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 

Abstract—Numerous emerging oscillatory stability issues have 

recently arisen as renewable energy sources are integrated into 

the power system. Some of the existing literature attempts to 

explain these issues through corresponding simplification, which 

usually omits the influence of the nonlinear discontinuous 

elements in the system. Hence, the obtained results are incomplete. 

To fill in this gap, this paper proposes a stability analysis method 

based on the describing function (DF) method to explore the 

influence of nonlinear discontinuous elements in the system. 

Without loss of generality, taking the three-phase grid-connected 

photovoltaic (PV) generator as the research object, the 

perturbation and observation (P&O)-based power control, which 

is a typical nonlinear discontinuous element, was carefully studied. 

First, the complete mathematical model of the three-phase 

grid-connected PV generator was established, including the 

outermost P&O-based power control. Then, according to the DF 

method, the stability of the PV generator was analyzed, and the 

related influence factors were studied in detail. It was found that 

the nonlinear discontinuous P&O-based power control has 

substantial influence on the stability of the PV generator and can 

result in the oscillation. At the same time, the DF method and the 

conventional method were compared, which shows that the 

proposed DF method can enhance the accuracy of the stability 

assessment. Especially regarding critical stability, the oscillation 

magnitude and frequency can be calculated accurately. All the 

theoretical analyses were verified by the real-time 

hardware-in-loop (HIL) tests.  

 
Index Terms—PV generators, nonlinearity, stability analysis, 

describing function method. 

I. INTRODUCTION 

N recent years, with the increase in the penetration of 

renewable energy sources (RESs), more and more accidents 

such as the sub- or super-synchronous oscillations at a 

centralized wind farm [1]-[4], low-frequency oscillations 

caused by distributed photovoltaic (PV) generators [5]-[7], and 

high-frequency harmonics in islanded microgrids [8]-[9] are 

reported when RESs are integrated into the power system. 

These stability issues will cause the breakdown of RESs and 

endanger the normal operation of the power system, which will 

greatly influence the efficient and reliable utilization of RESs. 
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Therefore, the stability analysis of RESs integrated into the 

power system has attracted significant attention. 

To propose better solutions, the mechanism of the instability 

is extensively researched when RESs are integrated into the 

power system. The analysis methods and the possible main 

influence factors from the existing literature can be 

summarized briefly, as shown in Fig. 1. Through the 

corresponding simplification, the RES generators can be 

processed into a purely linear system. Then, according to the 

mature frequency-domain and time-domain methods, the 

related influence factors can be analyzed. Due to the different 

simplifications and different assumptions, the obtained results 

are varied, and there is no definitive consensus that can explain 

the instability phenomena well. Hence, the exploration of the 

mechanism of the instability when the RESs are integrated into 

the power system is still an open problem.  
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Fig.1. Brief summary for the existing literature. 

The centralized large-scale wind farms and PV plants are 

prone to generate oscillatory problems when they are connected 

to a weak grid. Some scholars think that the phase-locked loop 

(PLL) used for the synchronization may cause the instability 

issues under the circumstance of a weak grid [10]-[16]. In these 

papers: a) The filters selected are the simple first-order L-type 

filters, which avoid the possible influence of the high-order 

filters; and b) The dynamics of the RESs, such as PV panels and 

the outermost power control, are completely omitted.  

Since the PLL is inherently nonlinear, the conventional 

linear PLL models cannot capture its low-frequency dynamics 

well. Hence, a quasi-static large-signal model of the PLL is 

proposed to analyze its large-signal stability in [10]. The 

proposed model can accurately predict that unstable 

low-frequency (approximately 5-10 Hz) nonlinear oscillations 

will occur if a stiff grid changes into a weak grid. However, the 

established complicated nonlinear model is not suitable for the 

control system synthesis, especially for the multi-machine 

system. To accommodate more comprehensive applications, 

the small-signal impedance of grid-connected inverters is 

established based on the dq synchronous reference frame in 

[11]. The q–q channel impedance behaves as a negative 
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incremental resistor, which will cause instability when 

inverters are connected to the weak grid. Inspired by this 

finding, based on the impedance matching criteria, an 

impedance controller is proposed in [12] to reshape the q-q 

impedance into a positive resistance in the low-frequency band. 

Then, the stable margin of the grid-connected inverters can be 

enhanced. Based on the impedance analysis, the sub- and 

super-synchronous interactions between STATCOMs and 

weak ac/dc transmissions with series compensations are studied 

in [13], and the study concludes that the risk of oscillation could 

be decreased by increasing the strength of the ac grid. To 

improve the accuracy of the stability analysis, the dynamics of 

the capacitor on the dc side are modeled in [14]-[16]. That is, 

the dc side is no longer viewed as an ideal dc voltage source. In 

[14], the detailed model of the grid-connected converter is 

established, including the PLL dynamics, ac side dynamics and 

dc side dynamics. Through the root locus analysis, the unstable 

mechanism in the very weak grid condition is explained, and a 

robust vector control method is proposed. In some practical 

applications, the grid-connected converters need to provide the 

ac bus voltage support for the weak grid. The detailed model of 

this kind of grid-connected converter is established in [15]. 

Based on the model, the influence of grid strengths, PLL 

bandwidths and operation points on the system stability are 

carefully analyzed through the root locus analysis. Furthermore, 

the influence of the ac bus voltage control on the dc bus voltage 

stability is studied in [16], in which some physical insights such 

as damping and restoring components are given based on the 

state-space model. The presented results show that the PLL and 

ac-bus voltage control can impact active power, which further 

impacts the stability of the dc-bus voltage control.  

In addition, some scholars also think that the high-order 

filters, namely, LCL filters account for the instability issues 

[17]-[22]. In these papers: a) The grid is stiff, and the dynamics 

of PLL can be ignored; and b) The dynamics of the RESs such 

as PV panels and the outermost power control are completely 

omitted as well. 

Tang et al. [17] investigate the inherent damping 

characteristics of LCL filters for grid-connected converters. 

When the converter-side currents are used as feedback signals, 

there would be an inherent damping term embedded in the 

control loop, which can enhance the stability of the system. In 

[18], the influence of LCL filters is further studied with 

consideration of the time delay of the digital controller, 

showing that this influence factor easily results in the current 

regulation being susceptible to weak grid conditions. Then, an 

improved capacitor voltage feedforward control with full delay 

compensation is proposed to overcome the influence of the grid 

impedance and to provide a high-harmonic rejection capability 

without using additional harmonic compensators. To suppress 

the resonance of LCL filters, some active damping methods are 

used to attenuate the resonant behavior effectively. The effects 

of active damping on the output impedance of grid-connected 

converters are analyzed in [19]. Based on the impedance 

analysis, the improper active damping is shown to lead to 

harmonic instability. In [20], a systematic methodology for the 

design and tuning of the current and active damping controllers 

in LCL grid-connected converters is proposed through the 

combination of the impedance and root-locus analysis. The 

whole design objective is to minimize the current loop 

dominant time constant, which could minimize harmonic 

interactions around the resonance frequency. Taking both the 

influence of LCL filters and the PLL into consideration, Zhou et 

al. [21] propose that when the LCL-type grid-connected 

converters are attached to the weak grid, current control 

interacts with PLL via the voltage of the point of common 

coupling. Consequently, the PLL dynamic might deteriorate the 

grid current control and even result in system instability. Then, 

they suggest that through optimizing parameters, the negative 

effect of the PLL on current control can be reduced effectively. 

Considering the dynamics of PV panels, the stability of 

LCL-filtered  PV generators is analyzed in [22]. It is revealed 

that the grid impedance has different influence on the system 

high-frequency and low-frequency stability. 

In the recent reports, power oscillation often occurs among 

the large-scale distributed RES generators [23]-[26], where the 

number of RES generators obviously influences the oscillation 

modes. In [23], a unified dq-frame impedance network model is 

presented, through which different converters and traditional 

generators/HVDCs can all be incorporated to form a 

frequency-domain model. Based on the impedance analysis, the 

stability of the large system containing multiple converters is 

studied, and the authors conclude that the increasing number of 

RES generators will result in lower frequency and higher 

magnitude of the oscillations. The impedance analysis is based 

mainly on the magnitude of the impedance to evaluate the 

stability of the system. From the point of the phase of the 

impedance, the passivity-based method is another way to 

analyze the system stability. Compared to the impedance 

analysis that needs both the source and load information, the 

passivity-based method is more self-disciplined. If the 

components no matter the source or the load meet the passivity, 

both their parallel and feedback connection meet the passivity 

as well. That is, the corresponding stability can be ensured. 

Hence, the passivity-based method is more suitable for analysis 

with multiple converters. Harnefors et al. [24] present an 

overview of the passivity-based stability assessment for the 

grid-connected voltage-source converters based on the input 

admittance of the converters. In [25], based on the 

frequency-domain passivity theory, the harmonic stability of 

multi-paralleled LCL-type grid-connected converters is studied, 

and a corresponding damping injection strategy is designed to 

enhance the stability of the multi-machine system. In [26], the 

damping injection strategy in [25] is modified, and an extra 

series LC-filtered active damper is connected in shunt with the 

grid-connected converter to facilitate the passivity 

enhancement.  

