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Differential Model EMI Filter Analysis for Interleaved Boost PFC 

Converters Considering Optimal Phase Shifting 

Keywords 

« DM EMI Filter analysis », « Interleaved PFC Converters », « phase-shifting ». 

Abstract 

 Interleaved Power Factor Correction (PFC) has become a most popular topology from 

efficiency and power density point of view over single-switch boost PFC. The dependency of the 

Differential Model (DM) Electromagnetic Interference (EMI) noise magnitude on input current ripple 

leads to investigate the influence of the interleaved technique on EMI noise. Hence, this paper provides 

a comprehensive investigation for the design of DM EMI filter a single-phase interleaved PFC targeting 

to minimize component size. It is shown how different operation modes (continuous and discontinuous 

conduction mode) and switching frequency may influence the required filter attenuation and, 

consequently, the EMI filter size.  Furthermore, the impact of the number of interleaved stages and 

optimal phase shifting on the required filter attenuation is analyzed.  Finally, the influence of optimal 

phase shifting achieve an overall minimum EMI filter corner frequency is discussed.  Experimental 

results from a 2 kW interleaved single-phase boost PFC converter validate the effectiveness of the 

proposed optimal phase shifting method. 

Introduction 

Complying harmonic standards and power factor of the input AC power led to the development of boost 

power factor correction (PFC) circuits to achieve a power factor close to unity. Moreover, using 

interleaving PFC has many advantages for instance increase power densities, reducing the overall 

volume of the design, and reduce RMS current in the boost capacitor.  Furthermore, the use of the 

interleaved configuration, which is shown in Fig.1, brings a significant reduction in the switching 

frequency ripple component due to the ripple cancelation effect [1]. Notably, ensuring sinusoidally 

shaped input currents in connection with DM EMI input filters, which are limiting high-frequency noise 

from being transmitted from the converter to the grid [2]. However, high penetration of power 

electronics converter in the grid causes some challenging EMI issues due to inherent pulse energy 

conversion characteristics. Thereby, these unintended emissions must be limited to fulfill noise emission 

standards, such as CISPR 11 for frequencies beyond 150kHz [3]. Whereby, due to the increasing demand 

of the pulse-width modulated (PWM) converters, some standards are defined under 150 kHz in some 

application instance, CISPR 14 (Induction hobs) [4], and CISPR 15 (Lighting equipment) [5]. Further, 

it is accepted that the decreased input ripple current reduces the DM EMI noise magnitude and filter 

requirement attenuation which makes the DM EMI filter size smaller and corner frequency higher [1]. 

Furthermore, the EMI filter is one of the effective methods for damping EMI noise emission. From the 

EMI perspective view, finding the optimal phase shift angles which give the optimal corner frequency 

is a big challenge. Hence, designing optimal DM EMI filters for interleaved boost PFC applications can 

be considerably challenging, especially in low-frequency EMI range between 2-150kHz. This paper 

investigates the effect of phase-shift and number of interleaved stages in a single-phase PFC on DM 

EMI filter sizing. It is shown that an optimal phase-shift angle can be found depending on the power 

converter selected switching frequency, number of interleaved stages and its mode of operation which 

can minimize the EM filter size. Moreover, in order to highlight the importance of phase-shift control  
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in different applications, the studies are carried out for both below and above 150 kHz frequency ranges 

of standard requirements.  

This paper is organized as follows. Section II shows the designing process for the two-step EMI filter. 

Further, it describes the EMI measurement setup according to the CISPR standard, including line 

impedance stabilizing network (LISN) and EMI receiver. Section III presents to design optimal DM 

EMI filter for interleaved boost PFC due to finding the optimal filter corner frequencies with considering 

two-step EMI filters in Band A and B. Subsequently, the benefit of optimal phase shifting in interleaved 

units will be developed, where it will be shown that the amount of filter attenuation decreasing. Section 

IV illustrates the experimental results achieved for the two interleaved boost PFC converter by 

presenting the standard or optimal phase shift.   Finally, conclusions are drawn in Section V. 

EMI Simulation 

DM Filter Design 

The EMI filter is used to protect the utility from the high frequency conducted emissions noise, which 

should comply with EMI standards requirements, more details about the emission standard are discussed 

before. Therefore, the design of a two-stage filter structure, as shown in Fig. 2, is considered in the 

following. Further, the primary purpose of the EMI filter is damping emission noise and make it lower 

than limits to fulfill the standards limit. Furthermore, the selecting filter component is depending on the 

required filter attenuation Attreq, which can be calculated from 

max lim( )[ ] ( )[ ] ( )[ ] arg [ ]
reqtt itA f dB U f dB V CISPR f dB V M in dB = − +                                            (1) 

Where, Umax is the maximum peak of the spectrum which can measurement based on the PLECS 

simulation and plotting based on the (4); Attreq is the quantity of noise that filters should be damping it. 

