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Abstract: Malignant mesothelioma (MM) is mainly caused by air-born asbestos but genetic
susceptibility is also suspected to be a risk factor. Recent studies suggest an increasing number
of candidate genes that may predispose to MM besides the well-characterized BRCA1-associated
protein-1 gene. The aim of this review is to summarize the most important studies on germline
mutations for MM. A total of 860 publications were retrieved from Scopus, PubMed and Web of
Science, of which 81 met the inclusion criteria and were consider for this review. More than 50%
of the genes that are reported to predispose to MM are involved in DNA repair mechanisms, and
the majority of them have a role in the homologous recombination pathway. Genetic alterations
in tumor suppressor genes involved in chromatin, transcription and hypoxia regulation have also
been described. Furthermore, we identified several single nucleotide polymorphisms (SNPs) that
may promote MM tumorigenesis as a result of an asbestos–gene interaction, including SNPs in DNA
repair, carcinogen detoxification and other genes previously associated with other malignancies. The
identification of inherited mutations for MM and an understanding of the underlying pathways may
allow early detection and prevention of malignancies in high-risk individuals and pave the way for
targeted therapies.

Keywords: malignant mesothelioma; genetic cancer susceptibility; inherited genetic mutations; single
nucleotide polymorphisms

1. Introduction

Malignant mesothelioma (MM) is an aggressive tumor of the lining of the body cavities. It most
often presents in the pleura, malignant pleural mesothelioma (MPM) and less often in the peritoneum,
pericardium, tunica vaginalis testis and hernial sacs [1]. The histopathological subtypes are three in
number, the most common epithelioid, the more rare sarcomatoid and the biphasic, that has both
components [2]. MPM has a poor survival of 12–16 months for the epithelioid, and of only 4–6 months
for the sarcomatoid subtype, while the five-year survival is less than 5% [3,4]. MPM is characterized
by a high rate of innate and acquired chemoresistance but long-term survivors have been described
both after multimodal treatment, including surgery, and chemotherapy alone [3,5–7]. Immunotherapy
and chemoimmunotherapy are promising modalities [8]. There are no validated biomarkers that are
useful for predicting the treatment response and survival in MPM.

The main cause of MPM is exposure to air-born asbestos [9]. Asbestos is a set of six minerals
classified in two major groups, the amphiboles, consisting of crocidolite, amosite, tremolite, actinolite
and anthophyllite, and the serpentines, namely chrysotile [9,10]. All types of asbestos are declared
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as carcinogens by the World Health Organization and the International Agency for Research on
Cancer [9]. The latency between exposure to asbestos and MPM diagnosis has been reported to vary
between 20 and 70 years [11]. Asbestos exposure can occur occupationally for asbestos workers or
non-occupationally, including domestic and environmental exposure [9,12]. Asbestos was prohibited
in most Western countries between 1970 and 2005, except for the USA, where it is only partly banned,
and Canada, where the asbestos ban was effectuated in 2018 [13,14]. However, asbestos use and mining
is ongoing in developing countries and approximately 2.2 million metric tons are being produced
annually worldwide [15].

Both heavy and low-scale exposure to asbestos can cause MPM, as there is no safe threshold for
asbestos use, and no linear dose–response relationship between MM and asbestos [12,16]. Nonetheless,
some individuals are more susceptible to MPM subsequent to asbestos exposure than others, while
there are also MM patients that report no exposure to asbestos or asbestos-like minerals [7,14]. Genetic
susceptibility has long been suspected to be a risk factor for MM, providing an explanation for this
observation [7]. The prevalence and spectrum of germline mutations in MM patients is not fully
determined and the genetics role in causing MM de novo or enhancing asbestos carcinogenicity is yet
to be ascertained. However, there have been a few published studies and case reports about genetic
predisposition in MM in recent years. The aim of the current review is to summarize and present the
most important studies on germline mutations that predispose to MM.

