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ABSTRACT
Recent advances have shown sensor-fusion’s vital role in accurate detection, especially for advanced driver assistance

systems. We introduce a novel procedure for depth upsampling and sensor-fusion that together lead to an improved detec-
tion performance, compared to state-of-the-art results for detecting cars. Upsampling is generally based on combining data
from an image to compensate for the low resolution of a LiDAR (Light Detector and Ranging). This paper, on the other
hand, presents a framework to obtain dense depth map solely from a single LiDAR point cloud that makes it possible to
use just one deep network for both LiDAR and image modalities. The produced full-depth map is added to the grayscale
version of the image to produce a two-channel input for a deep neural network. The simple preprocessing structure is
efficiently competent in filing cars’ shapes, which helps the fusion framework to outperforms the state-of-the-art on the
KITTI object detection for the Car class. Additionally, the combination of depth and image makes it easier for the network
to discriminate highly occluded and truncated vehicles.
Keywords: Sensor Fusion, Deep Learning, Object Detection, Autonomous Driving, Multimodal Fusion, Depth Perception,
LiDAR

1. INTRODUCTION
Nowadays, accurate object detection is a crucial problem in computer vision for applications such as autonomous

driving, obstacle detection, and path planning. Although researchers have studied it for many years, it is still hard to reach
a reliable and stable object detection result in general road scenarios considering the variation of road scenes. Besides, the
complex overlapping situations can also bring difficulties to this task.

Recent progress in convolutional neural networks (CNN) for object detection has made these networks an integral
part of many computer vision systems. There is a wide variety of structures from simple structures like Alexnet [1] and
VGG16 [2] to complex networks like YOLOs [3–5] and RCNN [1]. CNNs are producing state-of-the-art object detection
results on both camera data [6] as well as LiDAR point cloud data [7].

Many types of object detection methods have been proposed based on different sensors, e.g., monocular camera, stereo
camera, and 3D LiDAR, respectively. The most widely used one is the camera for its low price, with the ability to obtain
rich color information. Many recent end-to-end deep learning-based techniques using single-camera solutions achieve
state-of-the-art performance, but they are challenged in occluded scenes. 3D LiDAR sensor can, however, help to handle
occlusion scenes, but it only provides a sparse point cloud and can be valid only within a certain distance [8].

To compensate for the weakness of different (camera and LiDAR-based) methods, fusion schemes are devised to utilize
the advantages of each method. There are different types of data fusion, depending on the types of sensors, data formats,
and the level of fusion (abstraction, data/feature, and decision level fusion).

The issue with LiDAR point clouds is that they are sparse, and hence not necessarily good enough for applications
like depth perception and multi-modal object detection. On the other hand, for LiDAR and camera fusion-based methods,
upsampling LiDAR sparse data make it easier to fuse both modalities. An upsampled depth map can be treated as an image,
and this brings an opportunity to use many pre-trained CNN networks as well. Some upsampling works have only used
LiDAR date [9, 10], while others like [11, 12] have used images in guided approaches. Although guided structures, which
use image information to fill the sparse depth, look better in appearance, we prefer to upsample LiDAR depth just using
LiDAR data.

In this paper, we propose a LiDAR-camera fusion framework to improve object detection results, where we mainly
exploit the full-depth of LiDAR’s point cloud with introducing a novel upsampling scheme. Our contributions of this
paper lie in the following three parts; First, we propose a new algorithm for filling the sparse depth map just using LiDAR
projected point clouds. Then, with concatenating the full-depth and grayscale image, we introduce a new fusion-based input
for our object detection network. Finally, these two-channel inputs train a YOLOV3 network to outperform state-of-the-art
object detection systems.



Figure 1: The sparse depth map (projected LiDAR point clouds)

Figure 2: Prepared depth map after applying Algorithm 1

Figure 3: The final upsampled depth map

2. RELATED WORK
A considerable number of works are done focusing on object detection using depth perception. They vary from works

with just LiDAR or image modality to works with combinations of these modalities. When it comes to upsampling, some
methods use sparse LiDAR data without upsampling, while others increase the resolution of the LiDAR point clouds before
using it for detection. Some of these methods are reviewed in this section.

