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Antenna Selection for Improving Energy Efficiency

in XL-MIMO Systems
José Carlos Marinello, Taufik Abrão, Abolfazl Amiri, Elisabeth de Carvalho, Petar Popovski

Abstract—We consider the recently proposed extra-large scale
massive multiple-input multiple-output (XL-MIMO) systems,
with some hundreds of antennas serving a smaller number of
users. Since the array length is of the same order as the distance
to the users, the long-term fading coefficients of a given user
vary with the different antennas at the base station (BS). Thus,
the signal transmitted by some antennas might reach the user
with much more power than that transmitted by some others.
From a green perspective, it is not effective to simultaneously
activate hundreds or even thousands of antennas, since the
power-hungry radio frequency (RF) chains of the active antennas
increase significantly the total energy consumption. Besides, a
larger number of selected antennas increases the power required
by linear processing, such as precoding matrix computation, and
short-term channel estimation. In this paper, we propose four
antenna selection (AS) approaches to be deployed in XL-MIMO
systems aiming at maximizing the total energy efficiency (EE).
Besides, employing some simplifying assumptions, we derive
a closed-form analytical expression for the EE of the XL-
MIMO system, and propose a straightforward iterative method
to determine the optimal number of selected antennas able to
maximize it. The proposed AS schemes are based solely on long-
term fading parameters, thus, the selected antennas set remains
valid for a relatively large time/frequency intervals. Comparing
the results, we find that the genetic-algorithm based AS scheme
usually achieves the best EE performance, although our proposed
highest normalized received power AS scheme also achieves very
promising EE performance in a simple and straightforward way.

Index Terms—Extra large-scale MIMO; Antenna selection;
Energy efficiency; Spectral efficiency; Visibility region (VR);
Non-stationary; Near-field.

I. INTRODUCTION

In the fifth-generation (5G) networks, massive multiple-

input multiple-output (MIMO) is identified as a key tech-

nology for achieving large gains in spectral and energy ef-

ficiencies [1], [2]. Recently, a new type of very large antenna

arrays, which can be integrated into large structures like
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stadiums, or shopping malls, has been conceived: the so called

extra-large scale massive MIMO (XL-MIMO) [3]–[5]. XL-

MIMO system is a very promising and recent technology,

pointed out as important candidate for sixth-generation (6G)

and beyond technologies [6], [7], which is still in its inception,

lacking for further elaborated techniques in order to mature

the technology. Indeed, due to the large dimension of the

antenna array in XL-MIMO systems, different kinds of spatial

non-stationarities appear accross the array [3]–[5]; hence,

admitting constant long-term fading coefficients between a

user and all the antennas of the array is not a valid assumption.

This is the main difference between the XL-MIMO scenario

and the typical massive MIMO system model assumed in

most part of massive MIMO literature. In [8], it is shown

through experimental measurements how different regions of

an extremely large array see different propagation paths, and in

some cases, the terminals might see just a portion of the array,

called visibility region (VR). Authors also discuss how the

non-stationarity properties of this new scenario change several

important design aspects.

In [3] authors seek for mapping users in terms of XL-

MIMO array partition, such that the downlink (DL) sum-rate

using a truncated zero-forcing (ZF) precoder is maximized.

Numerical results show that a properly trained network via

deep learning approach solves the problem nearly as well

as an optimal mapping algorithm. Hence, increasing the size

of current massive MIMO arrays is promising in terms of

boosting the spectral efficiency (SE) of the wireless systems.

Since the centralized processing may present very high com-

putational complexity in XL-MIMO arrays, a useful approach

is to split the signal processing between subarrays. A subarray-

based system architecture for XL-MIMO systems is proposed

in [4], where closed-form uplink (UL) SE approximations with

linear receivers are derived; the goal is to maximize the system

sum achievable SE. Two statistical channel state information

(CSI) based greedy user scheduling algorithms are developed,

providing improved performance for XL-MIMO systems.

In [5], a simple non-stationary channel model is proposed

for XL-MIMO systems, and the performance of conjugate

beamforming (CB) and ZF in the DL have been investigated

considering such channel. The non-stationarities are modeled

in a binary fashion, such that each antenna can be visible or

not for a specific user, giving rise to the VRs: an area of the

massive antenna array concentrating the most of the received

user’s energy. However, the authors did not consider long-term

fading variations between the visible antennas of a given user.

In [9] authors develop procedures for XL-MIMO receivers

design. There are two important challenges in designing
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receivers for XL-MIMO systems: increased computational

cost of the multi-antenna processing, and how to deal with

the variations of user energy distribution over the antenna

elements due to the spatial non-stationarities across huge

distributed antenna-elements in the 2D or 3D array. Indeed,

non-stationarities limit the XL-MIMO system performance.

Hence, the authors propose a distributed receiver based on

variational message passing that can address both challenges.

In the proposed receiver structures, the processing is dis-

tributed into local processing units, that can perform most

of the complex processing in parallel, before sharing their

outcome with a central processing unit. Such designs are

specifically tailored to exploit the spatial non-stationarities and

require lower computations than linear ZF or minimum mean

square error (MMSE) receivers.

In [10], the ZF and regularized ZF schemes operating in XL-

MIMO scenarios with a fixed number of subarrays have been

emulated using the randomized Kaczmarz algorithm (rKA),

deploying non-stationary properties through VRs. Numerical

results have shown that, in general, the proposed rKA-based

combiner applicable to XL-MIMO systems can considerably

decrease computational complexity of the signal detector at

the expense of small performance losses. On the other hand,

in [11], an expectation propagation detector for XL-MIMO

systems has been proposed. In order to reduce complexity,

the subarray-based architecture employed distributes baseband

data from disjoint subsets of antennas into parallel processing

procedures coordinated by a central processing unit. Addition-

ally, authors also propose strategies for further reducing the

complexity and overhead of the information exchange between

parallel subarrays and the central processing unit to facilitate

the practical implementation of the proposed detector.

Recently, to deal with subarrays and channel scatterers in

non-stationary XL-MIMO environment, [12] proposed two

channel estimation methods based on subarray-wise and

scatterer-wise near-field non-stationary channel properties. Au-

thors model the multipath channel with the last-hop scatterers

under a spherical wavefront and divide the large aperture

array into multiple subarrays. The proposed channel estima-

tion methods position the scatterers and perform a mapping

between subarrays and scatterers. Hence, the scatterer-wise

method simultaneously positions each scatterer and detects its

VR to further enhance the positioning accuracy. Moreover,

the subarray-wise method can achieve low mean square er-

ror (MSE) performance under low-complexity, whereas the

scatterer-wise method can accurately arrange the scatterers and

determine the non-stationary channel.

In [13], authors propose and validate realistic channel

models when employing physically-large arrays, in which non-

stationarities and visibility regions are present, as in the XL-

MIMO system. The statistical distribution of important chan-

nel parameters are found based on measurements. Such contri-

butions are proposed as extensions to the COST 2100 channel

model. Besides, key statistical properties of the proposed ex-

tensions, e.g., autocorrelation functions, maximum likelihood

estimators, and Cramer-Rao bounds, are derived and analyzed.

Furthermore, the performance of a spatial modulation massive

MIMO system is investigated in [14] under a non-stationary

channel model. Authors show that spatial modulation can

outperform typical employed spatial multiplexing transmission

in certain scenarios of low correlation among sub-channels, for

example under a rich scattering environment.

