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Optimal Behavior of a Hybrid Power Producer in
Day-Ahead and Intraday Markets: A Bi-Objective

CVaR-Based Approach
Hooman Khaloie, Mojgan Mollahasani-Pour, and Amjad Anvari-Moghaddam, Senior Member, IEEE

Abstract—Coordinated operation of various energy sources has
drawn the attention of many power producers worldwide. In
this paper, a Concentrating Solar Power Plant (CSPP) along
with a wind power station, a Compressed Air Energy Storage
(CAES) unit, and a Demand Response Provider (DRP) constitute
the considered Hybrid Power Producer (HPP). In this regard,
this paper deals with the optimal participation of the mentioned
HPP in the Day-Ahead (DA) and intraday electricity markets by
benefiting from the joint configuration of all accessible resources.
To attain risk-averse strategies in the suggested model, Condi-
tional Value-at-Risk (CVaR) based on the ε-constraint technique
is employed, while its efficiency is validated compared to the
previously applied method to such problems. On the whole, the
main contributions of this work lie in: 1) proposing a novel model
for optimal behavior of a CSPP-based HPP in DA and intraday
markets using a three-stage decision-making architecture, and 2)
developing a bi-objective optimization framework to improve the
functioning of the risk-constrained algorithm. Simulation results
reveal that taking advantage of the CSPP in the intraday market
and coordinated operation of all resources not only enhance the
profitability of the system but also lessen the associated risk
compared to the previous models.

Index Terms—Compressed Air Energy Storage (CAES), Con-
centrating Solar Power Plant (CSPP), Demand Response Provider
(DRP), wind farm, stochastic programming, ε-constraint method.

Nomenclature
Indices and superscripts

b Linearized segment index.
CA/CS Index of the CAES/ CSPP variables.
ch/dis Charging/ Discharging mode index.
D Day-Ahead market index.
HPP Index of the HPP variables.
I Intraday market index.
Nb/Nt/NΩ Set of the linearized segment/ time/ scenario.
s Simple-Cycle mode index.
t Time index.
WF Index of the wind farm variables.
ω Scenario index.

Parameters

c Scale factor of the wind speed in the Rayleigh
distribution.
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CPco/CPexp Maximum participation capacity of the CAES
in compressing/ expanding status [MW].

CPCS/CPWF Maximum participation capacity of the CSPP/
wind farm [MW].

CPI,HPP,buy/sell HPP’s maximum buying/ selling capacity in
the intraday market [MW].

ECMax Maximum level of the scheduled energy in the
CAES [MWh].

E R Energy conversion rate in the cavern of the
CAES [%].

GP Price of natural gas [e/MBtu].
Htr Heat rate of the CAES in an operating mode

[MBtu/MWh].
j Grid point number in the ε-constraint method.
L0 Initial load [MW].
OMco/OMexp Maintenance and operation cost in compress-

ing/ expanding status of the CAES [e/MWh].
QE,Min/QE,Max Minimum/ Maximum bounds of the utilized

thermal power in the CSPP [MW].
QS,Min/QS,Max Minimum/ Maximum capacity of the thermal

energy storage in the CSPP [MWh].
RDch/RDdis Ramp down rate for charging/ discharging

of the thermal energy storage in the CSPP
[MW/h].

RUch/RUdis Ramp up rate for charging/ discharging of the
thermal energy storage in the CSPP [MW/h].

S Slope of blocks in a linearized curve.
α/β A parameter designating the confidence/ risk-

aversion degree with α/β ∈ (0,1).
Γ Rate of resources contribution in the intraday

market.
δ Accepted rate of DRP’s load curtailments in a

period based upon its loading.
κprice Mean value of electricity market prices in the

normal distribution [e/MWh].
λ1 Conversion efficiency of thermal power to the

electric one via the solar field in the CSPP [%].
λ2 Efficiency of converting the thermal energy of

the solar field and conveyed to the thermal
energy storage in the CSPP [%].

λ3 Conversion efficiency of thermal power to the
electric one via the thermal energy storage in
the CSPP [%].

µ Accepted rate of DRP’s load curtailments in
the entire time horizon based upon its total
loading.

πω Occurrence probability of scenario ω.
σprice Standard deviation of electricity market prices

in the normal distribution [e/MWh].
Υ Correlation factor between load and electricity

price.
ϕ∗ Incentive of the DRP [e/MWh].

Variables
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CLI/CLD Load curtailment offer of the DRP in the DA/
intraday market [MW].

CLSch Scheduled load curtailment offer of the DRP
[MW].

ECCA Scheduled energy in the CAES [MWh].
ESF The produced thermal power via the solar field

[MW].
PW Generated power of the wind farm [MW].
QFE Thermal power from the solar field employed

to produce power in the CSPP [MW].
QFS Transferred thermal power from the solar field

to the storage in the CSPP [MW].
QS Amount of the stored energy in the thermal

energy storage device [MWh].
QSE Thermal power from thermal energy storage

employed to produce power in the CSPP
[MW].

r−/r+ Imbalance ratio for negative/ positive energy
deviation.

u Commitment status of the CAES in any of
charging, discharging, and simple-cycle modes
[1 is running in the mode and 0 otherwise].

x Commitment status of the CSPP [1 is running
and 0 otherwise].

γ Auxiliary variable for the CVaR computation
(Value-at-Risk).

∆ Deviation amount between the generated and
the scheduled power [MW].

∆+/∆− Positive/Negative power deviation [MW].
η Continuous positive variable for the CVaR

computation.
νD/νI Offered power of resources in the DA/ intraday

market [MW].
νFE/νSE Generated power via solar field/thermal energy

storage in the CSPP [MW].
νI,HPP,buy/sell HPP’s buying/ selling quantity in the intraday

market [MW].
νSch The scheduled energy of resources [MW].
$ Auxiliary variable in the ε-constraint method.
ϕD/ϕI Electricity market price in the DA/ intraday

market [e/MWh].

I. Introduction

IN recent years, the power industry has experienced changes
due to development from a regulated utility environment

into a competitive and deregulated structure. However, the
presence of new players, in both demand-side like demand
response resources and supply-side such as clean energy
resources, impose more complexity in controlling and han-
dling of the power systems. From another standpoint, the
environmentally-friendly and cost-effective natures of renew-
able resources are among those features that encourage their
ever-increasing penetration. In contrast, the primary challenge
facing the owners/operators of such renewable-driven systems
is to cope with their intermittent nature.
Concentrating Solar Power Plant (CSPP) as an innovative

supply-side player in the electricity market is a large-scale
renewable energy resource. The CSPP is a zero-emission
generating unit due to utilizing the thermal energy of the
sun to run a steam turbine instead of utilizing fossil fuels,
which results in financial savings [1]. However, benefiting
from a thermal energy storage serves the CSPP to generate
dispatchable energy, while other renewable energy resources
such as wind and photovoltaic units produce intermittent

electricity owing to the dependence of their output energy
on instantaneous wind speed and solar irradiation [2]. Nev-
ertheless, modeling the behavior of the CSPP in the presence
of market price fluctuations and volatility in solar irradiation
is considered as a significant challenge in electricity market
studies.

