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Abstract: The electric sector is majorly concerned about the greenhouse and non-greenhouse gas
emissions generated from both conventional and renewable energy sources, as this is becoming a major
issue globally. Thus, the utilities must adhere to certain environmental guidelines for sustainable
power generation. Therefore, this paper presents a novel nature-inspired and population-based Harris
Hawks Optimization (HHO) methodology for controlling the emissions from thermal generating
sources by solving single and multi-objective Optimal Power Flow (OPF) problems. The OPF is a
non-linear, non-convex, constrained optimization problem that primarily aims to minimize the fitness
function by satisfying the equality and inequality constraints of the system. The cooperative behavior
and dynamic chasing patterns of hawks to pounce on escaping prey is modeled mathematically to
minimize the objective function. In this paper, fuel cost, real power loss and environment emissions
are regarded as single and multi-objective functions for optimal adjustments of power system control
variables. The different conflicting framed multi-objective functions have been solved using weighted
sums using a no-preference method. The presented method is coded using MATLAB software and an
IEEE (Institute of Electrical and Electronics Engineers) 30-bus. The system was used to demonstrate
the effectiveness of selective objectives. The obtained results are compared with the other Artificial
Intelligence (AI) techniques such as the Whale Optimization Algorithm (WOA), the Salp Swarm
Algorithm (SSA), Moth Flame (MF) and Glow Warm Optimization (GWO). Additionally, the study on
placement of Distributed Generation (DG) reveals that the system losses and emissions are reduced
by an amount of 9.8355% and 26.2%, respectively.

Keywords: harris hawk optimization (HHO); optimal power flow (OPF); salp swarm algorithm
(SSA); whale optimization algorithm (WOA)

1. Introduction

Optimal Power Flow (OPF) is one of the significant tools used over decades to date in
energy management systems for reliable operation and proper planning of modern power systems.
This problem is a non-linear, non-convex, and multi-dimensional optimization problem with control
variables such as voltage magnitude and real power generation as continuous variables, and transformer
tap ratios and shunt capacitor as discrete variables [1–4]. These variables are adjusted to operate the
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system efficiently and economically for continuous change in the load demand. Thus, the aim of OPF
is to optimize the certain selective objectives of the system such as fuel cost, real and reactive power
loss, voltage stability enhancement, and environmental emissions, ensuring the equality and inequality
constraints [5]. Numerous classical and intelligence-based methods were used to solve the OPF
problem and are portrayed in Figure 1. Through rigorous analysis, it is observed that the conventional
mathematical methods such as the gradient-based approach, the Newton method, the interior point
method, and linear, non-linear, quadratic, and mixed integer programming have been successfully used
to solve OPF problem [6–12]. These methods give the optimal results but fail at local minima, if the
initial point is not assumed close to the solution. In addition, the quality of solutions highly degrades
as the number of control variables increases. Further, the complexity of the problem is very high
because of the number of non-linear constraints of the system [5,13]. To cater this problem, researchers
for the last few decades use non-gradient, non-deterministic, and highly flexible meta-heuristic-based
techniques to obtain the solution for OPF without trapping into local minima due to the advancement
in computer technologies [1].
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To date, the various meta-heuristic methods that have been used to solve OPF are portrayed
in [14–29]. Generally, the meta-heuristic approaches are categorized into four major classes:

Evolutionary, swarm intelligence, physics and human-based algorithms [30]: The evolutionary
algorithms (EA) are based on evolutionary principles that exist in nature such as selection, cross-over
and mutation. The most well-known methods are the Genetic Algorithm (GA), evolution strategy,
Differential Evolution (DE) and biogeography-based optimizations. All of these techniques are heuristic
and initiated with random solutions, and the solution is updated by evaluating the fitness functions.
On the other hand, the Swarm Intelligence (SI) techniques mimic creatures in nature and are very
popular meta-heuristic optimization methods. SI-based methods include particle swarm, artificial bee
colony [31], firefly algorithm [32], chaotic krill heard [33], backtracking search algorithm [34], efficient
evolutionary algorithm [35], faster evolutionary algorithm [36], group search algorithm [37], differential
evolution algorithm [38], multi-hive bee foraging algorithm [39], etc. Moreover, the affine arithmetic
method [40], the knowledge-based framework human learning method [41], and linear compression
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methods [42] were used to solve optimal power flow problems. These methods are self-organizing
systems that can operate based on mathematical equations developed using a set of rules depicting the
behavior of a swarm to give the stable solution after convergence. On the flipside, the physics-based
intelligence approaches imitate the physical laws that govern the evolution of the universe—the law of
gravity, the electromagnetism law, the force of attraction, and so on. The various algorithms based
on physics include the Gravitational Search Algorithm (GSA), Central Force Optimization (CFO),
Big Bang-Big Crunch, galaxy-based, and magnetic optimization, etc.; these techniques are reviewed
and presented in [43]. The human-based optimization techniques are developed based on human traits
and their invention; some of these methods are teaching learning, group search, harmony, and tabu
search used to minimize real world complex problems. The aforementioned various intelligence-based
methods are applied to many engineering problems and give effective solutions to some problems,
but fail for other kinds of problems.

Regardless of the different methods, the common features that exist are the exploration and
exploitation characteristics. In the former phase, the algorithm should utilize its randomized parameters
as much as possible and find the feature space through its local search ability in the search regions.
In the later phase of exploitation, the algorithm tries to find a global optimal solution by intensifying
the search process in a local region instead of an entire region of search space. A well-optimized
technique should posses the following characteristics for avoiding the possibility of convergence to
local optima [22,44,45]. In relation to the previously published work, it is inferred that most of the
study focused on single objective optimization, and in particular, the minimization of either power
loss or generating cost. However, recently the increase in the environmental pollutant gases such as
CO2, SO2, and NO2 emissions during power generation and its serious impact on the environment
has gained more attention. The US clean air act amendments of1990 directed utility companies to
produce energy in keeping the pollution at the minimum level in association with other power system
constraints [45]. In view of this, different methods such as the hybrid dragonfly and particle swarm
optimization algorithm, penalty function methods and the improved strength pare to evolutionary
algorithm have been implemented to curtail this harmful emission, like implementing Carbon Capture
and Sequestration (CCS) technology [15,46,47].

