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Abstract

Barriers between islands often inhibit gene flow creating patterns of isolation by distance. In

island species, the majority of genetic diversity should be distributed among isolated popula-

tions. However, a self-incompatible mating system leads to higher genetic variation within

populations and very little between-population subdivision. We examine these two contrast-

ing predictions in Erysimum teretifolium, a rare self-incompatible plant endemic to island-

like sandhill habitats in Santa Cruz County, California. We used genome skimming and

nuclear microsatellites to assess the distribution of genetic diversity within and among eight

of the 13 remaining populations. Phylogenetic analyses of the chloroplast genomes

revealed a deep separation of three of the eight populations. The nuclear ribosomal DNA

cistron showed no genetic subdivision. Nuclear microsatellites suggest 83% of genetic vari-

ation resides within populations. Despite this, 18 of 28 between-population comparisons

exhibited significant population structure (mean FST = 0.153). No isolation by distance

existed among all populations, however when one outlier population was removed from the

analysis due to uncertain provenance, significant isolation by distance emerged (r2 =

0.5611, p = 0.005). Population census size did not correlate with allelic richness as predicted

on islands. Bayesian population assignment detected six genetic groupings with substantial

admixture. Unique genetic clusters were concentrated at the periphery of the species’

range. Since the overall distribution of nuclear genetic diversity reflects E. tereifolium’s self-

incompatible mating system, the vast majority of genetic variation could be sampled within

any individual population. Yet, the chloroplast genome results suggest a deep split and

some of the nuclear microsatellite analyses indicate some island-like patterns of genetic

diversity. Restoration efforts intending to maximize genetic variation should include repre-

sentatives from both lineages of the chloroplast genome and, for maximum nuclear genetic

diversity, should include representatives of the smaller, peripheral populations.
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Introduction

The isolating nature of islands offers a unique window into evolution. Islands are often sepa-

rated by barriers to migration which are predicted to produce unique genetic footprints [1–4].

Island species are characterized by having restricted gene flow among islands with a gradient

of decreasing gene flow as islands become more distantly separated. This creates genetic struc-

ture among islands where most of the genetic variation resides among islands rather than

within islands (Hypothesis #3 in [4]). This prediction is supported by several empirical studies

[5,6], with noteworthy exceptions [7,8]. In addition to geographical isolation, life-history char-

acters, such as fruit type, have been identified as important factors in determining the distribu-

tion of genetic variation within and among islands. For example, species with fleshy fruits are

suited for frequent dispersal by animals, favoring genetic cohesion in otherwise fragmented

landscapes like islands [9].

Comparable predictions regarding the distribution of genetic diversity within and among

islands can be found in Wright’s island model of population genetics (e.g., isolation by dis-

tance) [10]. This model is based on geographically distinct populations separated by barriers to

gene flow but can also be applied to continental habitats that are island-like. However, investi-

gations into the distribution of genetic variation in island-like habitats are relatively rare given

the diversity of naturally patchy, edaphically unique habitats (reviewed in [11]). Complemen-

tary to this line of inquiry are a wealth of population genetic studies of species where distribu-

tions are characterized by a central, large, relatively contiguous meta-population surrounded

by several peripheral, smaller, isolated populations [12]. For example, in a meta-analysis of 134

population genetic studies of species with a clear center-margin population distinction, Eckert

et al. found lower genetic variation in marginal (peripheral) populations compared to central

populations (64.2% of studies) and higher genetic subdivision in comparisons between central

and peripheral populations (70.2% of studies), reflecting the island-like nature of most mar-

ginal populations [12].

The genetic predictions for species on islands and in island-like habitats must also account

for life-history traits that can directly affect gene flow, such as mating system [9,13] and seed

dispersal [14]. In terms of mating system, many island species are self-compatible [15], which

greatly affect the distribution of genetic diversity [16]. Outside of islands, mating system, spe-

cifically outcrossing rate, is repeatedly the single best predictor of the distribution of genetic

diversity in several plant population genetic meta-analyses [17–19]. Outcrossing homogenizes

the genetic differences among populations and maintains this variation within populations

over long periods. Thus, most genetic variation is harbored within populations for outcrossing

lineages [20,21]. Meanwhile, selfing reduces the effective population size and increases the

impact of drift, which collectively leads to the accumulation of genetic differences among pop-

ulations and increased homogeneity within them. A self-incompatible species restricted to

island-like habitats would provide a rare opportunity to test the contrasting predictions posing

mating systems against island-like habitats as the major factor determining the distribution of

genetic diversity.

Erysimum teretifolium (Brassicaceae) is a self-incompatible plant endemic to the Zayante

sandhills of Santa Cruz County, California (Fig 1A). The Zayante sandhills are island-like,

xeric habitats separated by relatively mesic redwood (Sequoia sempervirens) and mixed ever-

green forests. These Miocene-era, uplifted sea floors are characterized by depauperate levels of

macronutrients and extremely low water holding capacity (J. McGraw, personal communica-

tion). Several animals and plants have adapted to these unique island-like habitats including

the Mt. Hermon June Beetle (Polyphylla barbata), Zayante band-winged grasshopper (Trimer-
otropis infantilis), Santa Cruz kangaroo rat (Dipodomys venustus venustus), and the subject of
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this study, the Ben Lomond Wallflower (Erysimum teretifolium). In reference to the high con-

centration of endemism and the island-like nature of the Zayante sandhills, Peter Raven once

referred to this region as “the Galápagos Islands of Santa Cruz County,” (P. Raven, Missouri

Botanical Garden, http://www.landtrustsantacruz.org/sandhills/dr_raven.htm). Originally

consisting of 2,535 hectares [22–25], this naturally patchy habitat is threatened by the sand

quarrying industry and residential development [26]. Now, it is estimated that only ~1,600

hectares remain [24]. Although the concentration of biodiversity and habitat distribution in

the Zayante sandhills is remarkably island-like, it remains unclear whether the distribution of

genetic diversity among its inhabitants match that predicted for oceanic island endemics or is

more consistent with the obligate outcrossing mating system of many of the inhabitants

including E. teretifolium [27].

Erysimum teretifolium occupies an open subset of the Zayante sandhills dotted with Pon-

derosa pines (Pinus ponderosa) known as sand parkland [24]. As a unique subtype of sandhill

habitat, sandhill parkland of the Zayante sandhills was originally estimated to occupy approxi-

mately 240 hectares, but is currently known from less than 80 hectares [24,28]. Paradoxical for

an island-like endemic plant, this perennial species is self-incompatible and attracts a diversity

of pollinators from the orders Coleoptera, Diptera, Hymenoptera, and Lepidoptera [27]. In

experimental crosses, outcross pollinations produce approximately 6.5 × more seeds than self

pollinations, and most self pollinations produced no seeds consistent with a self-incompatible

mating system [27]. Neither the fruits (7–11 cm long siliques), nor the seeds (< 0.5 mg each)

exhibit obvious long-distance dispersal mechanisms suited to zoochory or anemochory,

although some seeds have a very small (< 1 mm) wing on the distal margin [29]. As a member

of the E. capitatum alliance [29], it is a putative hexaploid with unknown parentage (2n = 36;

[29]).

