# Santa Clara University

# **Scholar Commons**

Civil, Environmental and Sustainable Engineering Senior Theses

**Engineering Senior Theses** 

Spring 2020

# SCU Faculty & Staff Housing Development

Ayo Ogunfunmi

Deirdre Bonitz

Rachael Han

Spencer Saito

Follow this and additional works at: https://scholarcommons.scu.edu/ceng\_senior

Part of the Civil and Environmental Engineering Commons

# **SANTA CLARA UNIVERSITY** Department of Civil, Environmental, and Sustainable Engineering

# I HEREBY RECOMMEND THAT THE SENIOR DESIGN PROJECT REPORT PREPARED UNDER MY SUPERVISION BY

Ayo Ogunfunmi, Deirdre Bonitz, Rachael Han & Spencer Saito

# ENTITLED

# SCU FACULTY & STAFF HOUSING DEVELOPMENT

# BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

# BACHELORS OF SCIENCE IN CIVIL, ENVIRONMENTAL, AND SUSTAINABLE ENGINEERING

Thesis Advisor, Dr. Laura Doyle

El Maure

Thesis Advisor, Dr. Edwin Maurer

/

Thesis Advisor, Dr. Hisham Said

 $\rho < 1$ 

Thesis Advisor, Dr. Reynaud Serrette

El Maures

Department Chair, Dr. Edwin Maurer

6/10/2020

6/10/2020

6/10/2020

Date

6/10/2020

Date

5.28.2020

Date

Date

Date

# SCU FACULTY & STAFF HOUSING DEVELOPMENT

By

Ayo Ogunfunmi, Deirdre Bonitz, Rachael Han & Spencer Saito

### SENIOR DESIGN PROJECT REPORT

Submitted to the Department of Civil, Environmental, and Sustainable Engineering

of

### SANTA CLARA UNIVERSITY

in Partial Fulfillment of the Requirements for the degree of Bachelor of Science in Civil, Environmental, and Sustainable Engineering

Santa Clara, California

**Cover Page** 

Spring 2020

# Acknowledgements

We would like to thank the following individuals:

- Professor Edwin Maurer for his advice throughout this project's duration.
- Professor Reynaud Serrette for his advice throughout this project's duration.
- Professor Hisham Said for his advice throughout this project's duration.
- Professor Laura Doyle for her advice throughout this project's duration.
- Jill Bicknell for her expertise on stormwater management using low-impact development strategies.
- Marissa Pimentel for the continuous support and guidance from Santa Clara University's Operations side of this proposed project.
- Don Akerland for the continuous support and guidance from Santa Clara University's Operations side of this proposed project.
- Chris Shay for the continuous support and guidance from Santa Clara University's Operations side of this proposed project.
- Robert Rivera from the City of San Jose, Planning Division. He hosted the community meeting at Santa Clara University's Locatelli Center on August 19, 2019. Robert also gave the design team a digital copy of the Planned Development Zoning Submittal.
- Studio TSquare for our design inspiration and offering to mentor us throughout this project.
- San Jose Water for providing a map of their water facilities at the project site.
- Karen Pachmayer for the support and guidance with providing the design team with helpful feedback for this report.
- Brent Woodcock for allowing the team to use the Alameda Hall Civil Lab for design testing.

#### SCU FACULTY & STAFF HOUSING DEVELOPMENT

#### Ayo Ogunfunmi, Deirdre Bonitz, Rachael Han & Spencer Saito

#### Department of Civil, Environmental, and Sustainable Engineering Santa Clara University, Spring 2020

#### Abstract

Due to the high housing costs in the Bay Area, Santa Clara University's (SCU) faculty and staff have to live further away from campus where the housing market is more affordable, ultimately increasing their commute time and increasing the environmental impact due to transportation. Therefore, SCU has expressed the need to provide affordable housing for their faculty and staff who do not earn enough income to be able to live in the City of San Jose or County of Santa Clara. The project proposed in this report represents the efforts of SCU Civil Engineering students to adhere towards the social, sustainable, and economic concerns held by the Civil, Environmental and Sustainable Engineering (CESE) Department in the design and construction of a proposed housing development for Santa Clara University faculty and staff. The team of civil engineering students, RADS Construction, LLC., has provided design recommendations for the 1200 Campbell Avenue development.

The team gained initial inspiration from the Planned Development Zoning Submittal that was received from the City of San Jose, which contained architectural drawings provided by Studio TSquare. The team also received a map of the water facilities at the proposed project site from San Jose Water. Using the architectural drawings and a map of the water facilities on site, RADS Construction designed the structural and stormwater management plans for the development; designed potable water and wastewater piping layouts; and created a construction schedule, waste management plan, and a Building Information Modeling (BIM) model. The team decided to change the originally proposed incubator space, as displayed in the architectural drawings, into a commercial space to allow shops and other small businesses to use this new building. This change helped to address the concerns of the stakeholders in the proximity of the project site since they wanted to benefit from this new building to help compensate for bringing in more traffic into the neighborhood. Through these deliverables, RADS Construction met both social and economic needs of SCU's faculty and staff, as well as fulfilling the CESE Departmental and School of Engineering standards for socially, economically, and environmentally sustainable engineering.

# Table of Contents

| CERTIFICATE OF APPROVAL                                                   | 1  |
|---------------------------------------------------------------------------|----|
| COVER PAGE                                                                | 2  |
| ACKNOWLEDGEMENTS                                                          | 3  |
| ABSTRACT                                                                  | 4  |
| TABLE OF CONTENTS                                                         | 5  |
| LIST OF FIGURES                                                           | 7  |
| LIST OF TABLES                                                            | 9  |
| INTRODUCTION                                                              |    |
| INITIAL RESEARCH/BACKGROUND                                               |    |
| GENERAL SITE DESCRIPTION                                                  |    |
| Scope of Work                                                             |    |
| Structural Engineering                                                    |    |
| Potable Water and Wastewater Management                                   |    |
| Stormwater Management                                                     |    |
| Green Construction Management                                             |    |
| ORGANIZATION OF THIS REPORT                                               | 16 |
| NON-TECHNICAL CONSIDERATIONS                                              |    |
| ETHICAL CONSIDERATIONS                                                    |    |
| ECONOMIC CONSIDERATIONS                                                   |    |
| SUSTAINABLE CONSIDERATIONS                                                |    |
| Social-Political Impact                                                   |    |
| Environmental Impact                                                      | 20 |
| HEALTH & SAFETY IMPACT                                                    | 20 |
| ANALYSIS OF ALTERNATIVES                                                  | 22 |
| Material Analysis                                                         |    |
| STORMWATER MANAGEMENT ANALYSIS                                            | 23 |
| DESIGN CRITERIA AND STANDARDS                                             |    |
| Constraints                                                               |    |
| Key Values, Applicable Codes, and Assumptions Used in Design Calculations |    |
| Structural:                                                               |    |
| Potable Water and Wastewater Management:                                  |    |
| Stormwater Management:                                                    |    |
| Construction:                                                             |    |
| DESCRIPTION OF DESIGNED DEVELOPMENT                                       |    |
| SUMMARY OF THE SITE LAYOUT                                                |    |
| STRUCTURAL DESIGN                                                         |    |
| POTABLE WATER MANAGEMENT DESIGN                                           |    |
| Water Demand                                                              |    |
| Pipe Sizing and Layout                                                    |    |

| WASTEWATER MANAGEMENT DESIGN                      |    |
|---------------------------------------------------|----|
| WASTEWATER MANAGEMENT DESIGN<br>Wastewater Demand |    |
| Pipe Sizing and Layout<br>Connection              |    |
| Connection                                        |    |
| WATER EFFICIENT FEATURES COST ANALYSIS            |    |
| Stormwater Management Design                      |    |
| NRCS CN Method Calculations                       |    |
| Outflow Pipe Design                               | 53 |
| Cost Estimate                                     |    |
| STORMWATER MANAGEMENT MODEL & CONSTRUCTION        |    |
| CONSTRUCTION MANAGEMENT PROGRAM                   | 65 |
| BIM                                               |    |
| Cost Estimate                                     |    |
| Schedule                                          | 71 |
| Synchro Pro                                       |    |
| CONCLUSION                                        | 74 |
| REFERENCES                                        |    |
| APPENDICES                                        | A  |

# List of Figures

| Figure 1. Project Site with Respect to SCU's Campus                                                | . 10 |
|----------------------------------------------------------------------------------------------------|------|
| Figure 2. Market Survey on SCU's Faculty & Staff: Years Living in University Owned Housin          | ng.  |
|                                                                                                    | . 11 |
| Figure 3. Panoramic Street View of Current Site from Campbell Avenue.                              | . 12 |
| Figure 4. Map of Development Area.                                                                 | . 12 |
| Figure 5. Site Layout Including Driveway Design.                                                   | . 29 |
| Figure 6. All Four Unit Layouts in the Building (Studio TSquare, 2019)                             | . 30 |
| Figure 7. All Four Unit Layouts in the Building (Studio TSquare, 2019).                            | . 30 |
| Figure 8. Lateral Force Resisting Systems.                                                         | . 33 |
| Figure 9. Rigid (Blue) Versus Flexible (Pink) Design of the Building.                              | . 33 |
| Figure 10. Lateral System for Floors One through Three                                             | . 34 |
| Figure 11. Lateral System for Floors Three to Roof                                                 | . 34 |
| Figure 12. Two Lateral Systems Highlighted on the 3D Model on Two Sides of the Building            | . 35 |
| Figure 13. The layout of the potable water mains, fire hydrants, fire hydrant laterals, sanitary   |      |
| sewer main, and sanitary sewer laterals on the project site.                                       | . 40 |
| Figure 14. Peaking factor for wastewater demands. Sourced from (Davis, 2010)                       | . 40 |
| Figure 15. Example detail of how the sanitary sewer lateral on the project site should connect the | to   |
| the existing sanitary sewer main on Campbell Avenue. Sourced from (Tran, 2013)                     | . 42 |
| Figure 16. Layout of two bioretention placement options.                                           | . 45 |
| Figure 17. Revised layout of bioretention placement.                                               | . 46 |
| Figure 18. Layout of drainage basins and inlets.                                                   | . 47 |
| Figure 19. Final site layout including details of stormwater management components. See            |      |
| Appendix B for a larger drawing.                                                                   | . 55 |
| Figure 20. Cross-section of north bioretention (SCVURPPP Green Stormwater Infrastructure           |      |
| Handbook, 2019)                                                                                    | . 56 |
| Figure 21. Cross-section of west bioretention (SCVURPPP Green Stormwater Infrastructure            |      |
| Handbook, 2019)                                                                                    | . 56 |
| Figure 22. North overflow structure (SCVURPPP Green Stormwater Infrastructure Handbook             |      |
| 2019)                                                                                              | . 57 |
| Figure 23. West overflow structure (SCVURPPP Green Stormwater Infrastructure Handbook,             |      |
| 2019)                                                                                              | . 57 |
| Figure 24. 10-year cash flow chart including initial construction cost and maintenance costs       |      |
| Figure 25. A mid-construction action shot.                                                         |      |
| Figure 26. A photo taken at the end of construction day one.                                       | . 62 |
| Figure 27. Finished product! Pictured are Rachael and Deirdre                                      |      |
| Figure 28. Post-construction selfie with Brent, the team's lab manager!                            |      |
| Figure 29. Bioretention model getting some sun in all its glory, post-first watering. Ain't she a  |      |
| beaut?                                                                                             |      |
| Figure 30. A well-watered and happy bioretention model.                                            | . 65 |

| Figure 31. Revit 3D Model.                                                         | 66 |
|------------------------------------------------------------------------------------|----|
| Figure 32. Initial Level 1 Parking Garage Layout from Studio TSquare.              | 67 |
| Figure 33. Final Level 1 Parking Garage Layout from Studio TSquare (Parking garage |    |
| highlighted in blue).                                                              | 68 |
| Figure 34. Level 2 Structural Columns Schedule.                                    | 69 |
| Figure 35. Level 2 Structural Columns.                                             | 69 |
| Figure 36. Exterior Walls Schedule Task and Gantt Chart                            | 71 |
| Figure 37. Project Schedule Overview.                                              | 72 |
| Figure 38. Synchro Pro Interface.                                                  | 73 |
| Figure 39. Synchro Resource Animation Creation.                                    | 73 |

# List of Tables

| Table 1. Flat Weights of the Building                                                       | 32 |
|---------------------------------------------------------------------------------------------|----|
| Table 2. Baseline potable water demand for commercial space of the project                  | 36 |
| Table 3. Reduced potable water flow for commercial space of the project.                    | 36 |
| Table 4. The total baseline (17,246,200 GPY) and reduced potable water demand (11,612,703   | 3  |
| GPY) for the residential space of the building                                              |    |
| Table 5. Total baseline potable water demand for the entire building                        |    |
| Table 6. Total reduced potable water demand for the entire building.                        |    |
| Table 7. Annual indoor water use reduction in the building using water efficient features   | 38 |
| Table 8. Baseline wastewater demand for the entire building.                                | 41 |
| Table 9. Reduced wastewater demand for the entire building.                                 | 41 |
| Table 10. Total cost calculations for the use of standard fixtures in the building.         |    |
| Table 11. Total cost calculations for the use of water efficient fixtures in the building   | 43 |
| Table 12. The calculations for the annual purchasing cost of potable water for the baseline |    |
| demand                                                                                      | 44 |
| Table 13. The calculations for the annual purchasing cost of potable water for the reduced  |    |
| demand                                                                                      | 44 |
| Table 14. Summary table comparing the costs of using standard fixtures versus using water   |    |
| efficient fixtures in the project                                                           | 44 |
| Table 15. Inlets and drainage basins for the north bioretention                             | 47 |
| Table 16. Inlets and drainage basins for the west bioretention.                             | 48 |
| Table 17. Bioretention sizes and depths.                                                    | 49 |
| Table 18. Maximum flow rate at each inlet.                                                  | 50 |
| Table 19. Pipe sizes, slopes, and max fullness of pipes at each inlet.                      | 51 |
| Table 20. Elevations at each inlet draining into the north bioretention.                    | 52 |
| Table 21. Elevations at each inlet draining into the west bioretention.                     | 52 |
| Table 22. Underdrain detailing highlighted for north and west bioretentions.                | 53 |
| Table 23. 10-year storm intensities for 1200 Campbell Ave.                                  | 53 |
| Table 24. North and west bioretention outflow pipe detailing.                               | 55 |
| Table 25. North bioretention material estimate.                                             | 58 |
| Table 26. West bioretention material estimate.                                              | 58 |
| Table 27. Yearly maintenance fees for both bioretentions.                                   | 59 |
| Table 28. Detailed cost estimate for both bioretentions.                                    | 59 |
| Table 29. Green roof cost estimate.                                                         | 60 |
| Table 30. Project Cost Estimate.                                                            | 70 |

### Introduction

#### **Initial Research/Background**

The housing crisis in the Bay Area is becoming worse as property prices increase while incomes remain stagnant. Due to limited space in urban areas, the City of San Jose is not reaching its housing production goals. In 2018, San Jose set an annual housing production goal of 3,986, but only 2,973 properties were constructed (Kendall, 2019). Expanding to a broader geography, the San Jose-Sunnyvale-Santa Clara Housing Market Area has a total demand of 4,800 sales units and 11,100 rental units but only 1,800 sales units and 3,475 rental units were under construction as of August, 2017 (U.S. Department of Housing and Urban Development, 2017). This housing crisis not only has the possibility of discouraging potential employees of Santa Clara University (SCU) from accepting employment, but current faculty and staff are facing the pressures of the increasingly unaffordable housing market. Santa Clara University conducted a study on current staff. Santa Clara University does have 48 university owned apartments and 41 single-family homes that are offered to faculty and staff on a month-to month lease, but the existing housing still cannot capture all of SCU's needs.

To offset this issue, Santa Clara University has proposed to the City of San Jose a sevenstory mixed-use faculty & housing development near Santa Clara University. Santa Clara University wanted a project site that was in proximity to SCU's campus, reputable school districts, transit stations, and retail to make it more convenient to the individuals that use the features of this

development (Figure 1). Therefore, faculty and staff at Santa Clara University were the primary client. In May 2019, Santa Clara University conducted a survey on potential faculty and staff who would rent an apartment unit from this proposed development to determine how long they would plan to live there. The results of this survey are displayed in Figure 2.



Figure 1. Project Site with Respect to SCU's Campus.



Figure 2. Market Survey on SCU's Faculty & Staff: Years Living in University Owned Housing.

The results from the faculty and staff housing demand analysis conducted by Santa Clara University made the team aware that affordable housing was an important need in the community. RADS Construction, the design-build team for this project, met with Chris Shay, Don Akerland, and Marissa Pimentel, from SCU Operations Department. They provided important feedback, helped to inform the team about the progress of the actual project, and directed the team to contacts that would be useful for this project. They helped to answer any questions about the project and to keep the team informed of what type of development that Santa Clara University desires. The team also attended a community stakeholders meeting in August 2019 that was hosted by Robert Rivera from the City of San Jose to receive input from current SCU faculty and staff, as well as nearby residents & business owners. This meeting gave the team more information on potential unforeseen positive and negative impacts of this development, such as distribution of privacy for the neighboring residences, and traffic issues that could arise by developing this size of a building in this neighborhood.

#### **General Site Description**

The current site is located on three different addresses (1200, 1202, 1250 Campbell Avenue), two separate parcels (230-14-009, 230-14-004), and zoned as a Heavy Industrial (HI) District. Figure 3 displays a panoramic street view of the site from Campbell Avenue. Santa Clara University was in the process of combining the two parcels into one parcel and rezoning it to a Planned Development (PD) Zoning District use when this project began. Due to time constraints, the team had to assume that SCU was able to properly rezone this site and continued with the design process. The proposed project is located at 1200 Campbell Avenue in San Jose, California, and it is directly adjacent to the Santa Clara University Villas Residence Hall and across from Stephen Schott Stadium. The project site is located on an area of about 3.07 acres. No geotechnical study was conducted, therefore a site class D was assumed to design this building based on the recommendations from ASCE 7-16, Section 11.4.3 (American Society of Civil Engineers, 2017). As evidenced by Santa Clara Water Valley Groundwater Well

07S01W02G024, the groundwater table at the site is very high. During peak rainfall seasons, the well detected groundwater levels are only one to two (1-2) feet below the ground surface (Santa Clara Valley Water District). A map of the design area including surrounding streets, landmarks, and buildings is shown in Figure 4.



Figure 3. Panoramic Street View of Current Site from Campbell Avenue.



Figure 4. Map of Development Area.

#### **Scope of Work**

#### Structural Engineering

Material research and an alternative analysis were conducted to determine which construction materials would be most effective for the design of this development, while also considering how much design knowledge that the structural engineering students contained. The structural engineering team member designed a comprehensive structural system of the housing development to abide by the local building codes, minimum seismic design standards with economic and sustainable considerations, and other reference manuals, as mentioned in the Design Criteria and Standards section of this report. An analysis of the lateral and gravity system was conducted to ensure that this development can withstand the loads acting in different directions onto the building, such as the occupancy, wind, and seismic loads. A set of the architectural drawings for the project was provided by the architect, Studio TSquare, which contained the architectural layout of each floor of the building and other project logistics.

Due to constraints resulting from the University's transition to no face-to-face meetings and online classes, the project scope was modified to omit the following design items:

- Foundation
- Parking garage ramps
- Elevated concrete slab gravity load for the parking garage
- Connection details
- Non load bearing structural components
- Steel Braced Frames

AutoCAD was used to determine where to place the gravity system: gravity beams & columns, as well as the lateral system: special concentric steel braced frames, special reinforced concrete shear walls, and special steel moment frames. The team referred to the 2019 California Building Code (CBC) and ASCE/SEI 7-16 to determine the flat weights (dead and live loads) of the building. The architectural floor layouts were imported into AutoCAD to ensure accuracy of where the gravity and lateral system were placed. After determining the placement of the entire gravity and lateral system in AutoCAD, Enercalc was used to size all of the gravity beams and columns, and the tributary widths and areas acting on the gravity system were generated in AutoCAD. Revit was used to construct a 3D model of the development, which aided the structural team member with visualizing the different detail components that were needed and the construction team member with the overall cost estimate. Through this entire design process, the structural design team developed a structural calculation package for the entire structure by primarily using Microsoft Excel to generate calculation spreadsheets. The calculation spreadsheets supplemented the calculations that were performed in other structural analysis design software, such as Enercalc. In particular, beam and column loads were calculated in Microsoft Excel but were designed in Enercalc.

The final product that will be provided to the owner, architect, general contractor, and other contractors that are involved with this project is a digital copy of the structural design calculations package (Appendix C) and a digital copy of the drawing set (Appendix B) for construction.

Spencer Saito was responsible for this scope of work, and he worked in collaboration with Ayo Ogunfunmi for the design layout of the structure. Rachael Han and Deirdre Bonitz collaborated with Spencer Saito to ensure that the structural design coincided with their scope of

work, such as making sure that the member sizes were adequate enough for the piping layout throughout the building.

#### Potable Water and Wastewater Management

The potable water and wastewater demands for the building, including residential demands, commercial demands, and fireflows, were calculated using a baseline calculation as well as a decreased flow calculation using higher efficiency fixtures from the Green Building Initiative's Water Consumption Calculator (Green Building Initiative, 2020). Based on the calculations, pipes were sized to meet the demands for both the baseline and decreased flow. Calculations for these flows are provided in their respective sections of this report. In efforts to create a more environmentally and economically sustainable structure, the cost of using the baseline demand and infrastructure were compared to the decreased flow and water efficient infrastructure to determine how economically sustainable it was to include more water efficient features in this project.

Using the layout of the structure, the topography, and the location of municipal main lines, the wastewater and potable water lines were laid out on the project site to connect to their respective mains located on Campbell Avenue.

In compliance with the California Fire Code (California Building Standards Commission, and International Code Council, 2019), fire hydrants were placed around the project site, and the demand for each of those hydrants was met in the water demand.

Deirdre Bonitz was responsible for this scope of work.

#### Stormwater Management

An alternative analysis was conducted for the best Low-Impact Development (LID) approach for managing on-site runoff. Bioretention was chosen based upon multiple criteria that are explained in the alternative analysis portion of the report. Both the design of the bioretention and a physical experimental model were created.

The design of the bioretention included determining the placement of the bioretention, identifying the flow direction due to the existing topography, creating drainage areas to place inlets, calculating maximum flow rates in each drainage area based on a two-year storm, designing pipes connecting inlets to pop-up emitters, calculating the area of each bioretention to achieve a desired ponding depth, designing the underdrain, and modifying the cross-section based on city-approved construction drawings. CAD drawings of the site layout, connections from the bioretention outflow pipes to the storm drain, and elevation and section views of the bioretention were created.

A physical bioretention model was constructed to test the ability of three bioretention sections with varying layers of bio soil and gravel to filter out contaminants. One section had layers consistent with the C.3 Stormwater Handbook (SCVURPPP, 2016), one section exceeded code, and another section broke code. Prior to constructing the bioretention, the design of the model was completed using geotechnical engineering methods to calculate lateral and vertical earth pressures based on measured saturated unit weights. These pressures were used to choose plywood, timber planks, strong ties, bolts, nuts, and a metal cart that met the flexural and compressive strength demands of upholding a saturated bioretention model. Detailed

construction drawings were created in AutoCAD to prototype the initial design and to increase the efficiency of the construction process. These drawings included two section views, three elevation views, and one plan view and are included in the design drawings package in Appendix B. The construction process took about 40 hours total, including time taken to gather materials, cut acrylic and wood pieces to size, assemble the components together, and waterproof leaks using caulk. After waterproofing, the proposed experimental procedure was to flush the bioretention three times until it reached equilibrium, and then use lab-created run-off to test the percentage reduction of contaminants due to each bioretention model. While the team was able to successfully waterproof the bioretention and ensure the sod took root in the bio soil, the experiment could not begin due to the shelter-in-place restrictions that began on March 16, 2020. The bioretention is currently located in Alameda Hall at Santa Clara University, where it is receiving plenty of rain and sunshine, so it may be used for a future senior design project or civil engineering class at SCU.

Rachael Han was responsible for this scope of work, and worked in collaboration with Deirdre Bonitz for piping layouts. All members of the team helped construct the bioretention model.

#### Green Construction Management

Material analysis was performed to determine the cost effectiveness. Throughout the project, Ayo Ogunfunmi was working with the structural team member, as well as the bioretention team member, to assist with the design and implementation of key aspects related to the feasibility of construction. The construction team member integrated construction knowledge within the design process to bridge the gap between concept and reality as it pertained to this project. Aspects such as total cost, duration, and complexities associated with construction were thoroughly reviewed by the construction team member. The same assumption and design limitations listed by the structural and water resource engineering students were utilized by the construction engineering student throughout the design process.

To communicate the design intent of this site, a construction schedule, a 3D model, material quantity takeoff, and cost estimate were created to represent each of the design scopes used within this project. The 3D model utilized AutoDesk Revit and AutoCAD software to place concrete, steel, and other structural elements. Microsoft Project was used to plan duration for the placement of concrete, steel, and typical scopes. A combination of Revit, Bluebeam, and RSMeans assisted the construction engineering team member with cataloguing the total cost of materials and labor. Synchro Pro was used in coordination with the Revit model and Microsoft Project schedule to create a 4D model of the project.

The final product that will be provided to the owner, architect, general contractor, and other contractors that are involved with this project include the construction schedule, cost estimate, and a 4D model digitally submitted in Appendix F

Ayokunmi Ogunfunmi was responsible for this scope of work and worked closely with Spencer, Deirdre, and Rachael to implement their design and costs into the schedule, cost estimate, and 4D model.

### **Organization of this Report**

This report will begin with outlining the non-technical considerations that needed to be taken into account in this project. These considerations include the ethical considerations, sustainable considerations, social-political impacts, environmental impacts, and health and safety impacts.

Following this section will be the analysis of alternatives for the building material and stormwater management system. These analyses aimed to determine the best solutions for specific aspects of the project by comparing different alternatives based on a list of criteria determined to be of importance for each respective area.

The completion of the alternative analyses leads into the design criteria and standards. For each scope of the project, constraints, key values, codes, and assumptions for the designs are presented.

The next section is Description of Designed Development, which is where the design process and the results of the designs are presented. In the Summary of the Site Layout section, a brief overview of the site and project is presented. Following that are the Structural Design, Potable Water Design, Wastewater Management Design, Stormwater Management Design, Stormwater Management Model & Construction, and Construction Management Program. In each of these sections, designs, calculations, and results are provided or referenced to a different section of this report.

The report ends with a conclusion of the results and impacts on the project, as well as a cost estimate.

# **Non-Technical Considerations**

#### **Ethical Considerations**

One of the main ethical concerns with the project was how the new development will impact the local community. This SCU Faculty & Staff Housing development is located right next to a residential community not affiliated with SCU, and those living in that community have expressed concerns about this project. These residents have an important stake in the outcome of this project. Their concerns were expressed at the community meeting held by the City of San Jose on August 19, 2019 at Santa Clara University's Locatelli Center. The main concerns that were expressed about the project were the infringement on their privacy that may come with a high rise building, the impacts of traffic congestion in the area, and parking. It is especially important to note that some of the residents may be elderly or have health problems, and the increase in traffic congestion can impact emergency vehicles from accessing the neighborhood as noted in community meetings anecdotally.

This lot lies on land that was owned by the indigenous Muwekma-Ohlone and Ohlone tribes, until the settlements from the colonial Spanish missions during the 18th-19th centuries, were established. To honor the historical and cultural significance of this land, prior to starting construction, the Muwekma-Ohlone and Ohlone tribes should be consulted. During the grand opening of the development, representatives from these tribes should be invited to speak to raise awareness about the colonial past of the land, their vibrant cultures, and significant practices.

This SCU Faculty & Staff Housing Development serves as an incredibly valuable resource to many who have been impacted by the rising cost of living in the area. At the same time, the needs and concerns of the local communities should not be ignored in order for this development to progress. Those concerns were addressed in the design and construction of the development. Maximizing setbacks on the property, onsite parking, and commercial spaces accessible to the public and tenants of this development are some of the ways that the project will improve and form a relationship with the neighboring communities. Since a traffic and transportation analysis was not included in RADS Construction's project scope, those issues were not directly addressed. As the project does move forward, however, it will be critical for a transportation team to find solutions and mitigations to address the increase of population in the area.

#### **Economic Considerations**

An economic concern for this project was whether spending money on this project was the best use of Santa Clara University's money. Santa Clara University will be funding and managing this new housing development. The money allocated to this project could also be used to fund other campus projects, as there are other aspects of campus that could use improvement.

On campus, there are buildings that are currently in use, but are in need of renovation. Additionally, over the past years there have been movements on campus to better support adjunct lecturers and workers at Benson Center (Santa Clara University's dining hall). There are many other campus issues that require University funding, so determining if spending money on this Faculty & Staff Housing Development is the best use of campus funds is in question.

The Faculty & Staff Housing Development seeks to address this economic concern through the benefits this project will have for faculty and staff at Santa Clara University, as well

as the students. This development can improve relations with adjunct lecturers and non-tenured professors on campus by providing them with an affordable place to live close to campus. An issue that Santa Clara University has been having is both keeping and attracting quality professors and lecturers because the cost of living in the area is so high. By providing more affordable housing, Santa Clara University is making it more reasonable for lecturers, professors, and staff to work and continue to work at the University. While funding this development will not directly improve other buildings and academic space on campus, it has the potential to boost the overall success of the University by attracting and keeping high quality faculty and staff. This continued success can then help to fund other campus projects in the future.

#### **Sustainable Considerations**

Sustainability was a primary criteria throughout the design of this project. The project's goal was to abide by Leadership in Energy and Environmental Design (LEED) v4 guidelines (U.S. Green Building Council, 2013). For the structure, steel was the primary material used. Steel relies on nonrenewable resources, therefore it will be a priority to use the least amount of steel possible, while ensuring that the design meets and exceeds the minimum design requirements per the code and regulations. Further, this project attempted to use local resources and materials. To do this, the LEED guidelines were followed, which states that materials are to be extracted, harvested or recovered, and manufactured within a 500 mile radius of the project site. Being conscious of material procurement will not only increase demand for regional materials, but it will also reduce the environmental impacts that come with the transportation of materials. Low impact development (LID) in the form of bioretention was included in the development design to manage water onsite, allow groundwater infiltration, and increase the quality of urban runoff.

Sustainability was not only important to consider for environmental impacts, but also social impacts. A crucial aspect of social sustainability was to ensure basic needs were met for all people. "All people" in this project means the faculty and staff at Santa Clara University who are the main users of this development. The most dire need of the faculty and staff is affordability, because the point of the housing development is to provide housing that is nearby SCU and within their salaries. Per the Engineering Design Processes and Practice for Civil Engineering Projects Handbook, compiled by Dr. Sukhmandar Singh, a sustainable design should use less energy, use less material, fail less often, pollute less, be reusable, and be recycled (Singh, 2012). By installing a bioretention system onsite, the amount of stormwater from the site and sent to water treatment plants is decreased, therefore lowering the amount of embodied energy of this development. Exploring more water efficient options for potable water and wastewater demands helps to conserve more water and potentially decrease the amount of infrastructure and energy needed by decreasing the water demands. Energy usage is correlated with pollution, since the majority of the energy is not sourced renewably yet, so decreasing energy usage also decreases the overall pollution. Using steel as the building material also decreases failure rates in seismic conditions, which is relevant to the location of this project site. Additionally, steel promotes reuse and recycling by melting and reforming the steel for new uses, contributing to a sustainable and circular economy.

#### **Social-Political Impact**

During the planning and design of this Faculty and Staff Housing Development, the design team took as many different considerations into account as possible on how this project will affect the society nearby. One of the key points that was brought to the team's attention numerous times in the community meeting on August 19, 2019, was the social impact of having a seven-story residential apartment complex in the proximity of existing residential neighborhoods. Many of the residents who live in houses in the Encanto community, the housing community adjacent to the project site, are accustomed to a one-story industrial zoned building next to their house and expressed concern that their privacy will be taken away once this tall housing complex is constructed.

To address this issue, the team used the site layout provided by the architects (Studio TSquare) of this project and made suggestions on how to address the neighbors' concerns. One aspect of the design that serves as a solution to the privacy issues was the offset of the building footprint from the Encanto neighborhood community. There will be a driveway in between the proposed building and the existing neighborhood community. According to the 2019 California Building Code, the driveway must be a minimum of 20 feet wide (California Building Standards Commission, and International Code Council, 2019), and a 26 foot wide driveway was proposed to be incorporated into the design of this development, further separating the two developments from each other.

The team also recognized that the construction of this new mixed-use residential development will be an issue for nearby residents and businesses, especially since this site is located on a one-way in and one-way out street. In efforts to minimize the number of delays and road closures, the team examined and determined the best method of constructing this building and transporting materials and equipment to the job site. Especially taking into account rush hour, or commute time, when people leave and come back from work, the team would not schedule any activities that will block the road during these times.

During the planning of this project, the first two floors of the building consisted of a parking garage, incubator space, and five floors of residential units above it. Gaining feedback from the stakeholders of this project, the team decided to change the mixed-use aspect of this building by replacing the concept of an incubator space to be commercial space for a coffee shop and/or retail store(s). The stakeholders addressed that they did not see the need for an incubator space and wanted to have a space that was designated for a shop that they would be able to go to and actually make good use of. Especially taking into consideration that nearby residents and businesses that are not affiliated with Santa Clara University are not technically allowed to use the school's facilities, having a store nearby that they could use is more pleasing to them and helps to suit some of their needs.

The overall goal of this housing development was to construct apartment complexes that fall within the budget of Santa Clara University's staff and faculty in the area. While RADS Construction will not be setting rent prices for this housing development, the cost of construction will impact the rental prices as Santa Clara University attempts to recoup the cost accrued during construction. This cost will ultimately depend on Santa Clara University's ability to pay for this building. Given the goal of making this development LEED v4 certifiable, the initial cost of construction was expected to be higher than a traditional construction project. SCU may propose cheaper alternatives to the LEED guided practices to stay within budget and reduce the initial cost, however this comes at a higher cost throughout the project's lifetime.

As with recent archaeological discoveries, Santa Clara University and its surrounding properties have been built on the land of the Ohlone and the Muwekma Ohlone people (Santa Clara University, 2019). It is important to recognize the impact that the new development will have on the surviving members of those tribes whose land has already been paved over with concrete. While it is impossible to rectify the infrastructure built on this land, RADS Construction took this into consideration when implementing design elements, such as using native plants to the area and installing natural groundwater recharging methods in the surrounding areas of the site.

#### **Environmental Impact**

Construction and the industry that it affects is reportedly responsible for the depletion of "40% of global resources, 12% of potable water reserves, 55% of wood products, 45–65% of produced waste, 40% of raw materials, and the emission of 48% of harmful greenhouse gases" (Suzer, 2015). Construction itself exacerbates the effect that global warming has and given the increased pace of construction, the harmful byproducts of construction will continue to spread if left unchecked.

As a preventative measure, some countries like the United States and the United Kingdom have developed guidelines for construction projects centered around reducing emissions, using renewable energy, and utilizing environmentally conscious practices throughout the entirety of a construction project. In the Housing Development project proposed by RADS Construction, the United States' green construction building codes and LEED were used for the entirety of this project. Not only did it allow RADS Construction to implement environmentally friendly products into the building, but it gave RADS Construction clear goals to lessen the building's environmental impact.

Currently, the proposed project site is zoned as a heavy industrial site. This classification potentially has serious impacts on the quality of the soil, as oils and other substances may have saturated the soil, which could qualify this site as a brownfield. Additional testing of the soil may be required to determine the extent of potential contamination, which in turn could have time and cost impacts for the development. The team also considered the impact that the proposed construction will have on the heavy industrial site in terms of emission and waste produced by the vehicles and equipment on-site. A detailed construction waste management plan highlighting key ways to incorporate existing materials, such as metals and crushed concrete, was included within this project scope.

#### Health & Safety Impact

In the field of civil engineering, there are numerous reasons behind why infrastructure can potentially end up failing. One of the main failures that occurs is due to poor design of the infrastructure, which can greatly impact the safety of the individuals who are directly involved with the project and nearby residents. The 2019 California Building Code (CBC) and ASCE 7-16 were referenced to ensure that the proposed development met the minimum standards when designing this development. Enercalc SEL, a structural calculation software, was utilized to design the columns and beams for this development, alongside hand calculations to verify the values that were output from these programs to decrease the chances of human error.

This housing development would be classified as a Type III risk category due to the high volume of residents that will occupy this site. The team incorporated live & dead loads, wind

loads, and seismic considerations into the design of the housing complex that adhere to the 2019 California Building Code (CBC) requirements.

To account for possible material failure, the main construction materials for this development will be concrete for the first two floors and hot-rolled steel for the five floors above. These two materials can be thoroughly inspected by a trained professional and can be created in a controlled environment, such as at a concrete plant or steel manufacturing plant. Reinforcement bars are used to help strengthen the concrete and increase the factor of safety as the concrete begins to crack across its lifespan. Also, the target compressive strength (f<sup>°</sup>c) was specified for the project to ensure that the concrete can withstand the lateral and axial loads.

Steel is another material that has high structural strength and integrity, which will increase the safety of the overall building. It is impervious to pests and resistant to fires, after fire protection of the steel. One of the main drawbacks of using steel is its risk of being penetrated by moisture, which is mitigated by using insulation, moisture barriers, and high-quality coatings. Steel has the structural stability to withstand high winds and a large amount of seismic activity (Whirlwind). This development is being built in California, so choosing a material that will have less chances of failing in the event of a seismic event is preferred to ensure the safety of the residents and neighbors.

### **Analysis of Alternatives**

For each alternative analysis, a list of criteria was developed. Each criteria was weighed on a scale from one to 10 based on how important each criteria was to RADS Construction and the client (Santa Clara University): one being not important at all to 10 being very important to implement in this project. RADS Construction presented different alternatives and scored them based on how well each alternative met the criteria using a one to five rating system: one meaning that the alternative did not meet the criteria at all and five meaning that the alternative definitely met the criteria. The score was then multiplied by the weights to incorporate how important each criteria was, and the sum of the scores for each alternative was computed. The alternative with the highest score represented the best alternative and was implemented into the overall design of the project.

#### **Material Analysis**

An alternative analysis of three different materials was conducted to justify which material will be used for Santa Clara University's faculty & staff housing development at 1200 Campbell Avenue in San Jose, California. The three material options that were considered in this analysis were concrete, steel, and timber.

Concrete is a chemically stabilized structural material used in construction. Concrete forms to whatever mold that it is placed in which allows for the creation of unique structures of varying shapes and sizes. It excels in compression and is generally unfavorable in tension. The combination of widely used Portland cement and water makes it a relatively inexpensive building material. Concrete is one of the most common building materials due to its versatile use in foundations, columns, elevated slabs, beams, and walls.

Steel consists of carbon and iron alloys, which makes it very durable and is often used as a construction material. Although steel production emits CO<sub>2</sub> it is still environmentally friendly and sustainable. Steel is generally recyclable and is very ductile compared to other materials, such as concrete and timber (Worldsteel). Appropriate actions have been taken to continue to decrease the amount of harmful emissions that are generated from steel. Steel, if exposed to the elements, will require consistent maintenance either through painting a protective layer over it or by installing sacrificial anodes. Steel has a very high initial cost due to the material and labor but depending on the project, the amount of material that is needed can be reduced and the overall life span of the project increases. Also due to the different layouts of the apartments, large beam spans will be required for this development, which is possible to accomplish with steel and the ability to pre-camber steel beams if needed. Pre-cambering will allow the material tolerance of the steel to be altered, ultimately allowing the use of lighter, cheaper, and possibly thinner members.

Timber is wood that has been processed into material that can be used for structural purposes. It is often used as a building material since it uses less water and energy to create, is renewable from well managed forests, and has a lower carbon footprint compared to other building materials, such as steel. Wood is also relatively inexpensive especially if outsourced from countries like China, which is responsible for 44% of all timber imports (PR Newswire: Press Release Distribution, Targeting, Monitoring and Marketing, 2019). Timber has a great deal of flexibility, which makes it ductile and reduces the effects in the event of an earthquake. Timber is also a common building material, therefore it is used in most residential houses.

The criteria used to rate each system was weighted on a 1 to 10 scale, and the assigned weight for each criteria are listed as follows:

- Low Cost, 9/10
- Sustainability, 8/10
- Expertise, 7/10
- Aesthetics, 3/10
- Schedule Impacts, 5/10
- Seismic Resistance, 6/10

The weights for the material analysis were based on the needs from Santa Clara University, SCU's faculty and staff, and the overall site constraints. The stakeholders of this project were able to voice their opinions at the community meeting on August 18, 2019 and these criterias reflected their concerns. Each criteria was weighed and scored based off of the material's ability and effectiveness of meeting the criteria.

After applying the weights and criteria ratings to the alternatives (as shown in Appendix A, Table 1), the best material to build the structure was determined to be steel, with the exception of the first two floors constructed out of concrete for the parking garage. Steel received a score of 116 after assigning criteria ratings and multiplying by weights. The top four criteria were cost (9/10), sustainability (7/10), ease of constructibility (6/10), and schedule impacts (6/10), in order of highest weight. For cost, steel was the least affordable compared to concrete and timber. Steel, however, has a great long-term cost benefit due to its material properties (Pascal Steel, 2016), and RADS Construction has more design knowledge with steel compared to timber and concrete

#### **Stormwater Management Analysis**

Alternatives for onsite stormwater management were analyzed and compared to determine the best solution for Santa Clara University's faculty & staff housing development at 1200 Campbell Avenue in San Jose, California.

The stormwater management alternatives that were selected to be analyzed are based on the suggestions in the C.3 Stormwater Handbook and are listed as follows (SCVURPPP, 2016):

- Porous pavement
- Green roof
- Bioretention
- Flow through planters
- Rainwater catchment
- Nothing (status quo)

Eleven criteria were used to evaluate the alternatives, and each criterion was rated a weight from 1-10. A weight of one means the criteria is not important to the project to achieve affordability and sustainability. A weight of five means the criteria moderately influences the design of the project to achieve both affordability of sustainability. A weight of 10 means the criteria highly influences the design of the project to achieve both affordability and sustainability.

Porous pavement is a load-bearing, durable surface that allows water to infiltrate (Santa Clara Valley Urban Runoff Pollution Prevention Program, 2016). Porous pavement consists of layers of both fine and coarse aggregate for the water to filter through. Once the water goes through the aggregate, it reaches a perforated pipe where some of the runoff is taken to the storm drain system and some infiltrates into the subgrade soil. The important benefits of this system are

its ability to filter fine particles and reduce runoff. Limitations of this alternative include susceptibility to clogging and higher installation costs than normal pavement (National Asphalt Pavement Association, 2020).

Green roofs are roof systems containing vegetation that function to "filter, absorb, and retain or detain the rain that falls upon them" (Suzer, 2015). The top layer of these roofs consist of planting media and vegetation. Structural components such as waterproofing and geofabrics lie underneath the top layer. Some benefits of this alternative are that it provides significant reduction to roof runoff, earns LEED credits, and is a highly aesthetically pleasing system. Some limitations of this alternative include high cost and impact on the structural design (EPA, 2020).

A bioretention area is a biotreatment design that uses soil and plants to filter and remove pollutants from urban runoff (SCVURPPP, 2016). A system typically consists of a detention area, plants, a layer of mulch, biotreatment soil, drain rock, and an underdrain. As water percolates through, it is treated and filtered by the varying layers before either infiltrating into the native soil or being sent to the storm drain through a perforated underdrain. Some benefits of this system are that it is low maintenance and it can conform with a variety of landscapes. Some limitations of this alternative include the need for irrigation for the first few years and the susceptibility to clogging (Whirlwind, 2017).

Flow through planters are similar to bioretention areas in terms of function, however, they do not allow for groundwater infiltration into the native soil. The system is completely contained by concrete or other planter walls, and they also have waterproof membranes. Some of their benefits include their ability to be adjacent to structures and they are low maintenance. Their limitations include head loss and susceptibility to clogging (SCVURPPP, 2016).

Rainwater catchment systems collect rainwater from the roof and other impervious surfaces. They are designed to collect and store the water for irrigation and other non-potable reuses. Benefits of this system include LEED credits and the reduction of runoff, especially roof runoff. Limitations of this system include cost of maintenance and installation and its usage of space (SCVURPPP, 2016).

The status quo alternative for this development would be no stormwater management or Low Impact Development aspects in place. This means that runoff flows directly into the storm drain system without any treatment or reduction efforts. Not implementing stormwater management on a site that contains more than 10,000 square feet of impervious area violates the C.3 Stormwater Handbook (SCVURPPP, 2016). This project site is 137,000 square feet which is greater than the 10,000 square feet minimum requirement. Due to the amount of impervious area on the site, it is necessary to follow the C.3 Stormwater Handbook, and there must be some onsite stormwater management to satisfy local and statewide regulations.