2. Results and Discussion

A total of 860 publications were retrieved through the research databases and four additional
articles were identified through the reference lists. After excluding duplicated articles and publications
that did not meet our inclusion criteria, there were 81 articles that were manually reviewed for this
manuscript (Figure 1). The studies reporting pathogenic or likely pathogenic genetic variants and
those that describe single nucleotide polymorphisms (SNPs) in genes are discussed separately due to
the lower risk association of the latter with MM.

Figure 1. Search strategy for identifying scientific publications for this comprehensive review paper.

2.1. Pathogenic or Likely Pathogenic Genetic Variants

The most well-characterized gene that can predispose to MM is the breast cancer gene 1-associated
protein 1 (BAP1) [17,18]. Recent studies suggest an increasing number of candidate genes associated
with MM (Table 1).
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Table 1. Pathogenic or likely pathogenic germline mutations associated with malignant mesothelioma*.

Gene Location Function Implication in Other Tumors Reference

BAP1 3 Tumor suppressor, DNA repair Uveal and cutaneous melanoma, renal cell carcinoma, non-melanoma skin cancer, meningioma, cholangiocarcinoma [18]
BRCA1 17 Tumor suppressor, DNA repair Breast, ovarian, prostate, colon and pancreatic cancer, melanoma [7,19]
BRCA2 13 Tumor suppressor, DNA repair Breast, ovarian, prostate and pancreatic cancer, melanoma [7,19]
BARD1 2 DNA repair Breast and ovarian cancer [20]

TP53 17 Tumor suppressor, DNA repair Lung, head and neck, ovarian, breast, bladder, liver and colorectal cancer, melanoma, osteosarcoma,
rhabdomyosarcoma, glioma, adrenocortical carcinoma, cholangiocarcinoma [7,21,22]

PALB2 16 Tumor suppressor, DNA repair Breast, ovarian and pancreatic cancer [19]
CHEK2 22 DNA repair Breast, ovarian and prostate cancer, osteosarcoma [7]

ATM 11 DNA repair Breast and bladder cancer, melanoma [7,19]
SLX4 16 DNA repair Head and neck and pancreatic cancer [19]

FANCC 9 DNA repair Breast, head and neck and pancreatic cancer [19]
FANCF 11 DNA repair Breast, head and neck, pancreatic and prostate cancer [19]
FANCI 10 DNA repair Breast, head and neck, pancreatic and prostate cancer [19]
RAD50 5 DNA repair Prostate and breast cancer [23]

MRE11A 11 DNA repair Breast and prostate cancer [7]
WT1 11 DNA repair Wilm’s tumor [7]

RECQL4 8 DNA repair Osteosarcoma [20]
XPC 3 DNA repair Basal and squamous cell carcinoma, melanoma [19]

SETD2 3 Tumor suppressor, DNA repair, chromatin regulation Renal cell carcinoma, leukemia [23]
PMS1 2 DNA repair Colon cancer [19]
MSH3 3 DNA repair Colon and endometrial cancer [20]
MSH6 2 DNA repair Colorectal, endometrial and ovarian cancer, leukemia, lymphoma [7,24,25]
MLH1 3 Tumor suppressor, DNA repair Colorectal, endometrial and ovarian cancer, leukemia, lymphoma [23]
POT1 7 DNA repair, telomere maintenance Melanoma, glioma [4]

NCOR1 17 Chromatin regulation - [23]
ARID1A 1 Tumor suppressor, chromatin regulation Ovarian, endometrial, kidney, stomach, bladder, lung, breast and brain cancer, cholangiocarcinoma [23]

SMARCE1 17 Chromatin regulation - [23]
ARID2 12 Tumor suppressor, chromatin regulation - [23]

CREBBP 16 Tumor suppressor, transcription regulation Bladder cancer, leukemia [23]
SMARCA4 9 Tumor suppressor, chromatin regulation Lung cancer, rhabdoid tumor predisposition syndrome type 2 [23]
SMARCA2 9 Tumor suppressor, chromatin regulation Lung and head and neck cancer [23]

SHQ1 3 Tumor suppressor, ribosomal and telomerase RNA processing - [20]
RBM6 3 Tumor suppressor, RNA processing - [23]
NF2 22 Tumor suppressor Schwannoma [21]