In 1998, 16 remaining populations of E. teretifolium were identified [28]. Half of these

reported populations were on private land and thus, were inaccessible for this study. Four to

six populations form a central cluster and are separated by as little as 1 km, while other outly-

ing populations are separated by as many as 12 km (Table 1). These populations range in size

from 35 individuals to over 1,000 individuals [30]. As a result of habitat destruction and small

population census sizes, the species was listed as federally endangered in 1994 [31]. A histori-

cally large population (~ 2,000 individuals) at the Bonny Doon Ecological Reserve has recently

spiraled into near extirpation with less than 10 reproductive adults between 2013–2019 due to

competition from encroaching sandhill chaparral and reproductive failure [30]. In hopes of

rescuing this population, locals may have supplemented it with seeds from a nearby, more

accessible population at Quail Hollow County Park (J. McGraw & V. Haley, personal commu-

nication). The Bonny Doon Ecological Reserve population is now the focus of a major reintro-

duction effort (T. Kasteen, CA Fish and Wildlife Service, personal communication). Because

of the concentration of rare endemics in the Zayante sandhills and unique edaphic regions in

general, E. teretifolium could be a model for the distribution of genetic diversity within and

among populations in continental island-like habitats, which could help guide future conserva-

tion efforts including where to source material for restoration efforts in the Zayante sandhills

and beyond.

In this study, we examine the distribution of genetic diversity within and among eight

island-like populations of E. teretifolium (Fig 1B) using a genome skimming approach

Fig 1. The Ben Lomond wallflower and location of the sampled populations. Erysimum teretifolium in sandhill parkland habitat at Mount

Hermon (A) and the geographic location and abbreviations for the eight studied populations in the Zayante sandhills in Santa Cruz County,

California, USA (B). Base map provided by the USGS National Map Viewer (http://viewer.nationalmap.gov/viewer/). Scale bar, 5km.

https://doi.org/10.1371/journal.pone.0227523.g001
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complemented with nuclear microsatellites to compare the contrasting effects of geography

and mating system on the distribution of genetic diversity. Genome skimming relies on next-

generation sequencing technology to efficiently capture the majority of the chloroplast

genome, the nuclear ribosomal cistron (including the hypervariable internal transcribed spacer

and external transcribed spacer regions; hereafter referred to as nrDNA), and sometimes even

portions of the mitochondrial genome [32]. We apply this data in combination with four

nuclear microsatellite markers to test the contrasting predictions from its island-like habitat

versus the self-incompatible mating system on the distribution of genetic diversity. The island

model predicts that most genetic variation will be found among populations and strong genetic

structure will exist among isolated populations because of barriers to gene flow. Alternatively,

the self-incompatible mating system should maintain high levels of genetic variation within
populations with very little variation attributed to among-population comparisons. The con-

servation implications of these results will guide how to sample source material for future rein-

troduction and restoration efforts.

Materials and methods

Genome sizing

In order to confirm the hexaploid nature of E. teretifolium (hereafter, ERTE), one individual

from four geographically distinct populations (Bonny Doon, Geyer, Olympia, and Quail Hol-

low) was grown in a greenhouse for genome size estimation using flow cytometry (Benaroya

Research Institute at Virginia Mason, Seattle, WA). One hundred mg of fresh leaf tissue was

stored on ice for approximately 24 hours until it could be homogenized. Cells were initially

lysed in Galbraith’s buffer [33] and nuclei were stained with propidium iodide and treated

with RNase. Measurements were performed on a Becton Dickinson FACS flow cytometer.

Genome size was estimated in comparison to chicken red blood cells (2C = 2.33 pg) since

plant standards were not readily available. Four measurements were taken per sample. Dolezel

Table 1. Population location, census size, sampling, and microsatellite genetic diversity.

Population Abbrev. Geographic location Census

size

Total no.

samples

No. samples from

captive breeding

population

Total no. microsatellite

fragments scored

No. fixed microsatellite

fragments within

population

Azalea Rd. AZA 37˚04’21.97”N

122˚03’42.39”W

450 22 n/a 15 6

Bonny Doon Ecological

Reserve

BD 37˚02’24.88”N

122˚05’20.75”W

1000� 25 25 12 6

Geyer Quarry/ Randall

Morgan Preserve

GEY 37˚04’51.27”N

122˚00’18.64”W

500 42 24 15 4

Highway 17 HWY 37˚01’29.90”N

122˚01’35.30”W

35 11 n/a 12 7

Mount Hermon/ Hansen

Quarry

MTH 37˚02’55.52”N

122˚02’57.10”W

150 24 n/a 15 6

Olympia Quarry/ San

Lorenzo Valley Water

District

OLY 37˚04’51.27”N

122˚00’18.64”W

650 43 18 15 4

Quail Hollow County

Park

QH 37˚04’51.27”N

122˚00’18.64”W

750 42 18 15 6

Sandhill Rd. and

Glenwood Dr.

SHGW 37˚04’51.92”N

122˚00’18.41W

50 24 n/a 12 5

� Bonny Doon census size estimated from the average before the rapid population decline in approximately 2013.

https://doi.org/10.1371/journal.pone.0227523.t001
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et al.’s method [34] was used to convert nuclear mass into base pairs (978 million base pairs

per pg of diploid nuclear DNA).

Sampling

Leaf samples were collected from eight ERTE populations (11–43 individuals per population;

Fig 1B, Table 1). This work was permitted under Agreement #P1182012 00 with the California

Department of Fish and Wildlife. All field sites were accessed with permission from the appro-

priate authorities (Lee Summers at Quail Hollow County Park, Betsy Herbert at San Lorenzo

Valley Water District, Valerie Haley at Mount Hermon, Dr. Jodi McGraw at Azalea Rd. and

Sandhill Roadd/Glenwood Drive, Lynn Overtree at the Randall Morgan Preserve and Terris

Kasteen at the Bonny Doon Ecological Reserve). An additional 27 samples were collected from

both subpopulations of the single known location of E. capitatum ssp. angustatum (hereafter,

ERCAAN) at the Antioch Dunes National Wildlife Reserve, California. This species, as with

the all the taxa in the E. capitatum alliance, is also a hexaploid (2n = 36; [29]).