The three main constraints for stormwater management alternatives were run-off treatment, ability to fit on the project site, and compliance with the C.3 Stormwater Handbook (SCVURPPP, 2016). The criteria used to rate each system was weighted on a 1 to 10 scale, and the assigned weight for each criteria are listed as follows:

- Groundwater infiltration capacity, 6/10
- Runoff treatment effectiveness, 10/10
- Aesthetics, 5/10
- Impact on structure design, 8/10
- Space usage, 7/10
- Storm drain runoff reduction, 7/10
- Cost of construction, 10/10

- Feasibility of construction, 4/10
- Cost of maintenance, 8/10
- Feasibility of maintenance, 3/10
- Geographically appropriate, 6/10

After applying the weights and criteria ratings to the alternatives (as shown in Appendix A, Table 3), the best stormwater management system was a bioretention system. The bioretention system received a score of 308 after assigning criteria ratings and multiplying by weights. The top five criteria were effectiveness of runoff treatment (10/10), the cost of construction (10/10), impact on structural design (8/10), cost of maintenance (8/10), and storm drain runoff reduction (7/10), in order of highest weight. A bioretention system was the best alternative for a stormwater management system because the bioretention system had the highest scores for three of the top five weighted criteria. As an addition, the porous pavement could also be added for stormwater use onsite to help the bioretention system by reducing the total amount of impervious area on the project site. The less the impervious area is, the less volume the bioretention system will have to be. A smaller bioretention system will benefit this site since it is a large development on a smaller site in an urban area.

# **Design Criteria and Standards**

#### **Constraints**

Before beginning the design of this Faculty and Staff Housing Development for Santa Clara University, RADS Construction communicated with representatives from Santa Clara University and Studio TSquare to identify the following constraints for this project:

- Project Site Area = 133,730 ft<sub>2</sub> = 3.07 acres
- Intended Use of Building = Mixed-Use
- Minimum Number of Apartments = 280 units
- Number of Floors = seven (7) floors
- Site Zone = Heavy Industrial District currently, proposal submitted for Mixed-Use
- Design knowledge of the design team
- Time & Online Schooling

#### Key Values, Applicable Codes, and Assumptions Used in Design Calculations

Structural:

The design of all of the structural components of Santa Clara University's Faculty and Staff Housing Development abided by the 2019 California Building Code (CBC) and ASCE/SEI 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures. According to the 2019 California Building Code (Table 1604.5) and the ASCE/SEI 7-16 (Table 1.5-1), this building was designed to be a risk category III structure since the failure of this building could pose a substantial risk to human life. This classification was assumed to be appropriate mainly due to the size of the overall structure and the overall occupancy of the building being greater than 280 people. There was also no geotechnical report provided for this project site yet, therefore the site was assumed to have a soil class D, according to ASCE/SEI 7-16 Section 20.1. Also due to not having a geotechnical report, ACI 318-19 was used to assume the thickness of the foundation slab to be nine inches.

According to the ASCE/SEI 7-16 (Table C3.1-1a), dead loads throughout the building were estimated based off of the typical materials that are used to construct a concrete parking garage and steel residential apartment units. The dead load for the commercial space was 104 psf, the parking garage was 108 psf, the residential units & corridors were 70 psf, and the roof was 51 psf. The dead loads were estimated by adding up the weight of the structural components, and five percent of the summation of the weights was added as a miscellaneous component and served as a factor of safety for the design.

Per the ASCE/SEI 7-16 (Table 4.3-1), live loads were assigned depending on the occupancy type. For the parking garage, a live load of 60 pounds per square foot (psf) was assigned, despite a minimum live load specification as stated for a passenger parking garage in ASCE/SEI 7-16 (Table 4.3-1) was 40 psf. A live load of 60 psf was used with anticipation that the parking garage can be used as an assembly area if needed. The residential units were assigned a live load of 40 psf, and all of the corridors were assigned a live load of 60 psf in case of people assembling in the hallways in an emergency, such as a fire. The live load for the

commercial space was 100 psf, and the roof live load was 20 psf in anticipation that solar panels could be installed on top of the building in the future. Based on the 2019 California Building Code (Table 1604.3), the deflection limit for the floor members for only the live loads was L/360 and L/240 for dead and live loads respectively, where L is the length of each member (with units of inches) to ensure that the structural system and members were rigid enough to withstand the deflections.

Using the Equivalent Lateral Force method, the lateral force resisting system was designed based off of the estimated base shear and type of lateral system used. Special reinforced concrete shear walls, special steel concentric braced frames, and special steel moment frames were used to resist the lateral forces. To design the concrete shear walls, ACI 318-19 (Table 11.3.1.1) was used to determine the minimum thickness of the shear wall, which was eight (8) inches, and the minimum design requirements for the concrete shear wall. The base shear for concrete shear wall lateral system was 7,155 kips. To design the special reinforced concrete shear wall and special concentric braced frames, the Response Modification Coefficient (R) was 5 and the Deflection Amplification Factor (Cd) was 5 according to ASCE/SEI 7-16 (Table 12.2-1). To design the special steel moment frames and special concentric braced frames, as well as all of the other steel members, AISC 360-16 was used for steel section properties and design provisions. A stiffness of 8EI/L3 was assumed for the design of all of the columns for the special steel moment frames since it was a generally conservative assumption based on the project characteristics. The base shear for the steel moment frame lateral system was 2,932 kips. According to ASCE/SEI 7-16 (Table 12.2-1), the Response Modification Coefficient (R) was 8 and the Deflection Amplification Factor (Cd) was 5.5. All of the steel and concrete calculations were performed using Load and Resistance Factor Design (LRFD).

#### Potable Water and Wastewater Management:

The calculations for the potable water and wastewater sections were based on the 2019 California Fire Code (California Building Standards Commission, and International Code Council, 2019), 2019 California Plumbing Code (California Building Standards Commission, and International Code Council, 2019), LEED v4 (U.S. Green Building Council 2013), Green Building Initiative Green Globes Water Consumption Calculator (Green Building Initiative, 2020), and tables from *Water and Wastewater Engineering Design Principles and Practice* (Davis, 2010).

#### Stormwater Management:

To ensure that the development met the Bay Area stormwater requirements and abided by local San Jose codes, the C.3 Stormwater Handbook was used to design the bioretention (SCVURPPP, 2016). Santa Clara Water Valley provided data for groundwater table levels near the site to determine if the bioretention should allow for groundwater infiltration. The rainfall data was collected in San Jose (NOAA), and unit hydrographs were generated following federal guidance (USDA, 2007). City of San Jose design codes were used as well (San Jose Technical Documents).

In designing the bioretention, a few assumptions were made. The first assumption was that all rainwater onsite will be caught by inlet pipes. The second assumption was that earthwork should be minimal, but will be demanded if needed. The last assumption was that placing a bioretention outside of the property line is allowed because that adjacent property is also owned by Santa Clara University. All of the bioretention design was completed with the intention to significantly decrease the volume of untreated onsite run-off into storm drains.

## Construction:

All design considerations for this project have been vetted with the guideline presented in Cal/Occupational Safety and Health Administration (OSHA) with regard to upholding safety standards (Allen). All cost data was compiled from the RSMeans Construction Cost Database (Mewis).

# **Description of Designed Development**

#### **Summary of the Site Layout**

The location of this project site was thoroughly thought out by Santa Clara University since the site that was chosen was owned by the University, property size was adequate to construct a mixed-use development, and it was in the proximity of transit hubs (i.e. Caltrain, Amtrak, and VTA). RADS Construction communicated with Santa Clara University and the architect for this project, Studio TSquare, to determine what was the most beneficial site layout to design the structure on. Santa Clara University mentioned that they wanted a building that had a minimum of 280 residential units but also had some extra space for an incubator. RADS Construction did not see the purpose for an incubator space, as Studio TSquare originally proposed, and included a commercial space in the team's design instead. The commercial space will have stores that will be open to the general public. Therefore, this building design will counteract nearby stakeholder's, who are not affiliated with Santa Clara University, concerns about adding this development to the neighborhood. Finally, the team decided to place the driveway on the south side of the property (displayed in Figure 5), adjacent to the neighboring housing development that is not owned by the University. The driveway was placed in this location to provide some privacy to the neighboring residences. The driveway will wrap around the east side of the building and into the University Villas driveway on the north side of the property.



Figure 5. Site Layout Including Driveway Design.

The building consists of a total of seven floors above grade level. The first floor consists of a parking garage and approximately a 25,000 square foot commercial space. The second floor contains a parking garage and residential units. Floors three and four have residential units and a clubhouse, which is only accessible on the third floor. Floors five through seven have only residential units. There are four different unit layouts: Studio, One-bedroom, Two-bedroom, and Three-bedroom, as proposed by Studio TSquare in Figure 6. A unique feature of the entire layout of this building is the open courtyard (Figure 7) in the center of the building from the third floor and above.





Figure 7. All Four Unit Layouts in the Building (Studio TSquare, 2019).

#### **Structural Design**

Based on the architectural drawings provided by Studio TSquare, the entire building is seven stories, contains 290 residential units, 286 parking spaces, commercial space and a clubhouse. The first two floors of the building consists of a parking garage and commercial or residential space. The upper five floors consisted of residential units and a clubhouse only accessible on the third floor of the building but is two floors high. The first two floors of the building have a floor area of 91,000 square feet, and the residential floors have a floor area of 68,000 square feet due to the courtvard in the interior of the building that starts on the third floor. The first two floors have a higher elevation than the upper five floors making sure that the floors are high enough in the parking garage and commercial space. The floors that have mainly residential units have a typical height of 10 feet on each floor. The entire building was designed to be 77 feet above grade, especially since the soil conditions were unknown and the scope of work consisted of tasks above the foundation concrete slab. After conducting an alternative analysis of different building materials to use to design Santa Clara University's Staff and Faculty Housing Development, the structural system was broken down into two types of sections based on the intended use of the space and building material chosen. The foundation slab and parking garage consisted of mainly concrete. Hot-rolled steel and metal decking with concrete fill were the main building materials used to design the commercial space, residential units, and clubhouse.

Due to the time constraints and the unknown classification of the soil on site, it was assumed that the first floor of the building would sit on top of a nine inch concrete foundation slab that is below grade level. This building also consists of four elevators and four stairwells that are located near the four corners of the building since this building is large and can contain more than 300 occupants.

AutoCAD was used to determine and layout the appropriate locations to place the gravity force resisting system with respect to the key elements of this development. The gravity force resisting system for the concrete portion of this building occured in the parking garage which consisted of simply supported rectangular concrete beams and circular concrete columns. For the commercial space, clubhouse, and residential units, simply supported w-section steel beams, girders, and steel columns were used. The beams and columns were grouped into sections in AutoCAD to make it easier to design the gravity force resisting elements of this building. The structural team determined the tributary width of gravity loads that were acting on the beams and the tributary area of gravity forces that were acting on the columns.

The gravity columns were designed based on the assigned section of the building and the largest tributary area acting on a column in that respective section. The gravity beams were grouped based on their span lengths, and each group was designed using the largest tributary width of gravity load acting on each respective group. In order to not block any open areas, such as living space and windows, there are sections of the structure that had long spanning gravity beams. Therefore, a pre-composite camber design was performed on the Microsoft Excel calculation spreadsheet that the structural design team member created for beams which had a span greater than or equal to 30 feet long. By cambering the beam, a lighter and more shallow beam was used since the beam was deflected in the vertical direction to help negate the impact of heavy loads acting on these long members. While performing the pre-composite camber design, a metal deck was chosen from the ASC Metal Decking Floor Catalog. The floor metal decking that was specified for all of the floors that consisted of steel had a total slab depth of 6.25 inches, use of light-weight concrete, and a two hour fire rating was used. The two hour fire rating metal

deck will allow the occupants to have more time to exit the building in the event of a fire, especially due to the high density of this development. For the roof, a 1.5 inch metal deck with plywood was chosen from the ASC Metal Decking Roof Catalog since the dead loads on the roof was calculated to be 51 psf and would be mainly carrying the weight of mechanical, electrical, and plumbing (M.E.P.) equipment, which was not included in the scope of this project. The structural design team member knew that many of the columns and beams would be oversized but wanted to make all of the concrete columns the same size for ease of fabrication and construction. Table 1 displays the gravity loads that were applied depending on the intended use of the space. It is important to note that 5% of the total dead load for each intended space was added as miscellaneous to serve as a design factor of safety, taking into consideration the load assumptions that were made. It is also important to note that there are gravity columns that are not continuous to the grade level. This situation occurs on the third floor of the building, where steel columns were attached to the concrete floor diaphragm so the gravity loads can be effectively transferred to the columns and down to the ground. The design calculations for the gravity force resisting system can be found in the structural calculations package (Appendix C), and the structural details can be found in the drawing set (Appendix B).

| Intended Use of Space   | Dead Load (psf) | Live Load (psf) |
|-------------------------|-----------------|-----------------|
| Parking Garage          | 108             | 60              |
| Commercial Space        | 104             | 100             |
| Residential Units       | 70              | 40              |
| Residential - Corridors | 70              | 60              |
| Roof                    | 51              | 20              |

| Table | 1. F | lat I | Weights | of the | Building. |
|-------|------|-------|---------|--------|-----------|
|-------|------|-------|---------|--------|-----------|

Looking at the overall structure layout in AutoCAD after laying out the gravity force resisting system, the structural design team member analyzed what type of lateral force resisting system(s) that needed to be included in the design of this development. The lateral forces were determined to mainly act on all of the four exterior walls of the building and the walls of the building that are in the open courtyard. Therefore, the lateral systems were placed towards the outer walls, which would experience the majority of the lateral forces. The lateral systems were also placed as symmetrical from each other as possible to prevent the center of mass and rigidity from affecting how the overall building reacts to lateral forces.

Due to the two different building materials used for the first and second floor of the building, two different lateral force resisting systems were designed and a two-stage design process was implemented (Figure 8). According to ASCE 7-16, Section 12.2.3.2, a two-stage design process was permitted if the development contained a flexible upper portion above a rigid lower portion. Therefore as seen in Figure 9, the first two floors that have special reinforced concrete shear walls and special concentric braced frames make the structure rigid (highlighted in blue), while the upper floors contain special steel moment frames for the lateral system, which make the structure flexible (highlighted in pink). Special steel moment frames were selected for

this design due to this site being in a high seismic region and the structure needed more ductility due to the size of the structure and being able to withstand large inelastic deformations.



Figure 9. Rigid (Blue) Versus Flexible (Pink) Design of the Building.

Since there were two different diaphragm systems joining together on the second and third floor, special concentric braced frames and special reinforced concrete shear walls were chosen. Originally, the structural design team was planning to use special steel moment frames for the lateral system for the commercial space on the first floor and residential units on the second floor since special steel moment frames were being used on the floors above. But after considering how the building would react if it experienced lateral forces, the structural design

team decided to use special concentric braced frames for the first two floors to provide more rigidity to the structure on the lower levels and choose a lateral system that had a similar Response Modification Factor (R) to special reinforced concrete shear walls. The special reinforced concrete shear walls and special concentric braced frames on floors one through three (Figure 10) were placed relatively near the sides of the building where the building was expected to experience the strongest lateral forces.



Figure 10. Lateral System for Floors One through Three.

The lateral system for the upper five floors (residential units and a clubhouse) consist of special steel moment frames (Figure 11). Steel special moment frames were chosen especially for the residential units to prevent the lateral system from hindering any key elements of the building, such as windows, rooms, etc. It is important to note that both of the lateral systems were designed to resist torsion acting on the building due to lateral forces.



Figure 11. Lateral System for Floors Three to Roof.

All of the lateral force resisting systems, with the exception of the design of the special concentric braced frames since it was out-of-scope, were designed using the Equivalent Lateral Force Method and can be found in the structural calculations package in Appendix C. The lateral system details can be found in the drawing set in Appendix B. The two lateral systems were designed to meet the allowable story drift per ASCE 7-16, Table 12.12-1 and be able to withstand the base shear acting on the structure due to the lateral forces in each direction. Based on the response parameters of the site, the building was classified to have a Seismic Design Category (SDC) of D, and its Risk Category was III due to the high risk of human life.

The special steel moment frames were designed by calculating the amount of force that each frame experiences on each floor. The required moment of inertia for the columns was calculated, and the W-shaped properties in the AISC 360-16, Table 3-2 were referenced to find a column that had the capacity to contain the required minimum moment of inertia. The required moment of inertia for the beams in the moment frames were calculated, and the W-shaped properties in the AISC 360-16, Table 3-2 were referenced to find a beam that had at least the required moment capacity. A selection of the structural details for the lateral system can be found in Appendix B. The design calculations for the connections of the different members of the lateral system were not included in this scope due to time constraints and intensity of work. Figure 11 highlights the two lateral systems on two sides of the 3D model of the building, which was created using Revit.



Figure 12. Two Lateral Systems Highlighted on the 3D Model on Two Sides of the Building.

### **Potable Water Management Design**

### Water Demand

The potable water demand for the project was calculated for baseline standards and water efficient products that reduce demand for comparison. Santa Clara University's Faculty and Staff Housing Development consists of both residential and commercial space, which require different calculations because of the different purposes they serve.

The potable water demand for the commercial space was determined first. Based on the 26,000 square foot (ft2) commercial space available, it was expected that 104 people would be using this space daily, where 50% are male and 50% are female. For the baseline water demand, the flow rates of standard water closets, standard urinals, and conventional lavatories, sinks, and showers were used. For the reduced water demand, the flow rates of ultra low-flow water closets, waterless urinals, and WaterSense lavatories, sinks, and showers were used. These products are higher in water efficiency, as they use less water to function. The final calculations for both the baseline potable water demand and the reduced flow water demand of the commercial space are shown in Tables 2 and 3, respectively.

| Commercial Space with 104 Occupants, 26,000 sf - Baseline Flow |            |                |                  |                              |                 |
|----------------------------------------------------------------|------------|----------------|------------------|------------------------------|-----------------|
| Flush Fixture                                                  | Daily Uses | Flowrate (gpf) | Duration (flush) | Occupants                    | Water Use (gal) |
| Standard Water<br>Closet (Male)                                | 1          | 1.60           | 1                | 52.00                        | 83.20           |
| Standard Water<br>Closet (Female)                              | 3          | 1.60           | 1                | 52.00                        | 249.60          |
| Standard Urinal<br>(Male)                                      | 2          | 1.00           | 1                | 52.00                        | 104.00          |
| Standard Urinal<br>(Female)                                    | 0          | 1.00           | 1                | 52.00                        | 0.00            |
|                                                                | Daily Uses | Flowrate (gpm) | Duration (sec)   | Occupants (gal)              | Water Use (gal) |
| Conventional<br>Lavatory                                       | 3          | 2.50           | 12               | 104.00                       | 156.00          |
| Kitchen Sink                                                   | 1          | 2.50           | 12               | 104.00                       | 52.00           |
| Shower                                                         | 0.1        | 2.50           | 300              | 104.00                       | 130.00          |
|                                                                |            |                |                  | Total Daily<br>Volume (gal)  | 774.80          |
|                                                                |            |                |                  | Annual<br>Workdays           | 260.00          |
|                                                                |            |                |                  | Total Annual<br>Volume (gal) | 201,448.00      |

### Table 2. Baseline potable water demand for commercial space of the project.

Table 3. Reduced potable water flow for commercial space of the project.

| Flush Fixture                           | Daily Uses | Flowrate (gpf) | Duration (flush) | Occupants                    | Water Use (gal) |
|-----------------------------------------|------------|----------------|------------------|------------------------------|-----------------|
| Ultra Low-Flow Water<br>Closet (Male)   | 1          | 0.80           | 1                | 52.00                        | 41.60           |
| Ultra Low-Flow Water<br>Closet (Female) | 3          | 0.80           | 1                | 52.00                        | 124.80          |
| Waterless Urinal<br>(Male)              | 2          | 0.00           | 1                | 52.00                        | 0.00            |
| Waterless Urinal<br>(Female)            | 0          | 0.00           | 1                | 52.00                        | 0.00            |
|                                         | Daily Uses | Flowrate (gpm) | Duration (sec)   | Occupants (gal)              | Water Use (gal) |
| WaterSense Lavatory                     | 3          | 1.20           | 12               | 104.00                       | 74.88           |
| Kitchen Sink                            | 1          | 1.75           | 12               | 104.00                       | 36.40           |
| Shower                                  | 0.1        | 1.80           | 300              | 104.00                       | 93.60           |
|                                         |            |                |                  | Total Daily<br>Volume (gal)  | 371.28          |
|                                         |            |                |                  | Annual<br>Workdays           | 260.00          |
|                                         |            |                |                  | Total Annual<br>Volume (gal) | 96,532.80       |

After the potable water demand for the commercial space was completed, the potable water demand for the residential space was calculated. With the help of the Green Building Initiative's Green Globe's Water Calculator, the baseline and reduced flow cases for the water demand were calculated (Green Building Initiative, 2020). Like in the commercial space calculations, the baseline demand used the flow rates of standard water closets, sinks, lavatories, showers, and household appliances. The reduced flow for the residential space used the flow rates of low-flow toilets, WaterSense sinks, lavatories, and showers, and more efficient household appliances. The final calculations for the residential baseline potable water demand and reduced potable water demand are shown in Table 4. The complete calculations are shown in Appendix D.

| Residential Water Demand: Calculated Using<br>GBI Green Globes Consumption Calculator |               |     |  |
|---------------------------------------------------------------------------------------|---------------|-----|--|
| Baseline<br>Demand 17,246,200.00 GPY                                                  |               |     |  |
| Reduced<br>Demand                                                                     | 11,612,703.00 | GPY |  |

Table 4. The total baseline (17,246,200 GPY) and reduced potable water demand (11,612,703 GPY) for the<br/>residential space of the building.

In addition to the potable water demands from the commercial space and residential area, there was also a water demand required for fire flow. Per the California Fire Code, a structure of this size requires a capacity of 6,000 GPM for fireflow. This requirement was added to the water demand.

A peaking factor of 5.3 as recommended from the book *Water and Wastewater Engineering* was added to the commercial and residential demands for both the baseline and reduced (Davis, 2010). The commercial water demand, residential water demand, and fireflow demand for both the baseline and reduced were compiled and are shown in Tables 5 and 6, respectively.

| Flow Type                     | Demand     | Units |
|-------------------------------|------------|-------|
| Indoor Residential<br>Potable | 17,246,300 | GPY   |
| Indoor Commercial<br>Potable  | 201,448    | GPY   |
| Fireflow                      | 6,000      | gpm   |
| Peak Hour                     | 253,351    | gpd   |
| Max Day                       | 109,945    | gpd   |
| Total Demand                  | 6,176      | gpm   |

Table 5. Total baseline potable water demand for the entire building.

| Flow Type                     | Demand     | Units |
|-------------------------------|------------|-------|
| Indoor Residential<br>Potable | 11,612,703 | GPY   |
| Indoor Commercial<br>Potable  | 96,533     | GPY   |
| Fireflow                      | 6,000      | gpm   |
| Peak Hour                     | 170,025    | gpd   |
| Max Day                       | 73,784     | gpd   |
| <b>Total Demand</b>           | 6,118      | gpm   |

Table 6. Total reduced potable water demand for the entire building.

The addition of more water efficient features in the building significantly decreases the water demand for the entire structure. Using these basic water reducing strategies will result in a 33% decrease in indoor water use for the building and can achieve a total of 2 points for the LEED Indoor Water Use Reduction Credit. This reduction is shown in Table 7.

| Table 7. Annual indoor water use reduction in the building us | sing water efficient features. |
|---------------------------------------------------------------|--------------------------------|
|---------------------------------------------------------------|--------------------------------|

| Water Reduction                  |            |     |  |  |  |
|----------------------------------|------------|-----|--|--|--|
| Annual<br>Baseline               | 17,447,748 | GPY |  |  |  |
| Annual<br>Reduced 11,709,236 GPY |            |     |  |  |  |
| Percent<br>Reduction 33%         |            |     |  |  |  |

## Pipe Sizing and Layout

Based on the size of the structure, California Fire Code requires a minimum of six (6) hydrants to be located on the site with each hydrant receiving 1,000 GPM of flow during the time of need (California Building Standards Commission, and International Code Council, 2019). Three (3) of the hydrants are located on the northwest side of the structure and the other three (3) are located along the southeast side of the structure.

The project has two potable water mains with one on the northwest side of the building and the other on the southeast side of the building. Since the 6,000 GPM fireflow dictates the demand for both the baseline demand and the reduced demand, each of the mains will be 14" ductile iron (DI) pipes with 8" DI laterals that connect to the fire hydrants. To determine these diameters, Equation 1 and Equation 2 were used. Equation 1 displays the equation for calculating the area of the pipe, and Equation 2 displays the equation for calculating the velocity. The velocity must be greater than 2 ft/s and less than 8 ft/s. These equations determine the diameters of the pipes for the potable water mains and hydrant laterals. Potable Pipe Baseline Total Demand =13.79  $ft^3$  /sec Split into two Mains: Demand in Each =  $Q = 6.90 ft^3$ /sec Mains 1 & 2: Diameter = D = 14 inches Equation 1:  $A = \frac{\Pi}{4}D^2 = \frac{\Pi}{4}[(14 in)(\frac{1 ft}{12 in})]^2 = 1.07 ft^2$ Equation 2:  $V = \frac{Q}{A} = \frac{6.90 ft^3/sec}{1.07 ft^2} = 6.45 ft/sec$ 

Potable Pipe Reduced

Total Demand =13.63  $ft^3 / sec$ Split into Two Mains: Demand in Each =  $Q = 6.80 ft^3 / sec$ Mains 1 & 2: Diameter = D = 14 inches Equation 1:  $A = \frac{\Pi}{4}D^2 = \frac{\Pi}{4}[(14 in)(\frac{1 ft}{12 in})]^2 = 1.07 ft^2$ Equation 2:  $V = \frac{Q}{A} = \frac{6.80 ft^3 / sec}{1.07 ft^2} = 6.36 ft / sec$ 

Hydrant Pipes

Demand Per Hydrant = 1,000 gpm = 2.23 ft<sup>3</sup>/sec Diameter = D = 8 in. Equation 1:  $A = \frac{\pi}{4}D^2 = \frac{\pi}{4}[(8 in)(\frac{1 ft}{12 in})] = 0.35 ft^2$ Equation 2:  $V = \frac{Q}{A} = \frac{2.23 ft^3/sec}{0.35 ft^2} = 6.39 ft/sec$ 

The locations of the potable water mains, the fire hydrants, and the fire hydrant laterals are shown in Figure 13.



Figure 13. The layout of the potable water mains, fire hydrants, fire hydrant laterals, sanitary sewer main, and sanitary sewer laterals on the project site.

# Wastewater Management Design

Wastewater Demand

Based on the potable water demands for both the residential and commercial spaces, the total wastewater demand was determined. For both the baseline and reduced demands, a peak hour factor of 4 was taken from Figure 14 and applied to the average daily demand.



Figure 14. Peaking factor for wastewater demands. Sourced from (Davis, 2010).

With the addition of the peaking factor from Figure 14, the total wastewater demands for both the baseline and reduced demands are shown in Tables 8 and 9, respectively.

| Flow Type                | Demand     | Units |
|--------------------------|------------|-------|
| Indoor<br>Residential    | 17,246,300 | GPY   |
| Indoor<br>Commercial     | 201,448    | GPY   |
| Total Building<br>Demand | 17,447,748 | GPY   |
| Peak Hour                | 191,208    | GPD   |
| Max Day                  | 109,945    | GPD   |

Table 8. Baseline wastewater demand for the entire building.

Table 9. Reduced wastewater demand for the entire building.

| Flow Type                | Demand     | Units |
|--------------------------|------------|-------|
| Indoor<br>Residential    | 11,612,703 | GPY   |
| Indoor<br>Commercial     | 96,533     | GPY   |
| Total Building<br>Demand | 11,709,236 | GPY   |
| Peak Hour                | 128,320    | GPD   |
| Max Day                  | 73,784     | GPD   |

## Pipe Sizing and Layout

To size the pipes for the stormwater demand, Bentley Systems' OpenFlows FlowMaster was used. This is a program that assists in performing hydraulic calculations for different kinds of flows. The maximum pipe flow capacity (y/D) was set to be at 60% capacity. A slope of 0.02 and a friction factor (n) of 0.013 based on using PVC pipe were used for the calculations. Additionally the velocity of the flow in the pipe was required to be greater than two (2) ft/s and less than eight (8) ft/s, and the flows must meet the demands. The calculations determined that for both the baseline and reduced water demand, the minimum eight inch (8") PVC pipe will meet the required demands. The inputs and calculations done in FlowMaster are in Appendix D. The sanitary sewer main will be located along the southeast side of the building with an eight inch (8") lateral connecting the building to the main. Figure 13 displays the layout of the sanitary sewer piping.

Connection

For this project, proper ways to connect the sanitary sewer lateral to the existing main on Campbell Avenue were researched. There is currently not a manhole located close enough in the street so that the main onsite can connect to the existing main on Campbell Avenue. Due to this fact, the team recommends that the project lateral connect to the existing main using a connection similar to the connection used in Figure 15. This detail uses a 45° connection to join the project lateral to the existing main.



Figure 15. Example detail of how the sanitary sewer lateral on the project site should connect to the existing sanitary sewer main on Campbell Avenue. Sourced from (Tran, 2013).

## Water Efficient Features Cost Analysis

Many of the water efficient fixtures that reduce the amount of indoor water demand for the project come at a higher cost. For this reason, many projects may initially veer away from using these efficient fixtures, not willing to sacrifice cost for sustainability. These water efficient fixtures do decrease the amount of water demand, though, which can decrease the amount of potable water that the building needs to purchase annually to use. If the decrease in the building's water bill can offset the initial cost of purchasing the more water efficient fixtures, it would be far more reasonable and beneficial to use in the project.

To determine the economic benefits of implementing water efficient fixtures rather than standard fixtures, a cost comparison between the two was completed. The first part of the cost comparison was determining the costs of each of the different fixtures for both the reduced water demand and the baseline water demand. The different fixtures used were shower heads, lavatory sinks, toilets, urinals, and kitchen sinks. The average costs of the standard and water efficient fixtures were determined, and the total number of fixtures needed in the project were calculated using the building floor plans. This section of the cost analysis solely looked at material costs, not labor and installation costs, since those were assumed to be the same for the standard and water efficient fixtures. Table 10 and Table 11 show the calculations for the total material cost of the standard fixtures and the water efficient fixtures.

| Using Standard Fixtures   |           |                       |                       |  |
|---------------------------|-----------|-----------------------|-----------------------|--|
|                           | Cost/Unit | # of Units            | Cost for all<br>Units |  |
| Standard<br>Shower Head   | \$10.00   | 506                   | \$5,060.00            |  |
| Standard<br>Lavatory Sink | \$25.00   | 510                   | \$12,750.00           |  |
| Standard Water<br>Closet  | \$99.00   | 514                   | \$50,886.00           |  |
| Standard Urinal           | \$125.00  | 3                     | \$375.00              |  |
| Standard<br>Kitchen Sink  | \$27.00   | 292                   | \$7,884.00            |  |
|                           |           | Total Fixture<br>Cost | \$76,955.00           |  |

Table 10. Total cost calculations for the use of standard fixtures in the building.

#### Table 11. Total cost calculations for the use of water efficient fixtures in the building.

| Using Water Effecient Fixtures |           |                       |                       |  |  |
|--------------------------------|-----------|-----------------------|-----------------------|--|--|
|                                | Cost/Unit | # of Units            | Cost for all<br>Units |  |  |
| WaterSense<br>Shower Head      | \$20.00   | 506                   | \$10,120.00           |  |  |
| WaterSense<br>Lavatory Sink    | \$25.00   | 510                   | \$12,750.00           |  |  |
| Ultra Low Flow<br>Water Closet | \$134.00  | 514                   | \$68,876.00           |  |  |
| Waterless Urinal               | \$299.00  | 3                     | \$897.00              |  |  |
| WaterSense<br>Kitchen Sink     | \$36.00   | 292                   | \$10,512.00           |  |  |
|                                |           | Total Fixture<br>Cost | \$103,155.00          |  |  |

As mentioned before, despite the difference in demand, both the baseline demand using standard fixtures and the reduced demand using water efficient fixtures required the same size and length of piping on the project site. Due to this, the pipe cost was excluded from the analysis.

The second part of the comparison calculated the cost to purchase potable water annually from the City of San Jose. At the location of the project it costs \$5.13/one hundred cubic feet of water (City of San Jose, 2019). This cost was used to calculate the annual water purchasing cost for the baseline and reduced demand. The total costs for the two demands are shown in Tables 12 and 13.

| Water Purchasing Cost for the Baseline Water<br>Demand |  |  |  |  |  |
|--------------------------------------------------------|--|--|--|--|--|
| Potable Waterper gallonCost\$0.01                      |  |  |  |  |  |
| Total Demand 17,447,748 gallons/year                   |  |  |  |  |  |
| Annual<br>Purchasing Cost \$119,661.69                 |  |  |  |  |  |

Table 13. The calculations for the annual purchasing cost of potable water for the reduced demand.

| Water Purchasing Cost for the Reduced Water<br>Demand |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|
| Potable Water\$0.01Cost\$0.01                         |  |  |  |  |  |
| Total Demand 11,709,236 gallons/year                  |  |  |  |  |  |
| Annual<br>Purchasing Cost \$80,305.32                 |  |  |  |  |  |

The costs of both the fixtures and the water purchasing were compared between the baseline demand and the reduced demand. Table 14 depicts the cost differences between the two demands.

Table 14. Summary table comparing the costs of using standard fixtures versus using water efficient fixtures in the<br/>project.

|                             | Fixture Costs | Water<br>Purchasing<br>Costs (1 year) |
|-----------------------------|---------------|---------------------------------------|
| Standard<br>Fixtures        | \$76,955      | \$119,662                             |
| Water Efficient<br>Fixtures | \$103,155     | \$80,305                              |
| Cost Difference             | -\$26,200     | \$39,356                              |

Water efficient fixtures cost \$26,200 more in unit costs than standard fixtures, however, when comparing the water purchasing costs, using water efficient fixtures results in a savings of \$39,356. This results in a return on investment of less than one year. So while the water efficient fixtures have a higher upfront cost, the savings in the water bill pays off that additional cost in less than one year and keeps the project's water bill at a much lower rate. The savings have led the team to recommend that the project install water efficient fixtures in the building.

# **Stormwater Management Design**

The C.3 Stormwater Handbook (SCVURPPP, 2016) was used as a reference for the design of the bioretention area on the project site. According to the C.3, any site with more than 10,000 ft2 of impervious area must have onsite stormwater management. The total impervious area of the site is 133,645.77 ft2. The handbook also states that the stormwater management area must be at least four percent of the total impervious surface area on the site. Four percent of that area is equal to 5,345.83 ft2 and assuming there is no pervious area on the site, the bioretention area must be equal to that. The area of the bioretention can be later adjusted when following the bioretention sizing worksheet in Section IV, Appendix B of the C.3.

Based on the minimum area requirement for the bioretention and the existing topographic map, two bioretention options were designed. In addition to the minimum area requirement, a bioretention area must include a 10 foot setback from a structure if no waterproofing is present per SCVURPPP C.3 Ch 6.1. As mentioned in the General Site Description on page 9, the water table in the area is very high. Therefore, waterproofing must be installed. Both of the options met the minimum area and setback requirement but made different use of the site's space. The potential locations of the bioretention areas are shown below in Figure 16.



Figure 16. Layout of two bioretention placement options.

Option 1 was chosen because Option 2 requires an entire courtyard to be dedicated towards a bioretention instead of its intended use as a recreational area. To ensure that it is acceptable to place a bioretention outside of the property line, Jill Bicknell was consulted. Bicknell is a managing engineer at Environmental and Public Health Engineering and co-author of the C.3 Handbook. She stated that Option 1 was acceptable because both parcels of land are owned by Santa Clara University. While designing the pipes that lead from inlets to the

bioretention in Option 1, another bioretention was determined to be required due to the unrealistic amount of earthwork needed to connect pipes from the inlets furthest south to the bioretention. Figure 17, below, shows the new layout of bioretentions on-site:



Figure 17. Revised layout of bioretention placement.

The site was broken up into small drainage basins, impervious and pervious, that were each assigned an inlet to flow into based on the existing topography. Drainage basins 5, 10, 11, 15, 18, 20, 21, 22, 23, 25, and 28 require earthwork fill to drain to Inlets I, E, and J. See Figure 18 below for a layout of the drainage basins and inlets. Inlets are the lettered squares, and drainage basins are numbered.



Figure 18. Layout of drainage basins and inlets.

The following inlets and drainage basins are draining into the north bioretention:

| North Bioretention |                |  |  |
|--------------------|----------------|--|--|
| Inlet              | Drainage Basin |  |  |
| A                  | 1, 23          |  |  |
| В                  | 6, 8, 16       |  |  |
| С                  | 2, 3, 7, 9, 14 |  |  |
| J                  | 15, 26, 27, 28 |  |  |
| к                  | 13             |  |  |
| L                  | 14             |  |  |

Table 15. Inlets and drainage basins for the north bioretention.

The following inlets and drainage basins are draining into the west bioretention:

| West Bioretention    |                            |  |  |
|----------------------|----------------------------|--|--|
| Inlet Drainage Basin |                            |  |  |
| E                    | 4, 5, 12, 17, 19           |  |  |
| 1                    | 10, 11, 18, 20, 21, 22, 25 |  |  |
| J                    | 15, 26, 27, 28             |  |  |

Table 16. Inlets and drainage basins for the west bioretention.

Using the NRCS Curve Number Method in the National Engineering Handbook, the runoff depth was calculated for both permeable and impervious surfaces (USDA, 2010). These runoff depths were used to find runoff volume for each inlet by multiplying the surface area of all drainage basins that flow into the inlet by the corresponding runoff depth. Below are the Curve Number calculations.

# NRCS CN Method Calculations

From SCVWD Figure B-1 in C3 Manual, soil at 1200 Campbell Ave is Clay, Group D (SCVURPPP, 2016). From Gupta Table 4.11, CN = 98 for Group D for urban impervious areas. For fair open urban space, CN = 84.

$$CN = \frac{1000}{10+S}$$
 (Equation 4.19 from Gupta text)

**Impervious Area Calculations** 

CN = 98 = 1000 / (10+S)S = 0.204 in

North Rainfall intensity = 0.2 in/hr (Per the C.3) Design Storm = 2.825 hr Rainfall depth (P) = 2.825 hr x 0.2 in/hr = 0.565 in

Runoff depth,  $Q = \frac{(P-0.2S)^2}{(P+0.8S)}$  (Equation 4.18 from Gupta text)

# **Q** = 0.377 in depth for impervious area for north bioretention

*West* Rainfall intensity = 0.2 in/hr (Per the C.3) Design Storm = 2.385 hr Rainfall depth (P) = 2.385 hr x 0.2 in/hr = 0.477 in Q = 0.297 in depth for impervious area for west bioretention

Pervious Area Calculations

CN = 84 = 1000 / (10+S) S = 1.90 in

# *North* **Q** = 0.016 in depth for pervious area for north bioretention

# *West* Q = 0.0047 in depth for pervious area for west bioretention

After calculating the run-off depths, runoff volumes were found by multiplying each inlet's surface area by the pertaining pervious/impervious depth. Once the runoff volume for each inlet was calculated, the total runoff volume that each bioretention receives was determined by adding up the runoff volumes from the inlets assigned to that bioretention. The exact area of each bioretention was found by following Section IV in Appendix B of the C.3 Handbook, which uses a combined flow and volume approach (SCVURPPP, 2016). The approach takes into account a desired ponding depth of roughly six inches (6") and the volume of water that is determined to flow into each bioretention. The bioretention sizing results are below in Table 17.

| Table | 17. | Bioretention | sizes | and | depths. |
|-------|-----|--------------|-------|-----|---------|
|       |     |              |       |     |         |

|                    | North Bioretention | West Bioretention |
|--------------------|--------------------|-------------------|
| Surface Area (ft2) | 3150               | 570               |
| Ponding Depth (ft) | 0.50               | 0.51              |

Upon establishing the runoff volumes, Chapter 15 of Part 630 of the National Engineering Handbook (NEH) was used to calculate the time of concentration for each inlet (USDA, 2010). First, the total travel time was calculated using the following equation from NEH.

 $T_{t} = \frac{0.007(nl)^{0.8}}{(P_{2})^{0.5}S^{0.4}}$ where:  $T_{t} = \text{Travel time, h}$  n = Manning's roughness coefficient (Table 15-1) l = Sheet flow length, ft  $P_{2} = 2\text{-year, 24-hour rainfall, in}$  S = Slope of land surface, ft/ft(Eq. 15-8) According to the NEH, the Manning's coefficient for impermeable surfaces of concrete/asphalt is 0.011 and the coefficient for permeable surfaces of cultivated soils is 0.17 (15-6). The sheet flow length for each drainage basin was determined by measuring the farthest reach from one end of the drainage basin to the inlet on AutoCAD. Using data from the National Oceanic and Atmospheric Administration, the 2-year, 24-hour rainfall depth for 1200 Campbell Avenue is 1.46 in. (NOAA, 2005). An estimated 2% slope was assumed as the slope of the land surface.

After calculating the travel time for each drainage basin, the time of concentration for each inlet was calculated by summing all travel times of drainage basins that led to each inlet.

 $T_e = T_{t1} + T_{t2} + T_{t3} + \dots + T_{tn}$  (Eq. 15-7) where:  $T_c = \text{Time of concentration, h}$  $T_{tn} = \text{Travel time of a segment n, h}$ n = Number of segments comprising the total hydraulic length

After finding the time of concentration, the maximum flow rate at each inlet was calculated by using a USDA unit hydrograph transformer, seen in Appendix E-1. The unit hydrograph transformer uses the inputs of time of concentration (hr), drainage area (mi2), and Peak Rate Factor (PRF). The PRF used was 484, based on the USDA National Engineering Handbook Part 630 Chapter 16. Table 18 presents the total area, time of concentration, and maximum flow rates for each inlet.

| Inlet | Max CFS |
|-------|---------|
| A     | 0.212   |
| В     | 1.704   |
| С     | 1.224   |
| E     | 0.307   |
| G     | 1.44    |
| I     | 0.195   |
| J     | 0.156   |
| к     | 8.424   |
| L     | 8.521   |

Table 18. Maximum flow rate at each inlet.

Using Bentley Engineering's Flowmaster program, each inlet was sized according to the maximum flow rate at that inlet plus flow rates at upstream inlets, using the minimum 1% slopes, and a Manning's roughness coefficient of 0.013 for PVC (Table 14.4 in Gupta text). See Appendix E-1 through E-9 for the Flowmaster reports for all pipes. A two-year storm was used

to calculate the maximum flow rates, so the maximum pipe flow capacity was set at 60%. Table 19 presents pipe sizes, slopes, and maximum flow capacity for each pipe connecting an inlet to the bioretention.

|         | Max Flow Rate (cfs) | Flow Capacity (%) | Pipe Diameter (in) | Slope (ft/ft) |
|---------|---------------------|-------------------|--------------------|---------------|
| Inlet A | 0.212               | 43.3              | 6                  | 0.01          |
| Inlet B | 10.225              | 47                | 24                 | 0.01          |
| Inlet C | 9.648               | 45.4              | 24                 | 0.01          |
| Inlet E | 0.463               | 42.5              | 8                  | 0.01          |
| Inlet G | 11.877              | 51.7              | 24                 | 0.01          |
| Inlet I | 0.658               | 52.5              | 8                  | 0.01          |
| Inlet J | 0.156               | 48                | 5                  | 0.01          |
| Inlet K | 8.424               | 56                | 20                 | 0.01          |
| Inlet L | 8.521               | 56.5              | 20                 | 0.01          |

Table 19. Pipe sizes, slopes, and max fullness of pipes at each inlet.

Elevations of inlets were checked upon finding slopes for pipes by using the City of San Jose's GIS data to find invert elevations of storm drain manholes located on Coleman Avenue (San Jose Spatial Team, 2015). The invert elevation of the storm drain manhole for the north bioretention is 63.07 ft. The base of pop-up emitters will connect to the pipes that drain from the inlet to the bioretention and rest on the layer of biosoil with the top protruding from the three inch (3") thick mulch layer. Assuming a minimum slope of the outflow pipe and underdrain of 0.5%, 36 inches of biosoil and gravel, and a 129.5 ft long outflow pipe and 148.5 ft long underdrain, the elevation of the base of the left pop-up emitter is 66.86 ft, and the elevation of the base of the right pop-up emitter is 67.35 ft. The invert elevation of the storm drain manhole for the west bioretention is 64.50 ft. Assuming a minimum slope of the outflow and underdrain of 0.5%, a 36 inch thick bioretention, and a 40 ft long outflow pipe, the elevation of the base of the sole pop-up emitter is 67.6 ft. See Tables 20 and 21 below for elevations at each inlet for both bioretentions.

| Location                     | Elevation (ft) | Pipe Length (ft) | Pipe Slope |
|------------------------------|----------------|------------------|------------|
| Base of Pop Up Emitter Left  | 66.86          |                  |            |
|                              |                | 14.779           | 0.01       |
| Corner                       | 67.01          |                  |            |
|                              |                | 132.5075         | 0.01       |
| Inlet C                      | 68.33          |                  |            |
|                              |                |                  |            |
| Base of Pop Up Emitter Right | 67.35          |                  |            |
|                              |                | 14.3294          | 0.01       |
| Corner                       | 67.49          |                  |            |
|                              |                | 155.4771         | 0.01       |
| Inlet G                      | 69.05          |                  |            |
|                              |                | 8.2668           | 0.01       |
| Inlet B                      | 69.13          |                  |            |
|                              |                | 17.6677          | 0.01       |
| Inlet A                      | 69.22          |                  |            |

#### Table 20. Elevations at each inlet draining into the north bioretention.

Table 21. Elevations at each inlet draining into the west bioretention.

| Location               | Elevation (ft) | Pipe Length (ft) | Pipe Slope |
|------------------------|----------------|------------------|------------|
| Base of Pop Up Emitter | 67.7           |                  |            |
|                        |                | 13.8166          | 0.01       |
| Inlet I                | 67.84          |                  |            |
|                        |                | 14.7727          | 0.01       |
| Inlet E                | 67.99          |                  |            |
|                        |                | 15.6107          | 0.01       |
| Inlet J                | 68.14          |                  |            |

Using an existing topography map obtained from the architects on the project, Studio TSquare, the elevations required for each inlet were checked. The elevations are above the existing topography, but do not require significant earthwork. The earthwork cut from digging the foundation will be used towards required fill of the site.