CISPRlimit can be found from the standard requirements, which is shown in Fig. 3. Moreover, the filter 

designing margin is considered 6 dB due to component degradation and EMI parameter tolerance. 

Hence, two-step EMI filter including inductor and capacitor size can be found as [6] 
2 2 2( ) (( 2 ) . . 1) (2 ) . .

reqtt DM DM DM DMA f j f L C f L C = + +                                                                (2) 

As discussed before, the reduce the input ripple current can be effect on the DM EMI noise magnitude 

( Umax ), which will make the DM filter smaller. In addition, the dependency of EMI filter corner 

frequency to filter component, lead a challenge in selecting filter component size. Hence, lowering the 

EMI filter component size makes the DM filter corner frequency higher. Whereby, the filter corner 

frequency can be found from 
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Fig. 1: Topology of Interleaved boost PFC converter with including LISN and EMI receiver. 



                   
Fig. 2: Two stages DM EMI filter configuration.        Fig. 3: Considered emission limits following 

CISPR 15 [5] and CISPR 11 [3] based on QP 

(Quasi Peak). Band B is only shown up to 500 kHz. 

LISN and EMI Receiver  

A LISN is specified for EMI tests according to CISPR 16[8], to guarantee the repeatable of the 

measurements. Moreover, LISN, not only provides the decoupling line from the device under test (DUT) 

but also provides an interface between the DUT and the test receiver. The structure of the LISN for using 

in 9kHz-30MHz is shown in Fig 4. Notably, LISN can measure an RMS time-domain voltage (umeas) to 

define EMI noise based on the (4). Hence, the EMI test receiver used QP detection for detecting EMI 

peak measurement. Moreover, Bandwidth of the 4th order Butterworth bandpass filter for band A(9-

150kHz) is 200Hz, and for band B(150kHz-30MHz) is 9kHz. Finally, with considering of (4), EMI peak 

measurement [7]-[9] can be estimated, by 

2

max

2

[ ] 20 log[1/ ( ) ( )]

BW
f MB

meas
BW

f MB

U dB V V u f RBW f 

= +

= −

=                                                                            (4) 

Investigation of EMI Filter Design 

 Non-Interleaving Single Unit 

In this part, EMI filter design for non-interleaving 1-unit PFC, which is shown with black color in Fig. 

1, is studied. The boost-inductor design for continuous conduction mode (CCM) [10]-[11], and 

discontinuous conduction mode (DCM) [12] operation has already been presented in the literature. 

Hence, for the sake of simplicity, only the most well-known equations will be specified in this section. 

Notably, depending on the inductor current, the boost PFC converter can operate in different modes, 

including CCM and DCM. Hence, designing an EMI filter to fulfill the standard requirements, for both 

scenarios is different due to different currents ripple. Furthermore, Inductor current for CCM and DCM 

operations can be calculated respectively from  
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a)                                                                             b) 

Fig. 4. LISN recommendation from CISPR 16 for band A, (a) per-phase circuit diagram, (b) per-phase DM 

mode transfer function [6]-[7]. 
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Parameter values for single-phase PFC in order to finding filter required attenuation with respect to 

different frequency switching in CCM and DCM as uo = 400 V, ug = 230√2 V, Pmax = 1000 W, ΔiL,max = 

0.62 A. Hence, inductor sizes are can be calculated from (5) and (6) for the different case studies. So, 

inductor size for CCM and DCM mode are presented at table I. It is clear that the size of the inductor 

for DCM mode is lower than CCM mode. Whereby the maximum peak of the spectrum (Umax) for 

different frequency switching can be found based on the PLECS simulation and (4). Therefore, the EMI 

filter component (LDM CDM) and corner frequency can be achieved from (2) and (3), respectively. In the 

following, Fig. 5(a) and Fig 5(c) shows the Attreq requirement to design a DM two-stage EMI filter based 

on the (1) in different switching frequency.  So, Fig. 5(b) and Fig 5(d) exposes the filter corner frequency 

(fc) with considering different switching frequency for two stages DM EMI filter in band A and B based 

on the (1)-(2). It is clear from Fig. 5(a) and Fig. 5(b), Attreq increases significantly at fsw = 50 kHz because 

the standard limit (CISPR 15) gets more restricted beyond = 50 kHz for band A which is shown from 

Fig. 3. Furthermore, it is generally known that CCM has the lower current ripple in comparison to DCM 

modes. Therefore, as a consequence of Fig.5(a) and (d), under CCM operation lower attenuation (Attreq) 

is required.  One can see that, due to the first noise peak will be appeared at the switching frequency fsw 

in band A, the best  fsw selection is to be higher than 150 kHz. But if  fsw has to be less than 150 kHz, 

 

Table I: Inductor size value for single phase unite in DCM and CCM mode based on the (5) and (6). 

