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1. Introduction
Buildings play an essential role in climate change mitigation. Globally, buildings and constructions are responsible 
for 36% of the final energy consumption and 39% of energy and process-related CO2 emissions (International Energy 
Agency & Global Alliance for Buildings and Construction 2019). Emissions from the extraction, production and disposal 
of building materials (embodied emissions) account for 11% of all energy-related CO2 emissions (International Energy 
Agency & Global Alliance for Buildings and Construction 2018). The current approach to material consumption in the 
built environment is predominantly linear, i.e. extract, produce, use and dispose, vast amounts of waste materials are 
generated (Akanbi et al. 2018; Aye et al. 2012; Kylili & Fokaides 2017).
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Abstract
The concept of circular economy has been introduced as a strategy to reduce the greenhouse gas 
(GHG) emissions from buildings and mitigate climate change. Although many innovative circular 
solutions exist, the business model is challenged by a lack of environmental data on the circular 
solutions, and thus the potential benefits are not verifiable. The study assesses the embodied 
GHG emissions of five circular building elements/components. Circular solutions are compared with 
conventional solutions to ascertain whether the business model has the potential to reduce GHG 
emissions. The GHG emissions are quantified using life-cycle assessment (LCA) for five circular-
economy and three conventional building elements/components. The environmental data show that 
circular building components have the potential to reduce GHG emissions. However, there is a risk of 
increasing the GHG emissions when compared with conventional solutions, emphasising the need for 
standardised environmental data. Lastly, the study identifies logistic, economic, technological and 
regulatory barriers that prevent complete implementation of circular economy.

Practice relevance
Standardised environmental data on building elements/components are needed to support decision-
making at local and national levels. Uncertainties about waste from manufacture and transport in 
the production stage can affect the environmental potential to such an extent that the benefits 
from introducing circular economy are lost. One central barrier is identified that prevents complete 
implementation of the circular economy in buildings; the industry is not geared to support a steady 
supply of some circular building elements/components. In general, it is clear that the implementation 
of circular economy requires the identification of environmental, logistical, economic, technological 
and regulatory concerns.
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The concept of circular economy is increasingly being applied in the built environment as an approach to reduce the 
embodied emissions associated with buildings. Circular economy aims at preserving finite stocks of natural resources and 
ensuring a renewable flow of products and materials (Ellen MacArthur Foundation 2015, 2016; European Commission 
2015). In the built environment, this is often manifested by the inclusion of recycled materials and components in the 
construction (Islam et al. 2016; Ramos Huarachi et al. 2020) or by the provision of recyclable and reusable materials and 
components at the end of life (Densley Tingley & Davison 2012; Eberhardt, Birgisdóttir, & Birkved 2018). Since the use of 
recycled materials addresses the immediate global concerns about reducing carbon emissions, this recycling strategy is 
a particular focus for the construction industry as well as for the waste industry (Di Maria, Eyckmans, & Van Acker 2018).

The literature provides rich discussions on different approaches to allocate impacts and benefits associated with 
recycling (Allacker et al. 2014; Frischknecht 2010; Gala, Raugei, & Fullana-i-Palmer 2015). However, for building practice, 
attention has centred on the methodological approach outlined by the EN 15804 and EN 15978 standards for life-cycle 
assessment (LCA) on building products and whole buildings (CEN 2012b, 2019), which harmonise the otherwise widely 
differing approaches in building LCA (Säynäjoki et al. 2017). These standards draw upon the data in environmental 
product declarations (EPDs), particularly in the European market (Passer et al. 2015). Standardised EPDs, or similar 
information sources, are used in a range of certification systems for evaluating the environmental performance of 
buildings, and several countries are also developing regulations and benchmarks based on these standards (Frischknecht 
et al. 2019; Lützkendorf 2017).

The business model for material reuse and recycling in buildings is challenged by institutional settings and market 
structures (Nußholz et al. 2019b). Hence, even though several pilot initiatives from practice seek to incorporate the 
recycling agenda in building design, environmental data based on the standards is missing, and potential benefits are 
thus not verifiable (Lendager Group 2013, 2018, 2019; Region Midtjylland n.d.). This lack of environmental data points 
to a need to bridge research and practice by evaluating pilot initiatives in the standardised LCA format of the European 
standards.

