

Aalborg Universitet

Educational interventions to improve outcomes in patients with atrial fibrillation

a systematic review

Palm, Pernille; Qvist, Ina; Bernholdt Rasmussen, Trine; Christensen, Signe Westh; Håkonsen, Sasja Jul; Risom, Signe Stelling

Published in: International Journal of Clinical Practice

DOI (link to publication from Publisher): 10.1111/ijcp.13629

Publication date: 2020

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Palm, P., Qvist, I., Bernholdt Rasmussen, T., Christensen, S. W., Håkonsen, S. J., & Risom, S. S. (2020). Educational interventions to improve outcomes in patients with atrial fibrillation: a systematic review. International Journal of Clinical Practice, 74(11), [e13629]. https://doi.org/10.1111/ijcp.13629

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

MISS SIGNE WESTH CHRISTENSEN (Orcid ID : 0000-0003-0594-875X)

Article type : Systematic Review

Educational interventions to improve outcomes in patients with atrial fibrillation – a systematic review

Pernille Palm¹, Ina Qvist², Trine Bernholdt Rasmussen^{3,4}, Signe Westh Christensen¹,

Sasja Jul Håkonsen⁵, Signe Stelling Risom^{1, 4, 6}

- Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark.
- 2. Department of Cardiology, Diagnostic Centre, University Research Clinic for Innovative Patient Pathways, Silkeborg Regional Hospital, Denmark.
- 3. Department of Cardiology, Herlev and Gentofte University Hospital, Denmark.
- 4. Faculty of Health and Medical Sciences, Copenhagen University, Denmark.
- 5. Centre of Clinical Guidelines, Department of Clinical Medicine, Aalborg University, Denmark
- 6. Institute of Nursing and Nutrision, University College Copenhagen, Denmark.

Corresponding Author:

Signe Westh Christensen, MSc Rigshospitalet, Copenhagen University Hospital

Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases,

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/IJCP.13629

This article is protected by copyright. All rights reserved

Blegdamsvej 9, 2100 Copenhagen O, Denmark

signe.westh.christensen@regionh.dk

Acknowledgemnts: We would like to acknowledge librarian Jette Frost Jepsen for her help with the literature search between June and August 2018. This work was supported by the Danish Health Authority in relation to developing the Danish National Clinical Guideline entitled: *National Clinical Guideline for Rehabilitation for Patients with Atrial Fibrillation, Atrial Flutter, Patients with Endocarditis and Patients treated with an Implantable Cardioverter Defibrillator (ICD)* and Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital, Rigshospitalet.

Abstract

Background: Atrial fibrillation (AF) is an emerging epidemic associated with poor mental health and quality of life, as well as morbidity and mortality. Whilst other cardiovascular conditions have demonstrated positive outcomes from educational programmes, this approach is not well integrated in clinical practice in patients with AF. Though evidence in this area is mounting, a thorough overview seems to be lacking.

Aim: To assess benefits and harms of educational interventions compared with no intervention in adults with AF.

Method: A systematic review and meta-analysis were performed including the outcomes: Serious adverse events (mortality and readmission), mental health (anxiety and depression), physical capacity, quality of life and self-reported incidence of symptoms of AF. PubMed, Embase, Cinahl, Cochrane Library and PsycINFO were searched between June and august 2018. Data extraction and quality assessment were performed independently by two reviewers. The Cochrane Risk of Bias tool was applied for the randomised controlled trials and the Amstar Checklist for the systematic reviews.

Results: Eight randomised controlled trials and one non-randomised interventional study were included, with a total of 2388 patients. Comparing with controls patient education was associated with a reduction in: Serious adverse events (Risk Ratio 0.78, CI 95% 0.63-0.97), anxiety with a mean difference of -0.62 (CI 95% -1.21, -0.04), and depression with a mean difference of -0.74 (CI 95% -1.34, -0.14). Health-related quality of life and physical capacity was found to increase after patient education, yet only one study found statistically significant differences between groups. No differences were observed with regards to self-reported incidence of symptoms of AF.

Conclusions: Educational interventions significantly decrease the number of serious adverse events in patients with AF and seem to have a positive impact on mental health and self-reported quality of life. However, the evidence is limited, and more studies are warranted.

Keywords: Atrial Fibrillation, Educational Interventions, Review, Quality of Life, Mental Health, Serious Adverse Events.

How did you gather the information you considered in your review?

- A systematic review was performed.
- Two authors selected, extracted and bias assessed the included trials.
- Meta-analyses were performed.

What is the 'take-home' message for the clinician?

- It is recommended to include education for patients with AF.
- The education should include: life with AF, symptoms to respond to, knowledge about illness and treatment, and psychological reactions.

Background

AF is the most common arrythmia and worldwide nearly five million people are diagnosed annually (1,2). The prevalence of AF is increasing as the population ages globally, and is predicted to affect 6–12 million people in the USA by 2050 and 17.9 million in Europe by 2060 (3,4). For patients with AF, increased mortality rates, high stroke event rates, and heart failure are observed (2). Treatment focuses on reducing or eliminating symptoms of AF, and on improving quality of life (2). Symptoms of AF include heart palpitations, light-headedness, dyspnoea, fatigue and dizziness (2).

Patients living with AF describe struggling with continuously trying to understand their symptoms, feeling emotionally distressed and feeling uninformed and unsupported by health care professionals (5). It has also been found that patients often are unaware of the necessary precautions they need to take in everyday life because of the disease, like stroke prevention and patients lack knowledge about treatment options and effects for AF (6). Furthermore, many patients with AF experience decreased physical capacity (7) and lower quality of life compared to the general population but also compared to patients with e.g. ischemic heart disease (8,9), some patients also report of high levels of anxiety and depression (10).

Cardiac rehabilitation is considered a class one recommendation for patients with ischemic heart disease and heart failure (11,12). Patient education is considered a core part of cardiac rehabilitation with the intention of providing patients with health information so they improve their health status (13). To improve or support patient's mental status, psycho-social support is often provided together with education (14).

Now patient education is recommended in the European Guidelines for patients with AF based on few identified interventional studies (2). The purpose of this present review was to identify studies testing educational interventions and assess and synthesise the evidence of these.

Aim

To assess the effectiveness and benefits and harms of educational interventions compared with no intervention in adults with AF.

Methods

This publication is conducted in collaboration with the Danish Health Authority and is based on the work performed in relation to developing the Danish National Clinical Guideline entitled: *National Clinical Guideline for Rehabilitation for Patients with Atrial Fibrillation, Atrial Flutter, Patients with Endocarditis and Patients treated with an Implantable Cardioverter Defibrillator (ICD)* published in Danish (15).

