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ARTICLE INFO ABSTRACT

Keywords: The problem of the explainability of AI decision-making has attracted considerable attention in recent years. In
Al diagnostics considering Al diagnostics we suggest that explainability should be explicated as ‘effective contestability’. Taking
Contestability a patient-centric approach we argue that patients should be able to contest the diagnoses of Al diagnostic sys-
Explainability tems, and that effective contestation of patient-relevant aspect of Al diagnoses requires the availability of dif-
;Zhh data ferent types of information about 1) the Al system’s use of data, 2) the system’s potential biases, 3) the system
Performance performance, and 4) the division of labour between the system and health care professionals. We justify and

define thirteen specific informational requirements that follows from ‘contestability’. We further show not only
that contestability is a weaker requirement than some of the proposed criteria of explainability, but also that it
does not introduce poorly grounded double standards for AI and health care professionals’ diagnostics, and does
not come at the cost of Al system performance. Finally, we briefly discuss whether the contestability require-

Organisation of diagnostic labour

ments introduced here are domain-specific.

1. Introduction

The development of machine learning/deep learning models holds
great potential for medical diagnosis and treatment planning. There is
great hype surrounding these developments, but also some substance to
the claims. Several Al diagnostic algorithms have already been granted
regulatory approval by the FDA [1], and the research is progressing fast
in other areas. The balance between hype and substance is illustrated by
a recent meta-analysis of Al diagnostic systems in the context of med-
ical imaging and histopathology which identified 20,530 unique papers
published between 2012-2019, but only 25 that directly compared the
performance of Al and health care professionals (HCPs) and contained
sufficient data to perform a quantitative meta-synthesis. The authors
found “the diagnostic performance of deep learning models to be
equivalent to that of health-care professionals” [2].

But machine learning/deep learning models are ‘black-boxes’ [3-9].
The decision-procedure is notoriously hard to interpret and explain in
detail. This poses an ethical and practical problem. Without the ability
to interpret or explain Al diagnostics, it becomes hard to determine if
differences in diagnoses reflect diagnostically relevant differences be-
tween patients or if they are instances of bias or diagnostic errors and
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over/under-diagnosis. A recent study found that a prediction algorithm
widely used in health care exhibited a racial bias that if remedied would
increase the percentage of black patients receiving extra care from
17.7-46.5 % [10].

In response to these problems, public committees and expert groups,
research institutions and private companies have in recent years issued
reports on and guidelines for responsible use of Al. A systematic review
of the corpus of such guidelines found 84 documents containing ethical
principles and guidelines for the use of Al [11]. The review identifies a
significant global convergence on the importance of, among others, the
transparency or explainability of Al decision-making. The review also
finds, however, a significant variance in the posited features of trans-
parency. Thus, for instance, transparency is posited to 1) serve very
different purposes, e.g. minimise harm, foster trust or democracy, and
2) concern many different properties of Al decision-making, e.g. data
use, level of automated decision, and access to source-code. Transpar-
ency may 3) be defined relative to different groups of stakeholders, e.g.
developers, users, oversight committees, and 4) it may vary from one
context to another. Transparency across all possible features may be
desirable but not ethically required. In any case, there is need of de-
termining a set of criteria for picking out the essential features of a
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minimal conception of transparency or explainability.

A requirement of transparency or explainability can also be found in
legislation. Article 13 and 14 of the EU General Data Protection
Regulation (GDPR) stipulate that if data subjects are profiled, they have
a right to “meaningful information about the logic involved” [12]. This
applies to the medical context as explained in the official EU guideline
[13]. While it is clear that this is a requirement of some form of ex-
plainability of AI decision-making, it is a rather vague requirement
[3,14,15].

We believe that the GDPR requirement of explainability should be
understood as a requirement of contestability. That is, Al decision-
making must be explainable to a degree that makes it possible for an
individual to contest the decision of the system. Interpreting Al ex-
plainability as substantiating a requirement of contestability, it be-
comes of cardinal importance to understand this requirement in greater
detail.