A novel random access (RA) protocol for crowded XL-

MIMO systems is proposed in [15]. Authors have proposed

a decentralized and uncoordinated decision rule, which can be

evaluated at the users side, for retransmitting or not the RA

pilots during the connection stage, taking advantage of the XL-

MIMO propagation features. The proposed protocol achieves

significant performance improvements in terms of reducing

the connection delay and providing access for larger number

of devices.

A. Motivation, Contributions and Novelties in Comparison

with Existing Works

Current design approaches in telecommunication systems

include a global effort in saving energy and reducing pollution

[2], [16], [17]. We show in this paper that antenna selection

(AS) methods in XL-MIMO systems is a very important

issue since the energy expenditure of such systems could be

very high if activating the radio frequency (RF) chains of

all antennas simultaneously. Besides, some antennas might

contribute very little with the system performance due to the

non-stationarities and visibility regions, in such a way that the

power required to activate their RF chain becomes a burden

that severely penalizes the total energy efficiency (EE) of the

system. Therefore, the very large number of antennas deployed

in the XL-MIMO systems in conjunction with the spatial

non-stationarities make the application of AS schemes very

important.

The main contributions of this work are threefold:

(i) Reformulating the signal to interference plus noise ratio

(SINR) performance expressions of [5], considering long-

term fading variations across the array and incorporat-

ing the maximum transmit power constraint into the

expressions for CB and ZF, and finding more compact

and comprehensive results, readily applicable for antenna

selection procedures.

(ii) Based on the obtained expressions, and on a realistic

power consumption model, we evaluate the total EE

of the XL-MIMO system. Besides, we propose and

compare four low-complexity AS procedures aiming to

maximize the total EE of the system, different than [3],

[4] which proposed SE-based AS schemes. Our proposed

schemes are based solely on the long-term fading param-

eters, and the obtained solutions remain valid for larger

time/frequency intervals.

(iii) Based on our proposed AS schemes, and some simplify-

ing assumptions, we derive approximated closed-form EE

expressions, and propose an iterative method for finding

the optimal number of selected antennas which maxi-

mizes EE. Finally, numerical simulations have validated

the proposed performance expressions and compared the

different XL-MIMO AS schemes.

AS methods for typical spatially stationary massive MIMO

systems [18], [19] is a well investigated topic. However, the
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XL-MIMO system is a different scenario. While the spatially

stationary model applies for typical cellular systems, where the

BS antenna array dimension is much lower than the distance

to the users and a single long-term fading coefficient holds

for all antennas, significant power variations appear along

the XL-MIMO array, due to its large dimension and number

of antennas, and proximity with users. The non-stationary

XL-MIMO scenario just very recently was introduced in the

literature. To the best of our knowledge, this contribution is

the first evaluating the EE of the XL-MIMO scenario, showing

that AS methods are especially important to improve EE due to

the spatial non-stationarities that naturally arise in XL-MIMO

systems, proposing long-term fading based AS procedures, and

deriving the optimal number of active antennas for this new

wireless communication context.

With respect to the existing XL-MIMO literature, we can

point out as the main novelties of our paper: although our

system model and CB and ZF performance expressions are

similar to that of [5], authors have considered a binary

visibility region model for the XL-MIMO scenario, in which

no long-term fading variation occurs for the visible antennas.

Besides, performance expressions are dependent of power co-

efficients obtained resolving a separated optimization problem

for meeting power constraint, and no antenna selection is con-

sidered. Differently, we incorporated the power constraint into

the performance expressions, arriving at more compact and

comprehensive results, readily applicable for AS procedures,

and considered long-term fading variations along the array.

Besides, AS for XL-MIMO systems has been investigated

only in [3], [4] at the moment of writing this paper; however,

both works proposed SE-based AS schemes for XL-MIMO

systems. Differently, based on only long-term fading coeffi-

cients, we propose AS schemes aiming to maximize the XL-

MIMO total EE, since this is a very important issue due to

the very large number of antennas at the XL-MIMO array,

and the non-stationarities and visibility regions which arise

in this scenario. Furthermore, the long-term fading approach

has the advantages of being simpler than short-term ones,

and of providing solutions which remain valid for larger

time periods and all subcarriers (if employing a wideband

system), reducing the computational complexity of the antenna

selection approach and simplifying hardware due to switching

and RF chain on-off requirements.

Notations: Boldface lower and upper case symbols represent

vectors and matrices, respectively. IN denotes the identity

matrix of size N , while {·}T and {·}H denote the transpose

and the Hermitian transpose operator, respectively. We use

CN (m,σ2) when referring to a circular symmetric complex

Gaussian distribution with mean m and variance matrix σ2.

Besides, tr(·) and diag(·) are the trace and diagonal matrix

operators, respectively, while [A]i,j holds to the element in

the ith row and jth column of matrix A, and ai refers to its

ith column vector.

II. SYSTEM MODEL

We consider a base station (BS) equipped with a linear XL-

MIMO array with M antennas uniformly distributed along a

length of L meters, Fig. 1. In front of the extra-large array

structure, K users are randomly distributed in a rectangular

area, of length L in the array parallel dimension, and with

a distance to the array in the range [0.1 · L,L]1. Since the

distances of the users to the antennas is of the same order of

the array length L the average received power varies along the

XL-MIMO array, and therefore we cannot consider a single

long-term fading coefficient for a given user [3], [8]. Instead,

we consider a long-term fading coefficient βm,k regarding

the m-th antenna of the XL-MIMO array and the k-th user,

similarly as in [3], [9], [10], [15], given by

βm,k = q · d−κ
m,k, (1)

in which q is a constant determining the path loss in a reference

distance, dm,k is the distance between the m-th antenna of

the XL-MIMO array and the k-th user, and κ is the path

loss decay exponent. The channel matrix H ∈ CM×K is

thus formed by elements hm,k =
√

βm,k · hm,k, in which

hm,k ∼ CN (0, 1), assuming a rich scattering environment as

in [4], [5]. If we arrange the long-term fading coefficients of

a user in a diagonal matrix:

Rk = diag([β1,k, β2,k, . . . , βM,k]) ∈ R
M×M , (2)

and the elements hm,k in a vector hk ∈ CM×1, we have that

each column of H can be defined as hk = R
1
2

k hk as in [5].

Fig. 1. Illustration of the adopted system model.