The underdrains were designed next. A flow rate was found for each underdrain by multiplying the infiltration rate of five (5) in/hr for biosoil by the surface area for each bioretention (Appendix B). Using the C.3 specified minimum slope of 0.5%, the flow rate and slope were imported into Bentley's Flowmaster with a Manning's roughness coefficient of 0.013 for PVC. Appendix E-10 to E-11 contains the detailed Flowmaster reports for the underdrains. The pipe flow capacity was allowed to be greater than 60% because the infiltration rates of the bioretention upon saturation remain the same regardless of the storm intensity or duration. See Table 22 for underdrain specifications for the north and west bioretentions.

| North Bioretention |        |       |  |  |
|--------------------|--------|-------|--|--|
| Surface area       | 3150   | sq ft |  |  |
| Q in underdrain    | 0.365  | cfs   |  |  |
| Slope              | 0.005  | ft/ft |  |  |
| Pipe Diameter      | 6      | in    |  |  |
| Percent full       | 75     | %     |  |  |
|                    |        |       |  |  |
| West Bioretention  |        |       |  |  |
| Surface area       | 570.84 | sq ft |  |  |
| Q in underdrain    | 0.066  | cfs   |  |  |
| Slope              | 0.005  | ft/ft |  |  |
| Pipe Diameter      | 4      | in    |  |  |
| Percent full       | 50     | %     |  |  |

Table 22. Underdrain detailing highlighted for north and west bioretentions.

The outflow pipes followed a similar process, but required the use of a 10-year storm (Jill Bicknell, email communication). Using the storm durations of 2.825 hr and 2.385 hr for the north and west bioretentions, respectively, that were calculated in Figures 26 and 27, the intensities were found by interpolating two (2) hr and three (3) hr duration 10-year intensities found on NOAA for 1200 Campbell Avenue. Then, the impervious and pervious depths were found by repeating the NRCS Curve Number method in Figure 25 with the new intensities and corresponding rainfall depths. Upon finding the new CN flow depths, the new ponding depths in each bioretention using the 10-year storm and accompanying intensity were found following Section IV of the C.3 Handbook, similar to Figures 26 and 27. See below for the CN flow depth and ponding depth calculations.

# Outflow Pipe Design

Data from NOAA for 1200 Campbell Ave, using a 10-year storm in Table 23 below:

|                 | Intensity (in/hr) |
|-----------------|-------------------|
| 2-hour Duration | 0.457             |
| 3-hour Duration | 0.373             |

Table 23. 10-year storm intensities for 1200 Campbell Ave.

# Impervious Areas

North Bioretention Design storm = 2.825 hr Intensity = 0.3877 in/hr (extrapolated from data in Table 22) Rainfall depth (P) = 2.825 hr \* 0.3877 in/hr = 1.095 in

# Using equation 4-18 from Gupta again, Q = 0.883 in depth for impervious areas for north bioretention

West Bioretention Design storm = 2.385 hr Intensity = 0.425 in/hr Depth (P) = 2.385 hr \* 0.425 in/hr = 1.014 in

# **Q** = 0.805 in depth for impervious areas for west bioretention

Pervious Areas

*North Bioretention* **Q** = 0.195 in depth for pervious areas for north bioretention

# West Bioretention Q = 0.159 in depth for pervious areas for west bioretention

Following C.3 Appendix B, Section IV again, the ponding depth of the north bioretention using new depths are **1.069 ft for the north bioretention and 1.037 ft for the west bioretention**.

After finding the ponding depths due to a 10-year storm in each bioretention, the volume of overflow was calculated by multiplying the surface area by the difference between the 10-year and two-year ponding depth. The storm durations were calculated by adding the longest time of concentration to the original durations of 2.825 and 2.385 hrs. Referencing Table 3, the longest time of concentration for the north bioretention was 0.972 hr from Inlet C. For the west bioretention, the longest time of concentration was 1.516 hr from Inlet J. The maximum flow in the outflow pipes were calculated by dividing the volume of the overflow by the calculated storm duration and adding the maximum flow rate from the underdrain. The resulting flow rate, a Manning's roughness coefficient of 0.013 for PVC, and the minimum slope of 0.5% were used in Bentley's Flowmaster program to design the outflow pipes. Appendix E-12 to E-13 contains the detailed Flowmaster reports for the outflow pipes. See Table 24, below, for outflow pipe specifications for north and west bioretentions.

| North Biore            | etention |       | West Bi                | oretention |       |
|------------------------|----------|-------|------------------------|------------|-------|
| Surface area           | 3150     | sq ft | Surface area           | 570.84     | sq ft |
| Ponding Depth at 10 yr | 1.069    | ft    | Ponding Depth at 10 yr | 1.037      | ft    |
| Ponding Depth at 2 yr  | 0.500    | ft    | Ponding Depth at 2 yr  | 0.510      | ft    |
| Volume of overflow     | 1792.350 | ft    | Volume of overflow     | 300.833    | ft    |
| Duration of storm      | 3.797    | hr    | Duration of storm      | 3.901      | hr    |
| Q in outflow pipe      | 0.496    | cfs   | Q in outflow pipe      | 0.087      | cfs   |
| Slope                  | 0.005    | ft/ft | Slope                  | 0.005      | ft/ft |
| Pipe Diameter          | 8        | in    | Pipe Diameter          | 4          | in    |
| Percent full           | 55       | %     | Percent full           | 57.5       | %     |

Table 24. North and west bioretention outflow pipe detailing.

The site layout was then updated including all pipe lengths, diameters, slopes, and inlet elevations. See Figure 19 below for this layout.



Figure 19. Final site layout including details of stormwater management components. See Appendix B for a larger drawing.

Using drawing SW-3 from Part 2 of the SCVURPPP Green Stormwater Infrastructure Handbook, the cross-sections for the bioretentions were designed. Drawing SW-3 is specifically for a street slope-sided bioretention with no parking with an underdrain. The drawings were

edited to reflect the dimensions of the north and west bioretentions. See Figures 20 and 21 below for the AutoCAD cross-sections of the north and west bioretentions, respectively.



Figure 20. Cross-section of north bioretention (SCVURPPP Green Stormwater Infrastructure Handbook, 2019).



Figure 21. Cross-section of west bioretention (SCVURPPP Green Stormwater Infrastructure Handbook, 2019).

Using drawing BC 3.4 from Part 2 of the SCVURPPP Green Stormwater Infrastructure Handbook, the overflow structures for the bioretentions were designed. The details were adapted from the San Francisco Public Utilities Commission. See Figures 22 and 23 for the north and west bioretention overflow structure drawings.



Figure 22. North overflow structure (SCVURPPP Green Stormwater Infrastructure Handbook, 2019).



Figure 23. West overflow structure (SCVURPPP Green Stormwater Infrastructure Handbook, 2019).

## Cost Estimate

Upon completing the bioretention cross-section and overflow structure drawings, a cost estimate was completed (RSMeans). Using the cross-section and overflow structure drawings (Figures 20-23), material estimates were found. See Tables 25 and 26 below for the material estimates.

| North Bioretent                        | ion      |         |
|----------------------------------------|----------|---------|
|                                        | Quantity |         |
| Biosoil                                | 4338.35  | cu. ft  |
| 1' Deep Gravel (in sq. ft)             | 1826.81  | sq. ft  |
| Gravel (in cu. ft)                     | 1826.81  | cu. ft  |
| Mulch                                  | 799.07   | cu. ft  |
| 3" Mulch                               | 3196.28  | sq. ft  |
| Plants (24" apart, 12" from edges)     | 656      | 4" pots |
| Plants (4" pot = 0.125 gal)            | 82       | gal     |
| Waterproofing                          | 4190.87  | sq. ft  |
| Overflow Structure (2500 psi Concrete) | 24.05    | cu. ft  |
| Grate (26" x 26")                      | 1        | item    |
| Outflow Pipe (8" PVC)                  | 129.5    | ft      |
| Underdrain (6" PVC)                    | 148.5    | ft      |

### Table 25. North bioretention material estimate.

#### Table 26. West bioretention material estimate.

| West Bioretent                         | on       |         |
|----------------------------------------|----------|---------|
|                                        | Quantity |         |
| Biosoil                                | 686.82   | cu. ft  |
| 1' Deep Gravel (in sq. ft)             | 265.28   | sq. ft  |
| Gravel (in cu. ft)                     | 265.28   | cu. ft  |
| Mulch                                  | 144.45   | cu. ft  |
| 3" Mulch                               | 577.8    | sq. ft  |
| Plants (24" apart, 12" from edges)     | 108      | 4" pots |
| Plants (4" pot = 0.125 gal)            | 13.5     | gal     |
| Waterproofing                          | 148.1    | sq. ft  |
| Overflow Structure (2500 psi Concrete) | 24.05    | cu. ft  |
| Grate (26" x 26")                      | 1        | item    |
| Outflow Pipe (4" PVC)                  | 40       | ft      |
| Underdrain (4" PVC)                    | 50       | ft      |

The material estimates were then imported into RSMeans to calculate the initial material estimate without the overflow structure concrete and grate, as those were added separately. The 2500 psi concrete quantities and grate cost estimates were added in separately using Excel, as the free version of RSMeans did not have the capability to do so. The material estimates for each overflow structure require 1.78 cubic yards of concrete and one 26" x 26" grate. The cost estimate for concrete for material and labor with overhead and profit is \$445, and the cost estimate for the grate is \$43.

The cost estimate from RSMeans was updated by adding the values from the overflow structures to the Material and Material + Labor costs. The 5% General Contractor Fee was added, along with the 15% Overhead & Profit and 1.219% City rates. The Total Cost including overhead and profit (O&P) is \$91,645.59. Next, a 10-year maintenance fee was found using a 12% average market rate. Using an inflation rate of 7%, the yearly maintenance fees were calculated from Year 0 to Year 10. See Table 27, below, for a breakdown of annual maintenance fees.

|         | Yearly<br>Maintenance Fee<br>(7% Interest Rate) |
|---------|-------------------------------------------------|
| Year 0  | \$946.27                                        |
| Year 1  | \$1,012.51                                      |
| Year 2  | \$1,083.39                                      |
| Year 3  | \$1,159.22                                      |
| Year 4  | \$1,240.37                                      |
| Year 5  | \$1,327.19                                      |
| Year 6  | \$1,420.10                                      |
| Year 7  | \$1,519.50                                      |
| Year 8  | \$1,625.87                                      |
| Year 9  | \$1,739.68                                      |
| Year 10 | \$1,861.46                                      |
| TOTAL   | \$14,935.57                                     |

Table 27. Yearly maintenance fees for both bioretentions.

The maintenance fee total was added to the Total Cost including O&P to calculate the Total Cost including O&P and 10-Year Maintenance with inflation, equaling \$106,581.15. See Table 28, below, for a more detailed final cost estimate breakdown for both bioretentions, and Figure 24 for a 10-year cash flow chart.

Table 28. Detailed cost estimate for both bioretentions.

|      | Material    | Labor       | Material + Labor |             | Total Cost Including<br>Overhead & Profit (15% +<br>1.219% City Rate) |            | 10-Year Maintenance<br>Fee with Inflation | Total Cost Including<br>Overhead & Profit<br>and 10-Year<br>Maintenance |
|------|-------------|-------------|------------------|-------------|-----------------------------------------------------------------------|------------|-------------------------------------------|-------------------------------------------------------------------------|
| Cost | \$57,897.11 | \$20,958.83 | \$78,855.94      | \$82,798.74 | \$91,645.59                                                           | \$9,462.71 | \$14,935.57                               | \$106,581.15                                                            |



Figure 24. 10-year cash flow chart including initial construction cost and maintenance costs.

When comparing the cost of installing two bioretentions with another popular LID strategy of a green roof, the bioretention system is far more cost efficient. According to the Environmental Protections Agency, green roofs range from \$10-\$25/ft2 to install and \$0.75-\$1.50/ft2 to maintain. These rates were used to calculate a range of cost estimates if a green roof was chosen for the development over a bioretention. A 10-year span was used for maintenance, like the bioretention. See Table 29 for a preliminary green roof installation and maintenance cost estimate.

| Green Roof Co                        | st Estimate According | to EPA |
|--------------------------------------|-----------------------|--------|
| Sq. Ft Roof                          | 75945                 | ft2    |
| Extensive Cost/Ft2                   | \$10.00               |        |
| Extensive<br>Maintenance<br>Cost/Ft2 | \$0.75                |        |
| Intensive Cost/Ft2                   | \$25.00               |        |
| Intensive<br>Maintenance<br>Cost/Ft2 | \$1.50                |        |
| Min Total Cost                       | \$816,408.75          |        |
| Max Total Cost                       | \$2,012,542.50        |        |

### Table 29. Green roof cost estimate.

As can be seen in Table 29, the minimum and maximum costs excluding contractor, profit, and city fees and inflation are \$816,408.75 and \$2,012,542.50, respectively. The minimum cost for a green roof is about eight times greater than the total cost for two bioretentions including contractor, profit, and city fees and inflation.

## Stormwater Management Model & Construction

To begin creating the bioretention model, the SCVURPPP C.3 construction drawings for bioretentions were consulted to identify code minimums. To allow for groundwater infiltration, the code requires a minimum of 18" of biosoil and 12" of Class 2 Permeable Rock, with the underdrain running six inches (6") minimum from the bottom. This combination of layer thicknesses was held as the control section of the model. The next section broke code with 16" of biosoil and 14" of gravel. The last section broke code with 20" of biosoil and 10" of gravel. The dimensions of 24" long x 36" wide x 36" tall were set for the bioretention model with 12" width for each section.

Next, geotechnical engineering and strength of materials were used to choose materials to construct with and check the capacity of the rolling cart the bioretention was to be resting on. The horizontal lateral earth pressure of the soil was calculated to be 4.35 psi, and the horizontal lateral earth pressure of the gravel was calculated to be 4.75 psi. One-half ( $\frac{1}{2}$ ) inch thick plywood was found to be sufficient for the walls and the base of the bioretention, as the maximum flexural strength of the plywood is 350 psi. Three (3) mm thick acrylic was found to be sufficient for the bioretention, as the maximum flexural strength is 17,000 psi. The cart capacity is 3,600 lb, which is greater than the demanded 2,607 lbs calculated by adding material weights.

After confirming the materials to be used in the construction of the model, construction drawings were created to streamline the construction process, as well as to finalize details. See Appendix E-3 to E-8 for elevation, section, and plan views of the bioretention.

After securing materials, the team created section cuts into the 2" x 6" lumber using a Dado saw and cut the  $\frac{1}{2}$ " plywood to match the construction drawings. The two inch (2") bulkhead fittings were ordered on Amazon, and the flat-bed cart was ordered from McMaster-Carr. See Appendix E-4 for a more detailed list of materials purchased.

Construction began on February 11, 2020 and lasted for eight hours. Construction drawings were used as reference during construction. Biofiltration sod was picked up the same day from Payless Hardware, Rockery, and Nursery. See Figure 25 and 26 below for photos taken at the end of the day on February 11, 2020.



Figure 25. A mid-construction action shot.



Figure 26. A photo taken at the end of construction day one.

On February 13, 2020, the group returned to Alameda Hall, where the Civil Engineering lab is located, and spent another eight hours finishing the bioretention model. While filling up the model with soil, RADS realized they underestimated the amount of biosoil that was required, so the last section does not have the intended 20" of soil. See Figures 27 to 29 below for photos of the finished bioretention model.



Figure 27. Finished product! Pictured are Rachael and Deirdre.



Figure 28. Post-construction selfie with Brent, the team's lab manager!



Figure 29. Bioretention model getting some sun in all its glory, post-first watering. Ain't she a beaut?

As seen in Figure 29, there were multiple leaks coming from the bottom of the bioretention. The next weeks were used to identify leaks and waterproof the bioretention using waterproof caulk. The last time the bioretention was able to be caulked was March 13, 2020, since the shelter-in-place took effect not long after. RADS believes, however, that the bioretention was effectively waterproofed as a result of the last caulking. See Figure 30 for the most recent photo of the bioretention taken on March 31, 2020 after receiving a couple weeks of sun and rain.



Figure 30. A well-watered and happy bioretention model.

Unfortunately, the next stage using the bioretention model of testing could not proceed due to the COVID-19 pandemic. The Hach lab kit, bentonite clay, sodium phosphate, and potassium nitrate were ordered to and located in the environmental lab in Alameda Hall prior to the shelter-in-place. The model was already built and the chemicals and pertaining test kits had been purchased, so the testing of the bioretention to identify percent reduction of contaminants due to different layer combinations could be continued as a senior design project for next year.

# **Construction Management Program**

Throughout the design process, the construction team member worked to input and coordinate the structural, stormwater, and wastewater scopes as they would appear in construction. A considerable amount of time was spent becoming familiar with cost data resources found in 2019 RSmeans and 2020 Revit's Family Library, as the characteristics such as weight, length, and area proved integral for creating an accurate construction estimate. The goal of this focus was to ensure that all team members could succinctly visualize how their scopes fit into the building as well as identify and correct clashes before they appeared.

This project employed a Design-Build approach when it comes to the delivery of the completed project. Design-Build is a project delivery method that combines the design stakeholders with construction stakeholders under a single union. While this is a relatively new project delivery method, it has been proven to be particularly effective at decreasing the number of change orders, disputes, and implementation time that occur throughout the entire length of the project. Limiting the number of roadblocks throughout construction accelerates the overall schedule of the project and in this case, helps push the start of construction earlier with the help of purposeful design decisions. This Design-Build project will streamline communication

between the contractor, design team, and the owner and will help reduce mis-communication. Figure 31 illustrates the completed model that represents the scope of this project.



Figure 31. Revit 3D Model.

The construction management program is divided into three sections covering the BIM Model, the cost estimate, and the construction schedule.

# BIM

Due to the limitations of the design team's knowledge as well as time restrictions for this senior design project, the construction cost estimate was broken down into three subcategories, each with different levels of detail. The first category, detailed unit cost, represents line items such as structural steel and walls that can be broken down into numerous labor, material, and finishing costs. A detailed estimate was performed for the items with the most definition of work scope and the highest level of design details. The second category, assemblies, represents common work items that typically have multiple trades associated with each. Work such as typical elevated concrete slabs can be estimated using national and local averages based on the total area covered. The final estimation technique utilizes a building function as well as overall square footage to determine the cost of other amenities. This type of estimate was used for items that are beyond the expertise of the project team, such as Mechanical, Electrical and Plumbing (MEP) systems, exterior glazing, and facades.

The design team heavily utilized the Revit Modeling system, as the framework of this project relies on the ability to synergize concept and form. As a result, the BIM Model was created concurrently with the structural design drawings, and any updates to the structural aspect of the project were always reflected in the model. This practice allowed each team member to visualize the project as a whole and prevent clashes of different scopes before they potentially

occured. This BIM model has been modeled to Level of Detail (LOD) 200 which mirrors a schematic design typically associated with construction (BIM Level of Development).

This Campbell project is a mixed-use apartment complex with two levels of aboveground parking, six stories of residential, and a commercial space located on the ground floor. The construction and structural design teams first input the steel and concrete based on a design submitted by Studio TSquare, as the team determined that the preliminary drawings from Studio TSquare would be the basis of this project layout.

Changes to TSquare's initial placement of concrete and steel were made in order to cut cost as well as ease the complexities of construction. These changes included the sizing of walls, then placement of beams, and the layout of rooms and open areas. The goal of these changes was aimed at optimizing living space and fixing potential clashes with structural column placements within occupied spaces. Within the concrete parking garage, the placement of the concrete columns were laid out in AutoCAD to ensure that the columns would not get in the way of any of the parking stalls or the two-way road for vehicles that were a minimum of 24 feet long and the width of the parking stalls were still at least 8'-6" wide based on code guidelines. After consultation with the group's structural and construction advisors, the team ultimately decided to modify the layout of the Level 1 parking garage/mixed-use commercial space. The team believes in order to simplify the structural calculations as well as expedite the construction mobilizations, the footprint of the commercial space and parking garage located on Level 2 would be modified to mirror the residential space and parking garage on Level 2. This change proved beneficial in not only reducing the cost of construction but also allowed for the introduction of less complex structural connections between Level 1 and 2. The initial and final design changes for Level 1 and 2 have been illustrated in Figures 32 and 33, respectively.



Figure 32. Initial Level 1 Parking Garage Layout from Studio TSquare.



Figure 33. Final Level 1 Parking Garage Layout from Studio TSquare (Parking garage highlighted in blue).

Floors 3 through 7 make up the majority of the residential units within this project. Floor 4 includes a modified open area clubhouse accessible by all residents.

## Cost Estimate

The second scope of this project covered the project estimate. The design team used quantity takeoff and material takeoff estimation to generate accurate costs. The use of Revit was instrumental in completing quantity takeoffs directly from the 3D model. In accordance with Design-Build practices, materials presented in the model offer a significant amount of value engineering, as throughout this project the design team was able to quickly compare scope items within the program without tedious modeling.

Each item has been categorized according to the MasterFormat construction division developed by CSI (MasterFormat). As mentioned above, three types of cost estimation techniques were used to categorize the cost associated with this project. Items contained within the superstructure including concrete foundations, concrete columns, concrete walls, and steel framing were estimated by a detailed unit cost. These items were detailed with this method, as they not only make up the core of this project and therefore should be appropriately estimated, but as they are structural elements, they are unlikely to be modified in a significant way after the initial structural design. Assembly cost estimation accounted for items within this development that typically make up an entire system. Items such as staircases and building excavation were modeled as assembly costs, as the practices involved with these activities are usually standardized. Items that were either modeled without a great level of detail or out of scope for this project, like the MEP systems in place, were estimated using general square footage measurements. These items were likely to change as the LOD increased as the project moved from schematic to detailed design.

In order to assist with the preparation of the cost, material properties such as volume, weight, length, and area were taken directly from the BIM model. Material schedules were

created in Autodesk Revit for the purpose of organizing this information. An example of a material schedule for the Level 2 structural columns is listed in Figure 34.



Figure 34. Level 2 Structural Columns Schedule.

The design team was able to take the item properties listed in the created schedules and locate exact or similar items within Gordian's *Building Construction Cost with RSMeans Data* (Mewis, Robert W., and R.S. Means Company). Careful effort was invested in locating the exact or similar material within RSMeans. Items in Division 5, which covers Metals, contains numerous items that were estimated with a detailed unit cost. For example, looking at the W12X45 Steel Sections located on Level 2 Column Schedule, the total amount of steel is 264 linear ft. From RSMeans, a W12X45 is not directly listed as a categorized item. It can be assumed, however, that a W12X45, which is listed in Section 05-12-23.75-1560, will have similar costs associated with a W12X45. Within the RSMeans section, crew type, daily output, bare cost, and total cost are included with options to modify each parameter based on location using a city index multiplier (in the case of the project site location, this city index multiplier is 1.219). A list of the RSMeans data for Level 2 Structural Columns has been tabulated in Figure 35.

| Level 2 Columns |    | * |     |    |                  |        |         |       |        |    |        |     | 0     |
|-----------------|----|---|-----|----|------------------|--------|---------|-------|--------|----|--------|-----|-------|
| W12x45          | No | 4 | 24  | LF | 05-12-23.75-1560 | 2019   | 132     | E-2   | 750    | LF | 78.91  | 89  | 2136  |
| W12X65          | No | * | 108 | LF | 05-12-23.75-1580 | 2019   | 132     | E-2   | 750    | LF | 90.91  | 102 | 11016 |
| 12X106          | No | ~ | 144 | LF | 05-12-23.75-1740 | 2019   | 132     | E-2   | 640    | LF | 133.51 | 150 | 21600 |
| W18X76          | No | ~ | 108 | LF | 05-12-23.75-3940 | 2019   | 132     | E-2   | 900    | LF | 116.96 | 132 | 14256 |
| W18X97          | No | * | 156 | LF | 05-12-23.75-3960 | 2019   | 132     | E-2   | 900    | LF | 131.96 | 148 | 23088 |
|                 | 1  |   |     |    | Eiguro 25        | Lavala | Ctructu | ral C | lumana |    |        |     |       |

Figure 35. Level 2 Structural Columns.

Similar tables have been created for the three different types of estimates. A full cost breakdown listed in Appendix F.

The CSI Masterformat includes over 30 different construction divisions covering facility construction, facility services, site and infrastructure, and process equipment. For the SCU affordable housing development, certain divisions such as Masonry, Wood, Plastics & Composites, Specialities, Special Construction, and all divisions in the Process Equipment Subgroup will not be populated with cost information. This decision was made due to the limited

level of design provided by the architect Studio TSquare, which this estimate uses as a basis of design. Major Divisions such as Division 23, 9, 5, and 12 contain the majority of the expensive scope items as expected.

The total cost of this project rests at \$96,293,903.60 with major costs associated with Division 23, 9, 5 and 26. A design fee of 10% was added to account for initial modeling and LOD of BIM models. The overhead and profit sat at a modest 10% and 5%, respectively, with any savings split between the owner with 70% going to the owner and 30% returning to the design team.

| Division | Scope                                      | Amount          | City<br>Index | Adjusted Amount |
|----------|--------------------------------------------|-----------------|---------------|-----------------|
| 1        | General Requirements                       | \$19,205,605.77 | 1             | \$19,205,605.77 |
| 2        | Existing Conditions                        | \$92,750.00     | 1.219         | \$113,062.25    |
| 3        | Concrete                                   | \$3,977,645.71  | 1.219         | \$5,044,639.62  |
| 5        | Metals                                     | \$8,102,951.86  | 1.219         | \$9,877,498.32  |
| 7        | Thermal & Moisture Protection              | \$16,054.19     | 1.219         | \$19,570.06     |
| 8        | Openings                                   | \$5,195,182.63  | 1.219         | \$6,332,927.62  |
| 9        | Finishes                                   | \$9,644,781.95  | 1.219         | \$11,756,989.20 |
| 11       | Equipment                                  | \$863,209.88    | 1.219         | \$1,052,252.84  |
| 12       | Furnishings                                | \$6,656,940.54  | 1.219         | \$8,114,810.52  |
| 14       | Conveying Equipment                        | \$1,266,000.00  | 1.219         | \$1,543,254.00  |
| 21       | Fire Suppression                           | \$2,770,463.40  | 1.219         | \$3,377,194.88  |
| 22       | Plumbing                                   | \$3,862,469.92  | 1.219         | \$4,708,350.84  |
| 23       | Heating, Ventilation, and Air Conditioning | \$12,560,056.68 | 1.219         | \$15,310,709.09 |
| 26       | Electrical                                 | \$5,550,701.08  | 1.219         | \$6,766,304.61  |
| 27       | Communications                             | \$925,988.78    | 1.219         | \$1,128,780.32  |
| 31       | Earthwork                                  | \$404,215.55    | 1.219         | \$492,738.76    |
| 32       | Exterior Improvements                      | \$1,095,145.59  | 1.219         | \$1,334,982.47  |
| 33       | Utilities                                  | \$93,709.96     | 1.219         | \$114,232.44    |
|          | TOTAL Project Value                        |                 |               | \$96,293,903.60 |

#### Table 30. Project Cost Estimate.

# Schedule

The final section concerning project management involved the project schedule. Microsoft Project's scheduling tools were used to plan the project from the beginning to completion. Microsoft Project task links were used to formulate the logical path of construction. Each task is tied to other construction activities that precede and succeed the tasks. Each task is also broken up by level with Level 2 tasks succeeding Level 1 tasks, as is expected. In general, this schedule followed a clear sequencing; crews would start completing site work activities, followed by foundation work. After the foundation, the superstructure along with an MEP equipment would be installed. Finally the project finishes after the exterior and interior finishes are installed. For the sake of productivity, certain tasks like exterior and interior walls were scheduled in a way that allowed for the construction of both tasks simultaneously, albeit on different levels. This allowed for a more dynamic distribution of labor and resources while also allowing multiple tasks to complete sooner. Examples of this schedule structure have been illustrated in Figure 36.

| 06 |    | Exterior Walls | 87 days | Mon 12/13/2     | Tue 4/12/22     |         |         |   |  | - |
|----|----|----------------|---------|-----------------|-----------------|---------|---------|---|--|---|
| 07 |    | Level 1        | 3 days  | Mon 12/13/2     | Wed 12/15/2     | 98      | 108,165 |   |  | F |
| 80 | -  | Level 2        | 3 days  | Mon<br>12/27/21 | Wed<br>12/29/21 | 107,99  | 109     | - |  |   |
| 09 |    | Level 3        | 5 days  | Thu 1/20/22     | Wed<br>1/26/22  | 108,100 | 110     |   |  |   |
| 10 |    | Level 4        | 6 days  | Mon 2/7/22      | Mon 2/14/22     | 109,101 | 111     |   |  |   |
| 1  |    | Level 5        | 6 days  | Thu 2/24/22     | Thu 3/3/22      | 110,102 | 112     |   |  |   |
| 12 | -  | Level 6        | 6 days  | Mon<br>3/14/22  | Mon<br>3/21/22  | 111,103 | 113     |   |  |   |
| 13 | -, | Level 7        | 6 days  | Thu 3/31/22     | Thu 4/7/22      | 112,104 | 114     |   |  |   |
| 14 |    | Roof           | 2 days  | Mon 4/11/22     | Tue 4/12/22     | 113.105 | 157.158 |   |  |   |

Figure 36. Exterior Walls Schedule Task and Gantt Chart.

Task durations were calculated based on data found in RSMeans with regards to daily output. While RSMeans specified crew size and equipment, certain durations were optimized to make sure that crew sizes reflected the productivity that is expected of a fully staffed construction crew.

In total, the project spans 426 days. The expected project start is April 5, 2021 and the expected project end is November 29, 2022. The main project categories have been collected with the total of days for each summary task illustrated in Figure 37.

|     | 0 | Task<br>Mode ▼    | Task Name                                   | Duration | Start 🚽        | Finish 👻    | Predecessors - | Succes |
|-----|---|-------------------|---------------------------------------------|----------|----------------|-------------|----------------|--------|
| 1   |   | -                 | 4 1200 Campbell                             | 426 days | Mon 4/5/21     | Mon 11/28/2 |                |        |
| 2   |   | -                 | Preconstruction Activity                    | 63 days  | Mon 4/5/21     | Thu 7/1/21  |                |        |
| 7   |   | 10 <sup>1</sup> . | Site Utilities                              | 20 days  | Fri 7/2/21     | Thu 7/29/21 |                | 12     |
| 11  |   |                   | Site Work                                   | 306 days | Fri 7/30/21    | Thu 10/6/22 |                |        |
| 18  |   | -                 | Foundation                                  | 45 days  | Tue 8/31/21    | Wed 11/3/2  |                |        |
| 32  |   | -                 | 4 Shell                                     | 383 days | Fri 6/4/21     | Mon 11/28/2 |                |        |
| 33  |   |                   | 4 Level 1                                   | 23 days  | Thu 11/4/21    | Wed 12/8/2  |                |        |
| 34  |   | 10 A              | Concrete Garage                             | 23 days  | Thu 11/4/21    | Wed 12/8/2  |                |        |
| 35  |   |                   | Concrete Columns                            | 20 days  | Thu 11/4/21    | Fri 12/3/21 |                |        |
| 41  |   | 10%               | Concrete Shear Walls                        | 23 days  | Thu 11/4/21    | Wed 12/8/2  |                |        |
| 47  |   | -                 | Open Space Mixed Use                        | 19 days  | Mon 11/29/2    | Thu 12/23/2 |                |        |
| 55  |   | -                 | ▲ Level 2                                   | 45 days  | Thu 12/9/21    | Wed 2/9/22  |                |        |
| 56  |   |                   | ▲ Concrete Garage                           | 45 days  | Thu 12/9/21    | Wed 2/9/22  |                |        |
| 57  |   | -                 | Concrete Deck                               | 19 days  | Thu 12/9/21    | Tue 1/4/22  |                |        |
| 62  |   | -                 | Concrete Columns                            | 23 days  | Wed 1/5/22     | Fri 2/4/22  | 61             |        |
| 68  |   | -                 | Concrete Shear Walls                        | 26 days  | Wed 1/5/22     | Wed 2/9/22  | 61             |        |
| 74  |   | -                 | Residential                                 | 383 days | Fri 6/4/21     | Mon 11/28/2 |                |        |
| 75  |   | -                 | Steel Erect                                 | 77 days  | Thu 11/4/21    | Tue 2/22/22 |                |        |
| 91  |   |                   | Stairs                                      | 50 days  | Mon 11/15/2    | Mon 1/24/22 |                |        |
| 97  |   | -                 | MEP Rough In                                | 90 days  | Mon 12/6/21    | Fri 4/8/22  |                |        |
| 106 |   | 10 C              | Exterior Walls                              | 87 days  | Mon 12/13/2    | Tue 4/12/22 |                |        |
| 115 |   |                   | Electrical Branch In                        | 49 days  | Mon 12/13/2    | Thu 2/17/22 |                |        |
| 124 |   | -                 | Concrete over Metal Deck                    | 88 days  | Fri 11/12/21   | Wed 3/16/2  |                |        |
| 53  |   | -                 | Elevators                                   | 204 days | Fri 6/4/21     | Tue 3/22/22 |                |        |
| 56  |   | -                 | Interior Partitions - Opening<br>Frames     | 58 days  | Wed<br>4/13/22 | Fri 7/1/22  |                |        |
| 73  |   | -                 | Electrical Branch In                        | 66 days  | Wed 5/4/22     | Wed 8/3/22  | 165            |        |
| 182 |   | -                 | MEP Finishes                                | 58 days  | Tue 5/10/22    | Thu 7/28/22 |                |        |
| 191 |   | 87.               | Interior Finishes                           | 83 days  | Thu 8/4/22     | Mon 11/28/2 |                |        |
| 192 |   | -                 | Interior Flooring - Carpeting<br>and Tiling | 32 days  | Thu 8/4/22     | Fri 9/16/22 |                |        |
| 200 |   | -                 | Interior Paint - First Coat                 | 35 days  | Mon 8/8/22     | Fri 9/23/22 |                |        |
| 208 |   | -                 | Façade Finishes                             | 21 days  | Mon 8/15/22    | Mon 9/12/22 | 201            | 17     |
| 209 |   | <b>1</b>          | MEP Commissioning                           | 14 days  | Mon 9/26/22    | Thu 10/13/2 | 207            | 210    |
| 10  |   | -                 | Punchlist Items                             | 32 days  | Eri 10/14/22   | Mon 11/28/2 | 200 16         |        |

Figure 37. Project Schedule Overview.

### Synchro Pro

Synchro Pro is a powerful virtual construction software that combined the BIM model with the project schedule and offered real time phasing of construction activities and durations. This presented an essential piece of value engineering, as stakeholders in this project will be able to plan ahead for the variety of scenarios before and during construction. For this development, the project schedule and the BIM model were used concurrently to create an interactive schedule based model in Synchro. Elements like structural steel members, interior walls, and windows were selected by level in Synchro and tied to their respective schedule tasks. Synchro then took that information, which included the task duration (presented in days), and constructed an animation of the item being installed or removed relative to the total time of the project.

| 00.000000                                                                   |            |               | els Reports Windows Navigator          |                     |                                                       |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------|------------|---------------|----------------------------------------|---------------------|-------------------------------------------------------|----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             |            |               |                                        | - 222               |                                                       | A 17 0                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - to 18                                                                                                          |                                 | BR 765                                 | î 7                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Indent 100.00 On 20st Project                                               |            | 12            | Cana Data Deter Research Charge Franke |                     |                                                       | 🗢 V 🐣                                  | 1.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEI CARE UN                                                                                                      |                                 | Find and Select Up to                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| . Oun-Surent + Start +                                                      | Cales      | taskoj 1      | fask(s) * Task(s) * IEs: Colors        | Selected Citi       | repute Settings Residentiale S<br>cal Path Report Mai | eth Chaok Alerts Start.                | Balein<br>Saladad T | e Bourness and WBS<br>Subo Scenarios *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lapsol Colles Coll                                                                                               | tatus Show<br>part Spotlaght+ 1 | Replace_* Al * se                      | dected *                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Move Links Facus Contax View                                                | el         |               | 144                                    |                     | Schedule                                              |                                        |                     | Basebers Groupeng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Structure                                                                                                        | Desptay                         | FinalSolid                             | Pilten                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| + FS + N                                                                    | Holidays I | ncluded       | + Resource + Task                      | -   1/23/2022       |                                                       | 47 👩 1 💌                               | H H 4 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5.5.1                                                                                                          | 2 · (2) · 王王.                   |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nal Data 🔹 * *                                                              | × [        | 10            | Name                                   | Duration            | Start                                                 | Freish                                 | 30<br>Reso          | - Dec 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201 270                                                                                                          | Jun 2022<br>3rd 110h            | 17m 24m 3                              | Feb 2022<br>11al 7th 14th<br>at 44 wit 45 last 4 | 21st 28th 7th<br>5 w/c.47 w/c.48 w/c.49          | 122<br>1405 2114 2005 405<br>1405 50 140 51 140 52 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3D Properties           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                                                          | 1 55       |               | # Concrete Garage                      | 464                 | 840 AM 12/10/2021                                     | 5.00 PM 21152022                       | (158)               | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                 |                                        |                                                  | A & CLARGE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | January January III (1) | 10 日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P                                                                           | 66         |               | Concrete Deck                          | 154                 | 8.00 AN 12-10-2021                                    | 5.00 741 5.52022                       | (168)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | CARDON CARDON B                 | HH100000000000000000000000000000000000 |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Betel                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Rolding Layout S5_05182020 top-shels) (Synchroniae F                        | 57         |               | Cancrete Dack Ferma                    | 54                  | 0.00 AM 12/10/2021                                    | 5.00 PM 12/16/2021                     | 45                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concrete Deck F                                                                                                  |                                 | CONTRACTOR DECISION                    |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | An A.A.                 | 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| reaselt Project XML<br>[251620Construction_ayearel] [report] [2:33 PM 5/18/ |            | ST00          | Concrete Pour<br>Concrete Care         | 3d<br>7d            | 8:00 AM 12/17/2021<br>8:00 AM 12/27/2021              | 5:00 PM 12/21/2021<br>5:00 PM 14/2022  | ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concerte P                                                                                                       | concrete Co                     | -                                      |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angle + 30"             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mont well[Esport][11.61 AM 5/19/2020]                                       |            | STOD.         | Remove Formatek                        | 14                  | 8 00 444 1/5/2022                                     | 5.00 PM 16/2022                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Remove F                        |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 14                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | 61         | INTO PARTY OF | A CONCIMUNATION                        | 244                 | E-00 AM EN 2022                                       | 5147142102022                          |                     | CONTRACTOR OF CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ****                                                                                                             | A DECEMBER OF                   | COLOR STATES                           | COLUMN PROPERTY                                  | SAVAGATI TO TOTOTO TO | CONFIGURATION OF A CONFIGURATION OF A DESCRIPTION OF A DE | Pest port + Carter      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | 02         |               | Column Rebar                           | 78                  | 8:00 AM 1/0/2022                                      | 5:00 FM 1/14/2022                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 | Column Rebar                           |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             |            | STOD          | Column Forms                           | 78                  | 8:00 AM 1/17/2022                                     | 5.00 PM 1/25/2022                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        | in Forms                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             |            |               | Pour Columns and Finah Colu            | 24                  | 8:00 AM 1/26/2022                                     | 5:00 PM 1/27/2022                      | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 | Pau                                    | r Columns and Finsh I                            | Columns                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             |            | ST00          | Cure Time                              | 78                  | 8 00 AM 1/28/2022                                     | 5.00 PM 2/7/2022                       |                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |                                 |                                        | Cute Time                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tramilate               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | 60         | STOD          | Remove Formwork                        | 10                  | 8:00 AM 2:0(2022<br>8:00 AM 1:0(0022                  | 0.00 PM 2/0/2022                       | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  | CALCULAR MARRIED CONTINUES                       | 122220000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Type + Robert           | 4 CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                             |            | STO2.         | Wall Rebar                             | 34                  | 8.0244 16/2022                                        | 5:00 PM 1/10/2022                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 | Rehar                                  | and the second second                            |                                                  | Intraducer in 1930 (10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X/Y/Z (w) p q           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rsal data:                                                                  |            | STOP          | Wall Forms                             | 40                  | 8 00 AM 1/11/2022                                     | 5:00 PM 1/14/2022                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 | Walt Forms                             |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | - in the second |
| ater manot and<br>dis C. Marce Marcheneraria                                |            | STOD          | Pour Columns and Firish Walls          | 24                  | 8:00 AM 1/25/2022                                     | 5:00 PM 1/27/2922                      | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 | Pou                                    | a Columns and Firish 1                           | Walls                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             |            | ST02          | Cure Time                              | 7d                  | 8:00 AM 1/28/2022                                     | 5.00 PM 2/7/2022                       |                     | A COLORADO DE LA COLO |                                                                                                                  |                                 |                                        | Dure Time                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             |            | ST02          | Install L2 Stay                        | 34                  | 8.00 AM 2/9/2022                                      | 5 00 PM 2/11/2022                      | _                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | and the second second           |                                        | install.                                         | L2 Stat                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X/Y/Z 1 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| t data                                                                      | 73         |               | # Residential<br># Steel Erect         | 3936                | E:00 AM 6/4/2021<br>E:00 AM 11/4/2021                 | 5:00 PM 12:12:2022<br>5:80 PM 3/8/2022 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ********                                                                                                         |                                 |                                        |                                                  |                                                  | ed Ener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | hale .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| eta insport ent<br>de C-Maren Marcolognante i                               |            | STOD          | Level 1                                | 20                  | 8.00 AM 11/0/2021                                     | 5.00 PM 115/2021                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a second s | I MANAGEMENTERS                 | In source of the second                | 20000000000000000000000000000000000000           | account of the second second                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Am                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Full Rese 11.51 AM 5/19-0500                                                |            | 5102          | L2 Deck                                | 10                  | 8.00 AM 11/0/2021                                     | 5.00 PM 118/2021                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| storinge Equal                                                              |            | ST00          | Level 2                                | 24                  | 8:00 AM 11/9/2021                                     | 5:00 PM 11/10/2021                     | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Averte align = 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             |            | STOP          | L3 Deck                                | 1d                  | 8:50 AM 11/12/2021                                    | 5 00 PM 11/12/2021                     | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                                                              |                                 | 1                                      |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Box Side I<br>of Food 1 | Jox tode o<br>Moved (rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                             |            | ST02.         | Level 3                                | 23                  | 8:00 AM 12/23/2021                                    | 5:00 PM 12/24/2021                     |                     | -77840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Lapel 3                                                                                                        |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | 80         | ST05          | L4 Deck                                | 14                  | 8.00 AM 12127/2021                                    | 5:00 PM 12/27/2021                     | 1                   | * K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | 1                               |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х .                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 O. 10 Fit. Arist. Diter., User view                                      | Supa       | tot Gantt     |                                        |                     |                                                       |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Task Pro., Resourt., 10 | Ven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ing Dates (Best) Colors (Appeara                                            |            | Contrast.     | COLUMN AL                              |                     |                                                       |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3/2022<br>sek: 42                                                           |            |               |                                        |                     |                                                       |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             |            |               |                                        |                     | 1                                                     |                                        | 百斤                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BACK                                                                        |            |               |                                        |                     |                                                       |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antes e                                                                                                          |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ress #1                                                                     |            |               | Drough memory                          | (filter Off) Select | and (1)((2)(2) + 12-23 AM 1/(2)/(3)(2)                | Paule Po                               | ged.                | Transactions: 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Administrator                                                                                                    |                                 |                                        |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100% -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Figure 38. Synchro Pro Interface.

Each of the over 41000 elements modeled in Revit were assigned to schedule tasks in Synchro Pro. To simplify the assigned 3D elements, items were assigned to resources groups by level to mirror efforts made in the schedule.



Figure 39. Synchro Resource Animation Creation.

Synchro Pro allowed the design team to create a full construction animation time lapse, that illustrated the flow of the project as construction progressed. Having this 4D modeling software was essential for scope collaboration as well as resource planning.

## Conclusion

By conducting this project, RADS Construction was able to work closely with Santa Clara University and understand the importance of providing a housing development that is affordable to their Faculty and Staff, while improving the quality of the site. To effectively improve the quality of the site's stormwater runoff, two bioretentions were proposed; one placed on the west side of the property, and one placed on the north. Both bioretentions were designed in accordance with the SCVURPPP C.3 Handbook. Additionally, bioretentions are used throughout the rest of Santa Clara University's campus, and uniformity is very important to SCU as can be seen through the Spanish style buildings. For cost, locale, environmental, and aesthetic reasons, RADS Construction believes that this stormwater management proposal is the best LID strategy for this project.

The design drawings and supporting calculations that RADS Construction created can be used to compare to the design of the actual project that is still in the process of being developed. The team based the majority of the designs on the Planned Development Zoning Submittal that was provided by the City of San Jose, which also contained preliminary architectural drawings from Studio TSquare. Even though RADS Construction decided to design the structure out of concrete and steel, and the actual development was going to be designed using concrete and timber, it will be interesting to compare the different designs. All of the designs were established to meet the minimum requirements as presented in the 2019 California Building Code, ASCE/SEI 7-16, Santa Clara Valley *Urban Runoff* Pollution Prevention Program's (SCVURPPP) C.3 Stormwater Handbook, and other reference manuals.

