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Abstract: Offshore oil and gas facilities are currently measuring the oil-in-water (OiW) concentration
in the produced water manually before discharging it into the ocean, which in most cases fulfills the
government regulations. However, as stricter regulations and environmental concerns are increasing
over time, the importance of measuring OiW in real-time intensifies. The significant amount of
uncertainties associated with manual samplings, that is currently not taken into consideration,
could potentially affect the acceptance of OiW monitors and lower the reputation of all online
OiW measurement techniques. This work presents the performance of four fluorescence-based
monitors on an in-house testing facility. Previous studies of a fluorescence-based monitor have
raised concerns about the measurement of OiW concentration being flow-dependent. The proposed
results show that the measurements from the fluorescence-based monitors are not or insignificantly
flow-dependent. However, other parameters, such as gas bubbles and droplet sizes, do affect the
measurement. Testing the monitors’ calibration method revealed that the weighted least square
is preferred to achieve high reproducibility. Due to the high sensitivity to different compositions
of atomic structures, other than aromatic hydrocarbons, the fluorescence-based monitor might
not be feasible for measuring OiW concentrations in dynamic separation facilities with consistent
changes. Nevertheless, they are still of interest for measuring the separation efficiency of a deoiling
hydrocyclone to enhance its deoiling performance, as the separation efficiency is not dependent on
OiW trueness but rather the OiW concentration before and after the hydrocyclone.

Keywords: oil and gas industry; produced water; fluorescence-based monitor; oil-in-water
concentration; real-time measurements; interferences; OLS; WLS; reproducibility; uncertainties

1. Introduction

The importance and awareness of accurate real-time measurements of oil-in-water (OiW) are
increasing every year, due to the by-product of water production increases as a consequence of
maturing offshore fields. According to literature, 70% of the world’s oil production is derived from
mature fields [1,2]. As the general trend towards more sustainable production governed by discharge
legislation imposing stricter policies and striving to achieve zero pollutant discharge, enhanced
recovery techniques such as produced water re-injection (PWRI) have gained increasing attention to
increase yield and reduce ocean discharge of oil [2–4]. Seen from an economic perspective, accurate
information of oil and particle concentration, and the size distribution in the produced water (PW) for
either re-injection or discharge, can be used for reporting, decision support, or even advanced control
with the aim to achieve better operation in both separation and treatment [2].

PWRI is mainly deployed for reservoir pressure maintenance, which drives the reservoir
production and increasing oil production by sweeping the reservoir [5,6]. In the Danish sector of the
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North Sea, 1/3 of the PW is re-injected, which is around the average amount of PWRI for offshore
processes in Europe (30%) [7–9]. Due to the increased environmental awareness and maturing fields,
PWRI is required more often to reduce the emission of crude oil further, thereby oil will be present in
the injection water (IW) [7]. This does not simply signify that the quality of the re-injected PW can be
lowered. The presence of crude oil and other organic nutrients in PW can result in ideal conditions
for bacterial growth, which may further lead to an increase of microbiologically influenced corrosion
(MIC) [3]. Other common negative consequences, associated with crude oil in IW, occur due to the
agglomeration-effect of oil on solid particles and the formation of asphaltene deposits. The injection
of asphaltenes has shown to plug the porous media in the reservoir to such a degree that some
fields in Saudi Arabia have prematurely stopped producing [10]. The flocculation of asphaltenes
and the agglomeration effect of oil on solid particles have been recorded to increase the size of
particles hundredfold, compared to what was expected downstream in the treatment process [11].
Therefore, whether PW is re-injected or discharged, it is essential to maintain a high PW quality for
either optimizing the process or controlling the discharge concentration of oil.

Current offshore platforms rely on offline measurements of OiW concentration, but the reference
methods vary due to different regulations worldwide, which renders comparison meaningless as
measured OiW concentration is highly method-dependent [12–14]. The North Sea legislation (OSPAR)
demands at least two manual samples each day using the gas chromatography-flame ionization
detector (GC-FID) reference method [15]. OSPAR demands that the dispersed OiW concentration must
be less than 30 mg/L, and the Environmental Protection Agency in Denmark further demands that
the total amount of discharged oil in the Danish sector of the North Sea must be less than 222 tonnes
annually [7,12,14,16]. The environmental risks associated with PW discharges will increase with
increasing water production, especially as maturing fields have reached a water cut of 80% in 2015 [17].
For some of the more mature fields, the water cut even exceeds 90% [18,19]. This resulted in the former
for Maersk Oil, which in 2015 discharged 193 of the allowed 202 tonnes [16]. Even though the current
reference method (OSPAR GC-FID) has its limitations, a reference method is required for meaningful
comparisons. Analyzing using the reference method is time-consuming, and the use of manual
samplings is not sufficient for increasing production. The discharged OiW concentration between
the two manual samples could exceed the regulations [12,14]. Since 2017, the Danish Environmental
Protection Agency applied the following in Denmark through Executive Order no. 394 §9 [16].

“Online OiW monitors must be in operation and used for process optimization on the treatment
plants for PW at all discharge sites ...”

“There must be continuous logging of the data, and the data must be stored for at least 5 years ...”

“Data collected with the online OiW monitors must be made available to the Danish Environmental
Protection Agency if this is desired. . . ”

Based on the Executive Order no. 394 §9 in Denmark, the oil and gas industry is consistently asked
to invest in analytical methods that measure the discharge concentration of oil in PW. This emphasizes
the importance of investigating online OiW monitors that could be a good candidate for measuring
the same OiW concentration as the OSPAR GC-FID reference method. Continuous OiW measurement
can be separated into two primary and two secondary purposes.

Primary purposes:

• Continual compliance with discharge legislation.
• Process optimization.

Secondary purposes:

• Data logging of PW quality for optimizing the re-injection process.
• Data logging for continuous revising of environmental legislation [9].
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For measuring OiW concentration, there exist many commercially available online monitors with
different measurement techniques designed for the oil and gas industry. However, to the authors’
knowledge, none of the non-reference methods have been robust and reliable enough to be accepted
as a reference method for measuring OiW concentration. The online OiW monitors often require
proper calibration and a non-hazard environment to be reliable. However, at in-field installations,
large variations of mixtures, pressures, chemicals, and temperatures render a harsh and non-ideal
environment for the monitors. Therefore, many cases where online OiW monitors have been installed
without proper calibration and maintenance yielded doubtful and misleading measurements [20–22].
Even though most interferences may be slow and some close to constant, variations such as flow rate,
pressure, OiW concentration, droplets/particle sizes, and particle concentration may change frequently.
The irregularity of these variations completely depends on the installation, and it is well known
that operation can change from one operator shift to another, which will impact the production [22].
Therefore, an online OiW monitor has to be able to maintain performance even when surrounding
parameters change from its baseline calibration.

Based on promising results from previous investigations of a fluorescence-based monitor
(Turner TD4100-XDC), this paper aims to examine the calibration method, their robustness to different
interferences, and their reproducibility between each other. However, the OiW concentrations will not
be validated by GC-FID in this paper.

Previous Work Using the OiW Monitor

The Separation research group at Esbjerg campus has previously used the fluorescence-based OiW
monitors in different investigations. However, several experiments have raised concern with regards to
the monitors’ performance when exposed to certain interferences. The OiW monitors have been used
to measure the separation efficiency of hydrocyclones and membranes, and different control methods
manipulating different parts of the separation process on a pilot-plant at Aalborg University at Esbjerg
campus, cf. [12,20,23]. Investigations of the previous papers did not raise any suspicion about the
OiW monitors’ performance under different flow regimes as the measurements showed the expected
outcome. Thus, at no given time was the true accuracy of the OiW concentration expected in the three
papers. What especially raised concern was the discussion based on observed flow-dependency in the
results by Bram et al. [24].

During the experiments, a significant correlation between the OiW concentration and the flow
rate was observed, with OiW concentration measured on the sidestream and flow rate measured
on the mainstream of the process. The outcome of the experiments showed that OiW concentration
was proportional to the mainstream flow rate, which theoretically should not be true, as the two
measurements are independent. Bram et al. [24] discuss whether it is the type and location of sampling
point or interference on fluorescence intensity, e.g., gas bubbles, caused by flow-induced turbulence
inside the sidestream configuration generated by shear forces.

Whether it is the sidestream sampling point, the separation process, or the instrument itself
that causes the difference in OiW measurement will all be evaluated in this paper. The experiments
executed on the pilot-plant will be presented in chronological order, too, when the experiments were
executed. Experiments on different standalone systems are made independently of the experiments
executed on the pilot-plant. The behavior observed by Bram et al. [24] will be recreated and repeated
several times to clarify if it is a recurrent phenomenon.

The rest of the paper will discuss the comparison issues between non-reference methods
(e.g., Turner 4100XDC) and reference methods (e.g., OSPAR GF-FID) in Section 2, and how that
can be a constraint to the slow acceptance of new non-reference methods. Section 3 describes the
different method and materials used for executing the experiments. Section 4 describes the experiment
designs; Section 5 presents the results of the experiments. Section 6 discusses the outcome of the
results, and last a conclusion is drawn in Section 7.
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2. Non-Reference Methods Comparison with Reference Methods

For a non-reference method to fully be accepted as an alternative measurement technique in
agreement with the OSPAR GC-FID method, it must first have high precision. Besides, it must be
calibrated in order to increase trueness to gain high accuracy. The precision of an instrument indicates
the uncertainty in the measurement and is referred to as the degree of repeatability and reproducibility
in the measurement system [25,26]. Repeatability is the precision under the same conditions of
method and equipment, used by the same operator to make measurements on the exact same
sample. Reproducibility is the precision determined under the same conditions, but different pieces of
equipment are used by different operators to make measurements on the exact same sample [27].

The measurement of OiW concentration is highly method-dependent, e.g., the OSPAR GC-FID
method is limited to measuring the total hydrocarbons between C7 and C40 without toluene,
ethylbenzene, and xylene (TEX), a modification of the ISO 9377-2 that is limited to measure the
total hydrocarbons between C10 and C40. While the gravimetric-based method and the USA EPA
method measure anything that is extractable by a solvent but not removed during a solvent evaporation
process [14]. In addition, the measured quantities can vary under different conditions and even between
different laboratories. Therefore, measuring OiW concentration is not only method-dependent but also
procedure-dependent. As a result, a very detailed procedure for taking a sample, transportation,
storage, and measuring in a laboratory is well described by the International Organization for
Standardization (ISO). These detailed standards are necessary for valid comparison and reporting,
especially if used to measure PW discharge. However, the method- and procedure-dependency to
determine the “true” OiW concentration also introduces a substantial amount of uncertainties.