The authors in [3] have proposed a scheduling scheme for a
CSPP in which solar energy uncertainty has been modeled by
various techniques such as stochastic and robust approaches,
whereas the market price has been taken into account as
a deterministic parameter. A robust optimization technique
is utilized to model the solar irradiation uncertainty in [4]
and [5], whereas the market price volatility is handled by
a scenario-based stochastic framework. However, in [4], the
CSPP merely participates in the Day-Ahead (DA) energy
market, while its involvement in energy and ancillary service
markets is addressed in [5]. In [6], a scenario-based stochastic
structure, namely, downside risk, is utilized to reduce the risk-
in-profit of a CSPP. In [7], the robust-based involvement of a
CSPP coupled with a fossil-fuel power plant in the DA market
has been presented.

On the other hand, the wind power as another clean en-
ergy resource has been widely scrutinized in the restructured
electricity market to determine the optimal offering strategy
under different uncertainties. A stochastic offering model for
controlling the risk of wind power producer based on second-
order stochastic dominance constraints has been suggested
in [8]. In [9], the authors have concentrated on the offering
strategy of wind units alongside a Demand Response Provider
(DRP) tackling the uncertainties via a three-stage stochastic
framework. The authors in [10] and [11] did two detailed
studies on both profit maximization and emission minimization
of a wind-thermal-battery storage system and a wind-thermal-
photovoltaic power producer, respectively. Further, two com-
prehensive studies on the bidding strategy of wind-thermal-
pumped storage systems by taking into account the CO2
emission have been carried out in [12] and [13].

Moreover, Compressed Air Energy Storage (CAES), as
a large-scale storage system, is a promising technology to
facilitate the challenges and hurdles regarding the intermittent
nature of renewable energy resources and market price un-
certainty. In [14], a look-ahead model is provided to examine
the optimal performance of the CAES in ancillary services,
DA, and real-time energy markets to maximize its profit. In
contrast, uncertain sources are neglected in their proposed
framework [14]. A risk-constrained information gap decision
theory-based bidding strategy for a CAES unit in the DA
energy market is addressed in [15], while the uncertain param-
eter is the DA market price. The volatility of wind power in
the self-scheduling problem has been managed via the CAES
system in [16], whereas the Conditional Value-at-Risk (CVaR)
is used to handle the financial risk of the three-stage stochastic
model. In [17], an adaptive robust model is developed to derive
the optimal self-scheduling of a wind-CAES producer under
uncertainties related to forecasting inaccuracies of market price
and wind power.

In terms of demand response resources and their influence
on the offering strategy of various systems, several method-
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ologies and architectures have been designed by the power
system scholars. In [18], a stochastic structure for the optimal
offering of a distributed energy resources aggregator in the
attendance of demand response resources has been presented.
In [19], the authors have concentrated on developing a robust-
based bidding mechanism for industrial plants as a DRP. An
incentive-based demand bidding model for a large consumer
in the real-time market has been proposed in [20].

Accordingly, regarding the previous studies (Table I), the
lack of presenting a comprehensive model incorporating flex-
ible, green, and storage resources in the presence of differ-
ent uncertainties for deriving their optimal behavior in the
electricity markets is still a challenging issue in this area
of research, which is addressed in this paper. Therefore, this
paper aims to propose a new coordinated offering and bidding
strategy for a Hybrid Power Producer (HPP), involving a
CSPP, a wind farm, a CAES unit, and a DRP in DA and
intraday electricity markets. The primary uncertain sources
arising from involved market prices and renewable resources
are modeled through a set of scenarios. Meanwhile, the entire
decision-making process is divided into three distinct stages to
address the offering and bidding problem fittingly. Moreover,
the bi-objective optimization model of an apposite and efficient
risk assessment technique, namely, CVaR, is incorporated into
the suggested architecture to attain risk-involved strategies and
improve the performance of previously applied CVaR-based
frameworks to the offering and bidding strategy problems [9],
[16]. The principal contributions of this paper compared to the
reviewed literature in Table I can be summarized as follows:

1) Proposing a novel coordinated offering and bidding
mechanism for an HPP containing a CSPP, a wind
farm, a CAES unit, and a DRP. In the light of systems
considered in the literature for the offering and bidding
strategy problems, this is the first study that deals with
the operation of an HPP having a CSPP, a CAES, a wind
farm, and a DRP.

2) Examining the impact of the intraday market on the
optimal participation of the CSPP. To the best of authors’
knowledge, this paper is one of the first to investigate the
influence of incorporating the intraday trading floor into
the conventional DA offering models of a CSPP and
appraise this influence in terms of both profitability and
risk. According to Table I, none of the previous studies,
whether a single CSPP or a CSPP paired with other
resources, have performed such an analysis.

3) Establishing a bi-objective optimization model for
CVaR-based offering and bidding strategy problems
by means of ε-constraint and lexicographic methods
and examining their superiority over the conventional
weighted-sum technique. This approach and its key find-
ings have not been reported in the literature of offering
and bidding strategy problems up to our best knowledge.

The remainder of this paper is organized as follows. First,
uncertainty characterization and decision-making framework
are introduced in Section II. Then, the mathematical formu-
lation of the proposed model is presented in Section III.
The bi-objective CVaR-based trading strategy is described in

Section IV. The simulation results are given in Section V,
and eventually, the conclusions of this paper are highlighted
in Section VI.

II. Uncertainty characterization and decision sequence
A. Uncertainty characterization
One of the challenges and concerns that researchers con-

sistently encounter is how to address and incorporate uncer-
tainties that are unavoidably present in most power system
engineering issues. A variety of methods and approaches have
been proposed to deal with this problem. In this paper, the
primary uncertainties of the problem, namely, DA, intraday,
and imbalance prices along with wind generation and produced
thermal power by the solar field of the CSPP, are modeled by a
scenario-based procedure to take advantage of the multi-stage
stochastic programming structure. Towards this end, suitable
probability density functions should be assigned for extracting
the behavior of each uncertain parameter in every single time
interval. In this context, the following distributions are utilized
to analyze the statistical data of each uncertain parameter:
1) Electricity prices and the generated thermal power by

the solar field of the CSPP: The normal distribution is used
to address the uncertainty associated with electricity prices
(ϕprice) and the generated thermal power by the solar field of
the CSPP (ESF) [6]. For instance, the normal distribution for
electricity market prices is as follows:

f price(ϕprice,κprice, σprice) =

1
σprice

√
2π

exp
[
−
(ϕprice − κprice)2

2(σprice)2

]
(1)

where the κprice and σprice are the mean and the standard
deviation of electricity prices, respectively.
2) Wind speed: Various distributions in the research litera-

ture, namely, the Weibull [21] and the Rayleigh [22], have been
utilized in different circumstances to handle the uncertainty
of wind speed (V). In the current paper, the wind speed is
modeled via the Rayleigh distribution pursuant to the following
equation [22]:

f wind(V, c) =
V
c2 exp

[
−V2

2c2

]
(2)

where c is the scale factor of the Rayleigh distribution.