The team also developed their own criteria, while adhering to Santa Clara University's design criteria and feedback from stakeholders who are in the proximity of the project site. One aspect of the architectural design that the team decided to incorporate in the design of the building was a commercial space instead of an incubator space. A commercial space will allow not only residents and people affiliated with Santa Clara University to use this aspect of the new development, but also nearby residents and businesses. This will ultimately help to decrease the concerns of nearby stakeholders for adding this size of a development in the neighborhood and will benefit everyone in some way.

## References

Allen, Edward, and Joseph Iano. *Fundamentals of Building Construction: Materials and Methods*. Sixth edition, Wiley, 2014.

"BIM Level of Development | LOD, 100, 200, 300, 350, 400, 500 | BIM Modeling Services | Architecture Engineering and Construction(AEC) | AEC Industry." *Srinsoft Inc*, https://www.srinsofttech.com/bim-level-of-development-lod-300-400-500.html. Accessed 8 June 2020.

Brailsford & Dunlavy. Faculty and Staff Housing Demand Analysis. Santa Clara University, June

2019, drive.google.com/file/d/1jCJehgHsZO3aBRzis5mqHnoaktILrbbM/view.

- California Building Standards Commission, and International Code Council. 2019 California Building Code: California Code of Regulations, Title 24, Part 2. Section 17.124.070. 2019. Open WorldCat, http://bibpurl.oclc.org/web/5820 https://www.dgs.ca.gov/BSC/Codes.
- City of San Jose. *Drinking Water Rates* | *City of San Jose*, 2019, www.sanjoseca.gov/yourgovernment/environment/water-utilities/drinking-water/customer-service/drinking-waterrates.
- "Comprehensive Housing Market Analysis San Jose-Sunnyvale-Santa Clara, California." Office of Policy Development and Research, U.S. Department of Housing and Urban Development, 2017, www.huduser.gov/portal/publications/pdf/SanJoseCAcomp-17.pdf.

Davis, Mackenzie L. Water and Wastewater Engineering . The McGraw-Hill Companies, 2010.

- Derrick, John C. "Pot Size Inches to Gallon to Liters Conversion." *Pot Size Inches to Gallon to Liters Conversion*, Hardy Tropicals, 12 June 2019, hardytropicals.org/blog/pot-sizes-inches-to-gallon-conversion.
- Green Building Initiative. "Green Globes Building Certification." *Green Building Initiative : User Resources Downloads*, thegbi.org/training/user-resources/downloads/?topic=Green%2BGlobes%2B%28General%29.
- "Historical Groundwater Elevation Data." *Valley Water*, Santa Clara Water Valley District, map.valleywater.org/GroundwaterElevations/map.php.
- Kendall, Marisa. "Why Won't Developers Build Housing in This Bay Area City?" *The Mercury News*, The Mercury News, 20 Mar. 2019. www.mercurynews.com/2019/03/20/why-wont-developers-build-housing-in-this-bay-area-city/.

Kilkelly, Michael. "Support for Tall Timber Reaches New Heights in the Building Code."

Architect Magazine, 25 Oct. 2018, https://www.architectmagazine.com/technology/support-for-tall-timber-reaches-new-heights-in-the-building-code\_o.

- Land Acknowledgment Diversity Santa Clara University. https://www.scu.edu/diversity/resources/land-acknowledgment/. Accessed 1 Dec. 2019.
- "LEED v4 For Building Design and Construction." *GreenGuard.org*, U.S. Green Building Council, 2013, greenguard.org/uploads/images/LEEDv4forBuildingDesignandConstructionBallotVersio n.pdf.
- Markets, Research and. "China Timber Import Report 2019." *PR Newswire: Press Release Distribution, Targeting, Monitoring and Marketing*, 18 Jan. 2019, www.prnewswire.com/news-releases/china-timber-import-report-2019-300780873.html.
- MasterFormat® Construction Specifications Institute. https://www.csiresources.org/standards/masterformat. Accessed 8 June 2020.
- Mewis, Robert W., and R.S. Means Company. *Building Construction Costs with RSMeans Data*, 2019. 2018.
- Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE/SEI 7-16. American Society of Civil Engineers, 2017.
- "National Engineering Handbook." *Part 630 Hydrology. Chapter 15 Time of Concentration*, United States Department of Agriculture, May 2010, directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=27002.wba.
- "NOAA ATLAS 14 POINT PRECIPITATION FREQUENCY ESTIMATES: CA." *PF Map: Contiguous US*, US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 7 Nov. 2005, hdsc.nws.noaa.gov/hdsc/pfds/pfds\_map\_cont.html?bkmrk=ca.

"Planned Development Permit Submittal." Studio TSquare, 2019.

- "Porous Asphalt." *Asphaltpavement.Org*, 2020, www.asphaltpavement.org/index.php?option=com\_content&view=article&id=359&Itemi d=863.
- "Public GIS Viewer." ArcGIS Web Application, San Jose Spatial Team, csj.maps.arcgis.com/apps/webappviewer/index.html?id=3c5516412b594e79bd25c49f10f c672f.
- Santa Clara Valley *Urban Runoff* Pollution Prevention Program. *C.3 Stormwater Handbook*. Santa Clara Valley Urban Runoff Pollution Prevention Program, 2016.

- "SCVURPPP Green Stormwater Infrastructure Handbook." *SCVURPPP*, EOA, Inc, 24 Sept. 2019, scvurppp.org/2019/09/01/scvurppp-green-stormwater-infrastructure-handbook/.
- Singh, Sukhmander. "Engineering Design Processes and Practice for Civil Engineering Projects." 2012.
- "Steel: The Cost-Effective Choice For Your Construction Project." *Pascal Steel Buildings*, 13 Sept. 2016, pascalsteel.com/steel-cost-effective-construction/.
- Suzer, Ozge. "A Comparative Review of Environmental Concern Prioritization: LEED vs Other Major Certification Systems." *Journal of Environmental Management*, vol. 154, May 2015, pp. 266–83. *ScienceDirect*, doi:10.1016/j.jenvman.2015.02.029.
- Team, Whirlwind. "Wooden Frames vs. Steel Frames: The Showdown." *Metal Buildings*, https://www.whirlwindsteel.com/blog/bid/401068/wooden-frames-vs-steel-frames-the-showdown.
- Thering, Jake. "The Costs of Green Roofs." *It All Adds Up*, University of Minnesota, 12 Jan. 2017, italladdsup.umn.edu/news/greenroof3.
- Tran, K., et al. "SS-3 Sanitary Sewer Lateral Connection to Existing Main." *City of Santa Clara Public Works*, 2013, www.santaclaraca.gov/our-city/departments-g-z/public-works/engineering/technical-documents.
- Water and Wastewater Engineering Design Principles and Practices (p. 2-8), by M. L. Davis, 2010, McGraw-Hill, Copyright 2010 by McGraw-Hill
- "Where Your Water Comes From." Santa Clara Valley Water, www.valleywater.org/where-your-water-comes-from.
- "Worldsteel." Worldsteel, https://www.worldsteel.org/about-steel.html

# Appendices

# **Appendix A:**

# Alternative Analyses Justification & Matrices

### Material Analysis

For the criteria concerning low cost, the life cycle analysis of each material was considered for the entirety of the project. The initial cost of the material was weighed at 9 out of 10 and it was higher than cost accrued over the lifecycle for this analysis because the initial cost will be used in the bulk of the estimate. Materials with a higher score have the least economic impact on the project. Below are the explanations of the criteria scoring:

- 1: High cost with price fluctuations based on market demand
- 2: Moderate cost with some consistent with market demand
- 3: Moderate cost with high life cycle cost analysis consideration
- 4: Low cost with life moderate cycle analysis cost consideration
- 5: Low cost with a net zero life cycle analysis cost consideration

Sustainability is a priority as it fulfills Santa Clara University's mission for sustainability. For RADS Construction, the materials sustainability factor is dependent on the potential negative impacts surrounding the material's use. While the ultimate goal is to have materials have little to no negative impact throughout the production, use, and demolition of the materials, RADS Construction recognizes that this may not be feasible. However, materials that do a considerable job in mitigating their negative environmental impacts receive a higher score for this project. Sustainability was weighed 8 out of 10 due to the goal of reaching LEED Gold. Analyzing how these different materials affect the environment was a very important factor in determining the score of each alternative. Below are the explanations of the criteria scoring:

- 1: Construction material contributes a negative effect to the environment with no positive benefits
- 2: Construction material contributes to negative effects felt by the environment with some added consideration for reducing that effect
- 3: Construction material contributes negatively in production but has benefits throughout its lifecycle
- 4: Construction material contributes minimally to negative environmental impacts in production and can positively impact the environment over time
- 5: Construction material has a net positive impact in production and use.

RADS Construction hopes to present a well rounded design of this proposed project that represents the expansive experience of its team. That being said, with the limited time that RADS Construction possesses, existing knowledge about materials and their properties associated with their production, cost, and construction implementation will be favored over materials that RADS Construction needs to perform more research on. While members in RADS Construction have taken steel and concrete analysis and design courses at Santa Clara University, no members have taken any Timber courses. The ability to fully deliver a comprehensive design hinges on the team's ability to communicate within their civil engineering knowledge so consequently, the rating reflects the material expertise of the team.

Below are the explanations of the criteria scoring:

- 1: Designer has no knowledge with this material at all
- 2: Designer has minimal knowledge on certain material
- 3: Designer has adequate knowledge on material production and acquisition

- 4: Designer has proficient knowledge with material production, acquisition, and design
- 5: Designer is very proficient knowledge with this material in all aspects

Aesthetics of the development is important. From an initial design charrette, keeping the design similar to other infrastructure that is owned by Santa Clara University, while also blending into the residential community is important to residents and neighbors. The aesthetics of the building will pertain to the exterior and interior to ensure that the building does not stand out with the rest of the infrastructure nearby. The criteria for the aesthetics of the building was weighed a 3 out of 10 compared to the other criteria due to the functionality of the overall building is more important than the aesthetic design and it does not have to be very fancy. The building mainly needs to blend in with the rest of the residential buildings in the proximity. Below are the explanations of the criteria scoring:

- 1: The design has no similarities to the existing designs and noticeably stands out
- 2: Some similarities to existing structures
- 3: Considers the aesthetics of existing structures with few inconsistencies
- 4: Blends into current landscapes, minor inconsistencies
- 5: Seamlessly mirrors existing design language, no inconsistencies

Scheduling impacts is important, especially due to the limited access and exit from this project site. Materials like steel generally can be constructed quickly, while materials like concrete are dependent on curing time or utilizing mixes with higher than required strength, albeit at a higher cost. Wood's schedule impacts are dependent on the availability of material as well as the complexity of the finished structure. Advancement in cross laminated timber have greatly accelerated the installation of structural elements and have made wood building construction greater than 85 ft possible (Kilkelly, 2018). The expected building height of the structure will be 95 feet. This criteria was weighed a 5 out of 10 due to the potential negative ramifications that could arise based on the material used in the building. It can add extra time to the proposed schedule, therefore increasing the cost of the entire project. Below are the explanations of the criteria scoring:

1: Adds a degree of instability to the project schedule due to variety of considerations (delivery, constructionability, material shortage)

- 2: Has the ability to complicates the scopes of other trades
- 3: Moderate impacts that could change the pace of construction
- 4: Minor impacts that can be accounted for in a well organized schedule
- 5: No schedule and has the potential to improve schedule estimates

Seismic resistance is an important criteria to consider when choosing a material to construct a building with. California is unique in that its building code strictly requires consideration for earthquakes as past events have shown that seismic events pose an extreme risk to the safety of the public. This criteria was weighed 6 out of 10 as with this being a residential housing unit, the ability of a proposed material to mitigate risk in an earthquake is important. During the design phase of this project, the minimum design code requirements will be used as a reference to improve the overall structural system of the building in case of natural disaster occurs. While each material has numerous seismic tests, RADS Construction has more knowledge about the performance of steel and reinforced concrete in the event of an earthquake. The weight of the material can add to the seismic force felt by the overall building and of the

three materials proposed, timber is the lightest with concrete and steel being some of the heaviest materials. However, the weight of the material is just as important as the material properties that it exhibits during a seismic event; elasticity and plasticity are important properties to consider in a high magnitude earthquake as having high levels of both will give occupants more time to evacuate the building. While steel and timber both exhibit seismic responses that allow for elastic and plastic deformation during an earthquake, concrete deformation is usually permanent. Below are the explanations of the criteria scoring:

- 1: No seismic resistance for seismic resistance
- 2: Low degrees of seismic resistance
- 3: Moderate degrees of seismic resistance
- 4: Integral degrees of seismic resistance during a seismic event
- 5: High degrees of seismic resistance during and after a seismic event

### **Stormwater Management Analysis**

Groundwater infiltration capacity was chosen because it is important for this project to recharge the groundwater aquifers in the area. Considering the project is located in Santa Clara County where 40% of the water is sourced locally from groundwater or reservoirs, it is especially important to consider a design that replenishes groundwater supply in the area (Santa Clara Valley Water). A weight of 6 out of 10 was given to this criteria to take into account the benefits that come with groundwater infiltration. Porous pavements and a bioretention system both scored a 5 because they both can be designed to allow for groundwater infiltration through perforated pipes. Green roof and rainwater catchment both scored a 1 because they both retain the collected stormwater to either be released in evapotranspiration or for use onsite. Flow through planters scored a 1 because the structure is enclosed and carries water out through a pipe to the storm drain. Do nothing also scored a 1 because all the water goes directly into the storm drain. Below are the explanations of the criteria scoring:

- 1: Alternative does not allow for any groundwater infiltration
- 2: Minimal to no groundwater infiltration
- 3: Some groundwater infiltration
- 4: A good amount of groundwater infiltration
- 5: High levels of groundwater infiltration

The effectiveness of runoff treatment measures the alternative designs' ability to provide a form of water treatment for the urban runoff. In San Jose, stormwater runoff typically goes into the storm water drain system which goes into creeks and then into the San Francisco Bay. Since this water will eventually flow into active bodies of water without treatment along the way, it is important to treat the water as much as possible before it enters the storm drain system to prevent pollution. Therefore, this criteria was rated 10 out of 10 because environmental sustainability and improving the water quality of urban runoff is a priority. The bioretention and flow through planters both received a score of 5 because the stormwater is highly treated as it goes through the biotreatment system that filters and removes pollutants from the water through a physical, biological, and chemical process (Santa Clara Valley Urban Runoff Pollution Prevention Program, 2016). The green roof received a score of 4 because the water receives substantial treatment, but not as much as the bioretention or flow through planters. The porous pavement received a score of 3 because only some runoff treatment occurs. The rainwater catchment and

do nothing received a score of 1 because neither of the systems treat the water. Below are the explanations of the criteria scoring:

- 1: No water treatment occurs
- 2: Minimal amounts of runoff treatment occurs
- 3: Some runoff treatment occurs
- 4: Substantial amount of runoff treatment occurs
- 5: High levels of runoff treatment occurs

The aesthetics criteria seeks to address the needs of the faculty and staff of Santa Clara University, as well as the neighboring residents. A development that contains aesthetically pleasing features is important for those who will be inhibiting the building. Additionally, the development should benefit the overall neighborhood to satisfy the rest of the community. It is important to provide a quality product for the residents and surrounding community, however, it is not the most important criteria so it was given a weight of 5 out of 10. The green roof and the flow through planters scored a 5 because they add unique, highly aesthetically pleasing features to the project site. The bioretention received a score of 4 because it can provide a good amount of nature and native plants to the project site. Porous pavement received a score of 2.5 because depending on the types of pavement selected it has the potential to provide some aesthetic features. The rainwater catchment and do nothing received a score of 2 because they add very little aesthetic benefits to the site. Below are the explanations of the criteria scoring:

- 1: Provides no aesthetic benefits
- 2: Provides minimal aesthetics, but not highly special or noticable
- 3: Provides some aesthetically pleasing features
- 4: Provides a substantial amounts of aesthetic features
- 5: Provides highly aesthetically pleasing features

The impact that the stormwater management design has on the structural design of the development is evaluated because it is important to limit the influence the structural design and stormwater management designs have on each other. Situations that will impact the structural design or integrity such as additional loads to the structure or water infiltration into the foundation want to be avoided. Impacts on the structural design can cause both a hassle and an increase in cost of the structural frame. Because keeping the cost of the development low is crucial to the project, the impact of the stormwater management design on the structural design was given a higher weight of 8 out of 10. Porous pavement, flow through planters, and do nothing both scored a 5. Porous pavement does not impact the structural design since underdrains can divert the water away from the structure. The flow through planters do not impact the structural design since they do not add any additional loads, and they can be placed right up against a structure as long as there is a waterproof barrier in between the two (Santa Clara Valley Urban Runoff Pollution Prevention Program, 2016). Doing nothing does not have any impact on the structural design since there is nothing additional placed on the site. Bioretention received a score of 4 because there is a mandatory setback of 10' if no waterproofing is present, and infiltration from the system can potentially impact the foundation. Rainwater catchment scored a 3 because depending on the design of the system, there is potential for the system to impact the structural loads. Green roof scored a 1 because the roof system will add additional loads to the structure and impact the structural design. Below are the explanations of the criteria scoring:

- 1: Alternative has a major impact on the structural design
- 2: Alternative has a substantial impact on the structural design
- 3: Alternative has some impact on the structural design
- 4: Alternative has minor impact on structural design
- 5: Alternative has no impact on structural design

The space usage criteria aims to ensure that the stormwater management design is making the best use of space on the project site. The design has to be reasonable to be used in a high density development in an urban area. The development is a large 7-story building on a lot size of about 3 acres. After including the fire lane access, setbacks, and recreation areas for the residents on the site, the amount of space leftover is limited. The stormwater management design must be able to work with the space criteria, which is why it was ranked higher with a weight of 7 out of 10. The porous pavement, flow through planters, and do nothing all scored a 5. The porous pavement can be used to replace impervious areas that will already be on the site, so there is no additional space needed. Likewise, the flow through planters take up minimal space since they can be placed directly up against the structure itself as long as there is a waterproof barrier in between the planter and the structure. Do nothing does not require any space since there is nothing being added. Bioretention scored a 3 because while it provides benefits to the site, without waterproofing it requires a setback that increases the minimum size. Rainwater catchment scored a 2 because for the San Jose area, a large storage tank would be needed, making inefficient use of space. Below are the explanations of the criteria scoring:

- 1: Alternative completely wastes space
- 2: Alternative does not use space efficiently and takes up unnecessary amount of space
- 3: Alternative takes up additional space, but provides benefits
- 4: Alternative makes positive use of space, but not the most efficient
- 5: Alternative makes the most efficient use of space and does not require addition space

Storm drain runoff reduction concerns the stormwater management design's ability to reduce the amount of runoff that is sent to the storm drain system. The water sent through the storm drain will eventually end up in the San Francisco Bay. Even if the water is filtered, there can still be complications with sending runoff water into the Bay. By limiting the amount of water sent to the Bay, the potential for environmental impact is reduced. Additionally, lowering the amount of storm drain runoff can save the project money by reducing both the quantity of runoff and the size of the lateral pipe that may need to be installed to connect to the main storm drain system. This criteria was given a weight of 7 out of 10. Bioretention and rainwater catchment scored a 4 for this criteria. The bioretention intakes the urban runoff and puts it through a biotreatment process, where a significant portion of that runoff will seep into the soil for groundwater recharge, and only some of the runoff will go to the storm drain. The rainwater catchment system catches most of the rainwater onsite and stores it for reuse rather than sending it to the storm drain. Porous pavement scored a 3.5 because the design can allow for some groundwater infiltration, but there is still water sent to the storm drain. The green roof scored a 3 because it retains the stormwater it catches on the roof, but cannot retain all stormwater on the project site. Flow through planters and do nothing both scored a 1. Flow through planters do not allow for infiltration, so all of the treated water gets sent to the storm drain. Do nothing collects the untreated runoff into the storm drain system. Below are the explanations of the criteria scoring:

- 1: Alternative provides no runoff reduction
- 2: Alternative provides minimal runoff reduction
- 3: Alternative provides some runoff reduction
- 4: Alternative provides significant runoff reduction
- 5: Alternative does not send any runoff into the storm drain system

The most important criteria for the end user and therefore the design is cost, which is why cost has a weight of 10 out of 10. Faculty and staff are struggling to find affordable housing in the Bay area, and this design is seeking to provide a solution to this problem. Since Santa Clara University is funding this project, keeping the project cost lower will reduce the return SCU will need from the development. A lower project cost will result in lower rent for the residents, especially considering the goal of providing affordable housing. While the project cost is important, the design must also be sustainable to meet LEED Gold certification, so the most effective yet cheapest stormwater management alternative should be provided. Porous pavement, bioretention, and do nothing scored a 4 for this criteria. Porous pavement only costs a bit more than normal pavement so it is considered to still be affordable. A bioretention area on the project site will add to the project cost, but is still a more affordable option. Flow through planters scored a 3.5 because they are similar to bioretention but they have an additional concrete cost. Rainwater catchment scored a 3 because depending on the size of system needed the storage tank cost can be higher. Green roof scored a 2 because both the cost of the materials and the impact on the structural system make it a more expensive option. Below are the explanations of the criteria scoring:

- 1: Very expensive
- 2: Expensive
- 3: Average
- 4: Affordable
- 5: Very affordable

The feasibility of construction should be considered in deciding between alternatives, but it is not the most important factor compared to direct costs and sustainability, which is why the criteria is assigned a 4 out of 10. However, it is still given a higher rating than a 1 because the feasibility of construction affects the scheduling. Each day added is an extra cost. Because cost is a priority, the harder a design is the construct, the more compensation will need to be paid to laborers. The doing nothing and porous pavement scored a 5 for this criteria. Both received this score because they do not require much extra installation. Flow through planters, bioretention, and rainwater catchment scored a 4 because they all are easy to construct and will not require extra time. Green roof scored a 2 because they can be more difficult to construct especially considering the reliance on the structural system. Below are the explanations of the criteria scoring:

- 1: Very hard to construct, affects schedule greatly
- 2: Hard to construct, affects schedule mildly
- 3: Moderate difficulty to construct, affects schedule mildly
- 4: Easy to construct, does not affect schedule
- 5: Very easy to construct, decreases predicted time in schedule

The cost of maintenance is assigned a weight of 8 out of 10 for similar reasoning as the cost weight of 10 out of 10. If the stormwater management design is expensive to maintain, the costs will fall onto the residents which are the faculty and staff. However, these end users are already strained on economic resources, which is why they need the housing development in the first place. If the bills are high to maintain the stormwater management design, that additional cost could be reflected in the rent and the users will not be satisfied. Doing nothing scored a 5 because after installation it hardly requires any maintenance. The bioretention and flow through planters scored a 4 for this criteria. Both of these systems require minimal maintenance aside for some irrigation in the first few years. Green roof and rainwater catchment both scored a 2. Green roofs can require extensive maintenance, especially in an area like San Jose where rainwater and irrigation is not present year-round which will be expensive. Rainwater catchment also requires more maintenance to ensure that the system is usable year-round. Porous pavement scored a 1 because it requires very expensive maintenance which includes declogging the system frequently. Below are the explanations of the criteria scoring:

- 1: Very expensive maintenance cost
- 2: Expensive maintenance cost
- 3: Average maintenance cost
- 4: Low maintenance cost
- 5: No additional maintenance cost

The feasibility of maintenance has a weight of 3 out of 10 because it does not influence the main priorities of cost and sustainability greatly. Feasibility of maintenance is still included in the alternative analysis because if a design is not easily maintained, the design may not be functional for its supposed design life. Do nothing, bioretention, and flow through planters scored a 5 for this criteria. Doing nothing hardly requires any maintenance at all. Bioretention and flow through planters require little maintenance and it is typically only for the first few years. Green roof and rainwater catchment both scored a 3 because they will need maintenance from time to time. Porous pavement scored a 1 because it can easily be clogged and will need to be unclogged for it to be effective. Below are the explanations of the criteria scoring:

- 1: Needs monthly maintenance
- 2: Needs yearly maintenance
- 3: Needs infrequent maintenance
- 4: Needs little maintenance
- 5: Does not need any maintenance

The geographical appropriateness of the stormwater management design is weighted a 6 out of 10. If a design is not appropriate, the maintenance of its functionality may add costs, which is why geographical appropriateness has a higher weight. Additionally, the chosen design should fit the site layout without intruding on the comfort of the residents. Porous pavement scored a 5 for this criteria because it can replace pavement that will already be in place and fits with the site layout. Bioretention and flow through planters scored a 4 because they incorporate native plants and can be adapted to fit within the site layout. Green roof scored a 2 because the limited rain California gets cannot support the green roof year round without additional irrigation. Rainwater catchment and do nothing both scored a 1. Due to California's limited rain, a rainwater catchment system would need excessively large storage to be able to supply water

year round, if it is even able to do so. Do nothing would violate local city and county codes therefore not being suitable. Below are the explanations of the criteria scoring:

- 1: Not suitable for the environment nor site layout
- 2: Mildly suitable for either the climate or site layout
- 3: Suitable for either the climate or site layout
- 4: Suitable for the climate and site layout
- 5: Very suitable for the climate and site layout

| erall Project                                                   |                    |                |                 |                 |                  |                 |                    |                  |              |
|-----------------------------------------------------------------|--------------------|----------------|-----------------|-----------------|------------------|-----------------|--------------------|------------------|--------------|
|                                                                 |                    |                | How well do     | they meet crite | ria (0-5 Rating) |                 | 5                  | Score = WT * Rat | ing          |
| <u>Constraints</u>                                              | Criteria           | Weights (1-10) | Alt 1: Concrete | Alt 2: Steel    | Alt 3: Timber    |                 | Alt 1: Concrete    | Alt 2: Steel     | Alt 3: Timbe |
| 7 stories                                                       | Low Cost           | 9              | 3               | 2               | 4                |                 | 27                 | 18               | 36           |
| Fit in lot size                                                 | Sustainability     | 7              | 2               | 3               | 4                |                 | 14                 | 21               | 28           |
| Minimum 280 units                                               | Aesthetics         | 2              | 2               | 4               | 3                |                 | 4                  | 8                | 6            |
| Minimum LEED Gold                                               | Schedule Impacts   | 5              | 2               | 4               | 3                |                 | 10                 | 20               | 15           |
| Meet demands of residents<br>and potential commerical<br>spaces | Expertise          | 7              | 3               | 4               | 2                |                 | 21                 | 28               | 14           |
| Knowledge of material                                           | Seismic Resistance | 6              | 2               | 3               | 2                |                 | 12                 | 18               | 12           |
|                                                                 |                    |                |                 |                 |                  |                 | 88                 | 113              | 111          |
|                                                                 |                    |                |                 |                 |                  |                 | "Best" Alt =       | Alt 2: Steel     |              |
|                                                                 |                    |                |                 | Rating (1-5)    |                  | S               | Score = WT * Ratir | ng               |              |
|                                                                 | Criteria           | Weights (1-10) | Alt 1: Concrete |                 | Alt 3: Timber    | Alt 1: Concrete | Alt 2: Steel       | Alt 3: Timber    |              |
|                                                                 | Low Cost           | 9              | 3               | 2               | 4                | 27              | 18                 | 36               |              |
|                                                                 | Sustainability     | 7              | 2               | 3               | 4                | 14              | 21                 | 28               |              |
|                                                                 | Aesthetics         | 2              | 2               | 4               | 3                | 4               | 8                  | 6                |              |
|                                                                 | Schedule Impacts   | 5              | 2               | 4               | 3                | 10              | 20                 | 15               |              |
|                                                                 | Expertise          | 7              | 3               | 4               | 2                | 21              | 28                 | 14               |              |
|                                                                 | Seismic Resistance | 6              | 2               | 3               | 2                | 12              | 18                 | 12               |              |
|                                                                 |                    |                |                 |                 |                  | 88              | 113                | 111              |              |

| oject           |                                      |               |                    |               |                   |                          |                        |         |          |              |              |                   |           |                        |         |
|-----------------|--------------------------------------|---------------|--------------------|---------------|-------------------|--------------------------|------------------------|---------|----------|--------------|--------------|-------------------|-----------|------------------------|---------|
|                 |                                      |               |                    | How well of   | do they meet crit | eria (0-5 Rating)        |                        |         |          |              | Sco          | ore = WT * Rating | 1         |                        |         |
| Constraints     | Criteria                             | Weight (1-10) | Porous<br>Pavement | Green<br>Roof | Bioretention      | Flow Through<br>Planters | Rainwater<br>Catchment | Nothing |          | Porous Pavem | Green Roof   | Bioretention      |           | Rainwater<br>Catchment | Nothing |
|                 | Groundwater infiltration             |               |                    |               |                   |                          |                        |         |          |              |              |                   |           |                        | Ŭ       |
| Treat runoff    | capacity                             | 6             | 6 5                | 5             | 1 5               | 1                        | 1                      | 1 1     |          | 30           | 6            | 30                | 6         | 6                      |         |
| Fit on the site | Runoff treatment<br>effectiveness    | 10            |                    |               | 4 5               | 5                        | 1                      | 1       |          | 30           | 40           | 50                | 50        |                        |         |
| Comply with C.3 | Aesthetics                           | 5             |                    |               | 5 4               | 5                        | 2                      | 2 2     |          | 12.5         | 25           | 20                | 25        |                        |         |
|                 | Impact on structural design          | 8             | 5                  | 5             | 1 4               | 5                        | 3                      | 3 5     | <u>i</u> | 40           | 8            | 32                | 40        | 24                     |         |
|                 | Space usage                          | 7             | . 5                | 5             | 4 3               | 5                        | 2                      | 2 5     | i        | 35           | 28           | 21                | 35        | 14                     |         |
|                 | Storm Drain Runoff<br>Reduction      | 7             | 3.5                | 5             | 3 4               | 1                        | 4                      | ۱<br>۱  |          | 24.5         | 21           | 28                | 7         | 28                     |         |
|                 | Cost of construction                 | 10            | 4                  | L I           | 2 4               | 3.5                      | 3                      | 3 4     |          | 40           | 20           | 40                | 35        | 30                     |         |
|                 | Feasibility of construction          | 4             | . 6                | 5             | 2 4               | 4                        | . 4                    | 1 5     | i        | 20           | 8            | 16                | 16        | 16                     |         |
|                 | Cost of maintenance                  | 8             | 1                  | 1             | 2 4               | 4                        | 2                      | 2 5     |          | 8            | 16           | 32                | 32        | 16                     |         |
|                 | Feasibility of maintenance           | 3             | 1                  |               | 3 5               | 5                        | 3                      | 3 5     | i        | 3            | 9            | 15                | 15        | 9                      |         |
|                 | Geographically appropriate           | 6             | i 6                | 5             | 2 4               | 4                        | 1                      | 1       |          | 30           | 12           | 24                | 24        | 6                      |         |
|                 |                                      |               |                    |               |                   |                          |                        |         |          | 273          | 193          | 308               | 285       | 169                    |         |
|                 |                                      |               |                    |               |                   |                          |                        |         |          | "Best" Alt = | Bioretention |                   |           |                        |         |
|                 |                                      |               |                    |               | Ratir             | ng (1-5)                 |                        |         |          |              | Score = W    | T * Rating        |           |                        |         |
|                 |                                      |               | Porous             | Green         |                   | Flow Through             | Rainwater              |         | Porous   |              |              |                   | Rainwater |                        |         |
|                 | Criteria                             | Weight (1-10) | Pavement           | Roof          | Bioretention      | Planters                 | Catchment              | Nothing | Pavement | Green Roof   | Bioretention | Planters          | Catchment | Nothing                |         |
|                 | Groundwater infiltration<br>capacity | 6             | ; E                | 5             | 1 5               | 1                        | 1                      | 1       | 30       | 6            | 30           | 6                 | 6         | 5                      |         |
|                 | Runoff treatment<br>effectiveness    | 10            | 3                  | 3             | 4 5               | 5                        | 1                      | 1       | 30       | 40           | 50           | 50                | 10        | 3                      |         |
|                 | Aesthetics                           | 5             | 2.5                | 5             | 5 4               | 5                        | 2                      | 2 2     | 12.5     | 25           | 20           | 25                | 10        | 5                      |         |
|                 | Impact on structural design          | 8             | 5                  | 5             | 1 4               | 5                        | 3                      | 3 5     | 40       | 8            | 32           | 40                | 24        | 25                     |         |
|                 | Space usage                          | 7             | . 5                | 5             | 4 3               | 5                        | 2                      | 2 5     | 35       | 28           | 21           | 35                | 14        | 25                     |         |
|                 | Storm Drain Runoff<br>Reduction      | 7             | 3.5                | 5             | 3 4               | 1                        | 4                      | ۱<br>۱  | 24.5     | 21           | 28           | 7                 | 28        | 3.5                    |         |
|                 | Cost of construction                 | 10            | 4                  |               | 2 4               | 3.5                      | 3                      | 3 4     | 40       | 20           | 40           | 35                | 30        | 16                     |         |
|                 | Feasibility of construction          | 4             | . 5                | 5             | 2 4               | 4                        | . 4                    | 1 5     | 20       | 8            | 16           | 16                | 16        | 25                     |         |
|                 | Cost of maintenance                  | 8             | 1                  | 1             | 2 4               | 4                        | 2                      | 2 5     | 8        | 16           | 32           | 32                | 16        | 5                      |         |
|                 | Feasibility of maintenance           | 3             | 1                  |               | 3 5               | 5                        | 3                      | 3 5     | 3        | 9            | 15           | 15                | 9         | 5                      |         |
|                 | Geographically appropriate           | 6             | 6                  | 5             | 2 4               | 4                        | 1                      | 1       | 30       | 12           | 24           | 24                | 6         | 5                      | 1       |
|                 |                                      | -             | -                  |               |                   |                          |                        |         | 273      | 193          | 308          | 285               | 169       | 122.5                  | i       |

# **Appendix B:**

# **Structural Drawing Set**

## G WOOD NOTES

1. TO BE DEVELOPED

## (H) MATERIAL DATA

INFORMATION BELOW IS SHOWN FOR STRUCTURAL DESIGN REFERENCE ONLY. SEE CALCULATION DESIGN PACKAGE FOR SPECIFIC MATERIAL SPECIFICATIONS.

REINFORCING STEEL YIELD STRENGTH: F = 40 KSI (#3 AND SMALLER)  $F_{V}^{V} = 60 \text{ KSI} (#4 \text{ BARS})$ Fy = 80 KSI (#5 AND LARGER)

CONCRETE 28-DAY ULTIMATE COMPRESSIVE STRENGTH: F' = 6 KSI (CONCRETE FOUNDATION) F'=4 KSI (CONCRETE FILL OVER METAL DECK)

STEEL YIELD STRENGTH:

DBL DOUBLE

GA GAGE or GAUGE

- F = 50 KSI (W SHAPES)
- F<sup>y</sup> = 50 KSI (BASE PLATES)
- F = 36 KSI (ANGLES, CHANNELS, AND PLATES) F<sup>y</sup> = 50 KSI (MOMENT FRAME CONNECTION PLATES)
- ABBREVIATIONS HOLLOW STRUCTURAL SECTION LIGHT WEIGHT CONCRETE SMF SPECIAL MOMENT FRAME CENTERLINE SHEAR WALL MAX MAXIMUM MIN MINIMUM TYP TYPICAL UNO UNLESS NOTED OTHERWISE WF WIDE FLANGE COL COLUMN CJP COMPLETE JOINT PENETRATION ON CENTER RCC REINFORCED CONCRETE COLUMN REINF. REINFORCED

SEE ARCHITECTURAL DRAWINGS

SCBF SPECIAL CONCENTRIC BRACED

|        | SHEET INDEX                            |
|--------|----------------------------------------|
| S.0    | GENERAL NOTES AND SPECIFICATIONS       |
| S.1    | 3D VIEWS OF BUILDING                   |
| S.2    | STRUCTURAL PLAN - LEVEL 1              |
| S.3    | STRUCTURAL PLAN - LEVEL 2              |
| S.4    | STRUCTURAL PLAN - LEVEL 3              |
| S.5    | STRUCTURAL PLAN - LEVEL 4              |
| S.6    | STRUCTURAL PLAN - LEVEL 5              |
| S.7    | STRUCTURAL PLAN - LEVEL 6              |
| S.8    | STRUCTURAL PLAN - LEVEL 7              |
| S.9    | STRUCTURAL PLAN - ROOF                 |
| S.10   | TYPICAL DETAILS                        |
| S.11.1 | GRAVITY FORCE RESISTING SYSTEM DETAILS |
| S.11.2 | GRAVITY FORCE RESISTING SYSTEM DETAILS |
| S.12   | LATERAL FORCE RESISTING SYSTEM DETAILS |

- C SPECIAL INSPECTIONS CERTAIN ASPECTS OF THE BUILDING REQUIRES SPECIAL INSPECTION AND TESTING. THE INSPECTION AND TESTING MUST BE PERFORMED BY A CERTIFIED AGENCY AS DESIGN DESCRIBED IN THE 2019 CBC, ASCE 7-16, AND OTHER DESIGN REFERENCE MANUALS FLOOR I FOR BUILDING STRUCTURAL ELEMENTS SUCH AS: ROOF L 1. SHOP FABRICATION OF STRUCTURAL LOAD-BEARING MEMBERS. THE QUALIFIED FABRICATORS MUST SUBMIT A CERTIFICATE TO VERIFY THAT THEIR FABRICATION RISK CA PROCEDURES ARE IN COMPLIANCE WITH THE 2019 CBC WIND D 2. CONCRETE CONSTRUCTION. INCLUDES BUT NOT LIMITED TO REINFORCING STEEL, FORMWORK, CONCRETE MIX DESIGNS, CONCRETE PLACEMENT, AND CONSTRUCTION OF CONCRETE SHEAR WALLS. THE STRUCTURAL ENGINEER ON RECORD MUST INSPECT THE PLACEMENT OF ALL REBAR PRIOR TO THE PLACEMENT OF CONCRETE. EARTHO 3. STRUCTURAL STEEL CONSTRUCTION. INCLUDES BUT NOT LIMITED TO MATERIAL IDENTIFICATION, WELDING IN THE SHOP OR ON THE FIELD, AND INSTALLATION OF ANY STEEL CONNECTIONS. GEOTECHNICAL DATA. NO GEOTECHNICAL REPORT WAS PROVIDED FOR THIS 4. PROJECT. THEREFORE, A LICENSED GEOTECHNICAL ENGINEER MUST CONDUCT A SOILS REPORT PRIOR TO CONSTRUCTION TO VERIFY THE ASSUMPTION OF CLASSIFYING THIS SITE OF HAVING A SOIL SITE CLASS D. D STEEL NOTES 1. THE TOP OF STEEL ELEVATIONS ARE TO BE DETERMINED BY THE CONTRACTOR BASED ON THE ARCHITECTURAL AND STRUCTURAL DRAWINGS. SCOPE: 2. CHECK BEAM AND COLUMN SCHEDULE CAREFULLY. THE BEAMS WITH LONGER SPANS ARE CAMBERED 3. ALL STEEL CONNECTIONS ARE NOT DESIGNED PER PLAN, ADDITIONALLY, ALL COLUMN SPLICES AND COLUMN TO BASE PLATE WELDS ARE CRITICAL. TYPICAL DETAILS ARE PROVIDED AS A SUGGESTION. A LICENSED STRUCTURAL ENGINEER MUST DESIGN THESE CONNECTIONS. 4. CRITICAL WELDS ARE INDICATED ON THE PLANS BUT NOT FULLY DESIGNED. A (B) GENERAL NO LICENSED STRUCTURAL ENGINEER MUST DESIGN THESE WELDS. A SUGGESTION WAS PRESCRIBED ON THE DRAWINGS. BUILDING DIMEN (E) CONCRETE NOTES ARCHITECTURA DISCREPANCIES ARCHITECT/ENG HAS BEGUN. CONCRETE FOUNDATION SLAB IS NOT DESIGNED PER THE SCOPE OF THIS PROJECT. A 9" CONCRETE FOUNDATION SLAB WAS ASSUMED BUT A LICENSED STRUCTURAL ENGINEER MUST ADEQUATELY DESIGN THE SLAB PRIOR TO 2. STRUCTURAL DR CONSTRUCTION. DETERMINED AN 2. ANCHORAGE INTO CONCRETE WAS NOT DESIGNED PER THE SCOPE. A LICENSED STRUCTURAL ENGINEER MUST DESIGN THE ANCHORAGES PRIOR TO 3. DETAILS NOT FU CONSTRUCTION. DETAILS DISPLAY A SUGGESTION OF HOW TO ANCHOR OBJECTS OTHER TYPICAL INTO CONCRETE.
  - 3. THE CONTRACTOR MUST VERIFY MINIMUM EDGE DISTANCES, SPACES, AND THICKNESS ARE IN ACCORDANCE WITH THE SCHEDULE PRIOR INSTALLING ANY ANCHORAGES AND CONCRETE.

COLD-FORMED STEEL FRAMING NOTES  $(\mathbf{F})$ 

1. TO BE DEVELOPED

5 STRUCTURAL OF METAL DECK AN PRIOR TO COND

4 VERIEY WEIGHT

FOR ANY STRUC 6 STRUCTURAL ENGINEER FOR CLARIFICATION.

Date

Date

|                         | _        |                                           | No. | Description |
|-------------------------|----------|-------------------------------------------|-----|-------------|
| L.                      |          | Santa Clara University                    |     | •           |
|                         |          |                                           |     |             |
|                         |          | SCU's Faculty & Staff Housing Development |     |             |
|                         | STUDIO   | 1200 Campbell Avenue                      |     |             |
| RADS CONSTRUCTION, LLC. | T SQUARE | San Jose, CA 95126                        |     |             |
|                         |          |                                           |     |             |

| ENERAL NOTES                                                                                              |
|-----------------------------------------------------------------------------------------------------------|
| BUILDING DIMENSIONS S<br>ARCHITECTURAL DRAW<br>DISCREPANCIES ARE TO<br>ARCHITECT/ENGINEER S<br>HAS BEGUN. |
| STRUCTURAL DRAWING<br>DETERMINED AND VERIF                                                                |
| DETAILS NOT FULLY OR<br>OTHER TYPICAL CONDIT                                                              |
| VERIFY WEIGHTS AND L<br>AND STRUCTURAL ENGI                                                               |
| STRUCTURAL OBSERVA<br>METAL DECK AND STEE<br>PRIOR TO CONDUCTING                                          |
| FOR ANY STRUCTURAL                                                                                        |

|  | ~ | DESIGN | CRI | TERIA |
|--|---|--------|-----|-------|
|--|---|--------|-----|-------|

| N CRITERIA: | 2019<br>7-16                                             |
|-------------|----------------------------------------------------------|
| LIVE LOAD:  | PAR<br>RES                                               |
| LIVE LOAD:  | 20 F                                                     |
| ATEGORY:    | III                                                      |
| DATA:       | ULT<br>WIN<br>INTE<br>DES<br>STA                         |
| QUAKE DATA: | SEIS<br>MAF<br>SOIL<br>SPE<br>SEIS<br>SEIS<br>BRA<br>WAI |























## 1 TYPICAL ELEVATOR PIT DETAIL

| LOCATION | F'c (Psi) | No. 6 & SMALLER BARS & DEFORMED WIRES | No. 7 & LARGER BARS |
|----------|-----------|---------------------------------------|---------------------|
| TOP      | 3000      | 75db                                  | 93db                |
| OTHER    | 3000      | 58db                                  | 72db                |
| ТОР      | 4000      | 65db                                  | 80db                |
| OTHER    | 4000      | 50db                                  | 61db                |
| ТОР      | 5000      | 58db                                  | 71db                |

| LOCATION | F'c (Psi) | No. 6 & SMALLER BARS & DEFORMED WIRES | No. 7 & LARGER BARS |
|----------|-----------|---------------------------------------|---------------------|
| ТОР      | 3000      | 58db                                  | 72db                |
| OTHER    | 3000      | 44db                                  | 55db                |
| TOP      | 4000      | 50db                                  | 61db                |
| OTHER    | 4000      | 38db                                  | 47db                |
| ТОР      | 5000      | 45db                                  | 55db                |





| No. | Description | Date |                |                |   |
|-----|-------------|------|----------------|----------------|---|
|     |             |      | TYPICAL DE     | ETAILS         |   |
|     |             |      | Project number | 20352          | Τ |
|     |             |      | Date           | April 25, 2020 |   |
|     |             |      | Drawn by       | SAS            |   |
|     |             |      | Checked by     | RS             |   |

### SPLICE LENGTH FOR GRADE 60, UNCOATED REINFORCEMENT IN NORMAL WEIGHT CONCRETE

### DEVELOPMENT LENGTH (Ld) FOR GRADE 60. UNCOATED REINFORCEMENT IN NORMAL WEIGHT CONCRETE

NOTES: 1) CLEAR SPACING OF BARS BEING DEVELOPED OR SPLICED MUST BE GREATER THAN 2db & THE MIN. CONCRETE COVER MUST BE GREATER THAN 4b WHERE 4b IS THE NORMAL BAR DIAMETER. 2) TOP BARS ARE HORIZONTAL BARS SO PLACED THAT MORE THAN 12° OF FRESH CONCRETE IS CAST IN THE MEMBER BELOW THE DEVELOPMENT LENGTH OR SPLICE. 3) USE A MULTIPLIER OF 1.3 X LENGTH SHALL BE USED FOR LIGHTWEIGHT CONCRETE.