While the notion of Al contestability has attracted attention in re-
cent writings, the focus has first and foremost been ‘contestability by
design’, i.e. providing design principles for algorithmic systems that
will enable professionals/expert users to challenge the reasoning of
these systems in an ongoing process, and thus to enable a fruitful rea-
soning together of man and machine [16-19]. Among the suggested
design principles are 1) that the accuracy of system predictions are
improved through phased deployment on the basis of incentivised
feedback from expert users, 2) that the legibility of the systems is
heightened through mechanisms that allow expert users to “unpack
aggregate measures, tracing system decision all the way down”, and 3)
that the potential misuse and bias of Al systems is countered by pro-
viding mechanisms for recording expert users “disagreements with
system behaviour” [16]. The ‘contestability by design’ approach is an ex
ante approach focusing on system development and optimisation, i.e. it
concerns the process before an individual, e.g. a patient, is subjected to
an Al decision [15,18]. Consequently, it does not specify the contest-
ability right of an individual subjected to Al decision-making, including
the information requirements of such a right.

In this article, we explicate the practical implications of the idea
that the legal and ethical notion of explainability should be understood,
at least partly in terms of contestability. In the literature explainability
is often understood as the ability to answer ‘why’ questions [20].
Contesting a decision is asking a type of why question. The kinds of
‘why’ questions that different stakeholders are likely to pose may differ.
The ‘why’ questions raised by systemdevelopers, expert users and pa-
tients are, for instance, likely to be significantly different. We develop a
patient-centric, value-based framework for evaluating the contestability
of Al diagnostics and for identifying the explanatory elements necessary
for effective contestation ex post. In short, we approach the explain-
ability of AI diagnostics from the perspective of the patient. This ap-
proach allows us to define a minimal set of criteria of effective con-
testability. These criteria provide practical guidance in the health care
context and explicate the legal notion of transparency or explainability.

2. Explainability and effective contestability

Providing patients with an explanation of their Al generated diag-
nosis may be guided by different principles and interests. A maximal
interpretation of the requirement of explainability would require that
an explanation should spell out why the diagnosis was the scientifically
best possible explanation of the set of signs, symptoms and indicators. A
minimal interpretation would require a statement to the effect that the
diagnosis was arrived at by a machine on the basis of health data. But
which of these interpretations should guide explanation of AI driven
diagnostics?

The GDPR provides some — yet again rather vague — guidance on
this issue. Article 22 states that in those cases, where a data subject may
legitimately be subjected to automated decision-making including
profiling, the data controller should safeguard the data subject’s right
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“to express his or her point of view and to contest the decision” [12].
(Although the GDPR is specific to the EU, other legal systems also
contain mechanisms by which patients can contest health care deci-
sions). Interpreting the requirement of explainability along these lines,
it would imply that an explanation of a diagnosis must allow an in-
dividual to contest the diagnosis. The bare right to contest is, however,
empty. Just having the right to say ‘I disagree with this decision and
contest it’ does not help the data subject. Only a right to effective
contestation is worth having, i.e. a right to contest a decision through a
demand for an adequate explanation. What is needed here is a more
substantial notion of contestability in relation to AI driven diagnostics.
A notion that it is embedded in a wider ethical framework of individual
rights and interests in relation to diagnosis.

This approach to contestability is distinct from the ‘Causability’
approach recently developed by Holzinger et al. [21,22]. Holzinger
et al. define causability as a relation between an expert user and an Al
system where causability is “... the extent to which an explanation of a
statement to a user achieves a specified level of causal understanding
with effectiveness, efficiency and satisfaction in a specified context of
use.” (Holzinger et al. 2020). This explicitly requires a causal model of
the diagnostic reasoning, or in the case of machine learning a mapping
from the machine model to a causal model understandable by the
human expert. Our approach differs in two ways. We focus on con-
testability by the patient and on contestability without assuming or
defining any specific requirements for explainability in advance.

3. The four dimensions of effective contestability of AI diagnostics

There are at least four aspects of Al involvement in medical diag-
nosis that an individual might want to contest and which would be
covered by a right to contest. Below we 1) show the relevance of a right
to contest these four aspects of Al diagnosis, 2) suggest the ethical
reasons in terms of protecting important interests for granting in-
dividuals a right to contest each of these four aspects of Al diagnosis,
and 3) explicate the information that individuals must be provided in
order to exercise this right.