B. Decision sequence
Once the intended HPP aims to take part in the DA and in-

traday markets, it has to devise an appropriate decision-making
framework based on the market structure and the uncertainty
handling manner. In this paper, a three-stage stochastic pro-
gramming scheme has been designed for modeling the optimal
behavior of the considered HPP in electricity markets. The
sequence of stages in the proposed three-stage decision-making
framework is listed as follows:
1) There are two types of decisions in the first-stage deci-

sions: here-and-now and special here-and-now decisions
[23]. Here-and-now decisions are made by the HPP
regarding the online/offline status of the CSPP and
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TABLE I
Comparison between the analyzed works and the proposed framework in this paper.

Ref. System under study Modeled markets Modeling method Risk model CVaR modeling
DA Intraday Balancing

[3] CSPP X - - Robust/Stochastic MIP Uncertainty budget -
[4] CSPP X - - Robust+stochastic MIP Uncertainty budget -
[5] CSPP X - X Robust MIP Uncertainty budget -
[6] CSPP X - - Stochastic MIP Downside risk -
[7] CSPP+Fossil Fuel Power Plant X - - Robust MIP Uncertainty budget -
[8] Wind X - X Two-stage stochastic LP SOSDCs -
[9] Wind+DRP X X X Three-stage stochastic LP/MIP CVaR Weighting factor
[10] Wind+Thermal+Battery X - X Two-stage stochastic MIP - -
[11] Wind+Thermal+Photovoltaic X - X Stochastic MIP - -

[12]-[13] Wind+Thermal+Pumped Storage X - X Stochastic MINLP - -
[14] CAES X - X Deterministic MIP - -
[15] CAES X - - IGDT-based MINLP R/O function -
[16] Wind+CAES X X X Three-stage stochastic MIP CVaR Weighting factor
[17] Wind+CAES X - X Adaptive Robust MIP Uncertainty budget -
[18] Distributed Energy Resources X - - Stochastic MIP - -
[19] Industrial Plant X - - Robust MIQP Uncertainty budget -
[20] Large Industrial Consumer X - X Deterministic MIP - -

This Paper CSPP+Wind+CAES+DRP X X X Three-stage stochastic MIP CVaR ε -constraint
Note: MIP-Mixed Integer Programming; LP-Linear Programming; SOSCDs-Second Order Stochastic Dominance Constraints; IGDT-Information Gap

Decision Theory; MINLP-Mixed Integer Nonlinear Programming; R/O-Robustness/ Opportunity; MIQP-Mixed Integer Quadratic Programming

discharging/charging/simple-cycle mode of the CAES
unit for the entire trading horizon, and accordingly,
they do not depend on any scenario (e.g., xt , udis

t )
[23]. On the other hand, devising bidding and offering
curves for the DA market are the special here-and-now
decisions [23]. The word "special" is used due to the
fact that these decisions are not single offering and
bidding quantities, but they are curves and depend on
the DA price realizations (e.g., νD,CS

t,ω , νD,WF
t,ω ) [23].

In sum, the first-stage decisions are made prior to the
realization of the stochastic processes, i.e., DA, intraday,
and imbalance prices, along with wind generation and
produced thermal power by the solar field.

2) Once the DA market prices are available to the HPP, the
HPP decides on its selling and purchasing quantities in
the intraday market. These are the second-stage decisions
(wait-and-see1) that are made based upon the probable
realization of intraday and imbalance prices, along with
wind generation and produced thermal power by the
solar field (e.g., νI,CS

t,ω , νI,WF,sell
t,ω ) [24].

3) The third-stage decisions (wait-and-see2) appertain to
the energy deviations imposed by the HPP in the last
trading floor, namely, the balancing market. These de-
cisions are made after the realization of all stochastic
processes, including intraday and imbalance prices, a-
long with wind generation and produced thermal power
by the solar field (∆+t,ω , ∆−t,ω) [24].

III. Problem Formulation

In the coordinated trading strategy of all available resources,
an optimization problem is established in which the optimal
values of all decision variables will be obtained from the

viewpoint of a single decision-making unit, namely, the HPP.
The main aim is to maximize the expected profit of the whole
system by running a single optimization problem. The CVaR-
based trading strategy of the HPP comprises two objective
functions, as given in the following subsections.

A. Objective function 1: Expected profit maximization
The objective function related to the HPP’s expected profit

is manifested in (3)-(4), where Pro f it signifies the HPP’s
expected profit, and PH

ω represents the HPP’s profit in scenario
ω. In (4), ξ1 expresses the revenue of the HPP arising from the
participation of the CSPP and the CAES unit in the DA market.
ξ2 represents the income resulting from the involvement of
the wind farm and the DRP in the DA market, whereas ξ3
stands for the DRP’s incentive in the same market, and ξ4
accounts for the cost of charging the CAES from the DA
market. Note that, in this study, similar to [9], a fixed incentive
rate plan is considered to model the DRP’s incentive. It is
important to remark that the independent system operator
is in charge of determining the DRP’s incentive for load
reduction offers [9]. ξ5 models the earnings associated with
the CSPP and the CAES offering power quantities in the
intraday market, while ξ6 pertains to the expense of the CAES
charging in the aforesaid market. It is worth mentioning that,
analogous to [4], it has been assumed that the operating costs
of the CSPP are negligible. The wind farm’s revenue and
cost in the intraday market are given by ξ7. ξ8 denotes the
DRP’s income in the intraday market, including both load
reduction offer and the incentive payment. ξ9 and ξ10 stand
for the costs that originate from the operation of the CAES
unit in both DA and intraday markets. The HPP’s revenue
concerning the price elasticity of the demand is shown in
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ξ11. Finally, ξ12 and ξ13 are related to the income and the
cost of the system’s positive and negative energy deviations
in the balancing market, respectively. By focusing on the
decision sequence expressed in the previous section, in (4),
ξ1-ξ4, ξ5-ξ11, and ξ12-ξ13 represent the expected profit of the
HPP gained from the first-stage, second-stage, and third-stage
of the suggested three-stage stochastic programming model,
respectively.

