well as being used to solve a selection of engineering problems.

Section 2 provides a greater insight to other established optimization approaches. Section 3
elucidates Hooke’s law while Section 4 outlines the SSA. Section 5 assesses the algorithm’s search
ability while Section 6, its proficiency. Section 7 includes the outcome of the evaluation through the
standard benchmark test functions. Section 8 includes the implementation of the algorithm on select
engineering design problems. Finally, Section 9 encompasses conclusions.

2. A Brief History of Intelligent Algorithms

An algorithm is considered intelligent when it finds a suitable answer or solution to a problem
whose main characteristic is optimization in the shortest possible time and using the least amount
of available information [25]. Using a more complete definition, the heuristic method is a strategy
that sacrifices part of the information to reach a solution in the shortest possible time and with good
precision [26]. Usually, heuristic algorithms are very frequently based on natural processes, that is,
typically biological processes or laws that explain physical phenomena. This approach has been widely
considered in the last ten years, and numerous algorithms have been suggested. These algorithms have
been classified into different categories, such as swarm-based algorithms, evolution-based algorithms,
and physics-based algorithms.

2.1. Swarm-Based Algorithms

These techniques were developed from the analysis of several processes that exist naturally,
such as the growth or symbiosis of plants, the feeding behavior of insects, and the behavior and social
organization of animals [27]. The particle swarm optimization (PSO) algorithm is an indeterminate
(random) search method that was developed around 1995 to support functional optimization [28].
This algorithm was developed by analyzing and taking a reference to the movement that birds develop
as a group (team) when looking for food. The algorithm is based on the premise that a group of
birds looks for food at random and that there is only one portion of food in the area (search space)
in question, but none of the birds know where the food is. One of the most successful strategies
could be: for the birds to follow the bird that is closest to the food, and in sequence to be the bird
most likely to find the food. This strategy is, in fact, the source of the algorithm. In the algorithm,
each solution, called a particle, is equivalent to a bird in the bird movement algorithm. Each particle
(bird) has an arbitrary value calculated by a success function. Each particle (bird) also has a speed that
controls the particle (bird). By continuing to search for optimal particles, the agent continues to move
in the solution space. The firefly algorithm (FA) is an algorithm inspired by a natural system; in this
case, based on swarms for projects where limited optimal solutions are sought [29]. The algorithm
is inspired by the analysis of the radiation behavior of these insects. The firefly lives in groups and
changes from low light to higher light intensity. The firefly algorithm generates a rhythmic light and
passes through each different light pattern or behavior among these insects. The firefly algorithm uses

Appl. Sci. 2020, 10, 6173 3 of 21

these lights for two main purposes: finding mates to mate with and looking for food. These lights
can also serve as a protection mechanism or strategy. The whale optimization algorithm (WOA) [30]
is another nature-inspired optimization algorithm; as the name implies, this algorithm mimics the
social behavior that humpback whales have. The most surprising thing about humpback whales is
their hunting strategy. This food search strategy is called a bubble net feeding method. Humpback
whales like to hunt schools of krill or small fish near the surface of the ocean. It has been analyzed that
this foraging is done by creating distinctive bubbles along a circle or route in the form of the number
“9”. Some of the other swarm-based algorithms are: artificial bee colony (ABC) [31], bat-inspired
algorithm (BA) [32], spotted hyena optimizer (SHO) [33], cuckoo search (CS) [34], monkey search
(MS) [35], group optimization (GO) [36], artificial fish-swarm algorithm (AFSA) [37], hunting search
(HS) [38], moth-flame optimization algorithm (MFO) [39], dolphin partner optimization (DPO) [40],
orientation search algorithm (OSA) [41], binary orientation search algorithm (BOSA) [42], dice game
optimizer (DGO) [43], shell game optimization (SGO) [44], hide objects game optimization (HOGO) [45],
donkey theorem optimization (DTO) [46], following optimization algorithm (FOA) [47], rat swarm
optimizer (RSO) [48], darts game optimizer (DGO) [49], football game based optimization (FGBO) [50],
grey wolf optimizer (GWO) [51], grasshopper optimization algorithm (GOA) [52], coupled spring
forced bat algorithm (SFBA) [53], adaptive granularity learning distributed particle swarm optimization
(AGLDPSO) [54], multi leader optimizer (MLO) [55], doctor and patient optimization (DPO) [56],
and emperor penguin optimizer (EPO) [57].

2.2. Evolution-Based Algorithms

An algorithm is considered evolutionary when the algorithm combines aspects of natural selection
and continuity of coordination. These algorithms are based on structures that simulate the rules of
selection, recombination, change, and survival, similar to genetics, hence the adjective algorithm.
These structures are based on genetic sets. In this method, the environment determines each person’s
coordination or performance in a population and uses the most consistent individuals to reproduce [58].
Evolutionary algorithms are random search procedures that use genetic mechanisms and natural
selection [59]. Genetic algorithms (GA) were developed as a method that seeks optimization, starting
from fundamental basic operations in genetic biology [60]. The first record of using these concepts to
create an optimization method occurred in 1967 [61]. GA is a particular type of evolution algorithm
that exploits basic biological concepts such as inheritance and mutation [62] and has had satisfactory
results in different scientific domains.

On the other hand, differential evolution (DE) [63] is an algorithm that also seeks intelligent
optimization based on populations introduced in 1995 [64]. The initial version of this algorithm was
used to solve problems with continuous variables, and interpretations of this algorithm have been
implemented over time to solve optimization problems with discrete variables [65]. Other algorithms
based on the theory of evolution have been developed, examples of which are: evolutionary
programming (EP) [66], biogeography-based optimizer (BBO) [67], enhanced quantum-inspired
differential evolution algorithm (IQDE) [68], genetic programming (GP) [69] and evolution strategy
(ES) [70].

2.3. Physics-Based Algorithms

Physics-based algorithms, as the name implies, are inspired by the laws of physics. Simulated
annealing (SA) is one of the best known and most popular optimization algorithms. SA was developed
in 1983 [71], inspired by metals’ annealing, for example, in the artisan process to make swords or knives
in the past. The process consists of first heating the metal to a very high temperature and then cooling
it by gradually reducing the temperature so that the metal hardens and becomes harder. In this process,
when the temperature of the metal increases, the speed of atomic movement increases dramatically
and, in the next step, the gradual reduction in temperature causes the formation of specific patterns
based on the location of its atoms [20]. Drastic temperature change is one of the adjustment parameters

Appl. Sci. 2020, 10, 6173 4 of 21

of this algorithm. The gravitational search algorithm (GSA) [72] is inspired by the universal law of
gravitation developed by Isaac Newton. In this algorithm, objects such as planets in a galaxy are
defined as search agents. The optimal region, similar to a black hole, absorbs the planets. Information
about the fitness of any object is stored as gravity and mass inertia. The exchange of information
and the effects of objects on each other is governed by the attractive force of gravitation [73]. Several
algorithms have been developed based on laws and/or theories of physics, such as: charged system
search (CSS) [74], galaxy-based search algorithm (GBSA) [75], curved space optimization (CSO) [76],
ray optimization (RO) algorithm [77], artificial chemical reaction optimization algorithm (ACROA) [78],
small world optimization algorithm (SWOA) [79], central force optimization (CFO) [80], black hole
(BH) [81] and big-bang big-crunch (BBBC) [82].

3. Spring Force Law

If a force that moves an object in a closed path (forward and backward) is not affected by the
object’s trajectory, that force is conservative. Another method for diagnosing conservative forces is that
the work done by the force in different paths is equal to the difference between the initial and final
points. The spring force is a type of conservative force [83].

Consider a spring that imposes a force on a particle with mass ‘m’. The particle moves horizontally
in the x direction. When a particle is at the origin (x = 0), the spring is balanced. An external force (Fext)
influences the object in the anti-clock wise direction of the spring. The external force is always equal to
the spring force. Thus, the particle is always in balance.

Consider that the particle is moved a distance x from its initial location x = 0. When the external
factor imposes a force Fext on the particle, the spring offers a resistance force Fs on the particle. This force
can be described by the spring force or Hooke’s law as follows:

Fs = −kx (1)

where k is the spring force constant and x denotes the spring displacement (strain or compression)
from the balance point. Most real springs properly follow Hooke’s law up to a limit [84].

The system behavior is investigated in an isolated system as shown in Figure 1. It is assumed that
only the spring force is imposed on the object.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 23

absorbs the planets. Information about the fitness of any object is stored as gravity and mass inertia.
The exchange of information and the effects of objects on each other is governed by the attractive
force of gravitation [73]. Several algorithms have been developed based on laws and/or theories of
physics, such as: charged system search (CSS) [74], galaxy-based search algorithm (GBSA) [75],
curved space optimization (CSO) [76], ray optimization (RO) algorithm [77], artificial chemical
reaction optimization algorithm (ACROA) [78], small world optimization algorithm (SWOA) [79],
central force optimization (CFO) [80], black hole (BH) [81] and big-bang big-crunch (BBBC) [82].

3. Spring Force Law

If a force that moves an object in a closed path (forward and backward) is not affected by the
object’s trajectory, that force is conservative. Another method for diagnosing conservative forces is
that the work done by the force in different paths is equal to the difference between the initial and
final points. The spring force is a type of conservative force [83].

Consider a spring that imposes a force on a particle with mass ‘m’. The particle moves
horizontally in the x direction. When a particle is at the origin (x = 0), the spring is balanced. An
external force (𝐹) influences the object in the anti-clock wise direction of the spring. The external
force is always equal to the spring force. Thus, the particle is always in balance.