The power electronic devices inevitably have nonlinear 

elements. To study their influence, some advanced modeling 

methods have been developed [27]-[31]. In [27], the accuracy 

of the state-space average model is found to be questionable 

when the control-loop bandwidth is close to the switching 

frequency. For more accurate results, the harmonic 

linearization approach is used to establish the models of buck 



2168-6777 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2019.2939379, IEEE Journal
of Emerging and Selected Topics in Power Electronics

 3 

and multiphase buck converters. Then, their high-frequency 

behavior, especially the sideband effect, can be investigated 

accurately. For describing the switching behavior of diodes, 

Sun et al. [28] adopt the harmonic linearization modeling 

method to calculate the small-signal input impedance of 

line-frequency rectifiers. In [29], this method is extended to the 

multi-pulse rectifiers, where the modeling processes are 

introduced in detail. Furthermore, for the three-phase 

voltage-source converters, the decoupled positive-sequence 

and negative-sequence impedances are established directly in 

the phase domain through the harmonic linearization approach 

[30]. To overcome the time-varying characteristics of the 

single-phase system, the 2-D source and load impedances are 

determined through the dynamic phasor approach in [31]. 

These modeling methods can only deal with the situation where 

the relationship between the input signals and output signals of 

the nonlinear elements is not influenced by the amplitude of 

input signals, namely, 𝑌̂(𝑗𝜔) = 𝐺(𝑗𝜔) ∙ 𝑋̂(𝑗𝜔) . If the 

relationship between the input signals and output signals of the 

nonlinear elements is related to the amplitude of input signals, 

namely,𝑌̂(𝑗𝜔) = 𝐺(𝑗𝜔, |𝑋̂(𝑗𝜔)|) ∙ 𝑋̂(𝑗𝜔), then these modeling 

methods are not proper anymore. 

In conclusion, the theoretical basis of the aforementioned 

methods relies mainly on the purely linear system theory, 

which will meet several challenges. First, through the 

small-signal modeling, the nonlinear but continuous elements 

can be considered. However, some nonlinear and discontinuous 

elements that are sensitive to the amplitude of the input signals, 

such as the widely used perturbation and observation 

(P&O)-based power control are completely ignored, because 

the relationship between the input signals and output signals is 

related to the amplitude. The whole system cannot be 

transformed into a purely linear system, so the well-developed 

analysis methods such as root locus analysis, Bode diagram 

analysis, etc., are not applicable anymore. Therefore, the 

accuracy of results obtained through these methods is 

challenged. 

Second, for the purely linear system, the requirement of 

critical stability, i.e., persistent oscillation, is very strict. From 

the point of the Nyquist criterion, the Nyquist curve of the 

system must cross the point (-1, j0), which is the unique point in 

the whole s plane. Therefore, using linear system theory to 

analyze power oscillation instability issues is not suitable, since 

the strict oscillation criterion is difficult to find. Although the 

stable margin can be used to perfect the theory [32]-[35], some 

limitations still exist: 1) The stable margin is suitable only for 

the minimum phase system. For the non-minimum phase 

system, the stable margin is not suitable anymore; 2) The 

information about the oscillation is insufficient. Especially, the 

oscillation magnitude cannot be obtained, which results in the 

inability to conduct some quantitative analyses; and 3) Using 

the stable margin to assess the stability of the system, especially 

for the critical stability, is strongly dependent on the posteriori 

information, which can hardly provide prediction. That is, for a 

system, the stable margin is given, but it is difficult to say that 

the system is stable/critically stable or not, which must be 

further verified by the simulations or experiments. 

To overcome the above disadvantages of the conventional 

stability analysis methods, this paper adopts the describing 

function (DF) method to analyze the stability of grid-connected 

RES generators with consideration of the complete control 

links. Compared to the small-signal modeling that is the 

time-domain approximation, the DF method is the 

frequency-domain approximation, and the nonlinear 

discontinuous elements can be considered. Without loss of 

generality, the three-phase grid-connected PV generator is 

chosen as the research object, for which the related research 

methods can be generalized to wind turbines and other RES 

generators. First, the complete mathematical model of the PV 

generator is established, which includes the nonlinear 

discontinuous P&O-based power control and the dynamics of 

the PV panel itself. Then, an overview of the DF method is 

presented, and the stability analysis is conducted. Being 

different from the conventional stability analysis method, the 

proposed DF method-based stability analysis includes the 

complete information for the system. Then, the critically stable 

criterion can be very accurate, and the oscillation can be 

analyzed quantitatively, where the oscillation frequency and 

magnitude can be calculated accurately. On this basis, the 

related influence factors including the operation points, filters, 

control bandwidth, etc., are carefully analyzed. It is found that 

the nonlinear discontinuous P&O-based power control has 

great influence on the stability of the PV generator and can 

result in the oscillation even under the stiff-grid condition. At 

the same time, the DF method and the conventional method are 

compared, which shows that the proposed DF method can 

enhance the accuracy of the stability assessment effectively. All 

the theoretical analyses are verified by the real-time HIL tests 

mainly composed of the RTLAB and TMS320F28335 DSPs. 

The remainder of this paper is organized as follows. In 

Section Ⅱ , the detailed model of the three-phase 

grid-connected PV generator is derived. In Section Ⅲ, the DF 

method is introduced, and the stability analysis is conducted. 

The validity of the theoretical analyses is demonstrated through 

HIL tests in Section Ⅳ. Finally, the conclusions are drawn in 

Section Ⅴ. 

II. MODELING OF THREE-PHASE GRID-CONNECTED PV 

GENERATORS 

In this section, the detailed and complete mathematical 

model of the three-phase grid-connected PV generator is 

derived. As shown in Fig. 2(a), the output current and voltage 

of the PV panel are 𝑖𝑝𝑣  and 𝑣𝑝𝑣 ,  respectively, and the 

capacitance of the capacitor across the PV panel is C. The PV 

generator is connected to the stiff grid through the L-type filter 

L, and its output currents are 𝑖𝑎,𝑏,𝑐. The terminal voltages of the 

stiff grid are  𝑣𝑎,𝑏,𝑐 .   

The control strategy for the PV generator is the typical 

P&O-based power control. First, the outermost loop is the 

power loop, which controls the output power of the PV 

generator and generates reference voltage 𝑣𝑝𝑣
𝑟𝑒𝑓

 for the middle 

loop. Due to the intermittency and nonlinearity of the PV 
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generator, the P&O-based power control is widely applied. The 

new grid code regulations require that the PV generators must 

inject a constant power into the grid to provide reserve service 

and avoid adverse effects of PV generators with high 

penetration such as overloading the grid [36]-[37]. That is, if 

𝑃𝑟𝑒𝑓  is greater than the maximum power of the PV generator, 

the PV generator outputs the maximum power. If the 𝑃𝑟𝑒𝑓  is 

less than the maximum power of the PV generator, the PV 

generator should output the power 𝑃𝑟𝑒𝑓 . Hence, the studied 

P&O-based power control has the function of constant power 

generation. The detailed flow chart is shown in Fig. 2(b), where 

the perturbation size is ε, and the power control cycle is 𝑇𝑝. 
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Fig. 2. Topology and control of the studied grid-connected PV generator. (a) 

Topology and control structure. (b) Flow chart of the P&O-based power 

control. 

Then, the middle loop is the proportional-integral (PI)-based 

voltage loop, which makes the output voltage of the PV panel 

𝑣𝑝𝑣 track the reference voltage 𝑣𝑝𝑣
𝑟𝑒𝑓

 accurately and generates 

reference current 𝑖𝑑
𝑟𝑒𝑓

for the inner loop. Finally, the innermost 

loop is the PI-based current loop, which regulates the output 

currents based on the dq synchronous reference frame. The d 

axis of the synchronous reference frame is orientated to the stiff 

grid voltage vector. To realize the unity power factor, the 

reference current 𝑖𝑞
𝑟𝑒𝑓

 is set as zero with consideration of the 

direction of the synchronous reference frame. 

Through the above narration, several characteristics of the 

studied PV generator can be summarized as follows: 

(1) The influence of PLL can be avoided because the grid is 

stiff, and the dynamics of PLL are not influenced by the output 

of the PV generator. Then, there is no interaction between the 

PLL and the voltage or current control loop.  

(2) The high-order filters are out of consideration since the 

L-type filter is employed. 

(3) The nonlinear discontinuous P&O-based power control 

and the PV characteristics would be considered carefully, 

which are hardly researched by the existing literature and are 

the main points of this paper. The research scope of the 

proposed method and the conventional method are identified in 

Fig. 2(a). 

