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Fault Isolation in MIMO Systems based on Active
Decoupling

Henrik Niemann, Jakob Stoustrup, Niels Kjølstad Poulsen

Abstract—A decoupling approach for fault isolation in MIMO
systems is presented in this paper. The fault isolation approach is
based on a closed-loop concept, where the feedback controller is
an integrated part of the set-up. The YJBK-parameterization
(after Youla, Jabr, Bongiorno, and Kucera) for controllers is
introduced. This allows the feedback controller to be modified by
changing the YJBK matrix transfer function without changing
the nominal feedback controller.

Modification of the feedback controller via the YJBK transfer
matrix causes the output residual response to be changed in the
case of parametric faults and unchanged in the fault-free case.
This facilitates fault detection. In the isolation case, the controller
is modified in a way such that the residual response from the
closed-loop system is independent of the modification for one
specific parametric fault and else it depends on the parametric
faults. This allows for any specific fault and eventually for all
faults to be isolated.

Index Terms—Fault diagnosis, linear systems, control system
architecture.

I. INTRODUCTION

FAULT diagnosis has been an active research area in
many years. The reason is the increasing complexity of

technical systems used today. Reliability gets more and more
important in these systems. We need to be able to guarantee
closed-loop stability and in some cases also a certain level of
performance. Fault diagnosis is one of the central elements in
many approaches to obtain fault-tolerant and reliable systems.

Fault diagnosis can be based on passive methods or active
methods. In passive methods, the fault diagnosis is based on
naturally available input and output signals in the system,
whereas active excitation of the system is also included in
active methods. Fault diagnosis methods based on the passive
approach has been investigated in a large number of publica-
tions, see e.g. the books [1], [2], [4], [5] and the references
therein. Fault diagnosis based on the active approach has not
been investigated to the same level. One of the first fault
diagnosis methods based on the active approach was developed
by Zhang, [18]. Later, other approaches have been developed,
[3], [8], [10]. Some new results can be found in [6], [9], [17].

Active use of feedback controllers in connection with fault
diagnosis has been described in [12], [15]. The presented
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concept is that the controller is modified to optimize the fault
diagnosis task. In [15], the controller is modified such that
the closed-loop system is rendered temporarily unstable when
faults have occurred in the system and turn stable in the
fault free case. For safety reasons, this method has limited
applicability. In the approach described in [12], the controller
is modified by a change of the YJBK matrix transfer function
in the YJBK architecture. By doing this, it is possible to
optimize the sensitivity to detecting parametric faults using
active methods.

The main contribution in this paper is to develop a fault
detection and isolation method using the controller modifica-
tion principle described in [12]. It is shown that changing the
feedback controller via the YJBK matrix transfer function will
change the matrix transfer function from external input to the
residual output in the faulty case, whereas it will be unchanged
in the fault free case. This gives a simple method to detect
parametric faults in the system. How much the controller needs
to be modified depends on requirements for the time to detect.

The isolation task is more complex than the detection task.
In this paper we will use a decoupling approach for fault
isolation. The concept from the fault detection is again used
for fault isolation. Some YJBK matrix transfer functions are
designed. Each YJBK matrix transfer function is designed such
that the residual output will be changed for all parametric
faults except for a single fault. By switching between the
different YJBK matrix transfer functions, it is possible to
isolate single parametric faults. A simple rank condition is
given for guarantees of fault isolation.

The rest of this paper is organized as follows. In Section
II, the system set-up is given together with some results for
YJBK parameterization. Section III describe the fault detection
problem based on decoupling followed by Section IV, where
the isolation problem is considered. An example is given in
Section V. The paper is closed with a conclusion in Section
VI.

A. Notation

Let X be a matrix of some dimension (n,m). Then, xi j

denotes the (i, j) element of X , Xi: is the i′th row of X
and X: j is the j′th column of X . The nullspace of X is
given by N (X). A lower LFT is defined by Fl(P,K) =
P11 + P12K(I − P22K)−1P21. An upper LFT is defined by
Fu(G,θ) = G22 +G21θ(I −G11θ)−1G12.