2.1 RGB-D methods
Although some RGB-D works do not use LiDAR data, yet they are inspiring for LiDAR and camera fusion tasks. There

are a variety of works that use depth and RGB combinations for object detection purposes. In [13], they adjust the scale
of objects based on their depth to apply different actions at different distances. In [14], they adapt a faster R-CNN model
for RGB and depth fusion. The fusion takes place in different layers of the model. It is shown that mid-layer fusion has
the best performance. [15] uses late fusion structure for depth and RGB by encoding depth values as colorized surface
normals to improve the performance of depth through pre-trained CNN. The depth and RGB fusion are also used for
facial landmark detection [16], indoor semantic maps [17], human pose estimation [18], person re-identification [19, 20].
Moreover, RGB-D-T (RGB-D+thermal) is used for facial recognition [21].

2.2 LiDAR object detection
LiDAR object detection is more effective for 3D approaches as in [22], where point clouds are used after a preprocessing

as an input for a CNN called PIXOR to obtain a more robust object detection for autonomous driving. In [23], an end to
end CNN based method has served to provide a 3D object detection from LiDAR point clouds. They present a deep
learning, 3D object detection model based on the LiDAR point cloud in which the YOLOv2 network is used [7]. [24]



Patch refinement is composed of two independently trained voxel-based network for 3D object localizing. [25] introduces
a method to provide Pseudo-LiDAR data from cameras using the stereo depth network guided by LiDAR point clouds.
In [26], uses 3D FCN for LiDAR point clouds. features maps are first downsampled by convolution operations and then
upsampled by two parallel deconvolutions to yield objectness map and bounding box map.
2.3 Camera and LiDAR data fusion

Recently, LiDAR and camera fusion has occupied many interests to itself [27–31]. This popularity is mainly because of
the diverse structures of these sensors, which prepare a notable mutual cover for the sensors. Because of the 3D semantic
of LiDAR data, some works concentrated on depth perception of LiDAR and mixing it with an image to obtain a 3D object
detection [32, 33]. In [34–36], we can see that hand-crafted features helped to resolve the multi-modality problem.

2.3.1 LiDAR data upsampling
The 3D LiDAR point cloud and camera image have different modalities. As we mentioned before, LiDAR point

clouds are sparse, and combining them with high-resolution images needs complicated and specially-made structures.
Upsampling is a facilitator solution to resolve this problem. In [10], an interpolation using Bilateral Filter is used to obtain
a dense depth map solely from the LiDAR point cloud. In contrast, some of the works use auxiliary data such as scene
labeling data [11, 12], and RGB image and the anisotropic diffusion tensor to guide upsampling [9].

2.3.2 Fusion structures
LiDAR and camera fusion can occur in different stages of the network structure. Early fusion is a standard method

that needs at least up-sampling for LiDAR data [36]. [37] provide spatiotemporal alignment for LiDAR and video streams.
RGB frames, optical flow, and LiDAR dense depth are concatenated and fed into a CNN. Indeed LiDAR data will be
adjusted to add to RGB as extra channels [34]. [35] produces HHA (horizontal disparity, height above ground, and angel)
from LiDAR point cloud and fuses it with RGB as input for a CNN. In [38], three groups of bounding boxes are provided
form LiDAR BEV, LiDAR front views, and RGB image; then, they are fed into a classifier.

Late fusion is a method that combines features of LiDAR and camera at the end [39]. Middle-fusion is the most
challenging approach. It includes an unlimited number of schemes; [40] uses multi-scale fusion by using features of mage
extracted from different layers of a deep network with a bird’s eye view (BEV) LiDAR data. In [32], by adopting two-stage
CNN, a flexible framework is proposed to utilize any 2D detection network and fuse it with a 3D point clouds to achieve
3D detection. Similarly, [41] first generates a 2D object region proposal using CNN and then extends this 2D region to
a 3D bounding box using LiDAR point clouds. Another work [42] combines Image and BEV feature maps through two
sub-networks to yield 3D object proposals. In [43], they implement LiDAR and camera fusion for pedestrian classification.
Both late and early fusion are utilized, and the better result is being evident in the early fusion CNN model. Another LiDAR
and camera fusion presented in [44], YOLO models for depth, and RGB data produce features independently. Then the
features are combined and increase the accuracy of the result of vehicle detection in comparison with separate LiDAR
and camera results. In our work, instead of YOLO, we use YOLOv3, and our fusion is early fusion. Due to a variety of
methods, it is still an open problem to work in LiDAR and camera fusion.

