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Abstract

Index Terms: speech intelligibility prediction, fully convolu-
tional neural networks, deep learning

1. Introduction
Data-driven speech enhancement has garnered huge interest in
the last decade with studies such as [1–6]. A more recent trend
has been towards end-to-end solutions like [7–10], working
fully in the time-domain. Most of these speech enhancement
studies aim at enhancing speech intelligibility (SI), either in the
evaluation or even as part of the objective. SI is a very relevant
aspect of processed speech intended for human listeners, e.g.
telecommunication systems and hearing assistive devices. Un-
fortunately, SI is time consuming to measure and hence speech
intelligibility prediction (SIP) is of great importance to the field
of speech enhancement in particular, and to the broader area of
speech processing in general. SIP as a field however, has not
seen the same rapid advancement in terms of data-driven meth-
ods as other fields in speech processing.

Presently, data driven SIP has only been attempted with rel-
atively small datasets, and partially data-driven models using
hand-engineered features [11–16]. Why is this? One of the
main reasons is certainly that data-driven SIP is limited by data
scarcity. In most other speech processing fields ground truth
data is simply clean speech signals, which are relatively easily
obtainable in bulk. Obtaining training data for SIP, however,
requires time-consuming measurements of speech intelligibil-
ity through listening tests of individual noise/processing con-
ditions. Thus the availability of speech data accompanied by
subjectively measured SI is rather low.

Most state of the art SI-predictors like STOI [17], ESTOI
[18], SIIB [19] and HASPI [20], are still not based on machine
learning, but rather on psychoacoustic models and heuristics,
and validated empirically using relatively small datasets with
measured intelligibility. In spite of their non-data-driven design,
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these predictors have demonstrated excellent performance in a
variety of noise and processing conditions, and remain among
the most widely used. An overview of classical predictors is
presented in [21]. It is, however, not fully understood exactly
under which conditions these predictors perform well.

Some data-driven SI-predictors have been proposed, but
they are all limited in one way or another. In [11–13] exist-
ing non-data-driven intelligibility predictors are used to either
label the training data or as part of the architecture respectively.
The systems in [14–16] are trained with measured intelligibility,
though [14] uses data from a single listening test. These systems
all rely on hand determined features, i.e. Mel frequency bands
in [14], and 1/3-octave bands in [15, 16].

In this paper we propose and analyse the performance of
an intrusive end-to-end speech deep neural network (DNN) in-
telligibility predictor. The network is a fully convolutional ar-
chitecture inspired by U-Net [22] and resembles that used in a
large body of literature including works involving speech en-
hancement (e.g. [7, 23, 24]). This network is trained and tested
on speech and SI measurements of a wide variety of conditions
from a range of listening tests. The network takes time-domain
speech signals along with the corresponding clean speech as
input and outputs SI-predictions as a function of time, and is
thus an end-to-end data-driven SI-predictor. The architecture is
explained in greater detail in Section 2 and the data and simu-
lations are described in Section 3. The predictor is tested in a
comparison with ESTOI, SIIB and HASPI, using the Pearson
and Spearman correlation within each listening test. The results
are presented in Section 4, and the conclusion in Section 5.

2. Data-driven Intelligibility Prediction
In this study we use a data-driven approach for speech intelli-
gibility prediction. Specifically, we propose the neural speech
intelligibility predictor (NSIP) model given by Fig. 1, which
shows the architecture of an end-to-end intrusive speech intelli-
gibility predictor based on fully convolutional neural networks.

2.1. Intrusive Speech Intelligibility Prediction

Intrusive SIP refers to the problem of estimating the SI of a
noisy/processed speech signal, x[t], using x[t] itself and the
corresponding clean speech signal, s[t]. Intrusive SI-predictors
are classically more successful than their non-intrusive coun-
terparts, which only rely on x[t]. Intrusive prediction can use
s[t] as a reference to measure how dissimilar x[t] is to clean
speech, while non-intrusive prediction requires a built-in model
of generic clean speech in order to make such a comparison.
This makes the classical intrusive predictors simpler and more
robust. In transitioning to DNN’s, the argument of simplicity