CDKN2A 9 Tumor suppressor, cell cycle regulation Bladder, head and neck, lung, breast and pancreatic cancer, melanoma [7,21]
KDR 4 Tyrosine kinase receptor - [23]

TMEM127 2 Tumor suppressor, rapamycin signaling pathway - [7]
SMO 7 G-protein couple receptor Basal cell carcinoma [23]

SDHA 5 Regulation of hypoxia inducible factor expression Gastrointestinal stromal tumor [7]
VHL 3 Regulation of hypoxia inducible factor expression Von Hippel–Lindau syndrome [7]

* Gene chromosome location, function and implication in other tumors were listed on the basis of gene annotations provided by the National Center for Biotechnology Information’s Online
Mendelian Inheritance in Man, available online: https://www.ncbi.nlm.nih.gov/omim (accessed on 8 June 2020), The Human Gene Database, Weizmann Institute of Science, available
online: https://www.genecards.org (accessed on 8 June 2020) and the Atlas of Genetics and Cytogenetics in Oncology and Haematology, available online: http://atlasgeneticsoncology.org
(accessed on 8 June 2020).

https://www.ncbi.nlm.nih.gov/omim
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2.1.1. BAP1 Gene

BAP1 is a tumor suppressor gene, located on chromosome 3p21.1 and encodes the BAP1 nuclear
protein [26]. This is a deubiquitinating hydrolase, usually part of a protein complex, participating in
various cellular processes including chromatin remodeling, cell cycle regulation and growth and DNA
damage response [26]. The functional roles of BAP1 are partially through its deubiquitinase activity
and synergy with other proteins, such as HCFC1, YY1, OGT, ASXL1/2 and FOXK1/2, but the impact
of the distinct BAP1 mutations on the function of these complexes is not fully understood [17,27].
Germline BAP1 mutations underlie the BAP1 tumor predisposition syndrome, associated with uveal
(UM) and cutaneous melanoma (CM), MM, renal cell carcinoma (RCC), non-melanoma skin cancer,
meningioma and cholangiocarcinoma as well as other cancers [18,28–34] (Figure 2).

BAP1 genetic alterations appear typically with one mutant allele in all cells, while the somatic
inactivation of the second allele results in tumorigenesis [17,35]. The gene–environment interaction is
suspected to play an important role in cancer susceptibility for BAP1 mutation carriers [35,36]. The
pathogenic BAP1 variants are known with a high penetration and approximately 85% of the mutation
carriers are diagnosed with more than one malignancy [17,31]. Beside malignancies, individuals with
germline BAP1 mutations often present with BAP1-inactivated nevi, previously called melanocytic
BAP1-mutated atypical intradermal tumors (MBAITs), that are atypical melanocytes proliferations
with spitzoid morphology [26].

BAP1 mutations are infrequent in the general population and there are no homozygotes [36,37].
However, their frequency has been reported as 1–2% for UM, 0.5% for CM and 0–7% for MM in distinct
cases, rising up to 25%, 0.7% and 20%, respectively, in familial cases [4,7,36,38–41]. Patients carrying
BAP1 genetic variations were shown to have a higher incidence of peritoneal versus pleural MM [7].
In comparison with sporadic MM, the BAP1 mutated patients tend to have sevenfold longer overall
survival even when they have other cancers as well [17,42].