A cause-and-effect diagram is a common way to present the different contributions to the total
measurement uncertainty [28]. The cause-and-effect diagram in Figure 1 shows the uncertainties
related to determining the hydrocarbon oil index by following the ISO 9377-2 and the sampling
procedure for crude oil in liquid ISO 3171 [29,30]. Thus, not the modified version from OSPAR.
The GC-FID method calculates hydrocarbon oil index based on ISO 9377-2 [30]:

OiW = CF
Vw f

m1 −m2
, (1)

where
CF =

Am − b
a

. (2)

OiW is the hydrocarbon oil index [mg/L]; CF is the linear calibration curve, where a is the slope of
the calibration curve; b is the intercept on the y-axis; Am is the integrated peak area measured of the
sample extract; V is the volume of the final extract [mL]; m1 is the mass of filled sampling bottle [g];
m2 is the mass of the empty sample bottle [g]; w is the density of the water sample [g/mL]; f is any
dilution factor of the sample extracted if necessary.

The measurement uncertainty (umeas) can be divided into sampling (usamp) and analysis (uana)
uncertainties, visualized in Figure 1 with gray and orange, respectively. The parameters in Equation (1)
are the representation of the main branches of the uncertainties related to the uana:

u2
meas = u2

samp + u2
ana. (3)

For a given OiW concentration of the sample, it is expected that the same analytical uncertainty
applies to every measurement result [31]. This is not the case with sample uncertainty, as a greater
part is derived from the heterogeneity of the target. The target is defined as the volume of produced
water, at a particular time and location, that the sample intends to represent. By following the
sampling procedure from ISO 3171, the PW sample should ideally be taken from rising flow in a
vertical pipe section, with an isokinetic center lined pitot, in a turbulent region (RE & 10,000) to
ensure a representative well-mixed sample of the main flow, and then stored and transported onshore
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by following the ISO 9377-2 and ISO 5667-3, respectively. The uncertainties related to sampling
are often dominant and occasionally may exceed 90% of the total measurement uncertainty [32].
Another author states that the sampling uncertainty may influence 75% of the total variance of
measurement uncertainty [33].

OiW
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Figure 1. Cause-and-effect diagram of compounded uncertainties contribution to the measurement of
OiW concentration by following the gas chromatography-flame ionization detector (GC-FID) reference
method defined by OSPAR. The cause-and-effect diagram is divided into two sub-groups: Analysis
uncertainty (gray) and sampling uncertainty (orange).

Calculating or estimating the individual uncertainty distribution for each parameter (known as
Type B uncertainty), as in Figure 1, can be a complicated procedure as it is difficult to determine all
possible uncertainties. Therefore, ISO 21748 suggests using the reproducibility standard deviation
(SR) between laboratories as a representation of the measurement uncertainty (known as Type A
uncertainty): SR ' umeas, but it may be an overestimation depending on the quality of the
laboratory [25,28]. Thus, a measurement uncertainty can only give a representative result as good
as the sample that is provided from the sample target [14,31]. As inter-laboratory reproducibility
values are measured on the same sample, it does not account for the uncertainty related to the target.
Therefore, uncertainties associated with the sample target are as least as important to address as the
uncertainties associated with the measurement. This sample should ideally have exactly the same
OiW concentration as the target, but in reality, this is impossible for heterogeneous mixtures [31,32].
The combined or total uncertainty should then be described as:

u2
c = u2

target + u2
meas. (4)

The uncertainty’s significance, related to the sample target, when measuring OiW concentrations
is highly dependent on the location of the sampling point, sampling extraction process, the mixture of
the heterogeneous solution, timing of sampling, etc. A study of environmental systems even shows
that uncertainties between-operator and between-protocol are often much smaller than those caused
by heterogeneity [32].

To measure the uncertainty related to the target for OiW concentration in an offshore oil and gas
process, it must follow the sampling criteria from ISO 3171 to minimize the uncertainty related to
heterogeneity. Then, to ideally measure the target uncertainty at more than one sampling point, at the
exact same cross-sectional area of the pipe, could be utilized. The uncertainty between the extracted
samples in a dynamic process could then be examined. However, for simplicity, the target uncertainty
is always neglected, as most processes only have one sampling point at the same cross-section area of
the pipe. Thus, if an online OiW monitor should be fairly tested against the reference method, the exact
same sample must be used for both validation methods, online and manually, by sharing the target.

If assuming that the combined uncertainty can be expressed by the reproducibility, and the sample
is a perfect representation of the body (utarget = 0), the uncertainty using the reference method can
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intuitively be calculated from the data given in ISO 9377-2, as seen in Table 1. The reproducibility
variance is assumed to be heteroskedastic, i.e., as OiW concentration increases, the variance increases
with the same percentage for the entire range of OiW concentration of interest.

Table 1. Data of inter-laboratory trials published in ISO 9377-2 [30].

Sample No. L n x xsoll SR CVR Sr CVr

[−] [−] [mg/L] [mg/L] [mg/L] [%] [mg/L] [%]

1 35 127 3.04 2.99 0.291 9.6 0.092 3.0
2 34 134 0.57 0.70 0.192 33.5 0.037 6.5
3 38 142 3.61 4.00 0.763 21.1 0.210 5.8
4 41 156 0.74 1.04 0.300 40.5 0.105 14.1

The variables in Table 1 are as follows. L is the number of laboratories after exclusion of outliers;
n is the number of results after exclusion of outliers; x is the grand mean of all results free from outliers;
xsoll is the true value; SR is the reproducibility standard deviation; CVR is the reproducibility coefficient
of the sum of repeatability within-laboratories and between-laboratory variance; Sr is the repeatability
standard deviation; CVr is the repeatability coefficient of variation within-laboratory consistency [30].

If considering that an extracted sample from an offshore oil-producing platform has a “true” OiW
concentration of 20 mg/L under ideal homogenous conditions, then

utarget = 0, (5)

where the only uncertainties related to the true value is the reproducibility as a representation of the
measurement uncertainty,

umeas = CVRx. (6)

As CVR varies randomly for each x concentration, umeas is calculated as examples for best and
worst case of an extracted sample of x = 20 mg/L:

umeasbest = CVR1 x = 1.92 (7)

and
umeasworst = CVR4 x = 8.1. (8)

A combined standard uncertainty (uc) that accounts for contributions from all important
uncertainty components, in these particular examples umeasbest or umeasworst as utarget = 0 is

uc =
√

u2
meas + u2

target. (9)

As uc’s probability is only 68%, it is necessary to express it as expanded uncertainty (U) with
a coverage factor (k). In these examples, a normal distribution with 95% confidence interval is
considered (k = 1.96):

Ubest = ucbest k = 3.76 (10)

and
Uworst = ucworst k = 15.88. (11)

For these particular examples, the OiW concentration should be described as:

OiWbest = 20± 3.76, k = 1.96, norm (12)

and
OiWworst = 20± 15.88, k = 1.96, norm. (13)
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By considering those examples, it is within 95% confidence that the OiW in the best case does
not exceed the discharge limit of 30 mg/L. For OiWworst, the probability of measuring above 30 mg/L
with a true solution of 20 mg/L is ≈5.5%, without even including the uncertainties related to the
sampling target.

Due to the significant amount of uncertainties associated with the GC-FID method, the “error”
of the measured values from an online monitor could potentially be a result of the GC-FID method
rather than the performance of the online monitor. In worst case, an acceptable online monitor could
be rejected despite being truly accurate and may have a negative influence on the reputation of all
online OiW measurements. However, reaching a good understanding of the uncertainties associated
with the reference method could facilitate the industrial acceptance of online OiW monitors [9].

3. Materials and Methods

This section describes the investigated four OiW monitors in this paper and the experimental
setups used for validating the performance of the OiW monitors under different operating conditions.

3.1. Setup and Calibration of the OiW Monitors

The Turner TD-4100XDC online monitor detects the content of aromatic hydrocarbons in PW
using fluorometry. The relative fluorescence units (RFU) are then converted to parts per million (ppm)
through a calibration curve. As the OiW monitors are very sensitive to different compositions of atomic
structures in its spectral excitation region, it must be calibrated to the mixture of the oil composition.
Based on previous results using ARDECA SAE 30 motor oil, a non-detergent SAE 30 motor oil from
Midland has been selected instead, as it is free from any surfactants dispersing and dissolving the
OiW [34,35]. Even though the OiW monitors are able to detect dissolved oil, the separation process is
unable to separate dissolved oil, and the separation efficiency will be inadequate. As the accuracy is
nothing more than a comparison and adjustment of the relationship between the readings of the OiW
monitors and the GC-FID method, the reproducibility between the four OiW monitors is investigated
and not the OiW concentration according to the reference method. More detailed descriptions of the
instrument and the calibration procedure are described in previous work [12,34,36]. The calibration of
the OiW monitor follows the guideline (multipoint direct calibration) documented by the manufacturer,
where at least two samples for a linear situation are recommended covering at least 50% of the desired
monitoring range [37]. However, if the fluorescence of oil follows a nonlinear trend, multiple points
are necessary. It should be evaluated whether a linear or nonlinear calibration equation produces
the best calibration curve. The RFU sensitivity was adjusted by a physical sensitivity screw that sets
the basic operating level. The aim of adjusting the operating sensitivity level was to secure the RFU
response of all four OiW monitors are as similar as possible before calibration. 400 ppm was chosen
as the highest value of interest, as the oil concentration is often less than 200 ppm, but noted to by
another author to be below 400 ppm, before entering the deoiling hydrocylone as the second stage of
the separation process [38,39].