This study aims to contribute to filling the data gap for recycled products in building practice by presenting LCA-
based greenhouse gas (GHG) profiles of conventional and circular building elements and components at a screening 
level. Circular scenarios are compared with corresponding conventional scenarios to assess the potential reductions 
in GHG emissions achieved through circular economy. Finally, the study assesses the reductions in GHG emissions 
achievable at Danish national level and the barriers that hinder the transformation towards circular economy.

2. Methods
2.1 Life-cycle assessment (LCA)
LCA is used to identify the GHG emissions of circular and conventional building elements/components. The LCAs 
follow the standardisation in EN 15804 and EN 15978 (CEN 2012a, 2012b).

2.1.1 Goal, scope and functional unit
The research aim is to compare conventional and corresponding circular building elements/components. The functional 
unit was defined as ‘1 m2 of building element/component’. The functional unit assumes that the circular scenarios are 
equal to the conventional scenarios in terms of functionality, quality and service life. However, comparability regarding 
quality and longevity relies on the authors’ estimation, since data are not yet available due to the novelty of the circular 
scenarios.

According to EN 15978, a building LCA may include 17 life-cycle modules. The scope of the present research is limited 
to include six modules related to production (stages A1–A3), end of Life (stages C3 and C4) and benefits/loads beyond 
the system boundary (stage D) (Figure 1). Since the study is a screening, the service life is assumed to be identical for 
the conventional and circular scenarios and therefore module B4 is excluded.

Figure 1: Life-cycle stages according EN 15978 (CEN 2012b). The included life-cycle modules are marked in dark blue.
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The system boundary is defined by the cut-off allocation method according to EN 15804/15978 (CEN 2012a, 2012b), 
where the first and second lives of the element are considered as two independent life-cycles. In the first life-cycle, the 
building element/component is considered until the material reaches the end-of-waste state (CEN 2013). In the second 
life-cycle in the product stage (A1–A3), only the processing of the element/component to be transformed into a new 
product is included, hence the recycled and reused materials themselves are considered as ‘free’ and without impact. 
The allocation method follows the calculation practices from Product Category Rules (PCR) for Construction Products 
EPD (CEN 2013).

2.1.2 Data and assumptions
Data on both the conventional and circular scenarios were obtained from EPDs, the Ökobaudat (2019) database and 
reports examining the circular scenarios as a part of a pilot project (for specific data sources, see section 2.2 and the 
supplemental data online).

To model the inventory, it was necessary to make overall assumptions due to a lack of data. Thus, some assumptions 
are based on the authors’ estimation. In life-cycle stages A1–A3, a generic wastage rate of 10% and a transportation 
distance of 50 km was assumed (Rosholm, Kalvig, & Fold 2016) for all virgin raw materials. The waste scenarios in 
life-cycle stages C3 and C4 are generally the same for the conventional and circular scenarios. In life-cycle stage D, 
a distance of 30 km was assumed as avoided transportation when materials are recycled at the end-of-life stage. 
This was based on the assumption that recyclable building elements/components are obtained from a nearby 
demolition site and thus the environmental loads from transporting virgin elements/components over longer 
distances are avoided.

The inventory was modelled using the database ecoinvent v3.4 (2020) and SimaPro 9.0 (PRÉ 2020) software. The 
geographical boundary of the data covers Denmark and Europe when available. Likewise, the data represent the current 
level of technology and current waste management systems.

2.1.3 Impact assessment
For the life-cycle impact assessment, the method ILCD 2011 midpoint+ (European Commission & Joint Research Centre 
2012) was applied. Generally, when conducting LCA, all environmental indicators should be considered in order to avoid 
burden shifting. However, to limit the scope of this study, only GHG (kg CO2e) was included, since it is highly relevant in 
terms of both environmental concerns and political discussions (Danish Government 2019; United Nations 2015). The 
life-cycle impact assessment was conducted by multiplying the quantity of a material or process by the impact provided 
when applying the ILCD 2011 midpoint+ characterisation factors from the ecoinvent data set in SimaPro. When adding 
all impacts in each life-cycle stage, the total GHG emissions of each scenario is found using equation (1):
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where q is the quantity a given material or process; i is the impact potential per quantity unit based on the ecoinvent 
data set; qp,i and Ip,i represent the materials and processes in the production stage; qt,i and It,i are the transport of materials 
in the production stage; qw,i and Iw,i are the waste materials in the production stage; qEoL,i and IEoL,i are the processes in 
the end-of-life stage; qap,i and Iap,i are the avoided production in life-cycle stage D; and qat,i and Iat,i are the avoided 
transportation in life-cycle stage D.