Furthermore, real world design and optimization problems always involve more than one
conflicting objectives. Thus, Multi-Objective (MO) optimization has earned huge attention among
researchers [26]. To handle such opponent objectives simultaneously, AI techniques have transferred
into multi-objective optimization by modifying it with the aid of various classical methods. To solve this
MO function, numerous methods have been presented in [48–50], such as the penalty function method,
weighted sum method, ε-constant method, non-dominated sorting genetic algorithm-based approach,
strength Pareto evolutionary algorithm, etc. Despite of having a variety of intelligence algorithms,
none of these methods can assure the consistency of an optimal solution for solving all of the objectives.
This incentivizes the researcher to develop many new nature-inspired algorithms day by day, which
possess the traits of exploration and exploitation that can solve all the real-time optimization problems
without reaching divergence or local convergence [15,51]. In this paper, a maiden attempt has been
made to apply a Harris Hawks-based Optimization (HHO) approach for OPF. HHO is a nature-inspired
optimization technique proposed by Heidari [49] that competes with other optimization methods
portrayed in the literature with its cooperative behaviors to attack the hunting prey. Moreover, the
hunting and escaping strategies are analyzed through mathematical calculations to reach a global
solution with effective computational time. The main contributions of this work areas follows:

• To optimize the fuel cost, power loss, and emission cost of the system by solving single- and
multi-objective OPFs using the HHO algorithm;

• To handle the equality and inequality constraints such as voltage magnitude, transformer tap ratio,
and real and reactive power constraints of the generator while optimizing the various objectives;

• To optimally place the Distributed Generation (DG) based on a real power sensitivity index for
minimizing the loss and emission;
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• To statistically compare the results obtained with other well-known nature-inspired methods such
as SSA, WOA, MF, and GWO.

The remainder of the paper is organized as follows: Section 2 deals with the OPF problem
formulation, which contains single and multi-objective problem formations mathematically, including
equality and inequality constraints. Section 3 presents an extended introduction of the proposed
intelligence-based HHO algorithms with numerical presentation and with a dynamic levy flight
strategy. The comparison of numerical results and discussion among well-known other nature-inspired
methods of optimization and proposed approaches are portrayed in Section 4. Section 5 describes the
comparative analysis of the proposed method with the literature work. Finally, Section 6 presents the
conclusion and the future scope of the work.

2. OPF Formulation

This section describes the various competing objective functions to be minimized as follows.

2.1. Total Fuel Cost Minimization (TFC)

The TFC is considered as the prime objective function for the OPF problem, which is the quadratic
function of real power generations of generators. It can be mathematically defined as [13,44]:

f1 =
NG∑
i=1

ai + biPGi + ciPGi
2$/h i = 1, 2, . . . , NG (1)

where PGi is the total power generation in MW, and ai, bi, and ci denote the cost co-efficient of a specific
generator, while NG is the total number of generators in the system.

2.2. Active Power Loss Minimization (APL)

The APL can be optimized by tuning the controlling parameters by satisfying power flow
constraints properly and can be described as [5,44]:

f2 =
NL∑
i=1

gi[Vk
2 + Vm

2
− 2VkVm cos(δk − δm)]MW i = 1, . . . , NL (2)

where gi is the transfer conductance, Vk and Vm represent the voltage magnitude from and to the bus,
δk and δm depict the phase angle, and NL is the total number of transmission lines of the system.

2.3. Total Emission Cost Minimization (TEC)

Owing to an increase in the energy demand, the utilities need to generate a surplus large amount
of power to meet the load demand. The only stable source of generation is thermal generating units
compared to other units of generation. These generating units produce a byproduct in addition to the
electrical power, such as CO2, SO2, NO2, and so on, which contaminate the environment and increases
the air pollution. Therefore, the prime purpose of this function is to mitigate the emission of toxic
substances to the air by optimizing the corresponding control variables of the power system. The TEC
of power generating units can be mathematically formulated as follows [15,44]:

f3 =
NG∑
i=1

αi + βiPGi + γiPGi
2 + ζi exp(λiPGi)ton/h (3)

whereα, β, γ, ε, and λ are the environmental emission coefficients, and PGi is the real power generation.
These objective functions are regarded as single-objective OPF problems and their solutions are

obtained using the proposed HHO techniques. In the actual operation of a power system, there might be
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a situation in which to optimize more than one parameter. In this case, the multi-objective optimization
plays a major role in minimizing more than one conflicting objective simultaneously by fulfilling the
constraints of the system. Many literature works portrayed in the introduction attempted to solve the
single-objective optimization for OPF applications. Only a few researchers solved the multi-objective
problem, and sometimes they failed to claim the effectiveness of their proposed method for both
single and multi-objective problems. In this work, an attempt has been made to solve both single and
multi-objectives concurrently, and the performance of the proposed HHO method is presented. In
general, the multi-objective function can be expressed as is defined bellow:

Minimize, Jm(x, u) =
N∑

m=1
wmfm(x, u)m = 1, 2, . . . , N

= w1f1 + w2f2 + w3f3 . . . ,+wmfm

(4)

subjected to:
gj (x, u) = 0 j = 1, 2, 3, . . . , N (5)

hk (x, u) ≤ 0 k = 1, 2, 3, . . . , N (6)

where J is the multi-objective function with m number of functions, f represents the individual objective
function, and w is the scalar weight multiplied with each objectives whose values lies in the range
of 0 to 1. It is worth mentioning that the total sum of weight is equal to one. The multi-objective
function in this work is solved using the no-preference weighted sum approach. In this approach,
no prime significance is given to any of the objectives, but a heuristic is used to obtain the single optimal
solution. However, it is also important to notice that this method does not attempt to find multiple
Pareto-optimal solutions [50,52]. The various conflicting multi-objectives framed are as follows.

2.4. TFC and APL Minimization

The most conflicting objectives called TFC and APL are considered as the selective objectives to
be optimized simultaneously. The optimization function can be defined as:

f4 = w1 × f1 + w2 × f2. (7)

2.5. TFC and TEC Reduction

The TFC and TEC together have been regarded as objective functions to be optimized and which
are expressed as:

f5 = w1 × f1 + w2 × f3. (8)

2.6. APL and TEC Minimization

In this step, the APL and environmental emissions have been considered simultaneously for the
optimization of selective objectives, which is formulated as follows:

f6 = w1 × f2 + w2 × f3. (9)

2.7. TFC, APL, and TEC Minimization

In this fragment, all of the objectives have been considered simultaneously for optimization, which
is defined as:

f7 = w1 × f1 + w2 × f2 + w3 × f3. (10)

The equality and inequality constraints of the power system are as follows [5,45].