The default identification from the manufacturer uses ordinary least square (OLS) regression
to estimate the best-fit to a first- or second-order polynomial, and thereby implicitly assume
homoskedastic random error (ε) by using unweighted regression calibrations. For OLS to be
the best linear unbiased estimator (BLUE), five assumptions must be assumed according to the
Gauss–Markov theorem: the true data trend is linear and that for all values of x the ε’s are independent,
normally distributed with a mean of zero and have the same standard deviation throughout the
region of interest (homoscedasticity) [40,41]. Although the first assumptions simplify the reality,
proper calibration of the instrument might still achieve a close approximation to the true value.
However, if heteroskedasticity is present, OLS loses its efficiency and is not BLUE anymore [41].
By looking at the box plot of the calibration data for all four OiW monitors in Figure 2, the combined
280 samples, 70 samples for each OiW monitor, clearly indicates that ε exhibit heteroskedasticity.
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The variance increases when the signal intensity increases, and that the RFU and ppm relation follows
a linear trend.

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

Figure 2. Combined box plot at each oil-in-water (OiW) concentration of all four OiW monitors’
calibration data. The calibration data consist of 280; 70 samples for each OiW monitor at following OiW
concentrations: 0, 10, 20, 50 100, 150, 300 ppm.

Ignoring the fact that nonconstant variance might result in suboptimal calibration and invalid
uncertainty estimates [41,42], instead, weighted least square (WLS) could be used as it may not be
reasonable to assume that every calibration concentration should be treated equally. One disadvantage
of using WLS is the weighting is often unknown, but an appropriate weighting factor (wi) for WLS
may well be the reciprocal of the variance (σ−2) for each calibration concentration. This weighting will
strengthen the influence on the parameter estimates the lower the variance is. The calibration function
of interest for both OLS and WLS follows the linear function

y = ax + b, (14)

where x is the dependent concentration of OiW [RFU], y is the independent measurement unit of
each the OiW monitors [ppm], a is the slope (sensitivity), and b is the intercept on the y-axis (offset).
The two parameters a and b can be calculated by the regression formulas:

b =
SSxy

SSxx
(15)

and
a = y− bx, (16)

where x and y are the arithmetic weighted means of xi and yi, respectively, for every i observations
from 1 to n. SSxx and SSxy are the weighted sum of squares around the mean and the weighted
cross-product of sum of squares for xi and yi, respectively. For determining x, y, SSxx, SSxy, SSE, and ŝ,
they are measured as in Equations (17)–(22), where the only difference between OLS and WLS is wi.

For WLS, wi = s−2
i , where si =

√
∑n

i=1 e2
i

n−2 and ei = yi − ŷi. “∧” denotes that it is predicted based on
observed data. By simply making the weighting factor wi = 1, the OLS is equivalently achieved:

x =
∑n

i=1 wixi

∑n
i=1 wi

, (17)

y =
∑n

i=1 wiyi

∑n
i=1 wi

, (18)
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SSxx =
n

∑
i=1

wi(xi − x)2, (19)

SSxy =
n

∑
i=1

wi(xi − x)(yi − y), (20)

SSE =
n

∑
i=1

wi(yi − ŷ)2, (21)

and

ŝ =

√
SSE
DOF

. (22)

As the estimation of the parameters for a linear regression a and b uses two degrees of freedom;
DOF = n− 2. The confidence interval (CI) and prediction interval (PI) are calculated, respectively,
where the subscript “0” indicates the set of values which falls within the CI and PI [40,41]:

CI = ax0 + b± t0.025 ŝ

√
1
n
+

(x0 − x)2

SSxx
(23)

and

PI = ax0 + b± t0.025 ŝ

√
1

w0
+

1
n
+

(x0 − x)2

SSxx
. (24)

The t0.025 is the t-score with two-tailed 95% confidence of a t-distribution with DOF = 68. The true
linear regression line should, with 95% probability, lie within the CI calculated from the sample data,
and the PI should be an estimation of which future observations will fall within 95% probability.
The attentiveness of this subject is due to when heterogeneity of variance is present, a substantial
impact on prediction and calibration may occur, which will affect the precision and accuracy of the
OiW monitor. Figure 3 illustrates the linear regression for each of the four OiW monitors with a 95%
CI bounded by the inner dashed lines, and a 95% PI bounded by the outer dashed lines for both OLS
and WLS.

As the true variance throughout the calibration region of interest is unknown, w0 is estimated
based on the predicted variance function:

s(ŷ) = c1ŷ + c0 (25)

and
w0 = s−2(ŷ), (26)

where c0 and c1 are obtained by OLS on known sample standard deviation (si)
in yi = (0, 10, 20, 50, 100, 150, 300) ppm. Equation (25) may only be a suboptimal representation of the
variance function for the OiW monitor. However, a large amount of calibration replicates would be
needed to determine whether or not Equation (25) is the best variance function. Noblitt et al. [41]
describe other candidates of variance functions, though they will not be part of this paper.

Whether OLS or WLS provides better predictions of the true OiW measurement will be evaluated
in the experiment “Performance evaluation of the four OiW monitors’ calibration procedure and the related
uncertainties”.
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Figure 3. Parameter calibration for each of the four OiW monitors fitting to a linear regression:
(a) illustrate the linear regression using OLS. (b) illustrate the linear regression using WLS.

3.2. Experiment Setups

The setup, located at Aalborg University in Esbjerg, is mainly used to emulate the main parts
of an offshore deoiling process to validate potential performance improvements of different applied
control strategies. An overview of the main process parts is shown in Figure 4. The system has,
in the past, been used for several investigations to test/develop new control algorithms for process
systems, modeling, slugging, fault detection/diagnosis, instrumentation performance, and HMI
design [13,43–47].

As the pilot-plant is a laboratory setup, it is equipped with an excess of sensors and actuators,
even at locations that might be nonexisting at industrial plants, to gain knowledge of indeterminate
flow states and conditions. In this investigation on the OiW monitors’ performance, only the support
section and the hydrocyclone section are used, the rest are bypassed. A more detailed illustration of the
components and instructions, used in this paper for executing the experiments on the pilot-plant, can be
seen in Figure 5a and Table 2, respectively. Notice a T-junction was used for splitting the two-phase flow
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between sidestream and mainstream. The T-junction’s branch-arm has a 3/8” diameter (1”= 25.4 mm)
leading the flow into the sidestream of the process, and the mainstream of the two-phase OiW flow
continuing through the run-arm of the T-junction.

Membrane 
permeate

Waste

Membrane
backwash

Tap 
water

Compressed 
air

Water/oil

Water 
reservoir

Gas 
reservoir

Mixing

Pressurized
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Transport 
Pipeline

Riser

7x
Hydrocyclone

X 6

Oil
reservoir

Cluster 1 Cluster 2

Cluster 3Cluster 4

 mixture

Figure 4. An overview of the bypass structure of the offshore pilot-plant at Aalborg University
in Esbjerg.

Hydrocyclone

Po Pi
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Sample 
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Sid
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(a)
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Magnetic stirrer

(b)

Vm

C1 C2 C3 C4
CP

Supply tank

(c)

C1

~5m

Waste tank

Supply tank

(d)

Figure 5. Piping and instrumentation diagram of the by-passed pilot-plant and three standalone setups:
(a) illustrates the by-passed pilot-plant. (b) illustrates the setup for investigating gas bubbles’ influence
on a OiW monitor. (c) illustrates the setup for comparison of the four OiW monitors’ calibration.
(d) illustrates a gravitation feed setup to isolate internal influences.

Three standalone setups have been constructed, as seen in Figure 5b–d, with the corresponding
Table 3, to isolate different parameters that can affect OiW measurements, and to evaluate the
performance of calibrating the OiW monitors based on OLS and WLS.
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Table 2. Specifications of instruments used in the pilot-plant process. An illustration of the instruments’
position is seen in Figure 5a.

Component Type Description Specifications

Water/oil
tank

Custom made Supply and waste tank for the oil and
water mixture

2.48 m3

Mixer
2 ×Milton Roy Mixing

VRP3051S90
Two mixers for mixing the immersible

oil in water
Nmax = 137 rpm,

3 × 550 mm blades

CP
Grundfos CRNE5-9

A-P-G-V-HQQV
Centrifugal pump feeding the OiW

separation system
6.9 m3/h at

h = 68 m,
hmax = 93.3 m

Air source - Addition of air into the system if
necessary

(1–7) barA

Hydrocyclone Vortoil 35 mm liner Single industrial cased hydrocyclone
liner

-

Qi and Qu Bailey-Fischer-Porter 10DX4311C
Magnetic flowmeters measuring the

inlet and underflow outlet of the
hydrocyclone, respectively

0–1.64034 (0–1) L/s

Qo
Emerson Micro Motion ELITE
CMFS010M300N0ANACZZ

Coriolis flowmeter measuring the
overflow outlet flowrate from the

hydrocyclone

@0.002-97.0 kg/h

Pi, Pi, and Po Siemens Sitrans P200
Pressure transmitters measuring the
pressure at their respective locations (0–16) barA

C1 and C2 Turner-Design TD-4100XDC
Fluorescence-based OiW monitors

measuring the OiW concentration before
and after the hydrocyclone

(0–5000) ppm

Vs, Vo, Vu and
Vub

Bürkert type 8802
Pneumatic continuous control valves

controlling the flow in the system
∆t . 1 s,

Hysteresis 1%,
Pmax = 16 bar

Addition to Figure 5a, the flow path with nominal diameter and length of pipes between
instruments is going through C1, C2, and Qs on the sidestream, hydrocyclone, and end through
Vu before returning to the water/oil tank, are illustrated in Figure 6. This is particularly important to
consider when analyzing the fluid mechanics of the pilot-plant and to evaluate if the OiW monitors
are properly connected according to the specification from the manufacturer.

Vu

NPS [in] 1¼ 1¼, 2 ½, ⅜ ⅜ ⅜ ⅜, ¾ 

Length [m] 0.7 4.1, 5.3 0.5, 1.2 2.3 1.0; 2.4, 0.5

Qi Qs Qu

Hydrocyclone
CP

Water/oil
tank

@2.48m3

Sidestream

C 1 C 2

½ ½ ½ 

1.2 0.4 1.8

Figure 6. Illustration and table of the flow path with nominal diameter and length of pipes between
instruments going through the sidestream.



Sensors 2020, 20, 4435 13 of 36

Table 3. Specifications of instruments used for the standalone systems. An illustration of the
instruments’ position is seen in Figure 6.