In the DL, considering an average received signal-to-noise

ratio (SNR) ρ at the users, an average long-term fading

coefficient βavg (among all antennas and users’ positions),

and a uniform power allocation policy for the users, the total

transmit power, Pmax, should satisfy [1]

ρ =
Pmax · βavg

σ2
, (3)

in which σ2 is the noise power. Since the channel gain βm,k

varies significantly along the array, it is more effective to

select just the stronger antennas to transmit signal to the k-

th user, reducing the number of active antennas, as well the

power spent with power-hungry RF chains. We discuss in the

1In order to guarantee a minimum distance of the users to the XL-MIMO
array, as in [10], [16].
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next Section different approaches to obtain the set of antennas

selected to serve the users, A. For simplicity, we considered

βavg≈q ·L−κ in our simulations. The signal for user k, sk, is

precoded by gk ∈ CM×1 and scaled by pk ≥ 0, which adjusts

the signal power, before transmission. Considering a similar

XL-MIMO system model than [5], the transmit vector x is the

linear combination of the precoded and scaled signal of all the

users, i.e.,

x =

K
∑

k=1

√
pk · gk · sk. (4)

Let G = [g1,g2, . . . ,gK ] ∈ CM×K be the combined pre-

coding matrix, and P = diag([p1, p2, . . . , pK ]) ∈ RK×K be

the diagonal matrix of signal powers. The combined precoding

matrix G is normalized to satisfy the power constraint

E[||x||2] = tr(PGHG) = Pmax. (5)

The signal received by the k-th user is

yk = hH
k x+ nk, k = 1, 2, . . .K, (6)

in which nk ∼ CN (0, σ2) is an additive white Gaussian noise

(AWGN) sample. Assuming independent Gaussian signaling,

i.e., sk ∼ CN (0, 1) and E[sis
∗
j ] = 0, i 6= j, the SINR γk of

the k-th user can be defined as [5]:

γk =
pk|hH

k gk|2
∑K

j=1,j 6=k pj|hH
k gj |2 + σ2

. (7)

We selected the CB and ZF approaches as representative

low-complexity linear precoding schemes. The CB precoder

matrix is simply defined as

GCB = αCBH, (8)

and the ZF precoding matrix is

GZF = αZFH(HHH)−1, (9)

where the scaling factors αCB =
√

Pmax/tr(PHHH) and

αZF =
√

Pmax/tr(P(HHH)−1) ensure that the power con-

straint (5) is met.

Using (8) in (7), the SINR of the kth user for CB is

γ
(CB)
k =

pk|hH
k hk|2

∑K
j=1,j 6=k pj|hH

k hj |2 + σ2

Pmax
tr(PHHH)

. (10)

Similarly, using (9) in (7), the SINR of the kth user for ZF is

γ
(ZF)
k =

pkPmax

σ2tr(P(HHH)−1)
. (11)

Given the system model presented in this Section in eq.

(1)–(11), and the deterministic equivalent analysis of [20], it

is presented in [5] the deterministic equivalent of γ
(CB)
k in (10)

as

γ
(CB)
k =

pk(tr(Rk))
2

∑K
j=1,j 6=k pjtr(RkRj) +

σ2

Pmax

∑K
j=1 pjtr(Rj)

,

(12)

and the deterministic equivalent of γ
(ZF)
k in (11) as

γ
(ZF)
k =

pkPmax

σ2
∑K

i=1 pi

(

tr(Ri)−
∑K

j=1,j 6=i
tr(RiRj)
tr(Rj)

)−1 .

(13)

where Ri is defined as in (2).

Having found the SINR of the kth user, the spectral effi-

ciency is readily obtained as ηsk = log2(1 + γk). On the other

hand, the energy efficiency is [16], [17]

ηe =
B
∑K

k=1 η
s
k

P , (14)

in which B is the system bandwidth, and P is the total power

consumption, discussed in Section II-C.

A. Further Advances in the Performance Expressions

We revisit the performance expressions for non-stationary

XL-MIMO discussed in [5], while propose further elaborations

to arrive at lean and more comprehensive results. Note that the

results of (12) and (13) depend on the signal powers in both

numerator and denominators, and such coefficients should be

chosen in order to satisfy the power constraint in (5). In the

simulation code made available by the authors of [5], they

apply the CVX solver of [21] to find a matrix P satisfying

(5). This makes the performance expressions less intuitive,

while limiting the application of AS schemes as proposed in

Section III of this paper. Hence, in this subsection, we shed

light on deriving self-contained closed-form SINR expressions

recalling the channel hardening massive MIMO properties. For

that, we first rewrite (5) in the following form:

E[||x||2] = tr(PGHG) =

K
∑

k=1

pk||gk||2 = Pmax. (15)

If a uniform power allocation scheme is applied, the fol-

lowing equality holds

pk||gk||2 =
Pmax

K
, k = 1, 2, . . .K. (16)

Hence, when adopting CB, eq. (16) becomes

pkα
2
CB||hk||2 =

Pmax

K
, k = 1, 2, . . .K, (17)

and we have an undetermined system with K equations and

K + 1 variables. By choosing αCB = 1 for simplicity, the pk
coefficients can be obtained for CB as

p
(CB)
k =

Pmax

K||hk||2
, k = 1, 2, . . .K. (18)

Following similar assumptions as in [5], we have that

||hk||2 = hH
k hk = hH

k Rkhk
M→∞−−−−→ tr(Rk), (19)

and a deterministic equivalent of (18) is

p
(CB)
k =

Pmax

Ktr(Rk)
, k = 1, 2, . . .K. (20)

Substituting (20) in (12), we arrive at

γ
(CB)
k =

tr(Rk)
∑K

j=1,j 6=k
tr(RkRj)
tr(Rj)

+ Kσ2

Pmax

. (21)
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On the other hand, for the case of ZF, (5) becomes

E[||x||2] = tr
(

PGHG
)

= Pmax,

= α2
ZFtr

(

P(HHH)−1HHH(HHH)−1
)

= Pmax,

= α2
ZFtr

(

P(HHH)−1
)

= Pmax,

= α2
ZFtr (PV) = Pmax, (22)

in which the matrix V is a diagonal matrix formed by the

main diagonal elements of (HHH)−1. We can thus rewrite

(22) as

α2
ZF

K
∑

k=1

pk[V]k,k = Pmax, (23)

and if a uniform power allocation is employed

α2
ZF pk [V]k,k =

Pmax

K
, k = 1, 2, . . .K. (24)

Again, making αZF = 1, the pk coefficients can be obtained

for the ZF precoding as

p
(ZF)
k =

Pmax

K [V]k,k
, k = 1, 2, . . .K. (25)

Following the analysis of [5, App. A], it can be shown that

[V]k,k
M→∞−−−−→



tr(Rk)−
K
∑

j=1,j 6=k

tr(RkRj)

tr(Rj)





−1

, (26)

and a deterministic equivalent of (25) is

p
(ZF)
k =

Pmax

K



tr(Rk)−
K
∑

j=1,j 6=k

tr(RkRj)

tr(Rj)



 , k = 1, . . .K.

(27)

Substituting (27) in (13), we arrive at

γ
(ZF)
k =

Pmax

Kσ2



tr(Rk)−
K
∑

j=1,j 6=k

tr(RkRj)

tr(Rj)



 . (28)

Equations (21) and (28) show the XL-MIMO DL system

performance employing CB and ZF, respectively, as further

extensions of eq. (12) and (13) from [5]. This is a first

contribution of this manuscript, which serves as basis for the

following EE and AS analysis.

Remark 1: Although we have considered αCB= αZF = 1 in our

analysis, any other choice for these parameters would result

in the same expressions, since would affect every numerator

and denominator terms in the same way.

Remark 2: The SINR performance expressions presented in [5,

Table I] can be seen as particular cases of (21) and (28) when

neglecting long-term fading and applying the normalization

tr(Rk) = tr(Θk) = M or tr(Θk) = D, where Θk and D
are the matrix describing the VR of kth user and the number

of visible antennas per user, respectively, as in [5].