/20/20 4:31:10 PM

ŝ

S.10







Santa Clara University

SCU's Faculty & Staff Housing Development 1200 Campbell Avenue San Jose, CA 95126

|           | Date | Description | No. |
|-----------|------|-------------|-----|
| GRAV      |      |             |     |
| Project r |      |             |     |
| Date      |      |             |     |
| Drawn b   |      |             |     |
| Checke    |      |             |     |



# **Appendix C:**

# **Structural Calculations Package**



## SCU Faculty and Staff Housing Development Structural Calculations

San Jose, CA

## **Structural Design Package**

April 16, 2020

Prepared For: Santa Clara University 500 El Camino Real, Santa Clara, CA 95053

Prepared By: Spencer A. Saito, Designer Santa Clara, California

## **General Nomenclature**

| Symbol           | Name                                                                                                                                         | Units                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| А                | Cross-sectional area                                                                                                                         | in2                            |
| Ac               | Area of concrete                                                                                                                             | in2                            |
| Ae               | Effective net area                                                                                                                           | in2                            |
| Af               | Flange area                                                                                                                                  | in2                            |
| Ag               | Gross cross-sectional area of the shear plate                                                                                                | in2                            |
| Agt              | Gross area subject to tension                                                                                                                | in2                            |
| Agv              | Gross area subject to shear                                                                                                                  | in2                            |
| Ant              | Net area subject to tension                                                                                                                  | in2                            |
| Anv              | Net area subject to shear                                                                                                                    | in2                            |
| Aw               | Area of web                                                                                                                                  | in2                            |
| Awei             | Effective weld area                                                                                                                          | in2                            |
| Cb               | Lateral-torsional buckling modification factor for nonuniform moment diagrams when both ends of the segment are braced                       |                                |
| Cw               | Warping constant                                                                                                                             | in6                            |
| Fc               | Available stress in main member                                                                                                              | ksi                            |
| Fcr              | Critical stress                                                                                                                              | ksi                            |
| Fexx             | Filler metal classification strength                                                                                                         | ksi                            |
| Fnt              | Nominal Tensile Strength from AISC Specification Table J3.2                                                                                  | ksi                            |
| Fnv              | Nominal Shear Strength from AISC Specification Table J3.2                                                                                    | ksi                            |
| Fu               | Specified minimum tensile strength                                                                                                           | ksi                            |
| Fy               | Specified minimum yield strength                                                                                                             | ksi                            |
| G                | Ratio of the total column stiffess framing into a joint to that of the stiffening members framing into the same joint                        |                                |
| lx               | Moment of inertia about the x-axis                                                                                                           | in4                            |
| ly               | Moment of inertia about the y-axis                                                                                                           | in4                            |
| J                | Torsional constant                                                                                                                           | in4                            |
| К                | Effective length factor                                                                                                                      |                                |
| K <sub>dep</sub> | Fillet depth                                                                                                                                 | in                             |
| L                | Length between points that are either braced against lateral displacement of compression flange or braced against twist of the cross section | in                             |
| Lc               | Effective length of member                                                                                                                   | in                             |
| Lcx              | Effective length of member for buckling about x-axis                                                                                         | in                             |
| Lcy              | Effective length of member for buckling about y-axis                                                                                         | in                             |
| Lcz              | Effective length of member for buckling about longitudinal axis                                                                              | in                             |
| Lp               | Limiting laterally unbraced length for the limit state of yielding                                                                           | in                             |
| Mpx              | Plastic bending moment about the x-axis                                                                                                      | kip-ft                         |
| Mr               | Required flexural strength                                                                                                                   | kip-in                         |
| Mrx              | Required flexural strength about x-axis                                                                                                      | kip-in                         |
| Mry              | Required flexural strength about y-axis                                                                                                      | kip-in                         |
| Mu               | Required flexural strength using LRDF load combinations                                                                                      | kip-in or kip-ft, as indicated |
| My               | Flexural yield moment                                                                                                                        | kip-in                         |
| Sx               | Mimimum elastic section modulus taken about the x-axis                                                                                       | in3                            |
| Sy               | Mimimum elastic section modulus taken about the y-axis                                                                                       | in3                            |
| Т                | Distance between web toes of fillets at top and at bottom of web                                                                             | in                             |
| Т                | Tension force due to service loads                                                                                                           | kip                            |
| Т                | Required strength                                                                                                                            | kip                            |
| т                | Thickness of flat circular washer or mean thickness of square or rectangular beveled washer                                                  | in                             |
| Т                | Width of element                                                                                                                             | in                             |
| U                | Shear lag coefficient                                                                                                                        |                                |
| V                | Maximum vertical shear for any condition of symmetrical loading                                                                              | kip                            |

| V                | Shear force                                                                                                               | kip |
|------------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| V                | Vertical component of the required force                                                                                  | kip |
| V                | Vertical shear                                                                                                            | kip |
| ν'               | Horizontal shear strength at the steel-concrete interface                                                                 | kip |
| Vc               | Required shear force on the gusset-to-column connection                                                                   | kip |
| Vc               | Available shear strength                                                                                                  | kip |
| Vnx              | Nominal strong-axis shear strength                                                                                        | kip |
| Vr               | Required shear strength                                                                                                   | kip |
| Vu               | Required shear strength using LRFD load combinations                                                                      | kip |
| Zx               | Plastic section modulus about the x-axis                                                                                  | in3 |
| Zy               | Plastic section modulus about the y-axis                                                                                  | in3 |
| b <sub>eff</sub> | Effective width                                                                                                           | in  |
| bf               | Width of flange                                                                                                           | in  |
| bf               | Connection element width                                                                                                  | in  |
| db               | Nominal bolt diameter                                                                                                     | in  |
| dh               | Hole diameter                                                                                                             | in  |
| h₀               | Distance between flange centroids                                                                                         | in  |
| k                | Plate buckling coefficient for beams coped at top flange only                                                             |     |
| k                | Distance from outer face of flane to the web toe of fillet                                                                | in  |
| <b>r</b> ts      | Effective radius of gyration                                                                                              | in  |
| ٢x               | Radius of gyration about x-axis                                                                                           | in  |
| ry               | Radius of gyration about y-axis                                                                                           | in  |
| tr               | Thickness of flange                                                                                                       | in  |
| tw               | Web thickness                                                                                                             | in  |
| Δ                | Deformation                                                                                                               | in  |
| β                | Distance from the face of the beam flange to the centroid of the gusset-to-<br>column connection for uniform force method | in  |
| Φ                | Resistance factor given by the AISC Specification for a particular limit state                                            |     |

#### Table of Contents:

#### **Description**

#### Section

| Structural Narrative                                               | 1  |
|--------------------------------------------------------------------|----|
| Design Criteria                                                    | 2  |
| Flat Weights                                                       | 3  |
| Total Gravity Loads                                                | 4  |
| U.S. Seismic Design Map                                            | 5  |
| Wind Analysis                                                      | 6  |
| Lateral Design                                                     |    |
| Equivalent Lateral Force - Special Reinforced Concrete Shear Walls | 7  |
| Special Reinforced Concrete Shear Wall Design                      | 8  |
| Concrete Diaphragm Design                                          | 9  |
| Special Reinforced Concrete Shear Wall Design Coefficients         | 10 |
| Equivalent Lateral Force - Steel Special Moment Frames             | 11 |
| Steel Special Moment Frame Design                                  | 12 |
| Steel Special Moment Frame Design Coefficients                     | 13 |
| Gravity Design                                                     |    |
| Column Schedule                                                    | 14 |
| A1-2 Steel Columns                                                 | 15 |
| A3-4 Steel Columns                                                 | 16 |
| A5-6 Steel Columns                                                 | 17 |
| A7-Roof Steel Columns                                              | 18 |
| B1-2 Steel Columns                                                 | 19 |
| B3-4 Steel Columns                                                 | 20 |
| B5-6 Steel Columns                                                 | 21 |
| B7-Roof Steel Columns                                              | 22 |
| C1-2 Steel Columns                                                 | 23 |
| C3-4 Steel Columns                                                 | 24 |
| C5-6 Steel Columns                                                 | 25 |
| C7-Roof Steel Columns                                              | 26 |
| D1-2 Concrete Columns                                              | 27 |
| D3-4 Steel Columns                                                 | 28 |
| D5-6 Steel Columns                                                 | 29 |
| D7-Roof Steel Columns                                              | 30 |
| D3-4 (Corridor) Steel Columns                                      | 31 |
| D5-6 (Corridor) Steel Columns                                      | 32 |
| D7-Roof (Corridor) Steel Columns                                   | 33 |
| Beam Schedule                                                      | 34 |
| Residential - 11 ft and below                                      | 35 |
| Residential - 20 ft to 30 ft spans                                 | 36 |

| Residential - 30 to 37 ft spans                | 37 |
|------------------------------------------------|----|
| Pre-Composite Beam Design                      | 38 |
| Residential - 40 to 45 ft spans                | 39 |
| Pre-Composite Beam Design                      | 40 |
| Residential (corridor) - 25.5 ft & below spans | 41 |
| Residential (corridor) - 30 to 37 ft spans     | 42 |
| Residential (corridor) - 40 to 48 ft spans     | 43 |
| Pre-Composite Beam Design                      | 44 |
| Residential (Roof) - 11 ft and below           | 45 |
| Residential (Roof) - 20 ft to 30 ft spans      | 46 |
| Residential (Roof) - 30 to 37 ft spans         | 47 |
| Residential (Roof) - 40 to 45 ft spans         | 48 |
| Parking Garage - 18'3" and below spans         | 49 |
| Parking Garage - 19 to 29.5 ft spans           | 50 |
| Parking Garage - 30' to 45'3" spans            | 51 |
| Metal Decking                                  | 52 |

#### **Structural Narrative:**

The following support calculations are for a new seven (7) story mixed-use building, consisting of two floors of above ground parking & commerical space and five floors of residential units. This project is located at 1200 Campbell Avenue, San Jose California. The first two (2) floors are approximately 91,320 square feet and the upper five (5) floors are approximately 68,880 square feet, with a total of about 606,685 square feet. A 9-inch thick foundation slab was assumed to be adequate enough to counteract the pressure along with the dead load from the structural steel, concrete, and metal decking. The gravity system is concrete diaphragm supported by circular concrete columns and concrete over metal deck supported by steel framing, and the lateral system is composed of steel special concentric brace frames, special reinforced concrete shear walls, and special steel moment frames with moment frame connections.

Due to constraints resulting from the university's transition to no face-to-face meetings and online classes, the project scope was modified to omit the following design items:

- Foundation
- Parking garage ramps
- Connection details
- Non load bearing structural components
- Elevated concrete slab gravity load for the parking garage
- Steel Braced Frames

#### Flat Weights (psf)

#### PARKING GARAGE

CBC Live Load Category

Slope

:12

No

Garages: Passenger vehicles only

(Table 4.3-1)

Is there a Balcony? Weight Material Sloped? Cement Finish Yes 30.0 Topping (Concrete) Yes 0.0 5" Lightweight Concrete Floor Fill (Slabs) Yes 40.0 Lighting No 0.8 Insulation No 0.0 M.E.P. 4.0 Ceiling 0.0 Sprinklers 1.5 **Concrete Beams** 10.0 **Concrete Girders** 10.0 Columns 10.0 Miscellaneous 1.5 Dead Load 108.0 **Dead Load - Horizontal Projection** 108.0 Partitions No 0.0 Live Load 60.0 Live Load - Reduced R<sub>2</sub> = 1.00 60.0 Total Load (psf) 168.0

COMMERCIAL SPACE

CBC Live Load Category Slope

Stores: Retail 1st FLR :12

No

(Table 4.3-1)

Is there a Balcony?

| Material                                   | Sloped? | Weight |
|--------------------------------------------|---------|--------|
| Cement Finish                              | Yes     | 30.0   |
| Topping (Concrete)                         | Yes     | 0.0    |
| 4" Lightweight Concrete Floor Fill (Slabs) | Yes     | 32.0   |
| Lighting                                   | No      | 0.8    |
| Insulation                                 | No      | 0.0    |
| M.E.P.                                     |         | 4.0    |
| Ceiling                                    |         | 0.0    |
| Sprinklers                                 |         | 1.5    |
| Concrete Beams                             |         | 10.0   |
| Concrete Girders                           |         | 10.0   |
| Columns                                    |         | 10.0   |
| Miscellaneous (5% of Total)                |         | 4.9    |
| Dead Load                                  |         | 104.0  |
| Dead Load - Horizontal Projection          |         | 104.0  |
| Partitions                                 | No      | 0.0    |
| Live Load                                  |         | 100.0  |
| Live Load - Reduced R <sub>2</sub> =       | 1.00    | 100.0  |
| Total Load (psf)                           |         | 204.0  |

#### TYPICAL RESIDENTIAL FLOOR

Residential: Other

(Table 4.3-1)

(Table 4.3-1)

CBC Live Load Category Slope Is there a Balcony?

e :12 ? No

| Material                          | Sloped?  | Weight |
|-----------------------------------|----------|--------|
| 3" Concrete Over Metal Deck       | No       | 24.0   |
| Carpet/Linoleum                   | No       | 2.0    |
| Metal Decking, 18 Gauge           | No       | 3.0    |
| Solar/Other                       | Yes      | 0.0    |
| Insulation                        | Yes      | 0.0    |
| M.E.P. + Sprinklers               |          | 5.5    |
| Ceiling (Drywall)                 |          | 2.0    |
| Beams (Assumption)                |          | 10.0   |
| Girders (Assumption)              |          | 10.0   |
| Columns                           |          | 10.0   |
| Miscellaneous (5% of Total)       |          | 3.3    |
| Dead Load                         |          | 70.0   |
| Dead Load - Horizontal Projection |          | 70.0   |
| Partitions                        | No       | 0.0    |
| Live Load                         |          | 40.0   |
| Live Load - Reduced R             | 2 = 1.00 | 40.0   |
| Total Load (psf)                  |          | 110.0  |

#### TYPICAL RESIDENTIAL FLOOR - CORRIDOR

| CBC Live Load Category | Walkways |
|------------------------|----------|
| Slope                  | :12      |
| Is there a Balcony?    | No       |

| Material                             | Sloped? | Weight |
|--------------------------------------|---------|--------|
| 3" Concrete Over Metal Deck          | No      | 24.0   |
| Carpet/Linoleum                      | No      | 2.0    |
| Metal Decking, 18 Gauge              | No      | 3.0    |
| Solar/Other                          | Yes     | 0.0    |
| Insulation                           | Yes     | 0.0    |
| M.E.P. + Sprinklers                  |         | 5.5    |
| Ceiling (Drywall)                    |         | 2.0    |
| Beams (Assumption)                   |         | 10.0   |
| Girders (Assumption)                 |         | 10.0   |
| Columns                              |         | 10.0   |
| Miscellaneous (5% of Total)          |         | 3.3    |
| Dead Load                            |         | 70.0   |
| Dead Load - Horizontal Projection    |         | 70.0   |
| Partitions                           | No      | 0.0    |
| Live Load                            |         | 60.0   |
| Live Load - Reduced R <sub>2</sub> = | 1.00    | 60.0   |
| Total Load (psf)                     |         | 130.0  |

#### ROOF - SLOPED

#### Roof: Ordinary flat, pitched, and curved roofs

(Table 4.3-1)

Slope 3:12

No

Is there a Balcony?

CBC Live Load Category

| Material                                | Sloped? | Weight |
|-----------------------------------------|---------|--------|
| Solar/Other                             | Yes     | 3.0    |
| Waterproofing Bituminous, Smooth Surfac | Yes     | 1.5    |
| Sheathing/Decking                       | Yes     | 3.0    |
| Metal Deck                              | Yes     | 2.8    |
| Rigid Insulation                        | Yes     | 1.5    |
| M.E.P.                                  |         | 5.0    |
| Ceiling                                 |         | 0.0    |
| Sprinklers                              |         | 1.5    |
| Beams (20 plf @ 8'-0" oc)               |         | 10.0   |
| Girders (30 plf @ 20'-0" oc)            |         | 10.0   |
| Columns                                 |         | 10.0   |
| Miscellaneous (5% of Total)             |         | 2.4    |
| Dead Load                               |         | 51.0   |
| Dead Load - Horizontal Projection       |         | 51.0   |
| Partitions                              | No      | 0.0    |
| Live Load                               |         | 20.0   |
| Live Load - Reduced R <sub>2</sub> =    | 1.00    | 20.0   |
| Total Load (psf)                        |         | 71.0   |

#### TOTAL GRAVITY LOADS:

|              | Intended Use                  | Area (ft^2) | Dead Loads (psf) | Dead Loads (kips) | Live Load (psf) | Live Load (kips) |
|--------------|-------------------------------|-------------|------------------|-------------------|-----------------|------------------|
| Ground Floor | Parking Garage/Open Space     | 91318.94    | -                | -                 | -               | -                |
| 2nd Floor    | Parking Garage                | 66404.75    | 108.0            | 7172              | 60.0            | 3984             |
| 2nd Floor    | Residential Units             | 24914.19    | 70.0             | 1744              | 40.0            | 997              |
| 3rd Floor    | Residential units (~65 units) | 68882.61    | 70.0             | 4822              | 40.0            | 2755             |
| 4th Floor    | Residential units             | 68882.61    | 70.0             | 4822              | 40.0            | 2755             |
| 5th Floor    | Residential units             | 68882.61    | 70.0             | 4822              | 40.0            | 2755             |
| 6th Floor    | Residential units             | 68882.61    | 70.0             | 4822              | 40.0            | 2755             |
| 7th Floor    | Residential units             | 74815.6     | 70.0             | 5237              | 40.0            | 2993             |
| Roof         | -                             | 73701.02    | 51.0             | 3759              | 40.0            | 2948             |
|              | Total:                        | 606685      | 579              | 37199             | 340             | 21943            |



### OSHPD

### SCU Faculty & Staff Housing Development

1200 Campbell Ave, San Jose, CA 95126, USA

Latitude, Longitude: 37.3488651, -121.93011160000003



| Туре            | Value | Description                                             |
|-----------------|-------|---------------------------------------------------------|
| C <sub>R1</sub> | 0.935 | Mapped value of the risk coefficient at a period of 1 s |

#### Wind Load Analysis - Main Wind-Force Resisting System

Design Per ASCE 7-16 Code for Enclosed Buildings

#### Input Data:

| Wind Speed, V =                                                             | 99             | mph (ATC Hazards by Location) |
|-----------------------------------------------------------------------------|----------------|-------------------------------|
| Bldg. Classification =                                                      | Ш              |                               |
| Exposure Category =                                                         | С              |                               |
| Ridge Height, hr =                                                          | 95             | ft.                           |
| Eave Height, he =                                                           | 83             | ft.                           |
| Building Width =                                                            | 309            | ft.                           |
| Building Length =                                                           | 463            | ft.                           |
| Roof Type =                                                                 | Monoslope      | (Gable or Monoslope)          |
| Root Type =                                                                 | wonosiope      | (Gable of Monoslope)          |
| Topographic Factor, Kzt =                                                   | 1              | (Gable of Monoslope)          |
| 51                                                                          |                | (Gable of Monoslope)          |
| Topographic Factor, Kzt =                                                   | 1              | (Gable of Monoslope)          |
| Topographic Factor, Kzt =<br>Directionality Factor, Kd =                    | 1<br>0.85      | (Gable of Monoslope)          |
| Topographic Factor, Kzt =<br>Directionality Factor, Kd =<br>Enclosed? (Y/N) | 1<br>0.85<br>Y | (Gable of Monoslope)          |

#### Parameters and Coefficients:

| Roof Angle, q =    | 2.22 | deg.                                         |
|--------------------|------|----------------------------------------------|
| Mean Roof Ht., h = | 83   | ft. (h = (hr+he)/2, for roof angle >10 deg.) |

Wall External Pressure Coefficients, GCp:

GCp Zone 4 Pos. = 0.60 GCp Zone 5 Pos. = 0.60 GCp Zone 4 Neg. = -0.70 GCp Zone 5 Neg. = -1.00 Positive & Negative Internal Pressure Coefficients, GCpi: +GCpi Coef. = 0.18 (positive internal pressure) -GCpi Coef. = -0.18 (negative internal pressure) If z <= 15 then: Kz =  $2.01^{(15/zg)}(2/a)$ , If z > 15 then: Kz =  $2.01^{(z/zg)}(2/a)$  (Table 30.3-1) Wind Shear Exponent,  $\alpha =$ 9.5 Terrain Exposure Constant, zg = 900 Velocity Pressure Coeff., Kz = 1.217 (Kh = Kz)

 $\begin{array}{rl} \mbox{Velocity Pressure: } qz = 0.00256^{*} Kz^{*} Kzt^{*} Kd^{*} V^{2} (\mbox{Sect. 30.3.2, Eq. 30.3-1}) \\ \mbox{} qz = & \mbox{$26.0$} & \mbox{psf} & \mbox{$qh$} = 0.00256^{*} Kh^{*} Kzt^{*} Kd^{*} V^{2} (\mbox{$qz$} evaluated at $z=h$) \\ \end{array}$ 

Design Net External Wind Pressures (Sect. 30.4 & 30.6): For h <= 60 ft.:p = qh\*((GCp) - (+/-GCpi))(psf) For h >60 ft.:p = q\*(GCp) - qi\*(+/-GCpi)(psf) where: q = qz for windward walls,q = qh for leeward walls and side walls qi = qh for all walls (conservatively assumed per Sect. 30.6)

| Component     | Z     | Kz    | qh     | P = Net Design Pressures (psf) |            |            |            |  |  |
|---------------|-------|-------|--------|--------------------------------|------------|------------|------------|--|--|
|               | (ft.) |       | (psf)  | Zone 4 (+)                     | Zone 4 (-) | Zone 5 (+) | Zone 5 (-) |  |  |
| Wall          | 0     | 0.85  | 18.128 | 15.55                          | -4.80      | 15.55      | -4.85      |  |  |
|               | 15    | 0.85  | 18.128 | 15.55                          | -4.80      | 15.55      | -4.85      |  |  |
|               | 20    | 0.902 | 19.234 | 16.21                          | -4.80      | 16.21      | -4.85      |  |  |
|               | 25    | 0.945 | 20.160 | 16.77                          | -4.80      | 16.77      | -4.85      |  |  |
|               | 30    | 0.982 | 20.948 | 17.24                          | -4.80      | 17.24      | -4.85      |  |  |
|               | 35    | 1.015 | 21.639 | 17.66                          | -4.80      | 17.66      | -4.85      |  |  |
|               | 40    | 1.044 | 22.256 | 18.03                          | -4.80      | 18.03      | -4.85      |  |  |
|               | 45    | 1.070 | 22.815 | 18.36                          | -4.80      | 18.36      | -4.85      |  |  |
|               | 50    | 1.094 | 23.327 | 18.67                          | -4.80      | 18.67      | -4.85      |  |  |
|               | 55    | 1.116 | 23.800 | 18.95                          | -4.80      | 18.95      | -4.85      |  |  |
|               | 60    | 1.137 | 24.240 | 19.22                          | -4.80      | 19.22      | -4.85      |  |  |
|               | 65    | 1.156 | 24.652 | 19.46                          | -4.80      | 19.46      | -4.85      |  |  |
|               | 70    | 1.174 | 25.039 | 19.70                          | -4.80      | 19.70      | -4.85      |  |  |
|               | 75    | 1.191 | 25.406 | 19.91                          | -4.80      | 19.91      | -4.85      |  |  |
|               | 80    | 1.208 | 25.753 | 20.12                          | -4.80      | 20.12      | -4.85      |  |  |
|               | 85    | 1.223 | 26.084 | 20.32                          | -4.80      | 20.32      | -4.85      |  |  |
|               | 90    | 1.238 | 26.400 | 20.51                          | -4.80      | 20.51      | -4.85      |  |  |
| For z=hr:     | 95    | 1.252 | 26.702 | 20.69                          | -4.80      | 20.69      | -4.85      |  |  |
| For z = he:   | 83    | 1.217 | 25.954 | 20.24                          | -4.67      | 20.24      | -30.63     |  |  |
| For $z = h$ : | 83    | 1.217 | 25.954 | 20.24                          | -4.67      | 20.24      | -30.63     |  |  |

30.9

ft.

Notes: 1. (+) and (-) signs signify wind pressures acting toward & away from respective surfaces.

2. Width of Zone 5 (end zones), ' $\alpha$ ' =

3. Per Code Section 30.2.2, the minimum wind load for C&C shall not be less than 16 psf.

### LATERAL DESIGN

#### Equivalent Lateral Force - Special Reinforced Concrete Shear Wall

Design Per ASCE 7-16 Code

#### **Building Classification**

| Structure Type =                                  | All other s | structures |                                                            |
|---------------------------------------------------|-------------|------------|------------------------------------------------------------|
| Soil Site Class =                                 | D           | (Assumpti  | on)                                                        |
| Building Risk Category =                          | Ш           |            |                                                            |
| Response Spectral Acc. (0.2 sec) $S_s$ =          | 1.5         | g          |                                                            |
| Response Spectral Acc. (1.0 sec) S <sub>1</sub> = | 0.6         | g          |                                                            |
| Site Coefficient, Fa =                            | 1.0         |            |                                                            |
| Site Coefficient, Fv =                            | 1.5         |            |                                                            |
| S <sub>DS</sub> =                                 | 1.0         |            |                                                            |
| S <sub>D1</sub> =                                 | 0.6         |            |                                                            |
| Long Period = T∟ =                                | 12          | sec        |                                                            |
| Importance Factor = $I_e$ =                       | 1.25        |            | (ASCE 7 Table 1.5-2)                                       |
| Response Modification Coefficient = R =           | 5           | for Specia | Reinforced Concrete Shear Wall                             |
| Deflection Amplification Factor = Cd =            | 5           |            | (ASCE 7 Table 12.2-1)                                      |
| Story Heigh Below Level x = h <sub>sx</sub> =     | 15          | ft         |                                                            |
|                                                   |             |            |                                                            |
| Approximate Period                                |             |            |                                                            |
| $C_t =$                                           | 0.03        |            | (ASCE 7 Table 12.8-2, "Steel eccentrically braced frames") |
| x =                                               | 0.75        |            | (ASCE 7 Table 12.8-2, "Steel eccentrically braced frames") |
| Height to the Top of the Structure = $h_n$ =      | 77          | ft         |                                                            |
| Approximate Period = T <sub>a</sub> =             | 0.78        | secs       | (ASCE 7 12.8-7)                                            |
|                                                   |             |            |                                                            |
| Seismic Response Coeffecient                      |             |            |                                                            |
| Cs =                                              | 0.250       |            |                                                            |
| Cs_max =                                          | 0.192       | for T < T∟ | (ASCE 7 12.8-3) Governs                                    |
| $C_{s\_min1} =$                                   | 0.055       |            | (ASCE 7 12.8-5)                                            |
| $C_{s\_min2} =$                                   | 0.075       |            | (ASCE 7 12.8-6)                                            |
| C <sub>s_governs</sub> =                          | 0.192       |            |                                                            |
|                                                   |             |            |                                                            |
| Base Shear                                        | 07/00       |            |                                                            |
| Total Weight = W =                                | 37199       | kips       |                                                            |

| Base Shear = V = | 7155 | kips |
|------------------|------|------|
|------------------|------|------|

#### Lateral Force at Each Level

| Level | Weight (kips) Height (ft) | W <sub>x</sub> h <sub>x</sub> ^k | Cvx   | Fx   |
|-------|---------------------------|----------------------------------|-------|------|
| Roof  | 6707 <b>77</b>            | 948279                           | 0.225 | 1610 |
| 6     | 8230 <mark>67</mark>      | 992973                           | 0.236 | 1686 |
| 5     | 7577 57                   | 760385                           | 0.180 | 1291 |
| 4     | 7577 47                   | 610289                           | 0.145 | 1036 |
| 3     | 7577 37                   | 464626                           | 0.110 | 789  |
| 2     | 7577 27                   | 324430                           | 0.077 | 551  |
| 1     | 5159 15                   | 113028                           | 0.027 | 192  |
|       |                           | 4214011                          | 1.0   | 7155 |

where: k = 1.14

| Overturning Moment                          |          |     |                                  |
|---------------------------------------------|----------|-----|----------------------------------|
| OTM =                                       | 406189   | kft |                                  |
|                                             |          |     |                                  |
| Story Shears                                |          |     |                                  |
| V <sub>1</sub> =                            | 7155     | kip |                                  |
| V <sub>2</sub> =                            | 6963     | kip |                                  |
| V <sub>3</sub> =                            | 6413     | kip |                                  |
| $V_4 =$                                     | 5624     | kip |                                  |
| V <sub>5</sub> =                            | 4587     | kip |                                  |
| V <sub>6</sub> =                            | 3296     | kip |                                  |
| V <sub>Roof</sub> =                         | 1610     | kip |                                  |
|                                             |          |     |                                  |
| Allowable Story Drift                       |          |     |                                  |
| Allowable Story Drift = $\Delta_a$ =        | 0.27     | in  | (ASCE 7 Table 12.12-1)           |
| Design Story Drift = $\Delta_s$ =           | 0.068    | in  |                                  |
|                                             |          |     |                                  |
| Shear Modulus                               |          |     |                                  |
| Weight of Material = W =                    | 145      | pcf |                                  |
| Compressive Strength = f'c =                | 4000     | psi |                                  |
| Poisson's Ratio = v =                       | 0.3      |     |                                  |
| Modulus of Elasticity of the Material = E = | 3.64E+06 | psi |                                  |
| Shear Modulus = G =                         | 1.40E+06 | psi |                                  |
|                                             |          |     |                                  |
| Required Wall Thickness                     |          |     |                                  |
| Total Length of Shear Walls in x-direction  | 242.9    | ft  |                                  |
| Total Length of Shear Walls in y-direction  | 125.6    | ft  |                                  |
| Lateral Force in x-direction = $L_x$ =      | 0.034    | klf |                                  |
| Lateral Force in y-direction = $L_y$ =      | 0.0176   | klf |                                  |
| Thickness of Walls in x-direction =         | 0.0054   | in  |                                  |
| Thickness of Walls in y-direction =         | 0.00278  | in  |                                  |
| Therefore by ACI 318, Use:                  | 8        | in  | (ACI 318, Table 11.3.1.1, p.164) |

#### Special Reinforced Concrete Shear Wall Design

Design Per ASCE 7-16 Code, ACI 318, & SEAOC Bluebook

| Building Geometry                                                                                                                             |                      |                        |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|---------------|
| Soil Site Class =                                                                                                                             | D                    |                        |               |
| Risk Category =                                                                                                                               | III                  |                        |               |
| Response Spectral Acc. (0.2 sec) Ss =                                                                                                         | 1.5                  |                        |               |
| Response Spectral Acc. (1.0 sec) S1 =                                                                                                         | 0.6                  |                        |               |
| Redundancy Factor = $\rho$ =                                                                                                                  | 1.0                  | (ASCE                  | E 7 12.3.4.2) |
| Seismic Importance Factor = Ie =                                                                                                              | 1.0                  |                        |               |
| Concrete Strength = fc =                                                                                                                      | 4000                 | psi                    |               |
| Steel Yield Strength = fy =                                                                                                                   | 60                   | ksi                    |               |
| Number of Stories = n =                                                                                                                       | 7                    | stories                |               |
| Load Combinations for Design                                                                                                                  |                      |                        |               |
| 1.2D + 1.0E + L =                                                                                                                             | 8046                 | psf                    | Governs       |
| 0.9D + 1.0E =                                                                                                                                 | 7613                 | psf                    |               |
| Actions at Base of Wall<br>Governing Axial Force at Base of Wall =<br>Governing Moment at Base of Wall =<br>Governing Shear at Base of Wall = | 3593<br>37357<br>870 | kips<br>kip-ft<br>kips |               |
| Preliminary Sizing of Wall                                                                                                                    |                      |                        |               |

| · · · · · · · · · · · · · · · · · · · |     |    |  |  |  |  |  |  |
|---------------------------------------|-----|----|--|--|--|--|--|--|
| Wall Length = I <sub>w</sub> =        | 343 | in |  |  |  |  |  |  |
| Wall Thickness = b =                  | 14  | in |  |  |  |  |  |  |

#### Minimum Thickness to Prevent Wall Buckling (SEAOC Blue Book)

| Clear Height at First Story = In = | 15   | ft |    |
|------------------------------------|------|----|----|
| Recommended Thickness =            | 11.3 | in | OK |

#### Layout of Vertical Reinforcement

| Edjout of Vertical Relinor cement           |             |                                                                               |
|---------------------------------------------|-------------|-------------------------------------------------------------------------------|
| Bar Size =                                  | #8          |                                                                               |
| Area of Steel = A <sub>s</sub> =            | 0.79        | in <sup>2</sup> For ease of construction                                      |
| Longitudinal Vertical Bar Spacing =         | 10          | in o.c. OK                                                                    |
| Minimum Reinforcement Ratio = $\rho_p$ =    | 0.0056      | ОК                                                                            |
| Flexural Strength at Base of Wall           | (ACI 318 Se | ection 21.2)                                                                  |
| Strength Reduction Factor = $\Phi$ =        | 0.65        | (0.002 <steel -="" compression-controlled)<="" stress<0.005="" td=""></steel> |
| Nominal Axial Force = Pn =                  | 5527        | kips                                                                          |
| Nominal Moment Strength = $\Phi M_n$ =      | 61986       | kip-ft <mark>OK</mark>                                                        |
| Lab Splice Length (ACI 318 Section 25.5)    |             |                                                                               |
| $\Psi_t =$                                  | 1.0         | (Vertical Bars)                                                               |
| Ψ <sub>e</sub> =                            | 1.0         | (Uncoated Reinforcement)                                                      |
| $\Psi_s =$                                  | 1.0         | (#7 Bars or Larger)                                                           |
| $\lambda =$                                 | 1.0         | (Normal Weight Concrete)                                                      |
| Diameter of Rebar = db =                    | 1.0         | in                                                                            |
| K <sub>tr</sub> =                           | 0           | (No transverse reinforcement that "croses the potential plane of splitting")  |
| Cover Measured From Center of Bar = $c_b$ = | 2.00        | in (With 1.5" Cover)                                                          |
| Length of Splice = Id =                     | 35.6        | in                                                                            |
| Required Length for Class B Lap Splice =    | 3.85        | ft                                                                            |

| Splices in Plastic-Hinge Regions                 |            |                           |                                       |
|--------------------------------------------------|------------|---------------------------|---------------------------------------|
| Equivalent Plastic-Hinge Length = $I_p$ =        | 8.7        |                           |                                       |
|                                                  |            |                           |                                       |
| Shear Strength of Wall (SEAOC Blue Bool          | K)         |                           |                                       |
| $\alpha_{\rm c} =$                               | 1.0        |                           |                                       |
| Shear Demand = $V_u = V_E =$                     | 870        | os                        |                                       |
| Shear Amplification Factor = $\omega_v$ =        | 1.53       | r buildings over 6 storie | es (Recommendation)                   |
| Magnified Shear Demand = $V_u^*$ =               | 2215       | os at the base of the     | wall                                  |
| A <sub>cv</sub> =                                | 4802       | ^2                        |                                       |
| Required Horizontal Reinforcement = $\rho_t$ =   | 0.000009   |                           |                                       |
| Try Bar Size =                                   | #7         | @ 10 in o.c. each f       | ace                                   |
| Required Horizontal Reinforcement = $\rho_t$ = ( | 0085714285 | OK                        |                                       |
| Shear Capacity = $\Phi V_n$ =                    | 1664       | DS                        |                                       |
|                                                  |            |                           |                                       |
| Shear Friction (Sliding Shear) Strength of       | Wall       |                           |                                       |
| Shear-Transfer Reinforcement = Avf =             | 34.8       | ^2                        |                                       |
| Coefficient of Friction = $\mu$ =                | 1.0        | onstruction joint at the  | 1st story with the surface roughened) |
| Permanent Net Compression = Vn =                 | 5397       | os No Good                | (ACI 318 Eq 22.94.2)                  |
|                                                  |            |                           |                                       |
| Requirement for Special Boundary Eleme           | nts        |                           |                                       |
| Design Displacement = $\delta_u$ =               | 1.89       | (Assumption Base          | ed on ASCE 7 Requirements)            |
| δ <sub>u</sub> /h <sub>w</sub> =                 | 0.0105     | Does Not Gover            | n                                     |
| Special Boundary Elements Check "c" =            | 36.3       | Special Bounda            | ry Elements are NOT REQUIRED          |
|                                                  |            |                           |                                       |

#### **Concrete Diaphragm Design**

Design Per ASCE 7-16 Code & ACI 318

#### **Building Classification**

#### Diaphragm Design Forces

| Level | Wpx (kip) | Sum Wpx (kip) | Fx (kip) | Sum Fx (kip) | Sum Fx/Sum Wpx | Fpx (kip) | Fpx/Fx |
|-------|-----------|---------------|----------|--------------|----------------|-----------|--------|
| Roof  | 6707      | 6707          | 1610     | 1610         | 0.240          | 1610      | 1.00   |
| 6     | 8230      | 14937         | 1686     | 3296         | 0.221          | 1816      | 1.08   |
| 5     | 7577      | 22514         | 1291     | 4587         | 0.204          | 1544      | 1.20   |
| 4     | 7577      | 30091         | 1036     | 5624         | 0.200          | 1515      | 1.46   |
| 3     | 7577      | 37668         | 789      | 6413         | 0.200          | 1515      | 1.92   |
| 2_    | 7577      | 45245         | 551      | 6963         | 0.200          | 1515      | 2.75   |
|       | 45245     |               | 6963     |              |                |           |        |

Height of First Floor = floor1 =15Height of First 2 Floors = floor2 =27

#### N-S Direction

| Wall         | Length (in) | <u>Width (in)</u> | <u>Moment of</u><br>Inertia (ft^3) | Stiffness (k1) for<br>First Floor | Stiffness (k2) for<br>First 2 Floors | <u>2nd Floor</u><br>Force (kips) | <u>3rd Floor Force</u><br>(kips) |
|--------------|-------------|-------------------|------------------------------------|-----------------------------------|--------------------------------------|----------------------------------|----------------------------------|
| E - F        | 343         | 14                | 27245                              | 14.27                             | 4.40                                 | 1326                             | 1221                             |
| E - F.8_14.3 | 582         | 14                | 133098                             | 24.21                             | 7.47                                 | 2250                             | 2072                             |
| E - F.8_15   | 582         | 14                | 133098                             | 24.21                             | 7.47                                 | 2250                             | 2072                             |
| J - K.5      | 294         | 14                | 17157                              | 12.23                             | 3.77                                 | 1137                             | 1047                             |
|              |             |                   |                                    | 74.9                              | 23.1                                 | 6963                             | 6413                             |

#### E-W Direction

| Wall          | Length (in) | Width (in) | Moment of<br>Inertia (ft^3) | Stiffness (k1) for<br>First Floor | Stiffness (k2) for<br>First 2 Floors | 2nd Floor<br>Force (kips) | <u>3rd Floor Force</u><br>(kips) |
|---------------|-------------|------------|-----------------------------|-----------------------------------|--------------------------------------|---------------------------|----------------------------------|
| 6 - 7.4       | 398         | 14         | 42565                       | 16.6                              | 5.11                                 | 951                       | 876                              |
| 8 - 9.1       | 324         | 14         | 22964                       | 13.5                              | 4.16                                 | 774                       | 713                              |
| 12.3 - 14     | 679         | 14         | 211355                      | 28.2                              | 8.72                                 | 1623                      | 1495                             |
| 7.1 - 8_D     | 378         | 14         | 36465                       | 15.7                              | 4.85                                 | 904                       | 832                              |
| 11.1 - 12.3_D | 378         | 14         | 36465                       | 15.7                              | 4.85                                 | 904                       | 832                              |
| 7.1 - 8_K     | 378         | 14         | 36465                       | 15.7                              | 4.85                                 | 904                       | 832                              |
| 11.1 - 12.3_K | 378         | 14         | 36465                       | 15.7                              | 4.85                                 | 904                       | 832                              |
|               |             |            |                             | 121                               | 37.4                                 | 6963                      | 6413                             |

#### Slab Shear

| Max. Shear =                         | 2250 | kip                      |
|--------------------------------------|------|--------------------------|
| Width of Slab =                      | 331  | ft                       |
| Shear Demand = Vud =                 | 6.81 | k/ft                     |
| Strength Reduction Factor = $\Phi$ = | 0.75 | (ACI 318, Section 9.3.2) |
| Thickness of Slab =                  | 6.25 | in                       |

| Note: Ignore Steel (Concrete Only)       |       |      |    |                            |
|------------------------------------------|-------|------|----|----------------------------|
| Shear Capacity = ΦVn =                   | 7.12  | k/ft | ОК | (ACI 318, Section 21.11.9) |
| Max. Shear Capacity = ΦVnmax =           | 0.4   | k/ft | ОК |                            |
| Chords                                   |       |      |    |                            |
| Moment = Mu =                            | 33755 | k-ft |    |                            |
| Depth = D =                              | 202   | ft   |    |                            |
| Tension Demand = Tu =                    | 167   | kip  |    |                            |
| Chord Reinforcing                        |       |      |    |                            |
| Strength Reduction Factor = $\Phi$ =     | 0.9   |      |    |                            |
| Area of Steel Required = Asreq'd =       | 3.10  | in^2 |    |                            |
| Use Rebar =                              | #7    | bars |    |                            |
| # of Bars =                              | 6     | bars |    |                            |
| Total Area of Steel = As =               | 3.6   | in^2 | ОК |                            |
| <u>Collectors</u>                        |       |      |    |                            |
| Max Diaphragm Load Transferred to Wall = | 490   | kip  |    |                            |
| Diaphragm Width =                        | 331   | ft   |    |                            |
| Load Along Diaphragm =                   | 1.48  | k/ft |    |                            |
| Load Collected Before Wall =             | 39.2  | kip  |    |                            |
| Rho =                                    | 2.5   |      |    |                            |
| Rho*Fpx =                                | 83.4  | kip  |    |                            |
| Tension Collector Reinforcing            |       |      |    |                            |
| Strength Reduction Factor = $\Phi$ =     | 0.9   |      |    |                            |
| Area of Steel Required = Asreq'd =       | 1.54  | in^2 |    |                            |
| Use:                                     | #5    |      |    |                            |
|                                          | 5     | bars |    |                            |
| Total Area of Steel = As =               | 1.6   | in^2 | ок |                            |

|                                                                                                                              |                                   |                                                   |                                       | Deflection<br>Amplification<br>Factor, <i>C<sub>a</sub><sup>c</sup></i> | Structural System Limitations<br>Including Structural Height, <i>h<sub>n</sub></i> (ft) Limits <sup>d</sup> |     |                 |                 |                 |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------------|-----------------|
| Seismic Force-Resisting System                                                                                               | ASCE 7 Section<br>Where Detailing | Response                                          |                                       |                                                                         | Seismic Design Category                                                                                     |     |                 |                 |                 |
|                                                                                                                              | Requirements<br>Are Specified     | Modification<br>Coefficient, <i>R<sup>a</sup></i> | Overstrength Factor, $\Omega_0^{\ b}$ |                                                                         | В                                                                                                           | с   | D <sup>e</sup>  | E <sup>e</sup>  | F′              |
| A. BEARING WALL SYSTEMS                                                                                                      |                                   |                                                   |                                       |                                                                         |                                                                                                             |     |                 |                 |                 |
| 1. Special reinforced concrete shear walls <sup>g,h</sup>                                                                    | 14.2                              | 5                                                 | 21/2                                  | 5                                                                       | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 2. Ordinary reinforced concrete shear walls <sup>g</sup>                                                                     | 14.2                              | 4                                                 | 21/2                                  | 4                                                                       | NL                                                                                                          | NL  | NP              | NP              | NP              |
| 3. Detailed plain concrete shear walls <sup>g</sup>                                                                          | 14.2                              | 2                                                 | 21/2                                  | 2                                                                       | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 4. Ordinary plain concrete shear walls <sup>g</sup>                                                                          | 14.2                              | 11/2                                              | 21/2                                  | 11/2                                                                    | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 5. Intermediate precast shear walls <sup>g</sup>                                                                             | 14.2                              | 4                                                 | 21/2                                  | 4                                                                       | NL                                                                                                          | NL  | $40^{i}$        | $40^{i}$        | $40^{i}$        |
| 6. Ordinary precast shear walls <sup>g</sup>                                                                                 | 14.2                              | 3                                                 | 21/2                                  | 3                                                                       | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 7. Special reinforced masonry shear walls                                                                                    | 14.4                              | 5                                                 | 21/2                                  | 31/2                                                                    | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 8. Intermediate reinforced masonry shear walls                                                                               | 14.4                              | 31/2                                              | 21/2                                  | 21/4                                                                    | NL                                                                                                          | NL  | NP              | NP              | NP              |
| 9. Ordinary reinforced masonry shear walls                                                                                   | 14.4                              | 2                                                 | 21/2                                  | 13⁄4                                                                    | NL                                                                                                          | 160 | NP              | NP              | NP              |
| 10. Detailed plain masonry shear walls                                                                                       | 14.4                              | 2                                                 | 21/2                                  | 13⁄4                                                                    | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 11. Ordinary plain masonry shear walls                                                                                       | 14.4                              | 11/2                                              | 21/2                                  | 11⁄4                                                                    | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 12. Prestressed masonry shear walls                                                                                          | 14.4                              | 11/2                                              | 21/2                                  | 13⁄4                                                                    | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 13. Ordinary reinforced AAC masonry shear walls                                                                              | 14.4                              | 2                                                 | 21/2                                  | 2                                                                       | NL                                                                                                          | 35  | NP              | NP              | NP              |
| 14. Ordinary plain AAC masonry shear walls                                                                                   | 14.4                              | 11/2                                              | 21/2                                  | 11/2                                                                    | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 15. Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance                                 | 14.5                              | 61/2                                              | 3                                     | 4                                                                       | NL                                                                                                          | NL  | 65              | 65              | 65              |
| 16. Light-frame (cold-formed steel) walls sheathed with wood structural panels<br>rated for shear resistance or steel sheets | 14.1                              | 61/2                                              | 3                                     | 4                                                                       | NL                                                                                                          | NL  | 65              | 65              | 65              |
| 17. Light-frame walls with shear panels of all other materials                                                               | 14.1 and 14.5                     | 2                                                 | 21/2                                  | 2                                                                       | NL                                                                                                          | NL  | 35              | NP              | NP              |
| 18. Light-frame (cold-formed steel) wall systems using flat strap bracing                                                    | 14.1                              | 4                                                 | 2                                     | 31/2                                                                    | NL                                                                                                          | NL  | 65              | 65              | 65              |
| B. BUILDING FRAME SYSTEMS                                                                                                    |                                   |                                                   |                                       |                                                                         |                                                                                                             |     |                 |                 |                 |
| 1. Steel eccentrically braced frames                                                                                         | 14.1                              | 8                                                 | 2                                     | 4                                                                       | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 2. Steel special concentrically braced frames                                                                                | 14.1                              | 6                                                 | 2                                     | 5                                                                       | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 3. Steel ordinary concentrically braced frames                                                                               | 14.1                              | 31⁄4                                              | 2                                     | 31⁄4                                                                    | NL                                                                                                          | NL  | 35 <sup>j</sup> | 35 <sup>j</sup> | NP <sup>i</sup> |
| 4. Special reinforced concrete shear walls <sup>g,h</sup>                                                                    | 14.2                              | 6                                                 | 21/2                                  | 5                                                                       | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 5. Ordinary reinforced concrete shear walls <sup>g</sup>                                                                     | 14.2                              | 5                                                 | 21/2                                  | 41/2                                                                    | NL                                                                                                          | NL  | NP              | NP              | NP              |
| 6. Detailed plain concrete shear walls <sup>g</sup>                                                                          | 14.2 and 14.2.2.7                 | 2                                                 | 21/2                                  | 2                                                                       | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 7. Ordinary plain concrete shear walls <sup>g</sup>                                                                          | 14.2                              | 11/2                                              | 21/2                                  | 11/2                                                                    | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 8. Intermediate precast shear walls <sup>g</sup>                                                                             | 14.2                              | 5                                                 | 21/2                                  | 41/2                                                                    | NL                                                                                                          | NL  | $40^{i}$        | $40^{i}$        | $40^{i}$        |
| 9. Ordinary precast shear walls <sup>g</sup>                                                                                 | 14.2                              | 4                                                 | 21/2                                  | 4                                                                       | NL                                                                                                          | NP  | NP              | NP              | NP              |
| 10. Steel and concrete composite eccentrically braced frames                                                                 | 14.3                              | 8                                                 | 21/2                                  | 4                                                                       | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 11. Steel and concrete composite special concentrically braced frames                                                        | 14.3                              | 5                                                 | 2                                     | 41/2                                                                    | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 12. Steel and concrete composite ordinary braced frames                                                                      | 14.3                              | 3                                                 | 2                                     | 3                                                                       | NL                                                                                                          | NL  | NP              | NP              | NP              |
| 13. Steel and concrete composite plate shear walls                                                                           | 14.3                              | 61/2                                              | 21/2                                  | 51/2                                                                    | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 14. Steel and concrete composite special shear walls                                                                         | 14.3                              | 6                                                 | 21/2                                  | 5                                                                       | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 15. Steel and concrete composite ordinary shear walls                                                                        | 14.3                              | 5                                                 | 21/2                                  | 41/2                                                                    | NL                                                                                                          | NL  | NP              | NP              | NP              |
| 16. Special reinforced masonry shear walls                                                                                   | 14.4                              | 51/2                                              | 21/2                                  | 4                                                                       | NL                                                                                                          | NL  | 160             | 160             | 100             |
| 17. Intermediate reinforced masonry shear walls                                                                              | 14.4                              | 4                                                 | 21/2                                  | 4                                                                       | NL                                                                                                          | NL  | NP              | NP              | NP              |

