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Abstract: In this paper, we derive lower and upper bounds on the OPTA of a two-user multi-input
multi-output (MIMO) causal encoding and causal decoding problem. Each user’s source model is
described by a multidimensional Markov source driven by additive i.i.d. noise process subject to
three classes of spatio-temporal distortion constraints. To characterize the lower bounds, we use state
augmentation techniques and a data processing theorem, which recovers a variant of rate distortion
function as an information measure known in the literature as nonanticipatory ε-entropy, sequential
or nonanticipative RDF. We derive lower bound characterizations for a system driven by an i.i.d.
Gaussian noise process, which we solve using the SDP algorithm for all three classes of distortion
constraints. We obtain closed form solutions when the system’s noise is possibly non-Gaussian for
both users and when only one of the users is described by a source model driven by a Gaussian
noise process. To obtain the upper bounds, we use the best linear forward test channel realization
that corresponds to the optimal test channel realization when the system is driven by a Gaussian
noise process and apply a sequential causal DPCM-based scheme with a feedback loop followed
by a scaled ECDQ scheme that leads to upper bounds with certain performance guarantees. Then,
we use the linear forward test channel as a benchmark to obtain upper bounds on the OPTA, when
the system is driven by an additive i.i.d. non-Gaussian noise process. We support our framework
with various simulation studies.

Keywords: bounds; causal coding; one-shot information theory; convex programming; estimation;
spatial distortion constraints; temporal distortion constraints; multi-user rate distortion theory

1. Problem Statement

We consider the two-user causal encoding and causal decoding setup illustrated in Figure 1. In this
setup, users 1 and 2 are modeled by the following discrete-time time-invariant multidimensional
Markov processes:

x1
t+1 = A1x1

t + w1
t , t = 0, 1, . . .

x2
t+1 = A2x2

t + w2
t ,

, (1)

where x1
t ∈ Rp1 , x2

t ∈ Rp2 , with p1 not necessarily equal to p2, (A1, A2) are known constant matrices of
appropriate dimensions and (w1

t , w2
t ) are additive i.i.d. possibly non-Gaussian noise processes with

zero mean and covariance matrix Σwi � 0, i = 1, 2, independent of xi
0, i = 1, 2 and from each other

for all t ≥ 0. The initial states xi
0, i = 1, 2 are given by xi

0 ∼ (0; Σxi
0
), i = 1, 2. Finally, we restrict the
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eigenvalues of (A1, A2) to be within the unit circle, which means that each user’s system model in (1)
is asymptotically stable (i.e., asymptotically stationary).

User 1
Encoder

MMSE 

Decoder

x1

t

x2

t

Rt
y1

t

y2

tUser 2

Figure 1. System model. The encoder receives information from two users that do not interact from
a dynamical system perspective, but they are allowed to allocate bits between them and across the
dimensions. The compression is done causally whereas the clocks of the encoder and the decoder are
assumed to be synchronized.

The goal is to cast the performance of the setup in Figure 1 under various distortion metrics when
the encoder compress information causally whereas the lossless compression between the encoder and
the decoder is done in one shot assuming their clocks are synchronized.

First, we apply state space augmentation [1] to the state-space models in (1) to transform them
into a single augmented state-space model as follows:

xt+1 = Axt + wt, (2)

where xt+1 = [x1T

t+1, x2T

t+1]
T ∈ Rp1+p2 , A is a block diagonal matrix and wt is an additive i.i.d. possibly

non-Gaussian noise process such that wt ∼ (0; Σw) where (A, Σw) are of the form[
A1 0
0 A2

]
∈ R(p1+p2)×(p1+p2),

[
Σw1 0

0 Σw2

]
∈ R(p1+p2)×(p1+p2). (3)

We note that the operation in (3) can be mathematically denoted as A = A1 ⊕ A2 and similarly,
Σw = Σw1 ⊕ Σw2 (see the notation section for “⊕”).
System Operation: The encoder at each time instant t observes the augmented state xt and generates
the data packet `t ∈ {1, . . . , 2Rt} of instantaneous rate Rt. At time t, the packet `t is sent over a noiseless
channel with rate Rt. The decoder at each time t, receives `t to construct an estimate yt of xt. We assume
that the clocks of the encoder and decoder are synchronized. Formally, the encoder (E ) and the decoder
(D) are specified by a sequence of measurable functions {( ft, gt) : t ∈ N0} as follows:

E : `t = ft(`
t−1, xt), `−1

−∞ = ∅,

D : yt = gt(`
t).

(4)

1.1. Generalizations

It should be noted that the setup in Figure 1 can be generalized to any finite number of users.
The only change will appear in the number of state-space equations and the dimension of the vectors
and matrices in the augmented state-space representation of (2).

Next, we explain the setup of two users that are correlated (in states). In such scenario, users 1
and 2 are modeled by the following discrete-time time-invariant multidimensional Markov processes:

x1
t+1 = A11x1

t + A12x2
t + w1

t , t = 0, 1, . . .

x2
t+1 = A22x2

t + A21x1
t + w2

t ,
, (5)
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where x1
t ∈ Rp1 , x2

t ∈ Rp2 , with p1 not necessarily equal to p2, (A11, A12, A21, A22) are known
constant matrices of appropriate dimensions whereas all the other assumptions remain similar to the
user models described in (1). The single augmented state-space model now is obtained as follows:

xt+1 = Âxt + wt, (6)

where Â is a block matrix of the form[
A11 A12

A21 A22

]
∈ R(p1+p2)×(p1+p2), (7)

where A11, A22 are square matrices but (A12, A21) may be rectangular matrices (if p1 6= p2). We will
not consider this case in our paper because it is straightforward by replacing everywhere matrix A
with matrix Â. Clearly, this case can be generalized to any finite number of users with appropriate
modifications on the state-space models.

1.2. Distortion Constraints

In this work we consider three types of distortion constraints. These are articulated as follows:

(i) a per-dimension (spatial) distortion constraint on the asymptotically averaged total (across the
time) MMSE covariance matrix;

(ii) an asymptotically averaged total (across the time and across the space) distortion constraint;
(iii) a covariance matrix distortion constraint.

Next, we give the definition of each distortion constraint and explain some of their utility in
multi-user systems.

A per-dimension (spatial) distortion constraint imposed on the covariance distortion matrix
Σ∆ , lim supn−→∞

1
n+1 ∑n

t=0 E {(xt − yt)(xt − yt)T}, where Σ∆ � 0, is defined as follows:

Σ∆ii ≤ Dii, i = 1, . . . , p, (8)

where Dii ∈ [0, Dmax
ii ] are given diagonal entries of the positive semidefinite matrix D̂ � 0, with

trace(D̂) ≡ D, D ∈ [0, Dmax]. Note that under this distortion constraint, it trivially holds that
lim supn−→∞

1
n+1 ∑n

t=0 E
{
||xt − yt||22

}
≤ D.

Utility: The choice of per-dimension distortion constraints is arguably more realistic in various network
systems. For instance, one use of such hard constraints can be found in multivariable feedback control
systems also called centralized multi-input multi-output (MIMO) systems [2] (see Figure 2). In such
networks, it may be the case that one wishes to minimize the temporally total performance criterion
or satisfy some total fidelity constraint. However, in addition it is always required that the resource
allocation to the different nodes (or variables) to never exceed certain performance thresholds when the
demands in data transmission within the communication link allows only limited rate. Nonetheless,
the problem is that variables interact. Some variables could be considered more important for certain
applications according to the demands of the system or the quality of service, which is why they need
hard constraints.
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Figure 2. Centralized multivariable multi-input multi-output (MIMO) control system.

An asymptotically averaged total (across the time and space) distortion constraint is defined
as follows:

lim sup
n−→∞

1
n + 1

n

∑
t=0

E
{
||xt − yt||22

}
≤ DT , (9)

where DT ∈ [0, Dmax
T ], with DT not necessarily equal to D.

Utility: The asymptotically averaged total (across the time and space) distortion constraint ensure
shared or allocated distortion arbitrarily among the transmit dimensions. The combination of the
per-dimension distortion constraint with the averaged total distortion constraints ensure a total
allocated distortion budget in the system that depends on the allowable (by design) distortion budget
at each dimension (or user).

A covariance matrix distortion constraint is a generalization of the per-dimension distortion
constraint defined by

Σ∆ � Dcov, (10)

where Dcov � 0.
Utility: During the recent years, there has been a shift from conventional MSE distortion constraints
(scalar-valued target distortions) to covariance matrix distortions in the areas of multiterminal and
distributed source coding [3–7] and signal processing [7–9]. Nonetheless, the argument for considering
covariance distortion constraints despite its difficulty is its generality and the flexibility in formulating
new problems. For instance, one practical example would be wireless adhoc microphones, that transmit
to receiver(s) over an MIMO channel. In such setups, perhaps the receiver(s) need to do beam forming
or some multi-channel Wiener filtering variants. In both cases, one needs to know the covariance matrix
of e.g., the error signal (covariance distortion matrix) to perform the desired signal enhancement. For
example, if the quality of one of the signals is too bad, this could harm the overall signal enhancement,
and one therefore need to trade-off the bits correctly among the microphones. In an adhoc microphone
array, the different signals are naturally correlated, which adds an interesting interplay between them
that goes beyond MSE distortion.

1.3. Operational Interpretations

In this subsection, we use the three types of distortion constraints introduced in Section 1.2 to
define the corresponding operational definitions for which we study lower and upper bounds in
this paper.
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Definition 1 (Causal RDF subject to (8)). The operational causal RDF under per-dimension distortion
constraints is defined as follows:

Rc
pd(D) , inf

( ft ,gt): t∈N0
Σ∆ii
≤Dii , i=1,...,p

lim sup
n−→∞

1
n + 1

n

∑
t=0

Rt, (11)

where Dii ∈ [0, Dii,max] and D ∈ [0, Dmax].

Definition 2 (Causal RDF subject to (8) and (9)). The operational causal RDF under joint per-dimension
and asymptotically averaged total distortion constraints is defined as follows:

Rc
joint(D∗) , inf

( ft ,gt): t∈N0
Σ∆ii
≤Dii , i=1,...,p,

lim supn−→∞
1

n+1 ∑n
t=0 E{||xt−yt ||22}≤D∗

lim sup
n−→∞

1
n + 1

n

∑
t=0

Rt, (12)

where D∗ = min{DT , D}.