B. Antenna Selection Model

Given our deterministic equivalent performance expressions

for CB and ZF in eq. (21) and (28), respectively, we can

rewrite these expressions considering the activation subset of

antennas. Hence, denoting A as the set containing the indices

of the active antennas, the deterministic equivalent SINR for

the CB precoding results

γ
(CB)
k =

∑

m∈A βm,k
∑K

j=1,j 6=k

∑

m∈A
βm,kβm,j

∑

m∈A
βm,j

+ Kσ2

Pmax

, (29)

while for the ZF:

γ
(ZF)
k =

Pmax

Kσ2





∑

m∈A

βm,k −
K
∑

j=1,j 6=k

∑

m∈A βm,kβm,j
∑

m∈A βm,j



 .

(30)

It is worth to note that, in our formulation, the activation

subset of antennas is the same for all users, differently from

[3], in which each user has its own set of active antennas

aiming to maximize the system sum-rate. We justify our

formulation since, when aiming to maximize the total energy

efficiency, once the power-hungry RF chain of an antenna is

active, it is better to take full advantage of it, transmitting

signal for all users. It has no significant benefit in defining

the activation subset of antennas in a per-user fashion, since

the ZF approach is able to eliminate the inter-user interference,

while the power increment necessary to compute the precoding

vector with a slightly large number of antennas is small

if compared to the power to activate the RF chain of the

additional antenna, as evinced in the next subsection. Besides,

it would result in more complicated performance expressions,

probably in terms of short-term fading coefficients, and the

dimension of the search space of the AS algorithms would

scale with K , becoming considerably more complex and

power consuming.

C. Power Consumption Model

We follow the same power consumption model of [16],

which is very similar to that in [17], and is a very realistic

model. However, as we focus on the DL transmission, we

do not consider the UL data rates as well as the UL trans-

mit powers. In the XL-MIMO scenario analysed herein, we

consider the power expenditures of the irradiated DL data

signal (with the amplifier efficiency), P DL
TX , the UL training,

P tr
TX , the channel estimation, PCE , the coding/decoding, PC/D ,

the backhaul, PBH , the linear processing computation, PPR ,

the transceiver chains, PTC , and a fixed quantity regarding

the circuitry power consumption required for site-cooling,

control signaling, and load-independent power of backhaul

infrastructure and baseband processors, PFIX . Thus, the overall

power consumption results

P = P DL

TX +P tr
TX +PCE +PC/D +PBH +PPR +PTC +PFIX. (31)

Our objective here is to investigate the dependence of the

selected subset of antennas, A, with the total energy efficiency

of the system. Note that the total energy efficiency of the

system depends on A in different ways. First, the sum rate of

the system depends on the SE of the users, which is a function

of their SINRs dependent of A. Moreover, the sum rate

impacts on the power expenditures of the coding/decoding,

and the backhaul. Besides, the power consumption of the
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transceiver chains is modeled as

PTC = PSYN + |A|PBS +KPMT, (32)

in which PSYN is the power of the local oscillator, PBS is the

power required to each active BS antenna operate, while PMT

is the power required to each single-antenna mobile terminal

(MT) operate. Note that M is usually very high in an XL-

MIMO system2, while PBS accounting for the power-hungry

RF chains is considered in [16] as 1 W per antenna. Thus,

activating the RF chains of all BS antennas would result in

a very large power expenditure, in such a way that it is very

important to perform a suitable antenna selection procedure.

The power consumed with processing, PPR , corresponds to

the power required to obtain the transmit signal in (4), to obtain

the precoding matrix, and to obtain the AS set. Note that this

power is also dependent on the number of active antennas |A|.
Following the model in [16], but including the term of power

related to the AS processing, we have

PPR = B
(

1− τ

S
) Cts
LBS

+
B

S
Cprec
LBS

+
1

TLT

Cas
LBS

, (33)

in which τ is the length of the uplink pilot signals, S is the

coherence block size, Cts is the computational complexity for

evaluating eq. (4). Besides, LBS is the computational efficiency

of the BS (in W/flop), Cprec is the complexity of obtaining

the precoding vectors for all users, TLT is the long-term fading

coherence time, and Cas is the complexity of obtaining the

antenna selection set. The obtained AS set remains valid for

a long-term coherence interval, since our analysis is based

only in long-term fading parameters. One can see from (33)

that this approach results in a lower influence of the AS set

computation in PPR , since it is multiplied by the factor 1/TLT,

which is much lower than B/S and B
(

1− τ
S

)

.

Following the analysis in [16], [17], we consider 1 flop
as an arithmethic operation between two complex numbers.

Thus, the multiplication between a matrix A ∈ Cm×n and a

matrix B ∈ Cn×p spends 2mnp flops. Therefore, we have

Cts = 2|A|K flops from [17]. Besides, if using the CB

precoder, Cprec = CCB = 3|A|K flops from [17], against

Cprec = CZF = K3/3+3|A|K2+ |A|K flops if adopting ZF.

The complexity Cas is discussed in the next Section. Besides,

the terms in (31) not discussed in this Section can be computed

in the same way as in [16].

Finally, we can rewrite (31) as

P = P† + PCE + PC/D + PBH + PPR + |A|PBS , (34)

in which we have gathered the power components that do not

depend of A in the term:

P† = P DL

TX + P tr
TX + PSYN +KPMT + PFIX . (35)

The dependence of the terms in (34) with A can be justified

as follows: PCE depends on A since the short-term channel

estimates are obtained only for the active antennas, PC/D and

PBH because they depend on the system sum-rate, which

depends on A, and PPR because the processing complexity

is dependent on the number of active antennas.

2Typically hundreds or even thousands of antennas.

III. ANTENNA SELECTION SCHEMES

In this section we propose different AS schemes for XL-

MIMO aiming to obtain a suitable subset of antennas A
selected to transmit the DL signal to the mobile users sub-

ject to channel non-stationarities. First we propose a simple,

deterministic, greedy scheme based on the highest received

normalized power (HRNP) criterion. Then, three heuristic

schemes are proposed using the HRNP active antennas set

as initial solution: local search (LS), genetic algorithm (GA),

and particle swarm optimization (PSO).

A. HRNP criterion

A first and greedy approach is to select just the Ms antennas

responsible for the major part of the power received by the

users. However, since closer users receive more power, this

should be performed in a normalized fashion in order to

achieve a fair result for all users. In this case, we first compute

the metric:

ϕm =

K
∑

k=1

βm,k
∑M

j=1 βj,k

, m = 1, 2, . . . ,M. (36)

Then, the selected subset of antennas AHRNP will be composed

by the Ms antennas with the highest values of ϕm. A pseudo-

code for the HRNP-AS procedure is presented in Algorithm

1, in which ϕ = [ϕ1, ϕ2, . . . ϕM ].
The complexity3 of the HRNP AS scheme is described by

CHRNP

as = 3MK +M log(M) [flops], (37)

corresponding to the computation of (36) for all antennas, and

a sorting algorithm to select the Ms antennas with highest ϕm.

It is noteworthy, however, that the HRNP EE performance is

highly dependent on the Ms choice, since the system would

provide low sum-rates with few active antennas, or it would

consume a high power with many active antennas. Thus, we

propose in Section IV an approximated closed-form analytical

expression for the EE of the XL-MIMO system employing

ZF and HRNP-AS as a function of Ms. Then, we propose an

iterative method for obtaining the Ms value which maximizes

this expression. We do not consider the complexity of this

method in eq. (37) since it is not dependent on the channel

parameters, but only controlled by the system parameters, such

as the number of users, transmit power, dimensions of XL-

MIMO array and coverage area. Therefore, its computation can

be performed over larger time periods. We discuss in Section

V-A the complexity of the proposed method for obtaining the

optimal Ms value.