 

 

                                           Switching Frequency(kHz) 

20 25 30 35 37.5 45 50 70 75 140 150 250 500 

CCM 

(mH) 

8.06 6.45 5.38 4.61 4.30 3.58 3.23 2.3 2.15 1.15 1.08 0.65 0.32 

DCM  

(μH) 

247 197.6 164.7 141.1 131.7 109.8 98.8 70.6 65.8 35.3 32.9 19.7 9.8 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5: The relation between the required attenuation and the switching frequency in a) Band A. c) Band 

B base on the (1) for single converter unit. The relation between the two-stage filter corner frequency and 

the switching frequency in b) Band A, d) Band B base on the (1)-(2).  
 



therefore, two or higher stages filter should use to damp attenuation requirement. As it is clear that from 

the Fig. 5(a), selecting the switching frequency under the 50 kHz is need to low filter requirement 

attenuation in comparison with selecting above then 50kHz. Moreover, the first noise peak which 

appears in band B is the kth multiple of the switching frequency fsw. Notably, it clear that from Fig. 5(c) 

that, the filter corner frequency fc is significantly decreased at the divisors of fsw = 150 kHz (30, 37.5, 50 

...150 kHz). As a result, the main reason for that is choosing the switching frequency to appear first 

noise peak fD higher than 150 kHz in-band B.  For instance, choosing fsw = 75 kHz, the first noise peak 

appears at 150 kHz which is the second harmonics of fsw = 75 kHz. Moreover, if fsw is chosen 70 kHz, 

the first noise peak appears at fsw = 210 kHz which is the third harmonics of fsw = 70 kHz. Hence, the 

first peak above 150kHz for the case with fsw = 70 kHz is the lower magnitude and higher frequency in 

comparison to the second case with fsw = 75 kHz. Whereby, it is not efficient to switch at the previously 

mentioned critical frequencies and use a switching frequency just a bit lower than them, which will 

increase the filter corner frequency without affecting the boost inductor size. 

Interleaving Using Standard Phase-Shift 

The interleaved boost PFC and the beneficiary have been previously introduced in the literature [1]. In 

this section, the interleaving technique to achieve optimal design DM EMI filter has been studied. 

Hence, up to four interleaved units have been run at different switching frequencies in band A and band 

B, to achieve the connection between required attenuation with interleaving and optimal phase shift.  

Notably, the typical phase shift 360°/N (N is the number of the interleaved converter) is used here 

between the interleaved units.  As discussed before, the inductor size for interleaved will be L1 = NL 

due to ensure constant energy storage. As previously mentioned, in band A, the first noise peak will 

appear at the switching frequency fsw. By interleaving, the equivalent switching frequency will be N fsw, 

where N is the number of the interleaved units. For example, in two units interleaved at fsw = 25 kHz, 

the equivalent switching frequency will be 50 kHz. Interleaved technique can be the decreased ripple 

current, and KC(d) is defined as a cancellation factor, which is the ratio between the input current ripple 

after interleaving and the inductor current ripple in Non-interleaving one unit: 

1
.( ).( )

( )
.(1 )

c

m m
N d d

N NK d
d d

+
− −

=
−

                                                                                                                           (7)  

Where N is the number of the interleaved units, m=floor (N.d) and, d is the duty cycle. More information 

about the effect of interleaving on ripple current has been presented on [1]. Fig. 6(a) is shown the 

connection between the required attenuation and the switching frequency up to four units for CCM mode 

in Band A. It can be seen in Fig. 6(b) and 6(d) that there is a drop in the filter corner frequency at fsw = 

50 kHz and fsw = 25 kHz for one and two units, respectively. Since the equivalent switching frequency 

is N  fsw, then there is no need to use a filter if the switching frequency higher than 75 kHz in two units, 

50 kHz in three units, and 37.5 kHz in four units because there will be no peak noise in Band A. The 

EMI filter component values and corner frequency can be achieved from (2) and (3), respectively. So, 

Fig. 6(b) shows the filter corner frequency (fc) with considering different switching frequencies for two 

stages DM EMI filter in band A based on the (1)-(2). Moreover, Fig. 7 shows the EMI simulation at fsw 