II. SYSTEM SET-UP

Let the system to be considered be given by a frequency
domain model of the form:
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Σ :

{

z = Gzww + Gzdd + Gzuu
y = Gyww + Gydd + Gyuu

(1)

d ∈ R
r is an external input vector (e.g. reference inputs, dis-

turbance inputs, and measurement noise), u ∈ R
m the control

input vector and y ∈ R
p is the measurement vector. Further,

w ∈ R
k and z ∈ R

k are external input and output vectors. Let
the system be controlled by a stabilizing feedback controller
given by:

ΣC :
{

u = Ky (2)

The parametric faults are modeled by θi, i = 1, · · · ,k, where
k is the number of possible parametric faults. Further, let θ
represent all the k parametric faults. Let θ be a diagonal matrix,
where the (i, i) element of θ given by θi is the i′th parametric
fault in the system. The fault free case is given by θ = 0 . The
connection between z and w is given by:

w = θz (3)

Closing the loop from w to z in Σ by using θ, the resulting
system can be realized by an upper linear fractional transfor-
mation (LFT) in θ given by (see [14], [19]):

Σθ = Fu(Σ,θ)

where Σθ is given by:

Σθ :
{

y = Gyd(θ)d + Gyu(θ)u (4)

A. The YJBK Parameterization

Let a coprime factorization of Gyu from (1) and the stabi-
lizing controller K from (2) be given by:

Gyu = NM−1 = M̃−1Ñ, N,M, Ñ,M̃ ∈ R H∞
K =UV−1 = Ṽ−1Ũ , U,V,Ũ ,Ṽ ∈ R H∞

(5)

where the eight matrices in (5) must satisfy the double Bezout
equation given by, see [16]:

I =

(

Ṽ −Ũ
−Ñ M̃

)(

M U
N V

)

=

(

M U
N V

)(

Ṽ −Ũ
−Ñ M̃

)

(6)
Based on the factorization of the system Gyu and the controller
K in (5), a parameterization of all controllers that stabilize the
system in terms of a stable matrix transfer function Q, i.e. all
stabilizing controllers are given by a lower LFT in Q:

K(Q) = Fl

((

UV−1 Ṽ−1

V−1 −V−1N

)

,Q

)

= Fl(JK ,Q) (7)

The set-up for the YJBK parameterized feedback controller
K(Q) is shown in Fig. 1.

In the same way, it is possible to derive a parameterization in
terms of a stable matrix transfer function S of all systems that
are stabilized by one controller, i.e. the dual YJBK parameter-
ization. A lower LFT representation of the parameterization is
given by [16]:

Gyu(S) = Fl

((

NM−1 M̃−1

M−1 −M−1U

)

,S

)

= Fl(JG,S)
(8)

Σθ

JK

Q

✲

✲

✛

✛

✲

yu

d

ηε

Fig. 1. The setup for the YJBK parameterization including the external
disturbance.

Further, S is given by, [16]:

S = Fu(JK ,Gyu(S)) (9)

The dual YJBK matrix transfer function S is a function
of the system deviation from nominal. Here we will only
consider parametric variations in terms of the parametric faults
described by θ, i.e. S = S(θ). Assuming that θ = 0, i.e. the
nominal value of θ, the following simple relation exist, [10]:

S(θ) = 0, for θ = 0

This relation is the central element in the active fault diagnosis
approach described in [10], [11]. By testing, if S(θ) is zero
or non-zero, parametric faults can be detected using an active
approach.

III. DETECTION OF PARAMETRIC FAULTS

Consider the setup shown in Fig. 1 without Q as shown in
Fig. 2. The output ε is a residual vector as shown in [10] for
using in connection with fault diagnosis given by:

ε = M̃y− Ñu (10)

Σθ

JK

✲

✲

✛

✛✛

yu

d

ηε

Fig. 2. The feedback controller K including the residual vector ε and the
input vector η.