Sustainability 2020, 12, 5248 6 of 26

2.7.1. System Equality Constraints:

The aforementioned objective functions are optimized subjected to these constraints, which are
defined as follows:

Pi (V, δ) − PGi + PDi = 0 (i = 1, 2, 3, . . . , N) (11)

Qi (V, δ) − QGi+ QDi = 0 (i = 1, 2, 3, . . . , N) (12)

where Pi (V, δ) and Qi (V, δ) are the power flow equations and can be defined as

Pi(V, δ) = Vi

n∑
j=1

Vj(Hij cos(δi − δj) + Mijsin(δi − δj) (13)

Qi(V, δ) = Vi

n∑
j=1

Vj(Hijsin(δi − δj) −Mij cos(δi − δj) (14)

NG∑
i=1

PGi = PDi + Ploss (15)

where NG is the number of generator bus, N represent the total number of bus, Pi depicts the active
power injection, Qi denotes the reactive power injection, PDi represent the active load, QDi is the
reactive power load, PGi is the active power generation, QGi is the reactive power generation, V is the
voltage magnitude, and δ is the phase angle; the admittance matrix is defined as Yij = Hij + jMij and i
and j are the from and to buses, while Ploss is the active power loss.

2.7.2. System Inequality Constraints

• Generator constraints:

The real power, reactive power, and voltage constraints of generating units are:

PGimin ≤ PGi ≤ PGimax (i = 1, 2, 3, . . . , NG) (16)

QGimin ≤ QGi ≤ QGimax (i = 1, 2, 3, . . . , NG) (17)

Vimin ≤ Vi ≤ Vimax (i = 1, 2, 3, . . . , NG) (18)

• Transformer constraints:

The lower and upper boundaries of the transformer tap settings can be represented by:

Timin ≤ Ti ≤ Timax (i = 1, 2, 3, . . . , NT) (19)

• Shunt compensator VAR constraints:

The switchable shunt compensation can be designated to operate within the limit of as follows:

Qimin ≤ Qi ≤ Qimax (i = 1, 2, 3, . . . , NG) (20)

• Security constraints:

In addition, to equality and inequality constraints, for the system to be healthy the voltage at the
load buses should be within the range of VLimin to VLimax as follows:

VLimin ≤ VLi ≤ VLimax (i = 1, 2, 3, . . . , N) (21)

SLimin ≤ SLi ≤ SLimax (i = 1, 2, 3, . . . , N) (22)
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2.8. Sensitivity Indexfor Placementof DG

The active power loss sensitivity is considered the prime objective for placement of distribution
generation (DG) in the system. The power loss of the system is defined as [53]:

Plosses =
∑N

i=1

∑N

i = 1
j , 1

Gij

2

[∣∣∣∣V2
i

∣∣∣∣+∣∣∣∣V2
j

∣∣∣∣−2
∣∣∣∣Vi

∣∣∣∣∣∣∣∣Vj

∣∣∣∣cos
(
δi − δj

) ]
. (23)

The real and reactive power sensitivity indices for each load bus can be calculated as: ∂Plosses
∂Pi

∂Plosses
∂Qh

 = [Jac]−1

 ∂Plosses
∂δi

∂Plosses
∂Vh

 (24)

where Jac is the Jacobian matrix, ∂Ploss/∂Pi and ∂Ploss/∂Qh represent the variation in active and reactive
power loss at the ith and hth bus, respectively. In this work, the real power loss sensitivity index is
considered for the placement of DG and it is obtained by solving the above equation (24) resulted in
as follows:

∂Plosses

∂Pi
= 2

∑N

j = 1
j , 1

Gij

[∣∣∣∣Vi

∣∣∣∣∣∣∣∣Vj

∣∣∣∣sin
(
δi − δj

) ]
. (25)

The higher values of the index indicate the maximum power loss and the lower value depicts the
minimum loss of the bus. For optimal placement of DG in the system, the bus with a higher of value of
∂Ploss/∂Pi is considered as a candidate bus for location.

3. Application of HHO to the OPF Problem

The Harris hawk is one of the most intelligent and distinguished predator birds in nature that
demonstrates distinctive collective chasing capabilities in tracing, encircling, flushing out, and capturing
the potential animal (rabbit) in a group for its food. Here, the initial population is assumed as a group
of hawks that try to chase the targeted rabbit (solution of the optimization problem) from different
directions by using seven killing strategies or a surprise pounce. Initially, the leader hawk tries to attack
the prey; if it fails to grab the animal because of the dynamic nature and escaping behavior of the prey,
the switching tactics are followed, so that the other party members (hawks in the group) will hit the
escaped prey until seized. The main advantage of this collaborative tactic is that the birds can pursue
the pointed rabbit by means of puzzling and exhaustion of the escaping prey. In HHO, the candidate
solutions are the Harris Hawks and the optimal/global solution is the intended prey. Thus, HHO
exhibits the exploratory and exploitative phases and are explained in Figure 2 and below [49].
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Step1—Exploration phase: Harris hawks perch randomly and wait in some locations, observe
and monitor to attack the prey. The leader hawks perch based on position of family members and
prey. This is described in the form of a mathematical equation for changing in distance (q) between the
hawks and prey as follows:

X(i + 1) =
{

Xrand(i) − r1Xrand(t) − 2r2X(i) q ≥ 0.5
Xr(i) −Xm(i) − r3(LB + r4(UB− LB) q < 0.5

(26)

where X(t+1) is the updating vector of the Hawk’s position atthei+1 iteration, Xr(t) is the position of
the prey, X(t)is the position vector of the hawks at the ith iteration, r1, r2, r3, r4, and q are random
numbers in the range of (0,1), UB and LB are the Upper and Lower Bounds of variables, and Xrand (t)
and Xm(t)are the initial population assumed randomly.

The average position of each hawk is defined as:

Xi+1(t) =
1
N

N∑
i=1

Xi(t) (27)

where Xi(t) is the current position of hawks, Xi+1(t) is the updating position vector, and the total number
of hawks is represented by N.

Step2: During the exploration phase, the hawks try to find and hit the prey. Due to this there is
considerable change in the energy (E) of the prey and it is given by:

Escaping Energy, E = 2E0(1−
t
T
) (28)

where T is the maximum iteration count, t is the current iteration, and the initial energy (E0) randomly
changes between (−1 to 1) at every iteration. E ≥ 1 indicates the leaping behavior of the prey and the
hawks search for prey in other location, E < 1 indicates that the prey becomes exhausted and the hawk
intensifies its attack by a surprise pounce that makes the solution to the exploitation phase.

Step3—Exploitation phase: At this stage, the switching tactics follow to attack the prey. The prey
always tends to escape from hawks, and the chance of escaping of the prey is illustrated as r. When
r < 0.5 the prey is successfully escaping, and on the flipside when r ≥ 0.5 the chance of escaping is
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unsuccessful. At any rate, the hawks will attack the prey and will be either successful or not through a
soft or hard siege. If the prey escaped when (r ≥ 0.5) and |E| < 0.5 then a hard siege takes place. On the
other hand, if (r ≥ 0.5) and |E| ≥ 0.5, then a soft siege occurs. Here, r is the chance of the prey escaping.
This can be modeled in mathematical form as follows.