Component Type Description Specifications

Buffer tank VWR 213-1128
Supply and waste beaker with/without a
magnetic stirrer for mixing the solution 1000 mL

Supply tank 3H1/Y1.8/200
Supply plastic jerrycan gravity-feeding the

OiW monitor 20 L

Waste tank 3H1/Y1.8/200
Plastic jerrycan for capturing the waste of the

gravity-feeding system 20 L

GP Greylor PQ-12
Gear pump supplied by a 0–24 V AC/DC

power supply, feeding the standalone
systems; Figure 5b

Qmax = 0.132 m3/h,
Pmax ≈2.4 bar

CP
Grundfos CRNE5-2

A-P-G-V-HQQV
Centrifugal pump feeding the standalone

system; Figure 5c
6.9 m3/h at
h = 12.9 m,

hmax = 20.6 m

Air source - Addition of air into the system (1–7) barA

V Swagelok
Ball valve manipulating the flow in the

standalone systems -

C1, C2, C3,
and C4

Turner-Design
TD-4100XDC

Fluorescence-based OiW monitor measuring
the OiW concentration (0–5000) ppm

4. Experiment Design

This section will describe the design and objective of all executed experiments with the common
aim to investigate various interferences that could affect the OiW monitor. Due to previous results,
which showed how a varying Qi influences the OiW concentration measured by one OiW monitor
on sidestream, see Bram et al. [24], it is of interest to investigate whether this phenomenon on the
pilot-plant is a consistent trend, by replicating the experiment. To observe the performance of the OiW
monitors and the pilot-plant design, the following experiments were designed and executed.

• Experiment designs executed on the by-passed pilot-plant setup, see Figure 5a:

◦ Qi’s influence on C1 and C2.
◦ Direct flow through sidestream.
◦ Constant Qi with varying Qs.
◦ Constant pump speed with varying Qs.

• Experiment designs executed on different standalone systems, see Figure 5b–d:

◦ Gas bubbles’ influence on C1.
◦ Repeatability investigation of flow-dependency of C1.
◦ Performance evaluation of the four OiW monitors’ calibration procedure and the

related uncertainties.

Following the manufacturer’s recommendations, the flow rate should be within 1–2 L/min.
Therefore, flow rates of 1.1 L/min and 1.9 L/min were chosen as the minimum and maximum flow
rate, respectively, throughout all experiments executed through the OiW monitors.

4.1. Experiment Designs Executed on the By-Passed Pilot-Plant Setup

Two OiW monitors in series located on the sidestream were used to measure the OiW
concentration. For all five experiments on the pilot-plant, there was no air injected into the setup,
and the two mixers rotating with a constant speed of ≈137 rpm (maximum speed). The performance
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of the hydrocyclone was not to be evaluated in this paper. However, if the performance and robustness
of the OiW monitors are high, it will be of interest to investigate the optimal process conditions for the
separation process of the hydrocyclone to lower the amount of discharge or increase production due to
lower OiW concentration.

Qi’s influence on C1 and C2: Investigate the observation observed by Bram et al. [24], to validate the
OiW monitors’ flow-dependency in the pilot-plant.

• Qi was stepped two times between 0.1 L/s and 0.4 L/s, and last time between 0.1 L/s and 0.5 L/s.
This was accomplished using Qi as feedback to a PI-controller for controlling the rotational speed
of CP.

• Qs is kept constant at 1.1 L/min by using Qs as feedback to a PI-controller for controlling Vs

opening degree.
• Vu and Vo were fully open throughout the experiment.

Constant Qi with varying Qs: Isolate the varying flow rate by only affecting the sidestream, like the
experiment with direct flow through sidestream. This was executed by varying Qs while compensating
for having a constant Qi. Note that this is only valid if the heterogeneous content is adequately mixed,
and the pilot-plant physical design does not have any effect on the OiW mixture.

• Qi was kept constant at 0.4 L/s by controlling the rotational speed of CP.
• Qs was stepped from 1.1 L/min to 1.9 L/min and back again by manipulating the Vs

opening degree.
• Vu and Vo was fully open throughout the experiment.

Constant pump speed with varying Qs: Executed to investigate the pilot-plant’s design effects on
the measurement. This was done by keeping the pump speed constant, meanwhile keeping Qi
constant. Ideally, all parameters that would affect the OiW monitors will be at a constant level,
except the uncertainty related to the heterogeneous mixture. However, as uncertainty related to the
heterogeneous mixture is assumed normally distributed, the mean of the OiW concentration should be
constant, even when Qs is changing. If not, the OiW monitors’ flow-dependency must be questioned
and taken into consideration.

• CP was kept at a constant 90% pump speed.
• Qs was stepped from 1.1 L/min to 1.9 L/min and back again by manipulating the opening degree

of Vs.
• Qi is kept constant at 0.4 L/s by controlling Vu’s opening degree.
• Vo was fully closed throughout the experiment.

4.2. Experiment Designs Executed on Different Standalone Systems

To isolate the OiW monitors from the pilot-plant, different standalone systems were constructed
to investigate different parameters that were suspected to influence the measurement of the
OiW monitors.

Gas bubbles’ influence on C1: Like turbidity monitors, the OiW monitors were suspected difficulties
with interference from gas bubbles. For turbidity monitors, air bubbles are known to cause a false
high turbidity reading when measuring the amount of light scattered [48]. However, results from
another report testing a fluorescence-based monitor indicate that gas bubbles significantly reduce
the measurement, as the gas bubbles potentially reduce the strength of both excitation light and
fluorescence [22]. The change in fluorescence intensity occurs as gas bubbles scatter the light that
distorts the fluorescence spectrum [49]. The setup used for detecting gas bubbles’ influence on C1 can
be seen in Figure 5b. The conditions of the experiment were as follows.
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• Fixed GP speed to have a constant flow rate of ≈1.1 L/min.
• Constant stirring speed of the magnetic stirrer.
• Constant air flow rate introduced down into the buffer tank, creating different sizes of air bubbles,

together with the mixing behavior from the magnetic stirrer.

Repeatability investigation of flow-dependency on C1: As entrained-air was observed to have
an influence on the OiW measurement in the previous experiment, the pump and mixer were suspected
of introducing unwanted bubbles into the system. This could be due to the motion of the mixer,
inlet suction of the pump, or leakage. Increasing the flow rate also increased the number of bubbles
observed in the outlet, which intuitively could be the reason for an increasing OiW concentration and
not the flow rate itself. To eliminate the influence of the pump, one OiW monitor was gravity-fed
instead with only tap water or demineralized water. The gravity-fed setup is illustrated in Figure 5d.

• Flow rate was constant ≈1.1 L/min and ≈1.7 L/min, respectively, by manipulating Vm’s
opening degree.

Performance evaluation of the four OiW monitors’ calibration procedure and the related
uncertainties: Even though different parameters were observed to influence the measurement of
the OiW concentration, the OiW monitors could still be feasible to use in the pilot-plant, if the monitors
are consistent in their measurements and between each other. Four OiW monitors are used in this
experiment for comparison of the instrument, see Figure 5c.

• Nine different concentrations are tested: 0, 5, 10, 20, 40, 80, 160, 320, and 400 ppm.
Demineralized water is used with a solution of oil and isopropanol to reduce the uncertainty
in the heterogeneous mixture of OiW significantly. Demineralized water was chosen as the
laboratory tap water was observed to fluoresce and change on a day-to-day basis.

• 1.9 L/min was kept constant by controlling Vm’s opening degree.
• Fixed CP speed of 74%.

5. Results

This section provides the results of which flow regimes influence the four fluorescence-based
monitors’ OiW measurements. The calibration presented in Figure 3 was not added to these
experiments as only the trend of the OiW monitors’ measurements were of interest under different
flow regimes. The investigations were divided into experiments executed on the pilot-plant and
experiments executed on the standalone systems, as described in Section 4.

5.1. Experiment Results Executed on the By-Passed Pilot-Plant Setup

Before each experiment on the pilot-plant, the mixers had a run time of >20 min to ensure the OiW
volume in the supply tank was well mixed. Noise was observed in all experiments on the pilot-plant
originating from the mixers in the supply tank. The first part of the execution time for each experiment
are used to ensure that the system had reached nominal operation. The initialization time depends
on the experiment and mainly ensures that the system is flushed sufficiently as contents of oil, algae,
and particles tend to settle or stick to the pipeline inner wall when the system is not in operation.
Each experiment’s execution time was >100 min, to obtain steady-state measurements from the OiW
monitors between each change of flow rate. The results of each experiment will be described and
discussed in this section, and Section 6 will provide a holistic discussion of each topic.

Qi’s influence on C1 and C2: According to Figure 7, there is an indication that the OiW monitors are
flow-dependent in the pilot-plant. Qi was stepped two times between 0.1 L/s and 0.4 L/s, and one
last time between 0.1 L/s and 0.5 L/s. Qs was kept constant at 1.1 L/min. Figure 7 shows the same
positive correlation as Bram et al. [24], when Qi increases the RFU increases. As Qi was controlled by
the CP, the output signal of the CP has a similar shape as Qi.
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Figure 7. Qi’s influence on C1 and C2.

In this experiment the increment of the two OiW monitors was C1 ≈ 3000RFU and C2 ≈ 2600RFU,
when Qi was increased from 0.1L/s to 0.4 L/s. The last step from 0.1 L/s to 0.5 L/s does not appear
to increase the RFU measurement compared to Qi = 0.4 L/s. This could indicate that the oil and
water are separating differently in the process, depending on the flow rate. Looking at Figure 6,
the transportation delay of the OiW mixture before reaching the sample point is relatively long, which
will be a problem if the flow rate is not highly turbulent through the entire system. The worst condition
for achieving sufficient turbulence is when the superficial velocity is lowest. For that particular
experiment on the pilot-plant, this occurred when Qi is 0.1 L/s and the pipeline diameter (D) is 2”:

A =
π

4
D2, (27)

v =
Q
A

, (28)

and
Re =

ρvD
µ
' 2545, (29)

where A = 0.002 m2, v = 0.05 m/s, ρ = 998.2 kg/m3, and µ = 0.001 Ns/m2 @ 20 ◦C. As Re < 10, 000
(even close to laminar Re < 2300) in some situations of the experiment, it could indicate that the
oil experience significant gravitational separation throughout the pipelines. Thus, making the
measurements from the OiW monitors unjustifiably flow-dependent. It will also explain why there is
little to no difference in the RFU measurement when Qi = 0.4 L/s or Qi = 0.5 L/s as Re ' 10, 182 and
Re ' 12, 727, respectively. This also concludes that it is not possible to determine whether the OiW
monitors are flow-dependent based on this experiment. The high spikes of RFU observed when Qi is
increased, could be due to the presences of dead volume in the sidestream that is pushed through
the OiW monitors after increasing the flow rate of Qi, and a small systematic peak when Qi is decreased.