B. LS-based Antenna Selection

A simple strategy for seeking a better active antennas set

is to perform a local search (LS) in the neighborhood of the

HRNP solution. For this purpose, we first represent the set

A as a binary vector a of length M , in which if m ∈ A,

am = 1; otherwise am = 0. Then, we compute the total

3We evaluate the computational complexities of the investigated schemes in
terms of floating point operations (flops), defined as an addition, subtraction,
multiplication or division between two floating point numbers [22].
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Algorithm 1 Proposed HRNP AS Scheme

Input: Ms, βm,k, ∀m, k.

1: Initialize A as an empty set;

2: for m = 1, 2, . . . ,M do

3: Evaluate ϕm as in (36);

4: end for

5: for n = 1, 2, . . . ,Ms do

6: Evaluate a = argmaxm ϕm;

7: Update A as A = A ∪ a;

8: Remove ϕa from ϕ;

9: end for

Output: AHRNP .

energy efficiency (14) of every candidate within a certain

Hamming distance dHam from it. If a better candidate is

found, the solution is updated, and the procedure is repeated

on its neighborhood. This iterative procedure is repeated for

a predefined number of iterations or until the convergence.

A pseudo-code representation of the LS-based AS scheme is

provided in Algorithm 2, in which Nel as defined in step 3 is

the number of elements within the Hamming distance dHam

from the current solution. For simplicity, we have limited our

search with a unitary Hamming distance.

The complexity of the LS-AS scheme is

CLS

as = CHRNP

as +N itMCEE [flops], (38)

in which N it is the average number of iterations until conver-

gence, and CEE = 2MK2 [flops] is the complexity of com-

puting the total energy efficiency cost function. An interesting

point to observe in the LS algorithm is that if a new solution is

not found into an iteration, the search can be interrupted, since

the algorithm has converged. This contributes to decrease the

complexity of the algorithm, and, therefore, improve EE.

Algorithm 2 Proposed LS-based AS Scheme

Input: dHam, Nmax
it , AHRNP , βm,k, ∀m, k.

1: Initialize a0 as the binary vector representation of AHRNP ;

2: Initialize ηbeste as the total energy efficiency of a0;

3: Evaluate Nel =
(

M
dHam

)

;

4: for n = 1, 2, . . . , Nmax
it do

5: Generate the search space matrix S of size M × Nel

with all vectors within the distance dHam from an−1;

6: for ℓ = 1, 2, . . . , Nel do

7: Evaluate ηe as the total energy efficiency of sℓ;

8: if ηe > ηbeste then

9: Update ηbeste = ηe, and an = sℓ;

10: else

11: Break;

12: end if

13: end for

14: end for

Output: ALS as the set representation of an.

C. GA-based Antenna Selection

The genetic algorithm is a widely-known bio-inspired

heuristic optimization algorithm, which has been used to solve

optimization problems in different areas. In the context of

massive MIMO antenna selection, GA has been employed in

the conventional stationary case in [18]. Herein, we employ a

similar algorithm from [18], but adjusted to the non-stationary

XL-MIMO configurations. The GA-AS uses the HRNP output

as initial solution, also, other random candidates forming an

initial population of size pGA , which is evaluated in terms

of the cost function in (14). A given number φ of the best

candidates in this population is selected as parents, which will

generate descendants in a new population. For this purpose,

two parents are selected at random for each descendant, and

the crossover operator is applied with a random crossover

point. Then, the mutation operator is also applied, which

inverts the entries of each candidate with certain probability

pmut. After a predefined number of iterations or until the

convergence of the algorithm, it returns the best solution found

so far. A pseudo-code representation for the GA-based AS

scheme is provided in Algorithm 3.

The complexity of our proposed GA-AS procedure is

CGA

as = CHRNP

as +N it[pGACEE + pGA log(pGA)] [flops], (39)

due to the cost function evaluation of each candidate in the

population, and a sorting algorithm for selecting the best

candidates.

Algorithm 3 Proposed GA-based AS Scheme

Input: pGA, φ, pmut, AHRNP , Nmax
it , βm,k, ∀m, k.

1: Initialize the population ΘGA with the binary vector repre-

sentation of AHRNP and other pGA-1 random binary vectors;

2: Evaluate the total energy efficiency of each candidate in

ΘGA , forming the vector ηGA
e ;

3: Sort ηGA
e in descending order, reorganizing the columns

of ΘGA accordingly;

4: Initialize ηbeste = ηGA
e,1, and aGA = θGA

1 ;

5: for n = 2, 3, . . . , Nmax
it do

6: for ℓ = 1, 2, . . . , pGA do

7: Generate two different random integers ∈ [1, φ] to be

the parents of θGA

ℓ , applying the crossover operator

in a random crossover point ∈ [2,M ];
8: Apply the mutation operator in θGA

ℓ with probability

pmut;

9: Evaluate the total energy efficiency of θGA

ℓ , and assign

it to ηGA

e,ℓ;

10: end for

11: Sort ηGA
e in descending order, reorganizing the columns

of ΘGA accordingly;

12: if ηGA
e,1 > ηbeste then

13: Update ηbeste = ηGA
e,1, and aGA = θGA

1 ;

14: end if

15: end for

Output: AGA as the set representation of aGA .
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D. PSO-based Antenna Selection

The particle swarm optimization algorithm is another bio-

inspired optimization algorithm, similarly as GA. However, it

is commonly recognized as a simpler algorithm, in terms of

fewer mechanisms to escape from local maxima, and reduced

computational complexity per iteration. Therefore, we also

suggest the use of a PSO-based AS scheme for the non-

stationary XL-MIMO case, similarly as proposed in [19] for

conventional stationary massive MIMO scenario.

The PSO-AS algorithm uses the HRNP output as initial

solution, as well as other random candidates to form an

initial swarm of pPSO particles. At each iteration, each particle

updates its position in terms of its previous velocity (inertial

effect, with inertia weight ν), its individual best solution found

(cognitive information, with cognitive factor µc), and the best

solution found by all particles (social information, with social

factor µs). After a predefined number of iterations or the con-

vergence of the algorithm, it returns the best solution found. A

pseudo-code representation for the PSO-based AS scheme is

provided in Algorithm 4, in which Γ ∈ RM×pPSO is a random

matrix generated each time it is called with each element

uniformly distributed in [0, 1] interval, and binround(x) is

the binary round operator, which returns 1 if x > 0.5, and 0

otherwise.

The complexity of the proposed PSO-AS algorithm is

CPSO

as = CHRNP

as +N it(pPSOCEE + pPSO) [flops], (40)

due to the cost function evaluation (14) for all particles and

finding the maximum EE particle, at each iteration.