#### Equivalent Lateral Force - Steel Special Moment Frame

Design Per ASCE 7-16 Code

#### **Building Classification**

| Structure Type =                                  | All other s | tructures   |                                                            |
|---------------------------------------------------|-------------|-------------|------------------------------------------------------------|
| Soil Site Class =                                 | D           | (Assumpt    | ion)                                                       |
| Building Risk Category =                          | III         |             |                                                            |
| Response Spectral Acc. (0.2 sec) $S_s$ =          | 1.5         | g           |                                                            |
| Response Spectral Acc. (1.0 sec) S <sub>1</sub> = | 0.6         | g           |                                                            |
| Site Coefficient, Fa =                            | 1.0         |             |                                                            |
| Site Coefficient, Fv =                            | 1.5         |             |                                                            |
| S <sub>DS</sub> =                                 | 1.0         |             |                                                            |
| S <sub>D1</sub> =                                 | 0.6         |             |                                                            |
| Long Period = $T_L$ =                             | 12          | sec         |                                                            |
| Importance Factor = $I_e$ =                       | 1.25        |             | (ASCE 7 Table 1.5-2)                                       |
| Response Modification Coefficient = R =           | 8           | for Steel S | Special Moment Frame                                       |
| Deflection Amplification Factor = Cd =            | 5.5         |             | (ASCE 7 Table 12.2-1)                                      |
|                                                   |             |             |                                                            |
| Approximate Period                                |             |             |                                                            |
| $C_t =$                                           | 0.028       |             | (ASCE 7 Table 12.8-2, "Steel eccentrically braced frames") |
| x =                                               | 0.8         |             | (ASCE 7 Table 12.8-2, "Steel eccentrically braced frames") |
| Height to the Top of the Structure = $h_n$ =      | 77          | ft          |                                                            |
| Approximate Period = T <sub>a</sub> =             | 0.90        | secs        | (ASCE 7 12.8-7)                                            |
|                                                   |             |             |                                                            |
| Seismic Response Coeffecient                      |             |             |                                                            |
| Cs =                                              | 0.156       |             |                                                            |
| Cs_max =                                          | 0.104       | for T < T∟  | (ASCE 7 12.8-3) Governs                                    |
| Cs_min1 =                                         | 0.055       |             | (ASCE 7 12.8-5)                                            |
| Cs_min2 =                                         | 0.047       |             | (ASCE 7 12.8-6)                                            |
| Cs_governs =                                      | 0.104       |             |                                                            |
|                                                   |             |             |                                                            |
| Base Shear                                        |             |             |                                                            |
| Total Weight = W =                                | 28283       | kips        |                                                            |
| Base Shear = V =                                  | 2932        | kips        |                                                            |

#### Lateral Force at Each Level

| Level | Weight (kips) Height (ft) | W <sub>x</sub> h <sub>x</sub> ^k | Cvx   | Fx   |
|-------|---------------------------|----------------------------------|-------|------|
| Roof  | 6707 77                   | 1242895                          | 0.230 | 675  |
| 6     | 8230 <b>67</b>            | 1290248                          | 0.239 | 700  |
| 5     | 7577 57                   | 978131                           | 0.181 | 531  |
| 4     | 7577 47                   | 775677                           | 0.144 | 421  |
| 3     | 7577 37                   | 581806                           | 0.108 | 316  |
| 2     | 7577 27                   | 398357                           | 0.074 | 216  |
| 1     | 5159 15                   | 133794                           | 0.025 | 73   |
|       | -                         | 5400908                          | 1.0   | 2932 |

where: k = 1.20

#### **Overturning Moment**

| OTM =               | 167550                                    | kft                                                                                       |
|---------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|
|                     |                                           |                                                                                           |
| V1 =                | 2932                                      | kip                                                                                       |
| V2 =                | 2859                                      | kip                                                                                       |
| V3 =                | 2643                                      | kip                                                                                       |
| V4 =                | 2327                                      | kip                                                                                       |
| V5 =                | 1906                                      | kip                                                                                       |
| V6 =                | 1375                                      | kip                                                                                       |
| V <sub>Roof</sub> = | 675                                       | kip                                                                                       |
|                     | $V_1 = V_2 = V_3 = V_4 = V_5 = V_6 = V_6$ | $V_{1} = 2932$ $V_{2} = 2859$ $V_{3} = 2643$ $V_{4} = 2327$ $V_{5} = 1906$ $V_{6} = 1375$ |

### Steel Special Moment Frame Design

Design Per ASCE 7-16 Code

| Building Classification                       |              |           |                |
|-----------------------------------------------|--------------|-----------|----------------|
| Risk Category =                               | Ш            |           |                |
| Importance Factor = $I_e$ =                   | 1.25         |           | (Table 1.5-2)  |
| Structure Type =                              | All other st | tructures |                |
| Response Modification Coefficient = R =       | 8            |           | (Table 12.2-1) |
| Deflection Amplification Factor = $C_d$ =     | 5.5          |           | (Table 12.2-1) |
| Story Heigh Below Level x = h <sub>sx</sub> = | 12           | ft        |                |
| Modulus of Elasticity = E =                   | 29000        | ksi       |                |
|                                               |              |           |                |
| Allowable Story Drift                         |              |           |                |
| Allowable Story Drift = $\Delta a$ =          | 2.16         | in        |                |
| Design Story Drift = $\Delta_s$ =             | 0.49         | in        |                |
| Column Design (E-W direction) - Along Gr      | idline A     |           |                |
| Number of Moment Frames =                     | 15           |           |                |
| Number of Lines =                             | 3            |           |                |
| Number of Frames Per Line =                   | 5            |           |                |
| Force in y-direction = Fy =                   | 117          | kips      |                |
| Required Moment of Inertia = Ix =             | 1537         | in^4      |                |
| Use Column =                                  | W18X97       |           |                |
| Moment of Intertia of Column =                | 1750         | in^4      | ОК             |
| Beam Design (E-W direction) - Along Gride     | alina A      |           |                |
| Span Length = $L =$                           | 29.8         | ft        |                |
| Tributary width =                             | 29.1         | ft        |                |
| Load = w =                                    | 4.0          | klf       |                |
| Required Moment = M =                         | 448          | k-ft      |                |
| Use Beam =                                    | W18X60       |           |                |
| Moment =                                      | 461          | k-ft      | ОК             |
| Column Design (E-W direction) - Along Gr      | idling D 9 K |           |                |
| Number of Moment Frames =                     | 15           |           |                |
| Number of Lines =                             | 3            |           |                |
| Number of Frames Per Line =                   | 4            |           |                |
| Force in y-direction = Fy =                   | 4<br>147     | kips      |                |
| Required Moment of Inertia = Ix =             | 1922         | in^4      |                |
| Use Column =                                  | W18X119      |           |                |
|                                               | (10/11)      |           |                |

Moment of Intertia =

2190

in^4

ΟΚ

| Beam Design (E-W direction) - Along Grid                                                                                                                                                                                                                                                                                                                                                                    | line D & K                                                                                                                         |                                                                     |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----|
| Span Length = L =                                                                                                                                                                                                                                                                                                                                                                                           | 31.5                                                                                                                               | ft                                                                  |    |
| Tributary width =                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                 | ft                                                                  |    |
| Load = w =                                                                                                                                                                                                                                                                                                                                                                                                  | 4.9                                                                                                                                | klf                                                                 |    |
| Required Moment = M =                                                                                                                                                                                                                                                                                                                                                                                       | 606                                                                                                                                | k-ft                                                                |    |
| Use Beam =                                                                                                                                                                                                                                                                                                                                                                                                  | W18X76                                                                                                                             |                                                                     |    |
| Moment =                                                                                                                                                                                                                                                                                                                                                                                                    | 611                                                                                                                                | k-ft                                                                | OK |
| Column Design (E-W direction) - Along Gr                                                                                                                                                                                                                                                                                                                                                                    | idline M                                                                                                                           |                                                                     |    |
| Number of Moment Frames =                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                 |                                                                     |    |
| Number of Lines =                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                  |                                                                     |    |
| Number of Frames Per Line =                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                  |                                                                     |    |
| Force in y-direction = Fy =                                                                                                                                                                                                                                                                                                                                                                                 | 98                                                                                                                                 | kips                                                                |    |
| Required Moment of Inertia = Ix =                                                                                                                                                                                                                                                                                                                                                                           | 1281                                                                                                                               | in^4                                                                |    |
| Use Column =                                                                                                                                                                                                                                                                                                                                                                                                | W18X76                                                                                                                             |                                                                     |    |
| Moment of Intertia =                                                                                                                                                                                                                                                                                                                                                                                        | 1330                                                                                                                               | in^4                                                                | ОК |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                     |    |
| Beam Design (E-W direction) - Along Grid                                                                                                                                                                                                                                                                                                                                                                    | line M                                                                                                                             |                                                                     |    |
| Span Length = L =                                                                                                                                                                                                                                                                                                                                                                                           | 36.5                                                                                                                               | ft                                                                  |    |
| Tributary width =                                                                                                                                                                                                                                                                                                                                                                                           | 20.1                                                                                                                               | ft                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                     |    |
| Load = w =                                                                                                                                                                                                                                                                                                                                                                                                  | 4.9                                                                                                                                | klf                                                                 |    |
| Load = w =<br>Required Moment = M =                                                                                                                                                                                                                                                                                                                                                                         | 4.9<br>809                                                                                                                         | klf<br>k-ft                                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                     |    |
| Required Moment = M =                                                                                                                                                                                                                                                                                                                                                                                       | 809                                                                                                                                |                                                                     | ок |
| Required Moment = M =<br>Use Beam =                                                                                                                                                                                                                                                                                                                                                                         | 809<br><b>W21X93</b><br>829                                                                                                        | k-ft<br>k-ft                                                        | ок |
| Required Moment = M =<br><b>Use Beam =</b><br>Moment =                                                                                                                                                                                                                                                                                                                                                      | 809<br><b>W21X93</b><br>829                                                                                                        | k-ft<br>k-ft                                                        | ок |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri                                                                                                                                                                                                                                                                                                                | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &                                                                                     | k-ft<br>k-ft                                                        | ок |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =                                                                                                                                                                                                                                                                    | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &<br>15                                                                               | k-ft<br>k-ft                                                        | ОК |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =<br>Number of Lines =                                                                                                                                                                                                                                               | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &<br>15<br>3                                                                          | k-ft<br>k-ft                                                        | ок |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =                                                                                                                                                                                                                | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &<br>15<br>3<br>5                                                                     | k-ft<br>k-ft<br>2.9                                                 | ОК |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =                                                                                                                                                                                 | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117                                                              | k-ft<br>k-ft<br>2.9<br>kips                                         | ок |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =                                                                                                                                            | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537                                                      | k-ft<br>k-ft<br>2.9<br>kips                                         | ок |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =                                                                                                                            | 809<br>W21X93<br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537<br>W18X97                                                   | k-ft<br>k-ft<br>2.9<br>kips<br>in^4                                 |    |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =                                                                                                                            | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537<br><b>W18X97</b><br>1750                             | k-ft<br>k-ft<br>2.9<br>kips<br>in^4<br>in^4                         |    |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Gri<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =                                                                                                    | 809<br><b>W21X93</b><br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537<br><b>W18X97</b><br>1750                             | k-ft<br>k-ft<br>2.9<br>kips<br>in^4<br>in^4                         |    |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Moment =<br>Column Design (N-S direction) - Along Grid<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =                                                                                       | 809<br>W21X93<br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537<br>W18X97<br>1750<br>ine 1, 2.2 & 2.                        | k-ft<br>k-ft<br>2.9<br>kips<br>in^4<br>in^4<br>9                    |    |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Grid<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Grid<br>Span Length = L =                                  | 809<br>W21X93<br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537<br>W18X97<br>1750<br>ine 1, 2.2 & 2.<br>40.8                | k-ft<br>k-ft<br>2.9<br>kips<br>in^4<br>in^4<br>9                    |    |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Moment =<br>Column Design (N-S direction) - Along Grid<br>Number of Moment Frames in y-direction =<br>Number of Lines =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Grid<br>Span Length = L =<br>Tributary width = | 809<br>W21X93<br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537<br>W18X97<br>1750<br>ine 1, 2.2 & 2.<br>40.8<br>26.0        | k-ft<br>k-ft<br>2.9<br>kips<br>in^4<br>in^4<br>9<br>ft<br>ft        |    |
| Required Moment = M =<br>Use Beam =<br>Moment =<br>Column Design (N-S direction) - Along Grid<br>Number of Moment Frames in y-direction =<br>Number of Frames Per Line =<br>Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Grid<br>Span Length = L =<br>Tributary width =<br>Load = w =                    | 809<br>W21X93<br>829<br>idline 1, 2.2 &<br>15<br>3<br>5<br>117<br>1537<br>W18X97<br>1750<br>ine 1, 2.2 & 2.<br>40.8<br>26.0<br>4.5 | k-ft<br>k-ft<br>2.9<br>kips<br>in^4<br>in^4<br>9<br>ft<br>ft<br>klf |    |

| Column Design (N-S direction) - Along Gri                                                                                                                                                                                                              | dline 3.3, 8.9 8                                                                                          | & 14                                    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|----|
| Number of Moment Frames in y-direction =                                                                                                                                                                                                               | 15                                                                                                        |                                         |    |
| Number of Lines =                                                                                                                                                                                                                                      | 3                                                                                                         |                                         |    |
| Number of Frames Per Line =                                                                                                                                                                                                                            | 5                                                                                                         |                                         |    |
| Force in x-direction = $Fx =$                                                                                                                                                                                                                          | 117                                                                                                       | kips                                    |    |
| Required Moment of Inertia = Ix =                                                                                                                                                                                                                      | 1537                                                                                                      | in^4                                    |    |
| Use Column =                                                                                                                                                                                                                                           | W18X97                                                                                                    |                                         |    |
| Moment of Intertia =                                                                                                                                                                                                                                   | 1750                                                                                                      | in^4                                    | ОК |
| Beam Design (N-S direction) - Along Gridli                                                                                                                                                                                                             | ine 3.3. 8.9 & 1                                                                                          | 14                                      |    |
| Span Length = L =                                                                                                                                                                                                                                      | 29.5                                                                                                      | ft                                      |    |
| Tributary width =                                                                                                                                                                                                                                      | 20.4                                                                                                      | ft                                      |    |
| Load = w =                                                                                                                                                                                                                                             | 5.7                                                                                                       | klf                                     |    |
| Required Moment = M =                                                                                                                                                                                                                                  | 625                                                                                                       | k-ft                                    |    |
| Use Beam =                                                                                                                                                                                                                                             | W21X73                                                                                                    |                                         |    |
| Moment =                                                                                                                                                                                                                                               | 645                                                                                                       | k-ft                                    | ОК |
|                                                                                                                                                                                                                                                        |                                                                                                           |                                         |    |
| Column Design (N-S direction) - Along Gri                                                                                                                                                                                                              | dline 14.3 & 1                                                                                            | 5                                       |    |
| Number of Moment Frames in y-direction =                                                                                                                                                                                                               | 15                                                                                                        |                                         |    |
| Number of Lines =                                                                                                                                                                                                                                      | 2                                                                                                         |                                         |    |
|                                                                                                                                                                                                                                                        | 3                                                                                                         |                                         |    |
| Number of Frames Per Line =                                                                                                                                                                                                                            | 3<br>5                                                                                                    |                                         |    |
| Number of Frames Per Line =<br>Force in x-direction = Fx =                                                                                                                                                                                             |                                                                                                           | kips                                    |    |
|                                                                                                                                                                                                                                                        | 5                                                                                                         | kips<br>in^4                            |    |
| Force in x-direction = Fx =                                                                                                                                                                                                                            | 5<br>117                                                                                                  |                                         |    |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =                                                                                                                                                                                       | 5<br>117<br>1537                                                                                          |                                         | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br><b>Use Column =</b>                                                                                                                                                                | 5<br>117<br>1537<br><b>W18X97</b>                                                                         | in^4                                    | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br><b>Use Column =</b>                                                                                                                                                                | 5<br>117<br>1537<br><b>W18X97</b><br>1750                                                                 | in^4                                    | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br><b>Use Column =</b><br>Moment of Intertia =                                                                                                                                        | 5<br>117<br>1537<br><b>W18X97</b><br>1750                                                                 | in^4                                    | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Gridli                                                                                                 | 5<br>117<br>1537<br><b>W18X97</b><br>1750<br>ine 14.3 & 15                                                | in^4<br>in^4                            | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along GridIi<br>Span Length = L =                                                                            | 5<br>117<br>1537<br><b>W18X97</b><br>1750<br>ine 14.3 & 15<br>24.5                                        | in^4<br>in^4<br>ft                      | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Gridli<br>Span Length = L =<br>Tributary width =                                                       | 5<br>117<br>1537<br><b>W18X97</b><br>1750<br>ine 14.3 & 15<br>24.5<br>20.0                                | in^4<br>in^4<br>ft<br>ft                | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Gridli<br>Span Length = L =<br>Tributary width =<br>Load = w =                                         | 5<br>117<br>1537<br><b>W18X97</b><br>1750<br>ine 14.3 & 15<br>24.5<br>20.0<br>5.9                         | in^4<br>in^4<br>ft<br>ft<br>klf         | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Gridli<br>Span Length = L =<br>Tributary width =<br>Load = w =<br>Required Moment = M =                | 5<br>117<br>1537<br><b>W18X97</b><br>1750<br>ine 14.3 & 15<br>24.5<br>20.0<br>5.9<br>440                  | in^4<br>in^4<br>ft<br>ft<br>klf         | ОК |
| Force in x-direction = Fx =<br>Required Moment of Inertia = Ix =<br>Use Column =<br>Moment of Intertia =<br>Beam Design (N-S direction) - Along Gridlin<br>Span Length = L =<br>Tributary width =<br>Load = w =<br>Required Moment = M =<br>Use Beam = | 5<br>117<br>1537<br><b>W18X97</b><br>1750<br>ine 14.3 & 15<br>24.5<br>20.0<br>5.9<br>440<br><b>W18X60</b> | in^4<br>in^4<br>ft<br>ft<br>klf<br>k-ft |    |

| 18. Ordinary reinforced masonry shear walls                                                                               | 14.4              | 2    | 21/2 | 2    | NL  | 160 | NP              | NP     | NP       |
|---------------------------------------------------------------------------------------------------------------------------|-------------------|------|------|------|-----|-----|-----------------|--------|----------|
| 19. Detailed plain masonry shear walls                                                                                    | 14.4              | 2    | 21/2 | 2    | NL  | NP  | NP              | NP     | NP       |
| 20. Ordinary plain masonry shear walls                                                                                    | 14.4              | 11/2 | 21/2 | 11⁄4 | NL  | NP  | NP              | NP     | NP       |
| 21. Prestressed masonry shear walls                                                                                       | 14.4              | 11/2 | 21/2 | 13⁄4 | NL  | NP  | NP              | NP     | NP       |
| 22. Light-frame (wood) walls sheathed with wood structural panels rated for shear resistance                              | 14.5              | 7    | 21/2 | 41⁄2 | NL  | NL  | 65              | 65     | 65       |
| 23. Light-frame (cold-formed steel) walls sheathed with wood structural panels rated for shear resistance or steel sheets | 14.1              | 7    | 21/2 | 41⁄2 | NL  | NL  | 65              | 65     | 65       |
| 24. Light-frame walls with shear panels of all other materials                                                            | 14.1 and 14.5     | 21/2 | 21/2 | 21/2 | NL  | NL  | 35              | NP     | NP       |
| 25. Steel buckling-restrained braced frames                                                                               | 14.1              | 8    | 21/2 | 5    | NL  | NL  | 160             | 160    | 100      |
| 26. Steel special plate shear walls                                                                                       | 14.1              | 7    | 2    | 6    | NL  | NL  | 160             | 160    | 100      |
| C. MOMENT-RESISTING FRAME SYSTEMS                                                                                         |                   |      |      |      |     |     |                 |        |          |
| 1. Steel special moment frames                                                                                            | 14.1 and 12.2.5.5 | 8    | 3    | 51/2 | NL  | NL  | NL              | NL     | NL       |
| 2. Steel special truss moment frames                                                                                      | 14.1              | 7    | 3    | 51/2 | NL  | NL  | 160             | 100    | NP       |
| 3. Steel intermediate moment frames                                                                                       | 12.2.5.7 and 14.1 | 41/2 | 3    | 4    | NL  | NL  | 35 <sup>k</sup> | $NP^k$ | $NP^k$   |
| 4. Steel ordinary moment frames                                                                                           | 12.2.5.6 and 14.1 | 31/2 | 3    | 3    | NL  | NL  | NP'             | NP'    | $NP^{l}$ |
| 5. Special reinforced concrete moment frames <sup>m</sup>                                                                 | 12.2.5.5 and 14.2 | 8    | 3    | 51/2 | NL  | NL  | NL              | NL     | NL       |
| 6. Intermediate reinforced concrete moment frames                                                                         | 14.2              | 5    | 3    | 41/2 | NL  | NL  | NP              | NP     | NP       |
| 7. Ordinary reinforced concrete moment frames                                                                             | 14.2              | 3    | 3    | 21/2 | NL  | NP  | NP              | NP     | NP       |
| 8. Steel and concrete composite special moment frames                                                                     | 12.2.5.5 and 14.3 | 8    | 3    | 51/2 | NL  | NL  | NL              | NL     | NL       |
| 9. Steel and concrete composite intermediate moment frames                                                                | 14.3              | 5    | 3    | 41/2 | NL  | NL  | NP              | NP     | NP       |
| 10. Steel and concrete composite partially restrained moment frames                                                       | 14.3              | 6    | 3    | 51/2 | 160 | 160 | 100             | NP     | NP       |
| 11. Steel and concrete composite ordinary moment frames                                                                   | 14.3              | 3    | 3    | 21/2 | NL  | NP  | NP              | NP     | NP       |
| 12. Cold-formed steel—special bolted moment frame <sup>n</sup>                                                            | 14.1              | 31/2 | 3°   | 31/2 | 35  | 35  | 35              | 35     | 35       |
| D. DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE                                                                        | 12.2.5.1          |      |      |      |     |     |                 |        |          |
| OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES                                                                    |                   |      |      |      |     |     |                 |        |          |
| 1. Steel eccentrically braced frames                                                                                      | 14.1              | 8    | 21/2 | 4    | NL  | NL  | NL              | NL     | NL       |
| 2. Steel special concentrically braced frames                                                                             | 14.1              | 7    | 21/2 | 51/2 | NL  | NL  | NL              | NL     | NL       |
| 3. Special reinforced concrete shear walls <sup>g,h</sup>                                                                 | 14.2              | 7    | 21/2 | 51/2 | NL  | NL  | NL              | NL     | NL       |
| 4. Ordinary reinforced concrete shear walls <sup>g</sup>                                                                  | 14.2              | 6    | 21/2 | 5    | NL  | NL  | NP              | NP     | NP       |
| 5. Steel and concrete composite eccentrically braced frames                                                               | 14.3              | 8    | 21/2 | 4    | NL  | NL  | NL              | NL     | NL       |
| 6. Steel and concrete composite special concentrically braced frames                                                      | 14.3              | 6    | 21/2 | 5    | NL  | NL  | NL              | NL     | NL       |
| 7. Steel and concrete composite plate shear walls                                                                         | 14.3              | 71⁄2 | 21/2 | 6    | NL  | NL  | NL              | NL     | NL       |
| 8. Steel and concrete composite special shear walls                                                                       | 14.3              | 7    | 21/2 | 6    | NL  | NL  | NL              | NL     | NL       |
| 9. Steel and concrete composite ordinary shear walls                                                                      | 14.3              | 6    | 21/2 | 5    | NL  | NL  | NP              | NP     | NP       |
| 10. Special reinforced masonry shear walls                                                                                | 14.4              | 51/2 | 3    | 5    | NL  | NL  | NL              | NL     | NL       |
| 11. Intermediate reinforced masonry shear walls                                                                           | 14.4              | 4    | 3    | 31/2 | NL  | NL  | NP              | NP     | NP       |
| 12. Steel buckling-restrained braced frames                                                                               | 14.1              | 8    | 21/2 | 5    | NL  | NL  | NL              | NL     | NL       |
| 13. Steel special plate shear walls                                                                                       | 14.1              | 8    | 21/2 | 61⁄2 | NL  | NL  | NL              | NL     | NL       |
| E. DUAL SYSTEMS WITH INTERMEDIATE MOMENT FRAMES                                                                           | 12.2.5.1          |      |      |      |     |     |                 |        |          |
| CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED<br>SEISMIC FORCES                                                         |                   |      |      |      |     |     |                 |        |          |
| 1. Steel special concentrically braced frames <sup>p</sup>                                                                | 14.1              | 6    | 21/2 | 5    | NL  | NL  | 35              | NP     | NP       |
| 2. Special reinforced concrete shear walls <sup>g,h</sup>                                                                 | 14.2              | 61/2 | 21/2 | 5    | NL  | NL  | 160             | 100    | 100      |
| 3. Ordinary reinforced masonry shear walls                                                                                | 14.4              | 3    | 3    | 21/2 | NL  | 160 | NP              | NP     | NP       |
| 4. Intermediate reinforced masonry shear walls                                                                            | 14.4              | 31/2 | 3    | 3    | NL  | NL  | NP              | NP     | NP       |

continues

### **GRAVITY DESIGN**

#### Gravity Column Schedule

| Gravity Columns     | Largest Trib.<br>Area (in^2) | Largest Trib.<br>Area (ft^2) | Dead (psf) | Live (psf) | Roof Live<br>(psf) | Dead (kips) | Live (kips) | Roof Live<br>(kips) | Sizes     |
|---------------------|------------------------------|------------------------------|------------|------------|--------------------|-------------|-------------|---------------------|-----------|
| A1-2                | 155543                       | 1080                         | 471        | 240        | 20                 | 509         | 260         | 22                  | W12X106   |
| B1-2                | 133296                       | 926                          | 471        | 240        | 20                 | 436         | 223         | 19                  | W12X96    |
| C1-2                | 79373                        | 551                          | 471        | 240        | 20                 | 260         | 133         | 12                  | W12X65    |
| D1-2                | 169807                       | 1179                         | 509        | 260        | 20                 | 601         | 307         | 24                  | Conc. COL |
| A3-4                | 155543                       | 1080                         | 331        | 160        | 20                 | 358         | 173         | 22                  | W12X72    |
| B3-4                | 133296                       | 926                          | 331        | 160        | 20                 | 307         | 149         | 19                  | W12X65    |
| C3-4                | 79373                        | 551                          | 331        | 160        | 20                 | 183         | 89          | 12                  | W12X45    |
| D3-4                | 169807                       | 1179                         | 331        | 160        | 20                 | 391         | 189         | 24                  | W12X79    |
| D3-4 (Corridor))    | 169807                       | 1179                         | 331        | 240        | 20                 | 391         | 284         | 24                  | W12X96    |
| A5-6                | 155543                       | 1080                         | 191        | 80         | 20                 | 207         | 87          | 22                  | W12X50    |
| B5-6                | 133296                       | 926                          | 191        | 80         | 20                 | 177         | 75          | 19                  | W12X45    |
| C5-6                | 79373                        | 551                          | 191        | 80         | 20                 | 106         | 45          | 12                  | W12X40    |
| D5-6                | 169807                       | 1179                         | 191        | 80         | 20                 | 226         | 95          | 24                  | W12X53    |
| D5-6 (Corridor)     | 169807                       | 1179                         | 191        | 120        | 20                 | 226         | 142         | 24                  | W12X58    |
| A7-Roof             | 155543                       | 1080                         | 121        | 40         | 20                 | 131         | 44          | 22                  | W12X40    |
| B7-Roof             | 133296                       | 926                          | 121        | 40         | 20                 | 113         | 38          | 19                  | W12X40    |
| C7-Roof             | 79373                        | 551                          | 121        | 40         | 20                 | 67          | 23          | 12                  | W10X22    |
| D7-Roof             | 169807                       | 1179                         | 121        | 40         | 20                 | 143         | 48          | 24                  | W10X33    |
| D7-Roof (Corrrdior) | 169807                       | 1179                         | 121        | 60         | 20                 | 143         | 71          | 24                  | W10X39    |



| teel Column                                        | lugational Varaian               |                     | Lie                | EN                                         | ERCALC, INC. 1983-2017,     | b\dcengr\Desktop\SZ3QFB~G.EC<br>Build:10.17.12.10, Ver:10.17.12. |
|----------------------------------------------------|----------------------------------|---------------------|--------------------|--------------------------------------------|-----------------------------|------------------------------------------------------------------|
| c. # : KW-06090157 - Ec<br>escription : A1-2 STL ( |                                  |                     | LICE               | ensed User : SANTA                         | CLARA UNIVERS               | ITY, CIVIL ENGINEER                                              |
|                                                    |                                  |                     |                    |                                            | 7                           |                                                                  |
| Code References                                    |                                  |                     |                    |                                            |                             |                                                                  |
| alculations per AISC 3                             | 60-10, IBC 2015, CBC 201         | 6. ASCE 7-10        | 10                 |                                            |                             | 51(0)                                                            |
| ad Combinations Use                                |                                  |                     |                    |                                            |                             |                                                                  |
| General Information                                |                                  |                     |                    |                                            |                             |                                                                  |
| eel Section Name :                                 | W12x106                          |                     |                    | Overall Column                             | Hoight                      | 15.0 ft                                                          |
| nalysis Method :                                   | Load Resistance Factor           |                     |                    | Top & Bottom Fi                            |                             | ed, Bottom Fixed                                                 |
| Steel Stress Grade                                 |                                  |                     | Brace c            | ondition for deflection                    |                             |                                                                  |
| y : Steel Yield                                    | 50.0 ksi                         |                     |                    | width) axis :                              |                             |                                                                  |
| : Elastic Bending Modulus                          | 29,000.0 ksi                     |                     |                    | braced Length for X-X A                    | kis buckling = 15.0 ft, K = | - 0.80                                                           |
|                                                    |                                  |                     |                    | (depth) axis :<br>braced Length for Y-Y Aא | kis buckling = 15.0 ft, K = | = 0.80                                                           |
|                                                    |                                  |                     |                    | -                                          | -                           |                                                                  |
| Applied Loads                                      |                                  |                     | 5                  | ervice loads entered                       | Load Factors will I         | be applied for calculation                                       |
| AXIAL LOADS                                        | ed : 1,590.0 lbs * Dead Load Fac | or                  |                    |                                            | л ЛПП                       |                                                                  |
|                                                    | Load at 15.0 ft, D = 509.0, LR = | 22.0. L = 260.0 k   | S(f)               | $\gamma \mid V \mid ( \cup ),$             | ןך / Δ /                    | ( ( ) ) V/V/( <u>)</u> (                                         |
| DESIGN SUMMARY                                     |                                  |                     | yr                 |                                            |                             |                                                                  |
| ending & Shear Chec                                | k Results                        |                     |                    |                                            |                             |                                                                  |
| PASS Max. Axial+Bending                            | g Stress Ratio =                 | 0.8662              | :1                 | Maximum Load Rea                           |                             |                                                                  |
| Load Combinatio                                    |                                  | +0.50Lr+1.60L       | <i>c</i> ,         | Top along X-                               |                             | 0.0 k                                                            |
| Location of max.a<br>At maximum loca               | ibove base<br>tion values are    | 0.0                 | ft                 | Bottom along<br>Top along Y-               |                             | 0.0 k<br>0.0 k                                                   |
| Pu                                                 |                                  | 1,039.71            | k                  | Bottom along                               |                             | 0.0 k                                                            |
| 0.9 * Pn                                           |                                  | 1,200.30            |                    | ·                                          |                             |                                                                  |
| Mu-x                                               |                                  | 0.0                 | k-ft               | Maximum Load Def                           |                             | 0.04 shows he                                                    |
| 0.9 * Mn-x                                         | :                                | 591.28              | k-ft               | Along Y-Y<br>for load combir               | 0.0 in at                   | 0.0 ft above ba                                                  |
| Mu-y                                               |                                  |                     | k-ft               |                                            |                             | 0.00                                                             |
| 0.9 * Mn-y                                         |                                  | 281.625             | k-ft               | Along X-X<br>for load combi                | 0.0 in at                   | 0.0 ft above ba                                                  |
| PASS Maximum Shear                                 | Stress Ratio =                   | 0.0                 | $\cdot$            | IOI IOad combi                             |                             |                                                                  |
| Load Combinatio                                    |                                  |                     |                    |                                            |                             | S (U)                                                            |
| Location of max.a                                  |                                  | 0.0                 | ft                 |                                            |                             |                                                                  |
| At maximum loca<br>Vu : Appli                      | tion values are<br>ed            | 0.0                 | k                  |                                            |                             |                                                                  |
| Vn * Phi :                                         |                                  | 0.0                 | k                  |                                            |                             |                                                                  |
| oad Combination Res                                | ults                             |                     |                    |                                            |                             |                                                                  |
|                                                    |                                  | ial + Bending Stres | e Dation           | M                                          | aximum Shear Ratios         |                                                                  |
| Load Combination                                   | Stress Ra                        |                     | ocation            | Stress R                                   |                             | cation                                                           |
| +1.40D                                             | 0.59                             |                     | 0.00 ft            | 0.00                                       |                             | 0.00 ft                                                          |
| +1.20D+0.50Lr+1.60L                                | 0.86                             | 6 PASS              | 0.00 ft            | 0.00                                       | D PASS                      | 0.00 ft                                                          |
| +1.20D+1.60L                                       | 0.85                             |                     | 0.00 ft            | 0.00                                       |                             | 0.00 ft                                                          |
| +1.20D+1.60Lr+L<br>+1.20D+1.60Lr                   | 0.75<br>0.54                     |                     | 0.00 ft<br>0.00 ft | 0.00                                       |                             | 0.00 ft<br>0.00 ft                                               |
| +1.20D+L                                           | 0.54                             |                     | 0.00 ft            | 0.00                                       |                             | 0.00 ft                                                          |
| +1.20D                                             | 0.51                             | 0 PASS              | 0.00 ft            |                                            | PASS                        | $0.00$ ft $\sqrt{\sqrt{()}}$                                     |
| +1.20D+0.50Lr+L                                    | 0.73                             | 6 PASS              | 0.00 ft            | 0.00                                       | PASS                        | 0.00 ft                                                          |
| +0.90D                                             | 0.38                             |                     | 0.00 ft            | 0.00                                       |                             | 0.00 ft                                                          |
| +1.40D+L<br>+0.70D                                 | 0.81<br>0.29                     |                     | 0.00 ft<br>0.00 ft | 0.000                                      |                             | 0.00 ft<br>0.00 ft                                               |
| Aximum Reactions                                   | 0.23                             | V 1 A00             | 5.00 n             | 0.000                                      |                             | -zero reactions are liste                                        |
|                                                    | Axial Reaction                   | X-X Axis Reaction   | k                  | Y-Y Axis Reaction                          | Mx - End Moments            | k-ft My - End Momen                                              |
| oad Combination                                    | @ Base                           | @ Base @ Top        |                    | @ Base @ Top                               | @ Base @ To                 | ,                                                                |
| D Only                                             | 510.590                          |                     |                    |                                            |                             |                                                                  |
| +D+L                                               | 770.590                          |                     |                    |                                            |                             |                                                                  |
| +D+Lr                                              | 532.590                          |                     |                    |                                            | _                           |                                                                  |
|                                                    |                                  |                     |                    |                                            |                             |                                                                  |

| Steel Column                |                         |                          |                                   |                    |                | ba1.engr.scu.edu<br>CALC, INC. 1983-2 |                          |                                                  |                  |
|-----------------------------|-------------------------|--------------------------|-----------------------------------|--------------------|----------------|---------------------------------------|--------------------------|--------------------------------------------------|------------------|
| Lic. # : KW-06090157        | - Educational Ve        | ersion                   |                                   | Lic <u>ensed l</u> | Jser : SANTA C |                                       |                          |                                                  |                  |
|                             | STL COLS                |                          | _                                 |                    |                |                                       |                          | _                                                |                  |
| Maximum Reactions           | S                       |                          |                                   |                    | $\square$      | Note: Only                            | non-zero r               | eactions a                                       | re listed.       |
| Load Combination            | U ( C77                 | Axial Reaction<br>@ Base | X-X Axis Reaction<br>@ Base @ Top |                    |                | Mx - End Mome<br>@ Base (             | nts <b>k-ft</b><br>@ Top | My - End M<br>@ Base                             | Moments<br>@ Top |
| +D+0.750Lr+0.750L           |                         | 722.090                  |                                   |                    |                |                                       |                          | Le Dasc                                          |                  |
| +D+0.750L                   |                         | 705.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| +0.60D                      |                         | 306.354                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Lr Only                     |                         | 22.000                   |                                   |                    |                |                                       |                          |                                                  |                  |
| L Only<br>Extreme Reactions |                         | 260.000                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Extreme Reactions           |                         | Axial Reaction           | X-X Axis Reaction                 | <b>k</b> Y-Y Axi   | s Reaction N   | /Ix - End Mome                        | nts <b>k-ft</b>          | My - End M                                       | Voments          |
| Item                        | Extreme Value           | @ Base                   | @ Base @ To                       |                    |                |                                       | @ Top                    | @ Base                                           | @ Top            |
| Axial @ Base                | Maximum<br>Minimum      | 770.590<br>22.000        |                                   |                    |                |                                       |                          |                                                  |                  |
| Reaction, X-X Axis Base     | Maximum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| "                           | Minimum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Reaction, Y-Y Axis Base     | Maximum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Reaction, X-X Axis Top      | Minimum —<br>Maximum —  | 510.590                  |                                   | 2(다 I              |                |                                       | (0)                      | $( \langle V \rangle \rangle $                   |                  |
|                             | Minimum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Reaction, Y-Y Axis Top      | Maximum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
|                             | Minimum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Moment, X-X Axis Base       | Maximum<br>Minimum      | 510.590<br>510.590       |                                   |                    |                |                                       |                          |                                                  |                  |
| Moment, Y-Y Axis Base       | Maximum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| "                           | Minimum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Moment, X-X Axis Top        | Maximum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Moment, Y-Y Axis Top        | Minimum<br>Maximum      | 510.590<br>510.590       |                                   |                    |                |                                       |                          |                                                  |                  |
| "                           | Minimum                 | 510.590                  |                                   |                    |                |                                       |                          |                                                  |                  |
| Maximum Deflection          | ns for Load Com         | binations                |                                   |                    |                |                                       |                          |                                                  |                  |
| Load Combination            |                         | Max. X-X Deflecti        |                                   |                    |                | Distance                              |                          |                                                  |                  |
| D Only                      |                         | 0.0000 ii                |                                   |                    |                | 0.000 ft                              | $( \leq )$               | $\left \left( \right)\right\rangle$              |                  |
| +D+L<br>+D+Lr               | HUG(                    | 0.0000 ii<br>0.0000 ii   |                                   |                    |                | ).000 ft<br>).000 ft                  |                          |                                                  |                  |
| +D+0.750Lr+0.750L           |                         | 0.0000 ii                |                                   |                    |                | ).000 ft                              |                          |                                                  |                  |
| +D+0.750L                   |                         | 0.0000 ii                | n 0.000 ft                        | 0.0                | 00 in 0        | ).000 ft                              |                          |                                                  |                  |
| +0.60D                      |                         | 0.0000 ii                |                                   |                    |                | ).000 ft                              |                          |                                                  |                  |
| Lr Only                     |                         | 0.0000 ii                |                                   |                    |                | ).000 ft                              |                          |                                                  |                  |
| L Only                      | <i>e</i> 14             | 0.0000 ii                | n 0.000 ft                        | 0.0                | 00 in 0        | 0.000 ft                              |                          |                                                  |                  |
| Steel Section Prope         |                         | /12x106                  | =                                 | 933.00 in^4        |                | 1                                     | =                        | 9.130 in^4                                       |                  |
| Depth<br>Web Thick          | = 12.900 i<br>= 0.610 i |                          |                                   | 145.00 in^3        |                | J<br>Cw                               |                          | 9.130 in <sup>4</sup><br>0700.00 in <sup>6</sup> |                  |
| Flange Width                | = 12.200 i              |                          |                                   | 5.470 in           |                | 011                                   |                          | 0100.00 111 0                                    |                  |
| Flange Thick                | = 0.990 i               |                          | =                                 | 164.000 in^3       |                |                                       |                          |                                                  |                  |
| Area                        | = 31.200 i              | n^2 lyy                  | =                                 | 301.000 in^4       |                |                                       |                          |                                                  |                  |
| Weight                      | = 106.000 p             |                          |                                   | 49.300 in^3        |                | Wno                                   | Ē                        | 36.300 in^2                                      |                  |
| Kdesign                     | = <u>1.590</u> i        | Ry                       |                                   | 3.110 in           |                | Sw                                    | Ŧ                        | 110.000 in^4                                     |                  |
|                             |                         |                          |                                   | 75.100 in^3        | JUUL           | Qf                                    |                          | 34.200 in^3                                      |                  |
| rts<br>Vcq                  | = 3.520 i<br>= 0.000 i  |                          |                                   | 0.000 in           |                | Qw                                    |                          | 81.000 in^3                                      |                  |
| Ycg                         | - 0.000 1               |                          |                                   |                    |                |                                       |                          |                                                  |                  |