Consider that the particle is moved a distance x from its initial location x = 0. When the external
factor imposes a force 𝐹 on the particle, the spring offers a resistance force Fs on the particle. This
force can be described by the spring force or Hooke’s law as follows: 𝐹 = −𝑘𝑥 (1)

where k is the spring force constant and 𝑥 denotes the spring displacement (strain or compression)
from the balance point. Most real springs properly follow Hooke’s law up to a limit [84].

The system behavior is investigated in an isolated system as shown in Figure 1. It is assumed
that only the spring force is imposed on the object.

Figure 1. An isolated system is composed of object and spring forces.

In Figure 1, forces imposed on object j can be grouped into two, 𝐹 , which variables as described
in Equation (2), is the sum of forces imposed from the right and 𝐹 , which, as shown in Equation (3),
is the sum of forces imposed from the left. It is necessary to mention that the springs that are attached to
the object from either right or left, are also attached to robust points at their other ends.

𝐹 = 𝐾 , 𝑥 , (2)

𝐹 = 𝐾 , 𝑥 , (3)

Figure 1. An isolated system is composed of object and spring forces.

In Figure 1, forces imposed on object j can be grouped into two, FtotalR , which variables as
described in Equation (2), is the sum of forces imposed from the right and FtotalL , which, as shown in
Equation (3), is the sum of forces imposed from the left. It is necessary to mention that the springs that
are attached to the object from either right or left, are also attached to robust points at their other ends.

F j
totalR

=

nR∑
i=1

Ki, jxi, j (2)

Appl. Sci. 2020, 10, 6173 5 of 21

F j
totalL

=

nL∑
l=1

Kl, jxl, j (3)

where, nR and nL are the number of left and right spring forces, xi, j and xl, j show the distance between
the object j and the fixed left and right points, Ki, j and Kl, j are the spring stiffness coefficients between
the object j and the fixed points.

The object is initially balanced with no force exerted on it. Then, by applying the spring forces,
the object is pulled from the right and the left. Considering the magnitude of these forces, the spring
either shifts to left or right until the system reaches a new equilibrium position. It is apt to mention
that if the right and left forces are equal, the object remains at its original position.

Considering the stiffness coefficient of the springs that are connected to the object, two new
parameters may be defined as below:

K j
equalR

=

nR∑
i=1

Ki, j (4)

K j
equalL

=

nL∑
l=1

Kl, j (5)

K j
equalR

and K j
equalL

are the right and the left constants of the spring, respectively. Considering
Equation (1) the displacement values at each side may be defined as follows:

dX j
R =

F j
totalR

K j
equalR

(6)

dX j
L =

F j
totalL

K j
equalL

(7)

here, dX j
R and dX j

L are the displacement values of object j to the right and left, respectively. Therefore,
the total displacement may be defined as follows:

X j = dX j
R + dX j

L (8)

dX j is the final object j displacement value that may be a positive or negative value.

X j = X j
0 + dX j (9)

Equation (9), X j relates to the location of the new balance point of the system and object j. Besides,
X j

0 is the initial balance of object j.
By simulating Hooke’s law within the discrete time domain, a new optimization algorithm called

the spring optimization was designed, which is explained further in the following section.

4. Spring Search Algorithm (SSA)

In this article, the spring search algorithm is run in an artificial system with discrete time.
The system space is the defined domain of problem. It is possible to apply the spring force law as a tool
to convey information. The designed optimization may be applied to solve any optimization problem,
as long as the answer can be defined as a position within space, and its similarity to other problem
answers can be expressed as spring stiffness comparisons. The stiffness of the spring is established
relative to the objective function.

Appl. Sci. 2020, 10, 6173 6 of 21

SSAs consist of two general steps: making a discrete time artificial system within the problem
space by defining the initial positioning of objects, determining the governing laws and arranging
parameters; letting the algorithm run until it reaches a stop.

4.1. Setting the System, Determining Laws and Arranging Parameters

First, the system space is determined with its multi-dimensional coordinate system in which the
problem is defined. Any point in space may be the solution of the optimization problem. Search factors
are sets of objects that are attached to each other by some springs. Each object has its own position as
well as stiffness coefficients pertaining to the springs attached to it. The object’s position is a point
in space where the solution of the problem may be found. The values of the springs are computed
regarding the stiffness of both objects attached.

After setting the system, its governing laws are determined. Only the spring force laws and
movement laws are observed in the system. The general patterns of these rules are similar to natural
laws and are defined below.

In physics, mechanical and elastic science, Hooke’s law is an approximation that shows that any
change in an object’s length is directly proportional to its load. Most materials follow this law with
reasonable accuracy, except when the force is lower than its elasticity. Any deviation from Hooke’s law
increases with the deformation quantity, such that with numerous deformations, when the material
trespasses its linear elastic domain, Hooke’s law loses its application. The present article assumes that
Hooke’s law is valid for all of the time observed.

The present location of any object equals the sum coefficient of its previous locations and its
displacements according to the laws of motion. Any object displacement may be determined with the
aid of the spring force law.

Consider a system as a set of m objects where the position of each object is a point in the search
space and a solution to the problem.

Xi =
(
x1

i , . . . , xd
i , . . . , xn

i

)
(10)

The position of an object i of dimension d is designated xd
i in Equation (10). The initial positions of

the objects are defined within the search space randomly. These objects tend to return to an equilibrium
position by means of the forces exerted by the spring.

Equation (11) is employed in order to compute the spring stiffness coefficient.

Ki, j = Kmax ×

∣∣∣∣Fi
n − F j

n

∣∣∣∣×max
(
Fi

n, F j
n

)
(11)

In Equation (11), Ki, j is the spring stiffness coefficient among objects i and j, Kmax is the maximum
value of the spring stiffness coefficient, and is determined according to the type of problem in question,
Fi

n and F j
n are the normalized objective functions of objects i and j respectively. Equations (12) and (13)

are used in order to normalize the objective function.

F′in =
f i
obj

min
(

fobj
) (12)

Fi
n = min

(
F′in

)
×

1

F′in
(13)

In the above equations, Fobj is the objective function and f i
obj is the objective function value for the

object i.
In the m variable problem, it is possible to assume that the problem has m dimensions and that

there is a coordinate for each dimension. Therefore, it is possible to draw a system on its related
coordinate based on each variable. Each coordinate’s strong points at the left or right side of the object

Appl. Sci. 2020, 10, 6173 7 of 21

are determined by comparing the objective function quantities. Stronger points related to each object
mean that they are positioned at more optimal positions. Therefore, each coordinate has two general
summative forces: the sum of the right, Equation (14) and the sum of the left, Equation (15). Both are
applied to the object j.

F j,d
totalR

=

nd
R∑

i=1

Ki, jxd
i, j (14)

F j,d
totalL

=

nd
L∑

l=1

Kl, jxd
l, j (15)

In the above equations, F j,d
totalR

stands for the sum of the right forces and F j,d
totalL

the sum of the left

forces imposed on object j within the dimension d. nd
R and nd

L are the d dimension right and left strong
points; xd

i, j and xd
l, j represent the distance of the object ‘j’ from the right and left strong points; Ki, j and

Kl, j are the spring stiffness coefficient attached to the object j and the strong points.
Now, considering Hooke’s law in the dimension d:

dX j,d
R =

F j,d
totalR

K j
equalR

(16)

dX j,d
L =

F j,d
totalL

K j
equalL

(17)

here, dX j,d
R and dX j,d

L are the displacement of object j to the right and the left of dimension d, respectively.
The total displacement may be calculated as follows:

dX j,d = dX j,d
R + dX j,d

L (18)

where dX j,d is the final displacement of object j in the dimension d. The direction may be in the positive
or negative x direction.

X j,d
new = X j,d

0 + r1 × dX j,d, (19)

Equation (19) relates X j,d
new to both the new position and balance point of the system, along with

the d dimension of object j. Additionally, X j,d
0 is the initial balance point of object j along with the d

dimension. Here, r1 is a random number with a uniform distribution within the span of [0–1], which is
used to preserve the random mode.

In the last step, the objects and springs after reaching balance have a small displacement due to
slipping, which is simulated in Equation (20).

X j,d = X j,d
new +

2× (T − t)
T

× (−0.2 + r2 × 0.4) ×X j,d
new (20)

here, X j,d is the updated position of d dimension of object j, T is the maximum number of iteration, t is
the counter of iteration, and r2 is a random number with a uniform distribution within the span of
[0–1], which is used to preserve the random mode.

4.2. Time Passing and Parameters Updating

While initially forming a system, each object is randomly placed within a point in space where
it may be the problem’s answer. At any given time, objects are assessed and their displacement is
calculated using Equations (11) through (18). Thereafter, the object is placed in the new computed

Appl. Sci. 2020, 10, 6173 8 of 21

position. The parameter of interest is the spring stiffness coefficient that is updated at each stage based
on Equation (11). The stop condition is established after the algorithm has been run for a given time.
The steps of the SSA are as follows and a flowchart encompassing them is shown in Figure 2:Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 23

Figure 2. Spring Search Algorithm Flowchart.

1- Start
2- Determine the system environment and the problem information
3- Create the initial population of objects
4- Evaluate and normalize fitness function or objective function
5- Update parameter K
6- Formulate the spring force and the laws of motion for each object
7- Compute object displacement quantities

Figure 2. Spring Search Algorithm Flowchart.