IV. OPTIMAL NUMBER OF SELECTED ANTENNAS: AN

ITERATIVE-ANALYTICAL METHOD

In this Section we derive approximated performance ana-

lytical expressions for XL-MIMO systems employing the ZF

precoder and the HRNP-based AS method. Such expressions

are compared with numerical results obtained via Monte-Carlo

simulation method in Section V, confirming the tightness of

the derivations proposed herein. Then, based on these analyt-

ical expressions, we devise an analytical iterative algorithm

based on Newton-Raphson (NR) method to determine the

optimal number of activated antennas for XL-MIMO systems,

which maximizes the approximated EE expression.
In order to compute the average ZF SINR expression, one

can directly evaluate from eq. (30):

E

[

γ
(ZF)
k

]

= E





Pmax

Kσ2





∑

m∈A

βm,k −

K
∑

j=1,j 6=k

∑

m∈A βm,kβm,j
∑

m∈A βm,j









= E





Pmax

Kσ2





∑

m∈A

βm,k −
∑

m∈A

βm,k

K
∑

j=1,j 6=k

βm,j
∑

n∈A βn,j









= E





Pmax

Kσ2

∑

m∈A

βm,k



1−

K
∑

j=1,j 6=k

βm,j
∑

n∈A βn,j









=
Pmax

Kσ2

∑

m∈A

E [βm,k]



1−

K
∑

j=1,j 6=k

E

[

βm,j
∑

n∈A βn,j

]



 (41)

Algorithm 4 Proposed PSO-based AS Scheme

Input: pPSO , ν, µc, µs, AHRNP , Nmax
it , βm,k, ∀m, k.

1: Initialize the positions ΘPSO with the binary vector rep-

resentation of AHRNP and other pPSO-1 random binary

vectors;

2: Evaluate the total energy efficiency of each candidate in

ΘPSO , forming the vector ηPSO
e ;

3: Initialize the social information ηbeste = ηPSO

e,φ , and aPSO =

θPSO

φ , in which φ = argmaxn η
PSO
e,n ;

4: Initialize the cognitive information ηc
e = ηPSO

e , and

ΘPSO

c = ΘPSO ;

5: Initialize the velocity matrix V ∈ RM×pPSO with random

elements uniformly distributed in [−1, 1];
6: for n = 2, 3, . . . , Nmax

it do

7: Update the velocity matrix

V = νV + µcΓ
[

ΘPSO

c −ΘPSO
]

+ µsΓ
[

aPSO −ΘPSO
]

;

8: Update the positions ΘPSO = binround
(

ΘPSO +V
)

;

9: for ℓ = 1, 2, . . . pPSO do

10: Evaluate the total energy efficiency of θPSO

ℓ , and

assign it to ηPSO

e,ℓ ;

11: if ηPSO

e,ℓ > ηce,ℓ then

12: Update ηce,ℓ = ηPSO

e,ℓ , and θPSO

c,ℓ = θPSO

ℓ ;

13: if ηPSO

e,ℓ > ηbeste then

14: Update ηbeste = ηPSO

e,ℓ , and aPSO = θPSO

ℓ ;

15: end if

16: end if

17: end for

18: end for

Output: APSO as the set representation of aPSO .

in which the expectation is taken with respect to the random

users’ positions.

Instead of advancing with (41) seeking an exact solution, we

approximate the average SINR by the SINR of a user in the

most expected position (UMEP). Given the uniform distribution

of the users as illustrated in Fig. 1, this most expected position

would be as depicted in Fig. 2.

Fig. 2. Illustration of the most expected user’s position (UMEP).

Then, considering this position for the users, and noting that

the HRNP AS activate in this case the Ms closest antennas,
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the ZF SINR expression becomes

E

[

γ
(ZF)
k

]

≈ Pmax

Kσ2

(

∑

m∈A

βm − (K − 1)

∑

m∈A β
2

m
∑

m∈A βm

)

,

≈ Pmax

Kσ2



2

Ms/2
∑

m=1

βm − (K − 1)
2
∑Ms/2

m=1 β
2

m

2
∑Ms/2

m=1 βm



 , (42)

with βm = q · (dm)−κ, and dm =
√

y2 + [(m− 1
2 )dx]

2 =

y
√

1 + [(m− 1
2 )

dx
y ]2 ≈ y

√

1 + (mdx
y )2 is represented in

Fig. 2 for m = 2. Eq. (42) can thus be simplified as in the next

page, in which from (48) to (49) we have used the binomial

approximation (1 + x)α ≈ 1 + αx for |αx| ≪ 1. In our

scenario, this condition becomes

κM2
s dx2

8 y2
≪ 1, (43)

which usually holds for typical XL-MIMO systems. For
example, the binomial approximation results in relative er-
rors lower than 5% for |αx| < 0.25, which in our XL-
MIMO scenario corresponds to Ms < 225. Besides, with this
approximated ZF HRNP-AS SINR expression, we can also
approximate the EE expression as in eq. (44). Moreover, by
expanding all the power terms in the denominator of (44),
as discussed in Section II-C, and grouping them according to
their dependence with Ms, we arrive at eq. (45), in which
PBC = PCOD +PDEC +PBT , and T0 , T1 are defined in eq. (46)
and (47), respectively.

ηe ≈

BK log2

(

1 + E

[

γ
(ZF)
k

])

P DL
TX + P tr

TX + PCE + PC/D + PBH + PPR + PTC + PFIX

, (44)

≈

BK log2

(

1 + E

[

γ
(ZF)
k

])

PBCBK log2

(

1 + E

[

γ
(ZF)
k

])

+ T0 + T1Ms

. (45)

T0 = P
† +

3MK +M log(M)

TLT LBS

+
BK3

3S LBS

. (46)

T1 = PBS +
5BK2

S LBS

+
(

1−
τ

S

) 2BK

LBS

+
BK

S LBS

. (47)

A. Optimal Number of Activated Antennas

Considering our previous analytical results, we propose in
this Section a method for obtaining the optimal Ms value when
employing ZF with HRNP AS, by taking the derivative of eq.
(45), with the SINR given in eq. (50), with respect to Ms, and
equaling it to 0 when Ms = M∗

s . Following this procedure,
and after some simplifications, we arrive at f(M∗

s ) = 0, with
f(Ms) defined as

f(Ms) =
∂E

[

γ
(ZF)
k

]

∂Ms
−

T1 ln(2)
(

1 + E

[

γ
(ZF)
k

])

log2

(

1 + E

[

γ
(ZF)
k

])

T0 + T1Ms
,

(54)

where
∂E

[

γ
(ZF)
k

]

∂Ms
is given in (52).

Since E

[

γ
(ZF)
k

]

and its derivative are dependent of Ms, we

cannot arrive at a closed-form expression for M∗
s . However,

we can find the root of f(Ms) by applying some iterative

numerical method, like Newton-Raphson (NR) method, which

obtains a sequence of Ms values Ms,0,Ms,1,Ms,2, . . .Ms,n

converging to M∗
s if the starting point Ms,0 is not too far from

it. The values in the sequence obey

Ms,n = Ms,n−1 −
f(Ms,n−1)

∂f(Ms)
∂Ms

∣

∣

∣

Ms,n−1

, (55)

in which the derivative of f(Ms) is given in (51).

V. NUMERICAL RESULTS AND DISCUSSION

Our adopted simulation parameters are indicated in Table

I. While we have chosen very similar power consumption

parameters than that of [16], [17], the XL-MIMO system

parameters are chosen similarly as [3]–[5], as well as in

accordance with common XL-MIMO scenario applications.

Considering M = 512 antennas at the XL-MIMO BS, Fig.