Step4—Soft siege: Here, the rabbit possesses energy and tries to escape by jumping and the
hawks surround it softly, which is modeled as

X(t + 1) = ∆X(t) − E|JXrabbit(t) − X(t)| (29)

∆X(t) = Xrabbit(t) − X(t). (30)

The random jump of the rabbit is given by J = 2(1 − r5),where ∆X(t) is the difference between the
position vectors of consecutive iteration and r5 is the random number that lies in the range of (0,1).

Step5—Hard siege: In this case, the prey is fully exhausted and the hawks encircle it hardly and
perform the surprise pounce. The positions are updated using (28) as given by

X(t + 1) = Xrabbit(t) − E|∆X(t)|. (31)

Step6—Soft siege with continuous rapid dives:
The rabbit still possesses the energy and tries to escape, and this is represented as |E| ≥ 0.5 and

r < 0.5, and a further soft siege is required before the surprise pounce by the hawks. This step is more
intelligent than the previous case. Here the Levy flight (LF) concept was introduced for progressive
rapid dives of hawks to perform a soft siege and the next move of the prey is evaluated by the hawks
using the following equation:

Y = Xrabbit (t) − E|JXrabbit (t) − X(t)|. (32)

Despite several attempts, the hawks compare each of their movements with the previous dive, to
determine if it was a good dive or not. If the dive is not reasonable, it performs an irregular, abrupt
and rapid dive for approaching the prey animal. We assume that the hawks dive based on LF-based
patterns using the rule given as follows:

Z = Y + S × LF(D) (33)

where D is the dimension of the problem, S is the random vector of size 1×D, and the LF function is
defined as:

LF = the levy flight function which can be demonstrated as follows:
Where Y and Z are defined as

LF(x) = 0.01×
u× σ

|v|
1
β

(34)

σ =

 Γ(1 + β) × sin(πβ2 )

Γ( 1+β
2 ) ×β× 2(

β−1
2 )


1
β

(35)

where u and v are accidental values lying in the range (0,1) and β is an assumed constant equal to 1.5.
Hence, the final updating rule of the hawk’s position in the soft siege phase is:

X(t + 1) =
{

Y if F(Y) < F(X(t))
Z if F(Z) < F(X(t))

(36)

where Y and Z are calculated using (32) and (33).
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Step7—Hard siege with continuous rapid dives:
In this case, |E| <0.5 and r < 0.5, the prey animal loses its energy and becomes exhausted. A hard

siege is next used by the hawks and it decreases the distance of their location from the prey for killing
the prey. The updating rule for this case is given by:

X(t + 1) =
{

Y if F(Y) < F(X(t))
Z if F(Z) < F(X(t))

(37)

Y = Xrabbit (t) − E|JXrabbit (t) − Xm(t)| (38)

Z = Y + S × LF(D) (39)

The Y or Z in (38) and (39) are the next locations for the new iteration until the prey is killed, i.e.,
obtaining the optimal solution. The proposed method is presented in the form of pseudo-code for
simplicity and explained as a flowchart, detailing the application of HHO in Figure 3.
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Pseudo-code of the proposed HHO method
Initialize the number of hawks (N) and
iteration (T) randomly
Xi (i = 1, 2, . . . , N)
while (stopping condition is reached) do
Evaluate the fitness value of hawks
Now, set Xrabbit as the best location of rabbit
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for (several hawk (Xi)) do
update Energy(E) and its jumping strength (J)
Initial Energy (E0) = 2rand() − 1, J = 2(1 − rand())
Update E using (10)
if (|E| ≥ 1) then
Exploration phase
if (|E| < 1) then
if (r ≥ 0.5 and |E| ≥ 0.5) then
Exploitation phase
Soft siege
else if (r ≥ 0.5 and |E| < 0.5) then
Hard siege
else if (r < 0.5 and |E| ≥ 0.5) then
Soft siege
else if (r < 0.5 and |E| < 0.5) then
Hard siege
Return best location of Xrabbit (global optimal solution)

Scope of limitation of Proposed Method

The proposed work aims to solve the single and multi-objective optimal power flow to minimize
the following objective functions such as fuel cost, loss, and emissions. Finally, a comprehensive
analysis was made by the placement of DG into the system to study its effect on the aforementioned
optimizing parameters for sustainable power generation.

4. Results and Discussion

In order to validate the feasibility and effectiveness of the proposed method, the algorithm was
tested on an IEEE 30-bus system. The power system model consists of six generator buses at buses 1, 2,
3, 8, 11, and 13, four transformers in lines 6–9, 6–10, 4–12, and 28–27, and nine shunt compensations at
buses 10, 12, 15, 17, 20, 21, 23, 24, and 29. The total real and reactive power demand are2.834 and 1.262
p.u, respectively, at the base MVA of 100. The data for the simulations are given in [54]. In addition, the
data for the emission coefficients of each generator are represented in Table 1. The intended method was
coded using MATLAB software in aPC with the following characteristics: Intel core i5, CPU 2.60 GHz,
RAM 4GB, anda64-bit operating system. The feasibility of the method was validated for selective
multi-objective of the system to minimize the fuel cost, power losses and environmental emissions
by adjusting the control variables of the system. The proposed and other various nature-inspired
algorithms were run for a maximum of 200 iterations and the comparative analysis was carried out for
each case of selected objectives as detailed in the forthcoming subsections. The optimal settings of the
controlling parameters for the proposed method have also been detailed in Table 2.

Table 1. Emission coefficients.

Coefficients
Generating Units

G1 G2 G5 G8 G11

α 0.04091 0.02543 0.04258 0.05326 0.04258
β −0.0555 −0.06047 −0.0509 −0.0355 −0.0509
γ 0.0649 0.05638 0.04586 0.0338 0.04586
ξ 0.0002 0.0005 0.000001 0.000001 0.00001
λ 2.857 3.333 8 2 8
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Table 2. Control variables settings for the proposed method.