According to Fig. 2(a) and the modeling method in [38], the 

model of the grid-connected PV generator can be derived as  

{
 
 

 
 𝐿

𝑑𝑖𝑑

𝑑𝑡
= 𝜔𝐿𝑖𝑞 + 𝑑𝑑𝑣𝑝𝑣 − 𝑉

𝐿
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𝑑𝑡
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𝐶
𝑑𝑣𝑝𝑣

𝑑𝑡
= 𝑖𝑝𝑣 − 1.5(𝑑𝑑𝑖𝑑 + 𝑑𝑞𝑖𝑞)

,               (1) 

where 𝜔 is the rated angular frequency and 𝑉 is the magnitude 

of the grid voltages 𝑣𝑎,𝑏,𝑐 . 

Since (1) is a nonlinear continuous system, the small-signal 

model can be established at the equilibrium point 

(𝐼𝑑
∗ , 𝐼𝑞

∗, 𝑉𝑝𝑣
∗ , 𝐼𝑝𝑣

∗  𝐷𝑑
∗ , 𝐷𝑞

∗), 

{
 
 

 
 𝐿

𝑑∆𝑖𝑑

𝑑𝑡
= 𝜔𝐿∆𝑖𝑞 + ∆𝑑𝑑𝑉𝑝𝑣

∗ + 𝐷𝑑
∗∆𝑣𝑝𝑣

𝐿
𝑑∆𝑖𝑞

𝑑𝑡
= −𝜔𝐿∆𝑖𝑑 + ∆𝑑𝑞𝑉𝑝𝑣

∗ + 𝐷𝑞
∗∆𝑣𝑝𝑣

𝐶
𝑑∆𝑣𝑝𝑣

𝑑𝑡
= ∆𝑖𝑝𝑣 − 1.5(∆𝑑𝑑𝐼𝑑

∗ + 𝐷𝑑
∗∆𝑖𝑑 + 𝐷𝑞

∗∆𝑖𝑞 + ∆𝑑𝑞𝐼𝑞
∗)

,(2) 

where 𝑖𝑑 = 𝐼𝑑
∗ + ∆𝑖𝑑 , 𝑖𝑞 = 𝐼𝑞

∗ + ∆𝑖𝑞 , 𝑣𝑝𝑣 = 𝑉𝑝𝑣
∗ + ∆𝑣𝑝𝑣 ,  𝑖𝑝𝑣 =

𝐼𝑝𝑣
∗ + ∆𝑖𝑝𝑣,  𝑑𝑑 = 𝐷𝑑

∗ + ∆𝑑𝑑 and 𝑑𝑞 = 𝐷𝑞
∗ + ∆𝑑𝑞. 

Considering the model of the PV panel [39], the following 

equation can be obtained: 

𝑖𝑝𝑣 = 𝑁𝑃(𝐼𝑠𝑐 + 𝐾𝐼∆𝑇)[
𝐺

𝐺𝑁
−

exp( 𝑣𝑝𝑣 𝑁𝑆𝑉𝑡𝑎⁄ )−1

exp((𝑉𝑜𝑐+𝐾𝑉∆𝑇) 𝑉𝑡𝑎⁄ )−1
],       (3) 

where 𝑁𝑃  and 𝑁𝑆  are the numbers of series and parallel 

modules. 𝐼𝑠𝑐  and 𝑉𝑜𝑐  are the open-circuit voltage and 

short-circuit current of a PV model. 𝑉𝑡 is the thermal voltage, 

and a is the ideal constant of the equivalent diode. 𝐺 and 𝐺𝑁are 

the actual irradiance and the nominal irradiance, respectively. 

∆𝑇 = 𝑇 − 𝑇𝑁 , where 𝑇 and 𝑇𝑁are the actual temperature and 

the nominal temperature, respectively. 𝐾𝐼  and 𝐾𝑉  are the 

current and voltage coefficients, respectively. Then, the 

following expression can be derived. 

{
 

 
 ∆𝑃 = 𝑉𝑝𝑣

∗ ∆𝑖𝑝𝑣 + ∆𝑣𝑝𝑣𝐼𝑝𝑣
∗ = 𝐾𝑝𝑣∆𝑣𝑝𝑣

𝐾𝑝𝑣 = 𝑔𝑝𝑣𝑉𝑝𝑣
∗ + 𝑃𝑟𝑒𝑓 𝑉𝑝𝑣

∗⁄

𝑔𝑝𝑣 =
−𝑁𝑃(𝐼𝑠𝑐+𝐾𝐼∆𝑇)

exp((𝑉𝑜𝑐+𝐾𝑉∆𝑇) 𝑉𝑡𝑎⁄ )−1
∙
exp( 𝑉𝑝𝑣

∗ 𝑁𝑆𝑉𝑡𝑎⁄ )

𝑁𝑆𝑉𝑡𝑎

,           (4) 

where ∆𝑃 is the quantity of the small disturbance of the output 

power of the PV panel.  

For convenience, 𝑉𝑝𝑣
∗  and 𝑃𝑟𝑒𝑓  are chosen as known 

variables. Combining (1) and Fig. 2(a), the other equilibrium 

points can be calculated as shown below. 

{
 
 

 
  𝐼𝑞

∗ = 0

𝐼𝑑
∗ = 𝑃𝑟𝑒𝑓/1.5𝑉

𝐷𝑞
∗ = 𝜔𝐿𝐼𝑑

∗/𝑉𝑝𝑣
∗   

𝐷𝑑
∗ = 𝑉/𝑉𝑝𝑣

∗

.                           (5) 

Until now, the open-loop model of the thee-phase PV 
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generator has been obtained. Next, the closed-loop model will 

be derived. Hence，related controllers need to be taken into 

consideration. With regard to the controller, both the voltage 

loop and the current loop are linear and are relatively simple. 

However, the outmost P&O-based power loop is nonlinear and 

discontinuous and should be modeled properly. From Fig. 2(b), 

the output of the P&O-based power controller in the continuous 

domain can be derived as shown below. 

𝑣𝑝𝑣
𝑟𝑒𝑓

=
𝜀

𝑇𝑃
∫ sgn(𝑃𝑟𝑒𝑓 − 𝑃𝑛)sgn(∆𝑃)sgn(∆𝑣)𝑑𝑡,        (6) 

where sgn(𝑥) is the sign function. If 𝑥 ≥ 0, sgn(𝑥) = 1. If 

𝑥 < 0, sgn(𝑥) = −1. Through the power-voltage curve of the 

PV panel shown in Fig. 3, the following equations can be 

obtained if sampling errors are ignored, 

{
sgn(∆𝑃)sgn(∆𝑣) = 1,         𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒

sgn(∆𝑃)sgn(∆𝑣) = −1,    𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒
.                (7) 

Therefore, based on (7), (6) can be simplified as  

{
𝑣𝑝𝑣
𝑟𝑒𝑓

=
𝜀

𝑇𝑃
∫ sgn(𝑃𝑟𝑒𝑓 − 𝑃𝑛)𝑑𝑡 ,         𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒

𝑣𝑝𝑣
𝑟𝑒𝑓

=
−𝜀

𝑇𝑃
∫ sgn(𝑃𝑟𝑒𝑓 − 𝑃𝑛)𝑑𝑡 ,     𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒

.          (8) 

Equation (8) is nonlinear and discontinuous. Hence, the 

small-signal modeling cannot be applied anymore. As a result, 

the conventional stability analysis methods based on the 

small-signal model usually do not consider the influence of the 

outermost P&O-based power control loop. 

1 2

P
maxP

refP

pvv

,1pvv
,2pvv

left side right side

 
Fig. 3. Power-voltage curve of the PV panel.  

Combining (2), (4), (8) and Fig. 2(a), the complete model of 

the grid-connected PV generator is presented in Fig. 4, when 

the operation point is located on the left side. The model when 

the operation point is located on the right side can be derived in 

the similar way. Fig. 4 shows that the whole system is 

composed of two parts, namely, the discontinuous sign function 

based nonlinear part and the small signal based linear part. This 

structure can be analyzed effectively in the frequency domain 

by the DF method, which will be introduced in detail in the next 

section. 

For the following comparison, the commonly used model 

[14]-[16] for the conventional stability analysis methods is also 

presented in Fig. 5, where the model is consistent with the 

research scope of the conventional method in Fig. 2(a). 

Compared to Fig. 4, the model in Fig. 5 has two differences. 

First, the power loop is removed. Second, the model of the PV 

panel is simplified into a constant power (CP) model. Based on 

this purely linear model, some mature analysis methods for the 

linear system such as the Bode diagram based 

frequency-domain analysis method can be used to assess the 

system stability. 

III. DESCRIBING METHOD BASED STABILITY ANALYSIS 

A. Introduction of the DF Method 

In this part, the fundamental principles of the DF method are 

briefly introduced. Being different from the small-signal 

analysis which approximates the nonlinear elements in the time 

domain, the DF method is a kind of frequency-domain 

approximation. Hence, the DF method can deal with some 

nonlinear discontinuous elements that cannot be processed by 

the small-signal modeling in the time domain. 