1- Start
2- Determine the system environment and the problem information
3- Create the initial population of objects
4- Evaluate and normalize fitness function or objective function
5- Update parameter K
6- Formulate the spring force and the laws of motion for each object
7- Compute object displacement quantities
8- Update object locations
9- Repeat steps 4 through 8 until the stop condition is satisfied
10- Print best solution
11- End

Appl. Sci. 2020, 10, 6173 9 of 21

5. Properties of the Proposed SSA

The above algorithm is a proposed optimization method that applies the spring force law.
The strategy of the algorithm proposed is to use the spring fitness coefficient. In this algorithm,
a set of objects search the space randomly using the spring force as a tool to transfer information
between objects. Under the influence of other objects, each may arrive at a rough understanding of
its surrounding space. The algorithm must be navigated such that the objects’ location improves as
time passes.

Thus, springs with more fitness coefficients can be attached to those with better fitness functions.
The springs attract other objects to themselves, allowing a suitable force to be exerted on each object.
Objects tend to move towards better conditions as time goes by. Accordingly, objects placed in better
locations must take slower and shorter steps. As an object arrives in a better condition, its stiffness
coefficient increases. The stiffer objects search their surrounding environment with more precision.
Indeed, this behavior, known here as the adjustment, is similar to arranging the learning rate in a
neural network. The spring’s stiffness coefficient becomes smaller with the passing of time as a result
of the spring’s force. Another reason why the spring stiffness coefficient decreases with time is that the
objects tend to concentrate around better locations and need to search space with smaller and more
precise steps.

Each object can influence the radius of its neighborhood according to its fitness value. As indicated
in Figure 3, each object can move as influenced by the spring forces imposed on it.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 23

8- Update object locations
9- Repeat steps 4 through 8 until the stop condition is satisfied
10- Print best solution
11- End

5. Properties of the Proposed SSA

The above algorithm is a proposed optimization method that applies the spring force law. The
strategy of the algorithm proposed is to use the spring fitness coefficient. In this algorithm, a set of objects
search the space randomly using the spring force as a tool to transfer information between objects. Under
the influence of other objects, each may arrive at a rough understanding of its surrounding space. The
algorithm must be navigated such that the objects’ location improves as time passes.

Thus, springs with more fitness coefficients can be attached to those with better fitness functions.
The springs attract other objects to themselves, allowing a suitable force to be exerted on each object.
Objects tend to move towards better conditions as time goes by. Accordingly, objects placed in better
locations must take slower and shorter steps. As an object arrives in a better condition, its stiffness
coefficient increases. The stiffer objects search their surrounding environment with more precision.
Indeed, this behavior, known here as the adjustment, is similar to arranging the learning rate in a
neural network. The spring’s stiffness coefficient becomes smaller with the passing of time as a result
of the spring’s force. Another reason why the spring stiffness coefficient decreases with time is that
the objects tend to concentrate around better locations and need to search space with smaller and
more precise steps.

Each object can influence the radius of its neighborhood according to its fitness value. As
indicated in Figure 3, each object can move as influenced by the spring forces imposed on it.

Figure 3. Forces in the system of objects and springs.

6. Exploration and Exploitation in SSA

The optimization method must address two issues: exploration and exploitation. In the
exploration aspect, the algorithm must have enough power to search the problem search space well
and not be limited to only a few specific locations. The algorithm tackles exploitation by focusing on
exploring optimal locations. Before running a population algorithm, it is necessary to search the
designated space comprehensively. Hence, the algorithm must focus on searching for the solution’s
general area during initial iterations, though as the time passes, it must locate itself more efficiently
through aid from the population findings [85].

Figure 3. Forces in the system of objects and springs.

6. Exploration and Exploitation in SSA

The optimization method must address two issues: exploration and exploitation. In the exploration
aspect, the algorithm must have enough power to search the problem search space well and not be
limited to only a few specific locations. The algorithm tackles exploitation by focusing on exploring
optimal locations. Before running a population algorithm, it is necessary to search the designated
space comprehensively. Hence, the algorithm must focus on searching for the solution’s general area
during initial iterations, though as the time passes, it must locate itself more efficiently through aid
from the population findings [85].

SSAs can search space by considering the suitable number of objects. The way the optimization
algorithm improves its detection power is through the spring force effect by varying the spring’s

Appl. Sci. 2020, 10, 6173 10 of 21

stiffness coefficient and consequently controlling the spring forces among the objects. During initial
iterations, the problem needs thorough searches, and as time passes, the population arrives at better
results and the spring stiffness coefficient value is controlled. At the initial time, a proper value is
chosen, and as time passes, that value decreases though the spring stiffness coefficient (Equation (11))
until it arrives at its minimum value.

7. Experimental Results and Discussion

This section presents the results from the evaluation of the SSA’s performance on twenty-three
standard benchmark test functions. A detailed description of these benchmark functions is presented
below. Furthermore, the results are compared to eight existing optimization algorithms.

7.1. Benchmark Test Functions

The performance of the SSA was assessed by using 23 benchmark test functions [86].
The experimentation was done on MATLAB version R2014a (8.3.0.532) in a Microsoft Windows 7
environment using a 64 bit Core i-7 processor with 2.40 GHz and 16 GB main memory. The average
and standard deviation of the best optimal solutions are displayed in Tables 1–3. For each benchmark
test function, the SSA utilizes 20 independent runs, in which each run employs 1000 iterations.

7.2. Algorithms Used for Comparison

In order to prove the potency of the SSA, it is also compared to eight optimization algorithms
on unimodal, multimodal, fixed-dimension multimodal and composite optimization. They were
assessed by solving a set of minimization problems introduced in the Constrained Single Objective
Real-Parameter Optimization Technical Report, ‘CEC’2015’ [86]. To validate the performance of the
SSA, the eight optimization algorithms included: GA [87], PSO [29], GSA [73], TLBO [88], GOA [53],
GWO [52], SHO [34], and EPO [58].

The parameter values of optimization algorithms are given in the next table.

Parameter definition

1: GA
2: Population size N = 80
3: Crossover 0.9
4: Mutation 0.05
5: PSO
6: Swarm size S = 50
7: Inertia weight decreases linearly from 0.9 to 0.4
8: C1(individual-best acceleration factor) increases linearly from 0.5 to 2.5
9: C2(global-best acceleration factor) decreases linearly from 2.5 to 0.5

10: GSA
11: Objects number N = 50
12: Acceleration coefficient (a = 20)
13: Initial gravitational constant (G0 = 100)
14: TLBO
15: Swarm size S = 50
16: GOA
17: Search Agents N = 100
18: Cmax = 1
19: Cmin = 4× 10−5

20: l = 1.5 and f = 0.5
21: GWO
22: Wolves number = 50

Appl. Sci. 2020, 10, 6173 11 of 21

23: a variable decreases linearly from 2 to 0
24: SHO
25: Search Agents N = 80
26: M Constant [0.5, 1]
27: Control Parameter (h) [5, 0]
28: EPO
29: Search Agents N = 80
30: Temperature Profile [1, 1000]
31: A Constant [−1.5, 1.5]
32: Function S() [0, 1.5]
33: Parameter M = 2
34: Parameter f [2, 3]
35: Parameter l [1.5, 2]

7.2.1. Evaluation of Unimodal Test Function with High Dimensions

Functions F1 to F7 are unimodal. The mean results of 20 independent runs of the algorithm are
displayed in Table 1. These results show that the SSA has a better performance in all F1 to F7 functions
than other algorithms.

Table 1. Results for SSA and other algorithms in Unimodal test functions.

GA PSO GSA TLBO GOA GWO SHO EPO SSA

F1
Ave 1.95 × 10−12 4.98 × 10−09 1.16 × 10−16 3.55 × 10−02 2.81 × 10−01 7.86 × 10−10 4.61 × 10−23 5.71 × 10−28 6.74 × 10−35

std 2.01 × 10−11 1.40 × 10−08 6.10 × 10−17 1.06 × 10−01 1.11 × 10−01 8.11 × 10−09 7.37 × 10−23 8.31 × 10−29 9.17 × 10−36

F2
Ave 6.53 × 10−18 7.29 × 10−04 1.70 × 10−01 3.23 × 10−05 3.96 × 10−01 5.99 × 10−20 1.20 × 10−34 6.20 × 10−40 7.78 × 10−45

std 5.10 × 10−17 1.84 × 10−03 9.29 × 10−01 8.57 × 10−05 1.41 × 10−01 1.11 × 10−17 1.30 × 10−34 3.32 × 10−40 3.48 × 10−45

F3
Ave 7.70 × 10−10 1.40 × 1001 4.16 × 1002 4.91 × 1003 4.31 × 1001 9.19 × 10−05 1.00 × 10−14 2.05 × 10−19 2.63 × 10−25

std 7.36 × 10−09 7.13 × 1000 1.56 × 1002 3.89 × 1003 8.97 × 1000 6.16 × 10−04 4.10 × 10−14 9.17 × 10−20 9.83 × 10−27

F4
Ave 9.17 × 1001 6.00 × 10−01 1.12 × 1000 1.87 × 1001 8.80 × 10−01 8.73 × 10−01 2.02 × 10−14 4.32 × 10−18 4.65 × 10−26

std 5.67 × 1001 1.72 × 10−01 9.89 × 10−01 8.21 × 1000 2.50 × 10−01 1.19 × 10−01 2.43 × 10−14 3.98 × 10−19 4.68 × 10−29

F5
Ave 5.57 × 1002 4.93 × 1001 3.85 × 1001 7.37 × 1002 1.18 × 1002 8.91 × 1002 2.79 × 1001 5.07 × 1000 5.41 × 10−01

std 4.16 × 1001 3.89 × 1001 3.47 × 1001 1.98 × 1003 1.43 × 1002 2.97 × 1002 1.84 × 1000 4.90 × 10−01 5.05 × 10−02

F6
Ave 3.15 × 10−01 9.23 × 10−09 1.08 × 10−16 4.88 × 1000 3.15 × 10−01 8.18 × 10−17 6.58 × 10−01 7.01 × 10−19 8.03 × 10−24

std 9.98 × 10−02 1.78 × 10−08 4.00 × 10−17 9.75 × 10−01 9.98 × 10−02 1.70 × 10−18 3.38 × 10−01 4.39 × 10−20 5.22 × 10−26

F7
Ave 6.79 × 10−04 6.92 × 10−02 7.68 × 10−01 3.88 × 10−02 2.02 × 10−02 5.37 × 10−01 7.80 × 10−04 2.71 × 10−05 3.33 × 10−08

std 3.29 × 10−03 2.87 × 10−02 2.77 × 1000 5.79 × 10−02 7.43 × 10−03 1.89 × 10−01 3.85 × 10−04 9.26 × 10−06 1.18 × 10−06

7.2.2. Evaluation of Multimodal Test Functions with High Dimensions

In multimodal functions F8 to F13, by increasing the function dimensions, the number of local
responses increased exponentially. Therefore, arriving at the minimum response of these functions is
hard to achieve. In these types of functions, arriving at a response close to the ideal response denotes
the algorithm’s high capability in avoiding wrong local responses. The results obtained from assessing
F8 to F13 after 20 runs of the SSA as well as the other algorithms compared are presented in Table 2.
The SSA demonstrated the best performance of all the functions analyzed.