Interplay between Definitions 1 and 2. Clearly, Definition 1 is a lower bound to Definition 2 because
its constraint set of feasible solutions is larger. Note that, in general, the asymptotically averaged
total distortion constraint in (12) is active when DT ≤ D, otherwise, it is a trivial constraint and (12) is
equivalent to the optimization problem of (11). This observation will be shown via a simulation study
in the sequel of the paper.

Definition 3 (Causal RDF subject to (10)). The operational causal RDF under covariance matrix distortion
constraints is defined as follows:

Rc(Dcov) , inf
( ft ,gt): t∈N0

Σ∆�Dcov

lim sup
n−→∞

1
n + 1

n

∑
t=0

Rt, (13)

where Dcov � 0.

Literature Review. In information theory, causal coding and causal decoding also termed zero-delay
coding (see, e.g., [10–14]) does not rely on the traditional construction based on random codebooks
that in turn allows asymptotically large source vector dimensions [15] to establish achievability of
a certain (non-causal) rate-distortion performance. Indeed, the optimal rate-distortion performance
for causal source coding (with the clocks of the encoder and decoder to be synchronized), is hard
to compute and often bounds are derived in the literature. For example, lower and upper bounds
on the operational causal RDF subject to solely the distortion constraint in (9) (or the more stringent
per instant distortion constraint E{||xt − yt||22} ≥ Dt, ∀t) are already studied extensively for various
special cases of the setup of Figure 1, see, e.g., [11,14,16,17] and the references therein. In this work,
we study new problems related to the causal RDF for the general multi-user source coding setup of
Figure 1 under various classes of distortion constraints that their utility (partly explained in Section 1.2)
has not been studied in the literature so far. These bounds are established using tools from information
theory, convex optimization and causal MMSE estimation.

1.4. Contributions

In this paper we obtain the following results for the setup of Figure 1.

• Characterization and computation of the true lower bounds on (11)–(13) when the users’
augmented source model is driven by a Gaussian noise process (Lemma 3, Theorem 2).
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• Analytical lower bounds on (11)–(13) when the users’ augmented source model is driven
by additive i.i.d. noise process (including both additive Gaussian and non-Gaussian noise)
(Theorem 3). As a consequence, we also obtain analytical lower bounds when only one of
the users’ source model is driven by a Gaussian noise process (Corollary 2).

• Characterizations and computation of achievable bounds on (11)–(13) when the users’ augmented
source model is driven by a Gaussian noise process (Theorem 4).

• Characterizations of achievable bounds on (11)–(13), when the users’ augmented source model is
driven by additive i.i.d. non-Gaussian noise process (Theorem 5).

Machinery and tools. The information theoretic rate distortion definitions that are used to obtain
the lower bounds in this paper are derived using a data processing theorem (Theorem 1) that reveals
the “suitable” information measure to use. The derivation of the steady-state characterization of
the lower bounds in Lemma 3 is derived using inequalities from matrix algebra and a convexity
argument that allows the use of Jensen’s inequality. To derive lower bounds beyond additive i.i.d.
Gaussian noise process, we use the fact that the characterizations of the lower bounds for the Gaussian
case are in fact the characterizations obtained for the best linear coding policies (Lemma 4) hence
these can serve as a benchmark to derive lower bounds beyond Gaussian noise process by leveraging
certain trace/determinant inequalities and most importantly Minkowski’s determinant inequality ([18],
Exercise 12.13) and EPI [19]. The upper bounds on the OPTA when the system’s noise is Gaussian, are
derived using a causal sequential DPCM-based scheme with feedback loop which is equivalent to the
scheme first derived in [14], followed by an ECDQ scheme that uses vector quantization. The upper
bounds on the OPTA, when the system’s noise is additive i.i.d. non-Gaussian are obtained using
precisely the same trick that is used to obtain the lower bounds, i.e., we use the linear test channel
realization that achieves similar upper bounds for the Gaussian case and then, using an SLB type
concept (Theorem 5) we obtain the desired results.

The paper is structured as follows. In Section 2 we characterize and compute lower bounds on the
OPTA of (11)–(13). In Section 3 we characterize and compute achievable coding scheme on the OPTA
of (11)–(13). We draw conclusions and future directions in Section 4.

2. Lower Bounds

In this section, we first choose a suitable information measure that will be used to derive a lower
bound on Definitions 1–3. This information measure is a variant of directed information subject to some
conditional independence constraints. Then, we obtain lower bounds on Definitions 1–3 for jointly
Gaussian Markov processes and for Markov processes driven by additive i.i.d. possibly non-Gaussian
noise process.

First, we write the joint distribution of the communication system of Figure 1, i.e., from the two
users described by the augmented state {xt : t ∈ Nn

0} to the augmented output of the MMSE decoder
{yt : t ∈ Nn

0}. In particular, the joint distribution induced by the joint process {(xt, `t, yt) : t ∈ Nn
0}

admits the following decomposition:

P(dxn, d`n, dyn) = ⊗n
t=0P(dyt, d`t, dxt|yt−1, `t−1, xt−1)

= ⊗n
t=0P(dyt|yt−1, xt, `t)⊗ P(d`t|`t−1, yt−1, xt)⊗ P(dxt|xt−1, yt−1, `t−1)− a.s.

= ⊗n
t=0P(dyt|yt−1, `t)⊗ P(d`t|`t−1, yt−1, xt)⊗ P(dxt|xt−1)− a.s., (14)

which means that the augmented state “source” process xt, and the decoder’s output process yt satisfy
the following conditional independence constraints:

P(dxt|xt−1, yt−1, `t−1) = P(dxt|xt−1)− a.s., (15)

P(dyt|yt−1, `t, xt) = P(dyt|yt−1, `t)− a.s. (16)

For (14) we state the following technical remark.
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Remark 1 (Trivial initial information). In (14) we assume that the joint distribution P(dx−1, d`−1, dy−1)

generates trivial information. This means that P(dx0|x−1, y−1, `−1) = P(dx0), P(dy0|y−1, x0, `0) =

P(dy0|x0, `0) and P(d`0|`−1, y−1, x0) = P(d`0|x0).

We next prove a data processing theorem.

Theorem 1 (Data processing theorem). Provided the decomposition of the joint distribution in (14) holds, the
augmented state-space representation of the system in Figure 1 admits the following data processing inequalities:

I(xn; yn)
(ii)
≤ I(xn; `n||yn−1)

(i)
≤

n

∑
t=0

Rt, (17)

where

I(xn; `n||yn−1) ,
n

∑
t=0

I(xt; `t|`t−1, yt−1),

I(xn; yn) ,
n

∑
t=0

I(xt; yt|yt−1),
(18)

assuming I(xt; `t|`t−1, yt−1) < ∞, ∀t, and I(xt; yt|yt−1) < ∞, ∀t.

Proof. We first prove (i).

n

∑
t=0

Rt ≥
n

∑
t=0

H(`t|`t−1)

(a)
≥

n

∑
t=0

H(`t|`t−1, yt−1)

(b)
≥

n

∑
t=0

[
H(`t|`t−1, yt−1)− H(`t|`t−1, yt−1, xt)

]
(c)
=

n

∑
t=0

I(xt; `t|`t−1, yt−1)

≡ I(xn; `n||yn−1),

where (a) follows because conditioning reduces entropy [19]; (b) follows because of the non-negativity
of the discrete entropy [19]; (c) follows by definition.

Next, we prove (ii). This can be shown as follows:

I(xt; `t|`t−1, yt−1)− I(xt; yt|yt−1)
(d)
= I(xt; `t, yt|`t−1, yt−1)− I(xt; yt|yt−1)

(e)
= I(xt; `t|yt)− I(xt; `t−1|yt−1),
( f )
= I(xt; `t|yt)− I(xt−1; `t−1|yt−1), (19)

where (d) follows from an adaptation of ([20], Lemma 3.3) to processes, i.e., I(xt; `t, yt|`t−1, yt−1) =

I(xt; `t|`t−1, yt−1) + I(xt; yt|`t, yt−1) and the second term is zero because of the conditional
independence constraint (16); (e) follows by the chain rule of conditional mutual information (again
an adaptation of ([20], Lemma 3.3)) which decomposes the conditional mutual information in two
different ways, i.e.,

I(xt; `t, yt|yt−1) = I(xt; `t−1|yt−1) + I(xt; `t, yt|`t−1, yt−1)

= I(xt; `t|yt) + I(xt; yt|yt−1);
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( f ) follows because an adaptation of ([20], Lemma 3.3) can be applied to I(xt; `t−1|yt−1) as follows

I(xt; `t−1|yt−1) = I(xt, xt−1; `t−1|yt−1)

= I(xt; `t−1|xt−1, yt−1) + I(xt−1; `t−t|yt−1)

(g)
= I(xt−1; `t−t|yt−1), ∀t,

where (g) follows because I(xt; `t−1|xt−1, yt−1) = 0. This can be shown as follows.

I(xt; `t−1|xt−1, yt−1) = h(xt|xt−1, yt−1)− h(xt|xt−1, yt−1, `t−1)

= h(xt|xt−1, yt−1)− h(xt|xt−1) ≤ 0, ∀t, (20)

where each h(·) is assumed to be finite for any t, and (20) follows from the conditional independence
constraint in (15). From the non-negativity of conditional mutual information [19], the result follows.

Finally, from (19) we have

n

∑
t=0

[
I(xt; `t|yt)− I(xt−1; `t−1|yt−1)

]
= I(x0; `0|y0) + I(x1; `1|y1)− I(x0; `0|y0) + . . .

. . . + I(xn; `n|yn)− I(xn−1; `n−1|yn−1) (21)

= I(xn; `n|yn) ≥ 0, (22)

where (22) follows by applying the method of differences in (21). The result follows because (22) is
by definition non-negative. We note that if I(x0; `0|y0) also appeared in the cancellations, then, this
would have been the telescopic sum of the series. This completes the derivation.

We note that Theorem 1 is different from the data processing theorem derived in ([21], Lemma 1) in
that we assume the conditional independence constraint (15) instead of the conditional independence
constraint P(dxt|xt−1, yt−1, `t−1) = P(dxt|xt−1, yt−1)− a.s., i.e., the source process is not allowed to
have access via feedback to the previous output symbols yt−1. This technical difference results into
having the mutual information in (18) subject to conditional independence constraints, instead of the
well-known directed information [22].