This is not the case in patients with other BAP1 tumor predisposition syndrome malignancies
without MM. Patients with UM and inherited BAP1 mutations present often with a more aggressive and
metastatic disease and more advanced tumor staging, and thus worse survival [43,44]. Similar findings
apply to RCC and CM according to the literature [45–47]. The underlying molecular mechanisms
that are responsible for the high variation in tumor aggressiveness in MM and the other cancers
are unknown.
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Figure 2. Pedigrees of two U.S. mesothelioma families. (a,b) Pedigrees showing family members with
a germline mutation in BAP1, as confirmed by both sequencing and linkage analyses (orange) or by
linkage analysis alone (yellow, i.e., no DNA was available for sequencing); individuals without the
mutation (green) and individuals for whom DNA was unavailable (blue) are also shown. Presence or
absence of germline BAP1 mutation is also indicated with + or − symbols, respectively. (a) Pedigree of
family W showing the presence or absence of a germline mutation at the BAP1 consensus splice acceptor
site. (b) Pedigree of family L showing the presence or absence of a germline nonsense mutation. The
development of other tumor types in these families may also be related to BAP1 germline mutations. In
family W, the presence of a breast cancer before age 45 and an ovarian cancer suggests that the BAP1
mutation is associated with a hereditary form of breast/ovarian cancer, as might be expected given
BAP1′s relationship with the breast/ovarian cancer susceptibility gene product, BRCA115. In family L,
the skin cancers shown were squamous cell carcinomas. Reprinted with permission from Springer
Nature Genetics (Germline BAP1 Mutations Predispose to Malignant Mesothelioma by Testa et al.) [18],
Copyright© 2012.
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2.1.2. Genetic Variants in DNA Repair Genes

More than half of the genes that are reported to predispose to MM are involved in DNA repair
mechanisms (Table 1). The majority of the altered DNA repair genes have a role in the homologous
recombination (HR) pathway, while the rest participate in the mismatch repair system (MMR),
non-homologous end joining (NHEJ) or nucleotide excision repair (NER). Asbestos fibers are known to
induce DNA damage, which is repaired by HR and double-strand breaks repair, MMR and NER, thus
individuals with defects in the DNA repair processes are more prone to develop MM [4,7,20,23,48–50].
Several of the implicated genes are well-known to increase cancer susceptibility for other malignancies
and many of them interact with each other.

BRCA1 and BRCA2 are tumor suppressors responsible to maintain genome stability, specifically
in the HR pathway for double-strand DNA repair [51]. BARD1 encodes a protein that interacts with
BRCA1, forming a stable complex that is essential for tumor suppression [52]. This protein may be
the target of various oncogenic mutations, for example in breast and ovarian cancer [53]. PALB2
encodes a tumor suppressor protein that binds to BRCA2, stabilizes its localization and permits its
accumulation [54]. TP53 encodes the tumor protein p53 that determines whether DNA will be repaired
or the cell will undergo apoptosis subsequent to toxic damage [55,56]. Hence, TP53 and p53 are
crucial for regulating DNA repair and cell division and genetic mutations in this gene may predispose
to several malignancies [56]. CHEK2 encodes a cell cycle checkpoint regulator and putative tumor
suppressor protein, CHK2, which stabilizes p53, leading to cell cycle arrest, and interacts with BRCA1,
restoring survival after DNA damage [57,58]. The protein encoded by ATM regulates various tumor
suppressor proteins, including p53, BRCA1 and CHK2, and thus it is responsible for the cell response
to DNA damage and genome stability [59]. FANCI, FANCC and FANCF are part of the Fanconi anemia
complementation group (FANC) that also includes BRCA2 and PALB2 [60]. The members of the
FANC group are assembled into a common protein complex that collaborate to repair DNA interstrand
crosslinks after exposure to chemicals [60]. MRE11A encodes a protein that forms a complex with
the RAD50 homolog, which is required for NHEJ and DNA double-strand break repair [61]. XPC
encodes an important protein for NER that responds to DNA damage induced by ultraviolet radiation
by recruiting ATR and ATM kinases to the DNA defect sites [62]. MLH1, MSH3, MSH6 and PSM1 are
four of the seven DNA mismatch repair proteins [63]. They are necessary in order to maintain genomic
stability and defects in the MMR may result in microsatellite instability and or malignant diseases,
such as hereditary nonpolyposis colon cancer (HNPCC) and cancers of the NHPCC spectrum [63].
Finally, WT1 is an oncogene that promotes HR- mediated DNA damage repair [64].