Data-driven speech intelligibility prediction has been slow to 
take off. Datasets of measured speech intelligibility are scarce, 
and so current models are relatively small and rely on hand-
picked features. Classical predictors based on psychoacoustic 
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Speech Intelligibility Prediction (d)
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Figure 1: Architecture of an intrusive neural speech intelligi-
bility predictor based on fully convolutional neural networks.
The predictor is trained end-to-end to estimate the sample-level
speech intelligibility of a degraded speech waveform.

changes, because DNN’s rely on their great parametric com-
plexity in the first place. This makes non-intrusive architectures
somewhat simpler, because they only need to work with one in-
put rather than two. Intrusive architectures still have the poten-
tial to be more robust though, and because of the data scarcity,
the extra clean speech input might be valuable.

The network architecture used in this paper is intrusive,
since it receives the inputs, s[t] and x[t], which in this context
are time-domain clean and noisy/distorted speech signals. The
desired output is defined as a time domain piece-wise constant
curve, d[t], corresponding to measured SI of the input x[t], as it
is also done in [16]. The network output can then be integrated
over time to produce an SI prediction for a particular span of
time.

2.2. Neural Speech Intelligibility Prediction

The NSIP model depicted in Fig. 1 is based on a fully con-
volutional neural network architecture with 18 convolutional
layers utilizing parameterized ReLU (PReLU) activation func-
tions between the layers [25]. The model is inspired by U-
Net [22] and follows an encoder-decoder methodology where
skip-connections are applied between corresponding layers to
allow data at various sample rates to flow between the encoder
and decoder.

Differently from a standard U-net, the proposed model has
two encoders, as shown in Fig. 1, one for the clean and one for
the degraded speech waveforms, since intrusive speech intelli-
gibility prediction can make use of both of these. Specifically,
the two encoders each contain eight convolutional layers and the
output of the two encoders, which contain compressed informa-
tion about the clean and degraded speech signals, are concate-
nated and propagated to a joint decoder that performs the final
SI prediction. The encoders both use a stride of two in each
layer, except for the first layer where a stride of one is used.
This drives the final dimension at the outputs of the encoders to
be compressed with a factor of 256. Similarly, all layers in the
decoder, except for the last layer, use upsampling with a factor
of two, such that the final output has the same dimension as the
inputs, which allows sample-level SI prediction.

To study how the number of parameters influence the SI
performance of the proposed architecture, five NSIP models are
trained and evaluated with a varying number of filters. The
configurations of the individual NSIP systems are shown in
Table 1. The number of parameters for the five models vary

#filters in encoder layers 1− 9 #filters in decoder layers 10− 18

Model 1− 3 4− 6 7− 8 9 10− 11 12− 14 15− 17 18
#Params

(millions)

NSIP1 6 12 16 32 32 16 12 1 0.122M

NSIP2 8 16 24 64 64 24 16 1 0.349M

NSIP3 12 18 36 80 80 36 18 1 0.603M

NSIP4 12 24 48 96 96 48 24 1 0.946M

NSIP5 16 32 64 128 128 64 32 1 1.68M

Table 1: Number of output filters in each layer of the NSIP-
model given by Fig. 1 for five different configurations. All filters
are 11 samples long.

from 0.122 × 106 to 1.68 × 106, which is comparable to the
0.224 × 106 parameters of a recently published frequency-
domain technique [16] that will serve as an NSIP baseline in
Sec. 4. Finally, all filters have a size of 11 samples.

The SIP-systems are trained to minimize the binary cross
entropy between estimated and measured intelligibility using
the ADAM optimizer [26] with β1 = 0.9 and β2 = 0.999 and
an initial learning rate of 0.0005, which is controlled by a learn-
ing rate schedule that reduces the learning rate with a factor of
two, if the validation loss has not decreased for two epochs. Fi-
nally, during training, 20% dropout is applied for every third
layer, and a batch size of 16 is used. Training is stopped, if the
validation loss has not decreased for five epochs or a maximum
of 200 epochs has elapsed.

The SIP-systems have been implemented using Keras1 with
a TensorFlow2 backend and the python implementation of the
trained NSIP-models, are available online3, to allow interested
readers, to use and evaluate the models further.