Before we introduce the information theoretic definitions that correspond to lower bounds
on (11)–(13), we formally show the construction of I(xn; yn).
Source. The augmented source process {xt : t ∈ N0} induces the sequence of conditional distributions
{P(dxt|xt−1), t ∈ Nn

0}. Since no initial information is assumed, the distribution at t = 0 is P(dx0).
In addition, by Bayes’ rule we obtain P(dxn) , ⊗n

t=0P(dxt|xt−1).
Reproduction or “test-channel”. The reproduction process {yt : t ∈ Nn

0} parameterized by X t

induces the sequence of conditional distributions, known as test-channels, by {P(dyt|yt−1, xt), t ∈ Nn
0}.

At t = 0, no initial state information is assumed, hence P(dy0|y−1, x0) = P(dy0|x0). In addition, by
Bayes’ rule we obtain

−→
Q (dyn|xn) , ⊗n

t=0P(dyt|yt−1, xt).
From ([23], Remark 1), it can be shown that the sequence of conditional distributions {P(dxt|xt−1) : t ∈
Nn

0} and {P(dyt|yt−1, xt) : t ∈ Nn
0} uniquely define the family of conditional distributions on X n and

Yn parameterized by xn ∈ X n, respectively, given by the joint distribution

P(dxn, dyn) = P(dxn)⊗−→Q (dyn|xn). (23)

In addition, from (23), we can uniquely define the Yn−marginal distribution by

P(dyn) ,
∫
X n

P(dxn)⊗−→Q (dyn|xn),

and the conditional distributions {P(dyt|yt−1) : t ∈ Nn
0}.
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Given the above construction of distributions, we can formally introduce the information measure
using relative entropy as follows:

I(xn; yn)
(a)

, D(P(dxn, dyn)||P(dxn)× P(dyn)) ∈ [0, ∞]

(b)
=
∫
X n×Yn

log

(
d
−→
Q (·|xn)

dP(·) (yn)

)
P(dxn, dyn)

(c)
=

n

∑
t=0

E
{

log
(

dP(·|yt−1, xt)

dP(·|yt−1)
(yt)

)}
(d)
=

n

∑
t=0

I(xt; yt|yt−1),

(24)

where (a) follows by definition of relative entropy between P(dxn, dyn) and the product distribution
P(dxn)× P(dyn); (b) is due to the Radon–Nikodym derivative theorem ([23], Appendixes A and C);
(c) is due to chain rule of relative entropy; (d) follows by definition.

We now state as a definition the lower bounds on (11)–(13).

Definition 4 (Lower bounds). Using the previous construction of distributions and the information measure
of (24), we can define the following lower bounds on (11)–(13).

(1) The sum-rate subject to per-dimension distortion constraint is defined as follows:

RLB
pd(D) , inf

P(dyt |yt−1,xt): t=0,...,∞
Σ∆ii
≤Dii , i=1,...,p

lim sup
n−→∞

1
n + 1

I(xn; yn), (25)

with

RLB
pd,[0,n](D) , inf

P(dyt |yt−1,xt): t∈Nn
0

Σ∆ii ,t≤Dii , i=1,...,p

I(xn; yn). (26)

where Σ∆,t ,
1

n+1 ∑n
t=0 E{(xt−yt)(xt−yt)T}, Σ∆ii ,t ,

1
n+1 ∑n

t=0 [E{(xt − yt)(xt − yt)T}]ii and D ≥
0.

(2) The sum-rate subject to joint distortion constraints is defined as follows:

RLB
joint(D∗) , inf

P(dyt |yt−1,xt): t=0,...,∞
Σ∆ii
≤Dii , i=1,...,p

lim supn−→∞
1

n+1 ∑n
t=0 E{||xt−yt ||22}≤DT

lim sup
n−→∞

1
n + 1

I(xn; yn), (27)

RLB
joint,[0,n](D∗) , inf

P(dyt |yt−1,xt): t∈Nn
0

Σ∆ii ,t≤Dii , i=1,...,p
1

n+1 ∑n
t=0 E{||xt−yt ||22}≤DT

I(xn; yn), (28)

where D∗ = min{D, DT}.
(3) The sum-rate subject to covariance matrix distortion constraints is defined as follows:

RLB(Dcov) , inf
P(dyt |yt−1,xt): t=0,...,∞

Σ∆�Dcov

lim sup
n−→∞

1
n + 1

I(xn; yn), (29)
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RLB
[0,n](Dcov) , inf

P(dyt |yt−1,xt): t∈Nn
0

Σ∆,t�Dcov

I(xn; yn), (30)

where Dcov � 0.

Next, we stress some technical remarks related to the new information theoretic measures in
Definition 4 that can be obtained using known results in the literature and some known lower bounds
that use the same objective function with (26)–(30).

Remark 2 (Comments on Definition 4). It can be shown that the infimization problems (26), (28) and (30),
in contrast to their operational counterparts (11)–(13) are convex with respect to their test channel. This can be
shown following, for instance, the techniques of [23]. By the structural properties of the test channel derived
in ([24], Section 4), if the source is first-order Markov, i.e., with distribution P(dxt|xt−1), t ∈ Nn

0 , the test
channel distribution is of the form P(dyt|yt−1, xt), t ∈ Nn

0 . Finally, combining this structural result, with
([25], Theorem 1.8.6), it can be shown that if xn is Gaussian then a jointly Gaussian process {(xt, yt) : t ∈ N0}
achieves a smaller value of the information rates, and if xn is Gaussian and Markov, then the infimum in (26),
(28) and (30) can be restricted to test channel distributions which are Gaussian, of the form P(dyt|yt−1, xt).

We recall that when the distortion constraint set contains only (9), its finite time horizon counterpart or the
per instant distortion constraint E{||xt − yt||22} ≤ Dt ∀t, we end up having the well known nonanticipatory-ε
entropy [26] also found in the literature as sequential or nonanticipative RDF [27,28]. Nonanticipatory-ε entropy
received significant interest during the last twenty years in an anthology of papers (see, e.g., [11,16,24,29–31])
due to its utility in control related and delay-constrained applications. Moreover, the characterizations in (29)
and (30) do not appear to be manageable to solve using standard techniques, and no closed-form statements are
available for the general RDF in the literature. For this reason, we will seek only for non-tight bounds.

In view of the above, in the sequel we characterize and compute lower bounds on Definitions 1–3
for Gauss–Markov processes and for Markov models driven by additive i.i.d. noise processes.

2.1. Characterization and Computation of Jointly Gaussian Processes

In this section, we assume that the augmented joint process {(xt, yt) : t ∈ N0} is jointly Gaussian.
We use this assumption to first characterize and then to compute optimally (26), (28) and (30).

We first use the following helpful lemma. We exclude the proof because it is already derived in other
papers, see, e.g., [14,24]. The only modification is the augmented joint processes {(xt, yt) : t ∈ Nn

0}.

Lemma 1 (Realization of {P∗(dyt|yt−1, xt) : t ∈ Nn
0}). Consider the class of conditionally Gaussian test

channels {P∗(dyt|yt−1, xt) : t ∈ Nn
0}. Then, the following statements hold.

(1) Any candidate of {P∗(dyt|yt−1, xt) : t ∈ Nn
0} can be realized by the recursion

yt =Ht

(
xt − x̂t|t−1

)
+ x̂t|t−1 + vt, x̂0|−1 = given, t ∈ Nn

0 , (31)

where x̂t|t−1 , E{xt|yt−1}, {vt ∈ Rp1+p2 ∼ N (0; Σvt) : t ∈ Nn
0} is an independent Gaussian process

independent of {wt : t ∈ Nn−1
0 } and x0, and {Ht ∈ R(p1+p2)×(p1+p2) : t ∈ Nn

0} are time-varying
deterministic matrices.
Moreover, the innovations process {It ∈ Rp1+p2 : t ∈ Nn

0} of (31) is the orthogonal process defined by

It , yt −E
{

yt|yt−1
}
= Ht

(
xt − x̂t|t−1

)
+ vt,
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where It ∼ N (0; ΣIt), ΣIt = HtΣt|t−1HT
t + Σvt and Σt|t−1 , E

{
(xt − x̂t|t−1)(xt − x̂t|t−1)

T|yt−1
}
=

E
{
(xt − x̂t|t−1)(xt − x̂t|t−1)

T
}

.

(2) Let x̂t|t , E{xt|yt} and Σt|t , E
{
(xt − x̂t|t)(xt − x̂t|t)

T|yt
}

= E
{
(xt − x̂t|t)(xt − x̂t|t)

T
}

.
Then, {x̂t|t−1, Σt|t−1 : t ∈ Nn

0} satisfy the following vector-valued equations:

x̂t|t−1 = Ax̂t−1|t−1,

Σt|t−1 = AΣt−1|t−1 AT + Σwt ,

x̂t|t = x̂t|t−1 + Nt It,

Nt = Σt|t−1HT
t Σ−1

It
(Kalman Gain),

Σt|t = Σt|t−1 − Σt|t−1HT
t Σ−1

It
HtΣt|t−1,

(32)

where Σt|t � 0 and Σt|t−1 � 0.

(3) Using MMSE estimation via the vector-valued KF recursions of (32), the following finite dimensional
characterizations of RLB,G

pd,[0,n](D), RLB,G
joint,[0,n](D∗), RLB,G

cov,[0,n](Dcov) can be obtained:

RLB,G
pd,[0,n](D) = inf

Ht∈R(p1+p2)×(p1+p2), Σvt�0, t∈Nn
0

0≤Σ̃ii,t≤Dii , i=1,...,p

1
2

n

∑
t=0

[
log
|Σt|t−1|
|Σt|t|

]+
, (33)

RLB,G
joint,[0,n](D∗) = inf

Ht∈R(p1+p2)×(p1+p2), Σvt�0, t∈Nn
0

0≤Σ̃ii,t≤Dii , i=1,...,p
1

n+1 ∑n
t=0 trace((Ip1+p2−Ht)Σt|t−1(Ip1+p2−Ht)

T+Σvt)≤DT

1
2

n

∑
t=0

[
log
|Σt|t−1|
|Σt|t|

]+
, (34)

RLB,G
[0,n] (Dcov) = inf

Ht∈R(p1+p2)×(p1+p2), Σvt�0, t∈Nn
0

1
n+1 ∑n

t=0((Ip1+p2−Ht)Σt|t−1(Ip1+p2−Ht)
T+Σvt)�Dcov

1
2

n

∑
t=0

[
log
|Σt|t−1|
|Σt|t|

]+
, (35)

where Σ̃ii,t ,
1

n+1 ∑n
t=0

[
(Ip1+p2 − Ht)Σt|t−1(Ip1+p2 − Ht)T + Σvt

]
ii
≥ 0, D ∈ [0, Dmax] and D∗ ∈

[0, D∗max].