From (9) we have that S is the matrix transfer function from
η to the residual vector ε. The open-loop residual vector ε is
then given by, [10]:

ε = Pεd(S)d +S(θ)η = (M̃+S(θ)Ũ)Gyd(θ)d +S(θ)η (11)

The residual vector ε will be named as the open-loop residual
vector in the following. A corresponding closed-loop residual
vector will be defined below. Further, S(θ) is also named the
fault signature matrix, [10] in connection with active fault
diagnosis in closed-loop systems.
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In the fault free case, (S(0) = 0), the open-loop residual
vector ε in (11) is given by:

ε = M̃Gyd(0)d (12)

For fault detection based on a controller change, closing the
lower loop around JK as shown in Fig. 2 by using

η = Qε

gives the controller shown in Fig. 3

JK

Q

✛✛

✛✛

✲

yu
ηεQ

Fig. 3. The YJBK parameterized feedback controller K(Q) including the
residual vector εQ as an external output from the feedback controller.

The closed-loop residual output vector εQ is given by:

εQ = (I −S(θ)Q)−1Pεd(S)d = SQ(θ)Pεd(S)d (13)

The closed-loop residual vector εQ depends on the external
input d, the parametric fault θ, the nominal system, the
feedback controller and the YJBK matrix transfer function Q.

The closed-loop residual vector εQ given by (13) can now
be analyzed with respect to disturbance input d and parametric
faults θ. For the nominal case, εQ is given by:

εQ = ε for d 6= 0, θ = 0, ∀Q (14)

In the faulty case, εQ is given by:

εQ 6= ε for d 6= 0, θ 6= 0, ∀Q ∈ Qg, S(θ)Q 6= 0 (15)

where Qg has a complement of zero measure.
An important observation from (14) is that the closed-loop

residual vector εQ is independent of a change in the controller
via Q in the fault-free case. Further, from (15), we have that
εQ depends on Q in the faulty case. This makes it possible
to discriminate between the effect from the external input d
and parametric faults, i.e. detection of parametric faults in the
system. It is also important to point out that S(θ) does not
require to be given explicitly for the controller based detection
of parametric faults. Further, note that the detection results can
also be applied to SISO systems.

IV. PARAMETRIC FAULT ISOLATION

It will require unique signatures in the residual vector with
respect to the different parametric faults to be able to isolate
them. As in the detection case, the isolation is also based on
a non-zero unknown external input d. As a consequence of
d being unknown, a change of the feedback controller with a
specific Q will not give a well defined change in the residual
vector for a specific parametric fault. Instead, the isolation
needs to be done indirectly. One method for obtaining a unique
signature or a unique signature change in the residual vector
is to design a dedicated Qi for each specific parametric fault

θi. Let Qi be designed such that εQ is unchanged when θi

occur in the system and changed when θ j, j 6= i occur, i.e. the
closed-loop residual vector εQ will satisfy:

εQ(θi) = ε(θi) for Q = Qi 6= 0, θi 6= 0

εQ(θ j) 6= ε(θ j) for Q = Qi 6= 0, θ j 6= 0, i 6= j
(16)

Based on (13), (16) is satisfied if Qi satisfy the following
design condition:

S(θi)Qi = 0, Qi 6= 0, θi 6= 0

S(θ j)Qi 6= 0, Qi 6= 0, θ j 6= 0, i 6= j
(17)

For satisfying the first condition in (17), Qi must be selected
such that it is in the nullspace of S(θi), i.e. Qi ∈ N (S(θi)).
The second condition is satisfied if Qi is not in the nullspace
of S(θ j). This require that N (S(θ j)) 6= N (S(θi)), j 6= i. For a
more detailed analysis of the design conditions given by (17),
let us consider the fault signature matrix S(θ) in more details.