Educational Version



### Educational Version

# Commercial Use Not Allowed

## Educational Version

| Title Block" selection.<br>Title Block Line 6                                                                                                                                       |                                                                                                                                                                      |                                                                                                            |                                                                                                                                                                                                                       |                                                                                                | Printed: 31 MAR 2020, 1:55PM                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steel Column                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                            |                                                                                                                                                                                                                       |                                                                                                | top\SCU Faculty Staff Housing Development.ec6                                                                                                                                                                                                                                              |
| Lic. # : KW-06090157 - Educatio                                                                                                                                                     | anal Version                                                                                                                                                         |                                                                                                            |                                                                                                                                                                                                                       |                                                                                                | t ENERCALC, INC. 1983-2020, Build:12.20.2.24<br>LARA UNIVERSITY, CIVIL ENGINEERING                                                                                                                                                                                                         |
| DESCRIPTION: A3-4 STL                                                                                                                                                               |                                                                                                                                                                      |                                                                                                            |                                                                                                                                                                                                                       |                                                                                                | LARA ONVERON I, OVIE ENONEERIN                                                                                                                                                                                                                                                             |
| Code References<br>Calculations per AISC 360<br>Load Combinations Used<br>General Information                                                                                       | 0-10, IBC 2015, CBC 2                                                                                                                                                | 2016, ASCE 7-10                                                                                            |                                                                                                                                                                                                                       | Ve                                                                                             | rsion                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                     | <b>V12x72</b><br>Load Resistance Factor<br>50.0 ksi<br>29,000.0 ksi                                                                                                  | r                                                                                                          | T<br>Brace conditio<br>X-X (width)<br>Unbraced<br>Y-Y (depth)                                                                                                                                                         | n for deflection (buckling<br>axis :<br>Length for buckling ABOUT                              | Y-Y Axis = 10.0 ft, K = 1.0                                                                                                                                                                                                                                                                |
| Applied Loads                                                                                                                                                                       |                                                                                                                                                                      |                                                                                                            | Service                                                                                                                                                                                                               | loads entered. Load F                                                                          | actors will be applied for calculations                                                                                                                                                                                                                                                    |
| Column self weight included<br>AXIAL LOADS<br>Residential & Up: Axial Lo<br>DESIGN SUMMARY                                                                                          | : 720.0 lbs * Dead Load Fa                                                                                                                                           |                                                                                                            | Se                                                                                                                                                                                                                    | Not /                                                                                          | Allowed                                                                                                                                                                                                                                                                                    |
| Bending & Shear Check<br>PASS Max. Axial+Bending S<br>Load Combination<br>Location of max.abc<br>At maximum location<br>Pu                                                          | Stress Ratio =<br>+1.2<br>ove base                                                                                                                                   | <b>0.8478</b><br>0D+0.50Lr+1.60L<br>0.0<br>718.26                                                          | ) ft                                                                                                                                                                                                                  | ximum Load Reactions<br>Top along X-X<br>Bottom along X-X<br>Top along Y-Y<br>Bottom along Y-Y | 0.0 k<br>0.0 k<br>0.0 k<br>0.0 k<br>0.0 k                                                                                                                                                                                                                                                  |
| 0.9 * Pn                                                                                                                                                                            |                                                                                                                                                                      | 847.26                                                                                                     | δk                                                                                                                                                                                                                    | -                                                                                              |                                                                                                                                                                                                                                                                                            |
| Mu-x                                                                                                                                                                                |                                                                                                                                                                      | 0.0                                                                                                        | J K-ft                                                                                                                                                                                                                | kimum Load Deflections .                                                                       |                                                                                                                                                                                                                                                                                            |
| 0.9 * Mn-x :                                                                                                                                                                        |                                                                                                                                                                      | 405.0                                                                                                      | <b>κ-</b> Π                                                                                                                                                                                                           | ng Y-Y 0.0<br>for load combination :                                                           | 0 in at 0.0 ft above base                                                                                                                                                                                                                                                                  |
| Mu-y                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                            | ) k-ft                                                                                                                                                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                            |
| 0.9 * Mn-y :<br>PASS Maximum Shear St<br>Load Combination<br>Location of max.abc<br>At maximum locatio<br>Vu : Applied<br>Vn * Phi : All                                            | ove base<br>n values are                                                                                                                                             | 0.0                                                                                                        |                                                                                                                                                                                                                       | ng X-X 0.0<br>for load combination :                                                           | Din at 0.0ft above base                                                                                                                                                                                                                                                                    |
| Load Combination Result                                                                                                                                                             |                                                                                                                                                                      | 0.0                                                                                                        |                                                                                                                                                                                                                       |                                                                                                |                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                            |                                                                                                                                                                                                                       |                                                                                                |                                                                                                                                                                                                                                                                                            |
| Load Combination                                                                                                                                                                    | Maximum Axial + Bending<br>Stress Ratio Status                                                                                                                       |                                                                                                            | Cbx Cby                                                                                                                                                                                                               | KxLx/Rx KyLy/Ry                                                                                | Maximum Shear Ratios<br>Stress Ratio Status Location                                                                                                                                                                                                                                       |
| +1.40D<br>+1.20D+0.50Lr+1.60L<br>+1.20D+1.60L<br>+1.20D+1.60Lr<br>+1.20D+1.60Lr<br>+1.20D+1.60Lr<br>+1.20D+1.50Lr<br>+1.20D+1.50Lr<br>+1.20D+1.50Lr<br>+0.90D<br>+1.40D+L<br>+0.70D | 0.593 PASS<br>0.848 PASS<br>0.835 PASS<br>0.754 PASS<br>0.550 PASS<br>0.550 PASS<br>0.712 PASS<br>0.508 PASS<br>0.725 PASS<br>0.381 PASS<br>0.797 PASS<br>0.296 PASS | 0.00 ft<br>0.00 ft<br>0.00 ft<br>0.00 ft<br>0.00 ft<br>0.00 ft<br>0.00 ft<br>0.00 ft<br>0.00 ft<br>0.00 ft | $\begin{array}{ccccccc} 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \\ 1.00 & 1.00 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                           | 0.000 PASS 0.00 ft<br>0.000 PASS 0.00 ft |
| Maximum Reactions                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                            |                                                                                                                                                                                                                       |                                                                                                | e: Only non-zero reactions are listed.                                                                                                                                                                                                                                                     |
| Load Combination                                                                                                                                                                    | Axial Reaction<br>@ Base                                                                                                                                             | X-X Axis Reactior<br>@ Base @ To                                                                           |                                                                                                                                                                                                                       |                                                                                                | nd Moments <b>k-ft</b> My - End Moments<br>e @ Top @ Base @ Top                                                                                                                                                                                                                            |
| D Only<br>+D+L<br>+D+Lr<br>+D+0.750Lr+0.750L                                                                                                                                        | 358.720<br>531.720<br>380.720<br>504.970                                                                                                                             |                                                                                                            | r @ 2400                                                                                                                                                                                                              |                                                                                                |                                                                                                                                                                                                                                                                                            |

Educational Versio

| Title Block" selection.<br>Title Block Line 6                         |                                     |                                        |                            |                                   |                                                   |                   |                   |                  |          | Printe                  | ed: 31 MAR 2         | 020, 1:55PM                |
|-----------------------------------------------------------------------|-------------------------------------|----------------------------------------|----------------------------|-----------------------------------|---------------------------------------------------|-------------------|-------------------|------------------|----------|-------------------------|----------------------|----------------------------|
| Steel Column                                                          |                                     |                                        |                            |                                   |                                                   | F                 | ile = C:\Users\O  |                  |          |                         |                      |                            |
| Lic. # : KW-06090157 - Edu                                            | ucational Version                   |                                        |                            | _                                 | _                                                 | Licer             |                   |                  |          |                         | 1983-2020, Bui       | d:12.20.2.24<br>NGINEERING |
| DESCRIPTION: A3-4                                                     |                                     |                                        |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Maximum Reactions                                                     |                                     |                                        |                            |                                   |                                                   |                   | $\nabla$          | Not              | e: Qn    | ly non-ze               | ero reaction         | s are listed.              |
| Load Combination                                                      | JG                                  | Axial Reactio<br>@ Base                |                            | X-X Axis Reaction<br>@ Base @ Top |                                                   | -Y Axis R<br>Base | eaction<br>@ Top  | Mx - Er<br>@ Bas |          | nents <b>k</b><br>@ Top | eft My - E<br>@ Base | nd Moments<br>@ Top        |
| +D+0.750L<br>+0.60D<br>Lr Only<br>L Only<br><b>Extreme Reactions</b>  |                                     | 488.47(<br>215.23<br>22.00(<br>173.00( | 2<br>0<br>0                |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Item                                                                  | Extreme Value                       | Axial Reaction                         | n                          | X-X Axis Reaction<br>@ Base @ Top |                                                   | -Y Axis R<br>Base | leaction<br>@ Top | Mx - Er<br>@ Bas |          | nents k<br>@ Top        | -ft My - E<br>@ Base | nd Moments<br>e @ Top      |
| Axial @ Base                                                          | Maximum                             | 531.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
|                                                                       | Minimum                             | 22.00                                  |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Reaction, X-X Axis Base                                               | Maximum<br>Minimum                  | 358.72<br>358.72                       |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Reaction, Y-Y Axis Base                                               | Maximum                             | 358.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
|                                                                       | Minimum                             | 358.72                                 |                            |                                   | $\frown$                                          |                   |                   | Γ,               |          |                         |                      |                            |
| Reaction, X-X Axis Top                                                | Maximum                             | 358.72                                 |                            |                                   | SP                                                |                   |                   | 「 /              | $\Box$   |                         | $O)(V_{\Lambda}V)$   | (2)(1)                     |
|                                                                       | Minimum                             | 358.72                                 |                            |                                   | UU                                                |                   |                   | S L              |          |                         | 9 44                 | GA                         |
| Reaction, Y-Y Axis Top                                                | Maximum<br>Minimum                  | 358.72<br>358.72                       |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Moment, X-X Axis Base                                                 | Maximum                             | 358.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| "                                                                     | Minimum                             | 358.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Moment, Y-Y Axis Base                                                 | Maximum                             | 358.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| "                                                                     | Minimum                             | 358.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Moment, X-X Axis Top                                                  | Maximum                             | 358.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Moment, Y-Y Axis Top                                                  | Minimum<br>Maximum                  | 358.720<br>358.720                     |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| "                                                                     | Minimum                             | 358.72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Maximum Deflections                                                   |                                     |                                        | 0                          |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
| Load Combination                                                      |                                     | Max. X-X De                            | flection                   | Distance                          | Max                                               | x. Y-Y De         | flection          | Distanc          | e        |                         |                      |                            |
| D Only                                                                |                                     | 0.0000                                 | in                         | 0.000 ft                          |                                                   | 0.000             | in                | 0.000            | ft       |                         |                      |                            |
| +D+L                                                                  |                                     | 0.0000                                 |                            | 0.000 ft                          |                                                   | 0.000             | in //             | 0.000            | ft       |                         |                      |                            |
| +D+Lr                                                                 |                                     | 0.0000                                 | in                         | 0.000 ft                          |                                                   | 0.000             | in                | 0.000            | ft       | $\sim$                  |                      | $\mathcal{I}$              |
| +D+0.750Lr+0.750L                                                     |                                     | 0.0000                                 | in                         | 0.000 ft                          |                                                   | 0.000             | in 🖵              | 0.000            | ft<br>#  |                         |                      |                            |
| +D+0.750L<br>+0.60D                                                   |                                     | 0.0000 0.0000                          | in<br>in                   | 0.000 ft<br>0.000 ft              |                                                   | 0.000<br>0.000    | in<br>in          | 0.000<br>0.000   | ft<br>ft |                         |                      |                            |
| Lr Only                                                               |                                     | 0.0000                                 | in                         | 0.000 ft                          |                                                   | 0.000             | in                | 0.000            | ft       |                         |                      |                            |
| L Only                                                                |                                     | 0.0000                                 | in                         | 0.000 ft                          |                                                   | 0.000             | in                | 0.000            | ft       |                         |                      |                            |
| Steel Section Propert                                                 | ties : V                            | V12x72                                 |                            |                                   |                                                   |                   |                   |                  |          |                         |                      |                            |
|                                                                       | 12.300                              |                                        | l xx                       | =                                 | 597.00 in                                         | ^4                |                   | J                |          | =                       | 2.930 i              | n^4                        |
| Depth =                                                               |                                     |                                        | S xx                       | =                                 | 97.40 in                                          |                   |                   | Cw               |          | =                       | 6,540.00 i           |                            |
| Depth =<br>Web Thick =                                                | 0.430                               | in                                     | 3 77                       |                                   |                                                   |                   |                   |                  |          |                         | 0,010.001            | n^6                        |
|                                                                       |                                     |                                        | R xx                       | =                                 | 5.310 in                                          |                   |                   |                  |          |                         | 0,010.001            | n^6                        |
| Web Thick =                                                           | 12.000<br>0.670                     | in<br>in                               |                            | =<br>=                            | 5.310 in<br>108.000 in                            | ^3                |                   |                  |          |                         | 0,010.001            | n^6                        |
| Web Thick =<br>Flange Width =<br>Flange Thick =<br>Area =             | = 12.000<br>= 0.670<br>= 21.100     | in<br>in<br>in^2                       | R xx<br>Zx<br>I yy         | =<br>=                            | 5.310 in<br>108.000 in<br>195.000 in              | ^3<br>^4          |                   |                  |          |                         |                      |                            |
| Web Thick =<br>Flange Width =<br>Flange Thick =<br>Area =<br>Weight = | 12.000<br>0.670<br>21.100<br>72.000 | in<br>in<br>in^2<br>plf                | R xx<br>Zx<br>I yy<br>S yy | =                                 | 5.310 in<br>108.000 in<br>195.000 in<br>32.400 in | ^3<br>^4<br>^3    |                   | Wno              |          | =                       | 34.900 i             | n^2                        |
| Web Thick =<br>Flange Width =<br>Flange Thick =<br>Area =             | 12.000<br>0.670<br>21.100<br>72.000 | in<br>in<br>in^2<br>plf<br>in          | R xx<br>Zx<br>I yy         | =<br>=                            | 5.310 in<br>108.000 in<br>195.000 in              | ^3<br>^4<br>^3    |                   |                  |          |                         |                      | n^2<br>n^4                 |

Educational Version



### Educational Version

## Commercial Use Not Allowed

## Educational Version

| Title Block" selection.                                                                    |                                    |                |                    |                     |              |                         |                     |                      |                    |                           |
|--------------------------------------------------------------------------------------------|------------------------------------|----------------|--------------------|---------------------|--------------|-------------------------|---------------------|----------------------|--------------------|---------------------------|
| Title Block Line 6                                                                         |                                    |                |                    |                     |              | File - C:\I lee         | rs\Owner\Desktop    |                      |                    | 2020, 1:56PM              |
| Steel Column                                                                               |                                    |                |                    |                     |              |                         | oftware copyright E |                      |                    |                           |
| Lic. # : KW-06090157 - Educatio                                                            |                                    |                |                    |                     | Li           | censed Use              | r : SANTA CL/       | ARA UNIVERS          | ITY, CIVIL         | ENGINEERING               |
| DESCRIPTION: A5-6 STL                                                                      | COLS                               |                |                    |                     |              |                         | 7                   |                      |                    |                           |
| Code References                                                                            | (2)                                |                | $( \cap ) [ f $    |                     |              |                         | $/(\frown)$         |                      |                    | $\rightarrow$             |
| Calculations per AISC 360<br>Load Combinations Used                                        |                                    | CBC 201        | 6, ASCE 7-10       |                     |              |                         |                     | []                   |                    |                           |
| General Information                                                                        |                                    |                |                    |                     |              |                         |                     |                      |                    |                           |
|                                                                                            | V12x50<br>.oad Resistance          | Factor         |                    |                     | То           | verall Colum            | Fixity To           | op & Botton          |                    |                           |
| Steel Stress Grade                                                                         |                                    |                |                    |                     |              |                         | on (buckling) a     | along columns        | :                  |                           |
| Fy : Steel Yield                                                                           | 50.0 ksi                           |                |                    |                     | (width) a    |                         | kling ABOUT Y       | V Avie - 10.0 f      | + K - 10           |                           |
| E : Elastic Bending Modulus                                                                | 29,000.0 ksi                       |                |                    | Y-۱                 | (depth)      | axis :                  | -                   |                      |                    |                           |
|                                                                                            |                                    |                |                    | ι                   | Inbraced L   | ength for buc           | kling ABOUT X       | -X Axis = 10.0 f     | t, K = 1.0         |                           |
| Applied Loads                                                                              |                                    |                |                    |                     | Service      | loads enter             | ed. Load Fa         | ctors will be a      | applied fo         | r calculations.           |
| Column self weight included<br>AXIAL LOADS<br>Residential & Up: Axial Lo<br>DESIGN SUMMARY |                                    |                |                    | S                   | 9            | No                      |                     |                      | MC                 | /ed                       |
| Bending & Shear Check                                                                      | Results                            |                |                    |                     |              |                         |                     |                      |                    |                           |
| PASS Max. Axial+Bending S                                                                  |                                    |                | 0.799              | <b>2</b> :1         | Max          | imum Load F             | Reactions           |                      |                    |                           |
| Load Combination                                                                           |                                    | +1.20D         | +0.50Lr+1.60       |                     |              | Top along               |                     |                      | 0.0 k              |                           |
| Location of max.abo<br>At maximum locatior                                                 |                                    |                | 0                  | . <mark>0</mark> ft |              | Bottom alc              |                     |                      | 0.0 k              |                           |
| Pu                                                                                         |                                    |                | 399.2              | 20 k                |              | Top along<br>Bottom alo |                     |                      | 0.0 k<br>0.0 k     |                           |
| 0.9 * Pn                                                                                   |                                    |                | 499.5              |                     |              |                         | •                   |                      | 0.0 K              |                           |
| Mu-x                                                                                       |                                    |                |                    | 0 k-ft              | Max          | imum Load [             | Deflections         |                      |                    |                           |
| 0.9 * Mn-x :                                                                               |                                    |                | 251.25             | 9 k-ft              |              | ig Y-Y                  | 0.0 i               | n at                 | 0.0ft              | above base                |
| Mu-y                                                                                       |                                    |                |                    | 0 k-ft              | 1            | for load com            | bination :          |                      |                    |                           |
| 0.9 * Mn-y :                                                                               |                                    |                | 79.87              | ′5 k-ft             | Alon         | ng X-X                  |                     | n at                 | 0.0ft              | above base                |
| PASS<br>Maximum Shear Stu<br>Load Combination<br>Location of max.abo                       | ve base                            |                |                    | 0 : 1<br>0 ft       |              | for load cor            | nbination :         | rs                   |                    | Dh                        |
| At maximum locatior<br>Vu : Applied<br>Vn * Phi : All                                      |                                    |                |                    | .0 k<br>.0 k        |              |                         |                     |                      |                    |                           |
| Load Combination Result                                                                    | <b>c</b>                           |                |                    |                     |              |                         |                     |                      |                    |                           |
| Load Combination Result                                                                    |                                    |                | Define             |                     |              |                         |                     | Maria                |                    | - 1'                      |
| Load Combination                                                                           | Maximum Axial + Be<br>Stress Ratio | Status         | Location           | Cbx                 | Cby          | KxLx/Rx                 |                     | Stress Ratio         |                    | Location                  |
| +1.40D                                                                                     |                                    | PASS           | 0.00 ft            | 1.00                | 1.00         | 61.22                   | 23.17               | 0.000                | PASS               | 0.00 ft                   |
| +1.20D+0.50Lr+1.60L<br>+1.20D+1.60L                                                        |                                    | PASS<br>PASS   | 0.00 ft<br>0.00 ft | 1.00<br>1.00        | 1.00<br>1.00 | 61.22<br>61.22          | 23.17<br>23.17      | 0.000<br>0.000       | PASS<br>PASS       | 0.00 ft<br>0.00 ft        |
| +1.20D+1.60Lr+L                                                                            | 0.743                              | PASS           | 0.00 ft            | 1.00                | 1.00         | 61.22                   | 23.17               | 0.000                | PASS               | 0.00 ft                   |
| +1.20D+1.60Lr                                                                              | 0.569                              | PASS           | 0.00 ft            | 1.00                | 1.00         | 61.22                   | 23.17               | 0.000                | PASS               | 0.00 ft                   |
| (+1.20D+L)                                                                                 |                                    | PASS           | 0.00 ft            | 1.00                | 1.00         | 61.22                   | 23.17               | 0.000                | PASS               | 0.00 ft                   |
| +1.20D<br>+1.20D+0.50Lr+L                                                                  | 0.498                              | PASS           | 0.00 ft<br>0.00 ft | 1.00                | 1.00         | 61.22<br>61.22          | 23.17               |                      | PASS<br>PASS       | 0.00 ft<br>0.00 ft        |
| +0.90D                                                                                     | 0.374                              | PASS           | 0.00 ft            | 1.00                | 1.00         | 61.22                   | 23.17               | 0.000                | PASS               | 0.00 ft                   |
| +1.40D+L                                                                                   | 0.756                              | PASS           | 0.00 ft            | 1.00                | 1.00         | 61.22                   | 23.17               | 0.000                | PASS               | 0.00 ft                   |
| +0.70D<br>Maximum Reactions                                                                | 0.291 F                            | PASS           | 0.00 ft            | 1.00                | 1.00         | 61.22                   | 23.17<br>Note:      | 0.000<br>Only non-ze | PASS<br>ro reactio | 0.00 ft<br>ns are listed. |
|                                                                                            | Axial Re                           | action         | X-X Axis Reaction  | on k                | Y-Y Axi      | s Reaction              | Mx - End            |                      |                    | End Moments               |
| Load Combination                                                                           | @ Ba                               |                | @ Base @ T         | ор                  | @ Base       | @ Top                   | @ Base              | @ Top                | @ Ba               | se @ Top                  |
| D Only                                                                                     |                                    | 7.500          |                    |                     |              |                         |                     |                      |                    |                           |
| +D+L<br>+D+Lr                                                                              |                                    | 4.500<br>9.500 |                    |                     |              |                         |                     |                      |                    |                           |
| +D+Li<br>+D+0.750Lr+0.750L                                                                 |                                    | 9.250<br>9.250 |                    |                     |              |                         |                     |                      |                    |                           |
|                                                                                            |                                    |                |                    |                     |              |                         |                     |                      |                    |                           |

Ve

| Title Block" selection.<br>Title Block Line 6 |                         |                        |      |                                   |          |                    |                   |               | Printed:                 | 31 MAR 2020, 1:56PM                                                                           |
|-----------------------------------------------|-------------------------|------------------------|------|-----------------------------------|----------|--------------------|-------------------|---------------|--------------------------|-----------------------------------------------------------------------------------------------|
| Steel Column                                  |                         |                        |      |                                   |          |                    |                   |               |                          | lousing Development.ec6 .<br>33-2020, Build:12.20.2.24                                        |
| Lic. # : KW-06090157 - Ed                     | ucational Version       | _                      |      | _                                 | _        | Lic                |                   |               |                          | Y, CIVIL ENGINEERING                                                                          |
| DESCRIPTION: A5-0                             |                         |                        |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Maximum Reactions                             |                         |                        |      | V V Auto Desettion                |          |                    | Desching          |               |                          | reactions are listed.                                                                         |
| Load Combination                              |                         | Axial Reacti<br>@ Base |      | X-X Axis Reaction<br>@ Base @ Top |          | 9-9 Axis<br>@ Base | Reaction<br>@ Top | @ Base        | Moments k-ft<br>@ Top    | My - End Moments<br>@ Base @ Top                                                              |
| +D+0.750L<br>+0.60D                           |                         | 272.75                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
| +0.00D<br>Lr Only                             |                         | 124.50<br>22.00        |      |                                   |          |                    |                   |               |                          |                                                                                               |
| L Only                                        |                         | 87.00                  |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Extreme Reactions                             |                         | 01100                  | •    |                                   |          |                    |                   |               |                          |                                                                                               |
|                                               |                         | Axial Reaction         | n    | X-X Axis Reaction                 | k        | Y-Y Axis           | Reaction          | Mx - End      | Moments k-ft             | My - End Moments                                                                              |
| Item                                          | Extreme Value           | @ Base                 |      | @ Base @ To                       |          | @ Base             | @ Top             | @ Base        | @ Тор                    | @ Base @ Top                                                                                  |
| Axial @ Base                                  | Maximum                 | 294.50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Reaction, X-X Axis Base                       | Minimum<br>Maximum      | 22.00<br>207.50        |      |                                   |          |                    |                   |               |                          |                                                                                               |
| " " " " " " " " " " " " " " " " " " "         | Minimum                 | 207.50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Reaction, Y-Y Axis Base                       | Maximum                 | 207.50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
|                                               | Minimum                 | 207.50                 | 0    |                                   | $\frown$ |                    |                   | Д /,          |                          |                                                                                               |
| Reaction, X-X Axis Top                        | Maximum                 | 207.50                 |      |                                   | 512      |                    | $\mathbb{N}$      | ηΓ / <i>L</i> | $7 /         ( \bigcirc$ |                                                                                               |
|                                               | Minimum 🔶               | 207.50                 |      |                                   | DE       | 7 🗋                |                   |               |                          |                                                                                               |
| Reaction, Y-Y Axis Top                        | Maximum                 | 207.50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Moment, X-X Axis Base                         | Minimum<br>Maximum      | 207.50<br>207.50       |      |                                   |          |                    |                   |               |                          |                                                                                               |
| "                                             | Minimum                 | 207.50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Moment, Y-Y Axis Base                         | Maximum                 | 207.50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
| "                                             | Minimum                 | 207.50                 | 0    |                                   |          |                    |                   |               |                          |                                                                                               |
| Moment, X-X Axis Top                          | Maximum                 | 207.50                 | 0    |                                   |          |                    |                   |               |                          |                                                                                               |
| "<br>• • • • • • • •                          | Minimum                 | 207.50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Moment, Y-Y Axis Top                          | Maximum<br>Minimum      | 207.50<br>207.50       |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Maximum Deflection                            | s for Load Com          | binations              |      |                                   |          |                    |                   |               |                          |                                                                                               |
| Load Combination                              |                         | Max. X-X De            |      |                                   |          |                    | Deflection        | Distance      |                          |                                                                                               |
| D Only                                        |                         | 0.0000                 |      | 0.000 ft                          |          | 0.00               |                   |               | ft                       |                                                                                               |
| +D+L                                          |                         | 0.0000                 |      | 0.000 ft                          |          | 0.00               |                   |               |                          | $\left( \begin{array}{c} 0 \end{array} \right) \left( \begin{array}{c} 0 \end{array} \right)$ |
| +D+Lr<br>+D+0.750Lr+0.750L                    |                         | 0.0000                 |      | 0.000 ft<br>0.000 ft              |          | 0.00               |                   |               |                          |                                                                                               |
| +D+0.750L1+0.750L                             |                         | 0.0000                 | in   | 0.000 ft                          |          | 0.00               |                   |               | ft ·                     |                                                                                               |
| +0.60D                                        |                         | 0.0000                 | in   | 0.000 ft                          |          | 0.00               |                   |               | ft                       |                                                                                               |
| Lr Only                                       |                         | 0.0000                 | in   | 0.000 ft                          |          | 0.00               | 0 in              | 0.000         | ft                       |                                                                                               |
| L Only                                        |                         | 0.0000                 | in   | 0.000 ft                          |          | 0.00               | 0 in              | 0.000         | ft                       |                                                                                               |
| Steel Section Proper                          | ties : V                | V12x50                 |      |                                   |          |                    |                   |               |                          |                                                                                               |
|                                               | = 12.200                |                        | l xx | =                                 | 391.00   | in^4               |                   | J             | =                        | 1.710 in^4                                                                                    |
| Web Thick                                     | = 0.370                 | in                     | S xx | =                                 | 64.20    | in^3               |                   | Cw            | =                        | 1,880.00 in^6                                                                                 |
| Flange Width =                                | = 8.080                 | in                     | R xx | =                                 | 5.180    | in                 |                   |               |                          |                                                                                               |
|                                               | = 0.640                 |                        | Zx   | =                                 | 71.900   |                    |                   |               |                          |                                                                                               |
|                                               | = 14.600                |                        | l yy | =                                 | 56.300   |                    |                   |               |                          |                                                                                               |
|                                               | = 50.000                |                        | S yy | =                                 | 13.900   |                    |                   | Wno           | =                        | 23.400 in^2                                                                                   |
|                                               | = 1.140                 |                        | R уу |                                   | 1.960    |                    |                   | Sw /          |                          | 30.200 in^4                                                                                   |
| K1<br>rts<br>Ycg                              | 0.938<br>2.250<br>0.000 | in ( ( – ) –           | Zy   |                                   |          | in^3               | NO                | Qf            |                          | 14.300 /in^3<br>35.400 in^3                                                                   |
| -                                             |                         |                        |      |                                   |          |                    |                   |               |                          |                                                                                               |

Educational Version



# Commercial Use Not Allowed

| and then using the "Printing &<br>Title Block" selection. |                                   |                                  | F            | roject L                | escr:                        |                  |                                           |                          |                          |
|-----------------------------------------------------------|-----------------------------------|----------------------------------|--------------|-------------------------|------------------------------|------------------|-------------------------------------------|--------------------------|--------------------------|
| Title Block Line 6                                        |                                   |                                  |              |                         |                              |                  | Printe                                    | ed: 31 MAR               | 2020, 11:28PM            |
| Steel Column                                              |                                   |                                  |              |                         |                              |                  | top\SCU Faculty Stant<br>t ENERCALC, INC. |                          |                          |
| Lic. # : KW-06090157 - Educati                            |                                   |                                  |              | L                       |                              |                  |                                           |                          | ENGINEERING              |
| DESCRIPTION: A7-Roof                                      |                                   | 7                                |              |                         |                              |                  |                                           |                          |                          |
| Code References                                           |                                   |                                  |              |                         |                              |                  |                                           |                          |                          |
| Calculations per AISC 36                                  |                                   | 16, ASCE 7-10                    |              | 2                       |                              |                  | $\square \bigcirc$                        |                          |                          |
| Load Combinations Used                                    | : ASCE 7-16                       |                                  |              |                         |                              |                  |                                           |                          |                          |
| General Information                                       |                                   |                                  |              |                         |                              |                  |                                           |                          |                          |
| 0.001 0000011 140110 .                                    | W12x40<br>Load Resistance Factor  |                                  |              |                         | verall Colun<br>op & Bottorr |                  | Top & Bottor                              | 10.0 ft<br>n Pinned      |                          |
| Steel Stress Grade                                        |                                   |                                  |              | e conditior             | n for deflecti               |                  | ) along columns                           |                          |                          |
| Fy : Steel Yield<br>E : Elastic Bending Modulus           | 50.0 ksi<br>29,000.0 ksi          |                                  |              | X (width)<br>Unbraced I |                              | ckling ABOUT     | Y-Y Axis = 10.0                           | ft. K = 1.0              |                          |
| E . Elastic Denaing Modulus                               | 29,000.0 KSI                      |                                  | Y-           | Y (depth)               | axis :                       | -                |                                           |                          |                          |
|                                                           |                                   |                                  |              | Unbraced I              | ength for buc                | ckling ABOUT     | X-X Axis = 10.0                           | tt, K = 1.0              |                          |
| Applied Loads                                             |                                   |                                  |              | Service                 | loads ente                   | red. Load F      | actors will be                            | applied fo               | r calculations.          |
| Column self weight included                               | : 400.0 lbs * Dead Load Fact      | ior                              |              |                         |                              |                  |                                           |                          |                          |
|                                                           | oad at 10.0 ft, D = 131.0, LR     | = 22.0, L = 44.0 k               | -51          | 2                       | $\mathbb{N}(\mathbb{C}$      |                  | $\Delta $                                 | 0)\V/                    | V/(원(O                   |
| DESIGN SUMMARY                                            |                                   |                                  |              |                         |                              |                  |                                           |                          |                          |
| Bending & Shear Check<br>PASS Max. Axial+Bending          |                                   | 0.6007                           | ':1          | Мах                     | imum Load I                  | Reactions        |                                           |                          |                          |
| Load Combination                                          | +1.20                             | D+0.50Lr+1.60L                   |              |                         | Top along                    |                  |                                           | 0.0 k                    |                          |
| Location of max.ab<br>At maximum locatio                  |                                   | 0.0                              | π            |                         | Bottom alo<br>Top along      |                  |                                           | 0.0 k<br>0.0 k           |                          |
| Pu<br>0.9 * Pn                                            |                                   | 239.080<br>398.017               |              |                         | Bottom alo                   |                  |                                           | 0.0 k                    |                          |
| Mu-x                                                      |                                   |                                  | к<br>)k-ft   | Max                     | imum Load I                  | Deflections .    |                                           |                          |                          |
| 0.9 * Mn-x :                                              |                                   | 196.456                          |              |                         | ng Y-Y<br>for load com       |                  | ) in at                                   | 0.0ft                    | above base               |
| Mu-y<br>0.9 * Mn-y :                                      |                                   |                                  | k-ft         |                         |                              |                  | )in at                                    | 0.0#                     | above base               |
| 0.5 Mil-y.                                                |                                   | 63.0                             | κ-π          | AIUI                    | ng X-X<br>for load co        |                  |                                           | 0.01                     | above base               |
| PASS Maximum Shear S                                      | tress Ratio =                     | 0.0                              |              |                         | $\setminus \setminus$        | (2)              |                                           |                          |                          |
| Load Combination                                          | ove base                          | 0.0                              |              |                         |                              |                  |                                           |                          |                          |
| At maximum locatio<br>Vu : Applied                        |                                   | 0.0                              | k            |                         |                              |                  |                                           |                          |                          |
| Vn * Phi : Al                                             | lowable                           | 0.0                              | k            |                         |                              |                  |                                           |                          |                          |
| Load Combination Result                                   | ts                                |                                  |              |                         |                              |                  |                                           |                          |                          |
|                                                           | Maximum Axial + Bending S         |                                  | Cbx          | Cby                     | Kyl y/Dy                     | KyLy/Ry          |                                           | <u>m Shear R</u>         |                          |
| Load Combination<br>+1.40D                                | Stress Ratio Status<br>0.462 PASS | Location<br>0.00 ft              | 1.00         | 1.00                    | 61.86                        | 23.39            | Stress Ratio                              | PASS                     | Location<br>0.00 ft      |
| +1.20D+0.50Lr+1.60L                                       | 0.601 PASS                        | 0.00 ft                          | 1.00         | 1.00                    | 61.86                        | 23.39            | 0.000                                     | PASS                     | 0.00 ft                  |
| +1.20D+1.60L<br>+1.20D+1.60Lr+L                           | 0.573 PASS<br>0.595 PASS          | 0.00 ft<br>0.00 ft               | 1.00         | 1.00<br>1.00            | 61.86<br>61.86               | 23.39<br>23.39   | 0.000<br>0.000                            | PASS<br>PASS             | 0.00 ft<br>0.00 ft       |
| +1.20D+1.60Lr                                             | 0.485 PASS                        | 0.00 ft                          | 1.00         | 1.00                    | 61.86                        | 23.39            | 0.000                                     | PASS                     | 0.00 ft                  |
| (+1.20D+t                                                 | 0.507 PASS<br>0.396 PASS          | 0.00 ft                          | 1.00         |                         | 61.86                        | 23.39            |                                           | PASS                     | 0.00 ft                  |
| +1.20D<br>+1.20D+0.50Lr+L                                 | 0.396 PASS<br>0.534 PASS          | 0.00 ft<br>0.00 ft               | 1.00         | 1.00                    | 61.86<br>61.86               | 23.39<br>23.39   |                                           | PASS                     | 0.00 ft<br>0.00 ft       |
| +0.90D                                                    | 0.297 PASS                        | 0.00 ft                          | 1.00         | 1.00                    | 61.86                        | 23.39            | 0.000                                     | PASS                     | 0.00 ft                  |
| +1.40D+L<br>+0.70D                                        | 0.573 PASS<br>0.231 PASS          | 0.00 ft<br>0.00 ft               | 1.00<br>1.00 | 1.00<br>1.00            | 61.86<br>61.86               | 23.39<br>23.39   |                                           | PASS<br>PASS             | 0.00 ft<br>0.00 ft       |
| Maximum Reactions                                         |                                   |                                  |              |                         |                              |                  | e: Only non-ze                            |                          |                          |
| Load Combination                                          | Axial Reaction<br>@ Base          | X-X Axis Reaction<br>@ Base @ To |              | Y-Y Axi<br>@ Base       | is Reaction<br>@ Top         | Mx - Er<br>@ Bas |                                           | a <b>-ft</b> My-<br>@,Ba | End Moments<br>ise @ Top |
| D Only                                                    | 131.400                           |                                  |              |                         | U -r                         | 0 4              | <b>U</b> - F                              | 0.0                      | <b>U</b> 'r              |
| +D+L<br>+D+Lr                                             | 175.400<br>153.400                |                                  |              |                         |                              |                  |                                           |                          |                          |
| +D+0.750Lr+0.750L                                         | 180.900                           |                                  |              |                         |                              |                  |                                           |                          |                          |
|                                                           |                                   |                                  |              |                         |                              | 10               |                                           |                          |                          |
|                                                           | Gall                              |                                  |              |                         |                              | /(2)             | MS                                        |                          | $\mathcal{I}$            |
|                                                           |                                   |                                  |              |                         |                              |                  |                                           |                          |                          |

| Fitle Block" selection.<br>Fitle Block Line 6 |                    |                        |           |            |                  |                       |              |              |                                   |                   | Printed: 3        | 31 MAR 2020                                       | ), 11:28PM |
|-----------------------------------------------|--------------------|------------------------|-----------|------------|------------------|-----------------------|--------------|--------------|-----------------------------------|-------------------|-------------------|---------------------------------------------------|------------|
| Steel Column                                  |                    |                        |           |            |                  |                       |              |              | rs\Owner\Deskt<br>ftware copyrigh |                   |                   |                                                   |            |
| Lic. # : KW-06090157 - Ec                     | lucational Versio  | n                      | -         | _          | _                | _                     | Lic          |              | r : SANTA C                       |                   |                   |                                                   |            |
| DESCRIPTION: A7-                              | Roof STL COL       | S                      |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Maximum Reactions                             |                    | Axial Reacti           |           | X-X Axis F |                  |                       |              | Reaction     | 1101                              | e: Only<br>d Mome |                   | reactions a                                       |            |
| Load Combination                              |                    | Axial Reacti<br>@ Base | -         | @ Base     | @ Top            |                       | ) Base       | @ Top        | @ Base                            |                   | nts k-ft<br>D Top | My - End<br>@ Base                                | /          |
| +D+0.750L                                     |                    | 164.40                 |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| +0.60D<br>Lr Only                             |                    | 78.84<br>22.00         |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| L Only                                        |                    | 44.00                  |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Extreme Reactions                             |                    | 00                     |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Extreme Redetions                             |                    | Axial Reaction         | าท        | X-X Axis F | Reaction         | k `                   | Y-Y Avis     | Reaction     | Mx - En                           | d Mome            | nts <b>k-ft</b>   | My - End                                          | Moments    |
| Item                                          | Extreme Valu       |                        | 011       | @ Base     | @ Top            |                       | ) Base       | @ Top        | @ Base                            |                   | D Top             | @ Base                                            | @ Top      |
| Axial @ Base                                  | Maximum<br>Minimum | 180.90<br>22.00        |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Reaction, X-X Axis Base                       | Maximum            | 131.40                 |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| u .                                           | Minimum            | 131.40                 | 0         |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Reaction, Y-Y Axis Base                       | Maximum            | 131.40                 |           |            |                  |                       |              |              |                                   |                   |                   |                                                   | Г          |
| Reaction, X-X Axis Top                        | Minimum<br>Maximum | 131.40<br>131.40       | 02        |            |                  | SA                    |              | $\mathbb{N}$ | );[ /                             | $\Delta$          |                   | )\\\/                                             | 26         |
| Reaction, Y-Y Axis Top                        | Minimum            | 131.40                 |           |            |                  | 90                    |              |              |                                   |                   |                   |                                                   | 90         |
| "                                             | Maximum<br>Minimum | 131.40                 |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Moment, X-X Axis Base                         | Maximum            | 131.40                 |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| II                                            | Minimum            | 131.40                 | 0         |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Moment, Y-Y Axis Base                         | Maximum<br>Minimum | 131.40<br>131.40       |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Moment, X-X Axis Top                          | Maximum            | 131.40                 | 0         |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| "                                             | Minimum            | 131.40                 |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Moment, Y-Y Axis Top                          | Maximum<br>Minimum | 131.40<br>131.40       |           |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Maximum Deflection                            |                    |                        | iU        |            |                  |                       |              |              |                                   |                   |                   |                                                   |            |
| Load Combination                              |                    | Max. X-X De            | eflectior | n Dista    | ance             | Ма                    | ax. Y-Y I    | Deflection   | Distanc                           | e                 |                   |                                                   |            |
| D Only                                        |                    | 0.0000                 |           |            | )00 ft           |                       | 0.00         |              | 0.000                             | ft                |                   |                                                   |            |
| +D+L                                          |                    | 0.0000                 |           |            | 000 ft           |                       | 0.00         |              | 0.000                             | ft                |                   |                                                   |            |
| +D+Lr                                         |                    | 0.0000                 |           |            | 000 ft           | $\bigcirc$            | 0.00         |              | 0.000                             | ft                | $\sim$            |                                                   |            |
| +D+0.750Lr+0.750L                             |                    | 0.0000                 |           |            | 000 ft           |                       | 0.00         |              | 0.000                             | ft                |                   |                                                   |            |
| +D+0.750L                                     |                    | 0.0000                 |           | 0.0        |                  |                       | 0.00         |              | 0.000                             | ft<br>A           |                   |                                                   |            |
| +0.60D<br>Lr Only                             |                    | 0.0000<br>0.0000       |           |            | 000 ft<br>000 ft |                       | 0.00<br>0.00 |              | 0.000<br>0.000                    | ft<br>ft          |                   |                                                   |            |
| L Only                                        |                    | 0.0000                 |           |            | 000 ft           |                       | 0.00         |              | 0.000                             | ft                |                   |                                                   |            |
| Steel Section Proper                          | ties ·             | W12x40                 |           | 0.0        |                  |                       | 0.00         |              | 0.000                             | i.                |                   |                                                   |            |
|                                               | = 11.900           |                        | l xx      | =          |                  | 307.00 ii             | n^4          |              | J                                 |                   | =                 | 0.906 in^2                                        |            |
|                                               | = 0.295            |                        | S xx      | =          |                  | 51.50 ii              |              |              | Cw                                |                   |                   | 1,440.00 in^6                                     |            |
|                                               | = 8.010            |                        | R xx      | =          |                  | 5.130 ii              |              |              | -                                 |                   |                   |                                                   |            |
| -                                             | = 0.515            |                        | Zx        | =          |                  | 57.000 ii             | n^3          |              |                                   |                   |                   |                                                   |            |
|                                               | = 11.700           |                        | l yy      | =          |                  | 44.100 ii             |              |              |                                   |                   |                   |                                                   |            |
| Weight                                        | = 40.000           |                        | S yy      | =          |                  | 11.000 ii             |              |              | Wno                               |                   | =                 | 22.800 in^2                                       |            |
|                                               | - 1.000            | :                      | Diar      |            |                  | 4 0 4 0 1             |              |              | <b>C</b>                          |                   |                   | 00 500 1 4                                        |            |
| Kdesign<br>K1                                 | = 1.020<br>= 0.875 |                        | R yy      |            |                  | 1.940 ii<br>16.800 ii |              |              | Sw<br>Qf                          |                   |                   | 23.500 in <sup>2</sup><br>11.300 /in <sup>2</sup> |            |