We note that one can directly study the finite-dimensional characterizations of Lemma 1,
(3), and try to come up with numerical solutions. However, it is much more insightful to use instead
the identification of the design parameters {(Ht, Σvt) : t ∈ Nn

0} of the test-channel realization in (31).
This approach is already done in [14,24] hence we state it without a proof. Note, however, that
compared to [14,24] that assume distortion constraints like (9) (or the per time instant counterpart
of (9), i.e., E

{
||xt − yt||22

}
≤ Dt, ∀t), here we assume augmented state-space models and various

spatio-temporal distortion constraints, namely, per-dimension, jointly per-dimension and averaged
total distortion constraints, and covariance matrix distortion constraint.

Lemma 2 (Alternative characterizations of (33)–(35) via system identification). Consider Lemma 1 and
set ∆t , Σt|t and Λt , Σt|t−1. Then, the following statements hold.

(1) The test-channel distribution P(dyt|yt−1, xt) admits the following linear Markov additive noise realization:

yt = Htxt + (Ip1+p2 − Ht)Ayt−1 + vt, y−1 = given, t ∈ Nn
0 , (36)
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where

Ht , Ip1+p2 − ∆tΛ−1
t , Σvt , ∆tHT

t � 0. (37)

(2) The finite-dimensional characterizations of RLB,G
pd,[0,n](D), RLB,G

joint,[0,n](D∗), RLB,G
cov,[0,n](Dcov) can be

simplified to the following alternative characterizations:

RLB,G
pd,[0,n](D) = inf

0≤∆ii,t≤Dii , i=1,...,p, t∈Nn
0

1
2

n

∑
t=0

[
log
|Λt|
|∆t|

]+
, (38)

RLB,G
joint,[0,n](D∗) = inf

0≤∆ii,t≤Dii , i=1,...,p, t∈Nn
0 ,

1
n+1 ∑n

t=0 trace(∆t)≤DT

1
2

n

∑
t=0

[
log
|Λt|
|∆t|

]+
, (39)

RLB,G
[0,n] (Dcov) = inf

1
n+1 ∑n

t=0(∆t)�Dcov

1
2

n

∑
t=0

[
log
|Λt|
|∆t|

]+
, (40)

where ∆ii,t is defined precisely as Σ̃ii,t.

Next, we give some technical remarks related to Lemma 2.

Remark 3 (Special case and technical remarks).

(1) Clearly, if in the forward test-channel realization with additive noise, we assume that the block diagonal
matrix A = 0 (null matrix), then, we recover the classical forward test-channel realization for vector
memoryless Gaussian source subject to a MSE distortion (see, e.g., ([32], Chapter 4.5), ([15], Chapter 9.7))
given by

yt = Htxt + vt, t ∈ Nn
0 , (41)

and the coefficients in (37) give

Ht , Ip1+p2 − ∆tΣ−1
w � 0, Σvt , ∆tHT

t � 0. (42)

Moreover, the characterizations in (38)–(40) change in that Λt = Σw. Clearly, (42) can be seen as
reverse-waterfilling design parameters.

(2) Compared to (1), we note that Ht in (37) should not be confused with a positive semidefinite matrix
defined in the usual quadratic form [33] but instead it can possibly be a non-symmetric matrix which
however contains only real non-negative eigenvalues. This observation is important because it means that
in general the design variables (∆t, Λt) do not commute like in the classical reverse-waterfilling problems
for memoryless multivariate Gaussian random variables or in i.i.d. processes (see, e.g., [19,25]).

(3) For jointly Gaussian processes, the linear forward realization in (36) is the optimal realization among all
realizations for this problem because the KF is the optimal causal MMSE estimator. Beyond Gaussian
processes, and when the noise is zero-mean, uncorrelated and white (in our setup these properties hold),
the optimal realization for Gaussian processes becomes the best linear realization (see, e.g., ([34], §3.2)
or ([35], p. 130)) and similarly the corresponding characterizations in (38)–(40) are the best linear
characterizations. By saying “best-linear” realization and characterizations, respectively, we mean that
there may be non-linear realizations and hence non-linear-based characterizations that outperform the best
linear.

(4) The characterization of (39) is different from the characterization obtained in ([16], Theorem 1, (25e)) that
uses weighted distortion constraints. The former optimization problem imposes hard constraints whereas
the latter imposes soft constraints via weights. Nonetheless, an interesting open question is whether there
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exists a set of weights, which will give the same per dimension distortion when imposed as a weighted total
distortion constraint.

(5) It should also be stressed that the per-dimension constraints on the diagonal entries of ∆t are not
the same as having constraints on the eigenvalues of ∆t. This further means that even for this class
of distortion constraints, it is still possible to have rate-distortion resource allocation (i.e., a type of
reverse-waterfilling optimization).

Remark 4 (Convexity). The optimization problems in (38) and (39) are convex because the objective function
is linear and the constraints are affine and positive semi-definite. Thus, the problem can be solved numerically
using convex programming software (see, e.g, [36]) or the more challenging KKT conditions that are first-order
necessary conditions for global optimality ([37], Chapter 5.3). The latter, will give certain non-linear matrix
Riccati equations that need to be solved in order to construct a reverse-waterfilling algorithm.

Remark 5 (Existence of Solution). A sufficient condition for existence of a solution with a finite value in
(38)–(40) is to consider the strict LMI constraint 0 ≺ ∆t � Λt that ensures the objective function is bounded.
The strict LMI ensures that ∆t � 0 which further means that D > 0, DT > 0 and Dcov � 0.

In what follows, we derive lower bounds on (11)–(13).

Lemma 3 (Steady-state lower bounds on (11)–(13)). Suppose that the conditions of Remark 5 hold. Moreover,
let ∆ , 1

n+1 ∑n
t=0 ∆t for some finite n. Then, the following statements hold.

(1)

Rc
pd(D) ≥ min

0≺∆�Λ
∆ii≤Dii , i=1,...,p

1
2

log
|Λ|
|∆| , (43)

where Λ = A∆AT + Σw.

(2)

Rc
joint(D∗) ≥ min

0≺∆�Λ
∆ii≤Dii , i=1,...,p

trace(∆)≤D

1
2

log
|Λ|
|∆| , (44)

for some D∗ = min{DT , D}.

(3)

Rc(Dcov) ≥ min
0≺∆�Λ

0≺∆�Dcov

1
2

log
|Λ|
|∆| . (45)

Proof. See Appendix A.

It should be remarked that instead of the derivation based on a convexity argument in Lemma 3,
one can assume that the optimal minimizer P(dyt|yt−1, xt) that achieves (43)–(45) is time-invariant and
the output distribution P(dyt|yt−1) is also time-invariant with a unique invariant distribution, see, e.g.,
([14], Theorem 3). Moreover, the optimal linear forward test-channel that achieves the lower bounds
in (43)–(45) correspond to the time-invariant realization (36), given by

yt = Hxt + (Ip1+p2 − H)Ayt−1 + vt, (46)
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whereas the corresponding time-invariant scaling coefficients in (37) are as follows

H , Ip1+p2 − ∆Λ−1, Σv , ∆HT � 0. (47)

From Lemma 3, the following corollary can be immediately obtained.

Corollary 1 (Fixed design variable ∆). If in Lemma 2 we assume that ∆t = ∆, ∀t, then we obtain (43)–(45).

Proof. This is immediate from the derivation of Lemma 3.

In what follows, we show that the lower bounds in Lemma 3 are semidefinite representable, thus,
they can be readily computed.

Theorem 2 (Computation of the lower bounds in Lemma 3). Consider the variable Q1 , ∆−1− ATΣ−1
w A,

where ∆ � 0. Then, the following semidefinite programming representations hold.

(1) For some D ≡ trace(D̂) > 0, the lower bound in (43), denoted hereinafter by RLB
pd(D), is semidefinite

representable as follows:

RLB
pd(D) = min

Q1�0
−1

2
log |Q1|+

1
2

log |Σw|. (48)

s.t. 0 ≺ ∆ � Λ

∆ii ≤ Dii, i = 1, . . . , p[
∆−Q1 ∆AT

A∆ Λ

]
� 0 (49)

(2) For some D∗ = min{DT , D} > 0, the lower bound in (44), denoted hereinafter by RLB
joint(D∗), is

semidefinite representable as follows:

RLB
joint(D∗) = min

Q1�0
−1

2
log |Q1|+

1
2

log |Σw|. (50)

s.t. 0 ≺ ∆ � Λ

∆ii ≤ Dii, i = 1, . . . , p

trace(∆) ≤ DT[
∆−Q1 ∆AT

A∆ Λ

]
� 0

(3) For some Dcov � 0, the lower bound in (45), denoted hereinafter by RLB(Dcov), is semidefinite
representable as follows:

RLB(Dcov) = min
Q1�0

−1
2

log |Q1|+
1
2

log |Σw|. (51)

s.t. 0 ≺ ∆ � Λ

∆ � Dcov[
∆−Q1 ∆AT

A∆ Λ

]
� 0

Proof. See Appendix B.

Next, we stress some comments on the semidefinite representation of the lower bounds in
Theorem 2.
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Remark 6 (Comments on Theorem 2).

(1) We note that a similar characterization to the characterizations derived in Theorem 2 (subject to the
distortion constraint (9) or the per-instant distortion constraint E{||xt − yt||22} ≤ Dt, ∀t, for a special
case of the setup in Figure 1) is recently derived in ([16], Equation (27)). The log-determinant convex
optimization problems in Theorem 2 are widely used in systems and control theories because they are able
to deal efficiently with LMIs [38].

(2) Recently, the efficiency of SDP algorithm in solving linear and non-linear optimization problems attracted
experts from the field of information theory who noticed its usefulness in solving distributed source
coding problems (see, e.g., [3,39]). Such log-determinant problems when solved using the semidefinite
programming method are known to have polynomial worst-case complexity (see, e.g., [40]). In addition,
for an interior point method such as the SDP approach, the most computationally expensive step is the
Cholesky factorization involved in the Newton steps.