3.1. The use of personal health data in Al diagnostics

First, an individual should be able to contest the use of personal
health data in Al driven diagnostics.

An Al diagnostic model is applied to personal health data derived
from various different sources. Such personal health data may not only
be sensitive, it may also be outdated, one-sided, erroneous and in-
complete [23]. Consequently, Al diagnostics may not only lead to in-
vasions of privacy in the form of undesirable use of sensitive data, but
also to harms following the use of inaccurate personal health data. In
the future Al systems may also use non-health data, e.g. data about
social conditions, use of social media etc. [24]. This raises additional
concerns about data sources and quality and reliability.

Individuals have a right to privacy, and they have a right to protect
themselves against harm, and this implies a right to contest the use of
health and other personal data. Exercising this right to contest the use
of personal health and other data requires that individuals have access
to 1) information about the types of personal data used in Al diag-
nostics, e.g. clinical tests, tissue, scans etc. However, since both the
sensitivity and quality of data may be dependent on the source of the
data, individuals must also be provided with 2) information about these
sources e.g. Electronic Patient Record etc.

3.2. The potential bias of Al diagnostics

Second, an individual should be able to contest potential bias in Al
diagnostics.

Al diagnostics may be biased due to bias in the training data or in
the prior human categorisation of the training data [25-28]. Bias may
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Box 1
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The four dimensions of contestable Al and associated informational requirements

‘Tagging groups’
Tested for bias

Who tagged training data?

Alternatives Are alternatives considered?

Longevity When is decision reconsidered?

Contestability Contestability Contestability Contestability
— Object — Variables - Questions - Required Explanation
Data Types of data What types of personal data are used? 1) The decision D was made on the basis of data of type X, Y, Z about you
Data sources Where do your data come from? 2) The decision D was based on data from sources X, Y, Z
Bias Training data On which data was the Al trained? 3) The decision D was made by a system trained on existing data of type X, Y, Z

Was training data or Al system tested for bias? 5) The decision D was made by a system tested for bias of type X, Y, Z

Diagnostic Performa- Performance What is the performance of the Al system?
nce Performance How was the performance determined?
testing

Essential indicators What are key variables of Al decision-making? 8) The key input data resulting in decision D was X, Y, Z

To what degree are humans making the deci- 12) The decision D was wholly/partly made by health professionals X, Y, Z

Decision Al involvement To what degree is Al making the decision?
Human involve-
ment sion?
Responsibility Who is responsible for the decision?

4) The decision D made by a system trained on data tagged by X, Y, Z

6) The decision D was made by a system with a performance of X, Y, Z
7) The decision D was made by a system with a performance determined by tests X,
Y, Z

9) The alternatives to decision D are X, Y, Z with a probability of x, y, z (< d)

10) The decision D will be reconsidered if conditions X, Y, Z obtain
11) The decision D involved an Al system with respect to X, Y, Z

13) The objective/legal responsibility for decision D is held by X, Y, Z

lead to discrimination defined as unfair differential treatment if it
causes unwarranted differences in diagnostic patterns for particular
individuals or groups [29-31]. Prior to the clinical deployment of an Al
system potential bias in Al decision-making may be tested for by ap-
plying the Al model to relevantly different datasets. Prior testing in this
way requires a set list of known ‘triggers’ of discrimination, e.g. gender,
age, ethnicity etc. It may also be possible to test for bias in an individual
case, e.g. by using a suitably modified set of input data to investigate
whether the system provides the same result. Finally, indications of
biased system diagnostics may also come from ‘counterfactually’ testing
a system against previous or alternative systems or simply against HCP
diagnostics [32]. In both cases the testing cannot be exhaustive, but it
will clearly be a way of minimising the risk of harmful and dis-
criminatory bias.