3. PROPOSED MODEL
3.1 Full-depth image preparation

Given the LiDAR’s 3D cloud map, we obtain its corresponding 2D representation by projecting this data to the camera
surface. For this projection, we use calibration data in the employed dataset. The dataset is described in the next section.
We use the way they used in [45].

• Rcam
velo ∈ <3×3 ... Rotation matrix: Velodyne⇒ camera

• tcamvelo ∈ <1×3 ... Translator matrix: Velodyne⇒ camera
• Pi

rect ∈ <3×4 ... Projection matrix after rectification
• Ri

rect ∈ <3×3 ... rectifying rotation matrix using

Tcam
velo =

(
Rcam

velo
0

tcam
velo
1

)
(1)

A 3D point x get projected to point y in the surface of the ith camera.

y = P0
rectR

i
rectT

cam
velox (2)

After projection, we have a sparse 2D depth map, which is used in the next step. The LiDAR depth map is sparse, thus,
we need to upsample it. We apply weighted depth filling algorithm (Algorithm 1) to prepare a full-depth image. As is



evident in Figure 1, just a minority of pixels have non-zero values. We call these pixels as valued-pixels and another pixels
as empty-pixels.

In this step, we try to fill in the empty-pixels. Concerning the structure of LiDAR data, as we can see Figure 1, the
sparsity of the LiDAR data in the vertical direction is more than the horizontal one. Thus we employ a function that fills all
vacant pixels with searching all the neighborhood of the pixel with longer vertical footstep rather than horizontal vicinity to
achieve a monotonous depth map. For each empty-pixel, our algorithm explores backward and forward for the pixel to find
all valued-pixels, and based on this findings, if the number of detected valued-pixels is more than zero for both directions,
it assigns a value equal to the weighted average of all detected valued-pixels unless it goes for next pixel without giving it
a value.

In the sparse depth map, the distance between to valued-pixels is approximately 4 - 6 pixels and 8-12 pixels, respec-
tively, for vertical and horizontal directions. Moreover, due to the weighted structure in Algorithm 1, our method is not
sensitive to selecting a large footstep. Thus we have to choose footsteps at least 6 and 12 for the vertical and horizontal
axes. We chose 6 and 12 to minimize the computation load.

After filling the vacant points, we use a complementary algorithm (Algorithm 2) to make the shapes in the depth image
more cohesive and fill the small vacant (see Figure 3). This algorithm checks a rectangular region around an empty-pixel,
and if the number of valued-pixels is more than a threshold, the empty-pixel gets a value equal to the weighted average of
all valued-pixels. The threshold has to be chosen in a way that every interior pixel of a shape gets filled. It is subordinated
to the size of the square’s side, which is three here. Similar to Algorithm 1, the weighted structure aims the Algorithm 2 to
work with even large footsteps without problem but computational difficulties.

Algorithm 1 Weighted Depth Filling Algorithm

Sx = step length for X-axis
Sy = step length for Y-axis
for Each pixel in depth map do

if Pixelvalue = 0 then
S = 0
Sc = 0
for searched pixels forward with S-x footstep do

if Pixelvalue 6= 0 then
d← distance between searched pixel and reference pixel
S ← S + (1/d)×(searched pixel value)
Sc1← Sc1 + (1/d)

end if
end for
for searched pixels backward with S-x footstep do

if Pixelvalue 6= 0 then
d← distance between searched pixel and reference pixel
S ← S + (1/d)×(searched pixel value)
Sc2← Sc2 + (1/d)

end if
end for
i← i+ 2

end if
if Sc1 > 0 & Sc2 > 0 then

Pixel value← S/(Sc1 + Sc2)
end if

end for
Do the same for Y-axis

3.2 channels calculation
In this step, we have a full-depth image, which includes depth detail of the scene, helping to better detection in addition

to the camera image. For simplicity and using the structure and training weights of the ordinary RGB-trained YOLOv3