(3) On the other hand, due to its complexity, the SDP approach for high dimensional systems is often time
consuming whereas for very large scale systems is occasionally impossible to obtain numerical solutions.
Hence, ideally one could preferably consider alternative methods to solve a problem sacrificing for instance
the optimality of the SDP algorithm but gaining in scalability and reducing the complexity. The most
computationally efficient way to compute such problems and, additionally, to gain some insight from the
solution is via the well-known reverse-waterfilling algorithm ([19], Theorem 10.3.3), which is however
very hard to construct and compute because one needs to employ and solve complicated KKT conditions
[37]. Such effort was recently made for multivariate Gauss-Markov processes under per instant, averaged
total and asymptotically averaged total distortion constraints in [24,41].

Next, we perform some numerical illustrations using the semidefinite representations of
Theorem 2. We also compare (48) and (50), to the known expression obtained only for the
asymptotically averaged total MSE distortion constraint in ([16], Equation (27)). We note that the SDP
algorithm for (48)–(51) is implemented using the CVX platform [36].

Example 1 (Comparison of RLB
joint(D∗), RLB

pd(D) and ([16], Equation (27))). For the system in (1), we assume
that user 1 is described by a R2-valued time-invariant Markov source driven by i.i.d. Gaussian noise process
with parameters (A1, Σw1):

(A1, Σw1) =

([
0.5 0.2
0.3 0.6

]
,

[
1 0
0 1

])
, (52)

whereas, user 2 is described by a R3-valued time-invariant Markov source driven by i.i.d. Gaussian noise process
with parameters (A2, Σw2):

(A2, Σw2) =


0.5 0.2 0.1

0.3 0.6 0.1
0.7 0.3 0.4

 ,

1 0 0
0 0.2 0
0 0 0.5


 . (53)

Clearly, the augmented state space model (2) generates A = A1 ⊕ A2 and Σw = Σ1
w ⊕ Σ2

w. For this example,
we assume that DT = 1.5 and D11 = 0.1, D22 = 0.01, D33 = 0.6, D44 = 0.15, D55 = 0.1, which implies that
D = 0.96. This means that D∗ = min{DT , D} = 0.96.

In Figure 3, we compare the numerical solutions of RLB
joint(D∗) and RLB

pd(D) with ([16], Equation (27)),
denoted hereinafter as RLB(DT).
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Figure 3. Comparison of Rna
joint(D∗), Rna

pd(D) when Dii 6=Djj, for i 6= j, and comparison with ([16],
Equation (27)).

Based on this numerical study, we observe that for distortion levels between (0, D∗ = D], RLB
joint(D∗) ≥

RLB
pd(D) whereas for values of DT greater than D∗ we observe that RLB

joint(D∗) = RLB
pd(D) because the

asymptotically averaged total MSE distortion constraint is inactive. This observation verifies our comment in
Section 1.2 regarding the connection of (11) and (12). Clearly, at high rates (or high resolution) we observe that
RLB

joint(D∗) ≈ RLB(DT).
Another interesting observation (illustrated in Figure 4) that can be made, is that if in the same example

we allocate the total budget of per dimension distortion equally, i.e., Dii = Djj, ∀i 6= j, we observe that for
distortion levels between (0, D∗ = D], RLB

joint(D∗) = RLB(DT) ≥ RLB
pd(D).

0.01 0.5 1 1.5
0

5

10

15

20

25

Figure 4. Comparison of RLB
joint(D∗), RLB

pd(D) and RLB(DT ) when Dii = Djj, ∀i 6= j.

Example 2 (Covariance matrix distortion constraint). For the system in (1) we assume that user 1 is
described by a R2-valued time-invariant Markov source driven by i.i.d. Gaussian noise process with parameters
(A1, Σw1):

(A1, Σw1) =

([
0.5 0.2
0.3 0.6

]
,

[
1 0
0 1

])
, (54)

whereas, user 2 is described by an R-valued time-invariant Markov source driven by i.i.d. Gaussian noise process
with parameters (A2, Σw2):

(A2, Σw2) = (0.6, 2). (55)
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The augmented state space model (2) is generated by A = A1 ⊕ A2 and similarly Σw = Σ1
w ⊕ Σ2

w. For this
example, we assume a covariance matrix distortion constraint given by:

Dcov =

1.5 γ γ

γ 1 γ

γ γ 0.5

 , (56)

where γ > 0 is the positive correlation coefficient between the distortion matrix components (i.e., diagonal
entries) and it is chosen such that Dcov � 0.

In Figure 5 we demonstrate a comparison between RLB(Dcov) evaluated for several different values of γ.
One interesting observation that can be made is that higher distortion correlation in (56) leads to less bits with a
γmax ≈ 0.53, beyond which the value of RLB(Dcov) remains unchanged. Another interesting observation is
that for negative correlation γ, the approximation via SDP does not give a number. However, this is not the case,
in general (see, e.g., ([42], Example 1)).

0.01 0.1 0.2 0.3 0.4 0.53 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

Figure 5. RLB(Dcov) as a function of γ ≥ 0.

Using the same simulation study, we can arrive to an interesting connection between the approximation
in (51) and (48). In particular, if for instance in (56) we restrict the matrix distortion constraint only to the
main diagonal elements (i.e., exactly like the the per-dimension constraints) then, we obtain the plot of Figure 6
which clearly demonstrates that RLB(Dcov) = RLB

pd(D). In fact, restricting the covariance matrix distortion
constraint of (56) to the per dimension distortion constraint, is as if we optimize via a solution space in which γ

is allowed to have any value in R. As a result, the feasible set of solutions is larger when the constraint set is
subject to per-dimension distortion constraints rather than the covariance matrix distortion constraint.

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2591

0.5

1

1.5

Figure 6. Comparison of RLB(Dcov) (restricted to its values in the main diagonal) and RLB
pd(D) for

certain values of γ.
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2.2. Analytical Lower Bounds for Markov Sources Driven by Additive i.i.d. Noise Processes

In this subsection, we derive analytical lower bounds on (11)–(13)) when the source model
describing the behavior of user 1 or user 2 is driven by possibly i.i.d. non-Gaussian noise process.

We first give a lemma which will facilitate the derivation of our lower bounds. We only consider
the case of RDFs subject to per-dimension distortion constraints because the other classes of distortion
constraints follow similarly.

Lemma 4 (Rate-distortion bounds). For the augmented source model describing the behavior of users 1, 2
in (3), the following inequalities hold assuming distortion constraints in the class of (8):

RLB
pd(D)

(a)
≤ RLB,linear

pd (D) ≤ Rc
pd(D), (57)

where

RLB,linear
pd (D) , inf

Plinear(dyt |yt−1,xt): t∈N0
Σ∆ii
≤Dii , i=1,...,p

lim sup
n−→∞

1
n + 1

n

∑
t=0

I(xt; yt|yt−1), (58)

and (a) holds with equality if the augmented state space model described in (2) is jointly Gaussian and the
optimal minimizer, i.e., P∗(dyt|yt−1, xt) of RLB

pd(D) is conditionally Gaussian. Equality (a) holds trivially
at Dmax.

Proof. The RHS inequality follows from Theorem 1 and (43) whereas the LHS inequality follows from
the fact that the constraint set of RLB

pd(D) is larger than the constraint set of RLB,linear
pd (D) which is

restricted to linear coding policies. Now, under the specific augmented source model in (3), and using
Lemma 2, (1), we obtain RLB,linear

pd (D) defined as in (58) because these are the best linear coding policies
since KF algorithm is the best linear causal MSE estimator beyond additive Gaussian noise processes
(see the discussion in Remark 3, (3)). Clearly, if the augmented source in (3) is jointly Gaussian and the
optimal realization of RLB

pd(D) is conditionally Gaussian, then, the system model is jointly Gaussian
and the optimal policies are linear given by the forward linear test channel realization obtained in (36)
hence the LHS inequality holds with equality.

Remark 7 (Comments on Lemma 4). We note that Lemma 4 holds if we assume RDFs with distortion
constraints in the class of (9) or (10).

The following theorem is a major result of this paper.

Theorem 3 (Analytical lower bounds on (11)–(13)). Consider the source models of users 1, 2 in (1). Then,
the following analytical lower bounds on (11)–(13) hold.

(1) For Dii > 0, ∀i, we obtain

Rc
pd(D) ≥ (p1 + p2)

2
log
(
|AT A|

1
p1+p2 +

(p1 + p2)N(w)

D

)
, (59)

where D ∈
(

0, (p1+p2)N(w)

1−|AT A|
1

p1+p2

]
with N(w) = 1

2πe 2
2

p1+p2
h(w) and h(w) > −∞.

(2) For DT > 0, and Dii > 0, ∀i, we obtain

Rc
joint(D∗) ≥ (p1 + p2)

2
log
(
|AT A|

1
p1+p2 +

(p1 + p2)N(w)

D∗

)
, (60)
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where D∗ ∈
(

0, (p1+p2)N(w)

1−|AT A|
1

p1+p2

]
, with N(w) defined as in (1) and h(w) > −∞.

(3) For Dcov � 0 we obtain

Rc(Dcov) ≥
(p1 + p2)

2
log

|AT A|
1

p1+p2 +
N(w)

|Dcov|
1

p1+p2

 , (61)

where |Dcov| ∈

0,

(
N(w)

1−|AT A|
1

p1+p2

)(p1+p2)
, with N(w) defined as in (1) and h(w) > −∞.

Proof. See Appendix C.

The following technical remarks can be made regarding Theorem 3.

Remark 8.

(1) Note that if in Theorem 3 we allow h(w) = −∞, then, the analytical lower bound expressions take a
negative finite value or −∞, which cannot be the case (RDF is, by definition, non-negative). A way to
include the case where h(w) is allowed to be −∞ in our lower bound expressions, is to set the objective
functions in (59)–(61) to be [log(·)]+. This will mean that whenever h(w) = −∞, the analytical lower
bound expression will be zero.

(2) The analytical lower bounds in (59)–(61) do not correspond to the best linear forward test channel
realization of Lemma 3 (see (46)) which is also the optimal policy under the assumption of a MMSE decoder
when the system’s noise is purely Gaussian (see Remark 3, (3)). Moreover, it is not clear what is the
realization that achieves them the same way the bounds in Lemma 3 are achieved for Gaussian processes.