An interesting observation is that MPM patients with inherited mutations in these genes tend
to have improved survival compared with those with no genetic alteration, mirroring patients with
BRCA1- and BRCA2-associated malignancies [4,7,42,49] (Figure 3). Patients with ovarian, breast
or prostate cancer who carry germline BRCA1 or BRCA2 mutations are more likely to respond to
cisplatin-based chemotherapy and have better prognosis [65]. These patients have also demonstrated
sensitivity to treatment with poly (ADP-ribose) polymerase inhibitors (PARPi). PARPi are proven
to be effective for various solid tumors with somatic or germline mutations in HR deficit genes,
including breast, prostate, ovarian and pancreatic cancer [66–68]. Cisplatin or carboplatin combined
with pemetrexed is the cornerstone of MPM chemotherapy but a large part of the patients either
do not respond or become resistant to this treatment, while there are no biomarkers in clinical use
to identify potential responders [69,70]. The literature suggests that germline mutations in DNA
repair and other tumor suppressor genes may be a prognostic biomarker for cisplatin chemotherapy
in MPM [4,7,23]. Furthermore, there is evidence that MPM patients, especially those that are not
refractory to chemotherapy, could also benefit from PARPi [4,7].
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Figure 3. Survival of patients with mesothelioma treated with platinum-based chemotherapy, by
patient’s genotype and primary site of tumor. Survival of patients with an inherited damaging mutation
in any targeted gene is indicated in blue; survival of patients with no inherited mutation is indicated in
red. (A) All mesothelioma patients with versus without inherited mutations. Median survival: 8.0 vs.
2.9 y, p = 0.0006. (B) Pleural mesothelioma patients with versus without inherited mutations. Median
survival: 7.9 vs. 2.4 y, p = 0.0012. (C) Peritoneal mesothelioma patients with versus without inherited
mutation. Median survival: 8.2 vs. 5.4 y, p = 0.47. Reprinted with permission from Proceedings of the
National Academy of Sciences of the United States of America (Inherited predisposition to malignant
mesothelioma and overall survival following platinum chemotherapy by Hassan et al.) [4], Copyright
© 2019.
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2.1.3. Genetic Variants in Other Genes

A few of the genes that are reported to be mutated for MM patients are involved in chromatin
regulation, including NCOR1, ARID1A, ARID2, SMARCE1, SMARCA2 and SMARCA4. The protein
encoded by NCOR1 is a transcriptional coregulatory protein which assists nuclear receptors in the
downregulation of gene expression [71]. ARID1A, SMARCE1, SMARCA2 and SMARCA4 are part of
the ATP-dependent chromatin remodeling complex SNF/SWI, while ARID2 is a subunit of the PBAF
(SWI/SNF-B) chromatin remodeling complex [72]. They are responsible for the transcriptional activation
of genes that are normally repressed by chromatin and facilitate ligand-dependent transcriptional
activation by nuclear receptors [72]. The SNF/SWI complexes can change the position of nucleosomes
along DNA, so that binding sites for transcriptional regulators are exposed and gene expression can
consequently be controlled [73,74]. Among the genes that are responsible for chromatin modifications,
those encoding subunits of the SWI/SNF complexes are the most frequently mutated. Their mutations
collectively occur in ∼20% of all human cancer types that have been genomically characterized so
far [75]. CREBBP is also involved in the regulation of transcription by coupling chromatin remodeling
to transcription factor recognition [76]. SHQ1 and RBM6 are both tumor suppressor genes involved in
RNA processing, while NF2 encodes a protein that regulates several key signaling pathways important
for controlling cell shape, cell growth and cell adhesion [77–79]. CDKN2A and TMEM127 encode both
tumor suppressor proteins that are involved in cell growth, proliferation and survival [80,81]. SMO
mediates signal transduction in the hedgehog pathway, which is critical for normal development and
carcinogenesis [82]. KDR encodes one of the two receptors of the vascular endothelial growth factor
and hereby promotes proliferation, survival, migration and differentiation of endothelial cells [83].
Finally, VHL and SDHA are involved in tumorigenesis through impaired hypoxia-inducible factor
expression [84,85]. The pathophysiological mechanisms behind MM genesis as a result of these genetic
alterations are not yet fully determined.