This work was conducted under the same permit number and field sites were accessed with

permission from Susan Euing at the U.S. Fish and Wildlife Service, Antioch Dunes National

Wildlife Reserve. This species was included to compare the genetic variation within and

among species and provided a reference for how much variability to expect between closely

related species. ERCAAN and ERTE both belong to the recent radiation of the E. capitatum
alliance in western North America, yet the two are geographically and morphologically distinct

[29].

For both species, individuals separated by a minimum of two meters were sampled broadly

throughout each population. Because of conservation concerns at four ERTE populations

(Bonny Doon, Geyer, Olympia, and Quail Hollow), some or all of the samples were derived

from a captive breeding population established by Dr. Ingrid Parker at University of Califor-

nia, Santa Cruz (Table 1). For the captive breeding populations, we sampled from 9–13 mater-

nal families originating from two to three geographically distinct patches separated by 10–62

meters. Leaf samples were stored at -20C until DNA could be extracted using the NucleoSpin

Plant II kit with lysis buffer PL1 (Macherey-Nagel, Düren, Germany).

Genome skimming methodology

One μg of DNA from each of 12–25 individuals per population (a subset of all of the samples)

were pooled after quantification by Qubit (Thermo-Fisher, Waltham, MA). Genomic DNA

library preparation was completed according to the manufacturer’s protocol by Novogene

(Beijing, China). These eight samples (populations) plus two outgroup samples (ERCAAN)

were indexed and then sequenced on a single lane of Illumina HiSeq2000 (San Diego, USA)

producing 250bp paired-end reads.

Data was processed, assembled, and analyzed primarily in Geneious v.8.1.6 (Biomatters

Ltd., Auckland, New Zealand). Initially, fastq files were trimmed using the default settings in

Geneious (i.e. 3’ and 5’ ends of sequences with more than a 5% chance of an error per base

were removed). Next, we assembled the sequences using Arabidopsis thaliana genomes as the

references (GenBank accession numbers NC_000932 and NC_001284 for chloroplast and

mitochondrial genomes, respectively). For the nrDNA cistron, we created a mosaic reference

substituting Erysimum capitatum sequences for the hypervariable internal transcribed spacer

region (GenBank accession numbers AY254534, DQ357540, KJ417987 and KJ417988), but

relying on the Arabidopsis nrDNA (GenBank accession numbers X52320 and X16077) for the

remainder since no complete sequences of the large and small subunits were available for Ery-
simum. We conducted assemblies of the chloroplast genome, mitochondrial genome and
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nrDNA cistron separately using the Geneious assembler under default settings with medium-

low sensitivity and 10 iterations [35]. A consensus sequences for each sample was extracted

requiring a 75% match to the reference and 5x minimum coverage. Annotations were trans-

ferred using a 75% similarity cutoff to the reference genome. DNA sequence alignments were

created using the MAFFT plugin [36] with default settings, followed by visual inspection and

manual adjustments when necessary. Phylogenetic analyses were conducted using RAxML

with the GTR+CAT approximation of the GTR+G model of nucleotide evolution with esti-

mate of proportion of invariable sites and 1,000 bootstrap replicates [37]. The resulting trees

were visualized using FigTree v.1.4.2 [38].

Genetic diversity in the chloroplast genome was examined using the Discriminant Analysis

of Principal Components (DAPC) [39,40]. Ambiguities were not included in the analysis since

DAPC treats them as additional characters, not as the ambiguities that they are (following the

command “SNP<-DNAbin2genind”). We could not use DAPC for the nrDNA since 58 of 59

SNPs contained ambiguities for at least one of the samples. We compared DAPC analyses

using a priori defined groups. First, we used two partitions (ERCAAN vs. ERTE) and then we

expanded to three partitions based on the two distinct ERTE lineages (ERCAAN vs. GEY,

OLY, QH, SHGW and MTH vs. AZA, BD, and HWY) recovered in the phylogenetic analysis

of the chloroplast genome. The number of principal components was set according to alpha-

score optimization (i.e., trade-off between power of discrimination and overfitting) [41].

DAPC analysis was implemented in R v.3.2.3 [42] using the package ‘adegenet’ v.2.0.0 [39].

Microsatellite methodology

After an initial survey of the 10 nuclear microsatellite loci developed from the European E.

mediohispanicum [43], we selected four of the most promising loci for further analysis. PCR

was performed in 20 μL reactions containing the following: 0.8 μL of template genomic DNA

(5–300 ng), 1.25× Buffer B (New England Biolabs), 3.125 mM MgCl2 (New England Biolabs),

0.313 mM dNTPs (New England Biolabs), 1 μM each of forward and reverse primers (Inte-

grated DNA Technologies, Coralville, IA, USA), and 0.2 μL of crude Taq polymerase. Reverse

primers were 5’ labeled with the fluorophore 6-FAM. PCR was conducted in a T100 Thermal

Cycler (Bio-Rad Laboratories, Hercules, CA, USA) with an initial denaturation of 94˚C for 30

s; 35 cycles of denaturing at 94˚C for 30 s, 30 s at the optimized annealing temperature (S1

Table), and extension at 72˚C for 30 s; ending with a final extension of 72˚C for 3 min. We

increased the annealing temperature as the genotyping proceeded in order to reduce back-

ground amplification and produce highly-repeatable, easily discernable. Fragments were sepa-

rated on an ABI 3730xl DNA Analyzer (Cornell Core Laboratories, Ithaca, NY) with a

GeneScan LIZ 500 size standard (Life Technologies, Carlsbad, CA, USA). Fragment sizes were

determined using PeakScanner Software v1.0 (Life Technologies) using the default settings.

Each fragment was manually scored and binned based on peak intensity and fragment length

consistent with expected nucleotide tandem repeat sizes. Peaks less than one fifth the size of

the tallest peak for each PCR reaction were attributed to stutter and discarded.