Based on the LFT description of Gyu(θ) in (4), the fault
signature matrix S(θ) is then given by, [10]:

S(θ) = M̃Gywθ(I − (Gzw +GzuUM̃Gyw)θ)−1GzuM
= T1θ(I −T2θ)−1T3

(18)
Assume that θi is the only non-zero element in θ, then S(θi)

takes the following form:

S(θi) = θi
1−t2,iiθi

T1,:iT3,i: (19)

The first design condition in (17) is then given by:
















t1,1i
...

t1,ii
...

t1,pi

















[

t3,i1 · · · t3,ii · · · t3,im
]

Qi = 0 (20)

where the transfer function θi/(1− t2,iiθi) has been removed
from S(θi) because it is a scalar non-zero transfer function.

The condition given by (20) is now independent of θi.
Further, when it is assumed that the fault θi is detectable,
we will have that S(θi) is non-zero and therefore T1,:iT3,i: will
have normal rank 1. The normal rank of a system G(s) is the
maximal rank of G(s), apart from a finite number of values
for s where the rank is reduced, [7]. Qi is of dimension (m, p).
It is clear that if (and only if) m is larger than 1, i.e. there is
more than one control signal in the system, there will exist a
non-zero Qi satisfying the above equation.

The condition can be reduced further, because T1,:i has full
column rank and can therefore be removed from (20). This
gives the following simple condition for the design of Qi:

T3,i:Qi =
[

t3,i1 · · · t3,ii · · · t3,im
]

Qi = 0 (21)

Qi just need to be designed such that it is in the nullspace of
T3,i: given by:

Qi ∈ N (T3,i:) = N ((GzuM)i:) (22)

The second condition in (17) gives that Qi also need to
satisfy:

Qi ∈/ N (T3, j:), j 6= i (23)
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(22) together with (23) gives the following simple condition
for Qi to satisfy for an isolation of θi from other faults:

Qi ∈ N (T3,i:)\N (T3, j:), j 6= i (24)

For a given i and j, the nullspace N (T3,i:) might be included
in N (T3, j:), i.e.

N (T3,i:)⊆ N (T3, j:).

for some cases. In such cases, there does not exist a non-
zero Qi that will satisfy both conditions in (17) and therefore
it is not possible to isolate θi from θ j. The condition that
the nullspace given by (24) is not empty is equivalent with
requiring that the normal rank of T3,i: and T3, j: is two, i.e.

normal rank

(

T3,i:

T3, j:

)

= 2, i 6= j (25)

(25) can be reduced further by observing that T3 includes the
full rank matrix M. Removing M from T3 gives the following
simple condition for isolation fault θi from θ j:

normal rank

(

Gzu,i:

Gzu, j:

)

= 2, i 6= j (26)

This condition is only based on one of the matrix transfer
functions Gzu in (1), the matrix transfer function from the
control input u to the external output z, where z is the input
to the parametric faults θ.

(26) gives the condition for isolation for isolation of sin-
gle faults in θ. The condition can be generalized. Let the
normal rank of Gzu be l ≤ min(k,m). The maximal number
of faults that can be isolated simultaneously will be l−1. For
isolation of faults that can occur simultaneously, the concept
of group-wise faults isolation described in [13] can be applied.
Here the faults are divided into groups where only fault from
a single group can occur simultaneously.

Note that there is no condition on the number of measure-
ments in the system. In general, only a single measurement
signal is needed. The condition guarantee that we can design
a non-zero Qi such that the effect from the parametric fault θi

is unchanged in the closed-loop system with the consequence
that the residual vector is unchanged. However, the dimension
of the control inputs u is important in this approach. This is
in contrast with other fault diagnosis approaches, where the
dimension of the measurement output y is important.