(3) If in Theorem 3 we assume that the users 1, 2 have source models described by Markov processes driven by
additive Gaussian noise processes then from the EPI (see, e.g., ([43], Equation (7))) N(w) = |Σw|p1+p2

and (59)–(61) change accordingly.

(4) One can choose to further bound (61) using the inequality |Dcov|
− 1

p1+p2 ≥ p1+p2
trace(Dcov)

obtaining a further
lower bound that coincides with the lower bound in (59) (see also the discussion in Example 2). Such lower
bound will mean that we extend the set of feasible solutions that correspond to the initial problem statement
(13), to be similar to the initial problem statement of (11) which cannot be the case, in general. Our bound
in (61) encapsulates the off diagonal elements of the distortion covariance matrix distortion Dcov hence it
is an appropriate lower bound for the specific problem.

In what follows, we give a numerical simulation where we compare the solution of RLB
joint(D∗) (that

corresponds to the lower bound achieved by the optimal coding policies when the system is driven by
additive i.i.d. Gaussian noise processes) computed via the SDP representation of (50), with the lower
bound obtained in (60) when the system’s noise is also Gaussian.

Example 3 (Comparison of (50) with (60) for jointly Gaussian processes). We consider the same input
data assumed in Example 1 for users 1, 2. Then, we proceed to compute the true lower bound of (50) and the
lower bound obtained in (60).

Our simulation study in Figure 7 shows that at high rates the performance of the two bounds is almost
identical whereas to moderate and low rates we observe a gap that remains constant when DT ≥ D, i.e., when
the asymptotically averaged total distortion constraint is inactive. The same behavior is expected for systems of
larger dimension (larger scale optimization problems) with a possibility of an increased gap to moderate and low
rates depending on the structure of the block diagonal matrices A and Σw.
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Figure 7. Comparison of the lower bound RLB
joint(D∗) with the analytical expression of (60).

Next, we state a corollary of Theorem 3.

Corollary 2 (Analytical bounds when users 1, 2 are not specified by the same additive noise process).
Consider the source models of users 1, 2 in (1). Moreover, assume that w1

t ∼ N (0; Σw1) and w2
t ∼ (0; Σw2) with

Σw1 � Ip1 and Σw2 � Ip2 and h(w2) > −∞. Then, the following analytical lower bounds on (11)–(13) hold.

(1) For Dii > 0, ∀i, we obtain

Rc
pd(D) ≥ (p1 + p2)

2
log

|AT A|
1

p1+p2 +
(p1 + p2)|Σw1 |

1
p1 N(w2)

D

 , (62)

where D ∈
(

0, (p1+p2)N(w)

1−|AT A|
1

p1+p2

]
with N(w2) = 1

2πe 2
2

p2
h(w2).

(2) For DT > 0, Dii > 0, ∀i, we obtain

Rc
joint(D∗) ≥ (p1 + p2)

2
log

|AT A|
1

p1+p2 +
(p1 + p2)|Σw1 |

1
p1 N(w2)

D∗

 , (63)

where D∗ ∈
(

0,
(p1+p2)|Σw1 |

1
p1 N(w2)

1−|AT A|
1

p1+p2

]
.

(3) For Dcov � 0 we obtain

Rc(Dcov) ≥
(p1 + p2)

2
log

|AT A|
1

p1+p2 +
|Σw1 |

1
p1 N(w2)

|Dcov|
1

p1+p2

 , (64)

where |Dcov| ∈

0,

(
|Σw1 |

1
p1 N(w2)

1−|AT A|
1

p1+p2

)(p1+p2)
.

Proof. All cases (1)–(3) follow almost identical steps with the derivation of Theorem 3. The only
different but crucial step lies in (A6) where we then use the fact that

|Σw|
1

p1+p2
(a)
= |Σw1 |

1
p1+p2 |Σw2 |

1
p1+p2

(b)
≥ |Σw1 |

1
p1 |Σw2 |

1
p2

(c)
≥ |Σw1 |

1
p1 N(w2), (65)
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where (a) follows from properties of block diagonal matrices ([33], Section 0.9.2); (b) follows from
the conditions of the corollary on the noise covariance matrices; (c) follows from the EPI ([43],
Equation (7)).

One can deduce the following for Corollary 2.

Remark 9. Corollary 2 will give similar analytical lower bounds (with appropriate modifications) if instead
of user 1, we assume that the source model of user 2 is driven by a Gaussian noise process. The additional
assumption on the covariance matrix of the noise process in both users is imposed because otherwise we cannot
guarantee that the key series of inequalities (65) will be satisfied.

3. Upper Bounds

In this section we explain the case of encoding the augmented vector-valued Markov source
modeled by (3) using a sequential causal DPCM scheme with a feedback loop followed by an
ECDQ. The scheme relies on the linear forward test channel realization of the bounds in Lemma
2. The precursor of the DPCM-based scheme with feedback loop is [14] whereas ECDQ is a classical
source coding approach with standard performance guarantees in information theory (see, e.g., [44]).
The ECDQ scheme is utilized to bound the rate performance of the DPCM scheme. This approach
furnish with an achievable (upper) bound the operation causal RDFs in (11)–(13).

3.1. DPCM with Feedback Loop

First, we briefly describe the sequential causal DPCM scheme with feedback loop introduced in
([14], Figure 2) (see also [45]). Observe that because the augmented source is modeled as a first-order
multidimensional Markov process, the sequential causal coding is precisely equivalent to a predictive
coding paradigm (see, e.g., [14,46]).

At each time instant t, the encoder or innovations’ encoder performs the linear operation

x̂t = xt − Ayt−1, (66)

where at t = 0 we assume initial data x̂0 = x0 and also yt−1 , E
{

xt−1|`t−1}, i.e., an estimate of xt−1

given the previous quantized symbols `t−1 (Note that the process x̂t has a temporal correlation since it
subtracts the error of xt given all previous quantized symbols `t−1 and not the infinite past of the source
xt
−∞. Hence, x̂t is only an estimate of the true process and this causes a part of the sub-optimality of this

scheme.). Then, by means of a Rp1+p2 -valued MMSE quantizer that operates at a rate Rt, we generate
the quantized reconstruction ŷt of the residual source x̂t denoted by ŷt = yt − Ayt−1. Then, we send
`t over the channel (the corresponding data packet to ŷt). At the decoder we receive `t and recover the
quantized symbol ŷt of x̂t.

Then, we generate the estimate yt using the linear operation

yt = ŷt + Ayt−1. (67)

Combining both (66) and (67), we obtain

xt − yt = x̂t − ŷt. (68)

From (68), we can immediately deduce that the error between xt and yt is equal to the quantization
error introduced by x̂t and ŷt which means that the MSE distortion at each instant of time satisfy

E{||xt − yt||22} = E{||x̂t − ŷt||22}. (69)
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In addition, the covariance matrix Σ∆ yields

E{(xt − yt)(xt − yt)
T} = E{(x̂t − ŷt)(x̂t − ŷt)

T}. (70)

A pictorial view of the DPCM scheme with feedback loop is given in Figure 8.

Augmented 
Time-Invariant 

Multidimensional 
Markov Process

Encoder MMSE
Decoder

 +

MMSE 
Quantizer

1 2p pxt

 *0,1t

1 2p pyt
xt

y
t

  t-1A , |t-1 t-1 t-1y y x 

Figure 8. DPCM scheme with feedback loop for the augmented multidimensional Markov model
of (3).

3.2. Bounding (11)–(13) via A DPCM-based ECDQ for Gaussian Noise Processes

In this subsection, we bound the rate performance of the DPCM scheme described in Section 3.1
in the infinite time horizon, using a scheme that utilizes the steady-state linear forward test-channel
realization that achieves the lower bounds of Lemma 3. Essentially, what we do in this scheme is that
we replace the quantization noise with an additive Gaussian noise with the same second moments
(see e.g., [47] or [44] (Chapter 5) and the references therein).

Recall that the steady-state linear forward test-channel realization of the lower bounds in Lemma 3
is written as follows:

yt = Hxt + (Ip1+p2 − H)Ayt−1 + vt, (71)

whereas the steady-state reverse-waterfilling parameters (H, Σv) are given by

H , Ip1+p2 − ∆Λ−1, Σv = H∆ � 0. (72)

The forward test-channel realization of (71) is illustrated in Figure 9.

Augmented 
Vector Gauss-

Markov Source
H 

-


Encoder

ty
x̂txt

Unit 
Delay

A

yt-1

+

ŷt
Decoder

 (0; )v ΗΔt N

Figure 9. Forward test channel realization of (71).

Before we proceed, we point out the following important technical remarks on the realization
of (71) and the coefficients (72).

Remark 10 (Observations (71) and (72)). The linear forward test channel realization with additive noise
in (71) is equivalent to the steady-state realization in (46) because for both it can be shown that the MSE
distortion constraint is achieved (i.e., vt ∼ N (0; Σv), Σv = H∆ = ∆HT � 0). Moreover, this realization is
equivalent but simpler to build compared to the forward test channel realization introduced in [14] in which
non-singular matrices and diagonalization by congruence is assumed (see ([14], Theorem 4)).
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In the test channel realization of Figure 9, a reverse-waterfilling in spatial dimension is possible
when we assume asymptotically averaged total MSE distortion constraints similar to ([14], Theorem 40).
This reverse-waterfilling is dictated by the rank of matrix H. To make this point clear, if H is full rank, then all
spatial dimensions in the system are active whereas if H is rank deficient, then, some dimensions are inactive
(these dimensions form the null space and the nullity of H) and for these dimensions the rate is zero hence they
can be excluded from the realization of Figure 9. In the sequel, we will present simulations where we study the
reverse-waterfilling in the spatial domain under a certain distortion constraint studied in this paper.