7.2.3. Evaluation of Multimodal Test Functions with Low Dimensions

Functions F14 to F23 have both low dimensions in addition to low local responses. Results obtained
from 20 runs of each algorithm, are shown in Table 3. These results indicate that the SSA has a suitable
performance in all functions F14 to F23.

7.2.4. Evaluation of CEC 2015 Test Functions

This section is devoted to real approaches and techniques for solving single objective optimization
problems. All of these test functions are minimization problems. Table 4 shows the performance of the
SSA as well as the other algorithms on the CEC 2015 test. Table 4 exhibits how the SSA is the most
efficient optimizer of all of the benchmark test functions studied.

Appl. Sci. 2020, 10, 6173 12 of 21

Table 2. Results for SSA and other algorithms in Multimodal test functions.

GA PSO GSA TLBO GOA GWO SHO EPO SSA

F8
Ave −5.11 × 1002

−5.01 × 1002
−2.75 × 1002

−3.81 × 1002
−6.92 × 1002

−4.69 × 1001
−6.14 × 1002

−8.76 × 1002
−1.2 × 1004

std 4.37 × 1001 4.28 × 1001 5.72 × 1001 2.83 × 1001 9.19 × 1001 3.94 × 1001 9.32 × 1001 5.92 × 1001 9.14 × 10−12

F9
Ave 1.23 × 10−01 1.20 × 10−01 3.35 × 1001 2.23 × 1001 1.01 × 1002 4.85 × 10−02 4.34 × 10−01 6.90 × 10−01 8.76 × 10−04

std 4.11 × 1001 4.01 × 1001 1.19 × 1001 3.25 × 1001 1.89 × 1001 3.91 × 1001 1.66 × 1000 4.81 × 10−01 4.85 × 10−02

F10
Ave 5.31 × 10−11 5.20 × 10−11 8.25 × 10−09 1.55 × 1001 1.15 × 1000 2.83 × 10−08 1.63 × 10−14 8.03 × 10−16 8.04 × 10−20

std 1.11 × 10−10 1.08 × 10−10 1.90 × 10−09 8.11 × 1000 7.87 × 10−01 4.34 × 10−07 3.14 × 10−15 2.74 × 10−14 3.34 × 10−18

F11
Ave 3.31 × 10−06 3.24 × 10−06 8.19 × 1000 3.01 × 10−01 5.74 × 10−01 2.49 × 10−05 2.29 × 10−03 4.20 × 10−05 4.23 × 10−10

std 4.23 × 10−05 4.11 × 10−05 3.70 × 1000 2.89 × 10−01 1.12 × 10−01 1.34 × 10−04 5.24 × 10−03 4.73 × 10−04 5.11 × 10−07

F12
Ave 9.16 × 10−08 8.93 × 10−08 2.65 × 10−01 5.21 × 1001 1.27 × 1000 1.34 × 10−05 3.93 × 10−02 5.09 × 10−03 6.33 × 10−05

std 4.88 × 10−07 4.77 × 10−07 3.14 × 10−01 2.47 × 1002 1.02 × 1000 6.23 × 10−04 2.42 × 10−02 3.75 × 10−03 4.71 × 10−04

F13
Ave 6.39 × 10−02 6.26 × 10−02 5.73 × 10−32 2.81 × 1002 6.60 × 10−02 9.94 × 10−08 4.75 × 10−01 1.25 × 10−08 0.00 × 1000

std 4.49 × 10−02 4.39 × 10−02 8.95 × 10−32 8.63 × 1002 4.33 × 10−02 2.61 × 10−07 2.38 × 10−01 2.61 × 10−07 0.00 × 1000

Table 3. Results for SSA and other algorithms in Multimodal test functions with low dimension.

GA PSO GSA TLBO GOA GWO SHO EPO SSA

F14
Ave 4.39 × 1000 2.77 × 1000 3.61 × 1000 6.79 × 1000 9.98 × 1001 1.26 × 1000 3.71 × 1000 1.08 × 1000 9.98 × 10−01

std 4.41 × 10−02 2.32 × 1000 2.96 × 1000 1.12 × 1000 9.14 × 10−1 6.86 × 10−01 3.86 × 1000 4.11 × 10−02 7.64 × 10−12

F15
Ave 7.36 × 10−02 9.09 × 10−03 6.84 × 10−02 5.15 × 10−02 7.15 × 10−02 1.01 × 10−02 3.66 × 10−02 8.21 × 10−03 3.3 × 10−04

std 2.39 × 10−03 2.38 × 10−03 7.37 × 10−02 3.45 × 10−03 1.26 × 10−01 3.75 × 10−03 7.60 × 10−02 4.09 × 10−03 1.25 × 10−05

F16
Ave −1.02 × 1000

−1.02 × 1000
−1.02 × 1000

−1.01 × 1000
−1.02 × 1000

−1.02 × 1000
−1.02 × 1000

−1.02 × 1000
−1.03 × 1000

std 4.19 × 10−07 0.00 × 1000 0.00 × 1000 3.64 × 10−08 4.74 × 10−08 3.23 × 10−05 7.02 × 10−09 9.80 × 10−07 5.12 × 10−10

F17
Ave 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01

std 3.71 × 10−17 9.03 × 10−16 1.13 × 10−16 9.45 × 10−15 1.15 × 10−07 7.61 × 10−04 7.00 × 10−07 5.39 × 10−05 4.56 × 10−21

F18
Ave 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000

std 6.33 × 10−07 6.59 × 10−05 3.24 × 10−02 1.94 × 10−10 1.48 × 1001 2.25 × 10−05 7.16 × 10−06 1.15 × 10−08 1.15 × 10−18

F19
Ave −3.81 × 1000

−3.80 × 1000
−3.86 × 1000

−3.73 × 1000
−3.77 × 1000

−3.75 × 1000
−3.84 × 1000

−3.86 × 1000
−3.86 × 1000

std 4.37 × 10−10 3.37 × 10−15 4.15 × 10−01 9.69 × 10−04 3.53 × 10−07 2.55 × 10−03 1.57 × 10−03 6.50 × 10−07 5.61 × 10−10

F20
Ave −2.39 × 1000

−3.32 × 1000
−1.47 × 1000

−2.17 × 1000
−3.23 × 1000

−2.84 × 1000
−3.27 × 1000

−2.81 × 1000
−3.31 × 1000

std 4.37 × 10−01 2.66 × 10−01 5.32 × 10−01 1.64 × 10−01 5.37 × 10−02 3.71 × 10−01 7.27 × 10−02 7.11 × 10−01 4.29 × 10−05

F21
Ave −5.19 × 1000

−7.54 × 1000 −4570 −7.33 × 1000
−7.38 × 1000

−2.28 × 1000
−9.65 × 1000

−8.07 × 1000
−10.15 × 1000

std 2.34 × 1000 2.77 × 1000 1.30 × 1000 1.29 × 1000 2.91 × 1000 1.80 × 1000 1.54 × 1000 2.29 × 1000 1.25 × 10−02

F22
Ave −2.97 × 1000

−8.55 × 1000
−6.58 × 1000

−1.00 × 1000
−8.50 × 1000

−3.99 × 1000
−1.04 × 1000

−10.01 × 1000
−10.40 × 1000

std 1.37 × 10−02 3.08 × 1000 2.64 × 1000 2.89 × 10−04 3.02 × 1000 1.99 × 1000 2.73 × 10−04 3.97 × 10−02 3.65 × 10−07

F23
Ave −3.10 × 1000

−9.19 × 1000
−9.37 × 1000

−2.46 × 1000
−8.41 × 1000

−4.49 × 1000
−1.05 × 1001

−3.41 × 1000
−10.53 × 1000

std 2.37 × 1000 2.52 × 1000 2.75 × 1000 1.19 × 1000 3.13 × 1000 1.96 × 1000 1.81 × 10−04 1.11 × 10−02 5.26 × 10−06

Table 4. Results for SSA and other algorithms in CEC 2015.

