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Abstract: Urosepsis is a potentially life-threatening, systemic reaction to uropathogenic bacteria
entering the bloodstream of the host. One of the hallmarks of sepsis is early thrombocyte activation with
a following fall in circulating thrombocytes as a result of intravascular aggregation and sequestering
of thrombocytes in the major organs. Development of a thrombocytopenic state is associated with
a poorer outcome of sepsis. Uropathogenic Escherichia coli frequently produce the pore-forming,
virulence factor α-haemolysin (HlyA), of which the biological effects are mediated by ATP release and
subsequent activation of P2 receptors. Thus, we speculated that inhibition of thrombocyte P2Y1 and
P2Y12 receptors might ameliorate the septic response to HlyA-producing E. coli. The study combined
in vitro measurements of toxin-induced thrombocyte activation assessed as increased membrane
abundance of P-selectin, fibronectin and CD63 and data from in vivo murine model of sepsis-induced
by HlyA-producing E. coli under infusion of P2Y1 and P2Y12 antagonists. Our data show that the
P2Y1 receptor antagonist almost abolishes thrombocyte activation by pore-forming bacterial toxins.
Inhibition of P2Y1, by constant infusion of MRS2500, markedly increased the survival in mice with
induced sepsis. Moreover, MRS2500 partially prevented the sepsis-induced depletion of circulating
thrombocytes and dampened the sepsis-associated increase in proinflammatory cytokines. In contrast,
P2Y12 receptor inhibition had only a marginal effect in vivo and in vitro. Taken together, inhibition of
the P2Y1 receptor gives a subtle dampening of the thrombocyte activation and the cytokine response
to bacteraemia, which may explain the improved survival observed by P2Y1 receptor antagonists.
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1. Introduction

Sepsis is a life-threatening condition with an overwhelming immune response to infection.
Unfortunately, the number of patient admissions under the diagnosis sepsis is markedly increasing [1],
frequently with the urinary tract as the primary infection site [2,3]. Urinary tract infections are regularly
caused by Escherichia coli (for review, see [4]) in both the primary and secondary health sector. The E. coli
that causes severe infections, such as pyelonephritis, are known to vary serotypically from E. coli in the
intestinal microbiome [5–7] and produce a variety of virulence factors [5–9]. Of those, α-haemolysin
(HlyA) is the most frequent in clinical isolates [10] and is thus, associated with the ability to create
and sustain severe infection. Our previous data support that HlyA is largely responsible for the
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septic symptoms observed in response to bacteraemia with uropathogenic E. coli [11]. Interestingly,
the biological effects of HlyA are intimately associated with extracellular adenosine triphosphate
(ATP) signalling [12–16]. This is a consequence of ATP being released in a non-lytic fashion directly
through the pore created by HlyA [17] and subsequent activation of P2 receptors [12–16,18]. Since ATP
is a renowned damage-associated molecular pattern (DAMP) molecule [19], it is thus an aggressive
activator of immune cells and a prime candidate for promoting the cytokine rush during septic shock.
In this context, it is interesting that the phenomenon of ATP-mediated amplification of virulence is not
unique for HlyA, but is a feature for several other bacterial pore-forming toxins [20–24] and membrane
attack complex from the complement system [25]. This essentially implies that P2 receptor signalling
is likely to be a more general issue in sepsis.

Sepsis and septic shock are associated with a very early reduction in circulating thrombocytes,
and thrombocytopenia is generally associated with a poorer outcome in sepsis [26,27]. This does not
immediately imply that a low level of circulating thrombocytes, per se, is responsible for the poorer
outcome of sepsis. However, the sepsis-induced reduction in circulating thrombocytes reflects both
organ accumulation but is also a consequence of microthrombus formation [28]. This obstruction of
the microcirculation is responsible for the reduced tissue oxygenation and multiorgan failure seen
during severe sepsis (for overview, see [29]). The drop in circulating thrombocytes is easily confirmed
in our sepsis model, a process markedly accelerated by the presence of HlyA [11]. Thus, it is tempting
to speculate that HlyA-induced ATP release and subsequent intravascular degradation to adenosine
diphosphate (ADP) would contribute to escalate the thrombocyte activation and thereby increase the
mortality in E. coli-induced sepsis.

Thrombocytes express three P2 receptor subtypes: P2X1, P2Y1 and P2Y12 (for review, see [30]).
ATP is an agonist for both the P2X1 and P2Y1 receptors [31,32], whereas P2Y12 and P2Y1 receptors are
responsible for the renowned ADP-mediated thrombocyte activation [33–35]. Thus, it would be logical
to target either of the thrombocyte P2 receptors to prevent sepsis-induced thrombocyte activation.
Interestingly, mice lacking the P2X1 receptor are protected against the sepsis-induced cytokine rush [36].
However, specific inhibition of P2X1 receptors causes an acute reduction of circulating thrombocytes
in itself and, thus, subsequently decreases the overall survival of urosepsis [37]. Therefore, the P2X1

receptor is not immediately a promising target to reduce thrombocyte activation during sepsis. Here,
we hypothesise that interference with either P2Y1 or P2Y12 may dampen the thrombocyte activation
and improve the survival in a murine model of urosepsis.

