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 
Abstract—This paper proposes a multi-agent deep 
reinforcement learning-based approach for distribution 
system voltage regulation with high penetration of 
photovoltaics (PVs). The designed agents can learn the 
coordinated control strategies from historical data through 
the counter-training of local policy networks and centric 
critic networks. The learned strategies allow us to perform 
online coordinated control. Comparative results with other 
methods show the enhanced control capability of the 
proposed method under various conditions.   

Index Terms—Voltage regulation, multi-agent deep 
reinforcement learning, coordinated control, distribution system. 

I.  INTRODUCTION 

The increasing penetration of photovoltaics (PVs) in the 
distribution network (DN) may cause swing of voltages due to 
their rapid power variations. To solve this problem, various 
approaches have been developed. For the control strategies, the 
voltage control strategies can be divided into active power-
based and reactive power-based methods. Active power-based 
methods are suitable for voltage regulation of low voltage DN 
with high R/X ratio. Charging scheduling of battery storage 
systems [1] and power curtailment of PVs [2] are two main 
strategies. Active power curtailment of PV generations reduces 
the absorption capacity of DN for solar energy. By contrast, the 
charging/discharging control of battery energy systems is costly. 
On the other hand, reactive power-based strategies reduce the 
fluctuation of voltage by utilizing the voltage control ability of 
capacitor banks, static var compensator and PV inverters. As 
shown in [3-4], reactive power control is an effective and 
economic way for the voltage regulation. From the perspective 
of control frameworks, the voltage regulation strategies can be 
classified into three categories [5]: centralized [6], local control 
without communications [7] and decentralized implementation 
with communications [8-9]. The centralized control strategies 
require fast and reliable communication links, which is 
challenging for practical distribution systems. The local control 
approaches can make decisions based on local observations, but 
the capability of resources may not be fully utilized due to the 
lack of cooperation between agents. The decentralized and 
coordinated control methods can achieve cooperation control 
using local information with limited communication links [9]. 

In recent years, with the development of artificial 
intelligence, the multi-agent deep reinforcement learning 
(MADRL) algorithm is becoming popular for various 
applications. In the MADRL algorithm, control units are  

                                                           
 

 
Fig. 1. The architecture of the proposed coordinated PV control approach. 
modeled as intelligent agents with different control strategies. 
The agents can develop the optimal control strategies through 
the interactions with the environment and learn co-operation by 
modeling policies of other agents during offline training. When 
the training is done, the agents can provide decisions that have 
strong adaptability for the unknown dynamic in real-time.  

This paper proposes to extend the MADRL based approach 
for the coordinated control of PV inverters. It has several 
benefits: 1) only local information is needed and the 
deployment of costly communication devices is not required. 
This distinguishes the widely used machine learning-based 
centralized control framework that is computational expensive; 
2) the proposed MADRL based method is able to extract an 
optimal coordinated control strategy from historical data. This 
information embedded with past operational experience can 
generalize to newly encountered situations without resolving 
the optimization problem. The decision procedure is similar to 
recalling the past control experience from memory, which 
allows it to be implemented online; 3) Compared with [10], the 
attention model is integrated with MADDPG algorithm in this 
paper to enhance its scalability for more control subjects; 
Furthermore, this paper addresses the distribution system 
voltage regulation with high penetration of PVs instead of the 
transmission system voltage control. 

II.  PROPOSED CONTROL METHODOLOGY 

In this section, the voltage regulation problem in DN is first 
formulated as Markov games. This is solved by the proposed 
MADDPG algorithm with attention model.  
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A.  Formulation of Markov Games 

The architecture of the proposed MADRL based approach 
for voltage regulation is shown in Fig. 1. In the proposed control 
framework, the DN is the environment and each PV inverter 
serves as an agent. The cooperative control of PV inverters can 
be modeled as Markov games for N agents, including 

• The state set: i
t ts S  is the local information obtained by 

agent i at time step t. 
tS  denotes the state of all agents at time 

step t. In this context, i
ts  consists of 

,
i

L tP , 
,

i
L tQ  and

,
i

PV tP , 

which represent the active and reactive power of load demand 
of the node that the agent is connected to, and the active power 
injection of PV, respectively. 