The isolation results given here for parametric faults are
based on the passive approach where no additional inputs
are applied for the diagnosis. The diagnosis is only driven
by the external input d to the system. The modification of
the feedback controller by a Q will change the closed-loop
matrix transfer function from the external input d to external
controlled output as described in [10], [16]. The closed-loop
matrix transfer function will also be changed in the fault-free
case. This is important for the design of Q in connection with
fault detection. Here, the design of Q needs to be a trade-
off between fast detection and at the same time with only
a minor change of the nominal closed-loop matrix transfer
function. In the isolation step, the trade-off is then between fast
isolation of the detected fault and a reduction of the closed-
loop performance. Here, fast isolation will in many cases have
a high priority.

A. State space representation

A state space description of T3,i: is given in the following
for the calculation of Qi. Let the system given by (1) have the
following state space representation:

Σ :















ẋ = Ax + Bww + Bdd + Buu

z = Czx + Dzww + Dzdd + Dzuu

y = Cyx + Dyww + Dydd + Dyuu

(27)

where x ∈ R n is the state vector. Further, let F be a stabilizing
state feedback gain such that A+BuF is stable. A coprime
factorization of Gyu is then given by, [16]:

(

M
N

)

=





A+BuF Bu

F I
Cy +DyuF Dyu



 (28)

T3 is then given by:

T3 = GzuM
= (Cz(sI −A)−1Bu +Dzu)(F(sI −A−BuF)−1Bu + I)
= (Cz +DzuF)(sI −A−BuF)−1Bu +Dzu

Let the i′th row of Cz and Dzu be given by Cz,i: and Dzu,i:,
respectively. Then T3,i: is given by:

T3,i: = (Cz,i: +Dzu,i:F)(sI −A−BuF)−1Bu +Dzu,i:

(29)
and Gzu,i: is given by:

Gzu,i: = Cz,i:(sI −A)−1Bu +Dzu,i:

The normal rank condition given by (26) is then given by:

normal rank

((

Cz,i:

Cz, j:

)

(sI −A)−1Bu +

(

Dzu,i:

Dzu, j:

))

= 2, i 6= j

(30)
Verifying a normal rank condition can easily be done, e.g. by
computing the rank at any frequency, which is not a zero.

V. EXAMPLE

The example is a spring-mass system introduced in [11].
The system includes N masses that are connected with springs
and dampers. The first and last mass is connected with a spring
and a damper to a fixed ground. We will use a system with 5
masses, 6 springs and 6 dampers in this paper.

Let mi be mass no. i, ki be the constant for spring no. i and
ci the constant for damper no. i and hi is the control input
gain to mass no. i, respectively. Further, let xi be the position
of mass no. i, ui be the control input to mass no. i and di the
disturbance to mass no. i.

The differential equation for the spring-mass system as well
as a state space model is derived in [11]. For a system with
five masses, a state space description of the system becomes:

A =





































0 1 0 0 0 0 0 0 0 0
−

k1+k2
m1

−
c1+c2

m1

k2
m1

c2
m1

0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
k2
m2

c2
m2

−
k2+k3

m2
−

c2+c3
m2

k3
m2

c3
m2

0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 k3

m3

c3
m3

−
k3+k4

m3
−

c3+c4
m3

k4
m3

c4
m3

0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 k4

m4

c4
m4

−
k4+k5

m4
−

c4+c5
m4

k5
m4

c5
m4

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0

k5
m5

c5
m5

−
k5+k6

m5
−

c5+c6
m5




































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BT
u =

(

0 0 h2
m2

0 0 0 0 0 0 0

0 0 0 0 0 0 h4
m4

0 0 0

)

Cy =
(

0 0 0 1 0 0 0 0 0 0
)

and Dyu = 0 when two control inputs (forces) are applied at
mass no. 2 and mass no. 4 and the position of mass no. 2
is measured. The state-space description of the system is of
order 10. The system is controlled by a full-order observer
based feedback controller of order 10 with feedback gain F
and observer gain L.