The data demonstrate that thrombocyte activation in vitro with pore-forming toxins requires P2
receptor activation and is essentially abolished by inhibition of P2Y1, whereas inhibition of P2Y12

only moderately reduced the thrombocyte activation. Moreover, constant infusion of a P2Y1 receptor
antagonist in a murine model of urosepsis markedly reduced the overall mortality. This finding is
associated with a less pronounced reduction in circulating thrombocytes in response to sepsis and a
reduced proinflammatory response to a given load of circulating E. coli. Interestingly, infusion of a
P2Y12 receptor antagonist, cangrelor, showed a tendency towards improving survival, even though
this was not statistically significant. Similar to inhibiting the P2X1 receptor [37], cangrelor reduced
the plasma levels of proinflammatory cytokines. Thus, we can conclude that inhibition of P2Y1

receptors improves the survival of sepsis induced by HlyA-producing E. coli possibly by dampening
the thrombocyte and cytokine response.

2. Results

Pore-forming bacterial toxins are intimately associated with release of intracellular ATP to the
extracellular compartment. The biological action of ATP is associated with P2X or P2Y receptor
activation on various cell types, such as erythrocytes, monocytes and renal epithelial cells [12,13,16,20,22].
The pore-forming bacterial toxin, α-toxin from S. aureus has previously been shown to be able to initiate
thrombocyte aggregation [38]. Therefore, we tested whether thrombocyte P2Y1 and P2Y12 receptors are
involved in the thrombocyte activation triggered by bacterial pore-formers. To test this, thrombocyte
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activation was measured by flow cytometry as a combined increase in fibronectin, CD63 and P-selectin
positive thrombocytes as previously described [39]. Figure 1A shows the level of P-selectin expression
on thrombocytes in healthy volunteers in relation to the maximal thrombocyte activation achieved with
140 µM ADP or 371 µM thrombocyte activating peptide (TRAP) as positive controls. With this technique,
we could easily verify that α-toxin from Staphylococcus aureus markedly activated human thrombocytes
both in whole blood (Figure 1A) and in platelet enriched plasma (data not shown). Our data demonstrate
that thrombocyte activation was not exclusive to α-toxin but could be recapitulated with leukotoxin A
(LtxA) from Aggregatibacter actinomycetemcomitans, which similarly to HlyA belongs to the repeat-in-toxin
(RTX) family of bacterial pore-formers (Figure 1A). In high concentrations, both toxins activated the
thrombocytes to a level similar to the positive controls (data not shown). However, the concentration of
pore-forming toxins was adjusted to gain approximately 25% thrombocyte activation to allow detection
of both inhibitory and potentiating effects (Figure 1A). The in vitro studies could unfortunately not
be performed by HlyA itself. HlyA requires Ca2+ to insert into biological membranes, and, because
addition of Ca2+ alone caused a sizable and very variable thrombocyte activation, it was not possible to
quantitate the HlyA response in a reliable manner. However, our previous studies have demonstrated
that, in terms of ATP-dependent amplification of the biological effect of HlyA, α-toxin and LtxA are
quite similar [12,17,18,20,22]. Figure 1B verifies that ADP-dependent thrombocyte activation indeed is
inhibited by selective antagonists towards the two thrombocyte P2Y receptors, P2Y1 (MRS2500) and P2Y12

(PSB0739), used in the study.
Consistent with our previous studies on erythrocytes, the biological effects ofα-toxin and LtxA was

markedly inhibited by P2 receptor inhibition on thrombocytes [20,22]. Figure 1C shows that MRS2500
(9 µM) reduced the thrombocyte activation induced by LtxA considerably (around 80%) regardless of
whether the readout was fibronectin, CD63 or P-selectin. PSB0739 (18 µM) showed the same tendency,
with ~60% inhibition of the LtxA-induced thrombocyte activation, but the results were not statistically
significantly different from samples exposed to LtxA alone (Figure 1C). Combining the antagonists only
had a marginally additional effect to MRS2500 alone. Similar results were found with α-toxin, only here
the effect of PSB0739 was even less pronounced (~55% inhibition, Figure 1D). Thus, we can confirm
that the biological effect on thrombocytes of two pore-forming toxins largely is caused by secondary
purinergic signalling. Since the data were obtained from whole blood samples, it is reasonable to
assume that the ADP activating the thrombocytes originated from ATP released from erythrocytes in
response to the pore-forming toxins [20,22]. Therefore, we tested whether the toxins could activate
the thrombocytes directly and whether this effect was P2Y receptor-dependent. In platelet enriched
plasma (PRP), the pore-forming toxins α-toxin and LtxA still activated the thrombocytes. Similar to
what was shown in whole blood, the P2Y receptor antagonists still lowered the thrombocyte activation
in response to the pore-forming toxins (20–40% reduction, Figure 1E). However, the overall effect was
less pronounced compared to whole blood samples. This potentially suggests that the effect of pore
formation was less amplified by ATP release and subsequent P2 receptor activation when thrombocytes
are not surrounded by other blood cells. This supports the notion that thrombocyte activation by the
pore-forming toxins in whole blood is likely to be amplified by ATP released from erythrocytes or
other of the formed blood components.
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Figure 1. The effect of P2Y receptor blockade on the thrombocyte activation induced by pore-forming
toxins in vitro. Thrombocyte activation is measured as the P-selectin, fibronectin and CD63 positive cells
as a percentage of the total number of thrombocytes. (A) The pore-forming toxin α-toxin (n = 7) and
leukotoxin A (LtxA, 30 µg mL−1, n = 7) readily activates thrombocytes here shown as the relative number of
P-selectin positive thrombocytes. Activation of thrombocytes with adenosine diphosphate (ADP, 140 µM,
n = 14) and thrombocyte activating peptide (TRAP, 371 µM, n = 14) was used as positive controls and a
HEPES-buffered solution was used as negative control (Cont). The addition of pore-forming toxin was
adjusted to give a thrombocyte activation of approximately 25%. (B) The effect of P2Y1 and P2Y12 receptor
inhibition on the ADP-induced thrombocyte activation. MRS2500 (MRS) was used in a concentration of
9 µM and PSB0739 (PSB) 18 µM. (C) The effect of MRS2500 9 µM (n = 7) and PSB0739 18 µM (n = 7) on
the thrombocyte activation induced by LtxA in whole blood measured as fibronectin, CD63 and P-selectin
positive thrombocytes. For the combined effect of MRS2500 and PSB0739 n = 7. (D) The effect of MRS2500
9 µM (n = 7) and PSB0739 18 µM (n = 7) on α-toxin-induced thrombocyte activation in whole blood. For the
combined effect of MRS2500 and PSB0739(n = 7). (E) The effect of MRS2500 9 µM (n = 8) and PSB0739
18 µM (n = 8) on LtxA-induced or α-toxin-induced thrombocyte activation in platelet enriched plasma (PRP).
For the combined effect of MRS2500 and PSB0739 n = 8. All data are given as single observations and mean
± S.E.M.* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