GA PSO GSA TLBO GOA GWO SHO EPO SSA

Cec-1
Ave 8.89 × 1006 3.20 × 1007 7.65 × 1006 1.47 × 1006 4.37 × 1005 2.02 × 1006 2.28 × 1006 6.06 × 1005 1.50 × 1005

std 6.95 × 1006 8.37 × 1006 3.07 × 1006 2.63 × 1006 4.73 × 1005 2.08 × 1006 2.18 × 1006 5.02 × 1005 1.21 × 1005

Cec-2
Ave 2.97 × 1005 6.58 × 1003 7.33 × 1008 1.97 × 1004 9.41 × 1003 5.65 × 1006 3.13 × 1005 1.43 × 1004 4.40 × 1003

std 2.85 × 1003 1.09 × 1003 2.33 × 1008 1.46 × 1004 1.08 × 1004 6.03 × 1006 4.19 × 1005 1.03 × 1004 1.34 × 1008

Cec-3
Ave 3.20 × 1002 3.20 × 1002 3.20 × 1002 3.20 × 1002 3.20 × 1002 3.20 × 1002 3.20 × 1002 3.20 × 1002 3.20 × 1002

std 2.78 × 10−02 1.11 × 10−05 7.53 × 10−02 3.19 × 10−02 9.14 × 10−02 8.61 × 10−02 7.08 × 10−02 3.76 × 10−02 1.16 × 10−06

Cec-4
Ave 6.99 × 1002 4.39 × 1002 4.42 × 1002 4.18 × 1002 4.26 × 1002 4.09 × 1002 4.16 × 1002 4.11 × 1002 4.04 × 1002

std 6.43 × 1000 7.25 × 1000 7.72 × 1000 1.03 × 1001 1.17 × 1001 3.96 × 1000 1.03 × 1001 1.71 × 1001 5.61 × 1000

Cec-5
Ave 1.26 × 1003 1.75 × 1003 1.76 × 1003 1.09 × 1003 1.33 × 1003 8.65 × 1002 9.20 × 1002 9.13 × 1002 9.81 × 1002

std 1.86 × 1002 2.79 × 1002 2.30 × 1002 2.81 × 1002 3.45 × 1002 2.16 × 1002 1.78 × 1002 1.85 × 1002 1.06 × 1002

Cec-6
Ave 2.91 × 1005 3.91 × 1006 2.30 × 1004 3.82 × 1003 7.35 × 1003 1.86 × 1003 2.26 × 1004 1.29 × 1004 1.05 × 1003

std 1.67 × 1005 2.70 × 1006 2.41 × 1004 2.44 × 1003 3.82 × 1003 1.93 × 1003 2.45 × 1004 1.15 × 1004 1.05 × 1003

Cec-7
Ave 7.08 × 1002 7.08 × 1002 7.06 × 1002 7.02 × 1002 7.02 × 1002 7.02 × 1002 7.02 × 1002 7.02 × 1002 7.02 × 1002

std 2.97 × 1000 1.32 × 1000 9.07 × 10−01 9.40 × 10−01 1.10 × 1000 7.75 × 10−01 7.07 × 10−01 6.76 × 10−01 5.50 × 10−01

Cec-8
Ave 5.79 × 1004 6.07 × 1005 6.73 × 1003 2.58 × 1003 9.93 × 1003 3.43 × 1003 3.49 × 1003 1.86 × 1003 1.47 × 1003

std 2.76 × 1004 4.81 × 1005 3.36 × 1003 1.61 × 1003 8.74 × 1003 2.77 × 1003 2.04 × 1003 1.98 × 1003 1.34 × 1003

Cec-9
Ave 1.00 × 1003 1.00 × 1003 1.00 × 1003 1.00 × 1003 1.00 × 1003 1.00 × 1003 1.00 × 1003 1.00 × 1003 1.00 × 1003

std 3.97 × 1000 5.33 × 1000 9.79 × 10−01 5.29 × 10−02 2.20 × 10−01 7.23 × 10−02 1.28 × 10−01 1.43 × 10−01 1.51 × 10−03

Cec-10
Ave 4.13 × 1004 3.42 × 1005 9.91 × 1003 2.62 × 1003 8.39 × 1003 3.27 × 1003 4.00 × 1003 2.00 × 1003 1.23 × 1003

std 2.39 × 1004 1.74 × 1005 8.83 × 1003 1.78 × 1003 1.12 × 1004 1.84 × 1003 2.82 × 1003 2.73 × 1003 1.51 × 1003

Appl. Sci. 2020, 10, 6173 13 of 21

Table 4. Cont.

GA PSO GSA TLBO GOA GWO SHO EPO SSA

Cec-11
Ave 1.36 × 1003 1.41 × 1003 1.35 × 1003 1.39 × 1003 1.37 × 1003 1.35 × 1003 1.40 × 1003 1.38 × 1003 1.35 × 1003

std 5.39 × 1001 7.73 × 1001 1.11 × 1002 5.42 × 1001 8.97 × 1001 1.12 × 1002 5.81 × 1001 2.42 × 1001 1.01 × 1001

Cec-12
Ave 1.31 × 1003 1.31 × 1003 1.31 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003

std 1.65 × 1000 2.05 × 1000 1.54 × 1000 8.07 × 10−01 9.14 × 10−01 6.94 × 10−01 6.69 × 10−01 7.89 × 10−01 1.50 × 10−01

Cec-13
Ave 1.35 × 1003 1.35 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003 1.30 × 1003

std 3.97 × 1001 4.70 × 1001 3.78 × 10−03 2.43 × 10−04 1.04 × 10−03 5.44 × 10−03 1.92 × 10−04 2.76 × 10−04 6.43 × 10−05

Cec-14
Ave 8.96 × 1003 9.30 × 1003 7.51 × 1003 7.34 × 1003 7.60 × 1003 7.10 × 1003 7.29 × 1003 4.25 × 1003 3.22 × 1003

std 6.32 × 1003 4.04 × 1002 1.52 × 1003 2.47 × 1003 1.29 × 1003 3.12 × 1003 2.45 × 1003 1.73 × 1003 2.12 × 1002

Cec-15
Ave 1.63 × 1003 1.64 × 1003 1.62 × 1003 1.60 × 1003 1.61 × 1003 1.60 × 1003 1.61 × 1003 1.60 × 1003 1.60 × 1003

std 3.67 × 1001 1.12 × 1001 3.64 × 1000 1.80 × 10−02 1.13 × 1001 2.66 × 1000 4.94 × 1000 3.76 × 1000 5.69 × 10−01

8. SSA for Engineering Design Problems

In this section, the SSA is applied to five constrained engineering design problems.

8.1. Pressure Vessel Design

The mathematical model of this problem was adapted from a paper by Kannan and Kramer [89].
Tables 5 and 6 show the performance of the SSA along with the other algorithms. The SSA provides
an optimal solution at (0.778099, 0.383241, 40.315121, 200.00000), with a corresponding fitness value
of 5880.0700.

Table 5. Comparison results for pressure vessel design problem.

Algorithms
Optimum Variables

Optimum Cost
Ts Th R L

SSA 0.778099 0.383241 40.315121 200.00000 5880.0700
EPO 0.778210 0.384889 40.315040 200.00000 5885.5773
SHO 0.779035 0.384660 40.327793 199.65029 5889.3689
GOA 0.778961 0.384683 40.320913 200.00000 5891.3879
GWO 0.845719 0.418564 43.816270 156.38164 6011.5148
TLBO 0.817577 0.417932 41.74939 183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11,550.2976
PSO 0.752362 0.399540 40.452514 198.00268 5890.3279
GA 1.099523 0.906579 44.456397 179.65887 6550.0230

Table 6. Statistical results for pressure vessel design problem.

Algorithms Best Mean Worst Std. Dev. Median

SSA 5880.0700 5891.3099 024.341 5883.5153
EPO 5885.5773 5887.4441 5892.3207 002.893 5886.2282
SHO 5889.3689 5891.5247 5894.6238 013.910 5890.6497
GOA 5891.3879 6531.5032 7394.5879 534.119 6416.1138
GWO 6011.5148 6477.3050 7250.9170 327.007 6397.4805
TLBO 6137.3724 6326.7606 6512.3541 126.609 6318.3179
GSA 11,550.2976 23,342.2909 33,226.2526 5790.625 24,010.0415
PSO 5890.3279 6264.0053 7005.7500 496.128 6112.6899
GA 6550.0230 6643.9870 8005.4397 657.523 7586.0085

8.2. Speed Reducer Design Problem

This problem is modeled mathematically in [90,91]. The results of the optimization problem are
presented in Tables 7 and 8. The optimal solution was provided by the SSA at (3.50123, 0.7, 17, 7.3, 7.8,
3.33421, 5.26536) with a corresponding fitness value equal to 2994.2472.

Appl. Sci. 2020, 10, 6173 14 of 21

Table 7. Comparison results for speed reducer design problem.

Algorithms
Optimum Variables

Optimum Cost
b m p l1 l2 d1 d2

SSA 3.50123 0.7 17 7.3 7.8 3.33421 5.26536 2994.2472
EPO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
SHO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
GOA 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763
GWO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928
TLBO 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
PSO 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561
GA 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002

Table 8. Statistical results for speed reducer design problem.

Algorithms Best Mean Worst Std. Dev. Median

SSA 2994.2472 2997.482 2999.092 1.78091 2996.318
EPO 2998.5507 2999.640 3003.889 1.93193 2999.187
SHO 3001.288 3005.845 3008.752 5.83794 3004.519
GOA 3005.763 3105.252 3211.174 79.6381 3105.252
GWO 3002.928 3028.841 3060.958 13.0186 3027.031
TLBO 3030.563 3065.917 3104.779 18.0742 3065.609
GSA 3051.120 3170.334 3363.873 92.5726 3156.752
PSO 3067.561 3186.523 3313.199 17.1186 3198.187
GA 3029.002 3295.329 3619.465 57.0235 3288.657

8.3. Welded Beam Design

The mathematical model of a welded beam design was adapted from [31]. The results to this
optimization problem are presented in Tables 9 and 10. The SSA provides an optimal solution at
(0.205411, 3.472341, 9.035215, 0.201153) with a corresponding fitness value equal: 1.723589.