2.2 Case study
This above method was applied to three conventional and five circular building elements/components. The scenarios 
are based on building materials widely used in buildings in Denmark: concrete, bricks and glass. The scenarios are 
shown in Table 1 and Figure 2.

2.2.1 Concrete
2.2.1.1 Scenario A: Conventional concrete
This scenario reflects the life-cycle of a conventional unreinforced concrete wall with a thickness of 300 mm and the 
structural capacity of 25 MPa (Aalborg Portland 2010) (Figure 2). The functional unit is 1 m2 of 25 MPa concrete element.

In life-cycle stages A1–A3, the constituents and amount are based on the concrete manufacturer’s formula (Aalborg 
Portland 2010). The mixing of the concrete is based on a standard data set from the ecoinvent database. Although 
structural concrete is typically reinforced, this assessment does not include the reinforcing steel. The assumption is 
that the compared scenarios—A: Conventional concrete, D: Recycled concrete and E: Reused concrete elementa—would 
contain the same amount of steel.

In life-cycle stages C3 and C4, the concrete is assumed to be crushed and 90% recycled as road filling (Danish 
Environmental Protection Agency 2015). Hence, the consumption of gravel for road filling and transportation thereof 
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(30 km) is avoided (life-cycle stage D) (for the inventory, see the supplemental data online). This scenario serves as a 
reference to the scenarios Recycled concrete and Recycled concrete elements.

2.2.1.2 Scenario D: Recycled concrete (circular scenario)
This circular scenario deals with recycling old concrete as aggregate in new concrete (Figure 2). The concrete is used 
for an unreinforced concrete wall with a thickness of 300 mm. The functional unit is 1 m2 of 25 MPa concrete element.

In life-cycle stages A1–A3, concrete is reclaimed from an old building and crushed on the construction site. Next, 
the concrete manufacturer produces concrete (following the formula in Aalborg Portland 2010) on-site and replaces 
the coarse natural aggregate, in this case gravel, with the crushed concrete. In Denmark, according to DS 411, it is 
allowed to replace 20% of the coarse aggregate for concrete structures in the passive environmental class (Danish 
Standards 2006) due to structural requirements as well as requirements for the workability in the construction stage 
(Danish Environmental Protection Agency 2015). However, pilot projects testing the replacement of 100% of the coarse 
aggregate with crushed concrete show that this is feasible without compromising the structural capacity and workability 
(Danish Environmental Protection Agency 2018). Thus, in this scenario, crushed concrete is assumed to replace 100% 
of the coarse aggregate as a way of demonstrating the more far-reaching potentials of circular economy. It is assumed 

Table 1: Conventional and circular scenarios assessed. Each scenario is based on 1 m2 of the material.

Conventional scenarios Circular scenarios

(A) Conventional concrete (D) Recycled concrete (common practice)

(E) Reused concrete elements

(B) Conventional brick wall (F) Facade cladding with reused bricks (common practice)

(G) Recycled brick facade element

(C) Conventional thermal window (H) Thermal window with reused double-glazing

Figure 2: Composition of conventional and circular scenarios A–H.



Andersen, Kanafani, Zimmermann, Rasmussen and Birgisdóttir 383

that approximately 50% of the crushed concrete is too fine in grain size to use as replacement for coarse aggregate and 
thus ends up as waste (DTU Department of Civil Engineering 2019).

In life-cycle stages C3 and C4, the concrete is crushed and 90% is recycled as road filling (Danish Environmental 
Protection Agency 2015), thereby avoiding the use and transportation of natural aggregate (30 km) (life-cycle stage 
D). In the replacement of natural aggregate with crushed concrete in life-cycle stage D, it is assumed that 1 tonne of 
crushed concrete can substitute 1.1 tonne of natural gravel aggregate due to differences in density (Wahlström et al. 
2014) (for the inventory, see the supplemental data online).

2.2.1.3 Scenario F: Reused concrete elements (circular scenario)
This circular scenario focuses on the reuse of a 300 mm concrete element from an old building in a new building 
(Figure 2). The functional unit is 1 m2 of 25 MPa concrete element.

In the demolition of an old building, an unreinforced concrete element is cut out of the existing building and reused 
on site as a structural element for a new building. It is assumed that 10% of the concrete element is waste because of 
modifications when fitting the element to its new purpose.

In life-cycle stages C3 and C4, it is assumed that this concrete element is crushed and used as road filling (for the 
inventory, see the supplemental data online). Since all input materials are reused, there are no benefits and loads 
beyond the system boundary (due to calculation practices according to PCR for Construction Products EPD; CEN 
2013).