Constant Qi with varying Qs: Figure 8 shows results of keeping Qi constant at 0.4 L/s, ensuring
that the flow through the entire part of the pilot-plant is highly turbulent, and stepping Qs between
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1.1 L/min and 1.9 L/min. Even though at high turbulence, where Qi is kept constant, RFU and Qs are
still positively correlated. The increment of RFU after the increase of Qs is, nevertheless, only 200 RFU
compared to the results in Figure 7, that has a tenfold increment. This narrows the issue down to
being either due to the OiW monitors are, in fact, flow-dependent, even within its operation range
recommended by the manufacturer, the T-junction sample point which is not a standardized way of
sampling by ISO 3171, or it could be due to gas bubbles’ interference.

The result of CP increases slowly through the experiment as Vs is closing gradually in order to
force more flow through the OiW monitors. The back-pressure is increased due to the decreasing
opening degree of Vs, which is the consequence of the increasing CP’s rotational speed. The steady
increase of CP’s rotational speed does not appear to influence the RFU.
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Figure 8. Constant Qi with varying Qs.

Constant pump speed with varying Qi: Figure 9 is similar to Figure 8, but CP is kept constant at 90%
rotational speed throughout the experiment, meanwhile controlling the varying Qs by manipulating
the opening degree of Vs. However, the results in Figure 9 are distinguished from Figure 8 as no clear
changes occurs when Qs is stepped from 1.1 L/min to 1.9 L/min and back again. This either indicates
that increasing the rotational speed of CP decreases average droplet size by shear forces or increases
entrained air and oil by having higher velocities of the carrier phase-flow near the water/oil tank’s
outlet. To further investigate the OiW monitors, three different standalone systems were constructed
to determine gas bubbles’ influence on the OiW monitors, the repeatability of each monitor under
different flow conditions, and an extensive analysis of the calibration for the OiW monitors was
carried out.
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Figure 9. Constant pump speed with varying Qs.

5.2. Experiment Results Executed on Standalone Systems

Gas bubbles’ influence on C1: Figure 10 shows the results of introducing air bubbles into the
standalone system Figure 5b. The solution used for this experiment only consists of tap water from
the laboratory to isolate the heterogeneity of OiW, as it could be challenging to determine whether
the difference in RFU was due to air introduction or due to a shift in the volume of oil droplets
entering the OiW monitor. As presumed, a relatively high RFU was measured in the tap water by
the OiW monitor, and the RFU value of the tap outlet was observed to change on a day-to-day basis.
In this experiment, a mean of 1665 RFU was measured from 0 to 600 s when no air is added into the
system. After 10 min, air was added into the system, as indicated in Figure 10 with a blue vertical line.
Air pressure was applied until visible air bubbles were apparent in the buffer tank. The RFU increased
and fluctuated during the injection of air, with a mean of 1783 RFU during 650–1200 s. The fluctuation
is assumed as an outcome of the random sizes of air bubbles introduced by the air source passing the
view cell. After ending the air injection, the RFU measurement slowly converged to its initial RFU
value. However, the difference in mean before and after the addition of air is 14 RFU. That is likely
due to the execution time of the experiment was not long enough for the added air to dissipate to the
surrounding environment. It is noteworthy that when only air was present in the view cell, with some
uncertainty to small micro/macro water droplets, the measurement was 80–90 RFU consistently.
Nevertheless, it makes sense as the content of only air should ideally not fluoresce.

0 500 1000 1500 2000

1600

1700

1800

1900

Figure 10. Gas bubbles’ influence on the OiW monitor.
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Repeatability investigation of flow-dependency on C1: The results from gravity feeding one OiW
monitor with both tap water and demineralized water with two different flow rates of 1.1 L/min and
1.7 L/min are seen in Figure 11. For experiments with tap water, the first three experiments with a flow
rate of 1.7 L/min was rejected as the OiW concentration was consistently off compared to the other.
The first three experiments inconsistencies were assumed happening due to start-up after a cleaning
process. Demineralized water was selected as a reference, as ideally, it should not contain any matter
capable of fluorescing. Tap water was known to fluoresce and was used for testing flow-dependency
in another RFU range.
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Figure 11. Repeatability investigation of flow-dependency on C1 with demineralized water and tap
water at two different flow rates.

One-way analysis of variance (ANOVA) was carried out to test the null hypothesis (H0) that
differences in flow rate through the OiW monitor have equal mean RFU measurements. As for the
F-statistic of ANOVA to be meaningful, it requires that the dependent variable is normally distributed
in each group.

According to the one-way ANOVA test on the tap water with different flow rates, there is a 95.7%
chance that the mean of RFU is equal at a flow rate of 1.7 L/min and 1.1 L/min. Thus, H0 cannot
be rejected. The boxplot in Figure 12 shows that the medians of the to flow rates are within the
same range for tap water. Based on the results with different flow rates of tap water, if the H0 is
instead rejected, the flow-dependency is still insignificant compared to other variables’ influence on
the measurements from the OiW monitors, as the difference in grand means and grand medians are
0.3 RFU and 4.0 RFU, respectively.

The one-way ANOVA test on the demineralized water with different flow rates shows that H0 can
be rejected and the boxplot shows similar result. Even though H0 is rejected for demineralized water,
the measurement grand mean and grand median is close to the result with tap water; 1.7 RFU and
2.1 RFU, respectively. The results from Figure 12 supports that the measurement from the OiW monitor
on demineralized water is flow-dependent, though, it is insignificant. Interestingly, the experiments
also show that the measurement of RFU is lower with a high flow rate of 1.7 L/min compared
to a lower flow rate of 1.1 L/min. That is exactly the opposite as was observed in Figures 7 and 8.
Notice, measurement within 95% confidence interval are larger for tap water than demineralized water:

x± 11.64 @ tap water, 1.7 L/min, (30)

x± 8.24 @ tap water, 1.1 L/min, (31)

x± 0.51 @ demi water, 1.7 L/min, (32)

and
x± 0.38 @ demi water, 1.1 L/min, (33)
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where x denotes the grand mean as reference. The big difference in 95% confidence interval between
tap water and demineralized water is most likely due to fluorescence substances in the tap water
compared to the demineralized water, that ideally should not contain any fluorescence substances.

1.7 L/min, tap-water 1.1 L/min, tap-water

2060

2065

2070

2075

2080

1.7L/min, demi water 1.1L/min, demi water

84.5

85

85.5

86

86.5

Figure 12. Boxplots for each type of water with different flow rates.

Performance evaluation of the four OiW monitors’ calibration procedure and the related
uncertainties: As mentioned in Sections 1 and 2, having a good understanding of the uncertainties
associated with the online monitors would help their industrial acceptance. However, for them to be
accepted, proper calibration is vitally important to ensure trustworthy data. A 100 min experiment
with eight different OiW concentrations were added throughout the experiment: 5, 10, 20, 40, 80, 160,
320, and 400 ppm starting at 0 ppm, as seen in Figure 13. All equipment was thoroughly cleaned
before running the experiment to reduce the presence of contamination. Even though the accepted
true value of the OiW concentration cannot be guaranteed without the use of the GC-FID reference
method, the concentration uncertainties related to preparing the samples can be estimated based on
Type B uncertainties, which will be presented later in this subsection. By analyzing the settling time
for each injection of a new OiW concentration in Figure 13, it takes less than three minutes for the OiW
concentration to settle in the system. The exact injection times are highlighted in Figure 13.
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Figure 13. A 100 min experiment with eight different OiW concentrations were added throughout the
experiment: 5, 10, 20, 40, 80, 160, 320, and 400 ppm starting at 0 ppm. The injection time is marked
with black diamonds. The OiW measurements from the four OiW monitors are displayed in RFU,
to evaluate the raw data of the OiW monitor before analyzing the calibration methods.

Based on the precision data presented in Table 1, the repeatability and reproducibility of the
GC-FID method were calculated based on four different concentrations, in several different laboratories,
with n number of samples for each OiW concentration. The repeatability and reproducibility followed
the guidelines provided by ISO 21748 [25,50]. The same procedure was executed on the calibration
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data in Figure 3, to estimate the reproducibility as representation of the measurement uncertainty for
both OLS and WLS, see Tables 4 and 5, respectively. The Grubbs criterion was used for examining
outliers, and the hypothesis of no outliers is rejected if

G >
n− 1√

n

√√√√ t2
a/(2n),n−2

n− 2 + t2
a/(2n),n−2

, (34)

where G is the Grubbs criterion.

Table 4. Data of inter-laboratory trials from the four OiW monitors based on ordinary least square
(OLS) calibration.

Sample No. n x xsoll SR CVR Sr CVr

[−] [ppm] [ppm] [ppm] [%] [ppm] [%]

1 39 −0.54 0 2.11 − 0.25 −
2 39 10.13 10 1.68 16.58 0.94 9.27
3 37 20.58 20 1.42 6.93 1.26 6.16
4 38 47.27 50 5.99 12.78 5.92 12.60
5 40 103.76 100 8.97 8.64 8.89 8.57
6 38 154.53 150 9.80 6.34 9.48 6.13
7 40 294.26 300 24.50 8.33 23.39 7.95

The CVR’s can be added to the calibration measurements with an expanded uncertainty of
coverage factor k = 1.96 as in the previous Section 2. Based on the results in Tables 4 and 5, a rough
estimate of CVR = 10% was made for both OLS and WLS. Note that the reproducibility estimation
is closely related to the repeatability for both OLS and WLS. This is highly due to not fulfilling all
conditions for measuring the reproducibility stated in ISO 21748 [25]. The OiW measurement, on the
same measurand, is done by different individuals but at the same time and in the same laboratory,
which affects the results between-laboratory variance (S2

L):

Table 5. Data of inter-laboratory trials from the four OiW monitors based on weighted least square
(WLS) calibration.