• The action set: i
t ta A  denotes the action of agent i at time 

step t. 
tA  represents the actions of all agents at time step t. In 

this context, the action is 
,

i
PV tQ , which represents the reactive 

power of the corresponding PV inverter. 
•The reward function: i

t tr r  denotes the immediate reward 

for agent i at time step t. tr  is the set of rewards for all agents. 

In this paper, the reward is defined as: 
1

=- | |
N

i
t j

j

r V


 , where 

jV  and N are the voltage deviation of bus j and the number of 

buses, respectively. 

 At each time-step, every agent makes an action i
ta  based 

on the local observation i
ts  and obtains an immediate reward 

i
tr , which relies on the global state and actions of other agents. 

When all the agents complete the actions, the system transfers 
to the next state, i.e., the Markov games. The objective of each 

agent is to learn a coordinated policy that maps i
ts  to i

ta so as 

to maximize the obtained reward. 

B.  MADDPG with Attention Model for Markov Games 

To achieve the coordinated policy, an actor-critic based 
MADRL approach is proposed. Specifically, each agent is 
composed of an actor i  and a critic 

iQ . The actor that maps 
i
ts  to i

ta  is the policy function. The critic that maps ( , )t tS A  to 

a scalar is the judgment of the action made by this actor based 
on the global state. The actor and critic of each agent are trained 
against each other such that the critic can provide better 
evaluation and the actor can produce reactive power with 
reduced voltage deviation. 
1) Actor:  
In this paper, the neural network (NN) parameterized by i  is 
used to approximate the policy function to deal with the system 
dynamics. The parameters i  is optimized according to the 
gradient of the following performance function [11]:  

1
, ~ ( )

( ) [ ( | ) ( , ,..., ) | ]i i ii it t t t i t

i i N
i S A D i t t i t t ta a s

J E a s Q S a a 


 
 


     (1) 

2) Critic with Attention Model 

In the MADDPG algorithm, the states and actions of all 
agents are treated equally by the critic. This leads to two 
disadvantages: the spatial properties between different agents 

are ignored and the input of the critic grows linearly with the 
agent number, which may cause a performance degradation 
when applied to a large system with a large number of control 
objects. To address that, the attention critic is developed. It 
allows intelligently learning to attend to specific information 
that is most relevant to the rewards. This mechanism enhances 
the scalability of original MADDPG algorithm to deal with 
scenarios with more control objects. ( , )i

i t tQ S A , the critic of 

agent i, is a function of all agents’ states and actions, and is 
expressed as follows [12]: 
                          ( , ) ( ( , ), )i i i i

i t t i i t t tQ S A g f s a e                           (2) 

where ( )if  is the embedding function of agent i composed of a 

one-layer NN; ( )ig   is a two-layer NN used to approximate the 

critic function; i
te  is the weighted sum of the contribution of all 

agents except for the agent i:  
                                      i j j

t t t
j i

e u


                                     (3) 

                                ( , )j T j j
t j t tu V f s a                                   (4) 

exp(( ) ( , ))j j T T i i
t t k q i t tu W W f s a                       (5) 

where j
t  is the attention weight that agent i pays for agent j at 

time step t; j
tu  is the embedding of j’s state and action; TV is a 

matrix used for linear transformation; ( )jf   is the embedding 

function of agent j; the attention weight j
t is derived by 

comparing the embedding value of agent i and agent j; 
kW and 

tW are transition matrices. The parameters of the attention 

model (parameters in equation (3-5)) and of the critic function 
for agent i are represented by iQ . They will be optimized in a 
supervised fashion [11].                                                                              

3) Target Networks and Replay Buffer 

Target actor networks parameterized by i  and target critic 
networks parameterized by iQ  are introduced to stabilize the 
training process. The replay buffer mechanism is also used to 
break the correlation between the data [8]. The parameters of 
NN of agent i can be denoted as  , , ,i i i iQ Q      . 