The question is whether this finding has any bearing in vivo. To test this, we used a murine sepsis
model with direct injection into the tail vein of E. coli producing the pore-forming toxin α-haemolysin
(HlyA) [11,36]. Our previous studies have demonstrated that HlyA secreted from uropathogenic E. coli
constitute a marked virulence factor solely responsible for the septic response during bacteraemia [11].
We demonstrated that the mice only developed septic symptoms when the HlyA operon was expressed
in an E. coli strain (K12) without any other important virulence factors. Figure 2A shows that constant
infusion with the P2Y1 receptor antagonist MRS2500 (25.9 µg/h) compared to saline infusion increased
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the survival of mice exposed to the exact same HlyA-producing E. coli strain (p = 0.048). We confirm
that the induction of sepsis is associated with a substantial drop in circulating thrombocytes (Figure 2B).
In this controlled sepsis model, the reduction in circulating thrombocytes is likely to reflect the degree
of intravascular thrombocyte activation [40,41]. Interestingly, the mice infused with MRS2500 did not
exhibit the reduction in thrombocytes typically observed in response to sepsis with uropathogenic
E. coli in this mouse model (Figure 2B) [11,36]. In mice exposed to saline infusion, the number of
thrombocytes drops to 56% after 2.5-h exposure to 30 × 106 E. coli (p = 0.005). However, in mice infused
with MRS2500, this reduction was no longer statistically significant (22% reduction after 2.5 h, p = 0.600,
Figure 2B). Of note, the mice infused with MRS2500 developed haemoglobinuria earlier (after 168 min)
than mice exposed to saline infusion (after 253 min, p = 0.070, Figure 2C) despite having the same
degree of intravascular haemolysis (p = 0.340, Figure 2D) and activation of intravascular coagulation
(Figure 2E). Thus, P2Y1 receptor inhibition seemingly ameliorates some of the septic symptoms in mice
directly without affecting the severity of the infection.

Figure 2. P2Y1 receptor antagonist MRS2500 (MRS) increase survival of mice exposed to sepsis with E. coli.
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(A) Mice with bacteraemia receiving continuous infusion of either saline (n = 6) or the P2Y1 receptor
antagonist MRS2500 (25.9 µg/h, n = 7) for up to 6 h. The mice subjected to bacteraemia received
30 × 106 E. coli (WAM1824) iv. Data are shown as Kaplan–Meyer plot, * indicates p < 0.05. (B) The
relative number of thrombocytes 2.5 h after injection of 30 × 106 E. coli iv (saline n = 7, E. coli + saline
n = 8, saline + MRS2500 (25.9 µg/h) n = 7, E. coli + MRS2500 (25.9 µg/h) n = 8). (C) Development of
haemoglobinuria in mice exposed to 30 × 106 E. coli for up to 6 h infused with either saline (n = 6)
or the P2Y1 receptor antagonist MRS2500 (25.9 µg/h, n = 7). (D) Degree of intravascular haemolysis
after exposure to 30 × 106 E. coli for 2.5 h (All groups n = 10). (E) The intravascular formation of
thrombin–antithrombin complexes (saline n = 5, E. coli + saline n = 10, saline + MRS2500 (25.9 µg/h)
n = 7, E. coli + MRS2500 (25.9 µg/h) n = 10). The data are given as single observations and mean ±
S.E.M, * p < 0.05 and ** p < 0.01.