Pro f it =
NΩ∑
ω=1

πω × PH
ω (3)

PH
ω =

NT∑
t=1

ϕDt,ων
D,CS
t,ω + ϕDt,ων

D,CA,dis
t,ω + ϕDt,ων

D,CA,s
t,ω︸                                                  ︷︷                                                  ︸

ξ1

+ϕDt,ων
D,WF
t,ω + ϕDt,ωCLD

t,ω︸                            ︷︷                            ︸
ξ2

+ ϕ∗CLD
t,ω︸    ︷︷    ︸

ξ3

− ϕDt,ων
D,CA,ch
t,ω︸          ︷︷          ︸
ξ4

+ ϕIt,ων
I,CS
t,ω + ϕIt,ων

I,CA,dis
t,ω + ϕIt,ων

I,CA,s
t,ω︸                                               ︷︷                                               ︸

ξ5

− ϕIt,ων
I,CA,ch
t,ω︸         ︷︷         ︸
ξ6

+ ϕIt,ων
I,WF,sell
t,ω − ϕIt,ων

I,WF,buy
t,ω︸                                   ︷︷                                   ︸

ξ7

+ ϕIt,ωCLI
t,ω + ϕ

∗CLI
t,ω︸                      ︷︷                      ︸

ξ8

−νSch,CA,dis
t,ω

(
Htrdis × GP +OMexp

)
− νSch,CA,ch

t,ω OMco︸                                                                         ︷︷                                                                         ︸
ξ9

− νSch,CA,s
t,ω (Htrs × GP +OMexp +OMco)︸                                                  ︷︷                                                  ︸

ξ10

+
1

2ΥL0,t

NB∑
b=1

SbCLSch_b
b,t,ω︸                       ︷︷                       ︸

ξ11

+
(
ϕDt,ωr+t,ω∆

+
t,ω

)
︸            ︷︷            ︸

ξ12

−

(
ϕDt,ωr−t,ω∆

−
t,ω

)
︸            ︷︷            ︸

ξ13

(4)

B. Objective function 2: CVaR maximization
The second objective function, i.e., CVaR, strives to manage

the risk in the trading strategy process, which is formulated
as follows [9], [16]:

CVaR = γ −
1

1 − α

NΩ∑
ω=1

πωηω (5)

The constraints of both objective functions are presented in
the following.

1) Modeling of the CSPP: Equation (6) represents the
offered power from the CSPP in both DA and intraday markets,
which originates from both solar field and thermal energy
storage facility [4]. The total scheduled power of the CSPP,
solar field, and thermal energy storage are calculated according
to equation (7).[

νD,CS
t,ω

νI,CS
t,ω

]
=

[
νD,FE
t,ω

νI,FE
t,ω

]
+

[
νD,SEt,ω

νI,SEt,ω

]
∀t, ∀ω (6)

νSch,CS
t,ω

νSch,FE
t,ω

νSch,SEt,ω

 =

νD,CS
t,ω

νD,FE
t,ω

νD,SEt,ω

 +

νI,CS
t,ω

νI,FE
t,ω

νI,SEt,ω

 ∀t, ∀ω (7)

Constraint (8) limits the upper and lower bounds of the CSPP’s
DA offer and the total CSPP’s scheduled power within the
CSPP’s nominal capacity. The total scheduled electric power
of the solar field and the thermal energy storage are computed
using (9) and (10), respectively [4].[

0
0

]
≤

[
νD,CS
t,ω

νSch,CS
t,ω

]
≤

[
CPCS

CPCS

]
∀t, ∀ω (8)

νSch,FE
t,ω = λ1QFE

t,ω ∀t, ∀ω (9)

νSch,SEt,ω = λ3QSE
t,ω ∀t, ∀ω (10)

Restrictions (11)-(14) define the ramp down and ramp up
limitations of the thermal energy storage [4]. Constraint (15)
restricts the upper bound of the total utilized thermal power
of the solar field within the thermal power realization in the
solar field on the basis of the solar power [4].
νSch,SEt,ω − νSch,SE

t+1,ω ≤ RDdis ∀t = 0, . . . , NT − 1, ∀ω (11)

νSch,SE
t+1,ω − νSch,SEt,ω ≤ RUdis ∀t = 0, . . . , NT − 1, ∀ω (12)

λ2

(
QFS

t+1,ω −QFS
t,ω

)
≤ RUch ∀t = 0, . . . , NT − 1, ∀ω (13)

λ2

(
QFS

t,ω −QFS
t+1,ω

)
≤ RDch ∀t = 0, . . . , NT − 1, ∀ω (14)

QFE
t,ω +QFS

t,ω ≤ ESFt,ω ∀t, ∀ω (15)

Constraint (16) ensures that the total thermal power employed
for electric power generation does not exceed its allowable
ranges [4]. Equations (17) and (18) computes the stored energy
in the thermal energy storage for the first and remaining
periods of the trading horizon, while constraint (19) keeps
the stored energy in the thermal energy storage within the
permissible range [4]. Other CSPP’s restrictions, including
minimum off/on time, are modeled similar to the approach
proposed in [10]. Constraint (20) states that the stored energy
in the thermal energy storage for the first and the last periods
of the trading horizon must be equal.

QE,Minxt ≤ QFE
t,ω +QSE

t,ω ≤ QE,Max xt ∀t, ∀ω (16)

QS
t,ω = Q0 + λ2QFS

t,ω −QSE
t,ω ∀t = 1, ∀ω (17)

QS
t,ω = QS

t−1,ω + λ2QFS
t,ω −QSE

t,ω ∀t ≥ 2, ∀ω (18)

QS,Min ≤ QS
t,ω ≤ QS,Max ∀t, ∀ω (19)

QS
t=24,ω = Q0 ∀ω (20)

2) Constraints of the CAES: Equation (21) defines the
scheduled power of the CAES unit in different operating
modes, whereas constraints (22) and (23) impose the limi-
tations of the DA offering quantities and the scheduled energy
of the CAES unit [16]. Constraint (24) ensures that the CAES
unit only operates in one operating mode for any scheduling
period [16]. In (22)-(24), us

t represents the simple-cycle mode
of the CAES unit. It should be noted that the simple-cycle is
an operational mode in which the CAES unit runs as a gas
turbine [16].

νSch,CA,dis
t,ω

νSch,CA,s
t,ω

νSch,CA,ch
t,ω

 =

νD,CA,dis
t,ω

νD,CA,s
t,ω

νD,CA,ch
t,ω

 +

νI,CA,dis
t,ω

νI,CA,s
t,ω

νI,CA,ch
t,ω

 ∀t, ∀ω

(21)
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0
0
0

 ≤

νD,CA,dis
t,ω

νD,CA,s
t,ω

νD,CA,ch
t,ω

 ≤


CPexpudis
t

CPexpus
t

CPcouch
t

 ∀t, ∀ω (22)


0
0
0

 ≤

νSch,CA,dis
t,ω

νSch,CA,s
t,ω

νSch,CA,ch
t,ω

 ≤


CPexpudis
t

CPexpus
t

CPcouch
t

 ∀t, ∀ω (23)

udis
t + us

t + uch
t ≤ 1 ∀t (24)

The storage energy level in each time interval is expressed
by equation (25)-(26), while limitation (27) retains the storage
energy level within the available capacity [16]. Equation (28)
enforces the equality constraint of the energy in the CAES
storage for the first and the last periods of the scheduling
horizon.