Most studies describe distinct clinical characteristics that can predict the presence of an inherited
mutation, such as limited exposure to asbestos, peritoneal disease, young age and second cancer
diagnosis [4,7,23,86]. This observation is of great significance, as it can lead to clinical panel-based
genetic testing and the implementation of clinical genetic testing guidelines. Genetic testing would be
of high benefit for MM patients and their relatives, as it would allow early detection and prevention
of malignancies in high-risk individuals. This could result in the identification and treatment of the
malignancies at an earlier stage, and hence improved survival. In addition, a part of these inherited
mutations could be clinically significant and the patients may be able to enroll in targeted clinical
trials that give them a higher chance of prolonged survival. Most importantly, the patients and their
physicians should also be aware of the better survival that mutation-carriers have, as this would have
a big impact on their lives and on their treatment considerations and planning.

2.2. Genetic Polymorphisms Associated with MM

2.2.1. Genome-Wide Association Studies

Genome-wide association studies (GWAS) are the most efficient approach in detecting SNPs in
MM, as they allow the simultaneous screening of thousands of genetic variants in large panels of MM
patients and controls. There have been published two comprehensive GWAS regarding MM; one
originating from Australia and one from Italy including 428 MM patients and 778 controls and 407
MM patients and 389 controls, respectively [87,88]. Both groups took asbestos exposure into account,
as they hypothesized that MM tumorigenesis was a result of the asbestos–gene interaction. There is
no compelling evidence in the two studies that the identified SNPs can cause MM in the absence of
asbestos exposure. The Australian study attempted to replicate the most significant SNPs in the Italian
study but failed. The heterogeneity of the populations and the different types of asbestos exposures
were suggested as potential reasons for the non-replication by the researchers. The SNPs with the
highest significance levels from the Australian study were located in the CRTAM, RASGRF2 and SDK1
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genes (Table 2). All three genes are associated with cell adhesion, migration and apoptosis and they are
suspected to promote carcinogenesis through mechanisms initiated by the human immune system’s
response to asbestos fibers [87,89–92]. The outmost significant signals from the Italian studies were
encountered in the PVT1, ETV1, THRB, CEP350, SHC4 and SLC7A14 genes. PVT1, ETV1 and THRB
are known oncogenes implicated in several malignancies through transcription regulation, such as
prostate cancer, melanoma and breast cancer [88,93–95]. CEP350 is required to anchor microtubules
at the centrosome and SHC4 regulates cell proliferation; their association with distinct cancers has
also been reported [88,96,97]. SLC7A14 is involved in arginine transport and although this gene has
not been previously linked to MM, there are indications of neighboring genes involvement due to
identified chromosomal gain in this region [88,98,99].

Table 2. The most significant single nucleotide polymorphisms (SNPs) associated with malignant
mesothelioma, as identified through genome-wide association studies (GWAS)*.

SNP Locus Gene/Neighboring Genes Gene Function References

rs1722803211q24.1 CRTAM, JHY, UBASH3B Adaptive immune response [87]

rs1379270 5q13 RASGRF2, CKMT2, MSH3 Apoptosis, Rho and Ras protein and small
GTPase mediated signal transduction regulation [87]