Table 9. Comparison results for welded beam design problem.

Algorithms
Optimum Variables

Optimum Cost
h l t b

SSA 0.205411 3.472341 9.035215 0.201153 1.723589
EPO 0.205563 3.474846 9.035799 0.205811 1.725661
SHO 0.205678 3.475403 9.036964 0.206229 1.726995
GOA 0.197411 3.315061 10.00000 0.201395 1.820395
GWO 0.205611 3.472103 9.040931 0.205709 1.725472
TLBO 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
PSO 0.164171 4.032541 10.00000 0.223647 1.873971
GA 0.206487 3.635872 10.00000 0.203249 1.836250

8.4. Tension/Compression Spring Design Problem

The mathematical model of this problem was adapted from [31]. The results to this optimization
problem are displayed in Tables 11 and 12. The SSA provides the optimal solution at (0.051087, 0.342908,
12.0898), with a corresponding fitness value of 0.012656987.

Appl. Sci. 2020, 10, 6173 15 of 21

Table 10. Statistical results for welded beam design problem.

Algorithms Best Mean Worst Std. Dev. Median

SSA 1.723589 1.725124 1.727211 0.004325 1.724399
EPO 1.725661 1.725828 1.726064 0.000287 1.725787
SHO 1.726995 1.727128 1.727564 0.001157 1.727087
GOA 1.820395 2.230310 3.048231 0.324525 2.244663
GWO 1.725472 1.729680 1.741651 0.004866 1.727420
TLBO 1.759173 1.817657 1.873408 0.027543 1.820128
GSA 2.172858 2.544239 3.003657 0.255859 2.495114
PSO 1.873971 2.119240 2.320125 0.034820 2.097048
GA 1.836250 1.363527 2.035247 0.139485 1.9357485

Table 11. Comparison results for tension/compression spring design problem.

Algorithms
Optimum Variables

Optimum Cost
d D p

SSA 0.051087 0.342908 12.0898 0.012656987
EPO 0.051144 0.343751 12.0955 0.012674000
SHO 0.050178 0.341541 12.07349 0.012678321
GOA 0.05000 0.310414 15.0000 0.013192580
GWO 0.05000 0.315956 14.22623 0.012816930
TLBO 0.050780 0.334779 12.72269 0.012709667
GSA 0.05000 0.317312 14.22867 0.012873881
PSO 0.05010 0.310111 14.0000 0.013036251
GA 0.05025 0.316351 15.23960 0.012776352

Table 12. Statistical results for tension/compression spring design problem.

Algorithms Best Mean Worst Std. Dev. Median

SSA 0.012656987 0.012678903 0.012667902 0.001021 0.012676002
EPO 0.012674000 0.012684106 0.012715185 0.000027 0.012687293
SHO 0.012678321 0.012697116 0.012720757 0.000041 0.012699686
GOA 0.013192580 0.014817181 0.017862507 0.002272 0.013192580
GWO 0.012816930 0.014464372 0.017839737 0.001622 0.014021237
TLBO 0.012709667 0.012839637 0.012998448 0.000078 0.012844664
GSA 0.012873881 0.013438871 0.014211731 0.000287 0.013367888
PSO 0.013036251 0.014036254 0.016251423 0.002073 0.013002365
GA 0.012776352 0.013069872 0.015214230 0.000375 0.012952142

8.5. Rolling Element Bearing Design Problem

The mathematical model of this problem is adapted from [92]. The results of this optimization
problem are included in Tables 13 and 14 and prove that the SSA provides an optimal solution at
(125, 21.41890, 10.94113, 0.515, 0.515, 0.4, 0.7, 0.3, 0.02, 0.6) with a corresponding fitness value equal
to 85,067.983.

Table 13. Comparison results for rolling element bearing design problem.

Algorithms Optimum Variables
Opt. Cost

Dm Db Z fi fo KDmin KDmax ε e ζ

SSA 125 21.41890 10.94113 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85,067.983
EPO 125 21.40732 10.93268 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85,054.532
SHO 125.6199 21.35129 10.98781 0.515 0.515 0.5 0.68807 0.300151 0.03254 0.62701 84,807.111
GOA 125 20.75388 11.17342 0.515 0.515000 0.5 0.61503 0.300000 0.05161 0.60000 81,691.202
GWO 125.6002 21.32250 10.97338 0.515 0.515000 0.5 0.68782 0.301348 0.03617 0.61061 84,491.266
TLBO 125 21.14834 10.96928 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83,431.117
GSA 125 20.85417 11.14989 0.515 0.517746 0.5 0.61827 0.304068 0.02000 0.624638 82,276.941
PSO 125 20.77562 11.01247 0.515 0.515000 0.5 0.61397 0.300000 0.05004 0.610001 82,773.982
GA 125 20.87123 11.16697 0.515 0.516000 0.5 0.61951 0.301128 0.05024 0.614531 81,569.527

Appl. Sci. 2020, 10, 6173 16 of 21

Table 14. Statistical results for Rolling element bearing design problem.

Algorithms Best Mean Worst Std. Dev. Median

SSA 85,067.983 85,042.352 86,551.599 1877.09 85,056.095
EPO 85,054.532 85,024.858 85,853.876 0186.68 85,040.241
SHO 84,807.111 84,791.613 84,517.923 0137.186 84,960.147
GOA 81,691.202 50,435.017 32,761.546 13,962.150 42,287.581
GWO 84,491.266 84,353.685 84,100.834 0392.431 84,398.601
TLBO 83,431.117 81,005.232 77,992.482 1710.777 81,035.109
GSA 82,276.941 78,002.107 71,043.110 3119.904 78,398.853
PSO 82,773.982 81,198.753 80,687.239 1679.367 8439.728
GA 81,569.527 80,397.998 79,412.779 1756.902 8347.009

9. Conclusions

There are many optimization problems in the different scientific domains that must be solved
using the algorithms with each case’s necessary characteristics. In this project, a new optimization
algorithm called spring search algorithm (SSA) was developed; Hooke’s law describes the starting
point or basic concept. The search agents of the proposed method are weights that are connected by
several springs. The system starts from a transitory situation or state and stabilizes at the equilibrium
point, according to the law of the spring.

To evaluate the algorithm and purchase it, almost 40 standard objective functions, including
unimodal and multimodal functions, in addition to CEC2015, were used to assess the performance of
the proposed algorithm in solving optimization problems of a different nature. To review and analyze
the algorithm’s results, these were compared with eight widely known optimization algorithms: GA,
PSO, GSA, TLBO, GWO, GOA, SHO, and EPO.

The results in the functions show the superior exploration and exploitation capabilities of SSA
compared to other optimization algorithms, for both unimodal and multimodal functions. The same
occurs with the simulations using the SSA algorithm and the eight algorithms selected for comparison
in the case of CEC2015, which shows the SSA’s high aptitude to solve this type of problem to optimize
the function. In addition to the work carried out on the almost 40 functions, the SSA algorithm
was evaluated in five engineering design optimization problems to evaluate the performance in
solving optimization problems in real situations, showing that it is much more competitive than
other algorithms.

For future work, it is suggested to develop a binary version of the SSA algorithm and apply
this algorithm to multi-objective problems. Likewise, extending the concept of Hooke’s law to more
complex models with more adjustment parameters, which, even though it will reduce simplicity,
could generate additional advantages.

Author Contributions: Conceptualization, M.D., Z.M., R.M.-M., R.A.R.-M., A.D. and J.M.G.; methodology,
M.D. and Z.M.; software, M.D.; validation, J.M.G., G.D., R.A.R.-M., R.M.-M., A.D. and O.P.M.; formal analysis,
A.D., O.P.M.; investigation, M.D. and O.P.M.; resources, J.M.G.; data curation, G.D.; writing—original draft
preparation, M.D. and Z.M.; writing—review and editing, O.P.M., R.A.R.-M., R.M.-M., L.P.-A., G.D., and J.M.G.;
visualization, M.D.; supervision, M.D. and Z.M.; project administration, M.D. and Z.M.; funding acquisition,
R.A.R.-M. and R.M.-M. All authors have read and agreed to the published version of the manuscript.

Funding: The current project was funded by Tecnologico de Monterrey and FEMSA Foundation (grant
CAMPUSCITY project).

Conflicts of Interest: The authors declare no conflict of interest. The authors declare that they have no known
competing financial interests or personal relationships that could have appeared to influence the work reported in
this paper.