Sample No. n x xsoll SR CVR Sr CVr
[−] [ppm] [ppm] [ppm] [%] [ppm] [%]

1 39 0.04 0 0.26 − 0.24 −
2 39 10.42 10 0.96 9.23 0.91 8.77
3 37 20.52 20 1.91 9.31 1.19 5.80
4 38 46.20 50 5.71 12.37 5.54 11.98
5 40 101.73 100 8.66 8.51 8.62 8.47
6 38 151.57 150 10.28 6.78 9.32 6.15
7 40 287.92 300 26.42 9.18 23.01 7.99

S2
R = S2

r + S2
L. (35)

The prediction interval is another way to define the combined uncertainty of the OiW monitor.
However, there is a chance that both PI and reproducibility, as a representation of combined uncertainty,
are overestimated [28]. Even though overestimation often has its advantages for not exceeding the
safety limit, it becomes difficult to predict the expected result and thereby misrepresents the ability to
estimate an actual outcome, e.g., if the OiW monitors should be used as control feedback. Another way
of predicting uncertainties is by calculating the type B uncertainties of the sampling and the type A
uncertainty of the OiW monitors’ confidence interval. Like in Section 2, a cause-and-effect diagram is
constructed to identify all relevant uncertainty sources. The parameters in the equation of measuring
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the OiW concentration are represented by the main branches in Figure 14. Although, it can be difficult
to determine all related uncertainties. The cause-and-effect diagram in Figure 14 is divided into type B
uncertainties (gray area), related to the manufactures of the different equipment stated uncertainties,
and type A uncertainties (green area), related to the OiW monitors measured confidence interval
from the calibration. The orange area in Figure 14 is related to sources of uncertainties due to the
nature of the solution and human errors, which will not be included in the measurement of the
combined uncertainty. This can be problematic as human errors always will be present, and the
combined uncertainty might be underestimated. However, it will give a good indication of what the
lowest amount of uncertainty would be based on the different equipment used for mixing the eight
different solutions.
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Figure 14. Cause-and-effect diagram of compounded uncertainties contribution to the measurement of
OiW concentration by following the uncertainty related to each equipment used for mixing the eight
different solutions. The cause-and-effect diagram is divided into three sub-groups: type B uncertainties
(gray), type A uncertainties (green), and sampling uncertainties (orange).

The different equipment used for preparing the different OiW concentrations can be seen in
Table 6, and their additional systematic error and random error stated by the different manufacturers.

Table 6. A list of the six different equipment used for preparing the samples of the experiment seen in
Figure 13, and the corresponding systematic and random error.

Abbreviation Volumetric Equipment Volume Systematic Error Random Error

VR1
Graduated cylinder, tall form,

BLAUBRAND®, class A, 1000 mL 1000 mL ±5.00 mL −

VR2
VWR® Volumetric Flask, Class A,

500 mL 500 mL ±0.25 mL −

VR3
Graduated cylinder, tall form,

BLAUBRAND®, class A, 250 mL 250 mL ±1.00 mL −

VR4
Graduated cylinder, tall form,

BLAUBRAND®, class A, 100 mL 100 mL ±0.50 mL −

VR5 Finnpipette® F2: (0.5–5) mL (0.5–5) mL ±40.0 µL 15.0 µL

VR6 Gilson™ F148504: (10–100) µL (10–100) µL ±1.5 µL 0.6 µL

The standard uncertainty due to random error, u(V, rep), is often stated in a datasheet provided
by the manufacturer of the pipette and implies the assumption of being normally distributed. For the
different volumetric flasks, VR1, VR2, VR3, and VR4, the random error cannot, however, be determined
by the manufacturer as it is not a mechanical error but rather based on the end-users ability to measure
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with the naked eye (human error). For simplicity, u(V, rep) of VR1, VR2, VR3, and VR4 are assumed
zero. VR5 and VR6 follows a standard deviation of a normal distribution

u(V, rep) = σ. (36)

The standard uncertainty due to calibration or systematic error of a volume, u(V, cal), is commonly
specified by the manufacturer on the equipment as ±ui. There is no information on the distribution or
coverage factor of this uncertainty estimate, and the uncertainty is therefore conservatively assumed to
be uniformly distributed. To convert the calibration uncertainty to standard uncertainty the calibration
uncertainty is converted using

u(V, cal) =
ui√

3
. (37)

Uncertainty, due to the temperature, affects the thermal expansion of both equipment and
liquids. Although, the volumetric thermal expansion coefficient of Borosilicate glass is insignificant
(9.9× 10−6 °C−1) and is therefore neglected. All the equipment is calibrated at 20 °C according to
the manufacturers, and the laboratory’s temperature normally around 20± 3 °C, the uncertainty is
conservatively assumed to be uniformly distributed as the deviation of temperature was not measured
when the experiment was carried out:

u(V, temp) =
V∆tαV√

3
, (38)

where αV is the volumetric thermal expansion coefficient of each different material (isopropanol, water,
and oil), temperature error ∆t = ±3 °C, and V is the specific volumetric measurement. For the design
of the experiment 495 mL isopropanol, 5 mL oil, and 10 L of water was used. Uncertainties due to
the temperature effects can then be calculated for water, isopropanol, oil, and as mixtures by using
Equation (38).

To calculate the combined uncertainty for each concentration it is important to note that for every
time the equipment is used, an amount of u(V, rep) and u(V, cal) is added to the total volume:

u(V) =
√

u(V, rep)2 + u(V, cal)2 + u(V, temp)2 (39)

Table 7 shows the amount of equipment used for mixing the eight different concentrations from
5–400 ppm.

Table 7. A list of used equipment used for mixing each concentration, Vi −Vi−1 represent the amount
of stock solution that should be added to reach the target concentration.

Vw [mL] Used Equipment

10,000 10 × VR1

Wanted [ppm] Vi [mL] Vi − Vi−1 [mL] Used Equipment

10,000 * 500 − 1 × VR2, 1 × VR5

0 0 0 −
5 5.00 5.00 1 × VR5

10 10.01 5.01 1 × VR5, 1 × VR6

20 20.04 10.03 2 × VR5, 1 × VR6

40 40.16 20.12 4 × VR5, 2 × VR6

80 80.65 40.48 8 × VR5, 5 × VR6

160 162.60 81.96 1 × VR4

320 330.58 167.96 1 × VR3

400 416.67 86.09 1 × VR4

* Stock solution of isopropanol and oil (Cstock).
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As a new concentration is added to the previous mixture of OiW, the total amount of mixture
increases every time. This implies that the uncertainty from the previous mixture is added current one,
see Table 8. The equations for estimating the predicted OiW concentration are as follows:

Cstock =
Votot

Votot + Visotot

× 106 =
Votot

Vstock
× 106 (40)

and
Ci(Vi) =

Vi
Vw + Vi

Cstock. (41)

Cstock is the 10,000 ppm stock solution of isopropanol and oil, Votot and Visotot are the total amount of oil
and isopropanol added to the stock solution respectively. Ci is the eight wanted OiW concentration that
is aimed for, Vw is the total amount of water used in the experiment, and Vi is the different amounts
of volumetric stock solution added to the experiment. Based on the standard uncertainties for each
volumetric measurement of each equipment, the concentration uncertainty of the calibration can be
determined by EURACHEM/CITAC [51]:

UcB(Cstock) = Cstock

√[
u(Votot)

Votot

]2

+

[
u(Vstock)

Vstock

]2

(42)

and

UcB(Ci) = Ci

√[
u(Vw + Vi)

Vw + Vi

]2

+

[
u(Vi)

Vi

]2

+

[
u(Votot)

Votot

]2

+

[
u(Vstock)

Vstock

]2

, (43)

where each OiW concentration’s uncertainties can be seen in Table 8. ucB is the type B uncertainties
obtained from the uncertainty information given by the manufacturer of the used equipment, and ucA is
the mean of all type A standard uncertainties obtained within one standard deviation (68% confidence
interval) from the calibration of all four OiW monitors at the specific concentration, see Figure 3.
Each OiW concentration’s uncertainties based on type A and type B can be seen in Table 8. Note that
the previous ucB, for each OiW concentration, is added to the continuous.

Table 8. Measured type B uncertainties of sampling and type A uncertainties of the OiW monitors’
confidence interval estimated in the calibration.

Volume Unit Equipment No. of Volume ucB ucA,OLS ucA,W LS

Times [mL] [ppm] [ppm] [ppm]

VStock
VR5 1 5.00 59.38 − −
VR2 1 500

V0ppm VR1 10 10,000 - 1.92 0.03

V5ppm VR5 1 5.00 0.04 1.87 0.04

V10ppm
VR5 1 5.00 0.09 1.83 0.09
VR6 1 0.01

V20ppm
VR5 2 10.00 0.18 1.74 0.21
VR6 1 0.03

V40ppm
VR5 4 20.00 0.35 1.59 0.44
VR6 2 0.12

V80ppm
VR5 8 40.00 0.70 1.42 0.91
VR6 5 0.48

V160ppm VR4 1 81.96 1.31 1.74 1.86

V320ppm VR3 1 167.98 2.54 3.60 3.74

V400ppm VR4 1 86.09 3.15 4.68 4.68
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By JCGM [27] it is denoted that if the contributions to uc of the type A and type B standard
uncertainties are denoted by ucA and ucB, the combined uncertainty uc can be calculated as

uc =
√

u2
cA + u2

cB, (44)

and the expanded uncertainty, with 95% confidence interval (k = 1.96) as

U = uck (45)

This is done for both OLS and WLS, as seen in Table 9.

Table 9. Combined and expanded uncertainty for each OiW concentration for both calibration methods:
OLS and WLS.

Volume Unit uc,OLS [ppm] uc,W LS [ppm] UOLS [ppm] UW LS [ppm]

V0ppm 1.92 0.03 3.76 0.06
V5ppm 1.87 0.06 3.67 0.11
V10ppm 1.83 0.13 3.59 0.25
V20ppm 1.75 0.28 3.43 0.54
V40ppm 1.63 0.56 3.19 1.10
V80ppm 1.58 1.15 3.10 2.25
V160ppm 2.18 2.28 4.28 4.47
V320ppm 4.41 4.52 8.64 8.86
V400ppm 5.65 5.65 11.07 11.07

Summarizing the three different methods of estimating the uncertainty related to preparing
a sample and measuring the OiW concentration by the four OiW monitors:

• Using the prediction interval directly from the calibration of the OiW monitors.
• Estimating the reproducibility based on the calibration data.
• The estimated combined uncertainty based on type A and type B uncertainties.