We speculated that lower mortality in mice exposed to MRS2500 might result from a dampening of
the proinflammatory cytokine response since high levels of proinflammatory cytokines are associated
with a negative outcome of sepsis [42]. However, to our surprise, MRS2500 only had a minor effect
on the cytokine response to infection with HlyA-producing E. coli per se. Figure 3 demonstrates
the well-documented increase in plasma levels of the proinflammatory cytokines tumour necrosis
factor factor α (TNF-α), interleukin-1β (IL-1β), IL-6 and the mouse ligand for the IL-8 receptor,
keratinocyte chemoattractant (KC) in response to iv-injection of the HlyA-producing E. coli [11,36].
The response was seemingly similar in mice exposed to MRS2500 and saline infusion, except for KC
where the plasma-levels were statistically significantly higher in mice infused with MRS2500 (Figure 3B,
p = 0.0005). However, when the cytokine response was evaluated relative to the measured intravascular
bacterial load, the proinflammatory cytokines tended to be lower at a given stage of infection in mice
exposed to MRS2500 compared to mice exposed to saline (Figure 4B–E). This was the case for all the
proinflammatory cytokines (IL-6, p = 0.0002; IL-1β, p = 0.005; TNF-α, p = 0.033) except KC (p = 0.472).

Figure 3. P2Y1 receptor antagonist MRS2500 (MRS) increase the proinflammatory cytokine keratinocyte
chemoattractant in mice exposed to sepsis with E. coli. The level of the following proinflammatory cytokines
were measured in plasma from mice exposed to saline or MRS2500 infusion (25.9 µg/h) in the absence or
presence of 30 × 106 E. coli iv: (A) TNF-α; (B) keratinocyte chemoattractant (KC); (C) IL-1β; and (D) IL-6.
The data are given as single observations and mean ± S.E.M (saline n = 7, E. coli + saline n = 20, Saline +

MRS2500 n = 7, E. coli + MRS2500 (25.9 µg/h) n = 10), ** p < 0.01.
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Figure 4. The cytokine response relative to the degree of infection inflicted by injection of
HlyA-producing E. coli in the absence or presence of infusion of P2Y1 receptor antagonist. (A) The
number of colony forming units (CFU) from streaking out 5 µL whole blood (diluted as described
in methods) of mice infused with either control solution or MRS2500 (25.9 µg/h) in the presence or
absence of sepsis with HlyA-producing E. coli. (B–E) The cytokine [(B) IL-6; (C) IL-1β; (D) TNF-α; and
(E) KC] response relative to the infection status represented by the number of colony-forming units.
The data are given as single observations and mean ± S.E.M (saline n = 7, E. coli + saline n = 20, saline +

MRS2500 n = 7, E. coli + MRS2500 (25.9 µg/h) n = 10), * p < 0.05, ** p < 0.01, *** p < 0.001.

Notably, the improved survival of mice infused with MRS2500 did not result from a more effective
clearance of bacteria from the blood. MRS2500 infusion actually resulted in a statistically significantly
higher number of circulating bacteria in the blood after 2.5 h compared to mice exposed to saline
infusion (Figure 4A, p = 0.03). Thus, constant infusion of the P2Y1 receptor antagonist increases the
survival of mice with acute urosepsis despite a slightly higher level of circulating bacteria.

In a clinical context, the P2Y12 receptor is a more established target for pharmacologic inhibition
of thrombocyte activation. However, our in vitro data show a larger effect of P2Y1 receptor inhibition
on thrombocyte activation compared to a P2Y12 receptor antagonist after exposure to pore-forming
bacterial toxins. To investigate whether this pattern was also reflected in the in vivo data, we infused
the P2Y12 receptor antagonist, cangrelor, in mice exposed to HlyA-producing E. coli. Figure 5A shows
that cangrelor at an infusion rate of 8.6 µg/h (low dose) had a tendency towards improved survival,
although it did not reach statistical significance (p = 0.070). Therefore, we increased the infusion rate to
86.6 µg/h, which counteracted the potential slight beneficial effect seen at the lower dose (Figure 5A).
Similarly, cangrelor at 8.6 µg/h was not able to prevent the bacteria-induced reduction in circulating
thrombocytes (~50% reduction in both groups, Figure 5B), and there was no observable difference in
either the intravascular haemolysis (p = 0.800, Figure 5D) or the onset of haemoglobinuria (142 min
(saline) and 93 min (cangrelor), p = 0.700, Figure 5C). Neither did we detect any difference in the
bacteria-induced activation of intravascular coagulation measured as formed thrombin–antithrombin
(TAT) complexes in the absence or presence of cangrelor (8.6 µg/h, Figure 5E). However, the trend
that inhibiting thrombocyte P2 receptors diminished the proinflammatory cytokine response was also
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observed when infusing cangrelor. Figure 6 shows that the plasma levels of KC were significantly
lower (Figure 6B, p = 0.017) in septic mice infused with cangrelor (8.6 µg/h) compared to those infused
with saline. The same pattern was seemingly true for IL-1β (Figure 6C, p = 0.065) and IL-6 (Figure 6D,
p = 0.066), where the cangrelor infused plasma levels were on the rim of being statistically significantly
lower than the saline controls. In contrast to P2Y1-antagonist infusion, we did not find the number of
circulating bacteria after 2.5 h to be different with or without cangrelor (p = 0.2, Figure 7A). When the
proinflammatory cytokines were expressed relative to the number of circulating bacteria, the cytokine
levels were no longer statistically significantly different between the two groups (Figure 7B–E). These
data suggest that inhibition of P2Y12 receptors, at best, gives a marginal effect on the outcome of sepsis.