2.2.2 Bricks
2.2.2.1 Scenario B: Conventional brick wall
This scenario deals with the life-cycle of a standard solid brick wall used for an exterior facade (Figure 2). The functional 
unit of this scenario is 1 m2 of brick facade element.

In life-cycle stages A1–A3, bricks and cement mortar are constructed into a brick wall. It is assumed that 63 bricks are 
used per m2, and that the joints are 13 mm in thickness (Randers Tegl n.d.).

As for the concrete scenarios, bricks and mortar are crushed and recycled as road filling (life-cycle stages C3 and 
C4), hence avoiding the consumption of raw materials and transportation thereof (30 km) (life-cycle stage D) (for the 
inventory, see the supporting data online). This scenario serves as a reference to the scenarios Facade cladding using 
reused bricks and Recycled brick facade element.

2.2.2.2 Scenario E: Facade cladding with reused bricks (circular scenario)
This circular scenario provides an exterior facade cladding constructed of reused bricks (Figure 2). The functional unit 
is 1 m2 of brick facade element.

In life-cycle stages A1–A3, bricks reclaimed from a demolished building are sorted, cleaned and used for a new 
building’s facade. Due to the process, in which the bricks are cleaned of mortar, only 64.5% of the old bricks are 
considered suitable for reuse in a new building (EPD Danmark, The Danish Technological Institute & Gamle Mursten 
2017; Danish Environmental Protection Agency 2013). This wall is constructed of 63 bricks/m2, and the joints are 13 
mm in thickness (Randers Tegl n.d.). Contrary to the conventional scenario, lime mortar is assumed in this scenario as 
it permits recycling in the future.

In life-cycle stages C3 and C4, the brick facade is crushed and used as road filling, hence avoiding the use and 
transportation of natural aggregate (30 km) (life-cycle stage D) (for the inventory, see the supporting data online).

2.2.2.3 Scenario G: Recycled brick facade element (circular scenario)
This circular scenario deals with an innovative approach to recycling bricks and was tested in a building focusing on 
recycled materials (Lendager Group 2019) (Figure 2). The functional unit is 1 m2 of brick facade element.

In life-cycle stages A1–A3, the exterior part of an existing brick facade is cut into elements of 1 m2 and reused 
on-site. In order for the elements to be manageable, the elements are supported with 50 mm of 20% recycled concrete 
(Andersen et al. 2019) and reinforcement (Lendager & Vind 2018). Since this circular scenario is quite innovative and 
new to the market, the construction of the element is based on the authors’ best judgment.

In life-cycle stages C3 and C4, the brick facade element is crushed and recycled as road filling, thereby avoiding 
consumption and transportation of natural aggregate and (30 km) (life-cycle stage D) (for the inventory, see the 
supporting data online).

2.2.3 Thermal window
2.2.3.1 Scenario C: Conventional thermal window
This scenario reflects the production of a conventional thermal window with a wooden frame and double-glazing 
(Figure 2). The functional unit is 1 m2 of thermal window with wooden frame.

In life-cycle stages A1–A3, 1 m2 of double-glazing with a density of 20 kg/m2 is assumed (Ökobaudat 2018). The 
window frame is a new, standard wooden frame with dimensions according to Vinduesgrossisten (n.d.). In this study, 
only the impacts from forestry and wood processing are included in the assessment of the wood. Biogenic carbon is 
therefore not included in the calculation of the GHG emissions in order to simplify the methodology, and as biogenic 
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carbon is calculated as zero throughout the life-cycle according to EN 15804:2012+A2:2019 (CEN 2019), this assumption 
is not considered to be essential for total GHG emissions.

In life-cycle stages C3 and C4, the double-glazing is landfilled and the wooden frame incinerated. Since this happens 
in the far future and since the energy grid mix is increasingly based on renewable resources, this study assumes that 
there are no benefits in life-cycle stage D (for the inventory, see the supporting data online). This scenario serves as a 
reference to the circular scenario Thermal window with reused double-glazing.

2.2.3.2 Scenario H: Thermal window with reused double-glazing (circular scenario)
This circular scenario focuses on reusing double-glazing for new windows (Figure 2). This solution was tested in a 
building case focusing on using upcycled materials (Lendager Group 2018). The functional unit is 1 m2 of thermal 
window with wooden frame.