Instead of looking at the RFU measurement of each OiW monitor in Figure 13, the OiW
concentrations are measured by each OiW monitor for both OLS and WLS, which are shown in
Figures 15 and 16, respectively.
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Figure 15. A 100 min experiment with eight different OiW concentrations as in Figure 13.
The measurements from the four OiW monitors are displayed in ppm based on the OLS calibration method.
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Figure 16. Similar as Figure 15; however, the measurements from the four OiW monitors are based on
the WLS calibration method instead of OLS.

Only by looking at the two different ways of estimating the least square of the experiment in
Figures 15 and 16, there is a clear tendency that the deviation of WLS, in the lower region, is smaller than
with OLS. At high concentrations, it is more difficult to determine which of the two ways deviates from
the predicted concentration. This tendency also agrees with the theory that OLS tends to fit points that
are at the upper calibration levels better than those points at the lower calibration levels. To evaluate
the performance of OLS and WLS, an average for each OiW concentration is calculated based on the
duration time between injection time minus the first three minutes listed in Tables 10 and 11. As the
accepted true OiW concentration cannot be given without the GC-FID reference method, the grand
mean (C) of each OiW concentration based on all four monitors are calculated and their predicted OiW
concentrations (Xpred) that were aimed for.

Table 10. Data of the experiment containing the predicted concentration, each steady-state value
of the four OiW monitors based on OLS calibration, and the grand mean of all four monitors for
each concentration.

Xpred [ppm] C1 [ppm] C2 [ppm] C3 [ppm] C4 [ppm] C [ppm]

0 −0.45 −1.83 0.57 2.49 0.19
5 5.02 4.05 5.60 7.48 5.54

10 9.93 9.53 10.19 12.08 10.43
20 18.54 18.43 18.10 20.36 18.85
40 36.48 37.39 34.88 38.19 36.74
80 73.04 75.81 68.26 74.98 73.02
160 149.62 154.81 137.39 152.60 148.61
320 321.31 328.94 293.83 330.24 318.58
400 417.58 422.98 378.92 434.06 413.39

By analyzing the performance of OLS and WLS with the three different ways of determining
uncertainties, a good indication of the OiW monitors’ reproducibility can be given. Figures 17 and 18
show the results of the mean OiW concentrations from each OiW monitor for both OLS and WLS listed
in Tables 10 and 11, respectively. The C’s are used as a reference for each specific OiW concentration
and both calibration methods, denoted as categories on the y-axes. The black squared marker in
Figures 17 and 18 represent the predicted OiW concentration for each target, and the numbered marker
( 1©, 2©, 3©) represent the three different ways of determining the uncertainty.
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Table 11. Data of the experiment containing the predicted concentration, each steady-state value
of the four OiW monitors based on WLS calibration, and the grand mean of all four monitors for
each concentration.

Xpred [ppm] C1 [ppm] C2 [ppm] C3 [ppm] C4 [ppm] C [ppm]

0 −0.13 1.43 0.34 1.26 0.72
5 5.21 6.75 5.46 6.31 5.93

10 10.00 11.69 10.13 10.95 10.69
20 18.39 19.72 18.18 19.33 18.90
40 35.89 36.83 35.26 37.36 36.34
80 71.55 71.50 69.24 74.56 71.71
160 146.23 142.79 139.60 153.06 145.42
320 313.67 299.91 298.81 332.69 311.27
400 407.55 384.78 385.42 437.68 403.86

By looking at the results for both OLS and WLS, in most cases, Xpred lies within the measurements
of the four OiW monitors. However, for the target at 40, 80, and 160 ppm solutions the OiW
concentration of all four monitors were lower than the prediction aimed for with both calibration
methods, which might be a result of insufficient amount of stock solution added to the setup.

Evaluating the performance of predicting the uncertainty related to the OiW monitors,
each method’s performance is described for both calibration methods:

OLS:

1© As the weighting factor within PI of OLS is equal to one, the result of using PI as uncertainty
boundary are equal in all OiW concentration. Resulting in overestimation of uncertainty at
a lower concentration, and might end in an underestimation at high OiW concentrations.

2© The 10% uncertainty estimation based on the reproducibility is applied, covering almost all OiW
steady-state values the entire range except at 5 ppm. It is clearly the best way to represent the
uncertainty related to OLS measurement compared to the other two methods.

3© The measurement of type B uncertainty was, as expected, difficult to include all uncertainties,
resulted in an underestimation of the uncertainty above 40 ppm. The type A uncertainty from
the CI of the OLS calibration is the main reason for the joined type A and type B uncertainty
measurement fits within its boundary at the lower OiW concentration.

WLS:

1© The weighting factor within PI of the WLS method is equal to the sample variance measured
at each OiW concentration. The uncertainty estimation covers all OiW steady-state values in
all ranges.

2© The same as for OLS, a 10% uncertainty estimation based on the reproducibility calculation is
applied. The uncertainty range is lower than the PI but still cover all OiW steady-state values in
the entire range.

3© As for OLS, the measurement of type B uncertainty for WLS was, as expected,
also underestimated.

Even though the reproducibility may be a good representation of the uncertainty related
to the OiW monitors for both calibration methods, it usually requires a substantial amount of
inter-laboratory trials for calculating the reproducibility. Therefore, it may not be the best approach to
achieve an uncertainty boundary related to the OiW concentration obtained from the OiW monitor.
However, using the PI as uncertainty estimation is only valid for the WLS method due to the
weighting factor.
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Figure 17. The analysis of three different methods for determining the best estimation of the OiW
monitors’ uncertainty based on OLS in the entire range of interest. The grand mean for each
concentration is used as a reference point and categorized on the y-axes. The plot is divided into two
subplots for better visualization of the OiW concentration range of interest.
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Figure 18. The analysis of three different methods for determining the best estimation of the OiW
monitors’ uncertainty based on WLS in the entire range of interest. The grand mean for each
concentration is used as a reference point and categorized on the y-axes. The plot is divided into two
subplots for better scaling of the OiW concentration range of interest.

6. Discussion

In general, RFU was used to represent the trend of OiW concentration, as the accepted true value
of the fluid quantity was not able to be guaranteed on the pilot-plant. It will require a vast amount of
cleaning to ensure that no previous dead volumes are present in the pilot-plant and all pipes are free
of algae, bacteria, oil, grease, etc., all of which will influence the measurement. Even then, it can still
not be guaranteed that contamination might inadvertently enter the system. Furthermore, samples
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of the OiW solution used in the pilot-plant should be analyzed by the GC-FID method to validate
if the OiW monitors measure the accepted true value. As mentioned in Sections 2 and 3.1, the most
desirable outcome of the OiW monitors will be both high accuracy with high precision, but to achieve
high accuracy with low uncertainty, it is necessary to have high precision. As directly investigating
the OiW monitors’ precision can be challenging to accomplish with relatively high uncertainty in
sampling, reproducibility was investigated to determine whether the OiW monitors can be used as
a non-reference method. Figures 15 and 16 show the result of calibrating the OiW monitors using OLS
and WLS on the same data set. Based on the calibration data in Figure 3, there is a clear tendency of
heteroskedasticity, where the variance increases when the signal intensity increases, and that the RFU
and ppm relation follows a linear trend.

Looking at the results in Table 12 obtained from Figures 15 and 16 of the two calibration methods,
at no given time did the WLS have a larger deviation between the OiW monitors’ measurements
than the OLS calibration method. Especially at the low OiW concentrations, the deviation of OLS
was 2–3 times larger than with WLS. This indicates that WLS, as a calibration method, provides the
higher reproducibility of the OiW monitors compared to OLS. Another analysis was to investigate if
the uncertainty of the OiW monitors could be represented to an operator either for direct reporting
of the OiW concentration with related uncertainty or as decision support. Including the uncertainty
to the measurements will also fundamentally impact the control system design for expressing the
discharge limit, if OiW monitors in the future should be used as control feedback for advanced control
with the aim to achieve better operation in both the separation and treatment process. The results in
Figure 18 show that PI and reproducibility are two good candidates for representing the uncertainty of
OiW monitors’ measurements. However, reproducibility typically requires a substantial amount of
inter-laboratory trials. Therefore, it is suggested that PI, which can mathematically be expressed based
on calibration data, should represent the uncertainty of the OiW measurement, and reproducibility
may be given as a reference to update the uncertainty parameter in the calibration curve. Note that the
results from this experiment are taken under ideal conditions for the fluorescence-based monitors to
investigate the calibration comparison, as isopropanol was added to the mixture for dissolving oil into
the water phase.

Table 12. Data of the results in Figures 15 and 16, containing the predicted concentration,
biggest deviation between all four OiW monitors for each concentration and each calibration method,
and biggest deviation from C for each concentration and each calibration method.