To confirm the reliability of our microsatellite data (hereafter referred to as “fragments”

because they were treated as dominant markers), we examined the inheritance of all scored

fragments by genotyping five controlled crosses for all four loci. Crosses were chosen to maxi-

mize the number of segregating markers across all four loci. On average, 12.7 F1 offspring per

locus were genotyped to determine whether markers were inherited in a predictable fashion

(n = 1–4 offspring per cross). Of 24 fragments initially detected, 16 were examined in the F1

generation. Four fragments that appeared in offspring that were not present in the parents

were removed from all subsequent microsatellite analyses.
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For most nuclear microsatellite loci and samples, more than two fragments were produced

due to the hexaploid nature of ERTE. We were unable to confidently assign dosage and there-

fore not able to identify individual genotypes. Instead, we treated each marker variant as present

or absent and analyzed the data with the restriction site model in Structure v2.3.3 [44] as is

often done with microsatellites in polyploids [45]. We tested a range of genetic groupings

(k = 1–9) using location priors and allowing for admixture. Runs were first conducted using all

identified marker variants including samples from the closely related wallflower ERCAAN to

ensure the model could differentiate these taxa (ngen = 106, 4 replicates per k-value, burnin =

5 × 105, lambda = 2.1237, determined empirically, using eight identified ERTE populations and

species distinctions as priors). After confirming the Bayesian clustering analysis could differen-

tiate ERTE from ERCAAN, we ran a comparable analysis with only the ERTE samples using

populations as location priors (ngen = 106, 20 replicates per k-value, burnin = 5 × 105,

lambda = 0.3805, determined empirically). The number of genetic groupings that best fit the

data was calculated using the Δk method [46] in Structure Harvester [47]. An individual was

considered admixed if it exhibited less than 95% assignment probability to a single group.

The distribution of genetic diversity was assessed with an analysis of molecular variance

(AMOVA) and population genetic subdivision (FST) in Arlequin v3.5 [48]. For AMOVA, we

used the restriction site model and compared the partitioning of genetic diversity within and

among populations as well as among the genetic clusters identified by Structure [49]. For

genetic subdivision, we calculated pairwise FST values between all eight ERTE populations.

After identifying unique genetic groupings concentrated at the periphery of the species range

in the Structure k = 6 analysis, we made post hoc comparisons of FST within the central cluster

of populations consisting of highly admixed individuals (AZA, GEY, MTH and OLY) versus

between remaining four peripheral populations and the central cluster of populations. FST val-

ues that were significantly different from zero were determined with 104 permutations in Arle-

quin [48]. We accounted for multiple testing using the most conservative form of the

Bonferroni correction.

In order to examine the effects of population size on genetic diversity, population censuses

were conducted in 2011–2013 and compared with allelic richness per individual to account for

the variable sample sizes across populations (Table 1). Due to the limited number of popula-

tions sampled, we applied the non-parametric Spearman rank correlation coefficient to deter-

mine significance.

For the isolation by distance analysis, geographic distances were determined in Google

Earth based on GPS coordinates of the center of each population. Genetic distances were esti-

mated using pairwise FST with the scaled metric FST / (1 –FST) [50]. To compare the geographic

distance matrix with the pairwise FST distance matrix, we used the nonparametric Mantel test

with 104 permutations in PASSaGE v2.0 [51].

Results

Genome sizing

The mean genome size in leaf tissue from ERTE is 2C = 2.92 pg (2.82–3.06). This translates to

approximately 2.86 billion base pairs per nucleus.

Genome skimming

Pooled individuals from eight populations were barcoded and sequenced on a single lane of

Illumina HiSeq2000 producing an average of 624,277 x 250 bp paired-end reads per sample

(range 481,796–722,138). Low quality ends of an average of 272,242 reads per sample were

trimmed before assembling (Raw data available from GenBank’s Short Read Archive Accession
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# SRR10356050-SRR10356059). Separate reference guided assemblies of the chloroplast genome,

nrDNA and mitochondrial genome were 95.9%, 100% and 28.4% complete, respectively. Subse-

quent alignments of the nearly complete chloroplast genome and complete nrDNA cistron were

relatively straightforward (see dedicated subsections below). In contrast, assembly of the mito-

chondrial genome revealed very low coverage (mean = 3.95x). Attempts at aligning these partial

mitochondrial genome assemblies were severely impaired by the large amounts of missing data

(mean = 71.6%). The small portions that were aligned contained numerous ambiguities

(mean = 4.24%) or were invariant because they represented coding regions of housekeeping

genes. Due to the low coverage, large amount of missing data, frequent ambiguities and lack of

variation, the mitochondrial genome was not used in subsequent analyses.

Analysis of the chloroplast genome alignment. The nearly complete chloroplast genome

alignment including the two ERCAAN populations measured 154,453 bp with 32,130 variable

sites (considering ambiguities) and 154,432 bp with 25,289 variable sites for just the eight ERTE

populations (16.38% variability) (Genbank Accession numbers MN626590-MN626599). There

was an average of 6.55% of missing bases per sample (range from 5.26 to 10.3%). An average of

24,938 reads mapped to the A. thaliana chloroplast genome reference per sample (average cov-

erage per base pair = 39.8x, range from 18.6x to 67x). Maximum likelihood phylogenetic analy-

sis using RAxML produced a tree with five well-supported branches (Fig 2A). ERTE samples

formed a strongly supported clade to the exclusion of the two ERCAAN samples (BS = 100%).

Within ERTE, there were two strongly supported lineages: GEY, OLY, QH, SHGW and MTH

(BS = 100%) versus AZA, BD and HWY (BS = 100%). Within the former clade, OLY, QH and

SHGW segregate from GEY and MTH with moderate bootstrap support (BS = 79%).

DAPC analysis of the chloroplast genome based on two partitions (ERCAAN vs. ERTE)

unequivocally assigned membership to the two distinct species for all populations sampled

(probability of membership = 100%; S2A Fig). Likewise, the probability of membership was

unequivocal when the analysis was expanded to three groupings (ERCAAN plus the two dis-

tinct lineages recovered in the phylogenetic analysis of the chloroplast genome = AZA, BD and

HWY vs. GEY, OLY, QH, SHGW and MTH). The probability of membership of the samples

to these three groupings is 100% (S2B Fig). These three groups were clearly separated along

the first two principle component axes of the DAPC (representing 73.6% of the variation),

showing no overlap of their variation measured by their 95% inertial ellipses (Fig 3).

Analysis of the nrDNA alignment. The complete nrDNA alignment along with the two

ERCAAN populations (including 18S, ITS1, 5.8S, ITS2, 28S) measured 5,817 bp with 59 vari-

able sites (considering ambiguities) and 33 variable sites among the ERTE samples alone

(0.57%) (Genbank Accession numbers MN622144-MN622153). An average of 7,553.3 reads

per sample mapped to the mosaic reference (average coverage per base pair = 191.7x, range

from 109.3x to 289.7x). Maximum likelihood phylogenetic analysis using RAxML produced a

tree with only a single well-supported branch defining the monophyly of the ERTE samples as

separate from the two ERCAAN samples (BS = 100%; Fig 2B).

Since all but one of the 59 SNPs found in the nrDNA alignment have an ambiguity for at

least one sample, and DAPC does not treat ambiguities as both underlying bases (instead treats

them as a separate character or ambiguities can be ignored depending on user defined settings

following “SNP<-DNAbin2genind”), we were unable to conduct the DAPC analysis for the

nrDNA.