3. Experimental Design
To establish the potential of the proposed architecture in terms
of predicting speech intelligibility of noisy/distorted speech,
a series of experiments are conducted. In the following, the
datasets used for training, validation, and test are presented.

3.1. Training, Validation and Test Data

Table 2 summarizes the ten datasets used for training, validat-
ing and testing the NSIP-models. The data consist of clean and
noisy/distorted speech signals and measured SI scores, which
are used as labels. Due to the number of datasets, space lim-
itations make it impractical to give a detailed description of
each listening test here. Since they are all well described in
other works, we instead refer the interested reader to the re-
spective sources. The datasets contain multiple talkers, lan-
guages, noise types and processing schemes. Classical predic-
tors have shown varying performance on different subsets of
these datasets, which is also verified in Section 4. There are
significant differences in the size of these datasets, and Table 2
contains a breakdown of the size (files) and number of different
acoustic conditions (cond.) in each dataset. Because of the lim-
ited amount of data, we do not attempt to balance the datasets
by excluding data from the bigger datasets.

1https://keras.io/
2https://tensorflow.org/
3https://git.its.aau.dk/mok/neural_sip.git
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Dataset Training Validation Test

No. Ref. #files #cond. #files #cond. #files #cond.

0 [18] 564 60 60 58 60 58

1 [27] 6295 168 673 168 840 168

2 [17] 320 34 35 32 35 32

3 [15] 1744 327 77 76 318 299

4 [28] 784 24 96 24 96 24

5 [29] 439 18 54 18 54 18

6 [18] 3460 20 436 20 437 20

7 [30] 0 0 0 0 278 9

8 [31] 0 0 0 0 241 20

9 [32, 33] 0 0 0 0 64 52

Table 2: Datasets used for training, validation and test. Each
file corresponds to approx. 6.6s of speech. See references for
further details regarding the general design of the datasets.

3.2. Cross Validation

Datasets 0 – 6 have been split randomly into training, validation
and test comprised of approximately 80, 10, and 10 % of the
data, respectively. Each listening test condition has been split in
this way, such that every condition is represented in the test set.
Furthermore, due to the limited amount of test data available,
10-fold cross validation has been performed and for each split
of the data into training, validation, and test, ten differently ini-
tialized sets of NN-weights have been trained. In other words,
100 models of each architecture have been trained. Finally, to
demonstrate the performance in unseen conditions datasets 7 –
9 have been left out of the training and validation sets, and are
used exclusively for testing. As such we distinguish between
seen conditions, i.e. belonging to 0 – 6 and unseen conditions
belonging to 7 – 9.

4. Experimental Results
4.1. End-to-end Data-driven Intelligibility Prediction

The NSIP-models defined in Table 1 have been evaluated using
Spearman and Pearson correlation. The models were given the
clean references and corresponding noisy/processed test data
signals, and the predictions were integrated over each acous-
tic condition. Examples of these integrated predictions can be
seen, compared to measured SI, in Figure 2. The Spearman and
Pearson scores were then computed and are presented in Ta-
bles 3 and 4 with standard deviations from the cross-validation
reported in parentheses. Spearman is a rank correlation and
measures monotonicity between predictions and measurements,
whereas Pearson correlation measures the linearity of their rela-
tionship. For each dataset the Spearman and Pearson correlation
of the NSIP predictions are measured.

From Tables 3 and 4 it is seen that NSIP5 with 1.68× 106

parameters reaches an average Spearman of .91 across seen
conditions and .85 across unseen conditions, with correspond-
ing average Pearson correlations of .91 across seen conditions
and .85 across unseen conditions. The performance of NSIP5
is visualized for a few datasets in Figure 2.