rs12540101 7p22.2 SDK1, CYP3A54P, CARD11 Cell adhesion [87]
rs12701229 7p22.2 SDK1, CYP3A54P, CARD11 Cell adhesion [87]
rs10089418 8p21.3 LOC286114, LINC02153, LZTS1 - [87]
rs11126523 2p12 C2orf3, LRRTM4 - [87]
rs13287752 9p21.1 MIR873, C9orf72 - [87]
rs282718 4q12 IGFBP7, LINC02390, IGFBP7 - [87]
rs4707427 6q15 SPACA1, AKIRIN2 - [87]
rs4895337 5q23.1 FTMT, SRFBP1 - [87]
rs7958488 12p13.31 CD27 - [87]
rs8142386 22q112 LOC150185 - [87]
rs9548166 13q13.3 LINC00571, LINC02334 - [87]
rs7841347 8q24.21 PVT1, MYC, TMEM75 Oncogene, Transcription regulation [88]
rs3801094 7p21.2 ETV1, ARL4A, DGKB Oncogene, Transcription regulation [88]
rs9833191 3p24.2 THRB, NR1D2, MIR4792 Tumor suppressor, Transcription regulation [88]
rs7632718 3q26.2 SLC7A14, CLDN11, RPL22L1 Amino acid transport [88]
rs4701085 5q35.3 ADAMTS2, ZNF354C, AX747985 Collagen degradation [88]
rs2501618 1q25.2 CEP350, TOR1AIP1 Microtubule anchoring [88]
rs1051920115q21.1 SHC4, EID1, SEDISBP2L Apoptosis, Regulation of cell proliferation [88]
rs1508805 5q23.1 PRR16, FTMT - [88]
rs4290865 4q22.1 FAM190A, GRID2 - [88]
rs5756444 22q12.3 CXF2RB2, C22orf33, TEX33 - [88]
rs742109 6q21 PRDM1, ATGS - [88]
rs9536579 13q14.3 OLFMS, MIR1297 - [88]

* Gene location and function were listed on the basis of gene annotations provided by the National Center
for Biotechnology Information’s Online Mendelian Inheritance in Man, available online: https://www.ncbi.nlm.
nih.gov/omim (assessed on 8 June 2020), The Human Gene Database, Weizmann Institute of Science, available
online: https://www.genecards.org (assessed on 8 June 2020) and the Ensembl genome browser, available online:
https://www.ensembl.org/index.html (assessed on 8 June 2020).

2.2.2. Polymorphisms in Carcinogen Detoxification Genes

It is hypothesized that asbestos toxicity and carcinogenicity may be mediated by reactive oxygen
species and free radicals, which occur as a result of inhaled asbestos fibers [100,101]. The four
subfamilies of the glutathione S-tranferase supergene (GSTA, GSTM, GSTT and GSTP) play a central
role in the detoxification and clearance of reactive oxygen species [102]. Especially the GSTM1 and
GSTT1 subfamilies present with homozygous deletion polymorphisms (null genotype) that have been
considered as modulators of susceptibility to environmentally induced malignancies [102,103]. The
N-Acetyltransferase NAT2 has also an antioxidant function, as it metabolizes aromatic and heterocyclic
amine carcinogens, and hence it may modify predisposition to various cancers [104]. EPHX encodes
the epoxide hydrolase protein mEH, which is responsible for detoxification and preparation for phase
II conjugation reactions [103]. Genetic polymorphisms of EPHX may result in an increase or decrease in
enzyme activity, which may promote cancer susceptibility. Manganese superoxide dismutase (MnSOD)

https://www.ncbi.nlm.nih.gov/omim
https://www.ncbi.nlm.nih.gov/omim
https://www.genecards.org
https://www.ensembl.org/index.html
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is an important antioxidant enzyme in mammalian tissues that is crucial for the response to reactive
oxygen species [105]. The most common polymorphism of MnSOD occurs at codon 16 and results in
an Alanine (Ala) to Valine amino acid transformation, which alters the protein secondary structure,
and thus impairs the transport of the protein into the mitochondria [106]. NAT2 acetylation, EPHX,
MnSOD, GSTM1 and GSTT1 null polymorphisms in regard to MPM susceptibility were analyzed
by Finnish and Italian researchers [100,107–111]. A Finnish study compared 44 MM patients to 270
controls and concluded that GSTM1 null and the NAT2 slow acetylator increase the MPM risk, with
the heavy asbestos-exposed population being at higher risk. An Italian study comprised of 80 MPM
patients and 255 healthy individuals and found similar results regarding the GSTM1 null genotype
and MPM risk. However, the NAT2 slow acetylator appeared to be a protective factor for the Italian
patients. The low-activity-associated EPHX1 genotype was a risk factor for MM in the Italian, but
not in the Finnish population. No significant risk was reported for the GSTT1 null genotype in both
studies. The nucleotidic change 282C > T within NAT2 was also found to be significantly associated
with MPM risk in another Italian study of 50 SNPs within oxidative metabolism enzymes and 75 SNPs
in genome stability genes [100]. The allele 282T is connected with the haplotypes NAT2*6 and encodes
for the slow acetylator phenotype [100]. Landi et al. genotyped 90 MPM patients versus 395 control
subjects and found a higher MPM risk for individuals with a GSTM1 null allele and in those with the
Ala/Ala genotypes at codon 16 within MnSOD [107].