= 35 kHz in non-interleaving (one unit), and in two units interleaved (180o phase shifting).  As it is clear 

that, the first noise peak is appeared at fsw = 70 kHz after interleaving while it is at fsw = 35 kHz before 

interleaving. Notably, in two units interleaved, the odd order of the switching frequency harmonics is 

canceled out, while it does not affect the even harmonics. Hence, according to Fig. 6(d), the filter corner 

frequency is increasing at a specific switching frequency range (30-37.5kHz, 50-75kHz, and > 150 kHz) 

in two units interleaved. In addition, for one unit (non-interleaved), the first noise peak beyond 150 kHz 

will be the odd order of the switching frequency harmonics at those ranges. Hence, interleaving two 

units will be eliminated odd-order mention noise. As a consequence, then the filter will be designed 

based on the next even harmonics, which has a higher frequency and lower amplitude, as can be 

illustrated in Fig. 6(c), where the required attenuation is lower in those ranges. For instance, if fsw = 35 

kHz, the first noise peak in one unit (non-interleaved) in-band B will be at fsw = 175 kHz, which is the 

5th harmonic. But by considering interleaving two units with 180o as phase shift, the noise peak will  

 



 
                                                                  (a)                                                                              (b)  

 
                                                           (c  (           (d  (  

Fig. 6: The relation between the required attenuation and the switching frequency up to four units 

interleaved in a) Band A. c) Band B. The relation between the 2-stages filter corner frequency and 

switching frequency up to four units interleaved in b) Band A d) Band B for CCM based on the required 

attenuation (1)-(2). The typical phase shift is considered 360°/ N.  

 

 
Fig. 7: EMI simulation approach for one and two-unit interleaved CCM at fsw = 35 kHz based on 

PLECS software (interleaved typical phase shift is equal 180o). 

have happened at fsw = 210 kHz (6th harmonic), which is shown in Fig. 7 shows. Therefore, the filter 

size decreases due to it happened at a high frequency. 

Interleaving Using Optimal Phase-Shift  

The conventional interleaving with typical phase-shift does not give any beneficiary at some switching 

frequency ranges like 75-150 kHz in band B, which is clear that form Fig.6(c). Hence, to target the 

cancellation effect to occur at any order of harmonics, a different phase-shift angle will be presented in 

this section. Hence, Fig. 8(a) and Fig.8(b) are given an optimal phase-shift effect on required attenuation, 

and filter corner frequency in different switching frequencies on two unites Interleaved, respectively. 

As it is visible that the required attenuation and filter corner frequency are the same for one unit non-

interleaved and two units with a standard phase shift between 75-150 kHz frequency range. Notably, 

using optimal phase shifting is can be provided a beneficiary instance decreasing required attenuation 



  
(a)                                                                                      (b) 

Fig. 8: Choice different phase shift angle for two units interleaved in Band B for CCM mode, a) The 

relation between the required attenuation with the switching frequency, b) The relation between the filter 

corner frequency with the switching frequency. 

 
Fig. 9: Noise phasor diagram for two units interleaved with 90° phase shift. 

 and increasing corner frequency for using Interleaving technique on switching frequency range 75-

150kHz. Because of optimal phase shifting can eliminate the second-order harmonics of the switching 

frequency, which is the first noise will appear above then 150kHz if the switching frequency is choice 

at the range (75kHz- 150kHz). Notably, Fig. 9 shows the noise phasor diagram for two units interleaved 

with a 90° phase shift.  As can be found on the 2nd, the total noise will be zero due to the noise phase 

cancelation of two units. 

360o

if k not a multipleof N
N

 =                                                                                                             (8) 

360

min( ( . ))

o

if k a multipleof N
floor N k

 =                                                                                                (9) 

Where k is the harmonic order of the frequency switching, which will be appeared as a first noise peak 

in Band B. In addition, the resulting of optimal phase shift angle, found by calculations according to (8) 

and (9) are summarized in Table II. Whereby, two simulation cases are examined to confirm the optimal 

phase shift, especially in band B with different phase-shifting (180o and 45o). In the following, Fig. 10 

illustrates obtained comparative results with the proposed optimal phase shift with and without EMI 

filters fsw = 20 kHz. Hence, Table III summarizes the outcomes of two simulation case study, including 

required attenuation and corner frequency. Notably, a 45o phase shift in comparison of 180o is needed 

lower filter attenuation in the band B while 180o need to high filter attenuation. 

Table II: Optimal phase shift angles at the switching frequency range (30-150kHz) up to four units 

interleaved based on the (8) and (9). 