For this system, we will consider two different scenarios.
Scenario 1: Two spring faults: In the first scenario, we will

assume that faults can occur in spring constant no. 1, k1, or
in spring constant no. 3, k3. The two faults are modeled as
parametric faults given by:

k1(θk1) = k1(1+θk1), k3(θk3) = k3(1+θk3)

It is straightforward to see that with these faults, the A
matrix can be written as:

A(θ) = A+BwθCz (31)

with the state space matrices Bw and Cz in (27) given by:

BT
w =

(

0 0 k1
m1

0 0 0 0 0 0 0

0 0 0− k3
m2

0 k3
m3

0 0 0 0 0

)

θ = diag(θk1,θk3)

Cz =

(

−1 0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0

)

=

(

Cz,1
Cz,2

)

Further, the direct matrices are given by Dzw = 0, Dzu = 0
and Dyw = 0.

In order to isolate the two faults, we need to design
Q1 and Q2 satisfying (21). Let T3,i be given by (29) and
let Bu =

(

Bu,1 Bu,2
)

. This in turn gives the following
extremely simple expression for Qi:

Qi(s) = γi
(

Cz,i(sI −A−BuF)−1 ( −Bu,2 Bu,1
))T

(32)

Here, γi is a design parameter that can be used to detune
the closed loop systems. It won’t influence the residual or the
stability for the nominal system or for the situation where fault
no. i has occurred, but in general it will make the detection and
isolation more sensitive for any fault j, j 6= i, for higher values
of γi. It is always possible to choose a value of γi for which all
closed loop systems are stable. If chosen too large, however,
some of the faulty systems ( j 6= i) will almost certainly become
unstable.

For this example, we have chosen unity masses, mi = 1, i =
1 . . .5, and the spring and damper constants to:

k =















0.0724
0.0828
0.0769
0.0574
0.0687
0.0482















and c =















0.0059
0.0039
0.0040
0.0042
0.0021
0.0065















(33)

The feedback and observer gains have been chosen as:

FT =





























−0.0995 0.0447
−1.8460 0.6805
−1.0755 −0.0687
−1.6775 −0.0407

0.2893 −0.1631
−1.2362 −1.4206
−0.0604 −1.0491
−0.0407 −1.6620
−0.2497 0.2886

0.4374 −1.8600





























and L =





























−20.0746
−4.8047

−11.3446
−14.3498
−43.3641
−0.3404

−31.8334
6.5270

−19.9999
−4.4462





























The two faults have been picked to 50% and 80% of
the nominal values, respectively. Qi(s) has been designed
according to (32) with γ1 =−650 and γ2 = 350.

Based on this design, the system has been simulated with
each of the two faults and with each of the Qi’s. The result is
shown in Fig. 4.

2920 2940 2960 2980 3000

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t[s]

ε no
m

(t
) 

 v
s.

  ε
f(t

)

Fault #1 occurred, Q
1
 applied

 

 

ε
nom

(t)

ε
f
(t)

2920 2940 2960 2980 3000

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t[s]

ε no
m

(t
) 

 v
s.

  ε
f(t

)

Fault #1 occurred, Q
2
 applied

 

 

ε
nom

(t)

ε
f
(t)

2920 2940 2960 2980 3000

−0.04

−0.02

0

0.02

0.04

t[s]

ε no
m

(t
) 

 v
s.

  ε
f(t

)

Fault #2 occurred, Q
1
 applied

 

 

ε
nom

(t)

ε
f
(t)

2920 2940 2960 2980 3000

−0.04

−0.02

0

0.02

0.04

t[s]

ε no
m

(t
) 

 v
s.

  ε
f(t

)

Fault #2 occurred, Q
2
 applied

 

 

ε
nom

(t)

ε
f
(t)

Fig. 4. Nominal and faulty residuals for faults in k1 and k3.