Search strategy

A literature search for systematic reviews and primary literature published between 2008-2018 was conducted in the following resources and databases: PubMed, Embase, Cinahl, Cochrane Library and PsycINFO. Studies written in English, Danish, Swedish and Norwegian was included. A mix of MeSH and free text terms related to the key concepts of this review were used in the searches.

The literature search was performed by a research librarian in collaboration with SSR between June and August 2018 (see example of search in Supplementary File 1).

All references were assessed for eligibility by two independent reviewers (PP and IQ) using the inclusion criteria.

Study type and participants

Systematic reviews and randomised controlled trials (RCTs) of educational interventions in adults with verified AF (paroxysmal, persistent or permanent) and/or atrial flutter.

Types of intervention

Studies were included if they comprised an educational programme defined as a programme with the intent of improving the patient's knowledge of illness, symptoms and treatment, and/or providing psychosocial support. The patient education could include information on the onset and development of the disease, modification of risk factors and health behaviour, treatment, action plans, symptom management, adherence to treatment and prevention and psychosocial reactions. The educational programme could be delivered individually, or group based.

This was compared to usual practice that did not include participation in an educational intervention.

Outcomes

Outcomes were: Serious adverse events (death and readmission), self-reported incidence of symptoms of AF, health-related quality of life, anxiety, depression, physical capacity after intervention ended and/or at longest follow-up time reported e.g. at 12 months.

Two reviewers (PP and IQ) performed the data extraction independently in a matrix to get an overview over extracted data.

Data synthesis

Where results were poolable statistical analyses were performed using RevMan 5.3. For continuous outcomes individual meta-analyses were completed by using the mean value and standard deviation (SD) between groups (intervention and control) at the end of the intervention and at the time of longest follow-up. For continuous outcomes, mean differences were used, as data were homogeneous. For binary data, risk ratios (RRs) were calculated. Statistical heterogeneity was quantified using the I² test with values ranged from 0% (homogeneity) to 100% (high degree of heterogeneity) (16). Heterogeneity decided if random or fixed effect models were applied. We presented results from the random-effects model when heterogeneity was high and from fixed-effects when heterogeneity was low. Statistical significance was judged based on a level of significance of 5%, with 95% confidence intervals (CI).

Risk of bias

The quality of the studies was evaluated by the Amstar for the systematic reviews (17) and Cochrane Risk of Bias tool (16) for the RCTs. Two reviewers (PP and IQ) performed the risk of bias assessment independently. Disagreements were resolved by discussion. Quality assessment included component ratings for randomisation, allocation, blinding, incomplete outcome data, selective reporting and other bias, and resulted in a global rating for the reference being either low, high or unclear quality. One non-randomized interventional study included in the systematic review was assessed by the The Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) assessment tool, version 1, 2016 independently by two reviewers (PP and SSR) (18).

Results

Results of the systematic literature search

For the systematic literature search our search yielded a total of 1074 titles (962 after removal of duplicates). After reviewing titles and abstracts, 50 full-text references were potentially eligible for inclusion. After examining the full-text references, nine references (two systematic reviews and eight

RCTs) were included for data extraction and analysis (19–27). The selection process is summarised in the flow chart shown in Figure 1.

Altogether, there were three randomised controlled trials (23–25) and one non-randomised interventional study (28) included from the two included systematic reviews focusing on the same outcomes as explored in this review.

Overall results of literature search

Altogether we included nine original trials of which eight were RCTs (19–25,29) and one was a non-randomised interventional study (28). Three trials were identified both in the systematic reviews and the RCT search (23–25).

Trial and participants characteristics

A total of 2368 patients were included in the trials. All nine trials included patients with AF (19–25,28,29). The mean age in the intervention group ranged from 58 years to 74.8 years and the control group from 59 years to 77.3 years. In eight of the trials the majority of the participants were males (52.0%-71.5%) (20–25,28,29). Only in the study by Fuenzalida et al. did females represent the majority (57.5%) (19). The detailed information on the included studies can be found in the characteristics of included studies in Table 3.

Description of interventions

The interventions used in the trials differed. In the trial by Clarkesmith et al. the intervention aimed at increasing time within therapeutic (INR) range and the intervention consisted of a group-based session including 'expert-patient' DVD, educational booklet, self-monitoring diary and worksheet (23). The trial by Fuenzalida et al. aimed to decrease AF-related or treatment-related complications and registered death. The intervention consisted of education at discharge including information about AF, pulse taking and an information leaflet (19). Guo et al. aimed at increasing patients' knowledge about AF using a smartphone application including education about AF and structured follow-up components (20). Hendriks et al. introduced an intervention consisting of a nurse-led AF clinic where focus was on individualised psychosocial support and AF education, the aim of the intervention was to decrease hospitalization and death (24). Malm et al. aimed at improving health related quality of life by introducing dyadic cognitive behavioural therapy three sessions of 2.5 hours each (21). Risom et al. introduced a comprehensive cardiac rehabilitation programme consisting of physical exercise and psycho-educational interventions with the primary aim at increasing physical capacity (30). The trial by Stewart et al. aimed at increasing event-free

survival and decreasing death and hospitalisation by using home visits by a nurse 7-14 days post discharge and with follow-up (25). Carter et al. aimed at decreasing hospitalisation and emergency department visits introducing an integrated management approach with nurse based, physician-supervised care for patients with new-onset AF (28). The trial by Bowyer et al. tested an educational intervention on symptom severity and health related quality of life (29).

The duration of the interventions was between 6 and 24 months (19–25,29) (see Table 3).

Outcomes

Serious adverse events (death and readmission)

The assessment of serious adverse events included five RCTs (19,22–25) and one non-randomised interventional study (28) including in total 2007 patients. The meta-analysis showed a difference between groups with a lower number of patients experiencing serious adverse events in the intervention group compared with control (Risk Ratio 0.78, CI 95% 0.63-0-97) (Figure 2).

Self-reported incidence of symptoms of AF

A study with 210 participants (22) examined the difference of AF symptoms using self-reported incidence of symptoms of AF after six months. Equal numbers (n=3) in the intervention and control group experienced arrhythmia.

Health-related Quality of Life after intervention

Results from one study including 712 patients (31) found a positive effect of patient education on healthrelated quality of life (measured with Short Form 36 Questionnaire (SF-36)) within groups but not between groups. After one year, significant improvements were seen in the following health-related quality of life subscales: Role Emotionel (P =0.004), Mental Health (P= 0.001), and Vitality (P = 0.008) in the intervention group. The latter two, however, also significantly improved in the usual care group (Mental Health P = 0.002, Vitality P<0.001), as well as Role Physical (P = 0.004) (31).