Parameters
Limit

Case1 Case2 Case3 Case4 Case5 Case6 Case7
Min Max

PG2 (MW) 20 80 48.8800 79.7600 70.9800 48.8630 79.8000 79.8649 78.6700
PG5 (MW) 15 50 21.4200 49.8500 50.0000 22.0045 38.1190 49.7284 38.3980
PG8 (MW) 10 35 22.0200 34.8900 35.0000 24.1240 34.8750 35.2909 35.0010
PG11 (MW) 10 30 12.2900 29.9100 30.0000 12.8880 30.6920 30.9214 32.1040
PG13 (MW) 12 40 11.2100 39.8800 40.0000 12.0000 31.2940 37.0272 32.1880
VG1 (p.u) 0.95 1.1 1.0735 1.1000 1.1000 1.0562 1.1000 1.0600 1.0600
VG2 (p.u) 0.95 1.1 1.0567 1.0825 1.0879 1.0426 1.0879 1.0430 1.0430
VG5 (p.u) 0.95 1.1 1.0992 1.0503 1.0616 1.0100 1.0616 1.0290 1.0100
VG8 (p.u) 0.95 1.1 1.0977 1.0563 1.0695 1.0180 1.0695 1.0220 1.0100
VG11 (p.u) 0.95 1.1 1.0847 1.1000 1.1000 1.0813 1.1000 1.0820 1.0820
VG13 (p.u) 0.95 1.1 1.0664 1.1000 1.1000 1.0770 1.1000 1.0710 1.0710
T6–9 (p.u) 0.9 1.1 1.0438 0.9000 1.0404 1.0230 1.0373 1.0300 1.0280
T6–10 (p.u) 0.9 1.1 0.9778 1.1000 0.9000 0.9820 0.9000 0.9760 0.9640
T4–12 (p.u) 0.9 1.1 0.9668 1.0394 0.9945 0.9880 0.9930 0.9851 0.9730

T28–27 (p.u) 0.9 1.1 0.9784 0.9825 0.9777 0.9630 0.9683 0.9500 0.9617
Fuel Cost ($/h) - - 801.8290 966.1200 950.9800 802.0100 903.2200 961.8781 906.5210

Power Loss
(MW) - - 9.3870 3.4900 3.5700 9.0400 4.2900 3.5222 4.2080

Emission
(ton/h) - - 1.2630 0.2960 0.2850 1.2140 0.3150 0.2850 0.2970

Case 1—Quadratic Total Fuel Cost Minimization

The quadratic fuel cost characteristics of a generator were chosen as the single-objective function to
be minimized by the proposed HHO algorithm as defined in (1). The obtained optimal value of control
variables by optimizing the total fuel cost (TFC) of the system is illustrated in Table 3. To achieve this,
the proposed method undergoes several stages of exploration and exploitation by dividing the search
region in the space. Initially, the generators are initialized randomly by exploring the search regions
and they give the various local solutions of TFC as $/h 842.131, $/h 835.204, $/h 828.532, $/h 814.891, and
so on for different iterations. Then, the hawks undergo the soft and hard siege stages to find their global
best by exploiting the solution in the search region to reach the global minima value of 801.829 as TFC.
Hence, the obtained global solution is recorded as the best minimal value of TFC after 50 individual
runs by the proposed method and compared with other nature-inspired methods. It is seen that the
TFC is decreased to 801.829 $/h by the proffered method and its comparison with other intelligence
algorithms is illustrated in Table 3. Thus, the HHO method optimized to give superior results for
the selected single objective. In addition to the control parameters and TFC, the other computational
parameters, such as real power loss, environmental emissions, iteration, and convergence time, are
promising but stuck at a certain time and reported in Table 3. Additionally, the obtained fuel cost for
various methods with its convergence characteristics is portrayed in Figures 4 and 5.

Table 3. Comparison of different methods for case 1.

Method
Items

PG1
(MW)

PG2
(MW)

PG5
(MW)

PG8
(MW)

PG11
(MW)

PG13
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N)

Time
(s)

HHO 176.97 48.88 21.42 22.02 12.29 11.21 801.829 9.387 1.263 132 58
SSA 176.78 48.83 21.47 21.65 12.09 12.00 801.844 9.376 1.274 135 62

WOA 176.80 48.94 21.50 21.65 12.13 12.00 801.840 9.393 1.270 197 64
MF 177.70 49.25 21.35 21.29 10.73 12.93 801.960 9.410 1.274 183 60

GWO 176.73 48.83 21.47 21.65 12.09 12.00 801.844 9.376 1.280 66 67
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Case 2—Active Power Loss Minimization

To validate the effectiveness of the proposed method of OPF, the active power loss (APL) is
regarded as a second single-objective function to be minimized and its formulation is represented
in (2). The losses of the system can be minimized by optimally satisfying the load demand and the
constraints of the system. The simulation results under this case are compared with other recent
evolutionary meta-heuristic methods and are given in Table 4. It can be seen that the APL in the
IEEE 30-bus test system has declined to 3.49 MW and the performance of the proposed method is
infinitesimally improved in comparison to other recent literatures such as the SSA, WOA, MF, and GWO
presented above. In addition, the proffered method outperforms relative to the other methods to give a
minimum TFC of 966.12 $/h. However, the performance is found similar to literature works for other
computational parameters like emissions and number of iterations. In addition, the presented method
takes a smaller amount of time for convergence. Figures 6 and 7 portray the comparison of power loss
minimization by various methods and its fitness curve, respectively. The results demonstrate that the
proposed method attains the optimal solution with a minimum number of iterations and requires a
shorter computation time because of its local and global search ability.
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Table 4. Different methods for case 2.

Method
Items

PG1
(MW)

PG2
(MW)

PG5
(MW)

PG8
(MW)

PG11
(MW)

PG13
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N)

Time
(s)

HHO 52.63 79.76 49.85 34.89 29.91 39.88 966.12 3.49 0.296 3 56
SSA 51.90 80.00 50.00 35.00 30.00 40.00 968.56 3.50 0.296 4 61

WOA 52.03 79.96 49.97 34.98 29.98 39.98 968.21 3.50 0.296 3 61
MF 51.90 80.00 50.00 35.00 30.00 40.00 968.56 3.50 0.296 21 62

GWO 52.10 80.00 50.00 34.80 30.00 40.00 968.29 3.51 0.297 3 65
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Case 3—Total Emission Cost Minimization

In this case, the total emission cost (TEC) is regarded as the third single-objective function to be
minimized and its formulation is given in (3). The attained optimal values of control variables for
minimization of TEC by the propounded method and the other techniques are illustrated in Table 5. The
result based on the least emissions reveals that the proposed method outperforms compared to other
presented literature work to give significant improvements and the TEC is reduced to 0.285 (ton/h).
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Table 5. Different methods for case 3.