The fundamental principle of the DF method is to obtain the 

first harmonic component of the output when the nonlinear 

element is excited with a sinusoidal signal input. As shown in 

Fig. 6, which is the abstraction of the model in Fig. 4, if the 

transfer function G(s) of the linear part is low-pass, the 

high-order harmonics produced by the nonlinear element are 

filtered out. Hence, we can pay the most attention to the first 

harmonic component of the output of the nonlinear element and 

research the function of the nonlinear element on the first 

harmonic component. 
Nonlinear 

element

N(A)

Linear 

part

G(s)-

LP
x y

 
Fig. 6. Response analysis of the system containing the nonlinear discontinuous 

element.  

If the input is 𝑥 = 𝐴sin(𝜔𝑡) and the output is 𝑦, we can 

conclude that 𝑦  is also a periodic signal. According to the 

Fourier series, the output 𝑦 can be decomposed as 

𝑦 = 𝐴0 + ∑ 𝐴𝑘sin (𝑘𝜔𝑡 + 𝜑𝑘)
∞
𝑘=1 .                    (9) 
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Fig. 4. Complete model of the grid-connected PV generator. 
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Furthermore, if the nonlinear element is odd-symmetric, the dc 

component  𝐴0 = 0 . Then, the function of the nonlinear 

element on the first harmonic component can be expressed as  

𝑁(𝐴) =
𝐴1𝑒

𝑗𝜑1

𝐴
,                                  (10) 

where 𝑁(𝐴) is called the describing function of the nonlinear 

element and can be viewed as a variable gain amplifier in the 

system. 

Based on the describing function 𝑁(𝐴)  of the nonlinear 

element, the nonlinear system in Fig. 6 can be approximately 

transformed into a linear system, in which the forward path is 

the series connection of 𝑁(𝐴) and G(s). The modified Nyquist 

criterion can be used to assess the system stability according to 

the relative position of −1 𝑁(𝐴)⁄  and G(s), where −1 𝑁(𝐴)⁄  is 

usually a curve in the s plane. The modified Nyquist criterion 

can be expressed as: 

(1) If −1 𝑁(𝐴)⁄  is not surround by G(s), the system is stable 

as shown in Fig. 7(a). 

(2) If −1 𝑁(𝐴)⁄  is surround by G(s), the system is unstable 

as shown in Fig. 7(b). 

(3) If −1 𝑁(𝐴)⁄  intersects with G(s), the system is critically 

stable as shown in Fig. 7(c). Furthermore, the oscillation 

frequency and magnitude can be calculated through G(s) and 

−1 𝑁(𝐴)⁄  at the intersection point, respectively. 

Re

Im

-1/N(A)

G(s)

Re

Im

-1/N(A)

G(s)

Re

Im

G(s)

-1/N(A)

 
                 (a)                                        (b)                                      (c) 

Fig. 7. The DF method-based stability criterion. (a) Stable. (b) Unstable. (c) 

Critically stable. 

For the purely linear system, the criterion of critical stability 

is very strict because the Nyquist curve of the system must 

cross the unique point (-1, j0) in the whole s plane. However, if 

the nonlinear element is considered based on the DF method, 

the criterion of critical stability is largely relaxed. Equivalently, 

the unique point (-1, j0) becomes a curve, which enhances the 

probability of −1 𝑁(𝐴)⁄  intersecting with G(s). Hence, the DF 

method-based stability analysis is more suitable for analyzing 

critical stability and revealing oscillatory reasons. 

In addition, the stability criterion of the DF method does not 

depend on the stable margin. Hence, DF method can be applied 

to both the non-minimum and minimum phase systems.  

B. Detailed Stability Analysis of the Grid-connected PV 

Generator 

In this part, the detailed stability analysis of the 

grid-connected PV generator is conducted based on the DF 

method, and the related influence factors are studied 

quantitatively. First, the model of the PV generators in Fig. 4 

meets the two assumptions of the DF method. That is, 

(1) The linear part is low-pass. The output of the PV 

generator is filtered by the corresponding low-pass filters. 

Hence, the linear part of the PV generator is low-pass, which 

can also be verified by the elements of the linear part in Fig. 4. 

(2) The nonlinear part is odd-symmetric. Fig. 4 shows that 

the nonlinear part of the PV generator is a sign function, which 

is odd-symmetric. Hence, the PV generator meets this 

requirement as well. 

For the linear part in Fig. 4, the detailed expression of G(s) is 

shown in (A.5) of the Appendix. For the sign function in Fig. 4, 

if the input is 𝑥 = 𝐴sin(𝜔𝑡) , then the output of the sign 

function can be expressed as 

{
𝑦 = 1,          0 ≤  𝜔𝑡 ≤ 𝜋
𝑦 = −1,     𝜋 <  𝜔𝑡 < 2𝜋

.                      (11) 

After Fourier series decomposition of (11) and according to 

(10), the describing function of the sign function can be 

obtained as 

𝑁(𝐴) =
4

𝜋𝐴
.                                   (12) 

Then, when the system is critically stable, the oscillation 

magnitude 𝐴𝑜 and oscillation frequency 𝜔𝑜  can be calculated 

by solving the following equations. 

{
𝐺𝐼𝑚(𝜔𝑜) = 0

4 𝜋𝐴𝑜⁄ = −1 𝐺𝑅𝑒(𝜔𝑜)⁄
,                       (13) 

where G(j𝜔)= 𝐺𝑅𝑒(𝜔) + 𝑗𝐺𝐼𝑚(𝜔). 
The PV module used in this paper is KC200GT, whose 

detailed parameters are introduced in [38]. The whole PV panel 

consists of 20 parallel and 60 series KC200GT PV modules. 

Then, the maximum power of the PV panel can reach 

approximately 240 kW, and the corresponding voltage 𝑣𝑝𝑣 is 

approximately 1680 V under the nominal irradiance 𝐺𝑁 =

1000 W/m2 and the nominal temperature 𝑇𝑁 = 298.16 K. The 

other rated electrical and control parameters of the 

grid-connected PV generator are shown in Table Ⅰ, where the 

operation point is indicated by ( 𝑉𝑝𝑣
∗ , 𝑃𝑟𝑒𝑓 ), and the other 

equilibrium points can be derived through (5). 
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Fig. 5. Conventional stability analysis model of the grid-connected PV generator. 
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1) Operation points 

 
                               (a)                                                           (b) 

  
                             (c)                                                           (d) 

Fig. 8. System stability with changes in the operation points. The proposed 

analysis method: (a) Nyquist diagrams at the left-side operation points (1096 V, 

180 kW), (1347 V, 220 kW) and (c) Nyquist diagrams at the right-side 

operation points (1879 V, 180 kW), (1832 V, 220 kW). The conventional 

analysis method: (b) Bode diagrams at the left-side operation points (1096 V, 

180 kW), (1347 V, 220 kW) and (d) Bode diagrams at the right-side operation 

points (1879 V, 180 kW), (1832 V, 220 kW). 

The influence of operation points is studied in this small part. 

Except the operation points and the dependent parameters 𝑔𝑝𝑣, 

𝐾𝑝𝑣, the other parameters remain the same as in Table Ⅰ. Four 

operation points are chosen, namely, left-side points (1096 V, 

180 kW) and (1347 V, 220 kW), right-side points (1879 V, 180 

kW) and (1832 V, 220 kW). For these operation points, based 

on (A.5) of the Appendix, the corresponding linear parts G(s) 

are  

{
 
 
 

 
 
 𝐺1(𝑠) =

3.2∗108(𝑠+5445)(𝑠+403)(𝑠+200)(𝑠+50.4)(𝑠+50)

𝑠(𝑠+5996)(𝑠+5662)(𝑠2+101.2𝑠+2561)(𝑠2+32𝑠+9878)

𝐺2(𝑠) =
3.7∗108(𝑠+6685)(𝑠+329.7)(𝑠+200)(𝑠+50.4)(𝑠+50)

𝑠(𝑠+7450)(𝑠+6832)(𝑠2+100.8𝑠+2544)(𝑠2+31𝑠+8088)

𝐺3(𝑠) =
−2.1∗109(𝑠+9345)(𝑠+403)(𝑠+200)(𝑠+50.3)(𝑠+50)

𝑠(𝑠+9921)(𝑠+9526)(𝑠+193)(𝑠+31.7)(𝑠2+100.3𝑠+2524)

𝐺4(𝑠) =
−1.5∗109(𝑠+9110)(𝑠+329.7)(𝑠+200)(𝑠+50.3)(𝑠+50)

𝑠(𝑠+9901)(𝑠+9245)(𝑠+55)(𝑠+47.5)(𝑠2+151.6𝑠+5961)

. (14) 

Based on (14), the Nyquist diagrams of the complete model 

of the grid-connected PV generator are shown in Fig. 8(a) and 

(c). According to the modified Nyquist criterion, from Fig. 8(a) 

and 𝐺1(𝑠) and 𝐺2(𝑠) in (14), we can conclude that the system 

is critically stable when the operation points are located on the 

left side. Under the same output power, from Fig. 8(c) and 

𝐺3(𝑠)  and 𝐺4(𝑠)  in (14), the system is stable when the 

operation points are located on the right side. Combining (13) 

and 𝐺1(𝑠)  and 𝐺2(𝑠)  in (14), the oscillation magnitude and 

frequency at (1096 V, 180 kW) and (1347 V, 220 kW) can be 

calculated, respectively, as 

{
𝐴𝑜1 = 10 kW

𝜔𝑜1 = 117 rad/s
,  {

𝐴𝑜2 = 9.6 kW
𝜔𝑜2 = 107 rad/s

.               (15) 