A study with 209 patients (20) showed a positive effect between groups of patient education on healthrelated quality of life measured by the EuroQol (intervention group mean 87.6 vs 70.1 in the control group, P<0.05), which was still present after three months (20). One study showed no difference between groups on health-related quality of life (22).

A study with 41 patients found a positive effect between groups on two of the eight SF-36 subscales, physical function, (intervention mean 88.58 vs 70.78 in the control group, p=0.002), and vitality, (intervention group 70.86 vs 54.31 in the control group, p=0.005). No differences were seen on the other subscales and the overall score not reported (29).

Anxiety:

Anxiety after intervention

One study including 78 patients (21) found no difference between groups on anxiety measured by the Hospital Anxiety and Depression Scale – Anxiety (HADS-A) (lower score indicates less anxiety symptoms) at end of intervention (after 12 months), (intervention group mean 5.76 vs 4.85 in the control group, P=0.40). The study by Guo et al. with 209 patients (20) examined the effect of patient education on anxiety and depression by using the EuroQol (EQ-5D-Y). Results showed that anxiety and depression were improved in the intervention group over time (all p<.05).

Another study including 210 patients showed no difference between groups on anxiety measured on HADS-A after intervention six months after recruitment (intervention group mean 3.85 vs 3.80 in the control group, p=0.09) (22).

Anxiety longest follow-up

Two studies (23,24) including 587 patients showed a difference between groups in favour of patient education on anxiety with a mean difference of -0.62 (CI95% -1.21, -0.04) at 12 months (23,24) (Figure 3).

At 24 months follow-up results of Risom et al. showed a difference between groups in favour of the intervention group where scores of HADS-A \geq 8 were 3.92 (12.8%) vs 4.73 (23.8%) in the control group (P<0.05) (32).

Depression:

Depression after intervention

One study from 2018 including 78 patients (21) found no effect of patient education on depression measured by the Hospital Anxiety and Depression Scale – Depression (HADS-D) (lower score indicates less depressive symptoms) at end of intervention, (intervention group mean 4.16 vs 3.15 in the control, P= 0.4).

Another study with 209 participants (20) examined the effect of patient education on depression. Differences between the groups were seen at baseline for mild depression (P=0.014) but the differences were balanced at three months follow-up (P=0.36).

Another study including 210 patients showed no difference between groups on depression measured on HADS-D after intervention six months after recruitment (intervention group mean 2.92 vs 2.36 in the control group p=0.41) (22).

Depression longest follow-up

The meta-analysis based on two studies (23,24) including 587 patients showed an effect in favour of patient education on depression with a mean difference on -0.74 (CI 95% -1.34, -0.14) (Figure 4).

At 24 months follow-up the results of Risom et al. showed no difference between groups where scores of HADS-D \geq 8 were 2.57 in the intervention group vs 2.86 in the control group. In the intervention group 6.4% of the patients scored \geq 8 vs 6.3% in the control group (32).

Physical capacity:

Physical capacity after intervention

Based on result from 157 patients from the study by Risom et al. (22) including both patient education and physical training, results showed an effect in favour of the intervention compared to control on physical capacity measured by VO₂ peak (Intervention groups: mean 24.3(ml/kg/min) vs control group: mean 20.7 (ml/kg/min), p=0.02). Furthermore, data on 149 patients from the same study showed an effect in favour of the intervention on the 6-minute walk test (6MWT) with a mean difference between groups of 14 meters (p of interaction between time and intervention was 0.02). The physical training consisted of: Graduated cardiovascular training based on intensity prescription and strength exercises altered stepwise during training sessions. Training intensity was progressively increased during the 12 weeks the intervention lasted (22).

Physical capacity longest follow-up

At 12-months follow-up results from the trial by Risom et al. showed a difference between groups in favour of the intervention group when measuring physical capacity by VO_2 peak (Intervention groups: mean 25.8 (ml/kg/min) vs control group: mean 22.4 (ml/kg/min), p=0.002) (22).

Risk of bias

Systematic reviews: The quality of the two systematic reviews was overall evaluated as high on Amstar (Table 1).

Randomised Controlled Trials: The quality of the eight RCTs was evaluated with the Cochrane Risk of Bias tool (33) and demonstrated various risks of bias across the domains. In the domain "Blinding of participants and personnel" all trials were judged as "unclear risk" or "high risk" where in the domain "Sequence generation" and "Allocation concealment" most trials were judged as "low risk" (Table 2a).

Non-randomised studies: The quality of the non-randomised study was assessed with the Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) assessment tool and found to include an overall low risk of bias (Table 2b) (18).

Discussion

Overall, our review and meta-analysis of educational intervention targeted at patients with AF revealed positive effects including a significant reduction in the number of serious adverse events, including mortality and readmission. Health related quality of life improved both within and between groups and, in some cases, persisted over time. Anxiety improved after long follow-up time, but no effect was seen in close relation to the interventions. The same trend was seen with regards to depression. Physical capacity increased after participation in an intervention consisting of both education and physical exercise training and this was sustained at 12 months follow-up.

A possible reduction in the number of serious adverse events is evidently important to the patient, as well as to the clinicians and society. Strong evidence for effects of education for patients with AF on this important outcome provides clinicians with a strong argument for prioritising, planning and allocating resources to this element at the same level as other care or treatment. In the Western world AF is found in approximately 3% of the population and the prevalence is increasing (2). The number of patients with AF experiencing hospitalisation is substantial, making AF a considerable economic burden for society (2). Preventing hospitalisations or even premature death via educational programmes for patients with AF may not only alleviate human suffering but also reduce health care costs.

For anxiety we found no difference between groups after the end of intervention, but at longest follow-up three trials showed a significant difference in favour of the intervention groups. It is documented that patients with AF experience high levels of anxiety even after ablation treatment, where around 70% of patients should be free of AF symptoms after the ablation treatment (2,34,35). The results from this review indicate that participating in an intervention including an educational component can lower anxiety levels for patients up to 24 months after inclusion in an intervention. Qualitative findings support this finding, as patients having participated in an intervention including education confirmed that they needed support from healthcare-professionals to move on (36). One previously mentioned qualitative study evaluated participating in a rehabilitation programme for patients with AF including a psycho-educational component (36). Patients described that the psycho-education (delivered either face-to-face or by telephone) was important to them as they still needed support to move on and health-professionals helped them regaining confidence in their mental strength (36). However, it does not fully explain why no difference between groups were found at the end of intervention. The interviews were conducted right after ending the intervention and it may be that the patients at this point still needed support to move on and that they still

had to integrate the learned coping skills into their life without support of health-professionals. In the European Guidelines education is recommended with the goal of increasing the patient's feeling of being informed, involved, and empowered (2). The results of our review support and underline the importance of this recommendation with added evidence of decreased adverse events in favour of educational programmes compared to 2016 when the guidelines were developed and published (2).