ECCA
t,ω = ECCA

0 + E R ×
(
νSch,CA,dis
t,ω − νSch,CA,ch

t,ω

)
∀t = 1, ∀ω (25)

ECCA
t,ω = ECCA

t−1,ω + E R ×
(
νSch,CA,dis
t,ω − νSch,CA,ch

t,ω

)
∀t ≥ 2, ∀ω (26)

0 ≤ ECCA
t,ω ≤ ECMax ∀t, ∀ω (27)

ECCA
t=24,ω = ECCA

0 ∀ω (28)

3) Constraints of the DRP and Wind Farm: Equation (29)
expresses the scheduled power of the wind farm, which is equal
to the sum of selling values in the DA and intraday market
minus the purchasing energy from the intraday market [9].
Constraint (30) restricts the upper and lower bounds of the
DA offering values of the wind farm [10]. In (31)-(32), the
scheduled DRP’s load reduction offer is denoted [9], while
in (33), the upper bounds of the DA and the scheduled load
reduction offers are enforced [9]. Restriction (34) enforces the
limit of the scheduled load reduction offer in the entire trading
horizon [9].
νSch,WF
t,ω = νD,WF

t,ω + νI,WF,sell
t,ω − ν

I,WF,buy
t,ω , ∀t, ∀ω (29)

0 ≤ νD,WF
t,ω ≤ CPWF ∀t, ∀ω (30)

CLSch
t,ω = CLD

t,ω + CLI
t,ω ∀t, ∀ω (31)

CLSch
t,ω =

NB∑
b=1

CLSch_b
b,t,ω

∀t, ∀ω (32)[
0
0

]
≤

[
CLD

t,ω

CLSch
t,ω

]
≤ δ

[
L0,t
L0,t

]
∀t, ∀ω (33)

NT∑
t=1

CLSch
t,ω ≤ µ

NT∑
t=1

L0,t ∀t, ∀ω (34)

4) Coordinated offering and bidding constraints: The total
scheduled power of the HPP in both intraday and DA markets
is equal to the sum of the scheduled power of all available
resources, as expressed in (35). In the coordinated trading
strategy, the total acceptable volume of selling and buying
energies in the intraday market is computed in (36) and (37),
respectively, whereas constraints (38) and (39) are fulfilled to
enforce these requirements. To meet the requirement of the

HPP’s scheduled energy, constraint (40) keeps this variable
within the acceptable range. The total HPP’s imbalances are
denoted in (41), while constraints (42) and (43) represent
that the HPP’s positive and negative imbalances are restricted
within the permissible values. It has to be noted that positive
energy deviation, i.e., positive imbalance, occurs when the
scheduled energy of the HPP is less than the total actual power
of the HPP. Similarly, negative energy deviation refers to the
situations that the HPP’s scheduled energy is greater than the
real output power of the HPP.

νSch,HPP
t,ω =νSch,CS

t,ω + νSch,WF
t,ω + νSch,CA,dis

t,ω + νSch,CA,s
t,ω

+ CLSch
t,ω ∀t, ∀ω (35)

CPI,HPP,sell = Γ ×
(
CPCS + CPexp + CPWF + δL0,t

)
(36)

CPI,HPP,buy = Γ ×
(
CPco + CPWF

)
(37)

0 ≤νI,CS
t,ω + νI,CA,dis

t,ω + νI,CA,s
t,ω + νI,WF,sell

t,ω + CLI
t,ω ≤

CPI,HPP,sell ∀t, ∀ω (38)

0 ≤ νI,CA,ch
t,ω + ν

I,WF,buy
t,ω ≤ CPI,HPP,buy ∀t, ∀ω (39)

0 ≤ νSch,HPP
t,ω ≤CPCS xt + CPexpudis

t + CPexpus
t

+ CPWF + δL0,t ∀t, ∀ω (40)

∆t,ω = ∆
+
t,ω − ∆

−
t,ω = PWt,ω − ν

Sch,WF
t,ω ∀t, ∀ω (41)

0 ≤ ∆−t,ω ≤CPCS xt + CPexpudis
t + CPexpus

t

+ CPWF + δL0,t ∀t, ∀ω (42)

0 ≤ ∆+t,ω ≤PWt,ω + ν
Sch,CS
t,ω + νSch,CA,dis

t,ω + νSch,CA,s
t,ω

+ CLSch
t,ω ∀t, ∀ω (43)

Restriction (44) ensures that the offering curves of the
CSPP, CAES, and wind farm in the DA market must be non-
decreasing, while constraint (45) guarantees the decreasing
state of bidding curves. In this regard, the non-anticipativity
rule of the DA and intraday offering and bidding quantities
is enforced by constraints (46) and (47), respectively. Finally,
the description of constraints (48) and (49) corresponds to the
given descriptive statements of restrictions (44) and (46)-(47),
respectively.

ν
D,ψ1
t,ω ≤ ν

D,ψ1
t,ω̃

, ∀ω, ω̃ : [ϕDt,ω ≤ ϕDt,ω̃], ∀t &
ψ1 = [CS,WF,(CA,dis),(CA,s)] (44)

νD,CA,ch
t,ω ≤ νD,CA,ch

t,ω̃
, ∀ω, ω̃ : [ϕDt,ω ≥ ϕDt,ω̃], ∀t (45)

ν
D,ψ2
t,ω = ν

D,ψ2
t,ω̃

, ∀ω, ω̃ : [ϕDt,ω = ϕDt,ω̃], ∀t &
ψ2 = [CS,WF,(CA,dis),(CA,s),(CA,ch)] (46)

ν
I,ψ3
t,ω = ν

I,ψ3
t,ω̃

, ∀ω, ω̃ : [ϕDt,ω = ϕDt,ω̃], ∀t &
ψ3 = [CS,(WF,sell),(WF,buy),(CA,dis),(CA,s),(CA,ch)] (47)

CLD
t,ω ≤ CLD

t,ω̃, ∀ω, ω̃ : [ϕDt,ω ≤ ϕDt,ω̃], ∀t (48)[
CLD

t,ω

CLI
t,ω

]
=

[
CLD

t,ω̃

CLI
t,ω̃

]
∀ω, ω̃ : [ϕDt,ω = ϕDt,ω̃], ∀t (49)
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C. CVaR constraints
Considering the CVaR risk measuring index, constraints

(50) and (51) pertain to the CVaR calculation. In constraint
(50), PH

ω stands for the HPP’s profit in scenario ω, and ηω
is an ancillary variable representing the difference of HPP’s
profit in scenario ω and the value-at-risk (γ). Constraint (51)
enforces that this difference must be non-negative. In other
words, the value of ηω is set to zero for a specific scenario in
which the HPP’s profit becomes greater than the value-at-risk
(γ). Overall, objective function (5) along with constraints (50)
and (51) computes the CVaR for the HPP’s profit distribution
[9], [16].