Individuals have a right to protect themselves against discrimina-
tion, and therefore should be granted a right to contest bias in Al di-
agnostics. Exercising the right to contest bias requires that individuals
have access to information about 1) the character of the dataset on
which the model is built, 2) how the data were categorised by humans,
and 3) the character and level of testing the Al model has undergone. In
some cases where an initial general claim of potentially relevant bias
can be made out following disclosure of these three elements, an in-
dividual would also have a right to have bias investigated at the in-
dividual level.

3.3. The performance of Al diagnostics

Third, an individual should be able to contest the performance of Al
diagnostics.

A ‘locked’ AI model for diagnostics will have a set performance
when applied to a patient population which is qualitatively identical to
the original learning set. Although there are several examples of Al
models outperforming humans, [33-35] they are still not completely
accurate [2]. They will inevitably produce diagnostic errors and over/
under-diagnosis for particular individuals, which may ultimately be
harmful. The performance of an Al model - e.g. the number of true and
false positives, and the number of true and false negatives [36] — may
be determined through tests on sets of data of various size and com-
position, and this will influence the reliability of the estimated accuracy
of the model when it is applied in the routine clinical context. The
performance of a self-modifying Al system may change over time, as
may the risk of bias. However, the patient can be provided evidence
about performance and bias when the system was implemented for
routine clinical use and when diagnostic accuracy was last tested. Even

if self-modifying Al systems were to be introduced in routine clinical
use, this would therefore not change the basic contestability require-
ments.

The right to contest the performance is ultimately rooted in in-
dividuals’ right to protect themselves against harm. Exercising this right
to contest the performance of Al diagnostics requires 1) information
about the performance of the Al model, and 2) information about the
tests used to determine the performance. However, contesting a diag-
nosis simply on grounds of possible poor performance makes little sense
since it does very little towards identifying what could and should
reasonably have been considered. It does not enable individuals to
defend themselves against harm in an informed way. Informed con-
testation of a diagnosis minimally also requires 3) information about
the key indicators of the diagnosis, 4) alternatives to the suggested
diagnosis, and 5) information about the changes that will lead to a
reconsideration of the diagnosis.

3.4. The organisation and division of diagnostic labour

Fourth, an individual should be able to contest the organisation and
division of the diagnostic labour between HCPs and Al

The level of Al input into a diagnostic process may vary according to
the division of diagnostic labour between the system and the HCP. Al
may be used for initial screening prior to diagnosis, input directly into
the diagnostic process, make a diagnosis that only need to be ratified by
a HCP, be used as a ‘second opinion’, or in some other way. The or-
ganisation and division of diagnostic labour between AI and profes-
sionals may promote or impede the quality of the diagnostic processes,
and promote or impede the HCPs’ ability to make their own diagnostic
decisions. Evidence suggests that clinical decision support systems may
improve practitioner performance, [37,38] but also may lead to over-
reliance on the performance of these systems (automation bias) and
deskilling [39-44].

The right to contest the division and organisation of diagnostic la-
bour is also a matter of shielding individuals against harm. If the or-
ganisation and division of diagnostic labour can affect the quality of
diagnostics, individuals should have a right to contest this. Exercising
this right requires 1) information about the role of Al in the diagnostic
process, 2) information about the role of HCPs in the diagnostic process.
Challenging the organisation and division of diagnostic labour also
requires 3) information about the objective/legal responsibility for di-
agnostic procedures.

The four aspects of contestability in relation to Al diagnostics and
the associated information/explanation requirements are summarised
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in Box 1 above.
4. Implications of contestability
4.1. Contestability and the medical encounter

The right to contest and the correlative duty to provide the in-
formation needed for effective contestation does not imply that every
patient should be provided with all of the information needed for
contestability in all of the four dimensions. Most patients are probably
unlikely to want to contest the advice provided by the AI system to the
HCP, and will be satisfied with the explanation of their diagnosis pro-
vided by the HCP. The right to contest does, however, generate one
duty that is relevant whenever an Al system has provided advice, that is
the duty to inform that patient that Al advice has been provided and
used by the HCP.