Comparing the results of this review to the results of other reviews conducted in patient with AF where educational components have been used, mixed results are found. In the Cochrane review by Clarkesmith and colleagues the evidence concerning educational and behavioural interventions for anticoagulant therapy (measured by time in therapeutic range of anticoagulation therapy) in patients with AF was gathered (27). Based on 2246 patients they concluded that there was insufficient evidence to draw definitive conclusions regarding what impact educational or behavioural interventions had on patients' time in therapeutic range. A review by Gallagher and colleagues focused on interventions that used integrated care including education as part of the approaches to care delivery in the AF population (26). They were able to include 1383 patients with AF and found that integrated care was associated with a decrease in cardiovascular hospitalisations and all-cause mortality. More research in the field is however needed since the conclusion was based on only three studies (26).

The diversity in the included interventions makes it difficult to recommend any specific content or mode of delivery of patient education that should be provided for patients with AF. The interventions in the included trials of this review included information on AF and treatment, information on symptoms and how to react appropriately when symptoms occur, how having AF can affect the patient's everyday life, and psychological reactions to living with a non-predictable disease (19–22,24,26,27). Studies used e-health solutions, nurse-led intervention (both individually, home based, and group based) and pamphlets. Also, outcomes varied and included, e.g. medication adherence, improved life with AF, patient involvement in treatment options, symptom burden management and lifestyle changes.

Important outcome effects were detected despite the differences in intervention content and outcome measures, thus proving that the education provided was relevant and effective. Future research should focus on teasing out which intervention components has the greatest impact in relation to different endpoints. Most importantly, patients should be consulted and invited as co-creators of educational programs as they undoubtedly are the real specialist when it comes to defining the educational needs (37,38).

To be able to implement any intervention it is crucial that the intervention is described in detail and preferably also the educational theory behind the education intervention is described and justified. That was the case for some of the included studies. The study by Hendriks and colleagues were built on the chronic care model (39,40), and the psycho-educational intervention in the study by Risom and colleagues was

developed with inspiration from the theory developed by Rosemary Parse (41). The intervention by Beyth and colleagues (42) was built on social learning theory (43–45) and experimental evidence (46,47). Educating our patients is complex and challenging, studies show that patients do not remember all the information they get at the hospital (48,49), therefore it would be preferable to be able to implement thoroughly tested educational interventions built on solid educational theory to be able to gain the best possible outcomes for the patient.

When delivering an educational intervention for patients with AF, healthcare professionals must consider that AF is a complex disease, affecting patients differently and therefore several approaches to educational interventions can be needed for different patients and their various challenges. For example, Lunde et al. found in a review that low socioeconomic status in patients with AF was associated with poorer treatment, prognosis related to treatment, less knowledge of AF, poor psychological health and higher mortality (50). Low socioeconomic status has also been described as affecting AF patients' activation level of selfmanagement in their own illness negatively, which had an impact on health status and educational attainment (51). A high level of activation increased AF patients' knowledge about their AF, and confidence in coping with lifestyle changes to improve their health (51).

If we compare the results of this review with results of interventions including education for patients with other heart disease it is interesting that a Cochrane review for patients with coronary heart disease (n= 76,864 patients) found limited evidence for educational intervention alone (52,53). Even so, the authors recommend education as a part of a comprehensive rehabilitation programme for patients with coronary artery disease also including exercise and psychological support in line with international guidelines and education is today a core part of the cardiac rehabilitation programmes all over the world (14,54,55).

Strength and limitations of this review

This is a comprehensive overview of the effect of patient education in patients with AF. A literature search was performed, rigorous data extraction and evaluation was executed independently and the whole process outlined to secure transferability.

The greatest strength is the number of studies and patients included in the evaluation of serious adverse events in where the meta-analysis showed that patient education lowered mortality and readmission significantly. With regards to the rest of the outcomes the biggest concern is the limited amount of studies, events, and included patients, and the variety in interventions, participants and common outcomes, and as a result, it was not possible to perform meta-analysis for all outcomes.

The majority of the included studies were single-centre studies including patients with various types of AF which potentially compromises the generalisability. Because of the small number of studies and lack of

availability of individual patient data subgroup analyses in relation to the sub-types of AF (i.e., firstdiagnosed AF, paroxysmal AF, persistent AF, long-standing persistent AF and permanent AF) could not be performed.

The interventions in the included studies consisted of different forms of education, some thoroughly described and some poorly described and therefore reproducibility might be challenged. The random-effects meta-analysis approach was used because of a substantial between-trial heterogeneity. The premises for the random-effects model is that studies are weighted much more equally and thereby applying the most conservative approach to the estimates reported (16). Most studies had blinded randomisation procedures and outcome assessment, but interventions were not blinded to participants, again threatening risk of bias.

We did not find any studies including patients with atrial flutter and therefore results may not be transferable to that population. One of the authors (SSR) of this review is also the first author of one of the included trials (22). To limit bias two other authors (PP and IQ) screened studies for inclusion and assessed data extraction, and judged risk of bias for the trial.

Conclusion and perspectives

Participating in an educational intervention seem to decrease the number of serious adverse events in patients with AF compared to patients in the control groups. For health-related quality of life several studies found differences between groups in favour of patient education, but other studies found no difference between groups. This was also the case for anxiety, depression, and physical activity thus no final conclusions can be made for theses outcomes.

For clinical practice, the results of this review are important since implementing educational interventions in rehabilitation programmes for patients with AF is far from systematically implemented. This review summarises the evidence and provides clinicians with an overview of interventions for implementation. Still, large well-designed and well-described randomised trials are warranted to inform clinicians and health care policy makers on appropriate and effective education for patients with AF to implement in the clinics.

Acknowledgements

We would like to acknowledge librarian Jette Frost Jepsen for her help with the literature search between June and August 2018. This work was supported by the Danish Health Authority in relation to developing the Danish National Clinical Guideline entitled: *National Clinical Guideline for Rehabilitation for Patients with Atrial Fibrillation, Atrial Flutter, Patients with Endocarditis and Patients treated with an Implantable Cardioverter Defibrillator (ICD)* (15) and Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital, Rigshospitalet.

Declaration of Conflicting Interests

The authors declare that there is no conflict of interest, besides Signe Stelling Risom who is both one of the authors of this review and one of the authors of an included trial in this review.