Xpred [ppm]
Biggest div. between Biggest div. between Biggest div. from Biggest div. from Biggest div. from Biggest div. from

C1, C2, C3, C4 C1, C2, C3, C4 COLS [ppm] COLS [%] CW LS [ppm] CW LS [%]
with OLS [ppm] with WLS [ppm]

0 4.34 1.56 2.30 − 0.86 −
5 3.43 1.54 1.95 35.1 0.82 13.8
10 2.55 1.70 1.64 15.8 1.00 9.4
20 2.26 1.54 1.50 8.0 0.82 4.4
40 3.31 2.10 1.86 5.0 1.08 3.0
80 7.55 5.33 4.76 6.5 2.85 4.0

160 17.42 13.46 11.21 7.5 7.64 5.3
320 36.41 33.88 24.75 7.8 21.42 6.9
400 55.14 52.91 34.46 8.3 33.83 8.4

During the experiments, variations of flow conditions caused the sidestream not to be
a representation of the mainstream in the process. The results of Figure 7 raised the suspicion that the
OiW monitors were flow-dependent, though further investigation confirmed that it was not the case.
The results in Figures 11 and 12, from the experiment on flow-dependency, showed an insignificant
relationship between OiW concentration and flow rate based on the boxplot and the ANOVA tests,
both with demineralized water and tap water. Demineralized water was selected as the basis of the
reference as, ideally, it should not contain any fluorescence-sensitive matter. The tap water was known
to fluoresce and was therefore used as a second RFU concentration for flow-dependency. Oil with
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emulsifiers could also have been used for this experiment to ensure that the results were not limited to
water, but uncertainties related to homogeneity could increase due to oil, and isopropanol must be
fully dissolved in the water phase. It was, therefore, debatable whether the extracted sidestream was
representable due to operating conditions. By comparing Figures 7 and 8, Reynolds number did have
a huge impact on the measurement, and it is safe to conclude that the system cannot be operated below
a mainstream of 0.4 L/s if turbulence is required throughout the system. It was furthermore questioned
if the two-phases of the flow were uneven split in the T-junction due to hydrodynamics, and a phase
maldistribution might have taken place between the run and the branch [52]. The T-junction sample
point was also questioned to influence OiW concentration measurement, even when the flow is
assumed highly turbulent; gravity, inertia, and pressure might still influence how the two-phase flow is
divided between the run and branch of the T-junction [53]. Another drawback of using the T-junction
as the sampling point is the propagation or amplification of other upstream processes effects that cause
an uneven concentration split. An example of this could be the increasing shear forces of the CP that
change the droplet size distribution, which should not ideally affect the OiW concentration. However,
a shift in droplet sizes might affect the split between the run and the branch, which could potentially be
the source of the observed increment in RFU as the flow rate is increased in Figure 8. This hypothesis
is supported when comparing the results in Figures 8 and 9, as the step input signal to Qi and Qs in
both experiments are identical. By changing the controller and actuator in Figure 8 from controlling
Qi by CP to controlling Qi by Vs, meanwhile keeping CP constant in Figure 9, the OiW measurement
was kept constant. The dispersed liquid is likely more stable throughout the process when CP is kept
constant, as increasing shear forces from the CP would probably decrease the average droplet size
and thereby a better representation in the entire mainstream. Even though this is a positive effect for
investigating the OiW monitors, it is undesirable as the average droplet size decrease, which heavily
reduces the separation efficiency of the process [54]. The measurement of the OiW somewhat seems to
be constant in Figure 9, but the system still has issues that can be addressed in the future to lower the
uncertainty as much as possible related to sampling:

• Change the sample point from horizontal to be vertical.
• Use a sample probe for directing the rising flow through the sidestream.
• Use isokinetic sampling.
• Minimize the transport delay between the sample point and the OiW monitor as the manufacturer

recommends a 1/2" connection with a maximum flow rate of 2.0 L/min, which relates to
transitional flow (Re = 3358) and stratification can happen in the transport pipeline.

Air’s influence on the OiW monitors was also investigated on a standalone system. Figure 10
shows that the injection of air both introduces systematic and random error in the measurement of
OiW. As the random error of air introduction only increases the uncertainty, seen as noise on the RFU
signal, it might be acceptable if using a moving average of the OiW concentration, assuming zero-mean
random noise, preferably including the measurements of the past minutes or more. Variations in the
systematic error based on the volume and size distribution of gas bubbles will be a problem, as it will
not be feasible accounting for air’s influence by simply recalibrating. However, seen from a normal
oil separation process, systematic error due to gas bubbles might not be an issue as a three-phase
separator will reduce the volume and size distribution of gas bubbles before the sample point.
Further investigation should examine how the volume and size relationship of gas bubbles influences
the OiW concentration.

Most of the discussion has focused on implementation and process criteria to reduce parameters
that influence the OiW concentration, but it is not necessarily only a process design issue. The inner
filter effect is a common internal issue of fluorescence-based monitors that describes the nonlinear
relationship between the fluorescence intensity and the concentration of a fluorophore [55]. A decrease
in fluorescence emission due to inner filter effect is caused by the absorption of the exciting light
closer to the incident beam, which significantly diminishes the light intensity further away from it.
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Secondary inner filter effects are caused by reabsorption of fluorescence [55]. Inner filter effects could
also have affected the results observed in Figures 8 and 10. When the concentration is high, or the light
absorption is high, the excitation beam is attenuated by the sample so that the surface perpendicular to
the excitation beam fluoresces most powerful [56]. This effect might explain why the OiW monitors
output a higher RFU even though the concentration is still the same, as smaller droplets that are
generated by the high shear pump (CP) increases the oil droplets’ total surface area, which is at the
current time under investigation.

Other effects that can influence the analysis are chemical quenchers, such as oxygen and chloride,
where a quenching mechanism refers to decreases in the fluorescence intensity of a sample [57–59].
The most significant mechanism of oxygen quenchers is the collision of oxygen and phosphor molecules
in the excited triplet state [56,57,60]. Even though chlorine has not been used in these experiments, it
is necessary to address if the quenching mechanism happens when chlorine is present, as chlorine is
often added to the process for killing microorganisms. In [58], the results showed that all polynuclear
aromatic hydrocarbon (PAH) molecules decreased in fluorescence due to the presence of chlorine.
Some of the PAH types did even show a 41% decrease in fluorescence due to chlorine [58]. Other more
physical differences between the measurement of the OiW monitors could be due to differences in the
photomultiplier or degradation of the fluorescent lamp over time. However, it should be possible to
account for those by recalibration.

Based on the authors’ knowledge, one of the most significant issues with the use of
fluorescence-based monitors is the big uncertainty related to what is fluorescing in the excitation
region. Due to the high sensitivity to the presence of other atomic structures, in the same excitation
region as aromatic hydrocarbons, the OiW monitors might not be feasible for measuring the exact OiW
concentration in a highly dynamic separation facility with consistent changes of substances. As high
reproducibility of the OiW monitors can be achieved with proper calibration, they can still be useful to
determine the separation efficiency of separation equipment, such as deoiling hydrocylcones. As the
separation efficiency is not dependent on OiW accuracy, but rather the ratio of OiW concentration
across the hydrocyclone, the OiW monitors will still be feasible for enhancing the hydrocyclones
deoiling performance. Another use of the OiW monitors could be in cooperation with other sensors,
as a single monitor is unable to reduce uncertainty in its perception [61]. As uncertainty arises from
various conditions for measuring the OiW concentration, it could be of interest to combine several
sensors to gain more rich information. This can be done in several ways by using sensor fusion
to increase the quality of data, increase reliability, or estimate unmeasured states. Redundancy of
identical monitors would reduce the amount of uncertainty by averaging the value, seen in Figures 15
and 16, and to compensate for sensor deprivation by fault-tolerant design [61]. However, it might
not be the best solution as interference will affect all identical monitors, as discussed throughout the
paper. Instead, a combination of different sensor types can be fused, i.e., Kalman filter, which provides
a likelihood estimation of the measured OiW concentrations based on the different sensors [61].
As traditional Kalman filter requires the sensor measurement uncertainties, knowing the uncertainty of
the OiW monitors will benefit the Kalman filter prediction [62]. This is usually executed by predicting
the true value by producing estimates of the current state variables, along with their uncertainties [63].
The most weight is given to the value with the least uncertainty. As a result, the estimates produced by
the Kalman filter tend to be closer to the true values than sensors used separately.

7. Conclusions

The paper presented an evaluation of four fluorescence-based monitors (Turner TD4100-XDC) that
are sensitive to the content of aromatic oil in a mixture. The fluorescence-based monitor was thoroughly
calibrated to a specific oil type used in all experiments. The “true” values of the fluorescence-based
monitors, compared to the OSPAR GC-FID reference method, were at no given time measured, as the
measurement of oil-in-water (OiW) is known to be highly methodology-dependent. Additionally,
a relatively high amount of uncertainties are potentially associated with the reference method.
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From this assessment, the precision, repeatability, and reproducibility of the fluorescence-based
monitors were investigated.

Testing the OiW monitors’ calibration method revealed that the weighted least square (WLS)
is preferred to achieve higher reproducibility, compared to ordinary least square (OLS), due to the
heteroskedastic behavior. Having a good understanding of the uncertainties associated with the OiW
monitors will also help the industrial acceptance of including online monitors.

Previous studies of the fluorescence-based monitors raised concerns about the measurement of
OiW concentration being flow-dependent. However, based on the results of the fluorescence-based
monitors, they are not or at least insignificantly flow-dependent within its recommended flow
rate range. The flow-dependency phenomenon of two fluorescence-based monitors, discussed by
Bram et al. [24], was caused by insufficient representation of the process flow. To circumvent the
transport stratification in the pipelines, the mainstream of the process must be operated at Re > 10, 000.
Furthermore, the horizontal used T-junction as a sampling point was questioned to split the two phases
unevenly, and as a result, the testing facility is scheduled for replacement of the sampling point to
further lower uncertainties.

The measurements of the OiW monitors were also observed and discussed to be affected by other
interferences such as gas bubbles, droplet sizes, quenchers introduced by the solution’s composition,
and presences of other atomic structures in the same excitation region. Due to the high sensitivity to
different compositions of atomic structures other than aromatic hydrocarbons, the fluorescence-based
monitors might not be feasible for measuring OiW concentrations in highly dynamic separation
facilities with continuous changes of the fluid composition. Thus, different interference parameters
influenced the measurements of the fluorescence-based monitors, they still have a high precision
between each other, and it could still be of interest for measuring the separation efficiency of OiW
separation processes downstream the gravity separator, such as deoiling hydrocyclones and membrane
filtration systems, to enhance their deoiling performance. One advantage of measuring inlet and
outlet OiW concentration of a separation process is that separation efficiency is a ratio of the two
measurements, and therefore robust to interference that affects both of the monitors.
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The following abbreviations are used in this manuscript.

OiW Oil-in-Water
PWRI produced water re-injection
PW produced water
IW injection water
MIC microbiologically influenced corrosion
OSPAR Oslo and Paris convention (for the Protection of the Marine Environment of the Northeast Atlantic)
GC-FID gas chromatography-flame ionization detector
TEX toluene, ethylbenzene, and xylene
ISO International Organization for Standardization
RFU relative fluorescence units
ppm parts per million
OLS ordinary least square



Sensors 2020, 20, 4435 34 of 36

BLUE best unbiased estimator
WLS weighted least square
CI confidence interval
PI prediction interval
ANOVA analysis of variance
PAH polynuclear aromatic hydrocarbon
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