Algorithm 2 Complementary Weighted Depth Filling Algorithm

Ss = step length for Searching
for Each pixel in the depth map do

if Pixelvalue = 0 then
S = 0
Sc = 0
for search a sqaure around the pixel Ss×Ss do

if Pixelvalue 6= 0 then
d← distance between searched pixel and reference pixel
S ← S + (1/d)×(searched pixel value)
Sc ← Sc + (1/d)

end if
end for
i← i+ 2

end if
if Sc/(Ss× Ss) > Thresold then

Pixel value← S/Sc
end if

end for

Figure 4: Channels calculation: after preparing the full-depth channel,another all zero channel is added to it to combine
with the grayscale image to make the final three-channel input

Figure 5: YOLOv3 structure shows how three different scales of feature maps used in the network.

network, we do not change the three-channel structure. As it is shown in Figure 4, the input of the YOLOv3 network is a
three-channel image with one all-zero channel.
3.3 YOLO-V3

YOLO, published by Redmon at al. [3]. YOLO is a convolutional neural network that divides an image to grids and
predicts multiple boxes simultaneously. It means that the speed increased considerably, but the accuracy drops. The next



(a) Proposed method (b) RGB-YOLOv3 (c) LiDAR depth
Figure 6: Precision-recall curves for car class

(a) Proposed method (b) RGB-YOLOv3 (c) LiDAR depth
Figure 7: Precision-recall curves for pedestrian class

(a) Proposed method (b) RGB-YOLOv3 (c) LiDAR depth
Figure 8: Precision-recall curves for cyclist class

version of YOLO called YOLO9000 succeeded to keep the speed advantages and improve the accuracy of YOLO by
introducing anchor boxes [4]. YOLOv3 proposed as an incremental improvement by Redmon et al [5]. First, it used the
Darknet-53 backbone, which in comparison to Draknet-11 in YOLOv2, has better accuracy and efficiency in terms of
classification. Secondly, instead of having a softmax and using binary cross-entropy, it uses logistic regression to calculate
the score for each bounding box. Finally, YOLOv3 has excellent performance for small objects due to prediction from
three different scale feature maps (see Figure 5). As anchor boxes are highly effective on the performance of the YOLO
network, we used a K-means algorithm [4] to calculate the optimum anchor boxes based on KITTI labels.

4. EXPERIMENT
In this work, the network is trained just for three classes: car, pedestrian, and bicycle, as these are the most common

objects in the context of interest of this paper, autonomous driving.
4.1 KITTI dataset

KITTI dataset uses a variety of sensor modalities such as high-resolution color and grayscale stereo cameras and
Velodyne 3D laser scanner. It has plenty of real-world images with their corresponded LiDAR data. They support different
categories such as 2D/3D object detection, path planning, depth completion, and some other categories. Calibration and
labels data are available for each category [46]. We use object detection KITTI dataset with 7840 images and divide it to
80% for training and 20% for validation sets.



Table 1: Performance comparison of 2D object detection methods on the KITTI 2D object detection benchmark for the
class car. Values are average precision (AP) scores on the official test set.

Car (AP)
Methods Modality Depth Upsampling Easy Moderate Hard Runtime

Proposed method LiDAR + Image Solely Upsampled 98.82% 94.82% 75.16% 0.133 s
MMLab PV-RCNN [47] LiDAR – 98.17 % 94.70 % 92.04 % 0.08 s

TuSimple [48] Image – 95.12 % 94.47 % 86.45 % 1.6 s
UberATG-MMF [24] LiDAR + Image Guided with Image 97.41 % 94.25 % 89.87 % 0.08 s
Patches - EMP [49] LiDAR – 97.91 % 93.75 % 90.56 % 0.5 s
Deep MANTA [50] Image – 98.89 % 93.50 % 87.37 % 0.7 s

RRC [51] Image – 95.68 % 93.40 % 87.37 % 3.6 s
STD [52] LiDAR – 96.14 % 93.22 % 90.53 % 0.08 s

RGB-YOLO-v3 Image – 97.23% 93.01% 64.02% 0.134 s
LiDAR-depth-YOLO-v3 LiDAR Solely Upsampled 96.12% 85.05% 61.21% 0.129 s

MV3D (FV) [25] LiDAR Guided with Image 93.08 % 84.39 % 79.27 % 0.24 s
Complexer-YOLO [53] LiDAR + Image – 91.92 % 84.16 % 79.62 % 0.06 s
Pseudo-LiDAR++ [54] LiDAR Guided with Image 94.46 % 82.90 % 75.45 % 0.4 s