In life-cycle stages A1–A3, two 1 m2 double-glazed units reclaimed from existing buildings are combined into one 
thermal window with a wooden frame. According to the Lendager Group (2018), it is necessary to combine two double-
glazed units to meet the legal insulation requirements for new windows. Each unit is assumed to have a density of 
20 kg/m2 (Ökobaudat 2018) and the new wooden frame is assumed to be twice the dimensions of the conventional 
windows in order to fit two double-glazed units (Vinduesgrossisten n.d.). Again, biogenic carbon is not considered in 
the calculation of the GHG emissions (see Conventional thermal window).

In life-cycle stages C3 and C4, the double-glazing is assumed to be landfilled and the wooden frame is incinerated. As 
for Conventional thermal window, no benefits are beyond the system boundary (for the inventory, see the supporting 
data online).

2.3. Basis for uncertainty and sensitivity analysis
The uncertainty analysis was conducted quantitatively considering relevant input parameters. Table 2 presents the 
qualitative uncertainty analysis along with a justification of why the parameters are considered uncertain.

From Table 2, the parameters Waste (A1), Transport (A2) and Avoided transport are identified as uncertain, and 
thus these parameters are tested for sensitivity in the life-cycle inventory model. In the sensitivity analysis, the input 
parameters are variated according to the ranges provided in Table 2 and the relative change calculated.

3. Results
Table 3 shows the results in GHG (kg CO2e) for the considered life-cycle stages and all scenarios. All results are based on 
the inventory and the ecoinvent database presented in the supplemental data online.

Table 2: Qualitative uncertainty analysis of the relevant input parameters.

Input parameter Chosen data Variation Uncertain?

Production (A1–A3) Waste (A1) 10% Minimum 5%, 
maximum 15%

Yes Waste in the production of raw materials is 
estimated to be 10%. Based on the authors’ 
estimation, the parameter is considered 
uncertain

Transport (A2) 50 km Minimum 25 km, 
maximum 75 km

Yes Transport of raw materials is assumed to be 
50 km. Since the studied systems have very 
little empirical transport data, this figure 
has high variability and is thus considered 
highly uncertain (Danish Regions, Research 
Center for Environment and Resources 
2017)

Functional unit Material 
properties and 
dimensions

– – No Raw materials and dimensions are not 
considered uncertain because the input 
data in the compared scenarios have the 
same level of detail

Performance – – No Functionality of the circular building 
elements/components is equal to the 
functionality of the conventional ones

Beyond system 
boundary (D)

Avoided 
transport

30 km 0 km Yes Avoided transport in life-cycle stage 
D is considered uncertain. Transport 
is consistently assumed to be 30 km. 
However, a conservative future scenario 
may in fact be 0 km because future 
technology might allow local recycling to a 
higher degree than today
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The results show that life-cycle stages A1–A3 account for the largest share of the impacts with the exception of 
Reused concrete elements. Furthermore, the results suggest that scenarios concerning reuse and recycling have lower 
GHG emissions in life-cycle stages A1–A3 than conventional scenarios due to the allocation method where the majority 
of the impact has already taken place in the first life-cycle (see section 2.1).

The results show that life-cycle stage D has little effect on the total impact in five out of eight scenarios. In three 
scenarios—Conventional concrete, Conventional brick wall and Recycled concrete—life-cycle stage D contributes 
considerably to the impact. This is because the three scenarios contain relatively large shares of virgin raw materials, and 
when recycling the building elements for road filling at the end of life, the virgin raw materials result in large amounts 
of avoided products being credited. In the other five scenarios in life-cycle stages A1–A3, the share of reused and 
recycled materials is relatively high, resulting in less crediting when recycling (see section 2.1 for calculation practices).

3.1 GHG reductions
Figure 3 presents the GHG reductions when each of the five circular scenarios are compared with the corresponding 
conventional scenario. The GHG reductions include the range in which the results vary based on the relative change 
for each scenario from the sensitivity analysis. The relative changes for each scenario and for the uncertain input 
parameters are presented in Table S22 in the supplemental data online. The sensitivity results show that variations in 
the wastage rates cause the largest relative change in six out of eight scenarios.

The reductions in GHG emissions vary between 1% and 19% (Figure 3). The two scenarios Reused concrete 
element and Thermal window with reused double-glazing result in reductions of around 95–96% when compared 
with Conventional concrete and Conventional thermal window, respectively. The reductions from reusing the concrete 
element are due to the relatively few transformation processes needed for the concrete element to be fit for reuse. 
Likewise, few transformation processes are needed to fit the double-glazing for reuse, and since the double-glazing, 
which would have been the main contributor, has no impact in life-cycle stages A1–A3, high reductions occur.