Microsatellite variation

Null alleles can complicate microsatellite analyses [52,53]. One symptom of null alleles is a

large number of failed PCR reactions for a single locus [54]. Out of 699 PCR reactions, only
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two samples failed to amplify and for separate loci (D10 in one case and D4 in the other)–how-

ever, this is just one method of identifying null alleles for nuclear microsatellites (see [54] for a

comprehensive review). Twenty-four nuclear microsatellite fragments were initially identified

(2–9 per locus; S1 Table). After genotyping our controlled crosses, we identified four frag-

ments that appeared in the F1 offspring but were not present in the parents (S1A–S1O Fig).

These were removed from all subsequent analyses. Populations harbored an average total of

13.9 fragments for all four loci (Table 1). Eleven fragments were present in all eight popula-

tions. Of these eleven fragments, three were fixed in all populations, and four were fixed in at

least one population.

Bayesian genetic clustering. To determine the reliability of the restriction model in accu-

rately identifying genetic clusters and assigning individuals, we ran a Structure analysis with

ERTE and the morphologically and geographically distinct ERCAAN. In this analysis, k = 2

was the preferred number of genetic clusters (Fig 4A). Assuming an individual is admixed if it

has< 0.95 assignment to a single genetic grouping, 99.57% of ERTE individuals were assigned

confidently to one group with no admixture. Meanwhile, ERCAAN individuals were largely

Fig 2. Maximum likelihood phylogenetic results for the eight populations of Erysimum teretifolium. Phylogenetic relationships

were determined from the nearly complete chloroplast genomes (A) and complete nuclear ribosomal cistron (B). The trees are rooted

with two closely related ERCAAN samples and analyzed with RAxML. Bootstrap values were shown above branches (only BS> 50%

are displayed). The larger cladograms show relationships among populations while branch lengths are displayed in the inset

phylograms with populations in the same vertical order. For the phylograms, branches are drawn proportional to the number of

substitutions per site (see scale bar). Population abbreviations are defined in Table 1.

https://doi.org/10.1371/journal.pone.0227523.g002

Fig 3. Scatter plot of a discriminant analysis of principal components (DAPC) of the chloroplast genome. The a priori
groups based on the two distinct lineages recovered in the phylogenetic analysis of the chloroplast genomes are represented

by different symbols and colors (ERCAAN populations = red circles; AZA, BD and HWY populations = blue squares; GEY,

OLY, QH, SHGW and MTH populations = green triangles). The 95% inertial ellipses around each cluster represent the

variance of the two first principal components of the DAPC analysis. Population abbreviations are defined in Table 1.

https://doi.org/10.1371/journal.pone.0227523.g003
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admixed, but mostly assigned to a distinct genetic grouping (mean proportional assignment to

the unique grouping was 0.812). From this, it appears the restriction model is capable of

detecting genetic subdivision in our heterospecific nuclear microsatellite data, so we proceeded

with more detailed Structure analyses with just the ERTE samples.

We performed separate Structure analyses for the eight ERTE populations spanning one to

nine genetic groupings–representing one more than the number of populations sampled. The

most likely number of genetic groupings was k = 6, followed by k = 2 (Fig 4, S3 Fig). Assuming

an individual is admixed if it has<0.95 assignment to a single genetic grouping, the k = 6 (Fig

4C) analyses revealed 100% admixture for all individuals in all populations. The k = 2 analysis

Fig 4. Structure results for ERTE and ERCAAN with various subdivisions. Assignment probabilities for individuals sampled from eight ERTE

populations and two ERCAAN populations for the optimal k = 2 (A) and similar analyses for just the ERTE samples for k = 2 (B) and k = 6 (C). Population

abbreviations are the same as in Table 1.

https://doi.org/10.1371/journal.pone.0227523.g004
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revealed 73.82% of individuals were admixed, with QH and SHGW individuals having the

largest percent of individuals without admixture (2.38% and 16.67%, respectively; Fig 4B).

Partitioning of genetic diversity and isolation by distance

To determine the distribution of genetic diversity within and among ERTE populations, we used

AMOVA and FST. The AMOVA estimated within population, among population and among

grouping (using the Structure k = 6 groupings in Fig 4C). The majority of molecular variation

exists within populations (85.3%) (Table 2). Only 2.66% of genetic variation exists among popula-

tions, whereas 12.0% of genetic variation is explained by the Structure-identified groupings.

For genetic subdivision, pairwise FST averaged 0.153 (0.008–0.431) with 18 out of the 28

comparisons being statistically significant even after applying the most conservative Bonfer-

roni correction with no correlation (p< 0.0018; Table 3). All FST comparisons involving

SHGW or HWY were significantly different from zero (mean FST = 0.217 and 0.294, respec-

tively). FST within the central cluster of populations (AZA, GEY, MTH, and OLY) averaged

0.055 (0.008–0.106). In comparison, FST between peripheral populations (BD, HWY, QH, and

SHGW) and the central cluster of populations averaged 0.200 (0.034–0.431).

Population census sizes range from 35–1000. Allelic richness measured as the average num-

ber of fragments per sampled individual ranged from 9.04–10.21. There was no significant cor-

relation between population census size and allelic richness per sampled individual (Fig 5;

Spearman rank correlation, rs = -0.47619, df = 6, p = 0.233.).

Pairwise geographic distances between populations averaged 4900 m (range: 480–12440

m). Isolation by distance for all population comparisons was not significant (Fig 6; Mantel test,

t = 1.142, p> 0.05). Since the most geographically disjunct population (BD) may have received

seeds from QH during unsanctioned restoration efforts, we also examined isolation by dis-

tance without BD. The pattern of isolation by distance is strongly significant without BD (Fig

6, r2 = 0.561; Mantel test, t = 2.232, p = 0.005). After excluding the BD comparisons, the scaled

genetic subdivision metric, FST / (1 –FST), increased by 0.07 per kilometer.

Table 2. AMOVA results from microsatellite analysis.

Source of Variation Degrees of Freedom Sum of Squares Variance Components Percentage of Variation

Among groups 3 34.8 0.18 12.0

Among populations 4 15.5 0.08 2.66

Within populations 225 303.7 1.35 85.3

Total 232 353.9 1.61

https://doi.org/10.1371/journal.pone.0227523.t002

Table 3. Pairwise FST values between all populations.