Therefore, we can conclude that the system is more stable 

when the operation points are located on the 

Under the same operation points, Fig. 8(b) and (d) show 

open-loop Bode diagrams of the system according to the 

conventional analysis method in Fig. 5, where the 

corresponding open-loop transfer functions 𝑇(𝑠) are  

{
  
 

  
 𝑇1(𝑠) =

772(𝑠+5445)(𝑠+403)(𝑠+200)(𝑠+50.4)(𝑠+50)

𝑠2(𝑠+53)(𝑠+51)(𝑠2+104𝑠+3∗107)

𝑇2(𝑠) =
943(𝑠+6685)(𝑠+329.7)(𝑠+200)(𝑠+50.4)(𝑠+50)

𝑠2(𝑠2+102𝑠+2616)(𝑠2+1.3∗104𝑠+4.5∗107)

𝑇3(𝑠) =
772(𝑠+9345)(𝑠+403)(𝑠+200)(𝑠+50.3)(𝑠+50)

𝑠2(𝑠2+101𝑠+2556)(𝑠2+1.9∗104𝑠+8.6∗107)

𝑇4(𝑠) =
943(𝑠+9110)(𝑠+329.7)(𝑠+200)(𝑠+50.3)(𝑠+50)

𝑠2(𝑠2+101𝑠+2558)(𝑠2+1.8∗104𝑠+8.3∗107)

.      (16) 

These two figures show that the system is stable no matter 

where the operation points are located, and the changes in the 

operation points have no obvious influence on the system 

stability, which conflicts with the conclusion of the proposed 

analysis method. However, according to the experimental 

results, the conclusion of the proposed analysis method is more 

accurate. 

2) Filters 

 
                               (a)                                                        (b) 

 
                               (c)                                                         (d) 

Fig. 9. System stability with changes of filters. The proposed analysis method: 

(a) Nyquist diagrams when C=1, 3, 5 mF, and (c) Nyquist diagrams when L=1, 

2, 3 mH, respectively. The conventional analysis method: (b) Bode diagrams 

when C=1, 3, 5 mF, and (d) Bode diagrams when L=1, 2, 3 mH, respectively. 

 

TABLE Ⅰ 

RATED SYSTEM PARAMETERS 

Parameters Rated Value 

𝑉,𝜔 311 V, 100π rad/s 

𝐶, 𝐿 3 mF, 2 mH 

𝐺, 𝑇 1000 W/m2 (𝐺𝑁), 298.16 K (𝑇𝑁) 

(𝑉𝑝𝑣
∗ , 𝑃𝑟𝑒𝑓) (1096 V, 180 kW) 

𝑔𝑝𝑣 -0.0004 A/V 

𝐾𝑝𝑣 163.6 W/V 

Power Loop 𝜀 = 0.5 V, 𝑇𝑃 = 0.2 ms 

Voltage Loop 𝑘𝑝𝑣𝑃 = 0.4 A/V, 𝑘𝑝𝑣𝐼 = 80 A/Vs 

Current Loop 𝑘𝑐𝑃 = 0.01 V/A, 𝑘𝑐𝐼 = 0.5 V/As 
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The influence of filters is studied in this small part, including 

the PV-side capacitor and the grid-side inductor, where the 

parameters are kept the same as Table Ⅰexcept C and L. Fig. 

9(a) and (c) present the Nyquist diagrams of the complete 

model of the grid-connected PV generator in Fig. 4 with 

changes of the capacitive filter C and the inductive filter L, 

respectively. Based on (A.5) of the Appendix, the 

corresponding linear parts G(s) when C=1 mF, 5 mF and L= 1, 

3 mH are 

{
 
 
 

 
 
 𝐺5(𝑠) =

9.5∗108(𝑠+5445)(𝑠+403)(𝑠+200)(𝑠+50.5)(𝑠+50)

𝑠(𝑠+7616)(𝑠+5509)(𝑠2+101.2𝑠+2567)(𝑠2+78.9𝑠+2.4∗104)

𝐺6(𝑠) =
1.9∗108(𝑠+5445)(𝑠+403)(𝑠+200)(𝑠+50.5)(𝑠+50)

𝑠(𝑠2+101.1𝑠+2557)(𝑠2+20𝑠+6235)(𝑠2+1.1∗104𝑠+3.2∗107)

𝐺7(𝑠) =
3.2∗108(𝑠+1.1∗104)(𝑠+806)(𝑠+200)(𝑠+50.2)(𝑠+50)

𝑠(𝑠+1.2∗104)(𝑠+1.1∗104)(𝑠2+101𝑠+2549)(𝑠2+21.7𝑠+1∗104)

𝐺8(𝑠) =
3.2∗108(𝑠+3613)(𝑠+268.7)(𝑠+200)(𝑠+50.7)(𝑠+50)

𝑠(𝑠+4087)(𝑠+3869)(𝑠2+101.3𝑠+2569)(𝑠2+41.27𝑠+9349)

. (17) 

In Fig. 9(b) and (d), the open-loop Bode diagrams of the 

system based on the conventional analysis method in Fig. 5 are 

shown with changes of C and L, respectively. Similarly, the 

corresponding open-loop transfer functions T(s) when C=1 mF, 

5 mF and L= 1, 3 mH are 

{
  
 

  
 𝑇5(𝑠) =

2315(𝑠+5445)(𝑠+403)(𝑠+200)(𝑠+50.5)(𝑠+50)

𝑠2(𝑠+61)(𝑠+49)(𝑠2+1.1∗104𝑠+3.1∗107)

𝑇6(𝑠) =
463(𝑠+5445)(𝑠+403)(𝑠+200)(𝑠+50.5)(𝑠+50)

𝑠2(𝑠2+102.6𝑠+2635)(𝑠2+1.1∗104𝑠+2.99∗107)

𝑇7(𝑠) =
772(𝑠+1.1∗104)(𝑠+806)(𝑠+200)(𝑠+50.2)(𝑠+50)

𝑠2(𝑠+54)(𝑠+50.3)(𝑠2+2.2∗104𝑠+1.2∗108)

𝑇8(𝑠) =
772(𝑠+3613)(𝑠+268.7)(𝑠+200)(𝑠+50.7)(𝑠+50)

𝑠2(𝑠2+103.8𝑠+2698)(𝑠2+7273𝑠+1.3∗107)

.       (18) 

From Fig. 9(a) and 𝐺5(𝑠) in (17), when C=1 mF, the system 

is stable. However, with the increase of C, the system becomes 

critically stable. The oscillation magnitude 𝐴𝑜1 and frequency 

𝜔𝑜1when C= 3 mF has been calculated in (15). The oscillation 

magnitude and frequency when C= 5 mF can also be calculated 

according to (13) and 𝐺6(𝑠) in (17). 

{
𝐴𝑜3 = 20 kW
𝜔𝑜3 = 86 rad/s

.                                 (19) 

Compared to 𝐴𝑜1 and 𝜔𝑜1 , we can conclude that with the 

increase of C, the oscillation magnitude obviously increases, 

and the oscillation frequency moves toward the low-frequency 

modes. 

Based on the conventional analysis method shown in Fig. 

9(b), with the increase of C, the magnitude of the open-loop 

transfer function decreases continuously. Then, the phase 

margin decreases. According to the figure, the phase margin 

and the corresponding cutoff frequency when C= 3, 5 mF are 

{
𝑃𝑚1 = 46.3°

𝜔𝑝𝑚1 = 115 rad/s
,   {

𝑃𝑚2 = 35.6°
𝜔𝑝𝑚2 = 86 rad/s

.           (20) 

From (20), the phase margin of the system is reduced with 

the increase of C, but we cannot directly judge that the system 

is stable or not only through this information. However, 

through the proposed DF method, the system stability can be 

reflected directly. Furthermore, comparing 𝜔𝑜1 and 𝜔𝑝𝑚1 , 

𝜔𝑜3 and 𝜔𝑝𝑚2 , the oscillation frequency obtained from the 

proposed analysis method coincides with the possible 

oscillation frequency obtained from the conventional analysis 

method. However, the conventional analysis method cannot 

provide information about the oscillation magnitude. 

Based on Fig. 9(c) and 𝐺7(𝑠) and 𝐺8(𝑠) in (17), with the 

increase of L, the system is more and more stable. The 

oscillation magnitude and frequency when L= 1, 3 mH can be 

calculated according to (13) and 𝐺7(𝑠) and 𝐺8(𝑠) in (17). 