References

- Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study. Circulation. 2014;129(8):837–47.
- Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016 Oct 7;37(38):2893–962.
- Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114(2):119–25.
 - Krijthe BP, Kunst A, Benjamin EJ, Lip GYH, Franco OH, Hofman A, et al. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013;34(35):2746–51.
 - McCabe PJ, Schumacher K, Barnason SA. Living with atrial fibrillation: a qualitative study. J Cardiovasc Nurs. 2011;26(4):336–44.
 - Lane DA, Aguinaga L, Blomstroem-Lundqvist C, Boriani G, Dan GA, Hills MT, et al. Cardiac tachyarrhythmias and patient values and preferences for their management: The European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoame. Europace. 2015;17(12):1747–69.
 - Smart NA, King N, Lambert JD, Pearson MJ, Campbell JL, Risom SS, et al. Exercise-based cardiac rehabilitation improves exercise capacity and health-related quality of life in people with atrial fibrillation: a systematic review and meta-analysis of randomised and non-randomised trials. Open Hear. 2018 Dec 20;5(2):e000880.
 - Dorian P, Jung W, Newman D, Paquette M, Wood K, Ayers GM, et al. The impairment of healthrelated quality of life in patients with intermittent atrial fibrillation: implications for the assessment

of investigational therapy. J Am Coll Cardiol. 2000 Oct;36(4):1303-9.

- Kang Y, Bahler R. Health-related quality of life in patients newly diagnosed with atrial fibrillation. Eur J Cardiovasc Nurs. 2004 Apr;3(1):71–6.
- Dabrowski R, Smolis-Bak E, Kowalik I, Kazimierska B, Wojcicka M, Szwed H. Quality of life and depression in patients with different patterns of atrial fibrillation. Kardiol Pol. 2010;68(10):1133–9.
- Yancy CW, Jessup M, Bozkurt B, Butler J, Jr DEC, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology
 Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147-239.
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016;37(27):2129–2200m.
- 2016 European Guidelines on cardiovascular disease prevention in clinical practice.
- Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Vol. 37, European Heart Journal. 2016. p. 2315–81.
- Sundhedsstyrelsen (The Danish Health Authority). National Klinisk Retningslinje for rehabilitering til patienter med atrieflimren, atrieflagren, patienter med endokarditis og patienter behandlet med en Implanterbar Cardioverter Defibrillator (ICD) [National Clinical Guideline for Rehabilitation for Pati. 2019.
- Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ WV. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019. Handbook. 2019. p. 649.
- Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, et al. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7.
- Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355.
- 9. Fuenzalida C, Hernández G, Ferro I, Siches C, Ambrós À, Coll-Vinent B. Long-term benefits of education by emergency care nurses at discharge of patients with atrial fibrillation. Int Emerg Nurs.

2017;35:7-12.

- Guo Y, Chen Y, Lane DA, Liu L, Wang Y, Lip GYH. Mobile Health Technology for Atrial Fibrillation Management Integrating Decision Support, Education, and Patient Involvement: mAF App Trial. Am J Med. 2017;130(12):1388–1396.e6.
 - Malm D, Fridlund B, Ekblad H, Karlström P, Hag E, Pakpour AH. Effects of brief mindfulnessbased cognitive behavioural therapy on health-related quality of life and sense of coherence in atrial fibrillation patients. Eur J Cardiovasc Nurs. 2018 Oct;17(7):589–97.
 - Risom SS, Zwisler A-D, Rasmussen TB, Sibilitz KL, Madsen TLS, Svendsen JH, et al. Cardiac rehabilitation versus usual care for patients treated with catheter ablation for atrial fibrillation:
 Results of the randomized CopenHeartRFA trial. Am Heart J. 2016;181:120–9.
 - Clarkesmith DE, Pattison HM, Lip GYH, Lane DA. Educational Intervention Improves Anticoagulation Control in Atrial Fibrillation Patients: The TREAT Randomised Trial. ten Cate H, editor. PLoS One. 2013 Sep 9;8(9):e74037.
 - Hendriks J, de Wit R, Crijns HJ, Vrijhoef HJ, Prins MH, Pisters R, et al. Nurse-led care vs. usual care for patients with atrial fibrillation: results of a randomized trial of integrated chronic care vs. routine clinical care in ambulatory patients with atrial fibrillation. Eur Heart J. 2012 Nov;33(21):2692–9.
- Stewart S, Ball J, Horowitz JD, Marwick TH, Mahadevan G, Wong C, et al. Standard versus atrial fibrillation-specific management strategy (SAFETY) to reduce recurrent admission and prolong survival: Pragmatic, multicentre, randomised controlled trial. Lancet. 2015;385(9970):775–84.
- 26. Gallagher C, Elliott AD, Wong CX, Rangnekar G, Middeldorp ME, Mahajan R, et al. Integrated care in atrial fibrillation: a systematic review and meta-analysis. Heart. 2017 May 10;103:1947–1953.
- Clarkesmith DE, Pattison HM, Khaing PH, Lane DA. Educational and behavioural interventions for anticoagulant therapy in patients with atrial fibrillation. Cochrane Database Syst Rev. 2017 Apr 5;4:CD008600.
- Carter L, Gardner M, Magee K, Fearon A, Morgulis I, Doucette S, et al. An Integrated Management Approach to Atrial Fibrillation. J Am Heart Assoc. 2016;5(1):1–11.
- Bowyer JL, Tully PJ, Ganesan AN, Chahadi FK, Singleton CB, McGavigan AD. A Randomised
 Controlled Trial on the Effect of Nurse-Led Educational Intervention at the Time of Catheter
 Ablation for Atrial Fibrillation on Quality of Life, Symptom Severity and Rehospitalisation. Hear

21. 22. 23. 24. 25. 26. 27. 28. 29. Lung Circ. 2017;26(1):73-81.