Figure 5. The effect of P2Y12 receptor antagonist cangrelor (can) in mice with sepsis. (A) Mice with
bacteraemia receiving continuous infusion of either saline (n = 13) or cangrelor (8.6 µg/h, n = 10 or 86.0 µg/h,
n = 9) for up to 6 h. The mice subjected to bacteraemia received 30 x 106 E. coli (WAM1824) iv. Data are
shown as Kaplan–Meyer plot. (B) The relative number of thrombocytes 2.5 h after injection of 30 × 106

E. coli iv (saline n = 7, E. coli + saline n = 10, saline + cangrelor (8.6 µg/h) n = 7, E. coli + cangrelor (8.6 µg/h)
n = 10) (C) development of haematuria in mice exposed to 30 × 106 E. coli for up to 6 h and infused with
either saline (n = 13) or the P2Y12 receptor antagonist cangrelor (8.6 µg/h, n = 10) for op to 6 h. (D) Degree
of intravascular haemolysis after exposure to 30 × 106 E. coli for 2.5 h (saline n = 7, E. coli + saline n = 10,
saline + cangrelor (8.6 µg/h) n = 7, E. coli + cangrelor (8.6 µg/h) n = 10). (E) The intravascular formation
of thrombin–antithrombin complexes (saline n = 7, E. coli + saline n = 10, saline + cangrelor (8.6 µg/h)
n = 7, E. coli + cangrelor (8.6 µg/h) n = 10). The data are given as single observations and mean ± S.E.M,
**** p < 0.0001.
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Figure 6. P2Y12 receptor antagonist cangrelor (can) does significantly reduce keratinocyte chemoattractant
(KC) in mice exposed to E. coli iv. The level of the following proinflammatory cytokines were measured in
plasma from mice exposed to saline or cangrelor infusion (8.6 µg/h) in the absence or presence of 30 × 106

E. coli iv: (A) TNF-α; (B) KC; (C) IL-1β; and (D) IL-6. The data are given as single observations and mean
± S.E.M (saline n = 7, E. coli + saline n = 20, saline + cangrelor n = 7, E. coli + cangrelor (8.6 µg/h) n = 10),
* p < 0.05.

Figure 7. The cytokine-response relative to the degree of infection inflicted by injection of HlyA-producing
E. coli in the absence or presence of infusion of P2Y12 receptor antagonist. (A) The number of colony forming
units (CFU) from streaking out 5 µL whole blood of mice infused with control solution or cangrelor (8.6 µg/h)
either after exposure to HlyA-producing E. coli or saline solution. (B–E) The cytokine [(B) IL-6; (C) IL-1β; (D)
TNF-α; and (E) KC] response relative to the infection status represented by the number of CFU. The data are
given as single observations and mean ± S.E.M (saline n = 7, E. coli + saline n = 20, saline + cangrelor n = 7,
E. coli + cangrelor (8.6 µg/h) n = 10.
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These data could suggest that there might be an additional beneficial effect by combining P2Y1 and
P2Y12 receptor inhibition during the induced sepsis. Thus, we tested whether combined infusion of
MRS2500 (25.9 µg/h) and cangrelor (8.6 µg/h) would give a more advantageous outcome. Unfortunately,
this combination proved to be quite the opposite. The animals infused with the combination died
very quickly (within an hour) with extreme bleeding tendency and a marked potentiation of the septic
symptoms (data not shown).

3. Discussion

Sepsis constitutes the host reaction to a circulating infectious agent that potentially leads to
life-threatening overstimulation of the immune system and a concomitant hypercoagulable state with
a massive micro-thrombus formation and subsequent reduction of the microcirculation. Urinary tract
infections are frequently the primary infection-site in patients with sepsis [3], and, thus, E. coli are found
in around 30–40% of blood cultures from patients with suspected sepsis [43]. The E. coli that cause
severe infection regularly produce a variety of virulence factors, of which HlyA is constantly found in
clinical isolates [10]. As a virulence factor, HlyA is known to increase the risk of developing sepsis in
response to a peripheral infection [44–47]. We were, however, surprised to find that this effect not only
increased the invasion of bacteria to the bloodstream from peripheral infectious sites but also markedly
accelerated all the septic symptoms once the bacteria was present in the blood [11]. We tested this by
means of a non-HlyA-expressing E. coli strain K12, transfected with a plasmid coding for the entire
hlya operon or with the same plasmid with loss of function deletion (201–2173 bp) in hlya [11]. Mice
exposed to the HlyA-producing strain died early with massively increased proinflammatory cytokines,
intravascular haemolysis, haemoglobinuria, thrombocytopenia and intravascular coagulation, whereas
the mice exposed to an equal number of non-HlyA-producing K12 survived the full observation period
with little or no changes in the sepsis parameters [11]. Since the biological effect of HlyA to a high
extend is secondary to ATP release and P2 receptor activation [12,14,16,17], we were interested in whether
interfering with thrombocyte activation would improve the outcome of sepsis with HlyA-producing
E. coli.

The included in vitro data show that thrombocyte activation by pore-forming bacterial toxins
requires P2Y receptor activation, with P2Y1 as the predominant receptor mediating the activation.
Pore-forming bacterial toxins have previously been shown to activate thrombocytes [48], and, with
our previous data regarding the concomitant non-lytic ATP release, it is not exceedingly surprising.
Nevertheless, these data, first of all, underscore that the biological effect of pore-forming toxins takes
the flavour of the P2 receptor expression of the given target cell or tissue. Moreover, the data suggest
that the erythrocytes are the main source of ATP in response to bacterial toxins because the thrombocyte
activation by the toxins was much more efficient in whole blood compared to platelet enriched plasma.
HlyA can, in principle, insert into any biological membrane, and, thus, any blood cell could be the
source of ATP. However, the insertion of HlyA is a stochastic event, and therefore, by chance, HlyA
is more likely to encounter an erythrocyte. Interestingly, the data also suggest that P2Y1 receptor
inhibition was more efficient in preventing thrombocyte activation. One explanation could be the
difference in the preferred agonist profile of the two receptors. Where ADP is the prime agonist
for the P2Y12 receptor, both ATP and ADP work as agonists for the P2Y1 receptor [31,32]. Since an
ADP-dependent P2 receptor activation in the case of bacterial toxins would be secondary to degradation
of ATP, it is likely that a receptor directly activated by the released ATP would take precedence in the
following response.