4.2. Data-driven vs. Non-data-driven SIP

We compare the results from the NSIP-models on the test data
with the classical predictors STOI, ESTOI, HASPI and SIIB,
and a retrained network with the architecture of [16]. Simi-
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Figure 2: Scatter plots showing relation between measured
SI and estimated SI, estimated by the NSIP5 system, for seen
datasets DS0, DS1 and DS3, as well as the unseen dataset DS9.
The Pearson and Spearman correlations are scaled a factor of
100.

lar to STOI and ESTOI, this architecture takes 1/3-octave band
representations of s and x as inputs and outputs SI-predictions,
and as such can be used as a frequency-domain benchmark. Ta-
bles 3 and 4 show the dataset-wise results in terms of Spearman
and Pearson correlation respectively, for the NSIP-models and
the classical predictors. We distinguish between the conditions
which have and have not been seen by the NSIP-models during
training, and report the average of the performance measures
across these subsets as well. We stress that ”seen“ conditions
are not training data, but distinct test data signals belonging
to listening test conditions that also appear in the training set.
In the case of Pearson correlation, a dataset dependent logistic
curve is often fitted to the predictions before computing the cor-
relation. This function has been used to map SI-predictions to
measurements by [17, 19]. We do this for the classical predic-
tors, and the Pearson correlations denoted by (fitted) in Table
4 thus measure the correlation in a logistic rather than linear
sense. This increases their average Pearson correlation, but in
the seen conditions, even with the added dataset-specific knowl-
edge, they are still outperformed by the NSIP architectures,
which has been given no such dataset-specific mapping.

The NSIP-models achieve better average performance, in
terms of Spearman and Pearson correlation in seen conditions
as compared to the classical predictors. Comparing the mea-
sures for the unseen datasets, NSIP is on par with the classical
methods for datasets 7 and 9, but not dataset 8. Consequently,
the average NSIP performance on the unseen datasets is lower
than average performance of the classical predictors on the same
datasets.

1153



Spearman ×100

Mean Mean Seen Data Unseen Data

Predictor (seen) (unseen) DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9
#Params

(millions)

NSIP1 (time) : 82 (2.9) 85 (7.1) 76 (5.2) 96 (0.4) 78 (2.3) 93 (1.1) 57 (3.4) 74 (7.1) 98 (0.6) 97 (1.6) 77 (10.7) 80 (9.0) 0.122M

NSIP2 (time) : 85 (2.3) 82 (5.1) 84 (2.8) 97 (0.2) 81 (2.1) 95 (0.6) 64 (4.9) 76 (5.2) 98 (0.4) 98 (1.1) 64 (9.9) 85 (4.3) 0.349M

NSIP3 (time) : 88 (2.2) 83 (4.6) 87 (1.8) 98 (0.1) 82 (1.7) 96 (0.4) 73 (6.1) 80 (4.9) 99 (0.3) 97 (1.1) 64 (10.0) 87 (2.6) 0.603M

NSIP4 (time) : 89 (2.2) 85 (3.8) 87 (1.7) 98 (0.1) 83 (1.8) 96 (0.4) 81 (6.2) 81 (5.0) 99 (0.2) 98 (1.1) 69 (7.6) 87 (2.7) 0.946M

NSIP5 (time) : 91 (2.1) 85 (3.5) 88 (1.7) 98 (0.1) 84 (1.8) 96 (0.4) 87 (5.9) 83 (4.7) 99 (0.3) 97 (1.0) 70 (7.3) 89 (2.2) 1.68M

NSIP6 (freq): 88 (1.9) 74 (4.7) 79 (3.7) 97 (0.1) 81 (1.4) 96 (0.6) 82 (4.1) 83 (3.0) 97 (0.4) 96 (1.9) 70 (5.1) 56 (7.2) 0.224M

STOI: 74 93 47 96 60 81 57 83 98 95 96 87 –

ESTOI: 78 92 82 96 49 84 56 86 96 98 95 85 –

HASPI: 71 88 62 78 50 93 64 65 84 98 96 70 –

SIIB: 80 96 73 91 39 93 75 94 98 98 97 94 –

Table 3: Spearman correlation for NSIP models and classical non-data-driven SIP techniques. NSIP1-5 are time-domain models
configured according to Fig. 1 and Table 1 and NSIP6 are an frequency-domain baseline model from [16]. All models are trained with
data according to Table 2. The score are mean scores computed based on 10-fold cross validation and the scores in parenthesis are
standard deviations.