- Risom SS, Zwisler AD, Rasmussen TB, Sibilitz KL, Madsen TLS, Svendsen JH, et al. Cardiac rehabilitation versus usual care for patients treated with catheter ablation for atrial fibrillation: Results of the randomized CopenHeartRFAtrial. Am Heart J. 2016;181:120–9.
 - Hendriks J, Vrijhoef HJM, Crijns HJGM, Brunner-La Rocca HP. The effect of a nurse-led integrated chronic care approach on quality of life in patients with atrial fibrillation. Europace. 2014;16(4):491–9.
 - Risom S, Zwisler A-D, Rasmussen T, Sibilitz K, Madsen T, Svendsen J, et al. Randomised clinical trial of comprehensive rehabilitation for patients treated for atrial fibrillation with ablation: long-term impact on quality of life and physical capacity. Oral Presentation at ESC Congress 2017. 2017.
- 33. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0
 [updated March 2011]. Cochrane Collab. 2011;0(March):10–1.
- Risom SS, Zwisler AD, Thygesen LC, Svendsen JH, Berg SK. High Readmission Rates and Mental Distress 1 yr after Ablation for Atrial Fibrillation or Atrial Flutter: A NATIONWIDE SURVEY. J Cardiopulm Rehabil Prev. 2019;39(1):33–8.
- Stridsman M, Stromberg A, Hendriks J, Walfridsson U. Patients' Experiences of Living with Atrial Fibrillation: A Mixed Methods Study. Cardiol Res Pract. 2019;2019:6590358.
- Risom SS, Lind J, McCabe P, Berg S. Patient perspectives of participating in the cardiac
 CopenHeartRFA rehabilitation program for patients treated with ablation for atrial fibrillation. J
 Multidiscip Healthc. 2018;11:167–74.
- 37. Pii KH, Schou LH, Piil K, Jarden M. Current trends in patient and public involvement in cancer research: A systematic review. Heal Expect. 2019;22(1):3–20.
- Hayes H, Buckland S, Tarpey M. Briefing notes for researchers: Public Involvement in NHS, public health and social care research. Nihr Involve. 2012. 1-544 p.
- Wagner EH, Austin BT, Korff M Von. Organizing Care for Patients with Chronic Illness. Milbank Q. 1996;74(4):511.
- 40. Wagner EH, Austin BT, Davis C, Hindmarsh M, Schaefer J, Bonomi A. Improving chronic illness care: Translating evidence into action. Health Aff. 2001;20(6):64–78.
 - Parse RR. The human becoming school of thought: a perspective for nurses and other health professionals. Thousand Oaks, Calif.: Sage; 1998. 130 p.

41.

31.

32.

This article is protected by copyright. All rights reserved

- 42. Beyth RJ, Quinn L, Landefeld CS. A multicomponent intervention to prevent major bleeding complications in older patients receiving warfarin: A randomized, controlled trial. Ann Intern Med. 2000;133(9):687–95.
- 43. Rosenstock IM. The Health Belief Model and Personal Health Behavior. Health Educ Monogr. 1974;2(4):354–86.
- 44. Becker MH. Patient adherence to prescribed therapies. Med Care. 1985;23(5):539–55.

45.

54.

- Bandura A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol Rev. 1977;84(2):191–215.
- 46. Greenfield S, Kaplan S, Ware JE. Expanding patient involvement in care: Effects on patient outcomes. Ann Intern Med. 1985;102(4):520–8.
- Greenfield S, Kaplan SH, Ware JE, Yano EM, Frank HJL. Patients' participation in medical care -Effects on blood sugar control and quality of life in diabetes. J Gen Intern Med. 1988;3(5):448–57.
- 48. Gabrijel S, Grize L, Helfenstein E, Brutsche M, Grossman P, Tamm M, et al. Receiving the Diagnosis of Lung Cancer: Patient Recall of Information and Satisfaction With Physician Communication. J Clin Oncol. 2008 Jan 10;26(2):297–302.
- 49. Kessels RPC. Patients' memory for medical information. J R Soc Med. 2003 May;96(5):219–22.
- 50. Lunde ED, Nielsen PB, Riahi S, Larsen TB, Lip GYH, Fonager K, et al. Associations between socioeconomic status, atrial fibrillation, and outcomes: a systematic review. Expert Rev Cardiovasc Ther. 2018;16(11):857–73.
- 51. Mccabe PJ, Stuart-mullen LG, Mcleod CJ, Byrne TO, Schmidt MM, Branda ME, et al. Patient activation for self-management is associated with health status in patients with atrial fibrillation.
 2018;1907–16.
- 52. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, et al. AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: Consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation. 2002;106(3):388–91.
- Anderson L, Brown JPR, Clark AM, Dalal H, Rossau HK, Bridges C, et al. Patient education in the management of coronary heart disease. Vol. 2017, Cochrane Database of Systematic Reviews. 2017.
 - Richards SH, Anderson L, Jenkinson CE, Whalley B, Rees K, Davies P, et al. Psychological interventions for coronary heart disease. Cochrane Database Syst Rev. 2017 Apr;(4).

This article is protected by copyright. All rights reserved

Anderson L, Thompson DR, Oldridge N, Zwisler A-D, Rees K, Martin N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2016 Jan 5;

Tables

Study	Was an 'a	Was there	Was a	Was the	Was a list	Were the	Was the	Was the	Were the	Was the	Was the	Global
	priori'	duplicate	comprehensive	status of	of studies	characteristics	scientific	scientific	methods used	likelihood	conflict of	rating
	design	study	literature search	publication	(included	of the included	quality of the	quality of the	to combine	of	interest	
	provided?	selection	performed?	(i.e. grey	and	studies	included	included	the findings	publication	included?	
		and data		literature)	excluded)	provided?	studies	studies used	of studies	bias		
		extraction?		used as an	provided?		assessed and	appropriately	appropriate?	assessed?		
				inclusion			documented?	in				
				criterion?				formulating				
								conclusions?				
Clarkesmith et	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	High
al.,2017 (27)												
Gallagher et al.,	No	Yes	Yes	Yes	Not	Yes	Yes	Yes	Yes	Yes	Yes	High
2017 (26)					applicable							

Table 1: AMSTAR assessment for the two included systematic reviews

Study	Sequence	Allocation	Blinding of	Blinding of outcome	Incomplete outcome	Selective	Other bias
	generation	concealment	participants and	assessment	data	reporting	
			personnel				
Clarkesmith et al. 2013 (23)	Low risk	High risk	Unclear risk	Low risk	High risk	Low risk	Unclear risk
Fuenzalida et al. 2017 (19)	Low risk	Low risk	Unclear risk	High risk	Low risk	Unclear risk	Unclear risk
Guo et al. 2017 (20)	High risk	High risk	High risk	High risk	High risk	Unclear risk	Unclear risk
Hendriks et al. 2012 (24)	Low risk	Low risk	High risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk
Malm et al. 2018 (21)	Low risk	Low risk	High risk	Low risk	High risk	Low risk	Unclear risk
Risom S al. 2016 (22)	Low risk	Low risk	High risk	Low risk	High risk	Low risk	Low risk
Stewart et al. 2015 (25)	Low risk	Low risk	High risk	Low risk	Low risk	Low risk	Low risk
Bowyer et al. 2016 (29)	Low risk	Low risk	High risk	Low risk	Low risk	Low risk	Unclear risk