{
𝐴𝑜4 = 17 kW

𝜔𝑜4 = 111 rad/s
,   {

𝐴𝑜5 = 5.1 kW
𝜔𝑜5 = 139 rad/s

.                (21) 

Combining the oscillation magnitude 𝐴𝑜1  and frequency 

𝜔𝑜1when L= 2 mH in (15), we can conclude that the oscillation 

magnitude is reduced, and the oscillation frequency is raised 

with the increase of L. 

Similarly, the open-loop Bode diagrams of the system 

according to the conventional analysis method are shown in Fig. 

9(d) with changes of L. The figure shows that with the increase 

of L, the phase of the open-loop transfer function increases 

continuously. Hence, the phase margin is enhanced, and the 

system stability is improved. The figure shows that the cutoff 

frequency when L= 1, 2, 3 mH is almost unchanged, and it is 

approximately 114 rad/s , which is the possible oscillation 

frequency according to the conventional analysis method. This 

conclusion conflicts with the conclusion from the proposed 

analysis method as shown in (21), but according to the 

experimental results, the conclusion of the proposed analysis 

method is more accurate. 

3) Control parameters 

 
                                 (a)                                                       (b) 

 
                                (c)                                                       (d) 

 
                            (e)                                                        (f) 

Fig. 10. System stability with changes of control parameters. The proposed 

analysis method: (a) Nyquist diagrams when 𝜀=0.1, 0.5, 1 V, (c) Nyquist 

diagrams when 𝑘𝑝𝑣𝑃 = 0.1, 0.4, 0.8 A/V ; and (e) Nyquist diagrams when 

𝑘𝑐𝑃 = 0.001, 0.01, 0.05A/V ; The conventional analysis method: (b) Bode 
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diagrams when 𝜀=0.1, 0.5, 1 V; (d) Bode diagrams when 𝑘𝑝𝑣𝑃 =

0.1, 0.4, 0.8A/V and (f) Bode diagrams when 𝑘𝑐𝑃 = 0.001, 0.01, 0.05A/V . 

In this small part, the influence of the control parameters is 

studied, where the other parameters are kept the same as Table 

Ⅰexcept the chosen parameters. Fig. 10(a), (c) and (e) shows 

the Nyquist diagrams of the complete model of the 

grid-connected PV generator as presented in Fig. 4 with 

changes of control parameters ε, 𝑘𝑝𝑣𝑃 and 𝑘𝑐𝑃, while Fig. 10(b), 

(d) and (f) shows the Bode diagrams of the system based on the 

conventional analysis method as presented in Fig. 5 with 

changes of these control parameters. When ε changes, from 

(A.5) of Appendix, for the linear part G(s), only the coefficient 

𝜀 𝑇𝑝⁄  will change, and the other zeros/poles stay the same. 

When 𝑘𝑝𝑣𝑃 = 0.1, 0.8A/V  and 𝑘𝑐𝑃 = 0.001, 0.05 V/A , based 

on (A.5) of Appendix, the corresponding linear parts G(s) are: 

{
 
 
 

 
 
 𝐺9(𝑠) =

7.9∗107(𝑠+5445)(𝑠+800)(𝑠+403)(𝑠+50.5)(𝑠+50)

𝑠(𝑠2+101.1𝑠+2556)(𝑠2+1.1∗104𝑠+3.1∗107)(𝑠2−6.1𝑠+1.1∗104)

𝐺10(𝑠) =
6.3∗108(𝑠+5445)(𝑠+403)(𝑠+100)(𝑠+50.5)(𝑠+50)

𝑠(𝑠+6832)(𝑠+5527)(𝑠2+101.3𝑠+2570)(𝑠2+73.4𝑠+8805)

𝐺11(𝑠) =
3.2∗107(𝑠+500)(𝑠+403)(𝑠+200)(𝑠2+550𝑠+2.7∗105)

𝑠(𝑠2+32𝑠+9716)(𝑠2+374𝑠+1.5∗104)(𝑠2+770𝑠+6∗105)

𝐺12(𝑠) =
1.6∗109(𝑠+2.7∗104)(𝑠+403)(𝑠+200)(𝑠+10)2

𝑠(𝑠+3.1∗104)(𝑠+2.7∗104)(𝑠2+20𝑠+100)(𝑠2+31𝑠+9931)

. (22) 

Similarly, the corresponding open-loop transfer functions 

T(s) for the conventional analysis method are: 

{
  
 

  
 𝑇9(𝑠) =

193(𝑠+5445)(𝑠+800)(𝑠+403)(𝑠+50.5)(𝑠+50)

𝑠2(𝑠+53)(𝑠+51)(𝑠2+1.1∗104𝑠+3.0∗107)

𝑇10(𝑠) =
1543(𝑠+5445)(𝑠+403)(𝑠+100)(𝑠+50.5)(𝑠+50)

𝑠2(𝑠+53)(𝑠+51)(𝑠2+1.1∗104𝑠+3.0∗107)

𝑇11(𝑠) =
77(𝑠+500)(𝑠+403)(𝑠+200)(𝑠2+550𝑠+2.7∗105)

𝑠2(𝑠2+393𝑠+1.4∗105)(𝑠2+756𝑠+5.7∗105)

𝑇12(𝑠) =
3858(𝑠+2.7∗104)(𝑠+403)(𝑠+200)(𝑠+10)2

𝑠2(𝑠+11)(𝑠+9.9)(𝑠2+5.5∗104𝑠+7.6∗108)

.       (23) 

Fig. 10(a) shows the critical stability of the system with 

changes of perturbation size ε in the power loop. When ε=0.1 V, 

the oscillation is very small and can be neglected. With the 

increase of ε, which means that the bandwidth of the outer loop 

increases, the oscillation is more and more obvious. The 

concrete oscillation frequency and magnitude when ε= 1 V are: 

{
𝐴𝑜6 = 19 kW

𝜔𝑜6 = 118 rad/s
.                             (24) 

Combing the oscillation magnitude 𝐴𝑜1 and the frequency 

𝜔𝑜1when ε= 0.5 V in (15), we can conclude that with the 

increase of ε, the oscillation magnitude obviously increases, but 

the oscillation frequency remains almost unchanged. 

Since the conventional analysis method does not include the 

dynamics of the nonlinear discontinuous power control, the 

influence of perturbation size ε cannot be studied. As shown in 

Fig. 10(b), the open-loop Bode diagrams are unchanged. 

However, as analyzed above, the nonlinear discontinuous 

power loop has a significant influence on the system stability. 

Therefore, it is an obvious drawback of the conventional 

analysis method. 

Fig. 10(c) shows the influence of 𝑘𝑝𝑣𝑃 in the voltage loop. 

When 𝑘𝑝𝑣𝑃 = 0.1 A/V , although the Nyquist curve of the 

system does not surround -1/N(A), G(s) has the right-half-plane 

poles, as 𝐺9(𝑠) in (22) shows. Therefore, the system is unstable. 

With the increase in 𝑘𝑝𝑣𝑃, which means that the bandwidth of 

the inner loop increases, the system becomes critically stable. 

With the further increase, the system is stable when 𝑘𝑝𝑣𝑃 =

0.8 A/V. Therefore, we can conclude that with the increase of 

𝑘𝑝𝑣𝑃, the oscillation can be suppressed. 

Fig. 10(d) shows the results of the conventional analysis 

method when 𝑘𝑝𝑣𝑃  changes. The figure shows that with the 

increase of 𝑘𝑝𝑣𝑃, the phase margin of the system is enhanced 

continuously. However, just by the Bode diagrams, the 

variation tendency of the system stability is hard to reflect. 

Fig. 10(e) shows the influence of 𝑘𝑐𝑃  in the current loop, 

where 𝑘𝑐𝑃 = 0.001, 0.01, 0.05 V/A. The changes of 𝑘𝑐𝑃  have 

no obvious influence on the system stability. In Fig. 10(f), the 

results of the conventional analysis method are presented when 

𝑘𝑐𝑃 changes. The figure shows that the changes of 𝑘𝑐𝑃 mainly 

influence the high-frequency section but have less influence on 

the low-frequency section. Hence, 𝑘𝑐𝑃  has no obvious 

influence on the low-frequency power oscillation, which also 

coincides with the conclusion of the proposed analysis method. 

IV. HARDWARE-IN-LOOP TESTS 

To verify the theoretical analyses, the corresponding HIL 

tests were conducted. As shown in Fig. 11, the HIL platform 

consists of the RTLAB and TMS320F28335 DSPs. The 

topology and the control method of the grid-connected 

three-phase PV generator are shown in Fig. 2, and the related 

parameters are the same as Table Ⅰ  except for the 

variable parameters studied in different cases. The main loop is 

realized in RTLAB, which can output the related electrical 

signals and accept the control signals, namely, the PWM. The 

control algorithm is written in the TMS320F28335 DSPs, 

which can sample the electrical signals and execute the control 

algorithm. Then, the PWM is generated to control the PV 

generator. 

 
Fig. 11. HIL platform setup. 