Method
Items

PG1
(MW)

PG2
(MW)

PG5
(MW)

PG8
(MW)

PG11
(MW)

PG13
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N)

Time
(s)

HHO 60.99 70.98 50.00 35.00 30.00 40.00 950.98 3.570 0.2850 32 56
SSA 61.02 70.95 50.00 35.00 30.00 40.00 950.93 3.600 0.2950 142 62

WOA 61.08 70.89 50.00 35.00 30.00 40.00 950.82 3.571 0.2950 39 62
MF 61.02 70.95 50.00 35.00 30.00 40.00 950.93 3.572 0.2950 29 61

GWO 60.93 71.12 50.00 34.93 30.00 40.00 951.13 3.571 0.2960 171 57

Moreover, the computational parameters, such as losses and convergence time, are more enhanced
than other evolutionary methods. The fuel cost is found to be similar to other techniques, but the
proposed method takes a minimum number of iterations for the convergence of a solution. This inference
is presented as Figures 8 and 9 for better understanding, showing that the performance in reaching a
global optimal solution by the hawks optimizer is better than other nature-inspired techniques.
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Selection of Weightsfor Solving Multi-ObjectiveOPF Functions

In general, the multi-objective optimization can be solved with or without the preferences of
specific objectives. However, the proposed work chooses the no preference weighted sum method.
In this approach, the optimization problem aims to optimize all of the objectives with equal importance
without giving prime importance to any of the objectives to be minimized. However, in order to study
the assumed effects on weight based on the priority given to specific objectives, this work solves the two
objectives (cost and loss) and three objective (cost, loss, and emission) using the proposed HHO method
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and its corresponding results are represented in Tables 6 and 7. It is inferred that the solution obtained
has no significant compromising results for different combinations of weight values assumed, and
therefore an equal weight is considered for all of the objective functions. Additionally, in present days
owing to the growth of renewable energy sources, the economy to improve the assets of generation,
transmission, and distribution systems considering the environmental factors leads this research to
choose the equal preference. On the flipside, solving three objective functions as multi-objective, the
change in environmental conditions due to pollution is considered of prime importance with weight
values of 0.34 than cost and losses for sustainable energy development.

Table 6. Set of weights assumed for minimizing fuel cost and losses.

SL No
Weight

Cost ($/h) Loss (MW)Cost Loss

1 0.50 0.50 802.010 9.040
2 0.10 0.90 810.249 7.212
3 0.20 0.80 804.205 8.170
4 0.30 0.70 802.729 8.629
5 0.40 0.60 802.197 8.898
6 0.60 0.40 801.910 9.166
7 0.70 0.30 801.871 9.241
8 0.80 0.20 801.855 9.294
9 0.90 0.10 801.846 9.349

Table 7. Set of weights assumed for minimizing fuel cost, loss, and emission.

SL No
Weight

Cost ($/h) Loss (MW) Emission (ton/h)Cost Loss Emission

1 0.33 0.33 0.34 961.88 3.538 0.2982
2 0.20 0.20 0.60 938.679 3.798 0.299
3 0.40 0.40 0.20 880.708 4.688 0.353
4 0.60 0.20 0.20 860.872 5.074 0.399
5 0.20 0.60 0.20 906.061 4.231 0.321

Case 4—TFC and APL minimization

In this case, two prime contradictory objectives such as fuel cost and power loss were optimized
simultaneously using the weighted sum method by the proposed HHO algorithm in Equation (7).
The no preference weighted method has been chosen by assuming the sum of the weight values to be
one (i.e., w1 = w2 = 0.5). Table 8 shows the best optimal values of the control variables obtained by
minimizing the TFC and APL. Additionally, the obtained results by the proffered method are compared
with the literature work, such as SSA, WOA, MF, and GWO. It is seen that the HHO outperforms
these to give superior results with a TFC of 802.01 (S/h) and an APL of 9.04 (MW). However, the value
of TFC is minimum using WOA, but the APL is not reduced as compared to HHO. On the other
hand, MF and GWO give similar results to optimize the selective fitness function but the emission
cost increases relative to other techniques. Figure 10 demonstrates the convergence characteristics
finding the optimal value of TFC and APL by HHO and various optimization methods. Overall, the
performance of HHO for solving multi-objective OPF problem is decent compared to other presented
techniques. Additionally, the obtained results of other computational parameters during optimization
are promising.
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Table 8. Comparison of different methods for case 4.

Method

Items

PG1
(MW)

PG2
(MW)

PG5
(MW)

PG8
(MW)

PG11
(MW)

PG13
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N)

Time
(S)

HHO 172.56 48.86 22.01 24.12 12.88 12.00 802.01 9.040 1.2140 118 52
SSA 172.60 48.90 22.00 24.00 12.90 12.00 802.00 9.180 1.2150 148 78

WOA 174.25 50.05 22.31 20.94 12.97 12.10 801.97 9.218 1.2340 135 64
MF 172.61 48.93 22.00 24.02 12.90 12.00 802.00 9.051 1.2150 58 69

GWO 172.92 48.72 22.07 23.90 12.86 12.00 802.01 9.065 1.2193 197 59
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Case 5—TFC and TEC Minimization

In this study, the fitness function to be optimized simultaneously in Equation (8) is fuel cost and
environmental emissions; by adapting the control variables the objective function can be minimized by
optimally satisfying the equality and inequality constraints. The obtained results for the IEEE30-bus
system with the control variables and its variation for the proposed and other intelligence methods
are depicted in Table 9. Table 9 represents the compromising solutions for the selected objective
function such as TFC and TEC, and their values are recorded as 903.22 $/h and 0.315 ton/h, respectively.
In addition, the TFC and TEC variations as a function of control variables for various iterations and
their comparison with other intelligence methods are also illustrated in Figure 11. It is clearly inferred
that the multi-objective function minimized by the proposed method and achieves promising results
compared to other techniques.

Table 9. Comparison of different methods for case 5.

Method
Items

PG1
(MW)

PG2
(MW)

PG5
(MW)

PG8
(MW)

PG11
(MW)

PG13
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N)

Time
(S)

HHO 72.91 79.80 38.12 34.88 30.69 31.29 903.22 4.290 0.3150 48 63
SSA 72.39 79.46 37.93 35.00 30.00 32.91 904.05 4.291 0.3211 145 72

WOA 72.62 74.17 38.36 34.98 29.98 37.52 905.38 4.220 0.3232 190 68
MF 71.73 77.70 39.73 35.00 30.00 33.44 907.41 4.191 0.3183 199 153

GWO 72.12 80.00 37.81 35.00 30.00 32.77 904.45 4.295 0.3207 35 68
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Case 6—APL and TEC Minimization

In this phase, APL and TEC were considered as an objective function to be optimized in Equation (9).
In general, the emission dispatching is directly concerned with the generating units. Thus, the fitness
function is minimized by adjusting the control variables, and its variations for the proposed and other
intelligence methods are depicted in Table 10. Table 10 shows the compromising solution for both
power loss and emission by fulfilling the constraints. It is found that the proposed HHO gives the best
optimal solution for APL and TEC minimization of 3.538 MW and 0.298 ton/h, respectively. Figure 12
demonstrates the convergence property of the selected fitness function consisting of all compared
methods. It is found from Table 10 that the intelligence methods like GWO give the best value for fuel
cost (960.49 $/h), but the method gives pessimistic results for the actual objective function. Overall, it is
observed that the HHO method gives optimistic results for the multi-objective function by controlling
all the computational parameters of the OPF problem. The convergence performance is recorded at the
lowest in terms of time and iteration by the proposed technique.