Population AZA BD GEY HWY OLY QH SHGW

BD 0.034

GEY 0.051� 0.051�

HWY 0.153�� 0.386�� 0.287��

OLY 0.073� 0.127�� 0.025� 0.291��

QH 0.072� 0.048� 0.123�� 0.327�� 0.168��

SHGW 0.187�� 0.211�� 0.119�� 0.431�� 0.113�� 0.260��

MTH 0.008 0.080� 0.059� 0.183�� 0.106�� 0.103�� 0.195��

� p < 0.05

�� p < 0.0018 (following full Bonferroni correction)

https://doi.org/10.1371/journal.pone.0227523.t003
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Discussion

Genome skimming yielded a nearly complete chloroplast genome that was deeply divided

among the E. teretifolium populations sampled, yet very little variation was detected in the

nuclear ribosomal cistron. In contrast, the nuclear microsatellite analysis indicated the major-

ity of genetic variation was found within populations with limited (yet significant) population

differentiation.

Genome skimming produced complete plastid genome and nuclear

ribosomal cistron

Genome skimming successfully generated the chloroplast genome and nuclear ribosomal cis-

tron, but was unable to recover the mitochondrial genome. For the chloroplast genome, we

had to mask regions of low coverage and regions with excessive ambiguities. These ambiguities

could have arisen from two sources: (1) small regions of low sequencing coverage, and/or (2)

genetic variation within the pooled individuals. The relatively high average coverage in the

chloroplast genome sequencing makes technical errors less likely and a visual inspection sug-

gests this was not the primary cause. Alternatively, the existence of numerous shared, phyloge-

netically informative ambiguities in the chloroplast genome alignment suggests substantial

within population variation (consistent with the microsatellite results showing most variation

within populations). Unfortunately, we did not have sufficient coverage to deconvolute these

ambiguities into allele frequencies. Therefore, we treated them as ambiguities, which were rec-

ognized in the phylogenetic analysis, yet ignored in the DAPC analysis.

Fig 5. Population size and allelic richness. The average number of alleles per sampled individual for the eight ERTE populations is not

significantly correlated with population census size (Spearman rank correlation, rs = -0.45238, p> 0.05). Error bars represent the standard error of

the mean for allelic richness. Populations are abbreviated as in Table 1.

https://doi.org/10.1371/journal.pone.0227523.g005
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Similarly, the ribosomal cistron was completely sequenced with very high coverage, but had

very little variation and largely homoplasious. Here we also saw cases of shared ambiguities

among populations even though we had excessively high coverage for the entire nrDNA. For

the same reason stated above, we chose to treat the each nrDNA pooled sample as a population

consensus rather than try to disentangle the proportion of reads at ambiguous sites into SNP

frequencies at each site.

Conversely, we were unable to reliably assemble the mitochondrial genome despite the

abundance of this organelle in genomic DNA. Since plant mitochondria undergo frequent

structural rearrangements and remarkably variable substitution rates within and among spe-

cies [55–58], genome skimming is unlikely to fully recover the complete mitochondrial

genome as reported by others [32,59,60]. For example, mitochondrial assemblies in Silene
were largely incomplete and mainly restricted to coding regions, contrasting with the assembly

success of chloroplast genome and nrDNA [61]. In addition, the phylogenetic relationships

based on the mitochondrial genome typically contain less phylogenetic signal that those based

on the chloroplast genome [32,61].

The phylogenetic analyses of the chloroplast genome confirm the genetic uniqueness of

ERCAAN vs. ERTE and suggest a strong subdivision within ERTE. The split of BD, HWY and

AZA from the remaining populations does not match biogeographic predictions, nor any

known morphological or ecological differences. However, the association of GEY and MTH

Fig 6. Isolation by distance. The correlation between genetic subdivision (scaled FST) and geographic distance is not significant when all populations

are considered (solid line; Mantel test, p> 0.05). The broken line depicts a significant correlation after removing the BD comparisons indicated with

open circles (Mantel test, p< 0.005).

https://doi.org/10.1371/journal.pone.0227523.g006
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(BS = 99%) and QH, OLY and SHGW (BS = 79%) partially reflect geographic proximity (Fig

1B). This largely enigmatic pattern of chloroplast genome diversity on the landscape could be

caused by the arbitrary fixation of ancestral polymorphisms or recent introgression (through

seed dispersal) [61]. Alternatively, inaccurate chloroplast genome assembly could explain this

unexpected genetic subdivision within ERTE. However, in a previous study we validated the

veracity of next-generation data by Sanger sequencing specific region of three genomes with a

high number of variable sites [61], indicating that assembly error is unlikely to have caused

these results. Although the cpDNA tree topology appears incongruent with that of the nrDNA

region, the latter lacks any branches within ERTE with bootstrap values > 50%. However, the

cpDNA phylogenetic results are inconsistent with the microsatellite results, which show most

of the genetic variation within and not among populations–most likely due to the difference

between maternally-inherited organellar genome vs. homogenized nuclear genome by con-

certed evolution within individual genomes and/or among individuals within a population

[62], resulting in distinct evolutionary histories [61,63–65].

Microsatellite analysis

Microsatellites are powerful markers for estimating genetic variation within and among popula-

tions, yet only when applied correctly. Herein, we used heterologous microsatellites designed

from a closely related species (E. mediohispanicum) which can lead to increased chances of null

alleles [54], yet null alleles appear to be rare since only 2 of our 699 PCR reactions failed repeatedly

(0.29%). However, our power to detect null alleles was limited to PCR reactions that produced no

fragments–we would not have detected missing fragments as long as one allele amplified. Muta-

tions at or near the priming sites linked with particular alleles can reduce the number of allele var-

iants in a heterozygote, which can be particularly difficult to detect in polyploids [54].

Twenty of our 24 markers (83.3%) showed the expected pattern of inheritance in controlled

crosses indicating most markers are behaving as expected. Because of conservation concerns at

four populations (BD, GEY, QH and OLY), we included individuals grown from seed collected

from distinct maternal families to avoid impacting the natural population. If we found any

unusual patterns of genetic diversity in these populations, we may have attributed it to not repre-

senting “standing variation” since these individuals were never vetted by the filter of natural selec-

tion in the wild. However this was not the case and therefore the use of offspring from maternal

families in a few cases was unlikely to have introduced any unexpected patterns of variation.

The most likely limiting factor in our microsatellite analysis is having to treat these markers

as present/absent because of the hexaploid nature of ERTE (and having to apply the restriction

model for subsequent analyses–see [45] for comparable approaches to treating microsatellites

as dominant markers in polyploids). Where the restriction model and our genetic sampling

may have been most limiting (Structure analysis), we employed a positive control by including

ERCAAN samples. Structure was able to confidently distinguish ERCAAN from ERTE sug-

gesting our treatment of the microsatellites was sufficient to detect any deep population subdi-

vision. Fine scale genetic partitioning within ERTE is probably not possible with this dataset as

evidenced by the substantial admixture. Therefore, we have emphasized the within and among

population results of the AMOVA and FST calculations that should be more robust to the

restriction model and our genetic sampling.