Appl. Sci. 2020, 10, 6173 17 of 21

Abbreviations

Acronym Definition
ABC Artificial Bee Colony
ACROA Artificial Chemical Reaction Optimization Algorithm
AFSA Artificial Fish-Swarm Algorithm
BA Bat-inspired Algorithm
BBO Biogeography-Based Optimizer
BH Black Hole
BOSA Binary Orientation Search Algorithm
BBBC Big-Bang Big-Crunch
CFO Central Force Optimization
CS Cuckoo Search
CSO Curved Space Optimization
CSS Charged System Search
DGO Darts Game Optimizer
DPO Dolphin Partner Optimization
DGO Dice Game Optimizer
DE Differential Evolution
DTO Donkey Theorem Optimization
EP Evolutionary Programming
ES Evolution Strategy
EPO Emperor Penguin Optimizer
FA Firefly Algorithm
FOA Following Optimization Algorithm
FGBO Football Game Based Optimization
GP Genetic Programming
GO Group Optimization
GOA Grasshopper Optimization Algorithm
GSA Gravitational Search Algorithm
GbSA Galaxy-based Search Algorithm
GWO Grey Wolf Optimizer
HOGO Hide Objects Game Optimization
HS Hunting Search
MFO Moth-flame Optimization Algorithm
MS Monkey Search
OSA Orientation Search Algorithm
PSO Particle Swarm Optimization
RSO Rat Swarm Optimizer
RO Ray Optimization
SHO Spotted Hyena Optimizer
SGO Shell Game Optimization
SWOA Small World Optimization Algorithm
WOA Whale Optimization Algorithm

References

1. Cortés-Toro, E.M.; Crawford, B.; Gómez-Pulido, J.A.; Soto, R.; Lanza-Gutiérrez, J.M. A new metaheuristic
inspired by the vapour-liquid equilibrium for continuous optimization. Appl. Sci. 2018, 8, 2080. [CrossRef]

2. Pelusi, D.; Mascella, R.; Tallini, L. A fuzzy gravitational search algorithm to design optimal IIR filters. Energies
2018, 11, 736. [CrossRef]

3. Díaz, P.; Pérez-Cisneros, M.; Cuevas, E.; Avalos, O.; Gálvez, J.; Hinojosa, S.; Zaldivar, D. An improved crow
search algorithm applied to energy problems. Energies 2018, 11, 571. [CrossRef]

4. Chiu, C.-Y.; Shih, P.-C.; Li, X. A dynamic adjusting novel global harmony search for continuous optimization
problems. Symmetry 2018, 10, 337. [CrossRef]

http://dx.doi.org/10.3390/app8112080
http://dx.doi.org/10.3390/en11040736
http://dx.doi.org/10.3390/en11030571
http://dx.doi.org/10.3390/sym10080337

Appl. Sci. 2020, 10, 6173 18 of 21

5. Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A survey of historical and recent
developments with hybridization perspectives. Mach. Learn. Knowl. Extr. 2019, 1, 157–191. [CrossRef]

6. Stripling, E.; Broucke, S.V.; Antonio, K.; Baesens, B.; Snoeck, M. Profit maximizing logistic model for customer
churn prediction using genetic algorithms. Swarm Evol. Comput. 2018, 40, 116–130. [CrossRef]

7. Antonov, I.V.; Mazurov, E.; Borodovsky, M.; Medvedeva, Y.A. Prediction of lncRNAs and their interactions
with nucleic acids: Benchmarking bioinformatics tools. Brief. Bioinform. 2019, 20, 551–564. [CrossRef]

8. Djenouri, Y.; Belhadi, A.; Belkebir, R. Bees swarm optimization guided by data mining techniques for
document information retrieval. Expert Syst. Appl. 2018, 94, 126–136. [CrossRef]

9. Artrith, N.; Urban, A.; Ceder, G. Constructing first-principles phase diagrams of amorphous Li x Si using
machine-learning-assisted sampling with an evolutionary algorithm. J. Chem. Phys. 2018, 148, 241711.
[CrossRef]

10. Dehghani, M.; Montazeri, Z.; Malik, O. Energy commitment: A planning of energy carrier based on energy
consumption. Электрoтехникa и электрoмехaникa 2019, 4, 69–72. [CrossRef]

11. Ehsanifar, A.; Dehghani, M.; Allahbakhshi, M. Calculating the leakage inductance for transformer inter-turn
fault detection using finite element method. In Proceedings of the 2017 Iranian Conference on Electrical
Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1372–1377.

12. Dehghani, M.; Montazeri, Z.; Malik, O. Optimal sizing and placement of capacitor banks and distributed
generation in distribution systems using spring search algorithm. Int. J. Emerg. Electr. Power Syst. 2020, 21.
[CrossRef]

13. Dehghani, M.; Montazeri, Z.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M.; Dhiman, G. A New Methodology
Called Dice Game Optimizer for Capacitor Placement in Distribution Systems. Электрoтехникa
и электрoмехaникa 2020, 1, 61–64. [CrossRef]

14. Dehbozorgi, S.; Ehsanifar, A.; Montazeri, Z.; Dehghani, M.; Seifi, A. Line loss reduction and voltage profile
improvement in radial distribution networks using battery energy storage system. In Proceedings of the
2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran,
Iran, 22 December 2017; pp. 215–219.

15. Montazeri, Z.; Niknam, T. Optimal utilization of electrical energy from power plants based on final energy
consumption using gravitational search algorithm. Электрoтехникa и электрoмехaникa 2018, 4, 70–73.
[CrossRef]

16. Dehghani, M.; Mardaneh, M.; Montazeri, Z.; Ehsanifar, A.; Ebadi, M.; Grechko, O. Spring search algorithm
for simultaneous placement of distributed generation and capacitors. Электрoтехникa и электрoмехaникa
2018, 6, 68–73. [CrossRef]

17. Dehghani, M.; Montazeri, Z.; Ehsanifar, A.; Seifi, A.; Ebadi, M.; Grechko, O. Planning of energy carriers based
on final energy consumption using dynamic programming and particle swarm optimization. Электрoтехникa
и электрoмехaникa 2018, 5, 62–71. [CrossRef]

18. Montazeri, Z.; Niknam, T. Energy carriers management based on energy consumption. In Proceedings of
the2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran,
Iran, 22 December 2017; pp. 539–543.

19. Mirjalili, S. Genetic Algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 43–55.

20. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680.
[CrossRef]

21. Farmer, J.D.; Packard, N.H.; Perelson, A.S. The immune system, adaptation, and machine learning.
Phys. D Nonlinear Phenom. 1986, 22, 187–204. [CrossRef]

22. Mirjalili, S. Ant Colony Optimisation. In Evolutionary Algorithms and Neural Networks; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 33–42.

23. Mirjalili, S. Particle Swarm Optimisation. In Evolutionary Algorithms and Neural Networks; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 15–31.

24. Dehghani, M.; Montazeri, Z.; Dehghani, A.; Seifi, A. Spring search algorithm: A new meta-heuristic
optimization algorithm inspired by Hooke’s law. In Proceedings of the 2017 IEEE 4th International
Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 22 December 2017;
pp. 210–214.

http://dx.doi.org/10.3390/make1010010
http://dx.doi.org/10.1016/j.swevo.2017.10.010
http://dx.doi.org/10.1093/bib/bby032
http://dx.doi.org/10.1016/j.eswa.2017.10.042
http://dx.doi.org/10.1063/1.5017661
http://dx.doi.org/10.20998/2074-272X.2019.4.10
http://dx.doi.org/10.1515/ijeeps-2019-0217
http://dx.doi.org/10.20998/2074-272X.2020.1.10
http://dx.doi.org/10.20998/2074-272X.2018.4.12
http://dx.doi.org/10.20998/2074-272X.2018.6.10
http://dx.doi.org/10.20998/2074-272X.2018.5.10
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/0167-2789(86)90240-X

Appl. Sci. 2020, 10, 6173 19 of 21

25. Mirjalili, S. Biogeography-Based Optimisation. In Evolutionary Algorithms and Neural Networks; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 57–72.

26. Gigerenzer, G.; Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 2011, 62, 451–482. [CrossRef]
27. Lim, S.M.; Leong, K.Y. A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization

Problems. In Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization; IntechOpen: London,
UK, 2018.

28. Kennedy, J.; Eberhart, R. Particle swarm optimization, proceeding of the IEEE International Conference on
Neural Networks, Perth, Australia. IEEE Serv. Cent. Piscataway 1942, 1948, 1995.

29. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimization. arXiv 2010, arXiv:1003.1409.
30. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
31. Karaboga, D.; Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained

optimization. In Problems, LNCS: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing;
Springer: Berlin/Heidelberg, Germany, 2007.

32. Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.

33. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for
engineering applications. Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]

34. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve
structural optimization problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]

35. Mucherino, A.; Seref, O. Monkey search: A novel metaheuristic search for global optimization. AIP Conf. Proc.
2007, 953, 162–173.

36. Dehghani, M.; Montazeri, Z.; Dehghani, A.; Malik, O.P. GO: Group Optimization. Gazi Univ. J. Sci. 2020, 33,
381–392. [CrossRef]

37. Neshat, M.; Sepidnam, G.; Sargolzaei, M.; Toosi, A.N. Artificial fish swarm algorithm: A survey of the
state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 2014, 42, 965–997.
[CrossRef]

38. Oftadeh, R.; Mahjoob, M.; Shariatpanahi, M. A novel meta-heuristic optimization algorithm inspired by
group hunting of animals: Hunting search. Comput. Math. Appl. 2010, 60, 2087–2098. [CrossRef]

39. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst.
2015, 89, 228–249. [CrossRef]

40. Shiqin, Y.; Jianjun, J.; Guangxing, Y. A dolphin partner optimization. In Proceedings of the Global Congress
on Intelligent Systems, Xiamen, China, 19–21 May 2009; pp. 124–128.

41. Dehghani, M.; Montazeri, Z.; Malik, O.P.; Ehsanifar, A.; Dehghani, A. OSA: Orientation Search Algorithm.
Int. J. Ind. Electron. Control Optim. 2019, 2, 99–112.

42. Dehghani, M.; Montazeri, Z.; Malik, O.P.; Dhiman, G.; Kumar, V. BOSA: Binary Orientation Search Algorithm.
Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 9, 5306–5310.