3 depicts the SINR, sum SE and the energy efficiency as a

function of number of users K (from 1 to M/2), for both

CB and ZF precoders. The sum SE is presented in units of

bits per channel use (bpcu). One can note that ZF precoding

always achieve a higher total energy efficiency than CB in

the scenario investigated. The presented results were averaged

among 1000 random realizations of the users’ positions. It is

also shown in the Figure the equivalence between the results

of performance expressions from [5], eq. (12) and (13), and

the expressions with our proposed simplifications, eq. (21) and

(28).

TABLE I
SIMULATION PARAMETERS.

Parameter Value

Carrier frequency: f 2.6 GHz

Number of BS antennas M [500; 512]
XL-MIMO array length: L 30 m

Distance of users to BS: [0.1 · L,L]
Path loss decay exponent: κ 3

Path loss at the reference distance: q 10−3.53

Transmission bandwidth: B 20 MHz

Channel coherence bandwidth: BC 100 kHz

Channel coherence time: TC 2 ms

Long-term fading coherence time: TLT 2 s

Total noise power: σ2
−96 dBm

UL pilot transmit power: ρp 20 mW

DL radiated power: Pmax = ρσ2

qL−κ 0.23 mW

Coherence block: S 200 symbols

Length of the uplink pilot signals: τ K

Computational efficiency at BSs: LBS 12.8
[

Gflops
W

]

Fraction of DL transmission: ξd 1

Fraction of UL transmission: ξu 0

PA efficiency at the BS: ηd 0.39

PA efficiency at the MTs: ηuT 0.50

Fixed power consumption: PFIX 18 W

Power for local oscillators at BSs: PSYN 2 W

Power for circuit components BSs: PBS 1 W

Power for circuit components MTs: PMT 0.10 W

Power density for coding data: PCOD 0.10
[

W
Gbit/s

]

Power density for decoding data: PDEC 0.80
[

W
Gbit/s

]

Power density for backhaul traffic: PBT 0.25
[

W
Gbit/s

]
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E

[

γ
(ZF)
k

]

≈
Pmaxq

Kσ2



2

Ms/2
∑

m=1

(dm)−κ
− (K − 1)

2
∑Ms/2

m=1 (dm)−2κ

2
∑Ms/2

m=1 (dm)−κ



 ,

≈
Pmaxq

Kσ2



















2

Ms/2
∑

m=1

y−κ

[

1 +

(

mdx

y

)2
]−κ

2

− (K − 1)

2
∑Ms/2

m=1 y−2κ

[

1 +
(

mdx
y

)2
]−κ

2
∑Ms/2

m=1 y−κ

[

1 +
(

mdx
y

)2
]−κ

2



















,

≈
Pmaxq y

−κ

Kσ2



















2

Ms/2
∑

m=1

[

1 +

(

mdx

y

)2
]−κ

2

− (K − 1)

2
∑Ms/2

m=1

[

1 +
(

mdx
y

)2
]−κ

2
∑Ms/2

m=1

[

1 +
(

mdx
y

)2
]−κ

2



















(ZFME), (48)

≈
Pmaxq y

−κ

Kσ2















2

Ms/2
∑

m=1

[

1−
κ

2

(

mdx

y

)2
]

− (K − 1)

2
∑Ms/2

m=1

[

1− κ
(

mdx
y

)2
]

2
∑Ms/2

m=1

[

1−
κ
2

(

mdx
y

)2
]















, (49)

≈
Pmaxq y

−κ

Kσ2

[

(

T1,1Ms − T1,2M
2
s − T1,3M

3
s

)

− (K − 1)

(

T2,1Ms − T2,2M
2
s − T2,3M

3
s

)

(T1,1Ms − T1,2M2
s − T1,3M3

s )

]

(ZFBA), (50)

with T1,1 = 1−
K dx2

12 y2
, T1,2 =

K dx2

8 y2
, T1,3 =

K dx2

24 y2
, T2,1 = 1−

K dx2

6 y2
, T2,2 =

K dx2

4 y2
, T2,3 =

K dx2

12 y2
.

∂f(Ms)

∂Ms

=
∂2

E

[

γ
(ZF)
k

]

∂M2
s

−
T 2
1 ln(2)

(

1 + E

[

γ
(ZF)
k

])

log2

(

1 + E

[

γ
(ZF)
k

])

− T1 (T0 + T1Ms)
∂E

[

γ
(ZF)
k

]

∂Ms

(

1 + ln(2) log2

(

1 + E

[

γ
(ZF)
k

]))

(T0 + T1Ms)
2

, (51)

with
∂E

[

γ
(ZF)
k

]

∂Ms

=
Pmaxq y−κ

Kσ2

[

F
′

1 − (K − 1)
F1F

′
2 − F2F

′
1

F2
1

]

, (52)

and
∂2

E

[

γ
(ZF)
k

]

∂M2
s

=
Pmaxq y−κ

Kσ2

[

F
′′

1 − (K − 1)
F2

1

(

F1F
′′
2 − F2F

′′
1

)

− 2
(

F1F
′
2 − F2F

′
1

)

F1F
′
1

F4
1

]

, (53)

in which F1 = T1,1Ms − T1,2M
2
s − T1,3M

3
s , F2 = T2,1Ms − T2,2M

2
s − T2,3M

3
s ,

F
′

1 = T1,1 − 2T1,2Ms − 3T1,3M
2
s , F

′

2 = T2,1 − 2T2,2Ms − 3T2,3M
2
s , F

′′

1 = −2T1,2 − 6T1,3Ms, F
′′

2 = −2T2,2 − 6T2,3Ms.
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Fig. 3. (a) SINR, (b) sum-SE, and (c) EE vs. K for M = 512 antennas,
selecting all available antennas. Proposed eq. (21) and (28), are represented
by dotted and solid line curves, respectively, while the performances from [5],
eq. (12) and (13), are indicated by the curves with ’♦’ and ’o’ markers.

Now, considering M = 500 antennas at the XL-MIMO BS,

and the same power consumption parameters, Fig. 4 shows the

SINR, sum SE and the EE as a function of Ms ∈ {100; M},

with K = 100 users, for both CB and ZF precoders when

employing the HRNP AS scheme. Notice that ZF precoding

achieves a higher total energy efficiency than CB in the

scenario investigated. Besides, by activating a number of

Ms = 146 BS antennas, one can attain the maximum total

energy efficiency for ZF precoder with K = 100 users ("M∗
s

by NR" point in Fig. 4.c), as found by our proposed NR

method of Section IV-A. Fig. 4 also compares the perfor-

mance obtained by averaging eq. (30) with several random

realizations for the users’ positions (denoted as ZF), with

the approximated deterministic result from eq. (48), denoted

as ZFME , and with the binomial approximation in eq. (50),

denoted as ZFBA. It also shows the results in terms of sum SE

and EE of the XL-MIMO system. One can conclude that both

proposed approximations are tight, and that the Ms values that

maximize them are nearly the same.