Mating system predicts the distribution of most microsatellite genetic

diversity

Species with outcrossing mating systems are predicted to harbor most of their genetic variation

within populations and exhibit very little population subdivision [66,67]. Alternatively, species
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that occupy island-like habitats surrounded by barriers to gene flow should have substantial

population subdivision with larger amounts of genetic diversity attributed to comparisons

among populations [4]. Our microsatellite analysis indicates over 85% of genetic variation is

housed within populations, consistent with the self-incompatible mating system in ERTE [27].

Only 2.66% of the genetic variation was attributed to among population comparisons, contrary

to the prediction of sandhill species being isolated like a true island endemic. The dominant

effect of the self-incompatible mating system in ERTE has also been reported from Australian

dioecious Atriplex nummularia, where 87.52% of microsatellite genetic variation was found

within populations [68], yet this species does not reside on islands, nor does it occupy an

island-like habitat. In reviewing the distribution of genetic diversity in 263 plant species,

Duminil et al. [18] found that “mating system is the main influencing factor on FST” due to

increased pollen flow and decreased genetic drift in outcrossers. Interestingly, even in island

plant species, mating system consistently drives the distribution of genetic diversity [4]. In 10

out of 11 studies of island plant population genetics reporting AMOVA results, the mean per-

cent genetic variation attributed to among population comparisons was low (38.72%), yet

ERTE is substantially lower than this (2.66%). The lowest among-population AMOVA result

was from an AFLP study of an island species of fir tree from Taiwan (Cunninghamia konishii)
where only 12.21% of genetic variation was explained by comparisons among populations.

The remaining 87.79% of genetic variation was attributed to within population comparisons

likely due to the effectiveness of wind-pollination in overcoming the barriers among popula-

tions [69]. Similarly, in the putatively outcrossing Weigela coraeensis from the Inzu Islands

and Japanese mainland, 76.21% and 76.07% of genetic variation was attributed to within popu-

lation comparisons for allozymes and microsatellites, respectively [70]. Clearly, mating system

drives the distribution of most genetic diversity, even in island and island-like habitats.

Although the self-incompatible mating system may be responsible for the maintenance of

high levels of genetic variation within populations because of its positive effect on Ne, gene

flow among populations relies on either pollinators or seed dispersal. ERTE attracts a diversity

of pollinators from Hymenoptera, Lepidoptera, and Diptera [27]. Lepidopterans such as the

Chalcedon Checkerspot (Euphydryas chalcedona) could seemingly overcome the relatively

short distances and habitat barriers between populations to encourage gene flow [27]. Several

species of small and large solitary bees as well as numerous bumblebees (Bombus) have been

observed pollinating ERTE [27], most of which could easily travel distances of several kilome-

ters [71,72].

Although less likely, seed dispersal represents another vector of gene flow that could con-

tribute to the observed distribution of genetic diversity. ERTE does not have any obvious fruit

or seed dispersal mechanisms, anemochory could be responsible for transferring occasional

seeds between populations since wind moves seeds across oceans in other taxa [73]. However,

the predominant wind direction across the species range blows from the northwest. This

would facilitate gene flow from the central populations to the two small, peripheral popula-

tions HWY and SHGW. Yet, these two populations are the most genetically distinct, suggest-

ing the presence of significant barriers to gene flow. In addition, it appears that most seeds and

seedlings are concentrated near the base of maternal plants. Long-distance seed dispersal in

ERTE is likely rare and difficult to quantify, yet it could have a large effect on the distribution

of genetic diversity [74].

Island-like patterns explain the residual microsatellite genetic diversity

Although the vast majority of genetic diversity in ERTE resides within populations, the parti-

tioning of the residual genetic diversity reflects some aspects of insular lineages. Island species
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are predicted to (1) show genetic subdivision among islands that is (2) positively related to the

separation distance [4]. In ERTE, we found significant pairwise FST values in 64% of compari-

sons between these island-like sandhill populations (although the FST values were low, they

were often significantly different from zero). This includes all comparisons involving the two

smallest, peripheral populations (HWY and SHGW). There is a trend towards isolation by dis-

tance that becomes significant after removing the geographically distant, yet not very geneti-

cally distinct BD population, potentially due to unofficial trafficking of seeds from QH to BD

(J. McGraw & V. Haley, personal communication), however BD and QH fall into separate,

strongly supported cpDNA lineages (Fig 2A). In the isolation by distance analysis for the

microsatellites, BD displays less genetic divergence than predicted by its substantial geographic

distance (over 7 km to the nearest population; Fig 1B). Structure analysis of the microsatellite

data (k = 2) suggests BD and QH are very similar genetically–most individuals from both pop-

ulations have the same proportions of admixture (Fig 4B). In a modified isolation by distance

analysis, we assigned BD pairwise geographic distances as if it originated from QH and found

the genetic distance from BD to other populations fits the regression as if it came from QH (r2

= 0.41, p< 0.05).

Although it is common to find significant population subdivision among islands [8,70],

detecting isolation by distance is considerably less common [4]. Only one of seven studies

investigating the genetics of island plants showed significant isolation by distance [4]. This sin-

gle study showing isolation by distance focuses on a dune stabilizing grass from the southeast-

ern Atlantic and Gulf coasts of the United States–a species that is only occasionally on near

shore islands [75]. In a meta-analysis of 240 isolation by distance data sets, including animals

and plants, this simple model explains a relatively small proportion of variance in genetic

structure in most studies (mean r2 = 0.22) [76].

The distribution of genetic diversity in ERTE is consistent with the abundant center model

[12]. Population-level Structure analysis suggests the presence of a core cluster of populations

that are composed largely of admixed individuals with low probability of assignment to any

single genetic grouping. It is unlikely that this is an artifact of applying the restriction model,

nor to lack of signal in the data since our control Structure analyses clearly distinguished the

very closely related ERCAAN from ERTE (Fig 4A). Furthermore, peripheral populations have

an average pairwise FST value that is 3.63× that of the populations from the central cluster. The

central cluster (AZA, GEY, MTH, and OLY) has the least significant barriers to gene flow and

may have been historically more connected prior to sand mining and residential development

[24].