γ − PH
ω ≤ ηω ∀ω (50)

ηω ≥ 0 ∀ω (51)

IV. Solution Approach
As previously outlined, the optimization problems under

CVaR risk measure are bi-objective optimization problems,
which are mainly solved using weighted-sum approach to
attain Pareto solutions ([9], [16], and [23]-[25]). By focusing
on the weighted-sum technique, the CVaR-constrained optimal
trading strategy is formulated as follows:

Max (1 − β) × Pro f it + (β) × CVaR

Subject to : (3) − (51), 0 ≤ β ≤ 1
(52)

Notwithstanding the simple implementation of the
weighted-sum method, this method suffers from: 1) the
complexity and the hardness of specifying proper weighting
factors for the objective functions when sufficient information
is not available to the decision-maker; 2) generating unevenly
spaced Pareto solutions; 3) not being able to impose the
preferences of the decision-maker for producing Pareto
solutions; 4) imposing further computational cost for suitable
scaling of the objective functions [26]. More specifically, as
it has been argued in [10], a slight change in the weighting
factor may lead to considerable variation in the value of
objective functions. To overcome several drawbacks noted
for the weighted-sum approach [26], the improved version
of the ε-constraint method, namely, augmented ε-constraint
technique, alongside lexicographic optimization framework,
is utilized [10]. It is worthwhile to note that the improved
version of the ε-constraint method eliminates all the above-
mentioned weaknesses of the weighted sum technique [26].
The lexicographic method facilitates obtaining efficient
solutions to build the pay-off table, PT , and as a result, to
determine the range of each objective function. The pay-off
table is shown in (53), whereas each element of PT is
obtained through the lexicographic technique (54)-(57).

PT =
[

PT1,1 PT1,2
PT2,1 PT2,2

]
(53)

PT1,1 = Pro f it? :

(
Max Pro f it

Subject to : (3) − (51)

)
(54)

PT2,2 = CVaR? :

(
Max CVaR

Subject to : (3) − (51)

)
(55)

PT1,2 = CVaR◦ :

(
Max CVaR

Subject to : (3) − (51) & Pro f it = PT1,1

)
(56)

PT2,1 = Pro f it◦ :

(
Max Pro f it

Subject to : (3) − (51) & CVaR = PT2,2

)
(57)

where Pro f it? and CVaR? are the Utopia points (best values),
and Pro f it◦ and CVaR◦ are the Pseudo Nadir points (worst
values) of both objective functions. By having the pay-off
table, the CVaR-based trading strategy using the improved
version of the ε-constraint method is formed as below:

Max Pro f it −
$

(PT2,2 − PT1,2)

Subject to : CVaR −$ = %j

%j = PT1,2 +

(
PT2,2 − PT1,2

h

)
× j, j = 0, 1, ..., h

(3) − (51) & $ ≥ 0
(58)

where $ is an auxiliary variable, j represents the grid point
number, and (PT2,2−PT1,2) stands for the range of the CVaR. In
order to attain various Pareto solutions to construct the Pareto
frontier, (h+1) grid points are considered, and accordingly, the
optimization problem divides into (h + 1) sub-problems that
must be solved. Further details on the lexicographic method
and improved version of the ε-constraint technique can be
found in [10].

V. Numerical results
The considered HPP is composed of a CSPP, a CAES unit,

a wind farm, and a DRP. The nominal capacity of the wind
farm is 40 MW. The characteristics of the CAES unit and
the confidence level used for the CVaR calculation have been
reported in Table II. According to this table, the maximum
charging and discharging powers of the CAES unit are 60
MW and 100 MW, respectively, while the CAES storage size
is considered equal to 20 hours of its full discharging capacity.
The data on the DRP and the CSPP are presented in Table III.
The load profile of the DRP prior to applying the demand
response program for its optimal behavior in the target markets
is shown in Fig. 1 [29].
As stated in section II, the uncertainties that originate from

renewable resources and electricity markets are characterized
via a set of scenarios. It is worthwhile to mention that the
mean values of thermal generation by the solar field have been
adopted from [4], while ten percent of the mean values have
been assumed as the standard deviations of each specific hour.
A six-month examination on the parameters of the Spanish

electricity market [31] has been fulfilled to get the parameters
of the normal distribution, i.e., mean and standard deviation.
Likewise, by benefiting from the wind speed data of [32] for
the identical time interval, twenty-four Rayleigh distributions
corresponding to each scheduling period are obtained. Given
the probability density functions of each uncertain parameter,
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TABLE II
Technical specifications of the CAES system and the CVaR confidence

level.

Parameter Value Ref. Parameter Value Ref.

CPexp [MW] 100 [27] GP [e/MBtu] 4.6 [28]

CPco [MW] 60 [27] ER [%] 95 [16]

ECMax [MWh] 2000 [15]
OMexp/co

3 [28]
[e/MWh]

Htrdis

4.07 [28]
Htr s

10.83 [28]
[MBtu/MWh] [MBtu/MWh]

ECCA
0 [MWh] 0 [15] α 0.95 [9]

TABLE III
Information on the CSPP, the DRP, and other input parameters.

Parameter Value Ref. Parameter Value Ref.

Υ -0.3 [29] µ 0.04 [29]

ϕ∗ 0.3 [29] δ 0.2 [29]

Γ 0.3 [29] Q0 [MWh] 350 [4]

CSPCS [MW] 50 [4] RUch [MW/h] 80 [4]

QE,Min [MW] 50 [4] RUdis [MW/h] 80 [4]

QE,Max [MW] 125 [4] RDch [MW/h] 35 [4]

QS,Min [MWh] 45 [4] RDdis [MW/h] 35 [4]

QS,Max [MWh] 700 [4] λ1 [%] 40 [4]

λ2 [%] 80 [4] λ3 [%] 35 [4]

0 2 4 6 8 10 12 14 16 18 20 22 24

10
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16
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20

Time (h)

L 0
(M

W
)

Fig. 1. DRP’s load curve before participating in the DA and intraday markets.

a large number of scenarios (in this paper, 5000 scenarios) are
generated to model the behavior of random parameters. Subse-
quently, to keep tractability, SCENRED2 [30] is implemented
to reduce the number of scenarios. To this end, the number of
scenarios related to wind and thermal production of the CSPP,
as well as DA market scenarios, is reduced to ten scenarios. In
contrast, the generated intraday and balancing market scenarios
are lessened to six scenarios. Regarding the proposed three-
stage architecture, the scenario tree possesses 3600 scenarios
with the 10×6×6×10 construction. It is worth mentioning that
the procedure of scenario generation for imbalance market
prices is similar to the technique suggested in [9] and [16].

To demonstrate the usefulness and effectiveness of the
proposed coordinated offering and bidding framework, two
different case studies have been created as follows:
• Case 1: The first case study concerns with the disjoint

involvement of the considered resources in the target
markets (the disjoint configuration). In this case study, all
elements of the HPP participate in the intended markets
individually.