Table 2a: Risk of Bias table for the randomised controlled trials

Table 2b: Risk of Bias table for the non-randomised interventional study

Study	Bias due to	Bias in selection of	Bias in classification	Bias due to	Bias due to missing	Bias in	Bias in	Overall bias
	confounding	participants	of interventions	deviation from	data	measurement of	selection of	
				intended		outcomes	the reported	
				interventions			results	
Carter et al. 2016 (28)	Low risk	Low risk	Low risk	Low risk	Moderate risk of bias	Low risk	Low risk	Low risk

First author, year of	Diagnos	No. of (I/C) †	Intervention	Control	Follow-up	Outcome(s)	Key findings
publication and study	is	participants,	Type, dose, duration			(1) Primary, (2) Secondary	(1) Primary, (2) Secondary
design		mean age					
		(mean age in					
		groups)					
Malm et al., 2018 (21)	AF	56/55	Dyadic (with spouses)	TAU [‡] based	12 months	(1) Health-related quality of life	(1) Higher health related quality of
Randomized clinial trial		67.2	cognitive behavioural	on guidelines		[Euroqol questionnaire (EQ-5D)].	life in the intervention group
		(66.9/67.5)	therapy – 3 times 2.5-			(2) Psychological distress, sense	mediated by sense of coherence
			hour group sessions			of coherence [Hospital anxiety	(2) Sense of coherence was better in
			over a period of 9			and depression scale	the intervention group
			weeks			(HADS) and sense of coherence	
						scale (SOC-13)].	
Fuenzalida et al., 2017 (19)	AF	116/124	Education at discharge	TAU [‡] based	3 and 12	(1) Composite end-point: AF-	(1) Lower incidence of AF-related
Randomized clinial trial		76.1	including information	on guidelines	months	related or treatment-related	or treatment-related complications
		(74.8/77.3)	about AF, treatment,			complications and death at 12-	and death at 12-months in the
			precautions and			months [Clinical records].	intervention group
			warning sign, as well as				
			pulse taking training				

†: I = Intervention, C = Controls, ‡: Treatment as usual, §: Cluster randomisation design, ℙTreatment as usual content not described.

			and an individualised				
			information leaflet				
Guo et al., 2017 (20) [§]	AF	113/96	Smartphone AF	TAU [‡] ₽	1 and 3	(1) Patients knowledge [The atrial	(1) Knowledge higher in the
Randomized clinial trial		69.2	application (mAF app)		months	fibrillation knowledge scale].	intervention group
		(67.4/70.9)	including clinical			(2) Quality of life, drug adherence	(2) Drug adherence, anticoagulation
			decision support,			and anticoagulant satisfaction	and quality of life improved in the
			education and patient			[Euroqol questionnaire (EQ-5D-	intervention group
			involvement self-care			Y), Pharmacy Quality Alliance	
			components and			adherence measure and the	
			structured follow-up			Adapted Anticoagulant	
			components			Satisfaction Questionnaire].	
Clarkesmith et al, 2017 (27)	AF	11/2246	Educational, self-	TAU [‡] based	3, 6 and 12	(1) Target therapeutic range	(1) The effect of self-monitoring
Systematic review			management and	on guidelines	months	(TTR) (not relevant for this	plus education on TTR was
			behavioural			review).	uncertain compared with usual care.
			interventions such as:			(2) Major bleeding, stroke and	(2) Few adverse events were
			Educational booklets,			thromboembolic events, quality	reported in the included studies.
			videos, INR self-			of life; psychological well-being	Small but positive effects of
			monitoring, decision			(anxiety and Depression) and	education on anxiety
			aids, talking			others e.g. illness belief and	and depression compared with
			interventions, cognitive			changes in perception (not	usual care were found. The effect of
			behavioural therapy,			relevant for this review).	decision aids on decision conflict
			motivational				favoured usual care.

			interviewing, heart rate				
			variability biofeedback.				
			From 30-60 minutes				
			sessions one time to 30-				
			120-minute sessions up				
			to four times.				
Gallagher et al, 2017 (26)	AF	3/1383	Integrated care	TAU [‡] based	1.8 to 2.5	All-cause mortality,	Use of integrated care was
Systematic review			including a nurse led,	guidelines	years	Cardiovascular Disease related	associated with a reduction in all-
			cardiologist supervised			hospitalisation, AF-related	cause mortality and cardiovascular
			clinic or home-based			hospitalisation, Cerebrovascular	hospitalisations but did not
			visit plus education and			events, patient -reported	significantly impact on AF-related
			referral package.			outcomes such as quality of life,	hospitalisations
			Dose not reported.			anxiety and depression.	or cerebrovascular
							events.
Bowyer et al., 2016 (29)	AF	22/19	Educational	TAU [‡] based	6 months	(1) Symptoms severity and	(1) Two of the eight subscales,
Randomized clinial trial		62.1	intervention, 5	on guidelines		frequency by the Symptom	Vitality and Physical Functioning
		(58.3/63.9)	prespecified time			Severity Checklist	improved in the intervention group
			points, information,			(2) Health Related Quality of Life	(2) Seven components on the
			goal of treatment,			by the Short Form 36 General	severity checklist showed
			procedural review,			Health Survey (SF-36).	improvement in favor of the
			lifestyle modification, 3				intervention group.
			months				

Carter et al., 2016 (28)	AF	185/228	Early education via	TAU [‡] based	12 months	(1) A composite of death from	(1) The primary outcome occurred
Non-randomised		63.8	telephone 48-72 hours	on guidelines		any cause, cardiovascular	in 34 of 185 (18.4%) patients
interventional study		(63.6/64)	after referral			hospitalization, or AF-related	in the AF clinic, compared to 65 of
			from the emergency			emergency department visit at 12	228 (28.5%) patients in
			department. Group			months.	the usual-care group (OR 0.57; 95%
			teaching session on AF.			(2) The individual components	CI [0.35, 0.9] P=0.017).
			The induvial AF patient			of the primary outcome, stroke,	(2) Lower rates of major bleeding,
			were discussed by the			major bleeding, minor	minor bleeding, and stroke
			AF clinic team, prior			bleeding, and the degree of	were seen between the two groups,
			to the appointment.			adherence to practice guidelines.	these were not statistically
			Letter to family				significant.
			physician indicating				Guideline adherence was
			referral to AF clinic,				significantly improved in the areas
			approximate wait time,				of oral anticoagulation, etiology,
			pending investigations,				and associated conditions with AF.
			recommendations				
			regarding rate control				
			and oral anticoagulation				
			use if appropriate.				
Risom et al., 2016 (22)	AF	105/105	Comprehensive cardiac	TAU [‡] based	1, 4 and 6	(1) Physical capacity	(1) A significant difference was
Randomized clinial trial		59	rehabilitation including	on guidelines	months	[Ergospirometry testing (CPET)]	found on VO2 peak testing in favor
		(60/59)	physical exercise				of the intervention group.