Pre/Post Filtered ECDQ with multiplicative factors for augmented multivariate Gauss–Markov
sources and spatial reverse-waterfilling. First, we consider a rank(H)−dimensional lattice quantizer
Qrank(H)(·) [48] such that

E{ztzT
t} = Σvc , Σvc � 0,

where zt ∈ Rrank (H) is a random dither vector generated both at the encoder and the decoder
independent of the input signals x̂t and the previous realizations of the dither, uniformly distributed
over the basic Voronoi cell of the rank (H)−dimensional lattice quantizer Qrank(H)(·) such that
vc

t ∼ Uni f (0; Σvc
t
). At the encoder the lattice quantizer quantize Hx̂t + zt, that is, Qrank(H)(Hx̂t + zt),

where x̂t is given by (66). Then, the encoder applies conditional entropy coding to the output of the
quantizer and transmits the output of the entropy coder. At the decoder the coded bits are received and
the output of the quantizer is reconstructed, i.e., Qrank (H)(Hx̂t + zt). Then, it generates an estimate by
subtracting zt from the quantizer’s output and multiplies the result by Irank (H) (Irank (H) denotes the
identity matrix with dimensions according to the rank of H. This identity matrix can be excluded but
we include it here for completeness.) as follows:

yt = Irank (H)(Qrank (H)(Hx̂t + zt)− zt), (73)

Performance. The coding rate at each instant of time of the conditional entropy of the MMSE quantizer
is given by

H(Qrank (H)|zt) = I(Hx̂t; Hx̂t + vc
t )

(a)
= I(Hx̂t; Hx̂t + vt) +D(vc

t ||vt)−D(Hx̂t + vc
t ||Hx̂t + vt)

(b)
≤ I(Hx̂t; Hx̂t + vt) +D(vc

t ||vt)

(c)
≤ I(Hx̂t; Hx̂t + vt) +

rank (H)

2
log(2πeGrank (H))

(d)
≤ I(xt; yt|yt−1) +

rank (H)

2
log(2πeGrank (H)) (74)

where vc
t ∈ Rrank (H) is the (uniform) coding noise in the ECDQ scheme and vt is the corresponding

Gaussian counterpart; (a) follows because the two random vectors vc
t , vt have the same second

moments hence we can use the identity D(x||x′) = h(x′)− h(x); (b) follows because D(Hx̂t + vc
t ||Hx̂t +

vt) ≥ 0; (c) follows because the divergence of the coding noise from Gaussianity is less than or equal
to rank (H)

2 log(2πeGrank (H)) [47] where Grank (H) is the dimensionless normalized second moment of

the lattice ([44], Definition 3.2.2); (d) follows from data processing properties, namely, I(xt; yt|yt−1)
(∗)
=

I(xt; yt|yt−1)
(∗∗)
= I(x̂t; ŷt)

(∗∗∗)
≥ I(Hx̂t; Hx̂t + vt) where (∗) follows from the realization of (71), (∗∗)

follows from the fact that x̂t and ŷt (obtained by (67)) are independent of yt−1, and (∗ ∗ ∗) is a
consequence of data processing inequality since (Hx̂t + vt)↔ x̂t ↔ Hx̂t. Under the assumption that
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the clocks of the entropy encoder and entropy decoder in the ECDQ scheme are synchronized, then,
the total coding rate is obtained as follows

n

∑
t=1

Rt ≤
n

∑
t=0

(H(Qrank(H)|zt)
(e)
≤

n

∑
t=0

I(xt; yt|yt−1) +
(n + 1) rank (H)

2
log(2πeGrank (H))

( f )
=

1
2

n

∑
t=0

log2
|Λt|
|∆t|

+
(n + 1) rank (H)

2
log(2πeGrank(H)), (75)

where (e) follows from (74); ( f ) follows from the derivation of Lemma 2.
The previous analysis yields the following theorem.

Theorem 4 (Achievability bound on (11)–(13)). Suppose that ∆t = ∆, ∀t and assume that the users 1, 2
source models (1) are driven by Gaussian noise processes. Then, the augmented state space source model in (3)
ensures the following achievability bounds on (11)–(13), as follows

Rc
pd(D) ≤ RLB

pd(D) +
rank(H)

2
log(2πeGrank(H)) (76)

Rc
joint(D∗) ≤ RLB

joint(D∗) +
rank(H)

2
log(2πeGrank(H)), (77)

Rc(Dcov) ≤ RLB(Dcov) +
rank(H)

2
log(2πeGrank(H)). (78)

Proof. Under the conditions of the Theorem and the ECDQ scheme that leads to (75), the RHS terms
in (76)–(78) are all constants. Then, taking the limit in both sides of (76)–(78) and then the appropriate
infimization (minimization) constraint sets, the result follows.

We wish to point out the following for Theorem 4.

Remark 11 (Comments on Theorem 4).

(1) The ECDQ that leads to (75) is not the same as the standard symmetric ECDQ scheme for scalar-valued
processes, i.e., when the coefficient H breaks into two pre and post additive noise channel scalings that
tune the MSE distortion (see, e.g., [44,47]). In our pre-post scaled ECDQ scheme we take asymmetric
coefficients based on the realization of Figure 9. This leads to a coarser lattice than the one used for the
unscaled ECDQ (for details see for instance [44]).

(2) Since the upper bound essentially relies on the obtained lower bound for all (76)–(78), this means that
similar observations can be made. For instance, if D < DT , then, (77) recovers (76), i.e., the asymptotically
averaged total distortion constraint is inactive. Moreover, we cannot claim tightness of the achievability
bound in (78) because the lower bound is already non-tight.

Next, we give an example where we compare the RL gap for various distortion levels of the
achievability bound obtained in Theorem 4 and the lower bound obtained in Theorem 2 for the
operational causal RDF with joint distortion constraints.

Example 4 (RL gap of achievability and lower bounds). In this example, we plot lower and upper bounds
on the operational causal RDF subject to joint distortion constraints using the bounds derived in (50) and (77),
respectively. We first consider the same input data assumed in Example 1 for users 1, 2. Then, we proceed
to compute the lower bound via (50) and the achievability bound in (77). After the first numerical study,
we consider another one for which we only change the Gaussian noise process for both users 1, 2, as follows

(Σw1 , Σw2) =

[ 1 0.5
0.5 1

]
,

1.4039 0.6034 0.5165
0.6034 0.9563 0.7682
0.5165 0.7682 0.6620


 . (79)
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Using the data of Example 1, and the same DT and Dii, i = 1, 2, 3, 4, 5, we obtain the plots of Figure 10.
For this study, we have used a Schläfli lattice (for details on this lattice see, e.g., [48]). D̃5 with a dimensionless
normalized second moment of the lattice G5 ≈ 0.0756 bits. In this example H is always full rank and the RL
gap is constant at 0.9218 bits/augmented vector.

0.01 0.5 1 1.5
5

10

15

20

25

Figure 10. Comparison of lower and upper bounds on Rc
joint(D) when H is full rank.

For the second example, we obtain the plots of Figure 11. For this study, we have used the dimensionless
normalized second moment of a Schläfli lattice D̃5 for the full rank case and for the rank deficient cases a Schläfli
lattice D4 with a dimensionless normalized second moment of the lattice G4 ≈ 0.0766 bits. Similar to the first
study, when H is always full rank, the RL gap is 0.9218 bits/augmented vector whereas for H rank deficient the
RL gap is 0.7754 bits/augmented vector.
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Figure 11. Comparison of the lower and upper bounds on Rc
joint(D) when H is rank deficient.

3.3. Bounding (11)–(13) via a DPCM-based ECDQ for Non-Gaussian Noise Processes

Similar to Lemma 4 where linear policies are the benchmark to derive lower bounds on (11)–(13),
in this subsection we derive upper bounds on (11)–(13) using the linear test channel realization in
Figure 9 and the DPCM-based ECDQ scheme of Sections 3.1 and 3.2.

Next, we state the following theorem.
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Theorem 5 (Achievability bound on (11)–(13) for additive non-Gaussian noise process). Suppose that
∆t = ∆, ∀t and assume that the users 1, 2 source models (1) are driven by non-Gaussian noise processes. Then,
the augmented state space source model in (3) ensures the following achievability bounds on (11)–(13), as follows

Rc
pd(D) ≤ RLB,linear

pd (D) +
rank(H)

2
log(2πeGrank(H)) +D(x̂||x̂G) (80)

Rc
joint(D∗) ≤ RLB,linear

joint (D∗) +
rank(H)

2
log(2πeGrank(H)) +D(x̂||x̂G), (81)

Rc(Dcov) ≤ RLB,linear(Dcov) +
rank(H)

2
log(2πeGrank(H)) +D(x̂||x̂G). (82)

where D(x̂||x̂G) is the KL divergence between the residual source x̂t assuming linear policies and the Gaussian
residual source x̂G

t ∼ N (0; Λ) in Figure 9.

Proof. We only prove (80) because (81) and (82) follow similarly. In addition, in parts we sketch the
derivation because it is clear from the previous results. From Lemmas 4 and 3, we can easily obtain the
following lower bound (similar to SLB [32])

Rc
pd(D) ≥ RLB,linear

pd (D)−D(x̂||x̂G), (83)

where D(x̂||x̂G) ≥ 0 is the discrepancy between the residual source x̂t assuming linear policies and the
optimal Gaussian residual source x̂G

t ∼ N (0; Λ). From (83), we obtain

RLB,linear
pd (D) ≤ Rc

pd(D) +D(x̂||x̂G). (84)

Then, applying the DPCM-based ECDQ scheme based on the linear forward test channel realization
of Figure 9 discussed in Sections 3.1 and 3.2 we obtain (76). Since the coding scheme is obtained
because we have assumed linear policies, RLB

pd(D) will be replaced by RLB,linear
pd (D). This completes

the derivation.

Remark 12 (Comments on Theorem 5). Clearly, Theorem 5 is a generalization of Theorem 4 under the
assumption of the linear realization of Figure 9 with systems driven by additive i.i.d. non-Gaussian noise process.
If in (80)–(82), we assume that the system is driven by additive i.i.d. Gaussian noise process, then, clearly
D(x̂||x̂G) = 0 and Theorem 5 recovers Theorem 4.

4. Conclusions and Future Research

In this paper, we derived bounds on the OPTA of a two-user MIMO causal encoding and causal
decoding problem (assuming the clocks of the encoder and the decoder to be synchronized). In our
setup, each one of the users is described by a multivariate Markov source driven by additive i.i.d.
noise process (possibly non-Gaussian) subject to three classes of spatio-temporal distortion constraints.