Contestability does, however, create duties for developers of Al
systems and for organisations purchasing and using such systems.
Developers and user organisations have to be able to provide all the
elements of information outlined above if a patient contests the Al
advice. And user organisations have a further duty to train their em-
ployees to provide this information to patients and help them under-
stand whether there is a justifiable basis for their contestation of the Al
advice.

4.2. Contestability requirements apply to both AI and HCPs

Contestability requirements apply to Al and HCP diagnostics alike.
There seems to be no relevant difference between AI and HCP diag-
nostics that would justify double standards [45]. HCPs can also be
biased, make mistakes, or not work optimally with colleagues or Al
systems. And, HCPs are arguably also ‘black boxes’ [9]. The exact
reasoning of HCPs — every aspect of it — cannot be fully replicated,
scrutinized and simulated. Only key factors behind their diagnostics
may be reconstructed. A set of contestability requirements for HCP
diagnostics is therefore also needed.

The contestability requirements cannot, however, be the same. It
simply does not make sense to require information about the ‘training
data’ for a HCP. Contestability requirements must reflect how a diag-
nostic system — whether it be a HCP or an Al system - is trained and
process data in the diagnostic context. In short, contestability require-
ments must concern types of information that it makes sense to require
in relation to a specific diagnostic setup. Developing contestability re-
quirements for HCPs is beyond the scope of this paper.

4.3. Contestability requirements do not impede performance

A key concern in the literature on explainable Al is the potential
trade-off between diagnostic performance and explainability [3,9]. It
has been suggested that Al decision-making should be understood as
simulatability, i.e. it should be possible for a human “to take the input
data together with the parameters of the model and in reasonable time
step through every calculation required to produce a prediction” [3]. A
requirement of simulatability would imply that all sufficiently complex
Al models, including some of the best performing types of machine
learning such as deep learning models, are inexplainable. Hence, re-
quiring explainability as simulatability would be at the cost of perfor-
mance.

Contestability is a weaker requirement than simulatability.
Contestability as introduced here does not come at the cost of system
performance for any type of Al because it makes very weak demands
concerning the transparency of the actual AI decision-making proce-
dure - or in the GDPR parlance - the logics of the automated proces-
sing. It only requires the availability of information about the devel-
opment of the Al system, and about key indicators or variables that lead
to a certain diagnosis, cf. requirement 8 in Table 1.
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Satisfying the requirements of contestability do come at a cost.
There are and will be costs associated with collecting and making
available the types of information enabling effective contestation of Al
diagnostics, e.g. costs related to the training of personnel to collect and
provide this information (see above). However, these costs do not affect
system performance. They are costs that will be incurred by any at-
tempt of providing transparency in Al decision-making and diagnostics.

5. Contestability is domain-specific

The requirements of contestable Al suggested in this article has been
made with specific reference to a patients’ rights and interests in rela-
tion to biomedical diagnostics. The question is, however, if these re-
quirements are domain-specific. Do they only apply to the health care
context or do they also apply to Al decision-making in other contexts?
Do the same requirements apply, for instance, to Al supported decision-
making concerning liability or guilt in legal matters or to the use of Al
for making personal credit assessments in the financial domain?

There are important similarities between all contexts. The harm
caused by biased and/or erroneous Al decision-making may potentially
be significant on both individual and societal level. In health care it
may cause bodily harm, and in the legal and financial contexts it may
reduce personal liberty and economic freedom. In all contexts it may
undermine public trust in ‘system decisions’ and lead to growing in-
equality.

There are, however, also important differences between these con-
texts. An important difference is the level of conflicting interests. In
health care decision-making is and must be in the best interest of pa-
tients. In legal and financial matters decision-making must weigh in-
dividual interests against the interests of society and companies. In
contexts defined by conflicting interests the requirements of contest-
ability (explainability and transparency) could reasonably be argued to
be stronger than in other contexts. In consequence, the contestability
requirements introduced in this article could be argued to be a neces-
sary, but insufficient part of the set of contestability requirements for Al
decision-making in these contexts. Further discussion is warranted.

For present purposes we simply conclude that the requirements
introduced in this article provide a minimal, domain-specific and pa-
tient-centric set of conditions of contestability appropriate for the
health care context.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.artmed.2020.101901.
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