2.2.3. Polymorphisms in DNA Repair Genes

Dianzani et al. focused on four DNA repair genes, XRCC1, XRCC3, XPD and OGG1, hypothesizing
that deficient DNA repair mechanisms would fail to protect against the oxidative stress induced
by asbestos fibers and eventually result in a higher risk of carcinogenesis [112]. XRCC1 and OGG1
are a part of the base excision repair (BER), while XPD is of the nucleotide excision repair (NER)
pathway [113–115]. XRRC3 participates in double-strand break repair, where XRCC1 possibly also
is involved [115]. The group investigated seven SNPs located in the four genes (i.e., XRCC1-R399Q,
XRCC1-R194W, XRCC3-T241M, XRCC3-IVS6-14, XPD-K751Q, XPD-D312N, OGG1-S326C) which have
previously been associated with various malignancies and/or impaired DNA repair [115–119]. The
study population consisted of 81 MPM patients and 110 gender- and age-matched controls from Casale
Monferrato, of which 70 patients and 85 controls had a history of asbestos exposure. Higher risk of MPM
was shown for homozygotes and heterozygotes of the XRCC1-R399Q variant, with the risk escalating
with the increasing number of XRCC1-399Q alleles. Further analyses were conducted after dividing the
genotypes into two subgroups of ‘’risk” and ‘’non-risk” depending on the functional significance and
the frequency distributions of the variants and the epidemiologic evidence. A significant association
with MM was noticed for the XRCC1-R399Q Q homozygotes and Q/R heterozygotes versus the
R homozygotes and for the XRCC3-T241M T homozygotes and M/T heterozygotes versus the M
homozygotes. The haplotype association between two SNPs in XRCC1, XRCC3 and XPD was also
calculated, but significance was not reached.

3. Materials and Methods

Electronic searches were conducted using Scopus, PubMed and Web of Science from January
2011 to February 2020. To identify all relevant studies, we combined medical subject headings (MeSH)
terms or keywords: mesothelioma AND (“gene AND mutation” OR “germline AND mutation” OR
“genetic AND predisposition” OR “genetical AND predisposition” OR “genetical AND alteration”
OR “genetic AND alteration” OR “germline AND alteration” OR “genetic AND susceptibility”). The
reference lists of all retrieved articles were also reviewed. All publications were limited to human
subjects and in the English language. Articles regarding somatic mutations were excluded, as they are
out of the scope of this manuscript. Abstracts, case reports, conference presentations, editorials and
expert opinions were excluded as well. All potentially relevant articles were manually reviewed.
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4. Conclusions

There are only a few large studies investigating germline mutations and polymorphisms in MM.
The first MM susceptibility gene was described in 2011, but only in the past couple of years were there
published studies that shed more light into the prevalence and spectrum of germline mutations for
MM. The rarity of MM together with the inadequate technologies have hampered the conduction of
more comprehensive studies. The development of high-throughput technologies that allow faster and
cheaper genome sequencing, such as next generation sequencing, enables researches to investigate large
gene panels and identify rare genetic variants. By the use of these techniques, underlying mutations can
be isolated without the requirement for lengthy genetic mapping studies. However, it is also important
that the emerging data are clustered and the pathways analyzed in order to fully comprehend the
underlying biological processes. Genetic testing of high-risk individuals may facilitate clinical genetic
counseling and help us achieve early cancer detection. Lastly, the identification of inherited mutations
and an understanding of the oncogenesis mechanisms may allow us to find potential candidates for
targeted therapy, guide the choice of drug treatment and thus give MM patients a better chance of
prolonged survival.
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