Fig. 12 shows the system dynamics with changes of the 

operation points. Fig. 12(a) shows the output power and PV 

voltage under the left-side operation points (1096 V, 180 kW) 

and (1347 V, 220 kW), in which ∆𝑃 = 𝑃 − 180kW  and  

∆𝑣𝑝𝑣 = 𝑣𝑝𝑣 − 1100V. The figure clearly shows that the system 

is critically stable, both the output power and PV voltage 

obviously oscillate, which coincides with the theoretical 

analysis in Fig. 8(a). When the operation point is (1096 V, 180 

kW), the oscillation magnitude and frequency are 

approximately 10 kW and 121 rad/s. For the operation point 

(1347 V, 220 kW), the oscillation magnitude almost remains 

the same, but the oscillation frequency becomes 110 rad/s. 

These two experimental results can meet the theoretical 

calculation in (15) well, which proves that the proposed 
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analysis method can provide accurate oscillation information. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. System dynamics with changes of operation points. (a) Output power 

and PV voltage under the left-side operation points (1096 V, 180 kW) and 

(1347 V, 220 kW). (b) Output power and PV voltage under the right-side 

operation points (1879 V 180 kW) and (1832 V, 220 kW). (c) Output 

three-phase currents under operation point (1096 V, 180 kW). (d) Output 

three-phase currents under operation point (1879 V, 180 kW). 

Fig. 12(b) shows the output power and PV voltage under the 

right-side operation points (1879 V, 180 kW) and (1832 V, 220 

kW), in which  ∆𝑃 = 𝑃 − 180kW and  ∆𝑣𝑝𝑣 = 𝑣𝑝𝑣 − 1800V. 

Under the same output power, the right-side operation points 

can make the system stable compared to the left-side operation 

points. This conclusion about the influence of operation points 

cannot be obtained from the conventional analysis method as 

shown in Fig. 8(b) and (d), but the proposed analysis method 

can analyze the influence of operation points well as shown in 

Fig. 8(a) and (c). That is, the proposed analysis method can 

enhance the accuracy of the stability assessment. 

Fig. 12(c) and (d) show the output three-phase currents of the 

grid-connected PV generator under the operation points (1096 

V, 180 kW) and (1879 V, 180 kW), respectively. The system is 

critically stable under the operation point (1096 V, 180 kW), 

thus the output three-phase currents obviously fluctuate with 

low frequency at approximately 121 rad/s. However, the 

system is stable under the operation point (1879 V, 180 kW). 

Hence, the output currents are smooth without fluctuation. In 

conclusion, the system stability can be enhanced when the 

operation points move toward the right side. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Fig. 13. System dynamics with changes of filters. (a) Output power and PV 

voltage when C=5, 3, 1 mF. (b) Enlarged version when C=5 mF. (c) Output 

three-phase currents when C=5 mF. (d) Output power and PV voltage when 

L=3, 2, 1 mH. (e) Enlarged version when L=3 mH. (f) Enlarged version when 

L=1 mH. 

Fig. 13 shows the system dynamics with changes of filters C 

and L. Fig. 13(a) shows the output power and PV voltage when 

C=5, 3, 1 mF, in which ∆𝑃 = 𝑃 − 180kW and  ∆𝑣𝑝𝑣 = 𝑣𝑝𝑣 −

1100V. With the decrease of C, the oscillation is reduced. 

When C=1 mF, the system becomes stable, and the oscillation 

is completely suppressed. The tendency to stability with 

changes of C is in accord with the theoretical analysis revealed 

in Fig. 9(a), and the stability can be directly reflected without 

stable margin or similar posteriori information. 

Fig. 13(b) presents the enlarged version when C=5 mF. As 

shown in the figure, the measured magnitude of the oscillation 

and frequency are 20 kW and 87 rad/s, both of which coincide 

with the theoretical calculation of the proposed DF method 

based analysis method presented in (19). Especially, the 

magnitude information is difficult to obtain by the conventional 

analysis method. That is, the proposed DF method based 

analysis method can provide more stability information 

compared to the conventional analysis method. In Fig. 13(c), 

the output three-phase currents are shown when C=5 mF. 

Compared to the output currents in Fig. 12(c), namely, the 

output currents when C=3 mF, the oscillation magnitude is 

obviously increased, and the oscillation frequency becomes 

lower. Fig. 13(b) presents the enlarged version when C=5 mF. 

As shown in the figure, the measured magnitude of the 

oscillation and frequency are 20 kW and 87 rad/s, both of which 

coincide with the theoretical calculation of the proposed DF 

method based analysis method presented in (19). Especially, 

the magnitude information is difficult to obtain by the 

conventional analysis method. That is, the proposed DF method 

based analysis method can provide more stability information 

compared to the conventional analysis method. In Fig. 13(c), 

the output three-phase currents are shown when C=5 mF. 

Compared to the output currents in Fig. 12(c), namely, the 

output currents when C=3 mF, the oscillation magnitude is 

obviously increased, and the oscillation frequency becomes 

lower. 

Fig. 13(d) shows the output power and PV voltage when L=3, 

2, 1 mH, respectively, in which ∆𝑃 = 𝑃 − 180kW and  ∆𝑣𝑝𝑣 =

𝑣𝑝𝑣 − 1100V. The figure shows that with the decrease of L, the 

oscillation is more and more obvious, which meets the 

theoretical analysis revealed in Fig. 9(c) well. Through the 

enlarged version when L=3 mH and L=1 mH in Fig. 13(e) and 

Fig. 13(f), respectively, the magnitude of the oscillation and 

frequency are 5.5 kW and 137 rad/s when L=3 mH, 17.15 kW 

and 108 rad/s when L=1 mH. These results are in accord with 

the theoretical calculation in (21). However, through the 

conventional analysis method presented in Fig. 9(d), the 

relationship of stability and L cannot be explored well. This 

comparison further proves that the proposed analysis method 

can enhance the accuracy of the stability assessment. 

In conclusion, the system stability is significantly related to 

the filters, both the oscillation magnitude and the frequency 

will be obviously varied when the filters are changed. 

Furthermore, the system stability can be enhanced through 

decreasing C and increasing L. 

Fig. 14 shows the system dynamics with changes of control 

parameters. Fig. 14 (a) shows the output power and PV voltage 

when 𝜀 =0.1, 0.5, 1 V respectively, in which ∆𝑃 = 𝑃 − 180kW 

and  ∆𝑣𝑝𝑣 = 𝑣𝑝𝑣 − 1100V. Through these results, it can be 

seen that when 𝜀 =0.1 V, the oscillation is very small. With the 

increase of 𝜀, that is, the equivalent bandwidth of the outer loop 

(power loop) is increased, the oscillation is increasingly 

obvious, which is in accord with the theoretical analysis 

revealed in Fig. 10(a). Since the power control is based on the 

P&O method that is nonlinear and discontinuous, the 

conventional small signal-based analysis method cannot 

analyze the influence of 𝜀. Fig. 14(b) shows the enlarged 

version when 𝜀 =1 V, through which the oscillation magnitude 

and frequency are 19.5 kW and 119 rad/s, respectively. The 

obtained result meets the theoretical calculation in (24). 

Through these contrasts between the experimental results and 

the theoretical calculation, we can conclude that the proposed 
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analysis method can predict the system stability accurately and 

provide enough stability information without the further 

simulation to provide auxiliary analysis. Hence, it is more 

convenient. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. System dynamics with changes of control parameters. (a) Output 

power and PV voltage when 𝜀 =0.1, 0.5, 1 V. (b) Enlarged version when 𝜀 =1 V. 

(c) Output power and PV voltage when 𝑘𝑝𝑣𝑃 = 0.8, 0.4, 0.1 A/V. (d) Output 

power and PV voltage when 𝑘𝑐𝑃 = 0.001, 0.01, 0.05 V/A.  

 

Fig. 14(c) shows the output power and PV voltage when 

𝑘𝑝𝑣𝑃 = 0.8, 0.4, 0.1 A/V,  respectively, in which ∆𝑃 = 𝑃 −

180 kW and  ∆𝑣𝑝𝑣 = 𝑣𝑝𝑣 − 1100 V. With the decrease of 𝑘𝑝𝑣𝑃, 

that is, the equivalent bandwidth of the inner loop (voltage loop 

plus current loop) is decreased, the system is stable, then 

critically stable and finally unstable. The tendency of stability 

coincides with the theoretical analysis of the proposed method 

as shown in Fig. 10(c). However, for the conventional analysis 

method, the system stability, especially the instability when 

𝑘𝑝𝑣𝑃 = 0.1A/V,  cannot be well reflected, as shown in Fig. 

10(d). 

Fig. 14(d) shows the output power and PV voltage when 

𝑘𝑐𝑃 = 0.001, 0.01, 0.05 V/A, in which ∆𝑃 = 𝑃 − 180 kW and  

∆𝑣𝑝𝑣 = 𝑣𝑝𝑣 − 1100 V. The figure shows that the changes of 

𝑘𝑐𝑃 have no obvious influence on the system stability, which 

can be explained effectively by both the proposed analysis 

method and the conventional analysis method. 