• Case 2: The second case study pertains to the coordinat-
ed offering and bidding of all existing resources (joint
configuration). In this case study, all available resources
participate in the DA and intraday markets from the
standpoint of a unit HPP.

A. Impact of different configurations on the expected profit
and risk of the system

The results of the expected profit and CVaR in both
configurations for different risk-averse levels employing both
weighted-sum and ε-constraint methods have been presented
in Fig. 2. To derive the efficient frontier using weighted-sum
approach, eleven equally spaced points for β, β= [0, 0.1,
0.2, 0.3, . . ., 0.9, 1], are utilized. Likewise, after obtaining
the pay-off table by solving optimization problems (54)-(57)
(lexicographic approach), eleven grid points j= [0, 1, 2, 3, . . .,
9, 10] are exploited to find the efficient frontier through the ε-
constraint method. According to the obtained efficient frontiers
and results presented in Tables IV and V, it can be concluded
that the ε-constraint method has the following advantages
over the weighted-sum approach: 1) it obtains equally spaced
Pareto solutions in terms of CVaR, whereas the weighted-sum
cannot; 2) for the risk-neutral case, it derives a solution with
a lower level of risk in comparison with the weighted-sum
method, while the obtained expected profit for both methods
is equivalent; and 3) for the case with the highest degree of
risk-aversion, it draws a solution with a greater value of the
expected profit compared to the weighted-sum method, while
the attained CVaR for both techniques is equal.
Furthermore, a comparison between the computational size

of the elaborated Mixed-Integer Programming (MIP) problem
for Case 2 under two different solution approaches, i.e.,
weighted-sum and ε-constraint, has been given in Table VI.
Both case studies are optimized with the CPLEX solver in
General Algebraic Modeling System (GAMS) on a laptop
computer with 4 GB of RAM and a Core i5 processor. It has
to be noted that the gap setting in the CPLEX solver has been
set to zero to ensure reaching the global optimum solution.
According to Table VI, it is clear that there is no significant
difference between the average sub-problem solution time of
both solution approaches. The higher computational cost of the
proposed approach compared to the weighted-sum technique
appertains to the lexicographic method.
Regardless of the solution approach (weighted-sum or ε-

constraint), it can be seen from Fig. 2 that the joint configura-
tion is capable of improving both expected profit and CVaR for
similar values of β and j. According to these results, the joint
configuration not only leads to profitability, but also lessens the
total risk. To demonstrate the expected profit and CVaR gains
in the joint configuration for all Pareto solutions (P1-P11),
Fig. 3 has been provided. It is noteworthy to say that P1 and
P11 in Fig. 3 represent the risk-neutral and the highest degree
of risk-aversion states, respectively. From Fig. 3, it is seen that
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Fig. 2. Efficient frontier in joint and disjoint configurations employing
weighted-sum and ε -constraint techniques.

TABLE IV
Comparison between results obtained through weighted-sum and

ε -constraint techniques in Case 1.

Approach

Risk-Neutral Highest Degree of
Risk-Aversion

Expected CVaR-0.95 Expected CVaR-0.95
Profit (e) (e) Profit (e) (e)

Weighted-Sum 57,511.02 48,195.97 54,945.82 50,892.29
ε -Constraint 57,511.02 49,982.70 56,977.49 50,892.29

TABLE V
Comparison between results obtained through weighted-sum and

ε -constraint techniques in Case 2.

Approach

Risk-Neutral Highest Degree of
Risk-Aversion

Expected CVaR-0.95 Expected CVaR-0.95
Profit (e) (e) Profit (e) (e)

Weighted-Sum 60,268.15 50,171.30 58,242.09 54,260.08
ε -Constraint 60,268.15 53,493.09 59,693.69 54,260.08

for Pareto solutions P1-P10, the joint configuration achieves
the almost equivalent level of expected profit gain with an
amount of more than 4%, regardless of the solution approach.
Only in P11 (highest degree of risk-aversion), the weighted-
sum technique obtains a higher expected profit gain compared
to the ε-constraint method, whereas the final earned expected
profit through the ε-constraint approach is greater than the
weighted-sum method. In contrast, a considerable discrepancy
between the CVaR gains of the weighted-sum and ε-constraint
methods in the risk-neutral state (P1) is felt, while for other
Pareto solutions (P2-P11), an approximately equal level of the
CVaR gain for both solution approaches is reached. Overall,
the joint configuration not only guarantee the profitability of
the proposed offering and bidding architecture, but also is able
to decrease the associated risk.

Based on the foregoing, from now on, all presented results
appertain to the ε-constraint method owing to its better per-
formance compared to the weighted-sum technique. Fig. 4 and
Fig. 5 show the hourly expected profit of each HPP’s element
in risk-neutral and highest degree of risk-aversion strategies,
respectively. As shown in Fig. 4 and Fig. 5, in both strategies,

TABLE VI
Computational size of the considered problem in Case 2.

Number of binary variables (weighted-sum and ε -constraint) 144
Number of continuous variables using weighted-sum 26,008
Number of continuous variables using ε -constraint 26,009
Number of equations using weighted-sum 39,585
Number of equations using ε -constraint 39,586
Solution time of all Pareto points using Weighted-sum (sec) 105
Average sub-problem solution time using Weighted-sum (sec) 9.54
Solution time of pay-off matrix using lexicographic method (sec) 353
Solution time of all Pareto points using ε -constraint (sec) 124
Average sub-problem solution time using ε -constraint (sec) 11.27
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0
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P1: Risk-Neutral & P11: Highest Degree of Risk-Aversion

Fig. 3. The gain of expected profit and CVaR in the joint configuration
employing weighted-sum and ε -constraint techniques.

joint and disjoint configurations impose a greater impact on
the hourly expected profit of the wind farm and the CSPP.
Similarly, the CAES unit and the DRP undergo the lowest
change. This issue is also true for the share of each resource
from the total expected profit, which has been shown in Fig. 6.
From this figure, it is observed that much of the HPP’s profit
come from the wind farm and the CSPP. Another critical point
that can be deduced from Fig. 4 is that the CAES unit merely
operates in the simple-cycle model in the risk-neutral strategy
as it does not have any negative value in Fig. 4. In contrast, in
the strategy with the highest degree of risk-aversion (Fig. 5),
the CAES unit experiences all operating modes, i.e., charging,
discharging, and simple-cycle.