Table 10. Comparison of different methods for case 6.

Method.
Items

PG1
(MW)

PG2
(MW)

PG5
(MW)

PG8
(MW)

PG11
(MW)

PG13
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N)

Time
(S)
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WOA 54.77 79.97 49.98 34.99 29.99 37.25 961.51 3.549 0.2954 24 63
MF 54.67 80.00 50.00 35.00 30.00 37.27 961.76 3.553 0.2953 32 74

GWO 55.30 79.84 50.00 35.00 29.61 37.21 960.49 3.558 0.2996 196 79
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Case 7—TFC, APL, and TEC Minimization

In this case, three competing objective functions are optimized by the proposed HHO algorithm
simultaneously using the weighted sum method with the weights of various functions like TFC, APL,
and TEC as w1 = 0.33, w2 = 0.33, and w3 = 0.34, respectively. Equation (10) represents the objective
function to be minimized by optimally dispatching the generating units and satisfying the power flow
constraints. Table 11 shows the result obtained by the proposed and other intelligence methods. The
best optimal values are recorded for APL of 4.21 MW and TEC of 0.29 ton/h by the HHO method and
its performance is reasonable for a TFC of 906.52 $/h. On the flipside, the TFC is well optimized by the
SSA and MF methods, but it seems to give pessimistic results for other objectives such as APL and
TEC. Finally, it is clear that the obtained results of TFC, APL, and TEC cannot be further improved
without degrading the performance of other parameters by all the intelligence methods presented.
However, from inspection of the convergence curve portrayed in Figure 13, it can be inferred that the
proposed HHO algorithm outperforms the other intelligence techniques to give a minimum value of
fitness function.

Table 11. Comparison of different methods for case 7.

Method.
Items

PG1
(MW)

PG2
(MW)

PG5
(MW)

PG8
(MW)

PG11
(MW)

PG13
(MW)

Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N)

Time
(S)

HHO 71.25 78.67 38.40 35.00 32.10 32.19 906.52 4.21 0.297 149 55
SSA 71.74 79.56 38.33 35.00 30.00 33.04 905.73 4.26 0.320 150 73

WOA 70.21 78.56 37.77 33.19 30.00 37.92 910.57 4.26 0.320 195 63
MF 71.74 79.56 38.33 35.00 30.00 33.04 905.73 4.26 0.320 165 64

GWO 71.66 79.29 38.50 34.98 30.00 33.23 906.10 4.25 0.320 199 63
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Case 7a—Minimization of TFC, APL, and TEC with presence of 5 MW DG

This case is similar to case 7 with the presence of DG for reducing the losses and emission costs
of the system. The optimal location of DG is done using a real power sensitivity analysis based on
the procedure detailed in [53]. Table 12 depicts the ranking for placement of DG based on estimated
sensitivity index. It is observed that bus 30 is the critical candidate bus with a maximum magnitude of
index value of 0.1359 compared to all other load buses in the IEEE30-bus system. Thus, the placement
of 5 MW DG in the 30-bus system results in the generation dispatch of PG1, PG2, PG5, PG8, PG11,
and PG13 as 71.66 MW, 79.53 MW, 38.54 MW, 35 MW, 30 MW, and 32.88 MW, respectively. The result
shows that the TFC, APL, and TEC of the system have been reduced from $/h 906.52 to $/h 905.19,
4.21 MW to 4.02 MW, and 0.297 ton/h to 0.219 ton/h, respectively, compared to the normal case as
depicted in Table 13. It is inferred that the change is not very significant for all the three parameters
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considered. However, the type of DG considered is of a smaller size and the optimal sizing of the DG
needs to be done for remarkable changes in the parameters. However, the scope of this study is limited
to analyze the effect of DG placement on system losses and emissions. The result also reveals that the
losses and emissions of the system are reduced to 9.8355% and 26.2%, respectively, which enhances the
sustainable power generation.

Table 12. Ranking of 5 MW DG placement based on the real power sensitivity index.

S. No
Loss Sensitivities

Rank
Loss Reduction (%)

∂Ploss/∂P Bus With 5MW DG

1 −0.1359 30 1 9.8355
2 −0.1106 26 2 7.8998
3 −0.1093 29 3 7.19537
4 −0.0906 24 4 7.16288
5 −0.0888 19 5 7.0072
6 −0.0857 18 6 6.7302
7 −0.0853 25 7 6.6088
8 −0.0845 23 8 6.5592
9 −0.0824 20 9 6.5165
10 −0.0733 21 10 5.9539
11 −0.0729 22 11 5.9078
12 −0.0722 15 12 5.8154
13 −0.0714 27 13 5.6906
14 −0.069 7 14 5.6718
15 −0.0657 14 15 5.3024
16 −0.0645 17 16 5.21015
17 −0.0644 28 17 4.9946
18 −0.0596 10 18 4.8955
19 −0.0593 16 19 4.8647
20 −0.0588 9 20 4.8561
21 −0.0584 6 21 4.6817
22 −0.0498 4 22 4.1363
23 −0.0462 12 23 3.7601
24 −0.0391 3 24 3.2249

Table 13. Comparison of TFC, APL, and TEC performance with and without DG using HHO.

HHO Cost
($/h)

Loss
(MW)

Emission
(ton/h)

Iteration
(N) Time (S)

Without DG 906.52 4.21 0.297 149 55
With DG 905.19 4.02 0.219 142 52

5. Comparative Analysis

In this section, the performance of HHO-based OPF to minimize the TFC is only considered for
comparison with the literature work because of its prime importance in the electric sector compared to
any other OPF objectives. Table 14 illustrates the various optimization methods for minimizing the fuel
cost whilst optimizing the control parameters such as real power generation of generators. It is seen
from the results that the Stochastic Search algorithm (SS) shows the worst optimized TFC of 804.1072
$/h by uneconomical dispatches of the generators PG1 (193 MW) and PG8 (11.62 MW). On the flipside,
Tabu search (TS), Evolutionary Programming(EP), Differential Evolution(DE), Modified Differential
Evolution (MDE), the Enhanced Genetic Algorithm (EGA), and Ant Colony Optimization(ACO) exhibit
TFC in the range of 802 $/h to 802.7 $/h. Additionally, the Modified Honey Bee Mating Optimization
(MHBMO), Teaching Learning-Based Optimization (TLBO), and Modified TLBO showed that the
TFC is optimized in the range between 801.8925 $/h and 801.985 $/h. However, the proposed HHO
technique outperforms these to give the TFC of 801.829 $/h, indicating the best optimal solution among
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the various methods presented. Additionally, the % improvement of the proposed HHO method
has been evaluated by choosing the PSO technique as a benchmark method. The result claims that
the proffered method can significantly outperform by 0.023% more than the PSO compared to other
optimization techniques. Additionally, the performance of TS, EP, IEP, DE, MDE, SS, EGA, ACO, and
HBMO is not superior to that of the PSO method, which shows the solutions obtained from these
optimization methods are not feasible. Among all the techniques the SS method underperforms by an
amount of 0.26% compared to the PSO method. However, the proposed HHO method demonstrates
its better performance through the exploration and exploitation characteristics of Hawks to tune the
parameters of the generator output power. This claim makes the HHO better to optimize the generator
parameters for a different combination of objective functions considered.