It can be seen that the residual signals in the nominal and
the faulty cases are indiscernible when fault no. i has happened
and when Qi(s) has been applied. However when Qi is applied
to the system when fault no. 3− i has occurred, the residuals
change dramatically. This demonstrates that the two faults
can be both detected and isolated. If the actual disturbance
is not periodical, the isolation will instead have to be detected
based on the spectrum of the residuals. An approach to this is
to apply a bandpass filter to the frequency region where the
nominal and the faulty transfer function differ the most after
applying Qi(s).

Scenario 2: A spring fault and a damper fault: In the
second scenario, we will assume that faults can occur in spring
constant no. 3, k3, or in damping constant no. 5, c5. The two
faults are modeled as parametric faults given by:

k3(θk3) = k3(1+θk3), c5(θc5) = c5(1+θc5)

In this case, Bw and Cz in (31) are given by:

BT
w =

(

0 0 0 −
k3
m2

0 1 0 0 0 0

0 0 0 0 0 0 0 −
c5
m4

0
c5
m5

)

θ = diag(θk3,θc5)

Cz =

(

0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1

)

=

(

Cz,1
Cz,2

)

The same system parameters as in (33) have been picked
for this scenario and the same nominal controller has been
applied. The fault in k3 has again been assumed to be at 80%
of its nominal value. For the damper, however, it is assumed
that the damper is almost stuck, such that its damping value
has increased by a factor of 100.

The Qi(s) have again been designed by using (32). The two
values of γi have been chosen to 810 and −170, respectively.
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The resulting simulation for a periodic disturbance is shown
in Fig. 5.
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Fig. 5. Nominal and faulty residuals for faults in k3 and d5.

From Fig. 5, it can again be seen that the residual signals
in the nominal and the faulty cases are indiscernible when
Fault no. i has happened and when Qi(s) has been applied.
However when Qi is applied to the system when Fault no.
3 − i has occurred, the residuals change dramatically. This
demonstrates that the two faults can be both detected and
isolated. This is actually a somewhat non-intuitive result, for
as it has been reported in [11], the effect of a damping error
is almost invisible in a nominal simulation. Even with the
detuning by Q1, it is hardly visible in the system output.
However, as shown in Fig. 5 it becomes very distinctive in
the residual signal.

Theoretically, it should be possible to isolate all three faults
considered in the two scenarios above, i.e. the faults in k1,
k3, and c5. This is also true. However, an actual design shows
that the joint sensitivity becomes so poor that while it might
be possible to distinguish the three faults in simulation, it
will not be possible to separate them in practice by passive
fault isolation for an actual system that has modeling errors,
measurement noise, etc. It seems to be possible to isolate all
possible spring constant faults, but if damping errors occur,
at some point, it becomes impossible to isolate all faults in
practice by passive fault isolation. This is in line with the
analysis results given in [11], where the fault signature matrix
has been analyzed with respect to fault detection.

The simulation in this example is done without stochastic
input disturbances or measurement noise. Including input
disturbances and measurement noise, will not affect the de-
coupling result given in Sec. IV. This is a direct consequence
of (13), where the input d includes both input disturbances
as well as measurement noise. When input disturbances and
measurement noise are included, stochastic test methods are
needed for the detection of changes in the residual signals.
Here CUSUM or GLR tests might be applied, [1], [2], [5].

VI. CONCLUSION

The problem of isolation of parametric faults in closed-loop
systems has been considered in this paper. A YJBK controller
architecture has been applied. The fault isolation is based on
the dedicated design of the YJBK matrix transfer function. It
is shown that changing the feedback controller via the YJBK
matrix transfer function will result in a change in the residual
output when parametric faults had occurred in the system. This
is used for both fault detection and fault isolation.

Using an arbitrary non-zero stable YJBK matrix transfer
function will, in general, suffice for the detection of parametric
faults in the system. The isolation task is done by an active
decoupling approach, where a specific YJBK matrix transfer
function is designed such that it has no effect on the residual
vector in the case for a specific fault and else it results in
a change of the residual vector. Condition for isolability of
single faults is given. The condition is simple rank condition
of certain matrix transfer functions.
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