4) Implementation of the Proposed Method 
The implementation of the proposed approach can be divided 
into two stages: centralized offline training and decentralized 
online execution. In the training stage, each agent is composed 
of actor networks and critic networks. The actor networks take 

local information 
i
ts  as input while the input of critic networks 

is augmented with state and action of other agents. This helps 
the agent model the decision procedure of other agents and 
contributes to the formulation of a cooperative control strategy. 
Because the training is done in off-line simulations, the 
information exchange can be achieved without specific 
communications. During the training process, the actor and the 
critic are trained against each other to learn an optimal control 
strategy. For detailed parameter optimization procedure, please 
refer to [11]. When the training is completed, the parameters of 
networks are fixed and only the actor is kept. Then, the actor of 
each agent can make decisions in real-time based on local 
observations. Since the augmented information is only used by  

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on June 18,2020 at 10:29:00 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3000652, IEEE
Transactions on Power Systems

 3

TABLE Ⅰ Real-time decentralized control algorithm 
Algorithm Decentralized real-time reactive power scheduling
1:  Load the parameters of actor network of each agent i  
2:  for time step t=1,2,…T do 
3:        for agent i = 1,…, N do  

4:           obtain the local observation i
ts  

5:           calculate action i
ta  according to (s | )ii i

t i ta    

6:           output action of agent i i
ta  

9:         end for  
10:       concatenate actions of all agents 1( ,..., )N

t t tA a a  

11: end for     
12: Return: 

1 : TA A  

the critic during training, the agents can exhibit cooperative 
behaviors and provide decisions that are robust to other agents’ 
decisions using local information. The procedures of the real-
time decentralized control algorithm are shown in Table Ⅰ. 

III.  CASE STUDY 

A. Simulation Setup 

Simulations are carried out on the IEEE 33-bus system to 
verify the effectiveness of the proposed method. The system 
configuration is shown in Fig. 1. One-year PV output data from 
Xiaojin, a county in the Sichuan province of China is scaled and 
used for validation. The data are divided into training and test 
sets. The training set is used to train the agents and learn a 
cooperative control strategy based on local observations while 
the test set is applied to investigate the performance of the 
mastered control strategies. The simulation setup is shown in 
Table Ⅱ. The number of agents is set as 9, each corresponding 
to a PV inverter. Every agent has two actor networks and two 
critic networks. All the networks share the same structure. The 
numbers of hidden layers are 100 and 100, respectively. The 
parameters setting of the proposed method are shown in Table 
Ⅲ. Several methods from the literature are compared to 
demonstrate the achieved benefits from the proposed method, 
including   the   traditional   droop   control   method   and   the  

TABLE Ⅱ Simulation setup 
Maximum voltage deviation 5% 
Rated power of PV (MW) 1.5  

Apparent power of PV (MVA) 1.575 
Table Ⅲ Parameter settings of the proposed method 

Parameters Values 
Batch size for updating NN 32 

Replay buffer size 48000 
Discount factor  0 

Soft update coefficient 0.001 
Learning rate for actor network 0.001 
Learning rate for critic network 0.002 

TABLE Ⅳ Voltage deviation of various methods on test data 
Method Average Max 

rise  
Max 
drop 

Calculation 
time (s) 

Original 1.68% 7.42% 3.66% - 
Droop  0.46% 3.48% 1.47% 0.0002 

MADDPG 0.16% 1.19% 0.87% 0.0012 
Proposed 0.12% 1.01% 0.75% 0.0012 

Centralized 0.04% 0.62% 0.60% 0.67 

 
Fig. 2. The change of the reward during the training procedure 

MADDPG-based method. It is worth noting that it is the first 
time the MADDPG-based method is extended for distribution 
system voltage control using PV inverters. Our proposed 
method further improves that with the attention strategy. 

B. Training Process 

The proposed approach is trained for 14000 episodes to learn 
the optimal voltage regulation strategy. An episode includes 24 
time-steps, each corresponding to an hour. The cumulative 
reward is the summation of all voltage deviations during an 
episode. The change of reward during the training process is 
shown in Fig. 2. Before 2000 episodes, the agent actions are 
randomly chosen to explore the environment and accumulate 
experience. After that, agents begin to learn, during which the 
parameters are optimized to maximize the cumulative reward. 
It can be observed that the cumulative reward keeps increasing 
and finally converges at about 12000 episodes.  