B. Impact of the intraday market and the joint configuration
on the CSPP

This study has been defined to assess the consequence of
the joint configuration and embracing the intraday market from
the viewpoint of the CSPP. In the first part of this analysis, the
impact of the aforesaid factors on the CSPP’s expected profit
and CVaR is investigated. To this end, a further study, focusing
on the DA offering of the CSPP in the disjoint configuration,
is accomplished. Fig. 7 compares the results of the expected
profit and CVaR in various CSPP’s operational strategies: 1)
uncoordinated operation of the CSPP in the DA market; 2)
uncoordinated operation of the CSPP in joint DA and intraday
markets; and 3) coordinated operation of the CSPP with other
available resources in both DA and intraday markets (Case 2).
According to this figure, it can be concluded that incorporating
the intraday market into the proposed offering structure leads
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operational strategies.

to both profitability and risk-mitigating of the CSPP. Another
noteworthy point that can be deduced from this figure is
that, in addition to including the intraday market, the joint
configuration also results in the improvement of the CSPP’s
operation in terms of the expected profit.

The comparison between the total DA and intraday offers
of the CSPP, along with the total CSPP’s scheduled energy,
has been given in Fig. 8. From Fig. 8, it can be observed that
the total CSPP’s scheduled energy is approximately equal for
all operational strategies. On the other hand, the almost equal
scheduled energy in different operational strategies causes
different expected profit and financial risk, meaning that the
CSPP’s share in the target markets varies from case to case.
As shown in Fig. 8, in the absence of the intraday market,
the CSPP focuses on offering in the DA market, resulting
in the highest share of the DA participation compared to
other strategies, and accordingly, the lowest expected profit and
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Fig. 7. Comparison of the CSPP’s expected profit and CVaR in different
operational strategies (risk-neutral state).
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operational strategies (risk-neutral state).

CVaR. By involving the intraday market in the uncoordinated
operation, the DA’s participation share is reduced. Afterward,
the coordinated operation boosts the CSPP’s intraday share,
and consequently, its DA share is lessened. In summary, the
main reason for the profitability of Case 2 is that the joint
configuration enhances the HPP’s flexibility for offering in the
DA and intraday markets through giving a higher degree of
freedom.
Fig. 9 illustrates the energy stored in the CSPP’s thermal

energy storage for various operational modes. As can be seen
from this figure, except for the early hours, the stored energy
of the thermal energy storage in Case 2 is higher than other
strategies. It is observed in Fig. 9 that during the early hours,
i.e., hours 1-6, the zero thermal production of the solar field
and low energy prices are the reasons for not experiencing any
fluctuations in the level of the stored energy in the thermal
energy storage. During hours 7-20, the thermal energy storage
is charged due to available thermal energy in the solar field. On
the other hand, thermal energy storage is discharged during the
last hours of the day as a result of having higher market prices.
Eventually, on account of enforcing constraint (20), the level
of the stored energy in the last period of the trading horizon
would be equal to its corresponding value in the first period.

C. Impact of different configurations on the participation of
the system in the DA and intraday markets
Fig. 10 and Fig. 11 present the expected offers of the

CSPP, CAES unit, and wind farm in DA and intraday markets,
respectively. As shown in Fig. 10, the DA offers of the CAES
unit in both configurations for all trading periods except 9:00
p.m. are similar. Also, the wind farm’s DA energy offers in the
joint configuration for most hours are greater than the disjoint
one, indicating a higher degree of freedom for the participation
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of the wind farm in the this market. Another critical issue is
that in the coordinated operation, the CSPP’s DA energy offers
are reduced compared to the disjoint configuration. This matter
follows from the fact that in the joint configuration, the CSPP
devotes a more portion of its generating capacity for selling
energy in the intraday market, as shown in Fig. 11. Therefore,
the coordinated operation leads to higher levels of CSPP’s
intraday energy offers for almost all periods in comparison
with the uncoordinated one, except early hours in which the
CSPP is offline for both configurations.

A Comparison between the intraday strategy of the wind
farm in both configurations allows us to deduce that wind farm
in Case 2 concentrates more on purchasing energy rather than
selling it. This approach helps the HPP to manage its deviation
in the balancing market more efficiently. Moreover, according
to Fig. 11, the CAES unit participation in the intraday market
is reduced from three hours to one hour by shifting from a
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disjoint configuration to the joint one. Lastly, the total expected
DRP’s participation in the DA and intraday markets for Case
1 and Case 2 are illustrated in Fig. 12. According to Fig. 12,
the total expected DA involvement of the DRP in the joint
configuration is greater than the disjoint one, while with the
intraday market, the opposite is the case. The reason lies in the
fact that, by moving from Case 1 towards Case 2, the DRP
reduces a portion of its intraday energy offers and devotes
this portion to its participation in the DA market, hoping to
let other HPP’s elements to have greater involvement in the
intraday market, as expressed in equation (36).

D. Impact of different configurations on the imbalance cost
The final investigation of this paper dedicates to the influ-

ence of the joint configuration on the imbalance cost. The com-
parison of the system’s imbalance cost in two cases, including
the risk-neutral state and an attitude with the highest degree
of risk-aversion, has been depicted in Fig. 13. A comparison
between the obtained results allows concluding that for both
risk-free and conservatism approaches, the imbalance cost of
the coordinated operation is greater. The principal reason is
that the HPP tends to have more energy deviations in the
balancing market in the hope of gaining a greater profit.

VI. Conclusion
This paper proposed a novel optimal behavior for an HPP

containing a CSPP, a CAES facility, a wind farm, and a DRP in
DA and intraday markets. The optimal behavior was organized
and formulated as a bi-objective optimization problem based
on the joint configuration of all existing resources, whereas
the ε-constraint and lexicographic methods were exploited to
find the Pareto solutions. The proposed optimal behavior in
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DA and intraday markets was tested in two case studies. The
key conclusions could be drawn as: 1) The joint exploita-
tion of ε-constraint and lexicographic methods enhanced the
performance of the CVaR-based optimal offering and bidding
strategy problems in terms of obtaining equally spaced Pareto
points in comparison with the conventionally used method,
i.e., weighted-sum. Furthermore, compared to the weighted-
sum approach, the proposed methodology was capable of
deriving better solutions for the risk-neutral state as well as
the case with the highest degree of risk-aversion. 2) The joint
configuration brought substantial improvements in terms of
both expected profit and CVaR compared to the disjoint one.
3) Incorporating the intraday offering into the conventional
DA trading models not only raised the CSPP’s profit but also
reduced its related risk. 4) The joint configuration allowed
all of HPP’s elements to act more freely in DA and intraday
markets, especially the CSPP and wind farm. Concretely, by
moving from a disjoint configuration towards the joint one,
the CSPP’s intraday energy offers were increased, while its
DA energy offers were diminished. In contrast, the wind farm
concentrated more on purchasing energy from the intraday
market, whereas increasing its offering packages in the DA
market. 5) The joint configuration imposed a greater imbalance
cost to the system compared to the disjoint one. Meanwhile,
adopting suitable conservative strategies could be effectively
employed to diminish the imbalance cost.

The authors’ future research endeavor will concentrate on:
1) incorporating the offering and bidding strategy of the
proposed HPP in the balancing market, whereas it acts in the
role of a price-maker agent in this market; and 2) addressing
the correlation among various uncertainty sources considered
in this paper.
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