Interestingly, in our sepsis model, continuous infusion of a P2Y1 receptor antagonist markedly
increased the survival of the mice. Our model is proven to be exceedingly reliable for monitoring
the development of septic symptoms in response to bacteraemia. Urosepsis is not easily modelled
since mice do not readily develop sepsis after installation of bacteria in the urinary bladder. Therefore,
our group has established a model that mimics a fast-developing urosepsis, as it may be seen after
instrumentation of the urinary tract [11,36], to examine the effect of P2 receptors upon HlyA-induced
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ATP release for the septic response. P2 receptor activation has a substantial impact on the course
of sepsis, and generally, for all P2 receptors tested so far, lack of or inhibition accelerates the septic
symptoms and increase the mortality [36,37]. Thus, P2Y1 receptor inhibition is the first to show an
increased survival of E. coli-induced sepsis, and, therefore, the effect of MRS2500 on survival is likely to
result exclusively from P2Y1 receptor inhibition. However, we cannot know which cell type is explicitly
responsible for the positive effect on survival. We know that MRS2500 does not affect the HlyA
induced haemolysis [12], and, thus, the effect of MRS2500 is not an indirect effect on the erythrocytes.
However, P2Y1 receptors are expressed on various cells in the vascular compartment [49], and, thus,
the increased survival could, in principle, result from effects on the endothelial cells or other immune
cells. The expression profile for P2Y12 is (for review, see [50]), however, much more restrictive and is
primarily confined to the thrombocytes. Therefore, it is interesting to observe that cangrelor tendentially
improve the survival of sepsis even though this is not statistically significant. This indirectly supports
that the effect of MRS2500 on survival may be mediated through interference with thrombocyte
activation. Notably, at higher doses of cangrelor, this marginal effect is lost, which likely reflects
off-target effects on other P2 receptors. In terms of the disappointing effect of cangrelor on the survival,
our data here support previous studies on intravascular coagulation activated by lipopolysaccharide
(LPS) in humans [51]. This study is a randomised, double-blinded, placebo-controlled study, which
could not find any effect of P2Y12 receptor inhibition on LPS-induced intravascular coagulation.

The substantiated protocol to precisely detect human thrombocyte activation is not immediately
adaptable to mice. However, if one allows the notion that the acute E. coli-induced reduction in
circulating thrombocytes may partially reflect intravascular thrombocyte activation, the in vivo data
do support that P2Y1 receptor antagonist has an effect on the thrombocytes during bacteraemia. Thus,
our data confirm that intravenous injection of E. coli produces an early and substantial decrease in the
thrombocyte count [11,36]. However, in the presence of the P2Y1 receptor antagonist, this response is
much more variable and no longer statistically significant. This is consistent with the P2Y1 receptor
not being the only thrombocyte receptor activated by HlyA and subsequent ATP release. However,
the data do underscore thrombocytes as one of the critical targets for a P2Y1 receptor antagonist in
the bloodstream.

Notably, the reduced thrombocyte response to P2Y1 is not mirrored by a reduction in intravascular
coagulation, which could potentially indicate that the decrease in thrombocyte numbers may not only
be an effect of intravascular coagulation and microthrombus formation. Notably, injection of LPS is in
itself sufficient to reduce the number of circulating thrombocytes, similar to what is observed during
sepsis [52]. Interestingly, this LPS-induced reduction in circulating thrombocytes is also prevented by a
P2Y1 receptor antagonist, whereas this is not the case for either P2X1 or P2Y12 receptor antagonists [52].
The authors find that the drop in circulating thrombocytes after LPS-exposure primarily results from
thrombocyte translocation to the periphery tissues like the lung [52]. However, it must be noted
that, in our model of urosepsis, the reduction in thrombocytes is not induced by LPS because the
K12 strain with a deletion in hlya did not affect the number of circulating thrombocytes [11]. As
mentioned, HlyA is known to trigger non-lytic ATP release from cells directly through the formed
pore [17] and thus provides a direct link to the P2Y1 receptor activation. In the case of LPS, the link
to P2Y receptor activation is not that straightforward but presumably involves Toll-Like Receptor
4 (TLR-4)-activation [53] and subsequent thrombolytic release of dense granules and thus ADP.
Regardless, there is substantial evidence for P2Y1 receptor activation being central for the reduction in
circulating thrombocytes as observed during sepsis. It has previously been speculated that combined
inhibition of P2Y12 and P2Y1 receptor may show a benefit in some clinical situations compared to
inhibition of either of the receptors alone [54]. We did, however, test the combined effect of inhibition
of both receptor subtypes and found that the combination had a detrimental effect and accelerated the
time of death upon intravenous exposure to uropathogenic E. coli.