Pearson Correlation ×100

Mean Mean Seen Data Unseen Data

Predictor (seen) (unseen) DS0 DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9
#Params

(millions)

NSIP1 (time) : 84 (2.7) 83 (7.0) 75 (4.5) 96 (0.4) 77 (2.5) 93 (1.1) 77 (3.7) 76 (5.9) 97 (0.6) 95 (2.1) 76 (10.3) 77 (8.7) 0.122M

NSIP2 (time) : 88 (1.7) 80 (6.1) 83 (2.8) 97 (0.3) 80 (1.7) 95 (0.6) 87 (1.6) 79 (4.7) 98 (0.4) 97 (1.1) 62 (13.0) 83 (4.2) 0.349M

NSIP3 (time) : 90 (1.4) 81 (5.7) 86 (2.1) 98 (0.2) 81 (1.4) 96 (0.4) 89 (1.0) 82 (4.2) 98 (0.2) 96 (1.4) 62 (12.8) 85 (2.8) 0.603M

NSIP4 (time) : 91 (1.2) 84 (4.1) 87 (1.9) 98 (0.2) 82 (1.4) 96 (0.4) 90 (0.8) 83 (3.7) 99 (0.2) 97 (1.3) 69 (8.5) 86 (2.7) 0.946M

NSIP5 (time) : 91 (1.1) 85 (3.7) 89 (1.6) 98 (0.1) 83 (1.2) 96 (0.4) 91 (0.8) 85 (3.5) 99 (0.2) 96 (1.3) 71 (8.0) 87 (1.7) 1.68M

NSIP6 (freq): 89 (1.2) 73 (5.2) 77 (3.8) 97 (0.1) 79 (1.1) 96 (0.6) 91 (0.7) 86 (2.1) 98 (0.2) 93 (2.0) 70 (7.1) 57 (6.5) 0.224M

STOI: 77 92 51 91 56 78 80 85 98 98 89 90 –

ESTOI: 79 92 77 93 44 80 81 86 95 97 93 86 –

HASPI: 62 80 42 77 45 85 37 69 81 91 74 76 –

SIIB: 77 88 62 85 32 80 89 95 94 96 77 90 –

STOI (fitted): 78 96 51 96 58 80 76 85 99 99 96 91 –

ESTOI (fitted): 81 94 83 95 45 82 78 87 97 100 95 88 –

HASPI (fitted): 65 89 61 77 45 88 36 70 80 97 93 78 –

SIIB (fitted): 82 97 74 90 33 92 92 95 98 99 95 96 –

Table 4: As Table 3 but for Pearson correlation.

4.3. Frequency-domain Data-driven SIP

In order to judge the potential advantage of an end-to-end ar-
chitecture, we compare NSIP to the architecture of [16], which
takes 1/3-octave band transformed speech signals as inputs,
similar to STOI and ESTOI. This architecture has been retrained
on the same data as the proposed time-domain NSIP architec-
ture. This is done to gauge the advantage of NSIP’s access to
the full information in the time-domain. As was the case for
the time-domain architecture, the frequency-domain architec-
ture is trained and tested on the ten cross validation data-splits.
The test results are shown in the rows labelled NSIP6 (freq) in
Tables 3 and 4. It appears that the time-domain architectures
of similar parameter size perform slightly better on average in
terms of Spearman and Pearson on the unseen Datasets 7 and
8, and significantly better on Dataset 9. This could be due to
the loss of information in the 1/3-octave band transform em-
ployed in NSIP6. On the seen datasets the frequency-domain
architecture performs as well as NSIP3 and 4.

5. Conclusion
We proposed a time-domain neural speech intelligibility predic-
tor (NSIP) based on a fully convolutional neural network archi-
tecture, for intrusive speech intelligibility prediction. This net-
work was trained on seven listening test datasets and tested on
ten. Performance was evaluated in terms of Spearman and Pear-
son correlation, and compared to the classical predictors STOI,
ESTOI, HASPI and SIIB, and a retrained frequency-domain ar-
chitecture, [16]. The NSIP architectures showed the best per-
formance on the seven seen datasets, but were outperformed
by the classical predictors on one of the unseen datasets. The
frequency-domain architecture was found to reach performance
similar to that of larger, in terms of parameters, time-domain
architectures, with much fewer parameters.
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