RefineNet [55] Image – 91.91 % 81.01 % 65.67 % 0.20 s
MV3D (RGB+FV) [25] LiDAR + Image Guided with Image 86.34 % 79.47 % 74.80 % 0.24 s

A3DODWTDA [26] LiDAR Solely Upsampled 82.98 % 79.15 % 68.30 % 0.08 s
MV3D(RGB) [25] Image – 83.86 % 76.45 % 73.42 % -

3D FCN [56] LiDAR – 86.74 % 74.65 % 67.85 % >5 s
MV-RGBD-RF [57] LiDAR + Image Guided with Image 77.89 % 70.70 % 57.41 % 4 s

Table 2: Calculated AP for pedestrian class
Pedestrian (AP)

Methods Easy Moderate Hard
Proposed method 88.37% 58.38% 44.55%

RGB-YOLOv3 88.29% 58.50% 38.19%
LiDAR depth 85.19% 56.64% 28.06%

Table 3: Calculated AP for bicycle class
Bicycle (AP)

Methods Easy Moderate Hard
Proposed method 89.18% 37.69% 29.28%

RGB-YOLOv3 94.61% 79.30% 4.76%
LiDAR depth 87.98% 26.39% 61.21%

4.2 Training setup
We trained three YOLOv3 networks with RGB, LiDAR depth, and depth+grayscale inputs. The networks are trained

with 10,000 iterations. We use Google Colab for training YOLOv3. Google Colab is an online processor that provides
considerable hardware, as mentioned below. GPU: 1xTesla K80, compute 3.7, having 2496 CUDA cores, 12GB GDDR5
VRAM
4.3 Evaluation metrics

We follow the evaluation method of [46], which divides objects into three categories: easy, moderate, and hard. This
is due to the size, occlusion, and truncation flags of each object. Based on the instruction discussed below, the situation of
each object is clarified.

• Easy: box height > 40px, occlusion=0, truncation < 15%

• Moderate: box height > 25px, occlusion=1, truncation < 30%

• Hard: box height > 40px, occlusion=2, truncation < 50%

we calculated the AP which is introduced in [58] as the area under precision-recall curve by numerical integration. this is
highlighted in [59] that for the car class the Intersection over Union (IoU) threshold has to be 0.7 instead of 0.5 for other
classes.



4.4 results and discussion
In the KITTI object detection benchmark, methods are ordered based on moderately difficult results. Thus, in Table

1, we focus on the moderate section, and the methods are sorted based on that. We can see that our proposed algorithm
outnumbers all the mentioned schemes for the moderate difficulty in car detection. In an easy category, the proposed
method has a 98.82% AP which is the highest amount between methods that utilize depth upsampling.
As mentioned in section 3.1, we propose a simple upsampling algorithm that converts the sparse depth map just based on
LiDAR data to a dense depth map. Looking at Table 1, the LiDAR depth method, which used the preprocessing outcome,
has achieved the best performance among all methods with LiDAR modality that use preprocessing [25,26,54]. The thing
that has to be noticed here is that our LiDAR depth not only succeed solely but also the fusion of this full-depth map with
image has ranked best among single modality-based methods as well as fusion-based ones. It shows that our preprocessing
process prepares data that is more effective for fusion approaches.

Precision-recall curves in Figure 6 imply that the proposed method is trained suitably for car detection. Also, in
comparison to the other two schemes, it has better performance. One factor of these results could refer to the structure
of the depth filling algorithm that follows triangular shapes better than other shapes (see Algorithm 1 and Algorithm 2).
The results reported in Table 2 and Table 3, demonstrate that the proposed method yields better performance in easy and
hard sections for pedestrian class. Moreover, looking at Figure 8 and Figure 7, precision-recall curves for pedestrian class
and cyclist class, have better patterns for the proposed method rather than RGB-YOLOv3 and LiDAR-depth, which have
zigzag curves.

5. CONCLUSION
In this paper, we proposed an uncomplicated depth upsampling and sensor-fusion method that altogether achieves

state-of-the-art performance on car class in the KITTI object detection benchmark. We prepared a full-depth map that
is capable of filling simple shapes like cars efficiently. We fused the depth with the grayscale image as an input for the
YOLO-v3 neural network. Results show that the proposed method outperforms single modality-based methods as well as
fusion-based ones.
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