Remarkably, inhibition of thrombocyte P2 receptors during sepsis seems to slightly dampen the
cytokine response induced by the bacteria and their virulence factors. In the case of P2Y1, this was
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first obvious when the level of proinflammatory cytokines was evaluated relative to the number of
circulating bacteria. This is a relevant measure because HlyA has been shown to markedly accelerate
the cytokine production in this sepsis model [11] and because HlyA is only produced by live bacteria.
In the case of P2Y12, the pattern was similar, with a less aggressive rise in the proinflammatory cytokines
during sepsis. This is potentially important because mice lacking the P2X1 receptor, also show a
very dampened cytokine response compared to control [37]. These findings support the notion that
thrombocytes participate in the early immunological response to agents in the circulation [55]. This has
been suggested to result from thrombocytes participating in the recruitment of neutrophils [56] and in
the activation of neutrophils to release neutrophil extracellular traps (NETs) [57]. In Gram-negative
sepsis with E. coli, NETs are induced by activation of TLR-4 on thrombocytes, that subsequently
activates neutrophils via CD11a [58]. Generation of NETs is beneficial during sepsis because it can
capture bacteria in the bloodstream, and thereby reduce the number of circulating bacteria [59]. This
may potentially explain why we can detect a marginally, but statistically significant, increase in the
number of circulating bacteria during infusion with MRS2500.

However, the dampening of the cytokine response may very well be closely associated with the
increased survival observed after infusion with P2Y1 receptor antagonist. The exceedingly high plasma
levels of proinflammatory cytokines have previously been termed the cytokine storm and are known
as a hallmark of severe sepsis and septic shock [42]. This auto-amplification of the immunological
response is associated with a poorer outcome, but, unfortunately, attempts to dampen the response
have failed in clinical trials [42]. Our sepsis model nicely reproduces elements of the cytokine storm,
with exceedingly high plasma levels of proinflammatory cytokines, and, in our model, we too observed
that high cytokine-levels are associated with poorer outcome [36]. If indeed the proinflammatory
cytokine propels the pathogenesis during septic shock, then P2Y1 receptor inhibition might dampen the
escalation. However, if thrombocytes were an easy early target to dampen the immune response and
improve the survival of sepsis, one would potentially have expected larger responses. The question is
if interference with thrombocyte function will prove to be an effective target in the treatment of sepsis,
particularly because of the detrimental bleeding complications observed when targeting P2Y1 and
P2Y12 in combination. Our safest bet with regard to supportive therapy would be to work on a strong,
selective P2Y1 receptor antagonist. This may well prove to safeguard and keep the thrombocytes in
circulation and simultaneously restrain cytokine auto-amplification induced by the bacteraemia.

4. Materials and Methods

4.1. Animals

Experiments were performed on male Balb/cJ mice from Janvier Labs (Saint-Berthevin, France). All
animals were kept at the Department of Biomedicine, Aarhus University, Denmark, and experiments were
approved by the Danish ethic committee for animal research “Dyreforsøgstilsynet” (2014-15-0201-00316).

4.2. Bacteria

The E. coli strain used for the experiments was kindly provided by Professor Rodney Welch
(University of Wisconsin, Madison, WI, USA). The E. coli strain WAM1824 was constructed in the
K12 background strain (WAM1808) [60]; a strain that does not produce HlyA and without any other
virulence factors. For the HlyA-producing WAM1824 variant, the WAM1808 strain was transfected
with the plasmid pWAM582, which contains the entire HlyA operon and a chloramphenicol resistance
gene for selection.

WAM1824 was grown on blood agar plates supplemented with chloramphenicol (20 µg mL−1)
and kept at 4◦C for up to one month. Before each experiment, an overnight culture was produced by
transferring one colony to 4 mL Lysogeny-Broth (LB)-medium containing chloramphenicol (20µg mL−1)
for selection. This preparation incubated overnight at 37 ◦C and 250 rpm. The overnight culture (3 mL)
was centrifuged at 1162× g for 10 min, followed by a wash in saline (0.9%), and centrifuged 5 min at
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1162× g. The bacterial pellet was re-suspended in sterile saline (0.9%), and bacteria were counted on
flow cytometry (BD Accuri 6, BD Biosciences, Franklin Lake, NJ, USA).

4.3. Induction of Sepsis in Mice

Male Balb/cJ mice (8–10 weeks, 24.6 ± 0.2 g) were anaesthetised by subcutaneous injection of
ketamine (100 mg/kg) and xylazine (10 mg/kg) and placed on a 38◦C heating plate. The mice were
kept under anaesthesia for the duration of the experiment. The amount of anaesthesia was adjusted
to the individual need, monitored by response to stimulation of whiskers and extremities. The mice
were injected through the tail vein with 150 µL of either 30 × 106 E. coli in solution with P2Y receptor
antagonist and chloramphenicol (33 µg) or 30 × 106 E. coli in saline solution with chloramphenicol
(33 µg). Injections were carried out with a needle (27G) attached to a syringe via fine tubing. The mice
received a bolus injection with either the P2Y1 antagonist MRS2500 (0.366 µg/g) or the P2Y12 antagonist
cangrelor (either 0.06 µg/g or 0.6 µg/g) and after that continuous infusion with MRS2500 (25.9 µg/h),
cangrelor (8.6 µg/h or 86.4 µg/h) or sterile saline (66 µL/h) throughout the experiment. For survival data,
the mice were observed for up to 6 h and the onset of haemoglobinuria and time of death noted. For
thrombocyte count, cytokines, TAT-complexes, haemolysis and blood culture, the mice were terminated
after 2.5 h, and a blood sample was drawn from the inferior vena cava with a citrate-containing syringe.