43. Dehghani, M.; Montazeri, Z.; Malik, O.P. DGO: Dice Game Optimizer. Gazi Univ. J. Sci. 2019, 32, 871–882.
[CrossRef]

44. Mohammad, D.; Zeinab, M.; Malik, O.P.; Givi, H.; Guerrero, J.M. Shell Game Optimization: A Novel Game-
Based Algorithm. Int. J. Intell. Eng. Syst. 2020, 13, 246–255.

45. Dehghani, M.; Montazeri, Z.; Saremi, S.; Dehghani, A.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M. HOGO:
Hide Objects Game Optimization. Int. J. Intell. Eng. Syst. 2020, 13, 216–225. [CrossRef]

46. Dehghani, M.; Mardaneh, M.; Malik, O.P.; NouraeiPour, S.M. DTO: Donkey Theorem Optimization.
In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran,
30 April–2 May 2019; pp. 1855–1859.

47. Dehghani, M.; Mardaneh, M.; Malik, O. FOA: ‘Following’Optimization Algorithm for solving Power
engineering optimization problems. J. Oper. Autom. Power Eng. 2020, 8, 57–64.

48. Dhiman, G.; Garg, M.; Nagar, A.K.; Kumar, V.; Dehghani, M. A Novel Algorithm for Global Optimization:
Rat Swarm Optimizer. J. Ambient Intell. Humaniz. Comput. 2020, 1, 1–6.

49. Dehghani, M.; Montazeri, Z.; Givi, H.; Guerrero, J.M.; Dhiman, G. Darts Game Optimizer: A New
Optimization Technique Based on Darts Game. Int. J. Intell. Eng. Syst. 2020, 13, 286–294.

50. Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Kumar, V. Football Game Based Optimization:
An Application to Solve Energy Commitment Problem. Int. J. Intell. Eng. Syst. 2020, 13, 514–523. [CrossRef]

http://dx.doi.org/10.1146/annurev-psych-120709-145346
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2017.05.014
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.35378/gujs.567472
http://dx.doi.org/10.1007/s10462-012-9342-2
http://dx.doi.org/10.1016/j.camwa.2010.07.049
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.35378/gujs.484643
http://dx.doi.org/10.22266/ijies2020.0831.19
http://dx.doi.org/10.22266/ijies2020.1031.45

Appl. Sci. 2020, 10, 6173 20 of 21

51. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
52. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw.

2017, 105, 30–47. [CrossRef]
53. Zhang, H.; Hui, Q. A Coupled Spring Forced Bat Searching Algorithm: Design, Analysis and Evaluation.

In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020;
pp. 5016–5021.

54. Wang, Z.-J.; Zhan, Z.-H.; Kwong, S.; Jin, H.; Zhang, J. Adaptive Granularity Learning Distributed Particle
Swarm Optimization for Large-Scale Optimization. IEEE Trans. Cybern. 2020, 1–14. [CrossRef]

55. Dehghani, M.; Montazeri, Z.; Dehghani, A.; Ramirez-Mendoza, R.A.; Samet, H.; Guerrero, J.M.; Dhiman, G.
MLO: Multi Leader Optimizer. Int. J. Intell. Eng. Syst. 2020, 1, 1–11.

56. Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.;
Parra-Arroyo, L. A New “Doctor and Patient” Optimization Algorithm: An Application to Energy
Commitment Problem. Appl. Sci. 2020, 10, 5791. [CrossRef]

57. Dhiman, G.; Kumar, V. Emperor Penguin Optimizer: A Bio-inspired Algorithm for Engineering Problems.
Knowl. Based Syst. 2018, 159, 20–50. [CrossRef]

58. Karkalos, N.E.; Markopoulos, A.P.; Davim, J.P. Evolutionary-Based Methods. In Computational Methods for
Application in Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2019; pp. 11–31.

59. Mirjalili, S. Introduction to Evolutionary Single-Objective Optimisation. In Evolutionary Algorithms and Neural
Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–14.

60. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
61. Bageley, J. The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms.

Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1967.
62. Bose, A.; Biswas, T.; Kuila, P. A Novel Genetic Algorithm Based Scheduling for Multi-core Systems. In Smart

Innovations in Communication and Computational Sciences; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 45–54.

63. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput.
2011, 15, 4–31. [CrossRef]

64. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over
Continuous Spaces; ICSI: Berkeley, CA, USA, 1995.

65. Chakraborty, U.K. Advances in Differential Evolution; Springer: Berlin/Heidelberg, Germany, 2008; Volume 143.
66. Fogel, L.J.; Owens, A.J.; Walsh, M.J. Artificial Intelligence through Simulated Evolution; Wiley: New York, NY,

USA, 1966.
67. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
68. Deng, W.; Liu, H.; Xu, J.; Zhao, H.; Song, Y. An improved quantum-inspired differential evolution algorithm

for deep belief network. IEEE Trans. Instrum. Meas. 2020. [CrossRef]
69. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput.

1994, 4, 87–112. [CrossRef]
70. Beyer, H.-G.; Schwefel, H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1,

3–52. [CrossRef]
71. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. A heuristic algorithm and simulation approach to relative location

of facilities. Optim. Simulated Annealing 1983, 220, 671–680.
72. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179,

2232–2248. [CrossRef]
73. Rashedi, E.; Rashedi, E.; Nezamabadi-pour, H. A comprehensive survey on gravitational search algorithm.

Swarm Evol. Comput. 2018, 41, 141–158. [CrossRef]
74. Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010,

213, 267–289. [CrossRef]
75. Shah-Hosseini, H. Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic

for continuous optimisation. Int. J. Comput. Sci. Eng. 2011, 6, 132–140.
76. Moghaddam, F.F.; Moghaddam, R.F.; Cheriet, M. Curved space optimization: A random search based on

general relativity theory. arXiv 2012, arXiv:1208.2214.
77. Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012, 112,

283–294. [CrossRef]

http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1109/TCYB.2020.2977956
http://dx.doi.org/10.3390/app10175791
http://dx.doi.org/10.1016/j.knosys.2018.06.001
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1109/TIM.2020.2983233
http://dx.doi.org/10.1007/BF00175355
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.swevo.2018.02.018
http://dx.doi.org/10.1007/s00707-009-0270-4
http://dx.doi.org/10.1016/j.compstruc.2012.09.003

Appl. Sci. 2020, 10, 6173 21 of 21

78. Alatas, B. ACROA: Artificial chemical reaction optimization algorithm for global optimization.
Expert Syst. Appl. 2011, 38, 13170–13180. [CrossRef]

79. Du, H.; Wu, X.; Zhuang, J. Small-world optimization algorithm for function optimization. In International
Conference on Natural Computation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 264–273.

80. Formato, R.A. Central force optimization: A new nature inspired computational framework for
multidimensional search and optimization. In Nature Inspired Cooperative Strategies for Optimization
(NICSO 2007); Springer: Berlin/Heidelberg, Germany, 2008; pp. 221–238.

81. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222,
175–184. [CrossRef]

82. Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111.
[CrossRef]

83. Halliday, D.; Resnick, R.; Walker, J. Fundamentals of Physics; John Wiley & Sons: Hoboken, NJ, USA, 2013.
84. Eiben, A.E.; Schippers, C.A. On evolutionary exploration and exploitation. Fundam. Inform. 1998, 35, 35–50.

[CrossRef]
85. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
86. Chen, Q.; Liu, B.; Zhang, Q.; Liang, J.; Suganthan, P.; Qu, B. Problem Definition and Evaluation Criteria for CEC

2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical
Optimization; Technical Report; Computational Intelligence Laboratory, Zhengzhou University, China and
Nanyang Technological University: Singapore, 2014.

87. Tang, K.-S.; Man, K.-F.; Kwong, S.; He, Q. Genetic algorithms and their applications. IEEE Signal Process.
Mag. 1996, 13, 22–37. [CrossRef]

88. Sarzaeim, P.; Bozorg-Haddad, O.; Chu, X. Teaching-Learning-Based Optimization (TLBO) Algorithm.
In Advanced Optimization by Nature-Inspired Algorithms; Springer: Berlin/Heidelberg, Germany, 2018; pp. 51–58.

89. Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete
continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411.
[CrossRef]

90. Gandomi, A.H.; Yang, X.-S. Benchmark problems in structural optimization. In Computational Optimization,
Methods and Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259–281.

91. Mezura-Montes, E.; Coello, C.A.C. Useful infeasible solutions in engineering optimization with evolutionary
algorithms. In Mexican International Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany,
2005; pp. 652–662.

92. Rao, B.R.; Tiwari, R. Optimum design of rolling element bearings using genetic algorithms. Mech. Mach. Theory
2007, 42, 233–250.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2011.04.126
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.advengsoft.2005.04.005
http://dx.doi.org/10.3233/FI-1998-35123403
http://dx.doi.org/10.1109/79.543973
http://dx.doi.org/10.1115/1.2919393
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Brief History of Intelligent Algorithms
	Swarm-Based Algorithms
	Evolution-Based Algorithms
	Physics-Based Algorithms

	Spring Force Law
	Spring Search Algorithm (SSA)
	Setting the System, Determining Laws and Arranging Parameters
	Time Passing and Parameters Updating

	Properties of the Proposed SSA
	Exploration and Exploitation in SSA
	Experimental Results and Discussion
	Benchmark Test Functions
	Algorithms Used for Comparison
	Evaluation of Unimodal Test Function with High Dimensions
	Evaluation of Multimodal Test Functions with High Dimensions
	Evaluation of Multimodal Test Functions with Low Dimensions
	Evaluation of CEC 2015 Test Functions

	SSA for Engineering Design Problems
	Pressure Vessel Design
	Speed Reducer Design Problem
	Welded Beam Design
	Tension/Compression Spring Design Problem
	Rolling Element Bearing Design Problem

	Conclusions
	References