			training (12 weeks, 3			(2) Self-rated mental health,	(2) No difference was found on SF-
			times weekly) and 4			safety and serious adverse events	36, MCS. More non-serious
			psycho-educational			[Short-Form 36 questionnaire	adverse events were found in the
			consultations			(SF-36), Mental Component	intervention group, no difference
						Score (MCS), Self-reported non-	between serious adverse events
						serious adverse	were found.
						events were registered by a	
						patient reported questionnaire and	
						serious adverse events through	
						patients' records].	
Stewart et al., 2015 (25)	AF	168/167	Home visits and Holter-	TAU [‡] based	12 and 24	(1) Composite end-points: event-	(1) Compared with standard
Randomized clinial trial		72	monitoring 7-14 days	on guidelines	months	free survival from all-cause death	management patients in the
		(72/71)	post-discharge with			or unplanned admission	intervention group experienced
			prolonged follow-up			[electronic health records].	prolonged number of days alive and
			and multi-disciplinary				out of hospital but did not
			support as needed				experience extended event-free
							survival.
Clarkesmith et al., 2013	AF	46/51	One-off group session	TAU [‡]	1, 2, 6 and 12	(1) Time within therapeutic (INR)	(1) Intervention group had higher
(23)		72.9	(1-6 patients) including	including	months	range (TTR) at 6 and 12 months	TTR in the intervention group at 6
Randomized clinial trial		(72.0/73.7)	'expert-patient' DVD,	standard		[blood sample].	months, but at 12 months
			educational booklet,	information		(2) Knowledge, quality of life,	differences were not statistically
				booklet		anxiety/depression, beliefs about	significant

			self-monitoring diary			medication, illness perceptions	(2) Knowledge changed over time
			and worksheet			[The Patient Knowledge	but not between groups. There
						Questionnaire, The Atrial	were no significant differences in
						Fibrillation Quality of Life	quality of life between or within
						Questionnaire, The Hospital	groups. Anxiety and depression
						Anxiety and Depression Scale	scores at all timepoints in both
						(HADS-A and HADS-D),The	groups increased.
						Beliefs about Medication Scale,	
						The Brief Illness Perception	
						Questionnaire].	
Hendriks et al., 2012 (24)	AF	356/356	AF clinic incl.	TAU [‡] based	Mean 22	(1) Composite endpoint:	(1) The primary endpoints occurred
Hendriks et al., 2014 (31)		66.5	individualized	on guidelines	months	cardiovascular hospitalization and	in significantly more patients in the
Randomized clinial trial		(66/67)	psychosocial support			cardiovascular death [Self-	usual care group compared to the
			and education based on			reported major adverse	intervention group.
			guidelines – 30-minute			cardiovascular events and	(2) Adherence to guideline
			visits at 3, 6 and 12			hospitalization and medical	recommendations was significantly
			months and every 6			records].	better in the intervention group.
			months following,			(2) Adherence to guideline	Quality of life improved over time
			telephone contact			recommendation (of AF clinic	with no significant differences
			optional.			nurses), Patient-reported: Quality	between the groups and no
						of life, AF knowledge, Anxiety	statistically significant differences
						and Depression [Medical records,	for anxiety or depression were

			36-Item Short-Form	observed between both groups over
			Questionnaire (SF-36), the	time.
			Hospital Anxiety and Depression	
			Scale (HADS), the AF knowledge	
			scale].	

Figure Legends

Figure 1: Flow chart.

Figure 2: Forrest plot for serious adverse events (death and readmission).

Figure 3: Forrest plot for anxiety, 12-months follow-up.

Figure 4: Forrest plot for depression, 12-months follow-up.

ijcp_13629_f2.docx

Figure 2

	Patient educ	ation	Usual o	Usual care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Carter 2016	34	185	65	228	18.2%	0.64 [0.45, 0.93]	
Clarkesmith 2013	1	46	7	51	1.1%	0.16 [0.02, 1.24]	
Fuenzalida 2017	54	116	69	124	25.1%	0.84 [0.65, 1.07]	-=-
Hendriks 2012	51	356	74	356	20.5%	0.69 (0.50, 0.95)	
Risom 2016	2	105	1	105	0.8%	2.00 [0.18, 21.72]	
Stewart 2015	127	168	137	167	34.3%	0.92 [0.82, 1.03]	•
Total (95% CI)		976		1031	100.0%	0.78 [0.63, 0.97]	◆
Total events	269		353				
Heterogeneity: Tau² =	0.03; Chi ² = 1	1.69, df:	= 5 (P = 0	l.04); l²∶	= 57%		
Test for overall effect:	Z = 2.19 (P = 0).03)					Intervention group Control group

Figure 3

	Interve	ntion gr	Control group				Mean Difference	Mean Difference			
Study or Subgroup		Mean SD Total		Mean SD Total		Weight	IV, Random, 95% CI	IV, Random, 95% Cl			
Clarkesmit	h 2013	9.12	4.15	17	9.97	4.03	36	6.1%	-0.85 [-3.22, 1.52]	<u>•</u>	
Hendriks 2	013	4.85	3.41	286	5.46	3.68	248	93.9%	-0.61 [-1.21, -0.01]		
Total (95%	CI)			303			284	100.0%	-0.62 [-1.21, -0.04]	•	
Heterogene	eity: Tau² =	0.00; Chi									
Test for overall effect: Z = 2.09 (P = 0.04)										Intervention group Control group	

ijcp_13629_f4.docx

Figure 4

		Experimental			Control				Mean Difference	Mean Difference				
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI			
	Clarkesmith 2013	7.18	3.13	17	8.11	3.06	36	11.2%	-0.93 [-2.72, 0.86]			-		
	Hendriks 2013	3.84	3.51	286	4.56	3.95	248	88.8%	-0.72 [-1.36, -0.08]					
	Total (95% CI)			303			284	100.0%	-0.74 [-1.34, -0.14]		•			
Heterogeneity: Tau ² = 0.00; Chi ² = 0.05, df = 1 (P = 0.83); i ² = 0% Test for overall effect: Z = 2.42 (P = 0.02)											-5 (ention group) Contro	5 I group	10

This article is protected by copyright. All rights reserved