Table 14. Comparative analysis on performance of HHO with recent literature works.

Methods PG1 PG2 PG5 PG8 PG11 PG13 Fuel Cost
($/h)

%
Improvement

HHO 176.97 48.88 21.42 22.02 12.29 11.21 801.829 0.023
TLBO [26] 177.3986 48.0701 21.7722 21.89616 12.08228 11.61326 801.9908 0.0028

MTLBO [26] 177.2561 48.0762 21.1925 22.1182 12.1124 11.821 801.8925 0.0151
TS [29] 176.04 48.76 21.56 22.05 12.44 12 802.29 −0.0344
EP [55] 173.848 49.998 21.386 22.63 12.928 12 802.62 −0.0756
IEP [56] 176.2358 49.0093 21.5023 21.8115 12.3387 12.0129 802.465 −0.0562
DE [57] 176.009 49 21.334 22.262 12.46 12 802.394 −0.0474

MDE [57] 175.974 49 21.51 22.24 12.251 12 802.376 −0.0452
SS [58] 193 48 19.5506 11.6204 10 12 804.1072 −0.261

EGA [59] 176.2 49 21.44 21.95 12.42 12.02 802.06 −0.0058
ACO [60] 181.945 47.001 21.4596 21.446 13.207 12.0134 802.578 −0.0703
FGA [61] 175.137 50.353 21.451 21.176 12.667 12.11 802.0003 0.00166
PSO [62] 175.6915 48.639 21.4494 22.72 12.2302 12 802.0136 Benchmark
MHBMO

[63] 177.0431 49.209 21.5135 22.648 10.4146 12 801.985 0.0036

HBMO [63] 176.4646 46.274 21.4596 21.446 13.207 12.0134 802.211 −0.0246

6. Conclusions

A novel nature-inspired Harris Hawks Optimization (HHO) method has been proposed to solve
the single and multi-objective OPF problem of power systems. In this work, various conflicting
single and multi-objectives are framed using total fuel cost, active power loss, and environmental
emission cost with the concern of reducing the environmental emissions from thermal generating units.
In this work, equal importance is given to all three objectives, because the electric sector is aiming to
compensate all the three factors as its prime objectives. Hence, a no-preference weighted sum approach
has been used to solve the multi-objective OPF problem. The effectiveness of the proffered method
was tested on an IEEE 30-bus system by optimally setting the control variables. The results obtained
for different cases were compared with the other well-known nature-inspired intelligence techniques
like SSA, WOA, MF, and GWO. It is seen that the HHO performance improved predominantly from
0.01% to 0.37% for various disparate cases of selective objective function compared to other methods.
Additionally, the study on the placement of 5 MW DG based on a sensitivity analysis revealed that the
system losses and emissions are reduced by an amount of 9.8355% and 26.2%, respectively, compared
to conventional thermal power generators. The analysis on the sizing of DG and a contingency analysis
will be the future scope of the work.
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Abbreviations

HHO Harris Hawks Optimization
OPF Optimal Power Flow
AI Artificial Intelligence
GM Gradient Method
MM Newton Method
IPM Interior Point Method
LP Linear Programming
NP Linear Programming
QP Quadratic Programming
MIP Mixed Integer Programming
GA Genetic Algorithm
EA Evolutionary Algorithm
GP Genetic Programming
BBO Biogeography Based Optimization
BBBC Big-Bang Big Crunch Algorithm
GSA Gravitational Search Algorithm
CSS Charged System Search
CFO Central Force Optimization
PSO Particle Swarm Optimization
GWA Grey Wolf Optimization Algorithm
GOA Glowworm Optimization Algorithm
SSA Salp Swarm Algorithm
TLBO Teaching Learning Based Optimization
MTLBO Modified Teaching Learning Based Optimization
HBMO Modified Honey Bee Mating Optimization
MHBMO Honey Bee Mating Optimization
EP Evolutionary Programming
IEP Improved Evolutionary Programming
DE Differential Evolution Algorithm
MDE Modified Differential Evolution Algorithm
EGA Enhanced Genetic Algorithm
ACO Ant Colony Optimization
GSO Group Search Optimizer
HS Harmony Search
TS Tabu Search
WOA Whale Optimization Algorithm
MF Moth Flame
ES Evolution Strategy
DE Differential Evolution
SI Swarm Intelligence
ABC Artificial Bee Colony
FA Firefly Algorithm
CKH Chaotic Krill Heard
BSA Backtracking Search Algorithm
FEA Faster Evolutionary Algorithm
GS Group Search Algorithm
DSA Differential Evolution Algorithm
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MBFA Multi-hive Bee Foraging Algorithm
AAM Affine Arithmetic Method
KBF Knowledge Based Framework
HLM Human Learning Method
LCM Linear Compression Methods
GB Galaxy Based
MO Magnetic Optimization
CCS Carbon Capture and Sequestration Technology
MOO Multi-objective Optimization
TFC Total Fuel Cost Minimization
APL Active Power Loss Minimization
TEC Total Emission Cost Minimization
LF Levy Flight

Nomenclature

U Control variable
X Vector of dependent variable,
gj Equality constraints respectively
hk Inequality constraints at kth limit
j, k jth and kth limits.
PGslack Real power generation of slack bus
PG Real power generation
QG Reactive power generation
SL Transmission line capacity
VG Generator voltage bus magnitude,
Qcap Output of shunt VAR compensator
T Tap settings of transformers.
ai, bi, ci Generator cost co-efficient
NG Total number of generators
Vk Voltage amplitude of from bus
Vm Voltage amplitude of to bus
δk Voltage angle of from bus
δm Voltage angle of to bus
NL Total number of transmission line
α, β, γ, λ Environmental emission coefficient,
w1, w2, w3 Weight factor
r1..,r4,q Random numbers
Xr Position of prey
X Position vector of hawks
Xm Initial population
E Escaping Energy
Eo Initial Energy
T Maximum Iteration
N Total number of Hawks
T Current Iteration
R The chance of escaping of prey
J Random jump of rabbit
D Dimension of problem
S Random vector
u, v Accidental value
β Constant
Y, Z Updated Hawk’s position
LB, UB Lower and upper boundary
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