Next, in order to obtain the performance results of GA,

LS, and PSO-based AS schemes, we have set the maximum

number of iterations Nmax
it = 60 for such schemes, and

analysed their convergence for K = 100 users, as depicted

in Fig. 5.a. One can see from the Figure that the LS-AS

convergence presents a non-decreasing behavior, since when a

new solution is not found in certain iteration, the algorithm

interrupts its search, and does not spend more processing

power. On the other hand, for GA and PSO-based AS for XL-

MIMO systems, if the algorithms do not find new solutions
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Fig. 4. HRNP-AS scheme under ZF and CB precoders: (a) SINR, (b) sum
SE, and (c) EE as a function of Ms for M = 500 antennas and K = 100.

and keep searching during additional iterations, the EE of that

solution decreases due to the progressive processing power

consumed in the subsequent iterations. Therefore, it is not

efficient to predefine the number of iterations for these two

schemes in the XL-MIMO antenna selection problem, since in

this optimization problem it would be very difficult do adjust

the number of iterations in such a way to obtain a suitable

EE solution for the algorithms. To circumvent while taking

advantage of this feature, we implement an early-interruption

criterion, in which if the GA or the PSO-based AS schemes

do not find a new solution within 5 iterations, the search is

interrupted, obtaining the convergences depicted in Figure 5.b.

Besides, for the GA-based AS scheme, we have considered a

population size of M/2, of which 10% are selected as parents

at each iteration, and a mutation probability of 2%. For the

PSO-based one, we have considered a swarm of M/5 particles,

and an inertia weight, cognitive factor and social factor of 0.5.
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Fig. 5. Convergence of the AS schemes: (a) without, and (b) with early-
interruption stopping search criterion. K = 100 and M = 500 antennas.

Fig. 6 depicts the SINR, sum SE, and EE as a function

of K for the HRNP, GA, LS, and PSO-based AS schemes

employing ZF precoding, with M = 500 antennas at the

XL-MIMO array. While the achieved sum SE performance is

nearly the same for all investigated schemes, the graphs reveal

that SINR and EE gains can be achieved in comparison with

HRNP. The Figure also shows that, in terms of SINR and EE,

the GA, LS, and PSO-based AS schemes achieve a similar

performance, and their gains in comparison with HRNP AS

are small, since the processing required for finding a suitable

antennas subset in the XL-MIMO system increases the energy

consumption; thus, the EE gains become marginal. Except for

small number of users, the GA AS scheme achieves one of the

best EEs in most part of the investigated scenario, although for

high number of users, its performance becomes very similar to

HRNP AS scheme. Besides, due to its simplicity and celerity

to return the results, one can point out that the HRNP criterion

coupled to the NR procedure for M∗
s selection represents a

very promising XL-MIMO AS scheme.
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Fig. 6. AS schemes for ZF precoding: (a) SINR, (b) sum SE, and (c) EE as
a function of K for M = 500 antennas.

A. Complexity of XL-MIMO AS Methods

Fig. 7.a depicts the average number of active antennas as

a function of K for the investigated AS methods. One can

see that the M∗
s value obtained by our proposed NR method

usually matches the number of antennas selected by LS, PSO,

and GA-based AS schemes, corroborating the tightness of the

approximations made and the effectiveness of the method. The

major advantage of our proposed NR method for obtaining

M∗
s is that it can be evaluated for any system configuration

satisfying eq. (43). In our numerical simulations, the method

has converged in at most 3 iterations from the starting point

Ms,0 = 1.5K . Besides, the M∗
s value is not dependent on the

channel coefficients, but only on the system parameters, like

number of users, transmit power, dimensions of XL-MIMO

array and coverage area. Therefore, once found M∗
s , the NR

method just has to be evaluated again when one of these

parameters change. The fixed complexity of evaluating M∗
s
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under 3 NR iterations is about 380 flops, which is negligible

in comparison with that of selecting the antennas subset, eq.

(37), (38), (39), and (40), besides of remaining valid for larger

time periods.
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Fig. 7. (a) Average number of active antennas, (b) average number of
iterations, and (c) complexity increase of the AS schemes w.r.t. HRNP AS
approach as a function of K for M = 500 antennas.

Fig. 7.b depicts the average number of iterations required

by each investigated AS scheme, recalling that the number

of iterations are not fixed, since the LS interrupts when a

new solution is not find in an iteration, and GA and PSO

implement the early-interruption criterion. Besides, due to the

non-decreasing behavior of the LS convergence depicted in

Fig. 5, the average number of iterations for this scheme in

Fig. 7.b does not correspond to the point in which the LS

convergence curve becomes horizontal. Besides, the advantage

of HRNP criterion in selecting antennas within the XL-

MIMO array can also be confirmed by the extra computational

complexity required for the other analysed methods. Hence,

considering the average number of iterations from Fig. 7.b,

the relative complexity increment of the LS, GA and PSO AS

schemes w.r.t. the HRNP AS method are depicted in Fig. 7.c.

The relative complexity increment metric is defined as:

∆C =
CLS, GA,PSO
as − CHRNP

as

CHRNP
as

considering typical XL-MIMO network configurations for K
users and M BS antennas. One can confirm the very large

relative complexity increase of the AS methods for XL-MIMO,

i.e., this complexity increment is in the order of 105, which

make the benefits they would bring less significant in terms

of energy efficiency.

It is noteworthy that the computational complexity spent

with the AS methods is included in the EE values, in terms

of the processing power. In summary, the performance im-

provement of the AS scheme comes at the expense of high

complexity, which results in marginal EE gains. On the other

hand, the HRNP-AS procedure is able to achieve an improved

EE of 34.85 Mbit/J for K = 100 users, in comparison with

18.71 Mbit/J of selecting all antennas, i.e., not applying any

AS procedure, corresponding in a 86.3% of EE increasing, as

one can infer from Fig. 4.

Elaborating further regarding the dependence of the optimal

number of selected antennas M∗
s on the system parameters,

such as number of users, total transmit power available,

dimensions of XL-MIMO array, and coverage area, one can

argue that such system parameters vary quite slowly with

respect to the data symbol period. Therefore, it could be

possible to evaluate the proposed AS scheme, and turning-on

the optimal number of RF chains M∗
s , which are then switched

to the best antenna subset according to our proposed HRNP

criterion. Notice that only when the number of users changes

significantly that it would be necessary to re-evaluate the

(54)-(55), and then turning-on or turning-off some RF chains.

Besides, the proposed method for finding the optimal number

of selected antennas can provide very useful information for

XL-MIMO system designers.

VI. CONCLUSION

In this paper, we have investigated the XL-MIMO systems

subject to channel non-stationarities. First, we have revisited

the performance expressions from [5], and proposed to incor-

porate the power constraint at the SINR expressions of CB and

ZF to arrive at more lean and comprehensive results. Then,

based on such obtained expressions, we have proposed four

XL-MIMO AS schemes aiming at maximizing the EE based

on the following criteria: HRNP, LS, GA, and PSO. Some

simplifying assumptions allowed us to derive closed-form EE

expressions, based on which we proposed a NR iterative

method to obtain the optimal number of active antennas. Nu-

merical results have shown that GA usually achieves one of the

best EEs, although the gains were marginal in comparison with

HRNP, since the processing required for achieving a suitable

antennas subset increases the consumed energy, limiting the

achieved EE gains. Thus, due to its simplicity and celerity in

returning results, the proposed HRNP-AS scheme, with the

NR method providing the optimal subarray size value M∗
s ,

can be seen as a very promising solution for AS XL-MIMO

systems, achieving an EE gain of 86.3% in comparison with

selecting all antennas strategy.
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