4.4. Bacterial Load in Septic Mice

A fixed volume of 5 µL whole blood was diluted in 45 µL sterile saline and streaked on an
agar plate. The agar plate was incubated overnight, and the number of colony-forming units (CFU)
was counted.

4.5. Thrombocyte Count in Septic Mice

Whole blood (5 µL) was incubated for 15 min with 2 µL CD42d antibody (BD Biosciences, Franklin
Lake, NJ, USA) and 60 µL PBS. Secondary fluorescein isothiocyanate (FITC)-conjugated antibody (2 µL,
BD Bioscience) was added and incubated another 15 min in the dark; 20 µL sample was transferred to
1.5 mL formaldehyde (0.02%), and CD42-d-FITC positive cells (thrombocytes) were counted on flow
cytometer (BD Accuri 6, Franklin Lake, NJ, USA).

4.6. Measurement of Haemolysis

Blood samples were centrifuged immediately after collection for 10 min at 1162× g, and plasma
was diluted 1:8 with saline before measurement of the absorbance at 410 nm on a spectrophotometer
(Ultraspec III, LKB Biochom). The remaining plasma was stored at −20 ◦C for later analysis of cytokines
and TAT complexes.

4.7. Thrombin–Antithrombin (TAT) Complex

TAT was measured in plasma samples using TAT Complexes Mouse Elisa Kit from Abcam
(Cambridge, UK). Measurements were done according to manufactures instructions. Plasma was
stored for up to 6 months at −20 ◦C prior to TAT measurements.

4.8. Measurement of IL-6, IL-1β, TNF-α and KC

Plasma for cytokine measurements was isolated from a blood sample centrifuged for 10 min at
1162× g. Plasma samples were kept at −20 ◦C for up to 6 months for analysis. Levels of IL-6, IL-1β,
TNF-α and keratinocyte chemoattractant (KC, murine equivalent to human IL-8) were measured by
flow cytometry (BD Accuri 6, Franklin Lake, NJ, USA) with a cytometric bead array flex set from BD
Biosciences according to the manufacturer’s instruction.
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4.9. Measurement of In Vitro Activation of Human Thrombocytes

Blood samples were obtained from healthy volunteers with a 21-gauge needle into a 4 mL citrated
tubes (3.2%) after discarding the first 4 mL whole blood extracted. All human donors gave their
written content, and the study was approved by the Danish Scientific Ethics Committee (M201100217).
Platelet-rich plasma was obtained by centrifugation of whole blood at 200× g for 15 min at room
temperature. Samples for both whole blood and PRP analysis were left untouched for one hour
to equilibrate. Activation of thrombocytes was determined by a method previously described by
Rubak et al. [39]. In short, 5 µL of each antibody specific for the various thrombocyte activation
markers CD42b-PE (AH diagnostics, Tilst, Denmark), CD63-PCy7 (BD Bioscience, San Jose, CA, USA),
CD62P-APC (P-selectin, eBioscience, San Diego, CA, USA) and anti-fibrinogen-FITC (Diapensia HB,
Linköping, Sweden) were pooled in tubes with a HEPES buffered salt solution (HBS, 30 µL) along with
5 µL activating solution and/or 5 µL P2Y-receptor antagonist. Five microlitres whole blood or PRP
were added to the antibody pool, and the mixture was incubated for 10 min at room temperature in
the dark. The samples were fixed with 0.02% formaldehyde before analysis on Navios flow cytometry
(Beckman Coulter, Miami, Florida). As thrombocyte activator we used ADP (140 µM, Sigma-Aldrich,
Søborg Denmark), thrombocyte activating peptide (TRAP, 371 µM, JPT Peptide Technologies, Berlin,
Germany), α-toxin from S. aureus (Sigma-Aldrich, Søborg Denmark) and leukotoxin (LtxA) from
A. actinomycetemcomitans (purified as previously described [61]), whereas the thrombocyte P2 receptors
were inhibited by the P2Y1 receptor antagonist MRS2500 (Tocris, Bristol, UK) and/or the P2Y12

receptor antagonist PSB0739 (Tocris, Bristol, UK). The concentration of α-toxin and LtxA added
was adjusted to cause approximately 25% activation of the thrombocytes. Negative controls were
conducted by exchanging the agonist and receptor antagonist with an EDTA-HEPES buffer (6 mM,
Sigma-Aldrich, Søborg, Denmark), whereas a sample with pure HEPES buffer was used as a measure
of thrombocyte pre-activation.

4.10. Statistics

Statistical analyses were performed using GraphPad Prism. The data were tested for normal
distribution by the Kolmogorov–Smirnov test. The in vitro data on thrombocyte activation were
analysed by one-way ANOVA (Kruskal–Wallis with Dunn’s post-test). Survival and studies of
haemoglobinuria were analysed by Kaplan–Meier plots. Normally distributed data from the in vivo
experiments were analysed with unpaired t-test between sepsis groups treated with either saline or
MRS2500/Cangrelor. Data that were not normally distributed were analysed with Mann–Whitney
test. Data from thrombocyte counts and TAT complexes were analysed with two-way ANOVA. All
data are presented as mean ± standard error of the mean, and the data were considered statistically
significantly different when the p-value was less than 0.05.
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