The two scenarios Facade cladding with reused bricks and Recycled brick facade element both result in large reductions 
varying from 59% to 79%. Consistent for both scenarios is that few transformation processes are required in life-cycle 
stages A1–A3 and that the bricks, which would have been the main contributor, have no impact. Thus, great reductions 
in GHG emissions are achieved.

In contrast, the results show that it is questionable whether the circular scenario Recycled concrete results in 
reductions when including the variation from the sensitivity analysis. The results vary from a 10% reduction to a 9% 
additional load when comparing the conventional and circular scenario. The scenario considers crushed concrete as a 
substitute for coarse natural aggregate; however, as cement is the main contributor to the GHG emission, only small 
reductions are achieved.

3.2 Large-scale potentials (Denmark)
Even though four out of five circular scenarios show a clear potential to reduce GHG emissions, circular economy 
greatly depends on the availability of input waste resources. In 2017, in Denmark, 4,479,000 tonnes of construction 
waste were generated, of which 1,182,000 tonnes were concrete, 211,000 tonnes bricks and 21,000 tonnes glass (Danish 
Environmental Protection Agency 2019). In Table 4, the reductions in GHG emissions (from section 3.1) are scaled to 
a national level and represent the reductions that can be achieved from using all waste resources. The assessment is a 
screening and may serve as an indicator for potential national reductions.

Table 3: Greenhouse gases (GHG) for three conventional and five circular scenarios.

Scenario Stages A1–A3 
(kg CO2e/m2)

Stages C3 and C4 
(kg CO2e/m2)

Sum 
(kg CO2e/m2)

Stage D 
(kg CO2e/m2)

(A) Conventional concrete 99.1 3.7 102.8 –10.3

(D) Recycled concrete 95.4 3.7 99.1 –7.9

(F) Reused concrete elements 0.4 3.7 4.0 0.0

(B) Conventional brick wall 66.4 1.1 67.4 –3.3

(E) Facade cladding with reused 
bricks

14.4 1.1 15.5 –0.7

(G) Recycled brick facade 
element

24.1 1.5 25.6 –0.1

(C) Conventional thermal glazing 43.5 0.3 43.8 0.0

(H) Thermal window with reused 
double-glazing

1.4 0.6 2.0 0.0
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Figure 3: Potential reduction of greenhouse gas (GHG) emissions (%) when comparing five circular scenarios with three 
corresponding conventional scenarios, including the ranges found from the sensitivity analysis (see Table S22 in the 
supplemental data online). The reductions in GHG emissions are associated with providing and disposing of the ele-
ments/components.

Table 4: Screening of potential reductions in greenhouse gas (GHG) emissions for the circular scenarios.

(D) Recycled 
concrete

(F) Reused 
concrete 
elements

(E) Facade 
cladding using 
reused bricks

(G) Recycled brick 
facade element

(H) Thermal 
window 
with reused 
double-glazing

Reduction in GHG 
emissionsa (kg 
CO2e/m2)

–7.5 to 10.2 83.6–93.3 45.7–53.0 34.5–42.9 39.7–43.9

Waste available 
nationally (tonnes)b

1,182,000 1,182,000 211,000 211,000 n.a.

National potential 
reduction in 
GHG emissions 
(thousands of tons 
CO2e/year)c

–18,800 to 25,500 67,100–78,800 22,600–26,200 13,700–17,100 –

Assumptions All waste concrete 
available is used for 
recycled concrete

50% of the waste 
concrete available 
is reused as 
complete elements 
instead of being 
disposed of (Danish 
Environmental 
Protection Agency 
2015)

Brickwork with 
cement mortar 
is too strong to 
separate brick 
by brick. Thus, 
only bricks laid 
with lime mortar 
can be reused, 
corresponding 
to 50% of the 
demolished 
brickwork in 
Denmark (Sandahl 
2019)

Brickwork with 
cement mortar 
is particularly 
suitable in this 
scenario due to its 
strength. In this 
scenario, brickwork 
with cement 
mortar is recycled 
as a facade element 
corresponding to 
50% of the waste 
bricks produced in 
Denmark (Sandahl 
2019)

Since only limited 
data on the 
generation of 
waste thermal 
glazing exist, it 
is not possible 
to estimate the 
potential national 
reductions