In conclusion, the control parameters that mainly determine 

the low-frequency characteristics can influence the system 

stability. With a smaller bandwidth of the outer loop (like 

decreasing 𝜀) and bigger bandwidth of the inner loop (like 

increasing 𝑘𝑝𝑣𝑃), the system stability can be enhanced.  

V. CONCLUSION 

In this paper, taking the three-phase grid-connected PV 

generator as the research object, the DF method is adopted to 

analyze the influence of nonlinear discontinuous elements on 

system stability when renewable energy sources are integrated 

into the power system. Then, the drawbacks of the conventional 

analysis methods can be overcome, and the accuracy of the 

stability analysis is enhanced. Especially, both the oscillation 

magnitude and frequency can be calculated out. The typical 

nonlinear discontinuous element -- P&O-based power control 

has a substantial influence on the system stability. The power 

oscillation can occur even when the PV generator is connected 

to the stiff grid. Through the detailed stability analysis based on 

the proposed method, the related influence factors such as 

operation points, filters and control parameters have been 

studied quantitatively. We conclude that the system stability 

can be enhanced by: 1) right-side operation points; 2) smaller C 

and larger L; and 3) smaller bandwidth of the outer loop and 

bigger bandwidth of the inner loop. Furthermore, through the 

comparison with the conventional stability analysis method, the 

superiority of the proposed stability analysis method is clearly 

illustrated. Finally, the HIL tests were conducted, and the 

results can verify all the theoretical analyses well. 

APPENDIX 

According to (2), the following derivation is presented: 

{

∆𝑖𝑑 = 𝐻𝑑𝑑(𝑠)∆𝑑𝑑 +𝐻𝑑𝑞(𝑠)∆𝑑𝑞
∆𝑖𝑞 = 𝐻𝑞𝑑(𝑠)∆𝑑𝑑 + 𝐻𝑞𝑞(𝑠)∆𝑑𝑞
∆𝑣𝑝𝑣 = 𝐻𝑣𝑑(𝑠)∆𝑑𝑑 +𝐻𝑣𝑞(𝑠)∆𝑑𝑞

,               (A.1) 

where 

𝐻𝑑𝑑(𝑠) =
𝐿𝐶𝑉𝑝𝑣

∗ 𝑠2−𝐿(𝑉𝑝𝑣
∗ 𝑔𝑝𝑣+1.5𝐷𝑑

∗ 𝐼𝑑
∗)𝑠+1.5𝐷𝑞

∗(𝐷𝑞
∗𝑉𝑝𝑣

∗ −𝐼𝑑
∗𝜔𝐿)

𝐿2𝐶𝑠3−𝐿2𝑔𝑝𝑣𝑠
2+(1.5𝐿𝐷𝑑

∗2+1.5𝐿𝐷𝑞
∗2+𝜔2𝐿2𝐶)𝑠−𝜔2𝐿2𝑔𝑝𝑣

, 
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𝐻𝑑𝑞(𝑠) =
(𝜔𝐿𝐶𝑉𝑝𝑣

∗ −1.5𝐷𝑑
∗ 𝐼𝑞
∗𝐿)𝑠−1.5𝐷𝑞

∗(𝐷𝑑
∗𝑉𝑝𝑣

∗ +𝐼𝑞
∗𝜔𝐿)−𝜔𝐿𝑉𝑝𝑣

∗ 𝑔𝑝𝑣

𝐿2𝐶𝑠3−𝐿2𝑔𝑝𝑣𝑠
2+(1.5𝐿𝐷𝑑

∗2+1.5𝐿𝐷𝑞
∗2+𝜔2𝐿2𝐶)𝑠−𝜔2𝐿2𝑔𝑝𝑣

, 

𝐻𝑞𝑑(𝑠) =
−(𝜔𝐿𝐶𝑉𝑝𝑣

∗ +1.5𝐷𝑞
∗𝐼𝑑
∗𝐿)𝑠−1.5𝐷𝑑

∗ (𝐷𝑞
∗𝑉𝑝𝑣

∗ −𝐼𝑑
∗𝜔𝐿)+𝜔𝐿𝑉𝑝𝑣

∗ 𝑔𝑝𝑣

𝐿2𝐶𝑠3−𝐿2𝑔𝑝𝑣𝑠
2+(1.5𝐿𝐷𝑑

∗2+1.5𝐿𝐷𝑞
∗2+𝜔2𝐿2𝐶)𝑠−𝜔2𝐿2𝑔𝑝𝑣

, 

𝐻𝑞𝑞(𝑠) =
𝐿𝐶𝑉𝑝𝑣

∗ 𝑠2−𝐿(𝑉𝑝𝑣
∗ 𝑔𝑝𝑣+1.5𝐷𝑞

∗𝐼𝑞
∗)𝑠+1.5𝐷𝑑

∗(𝐷𝑑
∗𝑉𝑝𝑣

∗ +𝐼𝑞
∗𝜔𝐿)

𝐿2𝐶𝑠3−𝐿2𝑔𝑝𝑣𝑠
2+(1.5𝐿𝐷𝑑

∗2+1.5𝐿𝐷𝑞
∗2+𝜔2𝐿2𝐶)𝑠−𝜔2𝐿2𝑔𝑝𝑣

, 

𝐻𝑣𝑑(𝑠) =
−1.5(𝐼𝑑

∗𝐿𝑠2+𝐷𝑑
∗𝑉𝑝𝑣

∗ 𝑠+𝜔2𝐿𝐼𝑑
∗−𝜔𝐷𝑞

∗𝑉𝑝𝑣
∗ )

𝐿2𝐶𝑠3−𝐿2𝑔𝑝𝑣𝑠
2+(1.5𝐿𝐷𝑑

∗2+1.5𝐿𝐷𝑞
∗2+𝜔2𝐿2𝐶)𝑠−𝜔2𝐿2𝑔𝑝𝑣

, 

𝐻𝑣𝑞(𝑠) =
−1.5(𝐼𝑞

∗𝐿𝑠2+𝐷𝑞
∗𝑉𝑝𝑣

∗ 𝑠+𝜔2𝐿𝐼𝑞
∗+𝜔𝐷𝑑

∗𝑉𝑝𝑣
∗ )

𝐿2𝐶𝑠3−𝐿2𝑔𝑝𝑣𝑠
2+(1.5𝐿𝐷𝑑

∗2+1.5𝐿𝐷𝑞
∗2+𝜔2𝐿2𝐶)𝑠−𝜔2𝐿2𝑔𝑝𝑣

. 

Furthermore, based on Fig. 4, it can be concluded that   

{
∆𝑑𝑑 = [(∆𝑣𝑝𝑣 − ∆𝑣𝑝𝑣

𝑟𝑒𝑓
)𝑃𝐼𝑝𝑣(𝑠) − ∆𝑖𝑑]𝑃𝐼𝑐(𝑠)

∆𝑑𝑞 = −∆𝑖𝑞𝑃𝐼𝑐(𝑠)
,    (A.2) 

Then, combining (A.1) and (A.2), the following equations 

can be deduced. 

{
 

 ∆𝑖𝑞 = 𝑇𝑞(𝑠)∆𝑑𝑑 =
𝐻𝑞𝑑(𝑠)

1+𝐻𝑞𝑞(𝑠)𝑃𝐼𝑐(𝑠)
∆𝑑𝑑

∆𝑖𝑑 = 𝑇𝑑(𝑠)∆𝑑𝑑 = [𝐻𝑑𝑑(𝑠) − 𝐻𝑞𝑑(𝑠)𝑇𝑞(𝑠)𝑃𝐼𝑐(𝑠)]∆𝑑𝑑
∆𝑣𝑝𝑣 = 𝑇𝑣(𝑠)∆𝑑𝑑 = [𝐻𝑣𝑑(𝑠) − 𝐻𝑣𝑞(𝑠)𝑇𝑞(𝑠)𝑃𝐼𝑐(s)]∆𝑑𝑑

. (A.3) 

From (A.2) and (A.3), ∆𝑑𝑑 can be solved as 

∆𝑑𝑑 =
𝑃𝐼𝑝𝑣(𝑠)𝑃𝐼𝑐(𝑠)

𝑇𝑣(𝑠)𝑃𝐼𝑝𝑣(𝑠)𝑃𝐼𝑐(𝑠)−𝑇𝑑(𝑠)𝑃𝐼𝑐(𝑠)−1
∆𝑣𝑝𝑣

𝑟𝑒𝑓
,           (A.4) 

Therefore, the transfer function 𝐺(𝑠) of the linear part in Fig. 4 

can be calculated as: 

𝐺(𝑠) =
𝑇𝑣(𝑠)𝑃𝐼𝑝𝑣(𝑠)𝑃𝐼𝑐(𝑠)

𝑇𝑣(𝑠)𝑃𝐼𝑝𝑣(𝑠)𝑃𝐼𝑐(𝑠)−𝑇𝑑(𝑠)𝑃𝐼𝑐(𝑠)−1

𝜀 𝑇𝑝⁄

𝑠
.              (A.5) 

In a similar way, the open-loop transfer function in Fig. 5 can 

also be calculated, and there is no more detailed description 

here. 
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