Although not directly pursued in this paper, all the results can be easily generalized to any finite
number of users in Figure 1. Moreover, as a future research we aim to study the case of separate
encoding for each user which will be a generalized version of a multi-user (distributed) source coding
setup. Finally, due to the lack of insight of our results (mainly because we employed the general SDP
solvers to compute our bounds) it makes sense to consider more specific setups and try to solve them
using KKT conditions and, then, identify structural properties of matrices (A, Σw) for which KKT
conditions can be optimally solved.
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Notation

The following notation is used in this manuscript:

Symbol Description
R The set of real numbers
Z The set of integers
N0 The set of natural numbers including zero
Nn

0 The set {0, . . . , n} where n ∈ N0

x ∈ R Random variable
X Alphabet for the random variable x
xt

r The sequence of random variables (xr, xr+1, . . . , xt), (r, t) ∈ Z×Z, r ≤ t
xt

r Sequence of the random variables realizations, where xt
r ∈ X t

r
X t

r ×t
k=rXk with Xt = X

P(dx) The probability of the RV x on X
P(dy|x) The conditional distribution of RV y given x = x
⊗ compound product
⊕ Direct sum
x ∈ Rp×1 Column vector
xT ∈ R1×p Row vector
K ∈ Rp×p Square real matrix
KT ∈ Rp×p Transpose of square real matrix
Kii Diagonal elements of matrix K
|K| Determinant of K
rank(K) Rank of K
trace(K) Trace of K
µK,i the ith eigenvalue of matrix K
Σx The covariance of a random vector x
Σx � 0 Positive definite covariance matrix Σx

Σx � 0 Positive semidefinite covariance matrix Σx

Σx � Σx′ Σx − Σx′ is positive semidefinite
Σx � Σx′ Σx − Σx′ is positive definite
0 Null matrix
Ip Identity matrix of dimension p
H(·) Discrete entropy
h(·) Differential entropy
D(x||x′) KL Divergence of probability distribution P(x) with respect to probability distribution P(x′)
x ∼ N (0; Σ) Gaussian random vector x with zero mean and covariance Σ
x ∼ Uni f (0; Σ) Uniformly distributed random vector x with zero mean and covariance Σ
hG(·) Gaussian differential entropy
RG(·) Gaussian information RDF
N(x) The entropy power of random vector x
|| · ||2 Euclidean norm
E{·} Expectation operator
[·]+ max{0, ·}
A↔ B↔ C A, B, C form a Markov chain
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Abbreviations

The following abbreviations are used in this manuscript:

OPTA Optimal Performance Theoretically Attainable
RDF Rate distortion function
DPCM Differential pulse coded modulation
ECDQ Entropy coded dithered quantization
MSE Mean-squared error
MMSE Minimum MSE
RHS Right Hand Side
LHS Left Hand Side
i.i.d. Independent Identically Distributed
a.s. almost surely
KKT Karush Kuhn Tucker
LMI Linear matrix inequality
SDP Semidefinite programming
KF Kalman filter
EP Entropy power
EPI Entropy power inequalities
RL Rate loss
SLB Shannon Lower Bound

Appendix A

Proof of Lemma 3. We only prove (1) as both (2), (3), follow similarly. First, by assumptions of the
theorem, ∆ , 1

n+1 ∑n
t=0 ∆t for some finite n with ∆ � 0 (sufficient condition for existence of a finite

solution) and B , ATΣ−1
w A � 0. Moreover,

1
n + 1

n

∑
t=0

Rt
(a)
≥ 1

n + 1

n

∑
t=0

I(xt; yt|yt−1)

(b)
=

1
n + 1

1
2

n

∑
t=0

log
|Λt|
|∆t|

(c)
=

1
n + 1

[
1
2

log |Λ0| −
1
2

log |Λn+1|+
1
2

n

∑
t=0

log
|Λt+1|
|∆t|

]
(d)
=

1
n + 1

[
1
2

log |Λ0| −
1
2

log |Λn+1|+
1
2

n

∑
t=0

[
log |Σw|+ log |∆−1

t + B|
]]

(e)
≥ 1

n + 1

1
2

log |Λ0| −
1
2

log


(

trace(AT A) trace(D̂) + trace(Σw))
)p

p




+
1
2

1
n + 1

n

∑
t=0

[
log |Σw|+ log |∆−1

t + B|
]

( f )
≥ 1

n + 1

1
2

log |Λ0| −
1
2

log


(

trace(AT A) trace(D̂) + trace(Σw))
)p

p




+
1
2

log |Σw|+
1
2

log |∆−1 + B|

(g)
≥ 1

n + 1

1
2

log |Λ0| −
1
2

log


(

trace(AT A) trace(D̂) + trace(Σw))
)p

p


+

1
2

log
|Λ|
|∆| , (A1)

where (a) follows from Theorem 1 (see also Remark 2); (b) follows from Lemma 1, (1), because
hG(xt|yt−1) = 1

2 log(2πe)p1+p2 |Λt| and hG(xt|yt) = 1
2 log(2πe)p1+p2 |∆t|; (c) follows by reformulating
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the additive objective; (d) follows because |Λt+1||∆−1
t | = |A∆t AT + Σw||∆−1

t | = |Σw(Σ−1
w A∆t AT +

Ip1+p2)||∆−1
t |

(d1)
= |Σw(ATΣ−1

w A∆t + Ip1+p2)||∆−1
t |

(d2)
= |Σw||B + ∆−1

t | where (d1) follows from
Weinstein–Aronszajn identity ([49], Corollary 18.1.2) and (d2) from standard determinant properties
of square matrices of the same size; (e) follows from the inequalities

|Λn+1|
(e1)
≤ (trace(A∆n AT + Σw))p

p
(e2)
≤ (trace(A∆n AT) + trace(Σw)))

p

p
(e3)
≤ (trace(AT A) trace(∆n) + trace(Σw)))

p

p

(e4)
≤

(
trace(AT A) trace(D̂) + trace(Σw))

)p

p
,

where (e1) follows because |K|
1
p ≤ trace(K)

p for K � 0, (e2) follows from ([18], Ex. 12.14), (e3) follows

from the cycling property of trace and ([18], Ex. 12.14), (e4) follows because trace(∆n) ≤ trace(D̂)

(by definition); ( f ) follows because the term log |∆−1
t + B| is convex with respect to ∆t for B � 0

(see, e.g., [50]) hence we can apply Jensen’s inequality ([19], Theorem 2.6.2); (g) follows because
log |Σw|+ 1

2 log |∆−1 + B| can be rearranged to |Λ||∆| where Λ = A∆AT + Σw. Taking the limit in both
sides in (A1), we observe that the first RHS term vanishes asymptotically. Finally, using the appropriate
infimization constraints in both sides of the limiting objective functions in (A1), and because we assume
sufficient conditions for existence of solution of the RHS term infimum is in fact minimum and the
result follows.

Appendix B

Proof of Theorem 2. Similar to the proof of Lemma 3, we only prove one case, i.e., (1), as the following
cases can be shown using the exact same way.

By invoking matrix determinant lemma ([49], Theorem 18.1.1) in RLB
pd(D), we obtain

Rna
pd(D) = min

0≺∆�Λ
∆ii≤Dii , i=1,...,p

1
2

log |Σw| −
1
2

log |∆−1 − ATΣ−1
w A|−1. (A2)

Next, we introduce a decision variable Q1 , ∆−1 − ATΣ−1
w A. Using the monotonicity of the

determinant we can rewrite (A2) as

Rna
pd(D) = min

0≺∆�Λ
∆ii≤Dii , i=1,...,p

0≺Q1�(∆−1−ATΣ−1
w A)−1

1
2

log |Σw| −
1
2

log |Q1|. (A3)

Applying Woodbury matrix identity ([49], Theorem 18.2.8) in the inequality constraint 0 ≺ Q1 �
(∆−1 − ATΣ−1

w A)−1, we obtain

0 ≺ Q1 � ∆− ∆AT(Σw + A∆AT)−1 A∆. (A4)

From Theorem 2 we have Λ = A∆AT + Σw, hence (A4) is equivalent to the LMI condition of (49).
The decision variable is convex and there exists an optimal solution because ∆ � 0. This completes

the proof.
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Appendix C

Proof of Theorem 3. We only prove in detail (1) and sketch the proof for (2), (3) because several steps
are identical to (1). First note that from Lemma 3 we have the bound in (43). Next, we simply show that
the objective function can be lower bounded by a constant value (independent of the constraint set).

1
2

log
|Λ|
|∆| =

1
2

log |A∆AT + Σw| −
1
2

log |∆|

=
(p1 + p2)

2
log |A∆AT + Σw|

1
p1+p2 − (p1 + p2)

2
log |∆|

1
p1+p2

(a)
≥ (p1 + p2)

2
log
(
|A∆AT|

1
p1+p2 + |Σw|

1
p1+p2

)
− (p1 + p2)

2
log |∆|

1
p1+p2

(b)
=

(p1 + p2)

2
log
(
|AT A|

1
p1+p2 |∆|

1
p1+p2 + |Σw|

1
p1+p2

)
− (p1 + p2)

2
log |∆|

1
p1+p2

=
(p1 + p2)

2
log
(
|AT A|

1
p1+p2 + |Σw|

1
p1+p2 |∆|−

1
p1+p2

)
(A5)

(c)
≥ (p1 + p2)

2
log
(
|AT A|

1
p1+p2 + |Σw|

1
p1+p2

(p1 + p2)

trace(∆)

)
(d)
≥ (p1 + p2)

2
log
(
|AT A|

1
p1+p2 + |Σw|

1
p1+p2

(p1 + p2)

D

)
(A6)

(e)
≥ (p1 + p2)

2
log
(
|AT A|

1
(p1+p2) +

(p1 + p2)N(w)

D

)
, (A7)

where (a) follows from Minkowski’s determinant inequality ([18], Exercise 12.13); (b) follows from
standard properties of determinants for square matrices of the same size; (c) follows from the reverse
application of EPI (see, e.g., ([43], Equation (7))); (d) follows because trace(∆) ≤ trace (D̂) ≡ D; (e)

follows from ([43], Equation (7)). The constant value in (A7) is well defined if D ∈
(

0, (p1+p2)N(w)

1−|AT A|
1

p1+p2

]
,

where N(w) = 1
2πe 2

2
p1+p2

h(w) and h(w) > −∞.
In (2) we follow similar steps to (1) but in inequality (d) we have instead trace(∆) ≤

min{DT , trace(D̂)} ≡ D∗.
In (3) we follow similar steps until (A5). Afterwards, we leverage the fact that |∆| ≤ |Dcov| to

obtain instead of (A6) the following:

(p1 + p2)

2
log

|AT A|
1

p1+p2 +
|Σw|

1
p1+p2

|Dcov|
1

p1+p2

 .

This completes the derivation.
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