Notes: a The reductions in kg CO2e/m2 are based on Figure 3, where the reductions are shown as percentages. The ranges in reduc-
tions are found from the sensitivity analysis (see the supplemental data online), where the derivation of the data results in a nega-
tive figure in scenario (D) Recycled concrete.

b Data were obtained from the Danish Environmental Protection Agency (2019).
c Reductions/m2 (the first row) are scaled to a national level by coupling waste amounts and the consumption of waste in each cir-

cular scenario.
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Table 4 shows that the circular scenarios entail great opportunities for reducing the GHG emissions at the Danish 
market level. However, it is clear that the circular scenarios pose a risk of increasing the GHG emissions instead of 
reducing them. Thus, it is essential to consider how the waste materials are used in the best possible way to reduce the 
GHG emissions as well as the natural resource consumption. As an example, recycled crushed concrete can only to some 
extent reduce the consumption of natural resources. In 2014, the Danish consumption of aggregate was 49,989,000 
tonnes, thus waste concrete produced in Denmark can only constitute approximately 2% of demand. Recent studies 
suggest that up to 15–17% of the CO2 emitted in the production of concrete can be absorbed by concrete later in the 
life-cycle because of a CO2 uptake (Yang, Seo, & Tae 2014). This makes it relevant to consider whether recycling waste 
concrete in new concrete is the environmentally best way or if the waste concrete might be better used in other ways 
(Kallesøe et al. 2016). In addition, it is essential that nearby building activities are able to absorb the waste materials 
generated. If not, the waste materials might not be used or might be transported over long distances, resulting in 
additional environmental loads (Gala et al. 2015; Geyer et al. 2016; Nußholz et al. 2019a; Vadenbo, Hellweg, & Astrup 
2017).

In order to exploit the environmental benefits of the circular economy, it is important to identify—and avoid—
potential downsides. Failure to identify the environmental effect of circular economy might otherwise become a barrier 
for large-scale implementation.

4. Discussion
4.1 Barriers and potential for the implementation of circular scenarios
This section assesses the barriers to large-scale implementation of the circular scenarios. A necessity for large 
scale implementation of circular economy in the built environment is that the reused and recycled building 
elements/components/materials are guaranteed to meet the current building standard so that building owners, 
contractors, architects and engineers know that the elements/components/materials are sound and fit for purpose 
(Kibert 2016). Another essential for circular economy to be widely implemented is that the capacity of manufacturers 
are large enough to support a steady supply. If not, the architects, engineers and contractors will not be able to plan 
building projects, and the waste materials might not be used (Danish Environmental Protection Agency 2015).

4.1.1 Recycling concrete
For several years, recycled concrete has been an approach to reduce natural resource consumption (Danish 
Environmental Protection Agency 2015). However, several barriers exist, hindering complete implementation at the 
industry level. One aspect is to test and identify the formula of recycled concrete. It has been widely discussed whether 
recycled concrete requires extra cement compared with conventional concrete (Danish Environmental Protection 
Agency 2015). As cement has high GHG emissions, extra cement might increase the impact considerably. This requires 
further assessment.

Another barrier is profitability. Manufacturers state that it is more profitable to sell crushed concrete as road fill 
instead of selling the crushed concrete for recycled concrete (Danish Environmental Protection Agency 2015). Moreover, 
concrete manufacturers need to invest in silos and equipment to support a steady supply.

4.1.2 Reusing concrete elements
The reuse of concrete elements is a new approach to use the concrete available in Danish buildings. Consequently, 
logistical and technological barriers hinder the reuse of concrete elements.

Previous studies of reusing concrete elements show that the costs for transport and mounting, i.e. positioning and 
fixing, are responsible for 30–40% of the production cost (Danish Environmental Protection Agency 2015). As these 
costs are present for both new and reused concrete elements, the economic incentive is lost. This barrier could, however, 
be eliminated through careful planning (Danish Environmental Protection Agency 2015).

Additionally, a complete implementation of reused concrete elements would require a system for registering and 
managing the elements after demolition (Danish Environmental Protection Agency 2015). To ease reuse, the concrete 
elements could be designed for disassembly using standard dimensions and structural capacities. This, however, 
contradicts the current trend, where buildings are customised to the needs of the users (Danish Environmental 
Protection Agency 2015).

4.1.3 Recycling bricks as facade cladding
Reuse of waste bricks is a frequent solution for facade claddings in Denmark due to aesthetics. However, even 
though the reuse of bricks is already a widely implemented solution, barriers for a complete implementation are 
still present.