C. Performance Evaluation 

  To evaluate the performance of the control strategy learned 
from training data, comparative tests are carried out on test sets, 
where 30 days of data are used. The average, maximum rise and 
drop of the voltage deviations, and computing times for various 
control strategies are shown in Table Ⅳ. The original method 
means that the PV inverters are not controlled. The droop 
control adopts the QV control strategy. The centralized method 
assumes perfect communication conditions and the load 
demand and active power generations of PV are known on time. 
This strategy provides the theoretical limit of the voltage 
regulation problem. It can be observed that the MADDPG 
based control strategy achieves better performance than the 
droop control method with smaller fluctuations on the voltage 
profile. Both methods use local information for the decision, 
however, the MADDPG based method learns the coordinated 
control strategy by modeling the decision   procedure   of   other   
agents   during   training, thus achieves better performance. 
Compared with the MADDPG-based method, its enhanced 
version with attention strategy helps the critic of each agent 
attend to information that is most relevant to the reward during 
training. Thus, it can further reduce voltage deviation when the 
number of agents increases. 
    The average optimization accuracy is defined to evaluate the 
calculation accuracy of the proposed approach:                                        

=| | 100%pro ori

cen ori

V V
ACC

V V

 


 
                           (6)  

where ACC indicates the optimality of the proposed approach 
as compared to the theoretical limit; 

proV , cenV  and oriV  

are the average voltage deviations of the proposed method, the 
centralized method and the original value, respectively. The 
proposed method can reach 95.1% optimality using only local 
information, demonstrating its effectiveness. 
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Fig. 3. Profiles of PV generation and load demand. 

 
Fig. 4. The voltage of each node before and after optimization when t=1:00 

PM. 

 
Fig. 5. Voltage change of node 17 before and after optimization. 

To further elaborate the performances of each method, a sunny 
day in the test data is selected. The PV and load profiles are 
shown in Fig. 3. The objective of this test is to demonstrate the 
TABLE Ⅴ Voltage deviation of various methods on test data 

Method Average Max 
rise  

Max 
drop 

Calculation 
time (s) 

Original 1.89% 7.92% 4.33% - 
Droop  1.26% 3.79% 4.67% 0.0002 

MADDPG 0.58% 1.63% 3.85% 0.0012 
Proposed 0.53% 1.58% 3.76% 0.0012 

Centralized 0.42% 1.52% 3.61% 1.32 
capability of each method in mitigating the over-voltage risk. 
Comparative results of the voltages at each node before and 

after reactive power control when t=1:00 PM are displayed in 
Fig. 4. It can be seen that if there are no controls for the PV 
inverters, there is a concern of the over-voltage problem, see 
buses 9-18. With the traditional droop control method, that 
problem can be suppressed. However, compared with our 
proposed MADDPG method, it has larger voltage fluctuations. 
The proposed enhancement of MADDPG with attention model 
further improves the voltage profile. The voltage fluctuations of 
node 17 across a whole day before and after optimization are 
shown in Fig. 5. The outcomes are consistent with those 
observed from Fig. 4, demonstrating an improved performance 
of the proposed method over other alternatives. 

D. Test on IEEE 123-bus System 

To verify the generality of the proposed approach, 
simulations are carried out on the IEEE 123-bus system [8]. 
There are 10 installed PV in total, which are located in nodes 4, 
12, 24, 31, 42, 52, 71, 82, 95 and 106, respectively. The 
performances for various methods are shown in Table Ⅴ. The 
results demonstrate that the proposed approach can effectively 
reduce the voltage deviation of DN. This is consistent with the 
conclusions on the IEEE 33-bus system. 

IV.  CONCLUSIONS AND FUTURE WORKS 

This paper proposes a MADRL based approach with an 
attention model for distribution system voltage regulation 
leveraging PV inverters. The proposed method can achieve 
coordinated control of PV inverters using only local 
information, thus reduce the cost of communication links. 
Simulation results on the IEEE 33-bus system demonstrate that 
the learned coordinated control strategies help better utilize the 
capability of PV resources and achieve a better control 
performance. The integration of the attention model further 
enhances the proposed method to deal with an increased 
number of control subjects. The proposed method is general and 
can be easily extended to the PV, wind or other types of DGs 
integrated systems. Future works will be extending the 
MADRL based approach for the voltage regulation in 
unbalance low voltage distribution networks with various types 
of control devices.  
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