Frequency 30kHz 37.5kHz 50kHz 75kHz 150kHz 

Harm. order: 5th 4th 3th 2th 1th 

2 Units 180o 45o 180o 90o 180o 

3 Units 120o 120o 40o 120o 120o 

4 Units 90o 45o 90o 90o 90o 

Table III: Band B EMI filter design based on PLECS software for standard (180º) and optimal phase 

shift(45º) base on the (8) and (9). 

Phase ΔiL L(mH) fD[kHz] Attreq[dB] LDM (µH) CDM  (nF) 

180o 2.6 1 33.2 52.3  180 127 

45o 2.6 1 43 43.5 180 76 

75-150kHz 
75-150kHz 



 

 
a) Without EMI filter 

 
b) With EMI filter 

Fig. 10: EMI simulation approach for two-unit interleaved CCM at fsw = 37.5 kHz based on PLECS 

software for standard (180º) and optimal phase shift (45º) base on the (8) and (9). 

 Experimental Results 

To evaluate the previously done examinations, the two-unit Interleaved boost PFC rectifier shown in 

Fig. 1 is considered under CCM, as it is summarized in Table Ⅳ. A laboratory setup including EMI 

receiver and LISN and the two-unit interleaved converter provides simulation verification. Moreover, 

the simulation model has been run in PLECS software. The sampling frequency of simulation and 

experimental results is 100 kHz. Whereby, Fig. 11 is measured experimental waveform of two units - 

 

 

Table Ⅳ: Case study specification  
 

Grid Voltage ug 230 V 

  Output Voltage Uo 400 V 

Output Power Po 2 kW 

Fundamental Frequency fo 50 Hz 

DC Link Inductor L 1.8mH 

DC-Link Capacitor C 500 µF 

Switching Frequency fsw 20 kHz 

Capacitor Ripple dVdcmax 20 V 

Inductor Ripple dilmax 20 A 

Phase Shift degree 0°, 90°, 180° Fig.11 Measured experimental waveform of two units 

interleaved with Table Ⅳ parameters (fsw = 20 kHz) 

and phase shift 90o 
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(a) α=0 

 

(b) α=180 (conventional) 

 
(c) α=90 (non-conventional) 

Fig. 12: Obtained EMI measurement for 2-unit Interleaved Boost PFC converter, simulation-based 

PLECS software, and experimental measurement. Test system specification is based on the Table (Ⅳ). 

 

interleaved with Table Ⅳ parameters (fsw = 20 kHz) and phase shift 90o. Moreover, the first test case 

is two-unit interleaved with phase shift a = 0° and this the same as using 1-unit (Non-interleaved), but 

the difference is that total boost inductor will be two times of non- interleaving. Hence, Fig.12(a) 

illustrates the simulation and experimental results for two-unit interleaved without EMI filter and phase 

shift α = 0°. In the next step, the second test has a 180-degree phase difference between two Interleave 

PFC, which call conventional interleave (standard phase shift). It is clear from Fig.12 (b), the 

experimental outcome is validated simulation by considering the standard phase shift between the units. 

Notably, the first order of harmonics appears in 2fsw in comparison with α = 180° in higher frequency. 
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Notably, Fig.12(c) is shown the optimal phase shift effects with considering 90° as a phase shift between 

the units for two-unit interleaved without EMI filter. It is clear that the second-order harmonics is 

disappeared with considering 90° as a phase shift based on the Fig.9. Hence, it can be used to optimize 

the filter size in band A. As a consequence, the results are shown the selecting optimal phase shift can 

be canceled selective harmonics, which is essential in calculating required attenuation in filter designing. 

Since the noise-emission level is above the standard requirement, which is shown in Fig. 12, designing 

a proper EMI filter is necessary.  

Conclusion 

This paper investigates the effect of optimal phase-shift selection on EMI filter optimization for both 

Band A (9-150 kHz) and B (>150 kHz).  The obtained results show that, in band A, the interleaved 

configuration provides high benefit, which is the possibility of not using the filter if the switching 

frequency higher than 75 kHz in two units, 50 kHz in three units, and 37.5 kHz in four units. 

Furthermore, in-band B, it has been seen that from Fig. 8, using the typical phase-shift between the units 

is not efficient at all the switching frequency ranges. Therefore, different phase-shift is used to achieve 

a high corner frequency. Hence, a generic formula to find the phase shift angles which give the optimal 

corner frequency in interleaved boost PFC has been found in band B, which is a consequence of Fig. 10.   

In addition, this paper shows the beneficiary of the optimal phase shift in band A, to cancel selective 

harmonics to optimize required attenuation for EMI filter designing. Finally, the experimental outcome 

is to validate the standard phase shift and optimal phase shift effects for band A. 
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