There is no relationship between allelic richness and population size–a proxy for island area

in the MacArthur-Wilson model of island biogeography [77]. Counter-intuitively, the trend is

towards decreasing allelic richness as population size increases, yet the lack of variation in alle-

lic richness among the eight populations clearly undermines any possible correlation with pop-

ulation census size (Fig 5). On true oceanic islands, there is often no correlation between

genetic diversity and population size [13], nor between genetic diversity and island size

[8,70,78]. Yet, in a review of genetic diversity and population size, 22 of 23 allozyme studies of

plants and animals had significant correlations between population size and genetic diversity

[79]. Although the measurement of genetic diversity is relatively straightforward, quantifying a

meaningful population size that reflects the present and historical number of effective individ-

uals in a population is much more complicated [80,81]. In this case, it appears that the self-

incompatible mating system has maintained a relatively constant average allelic richness per

population irrespective of the contemporary census size. Alternative measures of genetic varia-

tion, such as heterozygosity, may be better suited for examining a correlation with population

census size, but we were unable to assign genotypes because of ERTE’s hexaploid genome.
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Genome sizing and microsatellites in polyploids

We confirmed that ERTE is a hexaploid by estimating its genome size using flow cytometry.

Our estimates (2C = 2.92 pg) are 2–3 × larger than genome sizes estimated for diploid Eurasian

Erysimum species with smaller chromosome counts (E. scoparium 2n = 28 & 2C = 1.08 pg; E.

bicolor 2n = 28 & 2C = 1.16 pg; E. chieranthoides 2n = 16; 2C = 1.66 pg; http://data.kew.org/

cvalues/; [82]) consistent with a tripling of the diploid genome size followed by some post-

polypoidy genome size contraction [83]. This represents the first genome size estimation from

the E. capitatum alliance [29]. The lack of variation in genome size among ERTE populations

suggests there is little, if any polyploidy within this species. The polyploidy event underlying

the large genome size in ERTE likely predated the radiation of the E. capitatum alliance since

all 25 taxa have hexaploid chromosome counts [29].

These results are consistent with observations of up to six alleles per locus in ERTE,

ERCAAN and other members of the E. captiatum alliance. Others have treated microsatellite

data in polyploids with several different approaches including trying to discern genotypes

using the dosage of each fragment, making HWE assumptions to estimate heterozygosity [84],

using a modified measure of heterozygosity (H’e and H’o) and genetic subdivision (F’ST) that

emphasizes the presence of shared bands [85], and simply treating the fragments as present/

absent, then applying the restriction model in Structure and Arlequin [44,48]. After confirm-

ing the inheritance of our microsatellite fragments by genotyping controlled crosses, we

showed that Structure’s restriction model could differentiate ERTE from the closely related

subspecies, ERCAAN. Genotyping controlled crosses identified four out of 24 originally scored

fragments that appeared in offspring, but were not present in parents–a critical step in scoring

and analyzing microsatellites in a polyploid such as ERTE.

Conservation implications

The distribution of genetic diversity described herein can be used to guide future conservation

efforts and help determine appropriate seed sources for reintroduction efforts. Given that

more than 80% of all genetic variation based on nuclear microsatellites is found within any

individual population, one could preserve the vast majority of genetic variation in a single,

large population. Yet, in order to capture the remaining genetic variation, peripheral popula-

tions (such as QH, HWY, and SHGW) must also be preserved. Preservation of these strongly

differentiated, marginal populations should receive high priority [86]. In particular, HWY and

SHGW are not only the smallest and most threatened populations, but neither are currently

being managed to maintain the sandhill parkland habitat critical for ERTE [24]. Additionally,

some of these peripheral populations harbor the genetic uniqueness of the two distinct lineages

found for the chloroplast genome (such as HWY and SHGW). The conservation of these mar-

ginal populations would not only preserve the largest proportion of nuclear genetic variation

of ERTE populations, but would also capture the genetic diversity in the chloroplast genome.

In addition to preserving neutral genetic variation like that measured here, we strongly recom-

mend measuring and conserving the maximum number of self-incompatibility alleles to pre-

vent future reproductive failure like that seen at BD and in other taxa [87]. Maintaining large

effective population sizes and a healthy pollinator fauna are critical in managing the existing

ERTE populations.

Bonny Doon has recently experienced a precipitous population decline, from over 2,000

individuals in 1994 to only six individuals in 2013 [30]. The genetic similarity between BD and

QH corroborates reports that seeds may have been moved from QH to BD in attempts to “res-

cue” that declining population (however, the cpDNA comparisons place QH and BD is sepa-

rate, well-supported clades). Therefore, it is unclear if any unique gene pool that may have
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existed at BD may already have been diluted. Translocating individuals within a species range

to augment a declining population is at least a viable short-term measure to save at-risk popu-

lations [88] and may be viable in other cases when overall population differentiation is low,

like in ERTE. Additionally, mixing more source populations may reduce the possibility of lim-

ited genetic diversity (especially in regard to self-incompatibility alleles) via the founder effect

when initial reintroduction population sizes are small [89]. Complementary studies of

inbreeding and outbreeding depression and local adaptation to BD edaphic conditions are cur-

rently underway and must be used in coordination with these genetic results when choosing

source material for a reintroduction [27].

Conclusions

The majority of genetic diversity measured from nuclear microsatellites in the self-incompati-

ble, sandhill endemic ERTE resides within populations, consistent with its obligate outcrossing

mating system. The small amount of residual variation fits some predictions of island species

(lack of gene flow among island-like populations and weak isolation by distance), but not oth-

ers (no effect of population size on allelic richness). Based on these results, mating system has a

substantially larger effect on the distribution of genetic variation than the island-like sandhill

habitat. Some populations at the margins of the species range are genetically differentiated and

their preservation should be prioritized accordingly. By preserving these populations, we also

capture both of the two distinct lineages found in the chloroplast genome, increasing the value

of such conservation efforts. For reintroduction efforts at BD, a thorough sampling of any

individual population would capture the vast majority of microsatellite genetic variation, yet

seeds from multiple sources including the smaller, peripheral populations like HWY and

SHGW should be included to maximize the amount of genetic diversity, especially in relation

to self-incompatibility alleles. Future conservation efforts on islands and island-like habitats

must consider biological factors controlling the distribution of genetic diversity in addition to

their unique insular habitats.
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S1 Fig. Inheritance of microsatellite fragments. Parental and F1 chromatograms for locus

D10 (A-E), locus D4/D4b (F-J), and locus C5 (K-O). The four fragments that appear in F1

individuals that are not present in the parents are indicated with asterisks.
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S2 Fig. Barplots based on a discriminant analysis of principal components (DAPC) of the

chloroplast genome, in which the group assignment probability of populations is repre-

sented. Two groupings (A) unambiguously differentiate ERCAAN (dark grey) and ERTE

(light grey) populations. Three groupings (B) were based on the two distinct lineages recovered

in the phylogenetic analyses of the chloroplast genomes (ERCAAN = dark grey; AZA, BD and

HWY populations = grey; GEY, OLY, SHGW, MTH and QH populations = light grey). Popu-

lation abbreviations are defined in Table 1.

(PDF)

S3 Fig. Structure harvester results for E. teretifolium analysis. Using only samples from the
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ΔK is indicated in B.
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