A logistical barrier includes tight conditions at the demolition site, which complicate the sorting and storing of 
the bricks on-site. Moreover, the reuse of bricks delays demolition and is more time-consuming than demolishing for 
recycling as road filling. This makes the solution less attractive and profitable. Studies find that reuse of bricks is most 
profitable for large-scale demolitions and at sites where the distance to the sorting and cleaning plant is relatively short 
(Danish Environmental Protection Agency 2016).
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4.1.4 Recycling a brick facade element
This circular scenario is a new approach, which has only been applied in a single project in Denmark (Lendager Group 
2019). Recycling a brick facade element requires that construction workers protect the existing facade, which makes 
the demolition more time-consuming. However, it is possible that the demolition and production of the brick facade 
elements could be less time-consuming in future due to process optimisation.

4.1.5 Reusing double-glazing for thermal windows
As for the scenario Recycled brick facade element, the reuse of double-glazing is a new approach that has only been 
tested to a limited extent (Lendager Group 2018). Again, the supply chain is a central barrier, and thus a system for 
registering and managing the waste double-glazing is necessary. Moreover, the reuse of double-glazing requires a 
degree of aesthetic liberty in the new building since the size of the windows will depend on waste materials available.

4.2 Limitations
This study shows that the reductions in GHG emissions of implementing circular economy in buildings can be substantial. 
However, there is a risk of increasing the GHG emissions and shifting the burdens if not thoroughly investigated. Especially 
for the circular scenario Recycled concrete, the uncertainties affect the results to such an extent that the conclusion 
might change. Thus, it is essential to generate thorough environmental assessments to eliminate uncertainties.

A limitation of this study is the service life. To limit the scope of the study, and since data on the service life of the 
circular solutions rarely exist, the service life was not included. Circular building elements/components entering a 
second life-cycle may have a shorter service life than conventional ones, when they are exposed to ageing factors such as 
climate. For example, Amorim Júnior et al. (2019) found that recycled concrete has a lower strength and a 40% shorter 
service life compared with conventional concrete. Thus, this might cause the GHG reductions to be less substantial and 
is a highly relevant aspect to consider in future research.

Another limitation is the choice of a single environmental indicator, GHG emissions. For some circular scenarios, e.g. 
Recycled concrete, the main environmental impact could be in other indicators such as resource depletion. Thus, the 
true environmental potential might only be revealed through a more comprehensive LCA considering all indicators, 
which would be highly relevant to consider in future research.

Other aspects, which could affect the reductions obtained through circular economy, include wastage rates, 
transportation distances, system boundaries, and choices of LCA database and software. The influence of wastage rates 
and transportation distances was briefly assessed in this study; however, future research might benefit from assessing 
the influence of the system boundaries and the choice of LCA database and software as these might prove to affect the 
results considerably (Emami et al. 2019).

It is important to consider the potentials of implementing circular solutions at a national level. This study provides a 
preliminary screening of the national reductions in GHG emissions, and these potential reductions should be assessed 
more thoroughly. Furthermore, it is essential to consider the consequences of introducing circular economy widely, 
as a complete implementation of circular economy can possibly alter the market dynamics and ultimately change the 
environmental benefits (Nußholz et al. 2019a; Zink & Geyer 2017). Thus, it is essential to consider market dynamics and 
the consequences of introducing circular economy at industry level (Nußholz et al. 2019a).

5. Conclusions
The greenhouse gas (GHG) profiles of five circular and three conventional building components/elements were 
quantified and compared in order to understand the GHG reductions that can be achieved if circular solutions are 
implemented. The study found that four of five circular scenarios give a considerable reduction in GHG emissions when 
compared with the conventional scenario. This conclusion is found to be robust towards the uncertainties of the model. 
The study finds that one circular scenario, Recycled concrete, may pose an additional environmental load compared 
with the conventional scenario. This highlights the need for standardised environmental data on conventional and 
circular building elements/components as decisions whether, for example, aggregates form crushed concrete should 
be used in building elements or as road filling are becoming increasingly important.

It is clear that considerable reductions in GHG emissions can be achieved through a circular business model, but 
logistical, economic, technological and regulatory barriers need to be overcome to support a complete transformation 
towards circular economy. Furthermore, the new use of recycled materials influences the market dynamics, the 
production processes and ultimately the GHG profiles, making these essential aspects to consider in future research to 
ensure a sustainable transformation.
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