# Commercial Use Not Allowed

| Title Block Line 6                        |                                       |                                   |              |                          |                           |                                        | Printe              | d: 14 MAR       | 2020, 6:09PN           |
|-------------------------------------------|---------------------------------------|-----------------------------------|--------------|--------------------------|---------------------------|----------------------------------------|---------------------|-----------------|------------------------|
| Steel Column                              |                                       |                                   |              |                          |                           | s\Owner\Desktop\<br>tware copyright Ef |                     |                 |                        |
| Lic. # : KW-06090157 - Educa              |                                       |                                   |              | Li                       |                           |                                        |                     |                 | ENGINEERING            |
| DESCRIPTION: B1-2 S                       | STL COLS                              |                                   |              |                          |                           |                                        |                     |                 |                        |
| Code References                           |                                       |                                   |              |                          |                           | 7                                      | $n \bigcirc$        |                 |                        |
|                                           | 360-10, IBC 2015, CBC 20 <sup>4</sup> | 16. ASCE 7-10                     | 178          | )                        | -                         |                                        | r S                 | $\mathbf{f}$    |                        |
| Load Combinations Use                     |                                       |                                   |              |                          |                           |                                        |                     |                 |                        |
| General Information                       |                                       |                                   |              |                          |                           |                                        |                     |                 |                        |
| Steel Section Name :                      | W12x96                                |                                   |              | 0'                       | verall Colum              | in Height                              |                     | 15.0 ft         |                        |
| Analysis Method :                         | Load Resistance Factor                |                                   | _            | Тс                       | op & Bottom               | Fixity To                              | p Pinned, I         |                 | ixed                   |
| Steel Stress Grade<br>Fy : Steel Yield    | 50.0 ksi                              |                                   |              | condition<br>( (width) a |                           | on (buckling) a                        | long columns        |                 |                        |
| E : Elastic Bending Modulus               | 29,000.0 ksi                          |                                   |              |                          |                           | kling ABOUT Y-                         | Y Axis = 15.0 ft,   | K = 0.80        |                        |
| -                                         | -,                                    |                                   |              | (depth)                  |                           |                                        | X Avia = 15.0.8     | K = 0.90        |                        |
|                                           |                                       |                                   | U            | indraced Li              | engin for buck            | ding ABOUT X-3                         | x axis - 15.0 il,   | K – 0.00        |                        |
| Applied Loads                             |                                       |                                   |              | Servi                    | ce loads en               | tered. Load F                          | actors will be      | e applied       | for calculatior        |
|                                           | ed : 1,440.0 lbs * Dead Load Fac      | tor                               |              | _                        |                           | л /,                                   |                     |                 |                        |
| AXIAL LOADS<br>Residential & Above: A     | Axial Load at 15.0 ft, D = 437.0, L   | R = 19.0. L = 223                 |              |                          | N(0)                      | <u>אן א</u> נע                         |                     | עעע כ           |                        |
| DESIGN SUMMARY                            |                                       |                                   | 900          | 7 L                      |                           |                                        |                     |                 | /GC                    |
| Bending & Shear Che                       | ck Results                            |                                   |              |                          |                           |                                        |                     |                 |                        |
| PASS Max. Axial+Bendin<br>Load Combinatio | g Stress Ratio =                      | 0.8243                            | : 1          | Maxi                     | mum Load R                |                                        |                     | 0.01            |                        |
| Location of max.a                         | 1.208                                 | +0.50Lr+1.60L<br>0.0              | ft           |                          | Top along<br>Bottom alo   |                                        |                     | 0.0 k<br>0.0 k  |                        |
| At maximum loca                           | tion values are                       |                                   |              |                          | Top along                 | Y-Y                                    |                     | 0.0 k           |                        |
| Pu<br>0.9 * Pn                            |                                       | 892.43<br>1,082.68                |              |                          | Bottom alo                | ng Y-Y                                 |                     | 0.0 k           |                        |
| Mu-x                                      |                                       | 0.0                               |              | Maxi                     | mum Load D                | eflections                             |                     |                 |                        |
| 0.9 * Mn-x                                | :                                     | 527.53                            |              |                          | ig Y-Y                    | 0.0 ir                                 | n at                | 0.0ft           | above base             |
| Mu-y                                      |                                       | 0.0                               | k-ft         |                          | or load com               |                                        |                     |                 |                        |
| 0.9 * Mn-y                                | :                                     | 253.125                           | k-ft         | Alon                     | ig X-X                    | 0.0 ir                                 | n at                | 0.0ft           | above base             |
| PASS Maximum Shear                        | Stress Ratin =                        | 0.0                               | ).           |                          | for load con              |                                        | YC                  |                 | $\mathcal{T}$          |
| Load Combinatio                           |                                       | 0.0                               |              |                          | $\langle \rangle \rangle$ |                                        |                     |                 |                        |
| Location of max.a                         | above base<br>ation values are        | 0.0                               | ft           |                          |                           |                                        |                     |                 |                        |
| Vu : Appli                                | ied                                   | 0.0                               |              |                          |                           |                                        |                     |                 |                        |
| Vn * Phi :                                | Allowable                             | 0.0                               | k            |                          |                           |                                        |                     |                 |                        |
| Load Combination Res                      | ults                                  |                                   |              |                          |                           |                                        |                     |                 |                        |
|                                           | Maximum Axial + Bending Str           | ress Ratios                       |              |                          |                           |                                        | Maximum             | Shear Ra        | <u>tios</u>            |
| Load Combination                          | Stress Ratio Status                   | Location                          | Cbx          | Cby                      | KxLx/Rx                   |                                        | Stress Ratio        |                 | Location               |
| +1.40D<br>+1.20D+0.50Lr+1.60L             | 0.567 PASS<br>0.824 PASS              | 0.00 ft<br>0.00 ft                | 1.00<br>1.00 | 1.00<br>1.00             | 46.60<br>46.60            | 26.47<br>26.47                         | 0.000<br>0.000      | PASS            | 0.00 ft<br>0.00 ft     |
| +1.20D+1.60L                              | 0.816 PASS                            | 0.00 ft                           | 1.00         | 1.00                     | 46.60                     | 26.47                                  | 0.000               | PASS            | 0.00 ft                |
| +1.20D+1.60Lr+L                           | 0.720 PASS                            | 0.00 ft                           | 1.00         | 1.00                     | 46.60                     | 26.47                                  | 0.000               | PASS            | 0.00 ft                |
| +1.20D+1.60Lr<br>+1.20D+L                 | 0.514 PASS<br>0.692 PASS              | 0.00 ft<br>0.00 ft                | 1.00         | 1.00                     | 46.60<br>46.60            | 26.47                                  | 0.000               | PASS            | 0.00 ft                |
| +1,20D())                                 | 0.486 PA\$S                           | 0.00 ft                           | 1.00         | 1.00                     | 46.60                     | 26.47 /                                | 0.000               | PASS            | 0.00 ft                |
| +1.20D+0.50Lr+L                           | 0.701 PASS<br>0.364 PASS              |                                   | 1.00         | 1.00                     | 46.60                     | 26.47                                  | 0.000               |                 | 0.00 ft<br>0.00 ft     |
| +0.90D<br>+1.40D+L                        | 0.364 PASS<br>0.773 PASS              | 0.00 ft<br>0.00 ft                | 1.00<br>1.00 | 1.00<br>1.00             | 46.60<br>46.60            | 26.47<br>26.47                         | 0.000               | PASS            | 0.00 ft                |
| +0.70D                                    | 0.283 PASS                            | 0.00 ft                           | 1.00         | 1.00                     | 46.60                     | 26.47                                  | 0.000               |                 | 0.00 ft                |
| Maximum Reactions                         |                                       |                                   |              |                          |                           |                                        | : Only non-z        |                 |                        |
| Load Combination                          | Axial Reaction<br>@ Base              | X-X Axis Reaction<br>@ Base @ Top | ) <b>k</b>   | Y-Y Axis<br>@ Base       | Reaction<br>@ Top         | Mx - End I<br>@ Base                   | Moments k-<br>@ Top | ft My-I<br>@Bas | End Moments<br>e @ Top |
| D Only                                    | 438.440                               | 3-000 @ i0p                       |              | <u>e</u> 2000            | F                         | @ 5000                                 | 401 20              | @ 500           |                        |
| +D+L                                      | 661.440                               |                                   |              |                          |                           |                                        |                     |                 |                        |
| +D+Lr                                     | 457.440                               |                                   |              |                          |                           |                                        |                     |                 |                        |
|                                           |                                       |                                   |              |                          |                           |                                        |                     |                 |                        |

=

0.000 in

Ycg

| LITIE BLOCK Selection.                                                      |                           |                          |                             |                                     |                             |                |                              |                                                           |
|-----------------------------------------------------------------------------|---------------------------|--------------------------|-----------------------------|-------------------------------------|-----------------------------|----------------|------------------------------|-----------------------------------------------------------|
| Title Block Line 6                                                          |                           |                          |                             |                                     | <b>File - O</b>             |                |                              | ed: 14 MAR 2020, 6:09PN                                   |
| Steel Column                                                                |                           |                          |                             |                                     | File = C                    |                |                              | ff Housing Development.ec6<br>1983-2020, Build:12.20.2.24 |
| Lic. # : KW-06090157 - Ec                                                   | lucational Version        |                          |                             |                                     | Licensed                    |                |                              | SITY, CIVIL ENGINEERING                                   |
| DESCRIPTION: B1-                                                            | 2 STL COLS                |                          |                             |                                     |                             |                |                              |                                                           |
|                                                                             |                           |                          |                             |                                     |                             |                |                              |                                                           |
| Maximum Reactions                                                           |                           |                          |                             |                                     |                             | No             | te: Only non-z               | zero reactions are lister                                 |
|                                                                             |                           | Axial Reaction           | X-X Axis Reacti             |                                     | Y Axis Reactio              |                |                              | -ft My - End Moments                                      |
| Load Combination                                                            |                           | @ Base                   | @ Base @                    | Top @                               | Base @ To                   | op @ Base      | @ Top                        | @ Base @ Top                                              |
| +D+0.750Lr+0.750L                                                           |                           | 619.940                  |                             |                                     |                             |                |                              |                                                           |
| +D+0.750L                                                                   |                           | 605.690                  |                             |                                     |                             |                |                              |                                                           |
| +0.60D                                                                      |                           | 263.064                  |                             |                                     |                             |                |                              |                                                           |
| Lr Only                                                                     |                           | 19.000                   |                             |                                     |                             |                |                              |                                                           |
| L Only                                                                      |                           | 223.000                  |                             |                                     |                             |                |                              |                                                           |
| Extreme Reactions                                                           |                           | Avial Departies          | V V Avia Deseti             |                                     | V Auia Dessti               |                | Managata I.                  | 6 Mr. Fred Managete                                       |
| ltem                                                                        | /<br>Extreme Value        | Axial Reaction<br>@ Base | X-X Axis Reacti<br>@ Base @ |                                     | Y Axis Reactio<br>Base @ To |                |                              | -ft My - End Moments<br>@ Base @ Top                      |
|                                                                             |                           | •                        | w Dase W                    | 10p @                               |                             | up w base      |                              | W Dase W Tup                                              |
| Axial @ Base<br>"                                                           | Maximum                   | 661.440                  |                             |                                     |                             |                |                              |                                                           |
| Reaction. X-X Axis Base                                                     | Minimum<br>Maximum        | 19.000<br>438.440        |                             |                                     |                             |                |                              |                                                           |
| "                                                                           | Minimum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| Reaction, Y-Y Axis Base                                                     | Maximum                   | 438.440                  |                             |                                     |                             | <u>一</u> 几 /   |                              |                                                           |
| $\left( \left( \begin{array}{c} - \\ - \\ - \\ \end{array} \right) \right)$ | Minimum                   | 438.440                  |                             | C(2)                                |                             | ()][ //        | $\Delta \setminus []   [] ($ | owed                                                      |
| Reaction, X-X Axis Top                                                      | Maximum                   | 438.440                  |                             | 20                                  |                             | UU L           | -1000                        | 9 WU G CI                                                 |
| "                                                                           | Minimum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| Reaction, Y-Y Axis Top                                                      | Maximum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
|                                                                             | Minimum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| Moment, X-X Axis Base                                                       | Maximum                   | 438.440<br>438.440       |                             |                                     |                             |                |                              |                                                           |
| Moment, Y-Y Axis Base                                                       | Minimum<br>Maximum        | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| "                                                                           | Minimum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| Moment, X-X Axis Top                                                        | Maximum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| "                                                                           | Minimum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| Moment, Y-Y Axis Top                                                        | Maximum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| "                                                                           | Minimum                   | 438.440                  |                             |                                     |                             |                |                              |                                                           |
| Maximum Deflection                                                          | s for Load Com            | binations                |                             |                                     |                             |                |                              |                                                           |
| Load Combination                                                            |                           | Max. X-X Deflection      | Distance                    | Мах                                 | Y-Y Deflectio               | n Distance     | )                            |                                                           |
| D Only                                                                      |                           | 0.0000 in                | 0,000                       | ft                                  | 0.000 in                    |                | ft                           |                                                           |
| +D+L                                                                        |                           | 0.0000 in                | 0.000                       | ft 📿                                | 0.000 in                    | V / I          | ft                           |                                                           |
| +D+Lr                                                                       |                           | 0.0000 in                | 0.000                       | ft                                  | 0.000 in                    | 0.000          | ft                           |                                                           |
| +D+0.750Lr+0.750L                                                           |                           | 0.0000 in                | 0.000                       | ft                                  | 0.000 in                    | 0.000          | ft                           |                                                           |
| +D+0.750L                                                                   |                           | 0.0000 in                | 0.000                       | ft                                  | 0.000 in                    | 0.000          | ft                           |                                                           |
| +0.60D                                                                      |                           | 0.0000 in                | 0.000                       | ft                                  | 0.000 in                    | 0.000          | ft                           |                                                           |
| Lr Only<br>L Only                                                           |                           | 0.0000 in<br>0.0000 in   | 0.000<br>0.000              | ft<br>ft                            | 0.000 in<br>0.000 in        | 0.000<br>0.000 | ft<br>ft                     |                                                           |
|                                                                             |                           |                          | 0.000                       | п                                   | 0.000 11                    | 0.000          | п                            |                                                           |
| Steel Section Proper                                                        |                           | 12x96                    |                             | 000.00                              |                             |                |                              | 0.050 : 44                                                |
| Dopui                                                                       | = 12.700 in               |                          | =                           | 833.00 in/                          |                             | J              | =                            | 6.850 in^4                                                |
|                                                                             | = 0.550 in                |                          | =                           | 131.00 in/                          | `3                          | Cw             | =                            | 9,410.00 in^6                                             |
| i lange i lan                                                               | = 12.200 in<br>= 0.900 in |                          | =                           | 5.440 in<br>147.000 in <sup>/</sup> | 3                           |                |                              |                                                           |
| i lange i men                                                               | = 0.900 m<br>= 28.200 in  |                          | =                           | 270.000 in <sup>2</sup>             |                             |                |                              |                                                           |
|                                                                             | = 96.000 pl               |                          |                             | 44.400 in                           |                             | Wno            |                              | 36.000 in^2                                               |
| Kdesign                                                                     | = 90.000 pi               |                          |                             | 3,090 in                            |                             | Sw             |                              | 98.800 in^4                                               |
| U U                                                                         | = 1.125 in                | Zy Zy                    |                             | 67.500 in/                          | 3                           | (0)   Qf /     |                              | ) 30.900 in^3 - ( ( )                                     |
| rts                                                                         | = 3.490 in                |                          |                             |                                     |                             | Qw             |                              | 73.000 in^3                                               |
| Vee                                                                         | - 0.000 :-                |                          |                             |                                     |                             | ~              |                              | · • • • • • •                                             |

ucational V



# Commercial Use Not Allowed

| Title Block" selection.<br>Title Block Line 6      |                             |                                       |                    |              |                     |                 | Printe            | d: 31 MAR            | 2020, 1:58PM                   |
|----------------------------------------------------|-----------------------------|---------------------------------------|--------------------|--------------|---------------------|-----------------|-------------------|----------------------|--------------------------------|
| Steel Column                                       |                             |                                       |                    |              |                     |                 | SCU Faculty Staf  | ff Housing De        | velopment.ec6                  |
| Lic. # : KW-06090157 - Educati                     | onal Version                |                                       | _                  | Lic          |                     |                 | NERCALC, INC.     |                      | uild:12.20.2.24<br>ENGINEERING |
| DESCRIPTION: B3-4 ST                               |                             |                                       |                    |              |                     |                 |                   |                      |                                |
|                                                    |                             |                                       |                    |              |                     |                 |                   |                      |                                |
| Code References                                    |                             |                                       |                    |              |                     |                 | 70                |                      |                                |
| Calculations per AISC 36<br>Load Combinations Used |                             | 2016, ASCE 7-1                        | 10                 |              |                     | G               | $\left[ \right] $ |                      |                                |
| General Information                                | . ASCE 7-10                 |                                       |                    |              |                     |                 |                   |                      |                                |
|                                                    | W12x65                      |                                       |                    | Ov           | erall Colum         | n Height        |                   | 10.0 ft              |                                |
|                                                    | Load Resistance Fac         | tor                                   |                    |              | p & Bottom          |                 | op & Bottom       |                      |                                |
| Steel Stress Grade                                 |                             |                                       |                    |              |                     | on (buckling) a | long columns      | :                    |                                |
| Fy : Steel Yield                                   | 50.0 ksi                    |                                       |                    | (width) a    |                     |                 | MAL: 40.00        |                      |                                |
| E : Elastic Bending Modulus                        | 29,000.0 ksi                |                                       |                    |              | -                   | kling ABOUT Y   | -Y Axis = 10.0 f  | i, K = 1.0           |                                |
|                                                    |                             |                                       |                    | (depth) a    |                     | kling ABOUT X   | -X Axis = 10.0 f  | t, K = 1.0           |                                |
| Applied Loads                                      |                             |                                       |                    | Service lo   | oads enter          | ed. Load Fa     | ctors will be a   | applied for          | r calculations.                |
| Column self weight included                        | : 650.0 lbs * Dead Load     | Factor                                |                    |              |                     |                 |                   |                      |                                |
| AXIAL LOADS                                        |                             |                                       |                    |              |                     | \57 //          |                   | $\nabla \Box \nabla$ | $\Pi \bigcirc \bigcirc$        |
|                                                    | al Load at 10.0 ft, D = 307 | .0, LR = 19.0, L = 14                 | <del>1</del> 9.0 K | 7            |                     | ЛЦ / А          |                   | $\mathcal{I}$        | 1150                           |
| DESIGN SUMMARY                                     |                             |                                       | <u> </u>           |              |                     | )               |                   |                      |                                |
| Bending & Shear Check                              |                             | 0.90                                  | <b>58</b> : 1      | Movie        | num Load F          | lagationa       |                   |                      |                                |
| PASS Max. Axial+Bending<br>Load Combination        |                             | .20D+0.50Lr+1.6                       |                    |              | Top along           |                 |                   | 0.0 k                |                                |
| Location of max.ab                                 |                             |                                       | 0.0 ft             |              | Bottom alo          |                 |                   | 0.0 k                |                                |
| At maximum locatio                                 | on values are               |                                       |                    |              | Top along           |                 |                   | 0.0 k                |                                |
| Pu                                                 |                             |                                       | .08 k              |              | Bottom alo          | ng Y-Y          |                   | 0.0 k                |                                |
| 0.9 * Pn                                           |                             |                                       | 79 k               | Maxir        | mum I oad I         | eflections      |                   |                      |                                |
| Mu-x                                               |                             |                                       | 0.0 k-ft           |              |                     |                 | n at              | 0.0#                 | above base                     |
| 0.9 * Mn-x :                                       |                             |                                       | 17 k-ft            | Along<br>fo  | or load com         |                 |                   | 0.01                 |                                |
| Mu-y                                               |                             |                                       | 0.0 k-ft           |              |                     |                 | 1                 | 0.00                 | - h                            |
| 0.9 * Mn-y :                                       |                             | 160.8                                 | 11 k-ft            | Along        |                     | 0.0 i           | n at              | 0.0tt                | above base                     |
| PASS Maximum Shear S                               | trace Datio                 |                                       | 0.0 : 1            |              | for load cor        |                 |                   |                      |                                |
| PASS Maximum Shear S                               |                             |                                       |                    |              | $\langle V \rangle$ |                 |                   | ) [] ( (             |                                |
| Location of max.ab                                 | ove base                    |                                       | 0.0 ft             |              |                     |                 |                   |                      |                                |
| At maximum location                                | on values are               | · · · · · · · · · · · · · · · · · · · | 0.0 n              |              |                     |                 |                   |                      |                                |
| Vu : Applied                                       |                             |                                       | 0.0 k              |              |                     |                 |                   |                      |                                |
| Vn * Phi : A                                       | lowable                     | (                                     | 0.0 k              |              |                     |                 |                   |                      |                                |
| Load Combination Resul                             | ts                          |                                       |                    |              |                     |                 |                   |                      |                                |
|                                                    | Maximum Axial + Bendi       |                                       |                    |              |                     |                 |                   | n Shear Ra           |                                |
| Load Combination                                   | Stress Ratio State          |                                       | Cbx                | Cby          | KxLx/Rx             |                 | Stress Ratio      |                      | Location                       |
| +1.40D                                             | 0.562 PAS                   |                                       | 1.00               | 1.00         | 39.74               | 22.73           | 0.000             | PASS                 | 0.00 ft                        |
| +1.20D+0.50Lr+1.60L                                | 0.806 PAS                   |                                       | 1.00               | 1.00         | 39.74               | 22.73           | 0.000             | PASS                 | 0.00 ft                        |
| +1.20D+1.60L<br>+1.20D+1.60Lr+L                    | 0.793 PAS<br>0.716 PAS      |                                       | 1.00<br>1.00       | 1.00<br>1.00 | 39.74<br>39.74      | 22.73<br>22.73  | 0.000<br>0.000    | PASS<br>PASS         | 0.00 ft<br>0.00 ft             |
| +1.20D+1.60Lr                                      | 0.522 PAS                   |                                       | 1.00               | 1.00         | 39.74               | 22.73           | 0.000             |                      | 0.00 ft                        |
| +1.20D+L                                           | 0.677 PAS                   | SS 0.00 ft                            | 1.00               | 1.00         | 39.74               | 22.73           | 0.000             | PASS                 | 0.00 ft                        |
| +1.20D                                             | 0.482 PAS                   | SS 0.00 ft                            | 1.00               | 1.00         | 39.74               | 22.73 /         | 0.000             | PASS                 | 0.00 ft                        |
| +1.20D+0.50Lr+L                                    | 0.689 PAS                   |                                       | 1.00               | 1.00         | 39.74               | / 22.73         |                   | PASS                 | 0.00 ft                        |
| +0.90D<br>+1.40D+L                                 | 0.362 PAS<br>0.757 PAS      |                                       | 1.00<br>1.00       | 1.00<br>1.00 | 39.74<br>39.74      | 22.73<br>22.73  | 0.000<br>0.000    | PASS<br>PASS         | 0.00 ft<br>0.00 ft             |
| +0.70D                                             | 0.281 PAS                   |                                       | 1.00               | 1.00         | 39.74               | 22.73           | 0.000             |                      | 0.00 ft                        |
| Maximum Reactions                                  |                             |                                       |                    |              |                     |                 |                   |                      | ns are listed.                 |
| Load Combination                                   | Axial Reaction              |                                       |                    |              | Reaction            | Mx - End        |                   | ft My-<br>@ Ba       | End Moments                    |
|                                                    | @ Base                      |                                       | Тор                | @ Base       | @ Top               | @ Base          | @ Top             | ш ва                 | se @ Top                       |
| D Only<br>+D+L                                     | 307.650<br>456.650          |                                       |                    |              |                     |                 |                   |                      |                                |
| +D+L<br>+D+Lr                                      | 326.650                     |                                       |                    |              |                     |                 |                   |                      |                                |
| +D+0.750Lr+0.750L                                  | 433.650                     |                                       |                    |              |                     |                 |                   |                      |                                |
|                                                    |                             |                                       |                    |              |                     |                 |                   |                      |                                |

nal Version

| Title Block" selection.       |                    |                          |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
|-------------------------------|--------------------|--------------------------|--------------|-----------------------------------|------------------------|----------------------|-------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------|
| Title Block Line 6            |                    |                          |              |                                   |                        |                      |                                                 |                      |                       | 31 MAR 2020, 1:58PM                                    |
| Steel Column                  |                    |                          |              |                                   |                        | F                    |                                                 |                      |                       | lousing Development.ec6 .<br>33-2020, Build:12.20.2.24 |
| Lic. # : KW-06090157 - Ed     | ucational Versior  | 1                        |              | _                                 |                        | Lice                 |                                                 |                      |                       | Y, CIVIL ENGINEERING                                   |
| DESCRIPTION: B3-4             | 4 STL COLS         |                          |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Maximum Reactions             |                    |                          |              |                                   |                        |                      |                                                 |                      | 2100                  | reactions are listed.                                  |
| Load Combination              |                    | Axial Reaction<br>@ Base |              | X-X Axis Reaction<br>@ Base @ Top |                        | ′-Y Axis R<br>) Base | @ Top                                           | Mx - End M<br>@ Base | Aoments k-ft<br>@ Top | My - End Moments<br>@ Base @ Top                       |
| +D+0.750L                     |                    | 419.40                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| +0.60D                        |                    | 184.59                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Lr Only<br>L Only             |                    | 19.00<br>149.00          |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Extreme Reactions             |                    | 145.000                  | ,            |                                   |                        |                      |                                                 |                      |                       |                                                        |
|                               |                    | Axial Reaction           | n            | X-X Axis Reaction                 | k Y                    | '-Y Axis F           | Poaction                                        | Mx - End N           | Ioments k-ft          | My - End Moments                                       |
| Item                          | Extreme Value      | e @ Base                 |              | @ Base @ Top                      |                        | ) Base               | @ Top                                           | @ Base               | @ Top                 | @ Base @ Top                                           |
| Axial @ Base                  | Maximum            | 456.65                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| "<br>Reaction, X-X Axis Base  | Minimum<br>Maximum | 19.00<br>307.65          |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| "                             | Minimum            | 307.65                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Reaction. Y-Y Axis Base       | Maximum            | 307.65                   |              |                                   |                        |                      |                                                 |                      |                       | _                                                      |
|                               | Minimum            | 307.65                   |              |                                   | $\neg$                 |                      |                                                 | Γ, /,                |                       |                                                        |
| Reaction, X-X Axis Top        | Maximum 🖳          | 307.65                   |              |                                   | $S(\underline{\circ})$ |                      | $\mathbb{N}\left[\left( \cap\right)\right]$     |                      |                       |                                                        |
|                               | Minimum            | 307.65                   |              |                                   | 26                     | 7                    |                                                 |                      |                       | JUUGA                                                  |
| Reaction, Y-Y Axis Top        | Maximum            | 307.65                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Moment, X-X Axis Base         | Minimum<br>Maximum | 307.65<br>307.65         |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| "                             | Minimum            | 307.65                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Moment, Y-Y Axis Base         | Maximum            | 307.65                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| "                             | Minimum            | 307.65                   | )            |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Moment, X-X Axis Top          | Maximum            | 307.65                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| "<br>• • • • • • <del>-</del> | Minimum            | 307.65                   |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Moment, Y-Y Axis Top          | Maximum<br>Minimum | 307.65<br>307.65         |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Maximum Deflections           |                    |                          | )            |                                   |                        |                      |                                                 |                      |                       |                                                        |
| Load Combination              |                    | Max. X-X De              | flection     | Distance                          | Ma                     | ix. Y-Y De           | eflection                                       | Distance             |                       |                                                        |
| D Only                        |                    | 0.0000                   | in           | 0.000 ft                          |                        | 0.000                |                                                 | 0.000 ft             |                       |                                                        |
| +D+L                          |                    | 0.0000                   | _            | 0.000 ft                          | $\square$              | 0.000                | in /                                            | 0.000 ft             |                       |                                                        |
| +D+Lr                         |                    | 0.0000                   | in           | 0.000 ft                          | 6                      | 0.000                | in V / (                                        | 0.000 ft             |                       |                                                        |
| +D+0.750Lr+0.750L             |                    | 0.0000                   | in           | 0.000 ft                          |                        | 0.000                | in                                              | 0.000 ft             |                       |                                                        |
| +D+0.750L                     |                    | 0.0000                   | in           | 0.000 ft                          |                        | 0.000                | in                                              | 0.000 ft             |                       |                                                        |
| +0.60D                        |                    | 0.0000                   | in           | 0.000 ft                          |                        | 0.000                | in<br>in                                        | 0.000 ft             |                       |                                                        |
| Lr Only                       |                    | 0.0000 0.0000            | in<br>in     | 0.000 ft<br>0.000 ft              |                        | 0.000<br>0.000       | in<br>in                                        | 0.000 ft<br>0.000 ft |                       |                                                        |
| L Only                        |                    |                          | in           | 0.000 1                           |                        | 0.000                | IN                                              | 0.000 1              |                       |                                                        |
| Steel Section Propert         |                    | V12x65                   | 1.00         | =                                 | 533.00 ir              |                      |                                                 |                      | =                     | 2.180 in^4                                             |
| Depth =<br>Web Thick =        | 12.100             |                          | l xx<br>S xx | - =                               | 87.90 ir               |                      |                                                 | J<br>Cw              | =                     | 5,780.00 in^6                                          |
| Flange Width =                |                    |                          | S xx<br>R xx |                                   | 5.280 ir               |                      |                                                 | GW                   | -                     | 5,700.00 III 0                                         |
| Flange Thick =                |                    |                          | Zx           | =                                 | 96.800 ir              |                      |                                                 |                      |                       |                                                        |
| Area =                        |                    |                          | l yy         | =                                 | 174.000 ir             |                      |                                                 |                      |                       |                                                        |
| Weight =                      |                    |                          | S yy         | =                                 | 29.100 ir              |                      |                                                 | Wno                  | =                     | 34.500 in^2                                            |
| Kdesign =                     |                    |                          | R yy         |                                   | 3.020 in               |                      |                                                 | Sw                   |                       | 62.600 in^4                                            |
|                               |                    |                          |              |                                   |                        |                      |                                                 |                      |                       |                                                        |
|                               | 1.000              | in                       | Zý 🚬         |                                   | 44.100 ir              | ר^3                  | $\langle   (                                  $ | Qf / /               |                       | 20.200 in^3                                            |
| K1<br>rts<br>Yog              |                    | $in ( \bigcirc )$        | Zy           |                                   | _44.100_ir             | n^3                  | $\left  \left( 0 \right) \right $               | Qf<br>Qw             |                       | 20.200 in^3<br>47.500 in^3                             |



# Commercial Use Not Allowed

| Title Block" selection.<br>Title Block Line 6                                                                      |                                                                         |                                       |                                                                        |                                                           | Printed                                                      | : 31 MAR 2020, 1:59                    |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|
| Steel Column                                                                                                       |                                                                         |                                       |                                                                        | File = C:\Users\Owner\Des                                 | ktop\SCU Faculty Staff H                                     | Housing Development.ec6                |
| Lic. # : KW-06090157 - Educat                                                                                      | tional Version                                                          |                                       | Lio                                                                    | Software copyri<br>censed User : SANTA                    |                                                              | 83-2020, Build:12.20.2.24              |
| DESCRIPTION: B5-6 ST                                                                                               |                                                                         |                                       |                                                                        |                                                           |                                                              |                                        |
| Code References<br>Calculations per AISC 36<br>Load Combinations Use                                               | 60-10, IBC 2015, CBC 201<br>d : ASCE 7-16                               | 6, ASCE 7-10                          |                                                                        |                                                           | rs                                                           |                                        |
| General Information                                                                                                |                                                                         |                                       |                                                                        |                                                           |                                                              |                                        |
| Steel Section Name :<br>Analysis Method :<br>Steel Stress Grade<br>Fy : Steel Yield<br>E : Elastic Bending Modulus | W12x45<br>Load Resistance Factor<br>50.0 ksi<br>29,000.0 ksi            |                                       | Tc<br>Brace condition<br>X-X (width) a<br>Unbraced Lo<br>Y-Y (depth) a | ength for buckling ABOL<br>axis :                         | Top & Bottom<br>g) along columns :<br>IT Y-Y Axis = 10.0 ft, | K = 1.0                                |
|                                                                                                                    |                                                                         |                                       | Unbraced L                                                             | ength for buckling ABOL                                   | IT X-X Axis = 10.0 ft,                                       | K = 1.0                                |
| Applied Loads                                                                                                      |                                                                         |                                       | Service I                                                              | oads entered. Load                                        | Factors will be ap                                           | plied for calculatio                   |
| AXIAL LOADS<br>Residential & Above: Ax                                                                             | d : 450.0 lbs * Dead Load Factor<br>(ial Load at 10.0 ft, D = 177.0, LF |                                       | Se                                                                     | Not ,                                                     |                                                              |                                        |
| DESIGN SUMMARY<br>Bending & Shear Chec<br>PASS Max. Axial+Bending<br>Load Combination<br>Location of max.al        | Stress Ratio =<br>+1.20D<br>bove base                                   | <b>0.7662</b><br>+0.50Lr+1.60L<br>0.0 |                                                                        | mum Load Reactions .<br>Top along X-X<br>Bottom along X-X |                                                              | 0.0 k<br>0.0 k                         |
| At maximum locati<br>Pu                                                                                            | ion values are                                                          | 242 440                               | k                                                                      | Top along Y-Y                                             |                                                              | 0.0 k                                  |
| 0.9 * Pn                                                                                                           |                                                                         | 342.440<br>446.921                    |                                                                        | Bottom along Y-Y                                          |                                                              | 0.0 k                                  |
| Mu-x                                                                                                               |                                                                         | 0.0                                   | Movi                                                                   | mum Load Deflections                                      |                                                              |                                        |
| 0.9 * Mn-x :                                                                                                       |                                                                         | 222.837                               | K-II                                                                   | g Y-Y 0<br>or load combination :                          | .0 in at                                                     | 0.0ft above bas                        |
| Mu-y<br>0.9 * Mn-y :                                                                                               |                                                                         | 0.0<br>71.250                         | k-ft                                                                   |                                                           | .0 in at                                                     | 0.0 ft above bas                       |
| PASS Maximum Shear S<br>Load Combination<br>Location of max.al<br>At maximum locati                                | bove base                                                               | 0.0<br>0.0<br>0.0                     |                                                                        | for load combination :                                    | rs                                                           |                                        |
| Vu : Applie<br>Vn * Phi : A                                                                                        | ed                                                                      | 0.0<br>0.0                            |                                                                        |                                                           |                                                              |                                        |
| Load Combination Resu                                                                                              | lts                                                                     |                                       |                                                                        |                                                           |                                                              |                                        |
| Load Combination                                                                                                   | Maximum Axial + Bending Str<br>Stress Ratio Status                      | <u>ess Ratios</u><br>Location         | Cbx Cby                                                                | KxLx/Rx KyLy/Ry                                           | <u>Maximum</u><br>Stress Ratio                               | <u>Shear Ratios</u><br>Status Location |
| +1.40D                                                                                                             | 0.556 PASS                                                              | 0.00 ft                               | 1.00 1.00                                                              | 61.54 23.30                                               | 0.000                                                        | PASS 0.00 f                            |
| +1.20D+0.50Lr+1.60L<br>+1.20D+1.60L                                                                                | 0.766 PASS<br>0.745 PASS                                                | 0.00 ft<br>0.00 ft                    | 1.00 1.00<br>1.00 1.00                                                 | 61.54 23.30<br>61.54 23.30                                |                                                              | PASS 0.00 f<br>PASS 0.00 f             |
| +1.20D+1.60Lr+L                                                                                                    | 0.745 PASS<br>0.712 PASS                                                | 0.00 ft                               | 1.00 1.00                                                              | 61.54 23.30                                               |                                                              | PASS 0.001                             |
| +1.20D+1.60Lr                                                                                                      | 0.544 PASS                                                              | 0.00 ft                               | 1.00 1.00                                                              | 61.54 23.30                                               | 0.000                                                        | PASS 0.00 f                            |
| +1.20D+L<br>+1.20D                                                                                                 | 0.644 PASS<br>0.476 PASS                                                | 0.00 ft<br>0.00 ft                    | 1.00 1.00                                                              | 61.54 23.30<br>61.54 23.30                                |                                                              | PASS 0.00 f                            |
| +1.20D+0.50Lr+L                                                                                                    | 0.666 PASS                                                              | 0.00 ft                               | 1.00 1.00                                                              | 61.54 23.30                                               | 0.000                                                        | PASS 0.00 f                            |
| +0.90D<br>+1.40D+L                                                                                                 | 0.357 PASS<br>0.724 PASS                                                |                                       | 1.00 1.00<br>1.00 1.00                                                 | 61.54 23.30<br>61.54 23.30                                |                                                              | PASS 0.00 f<br>PASS 0.00 f             |
| +0.70D                                                                                                             | 0.278 PASS                                                              | 0.00 ft<br>0.00 ft                    | 1.00 1.00<br>1.00 1.00                                                 | 61.54 23.30<br>61.54 23.30                                |                                                              | PASS 0.00 f<br>PASS 0.00 f             |
| Maximum Reactions                                                                                                  |                                                                         |                                       |                                                                        |                                                           |                                                              | reactions are liste                    |
| Load Combination                                                                                                   | Axial Reaction<br>@ Base                                                | X-X Axis Reaction<br>@ Base @ Top     | k Y-Y Axis<br>@ Base                                                   | Reaction Mx - I<br>@ Top @ Ba                             | End Moments <b>k-ft</b><br>ase @ Top                         | My - End Moment<br>@ Base @ To         |
| D Only                                                                                                             | 177.450                                                                 |                                       |                                                                        |                                                           |                                                              |                                        |
| +D+L<br>+D+Lr                                                                                                      | 252.450<br>196.450                                                      |                                       |                                                                        |                                                           |                                                              |                                        |
| +D+0.750Lr+0.750L                                                                                                  | 247.950                                                                 |                                       |                                                                        |                                                           |                                                              |                                        |
|                                                                                                                    |                                                                         |                                       |                                                                        | $\nabla$                                                  |                                                              |                                        |

| Title Block" selection.     |                    |                          |                                   |                        |                            |                       | District            |                                  |
|-----------------------------|--------------------|--------------------------|-----------------------------------|------------------------|----------------------------|-----------------------|---------------------|----------------------------------|
| Title Block Line 6          |                    |                          |                                   |                        | File = C:\Lleare\C         | wner\Deskton\SC       |                     | a1 MAR 2020, 1:59PM              |
| Steel Column                |                    |                          |                                   |                        |                            |                       |                     | -2020, Build:12.20.2.24          |
| Lic. # : KW-06090157 - Ed   | ucational Version  |                          |                                   |                        | Licensed User :            | SANTA CLAR            | A UNIVERSITY        | , CIVIL ENGINEERING              |
| DESCRIPTION: B5-            | 6 STL COLS         |                          |                                   |                        |                            |                       |                     |                                  |
|                             |                    |                          |                                   |                        |                            |                       |                     |                                  |
| Maximum Reactions           |                    |                          |                                   |                        |                            |                       |                     | eactions are listed.             |
| Load Combination            | 160                | Axial Reaction<br>@ Base | X-X Axis Reaction<br>@ Base @ Top | <b>k</b> Y-Y /<br>@ Ba | Axis Reaction<br>se @ Top  | Mx - End Mo<br>@ Base | ments k-ft<br>@ Top | My - End Moments<br>@ Base @ Top |
| +D+0.750L                   |                    | 233.700                  |                                   |                        |                            |                       |                     |                                  |
| +0.60D                      |                    | 106.470                  |                                   |                        |                            |                       |                     |                                  |
| Lr Only                     |                    | 19.000<br>75.000         |                                   |                        |                            |                       |                     |                                  |
| L Only<br>Extreme Reactions |                    | 75.000                   |                                   |                        |                            |                       |                     |                                  |
| Extreme Reactions           |                    | Avial Departies          | V V Avia Depation                 | <b>k</b> Y-Y           | Avia Depation              | My End Ma             | monto k <b>f</b>    | My End Mamonto                   |
| Item                        | Extreme Value      | Axial Reaction<br>@ Base | X-X Axis Reaction<br>@ Base @ Top | к т-тл<br>@Ва          | Axis Reaction<br>ise @ Top | Mx - End Mo<br>@ Base | ments k-ft<br>@ Top | My - End Moments<br>@ Base @ Top |
|                             |                    | -                        | @ Dase @ Top                      | w Do                   | ise @ iop                  | @ Dase                | le lop              | @ Dase @ Top                     |
| Axial @ Base                | Maximum<br>Minimum | 252.450<br>19.000        |                                   |                        |                            |                       |                     |                                  |
| Reaction, X-X Axis Base     | Maximum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| "                           | Minimum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| Reaction, Y-Y Axis Base     | Maximum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
|                             | Minimum            | 177.450                  |                                   |                        |                            | $\Box$                |                     |                                  |
| Reaction, X-X Axis Top      | Maximum            | 177.450                  |                                   | $\leq (2)$             | $  \rangle  (\circ) $      | $[ ] / \Delta $       |                     | $V_{\rm A}V/(\Delta)$            |
|                             | Minimum 🦳          | 177.450                  |                                   | 26                     |                            | y La                  |                     | MARA                             |
| Reaction, Y-Y Axis Top      | Maximum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| "<br>Mamant X X Avia Daga   | Minimum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| Moment, X-X Axis Base       | Maximum<br>Minimum | 177.450<br>177.450       |                                   |                        |                            |                       |                     |                                  |
| Moment, Y-Y Axis Base       | Maximum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| "                           | Minimum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| Moment, X-X Axis Top        | Maximum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| "                           | Minimum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| Moment, Y-Y Axis Top        | Maximum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
|                             | Minimum            | 177.450                  |                                   |                        |                            |                       |                     |                                  |
| Maximum Deflection          |                    |                          |                                   |                        |                            |                       |                     |                                  |
| Load Combination            |                    | Max. X-X Deflection      |                                   | _                      | -Y Deflection              | Distance              |                     |                                  |
| D Only                      |                    | 0.0000 in                | 0.000 ft                          |                        | 0.000 in                   | 0.000 ft              |                     |                                  |
| +D+L                        |                    | 0.0000 in                | 0.000 ft                          |                        | 0.000 in                   | 0.000 ft              |                     |                                  |
| +D+Lr<br>+D+0.750Lr+0.750L  |                    | 0.0000 in<br>0.0000 in   | 0.000 ft<br>0.000 ft              |                        | 0.000 in 0.000 in          | 0.000 ft<br>0.000 ft  |                     |                                  |
| +D+0.750L                   |                    | 0.0000 in                | 0.000 ft                          |                        | 0.000 in                   | 0.000 ft              |                     |                                  |
| +0.60D                      |                    | 0.0000 in                | 0.000 ft                          |                        | ).000 in                   | 0.000 ft              |                     |                                  |
| Lr Only                     |                    | 0.0000 in                | 0.000 ft                          | (                      | ).000 in                   | 0.000 ft              |                     |                                  |
| L Only                      |                    | 0.0000 in                | 0.000 ft                          | (                      | ).000 in                   | 0.000 ft              |                     |                                  |
| Steel Section Proper        | ties : W           | 12x45                    |                                   |                        |                            |                       |                     |                                  |
|                             | = 12.100 ir        |                          | =                                 | 348.00 in^4            |                            | J                     | =                   | 1.260 in^4                       |
| Web Thick                   | = 0.335 ir         | n Sxx                    | =                                 | 57.70 in^3             |                            | Cw                    | = 1                 | ,650.00 in^6                     |
| Flange Width                | = 8.050 ir         |                          | =                                 | 5.150 in               |                            |                       |                     |                                  |
| Flange Thick                | = 0.575 ir         | ו Zx                     | =                                 | 64.200 in^3            |                            |                       |                     |                                  |
|                             | = 13.100 ir        |                          | =                                 | 50.000 in^4            |                            |                       |                     |                                  |
|                             | = 45.000 p         |                          | =                                 | 12.400 in^3            |                            | Wno                   | =                   | 23.200 in^2                      |
|                             | = 1.080 ir         |                          |                                   | 1.950 in               |                            | Sw                    | F                   | 26.800 in^4                      |
|                             | = 0.938 ir         |                          |                                   | 19.000 in^3            |                            | Qf /                  |                     | 12.800 in^3                      |
| rts                         | = 2.230 ir         |                          |                                   |                        |                            | Qw                    | (FIU)               | 31\700 in^3                      |
| Ycg                         | = 0.000 ir         |                          |                                   |                        |                            |                       |                     |                                  |



# Commercial Use Not Allowed

| and then using the "Printing &                                                                 |                                                              |                                   | Project L               | Jescr:                                                               |                                                  |                                    |                    |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------|
| Title Block" selection.<br>Title Block Line 6                                                  |                                                              |                                   |                         |                                                                      | Printe                                           | ed: 31 MAR 202                     | 0, 11:29PM         |
| Steel Column                                                                                   |                                                              |                                   |                         |                                                                      | Desktop\SCU Faculty Sta<br>yright ENERCALC, INC. |                                    |                    |
| Lic. # : KW-06090157 - Education                                                               |                                                              |                                   | L                       | icensed User : SAN                                                   |                                                  |                                    |                    |
| DESCRIPTION: B7-Roof S                                                                         | TL COLS                                                      |                                   |                         |                                                                      |                                                  |                                    |                    |
| Code References                                                                                |                                                              |                                   | 2                       |                                                                      | phe                                              |                                    |                    |
| Calculations per AISC 360-<br>Load Combinations Used :                                         |                                                              | 16, ASCE 7-10                     |                         |                                                                      | 712                                              |                                    |                    |
| General Information                                                                            |                                                              |                                   |                         |                                                                      |                                                  |                                    |                    |
|                                                                                                | 12x40<br>bad Resistance Factor                               |                                   | 1                       | Overall Column Heigh<br>op & Bottom Fixity<br>n for deflection (buck | Top & Bottor                                     |                                    |                    |
| Fy : Steel Yield                                                                               | 50.0 ksi                                                     |                                   | X-X (width)             | axis :                                                               | 0, 0                                             |                                    |                    |
| E : Elastic Bending Modulus                                                                    | 29,000.0 ksi                                                 |                                   | Unbraced<br>Y-Y (depth) | Length for buckling AB                                               | OUT Y-Y Axis = 10.0                              | ft, K = 1.0                        |                    |
|                                                                                                |                                                              |                                   | Unbraced                | Length for buckling AB                                               | OUT X-X Axis = 10.0                              | ft, K = 1.0                        |                    |
| Applied Loads                                                                                  |                                                              |                                   | Service                 | loads entered. Loa                                                   | d Factors will be                                | applied for ca                     | lculations.        |
| Column self weight included :<br>AXIAL LOADS .<br>Residential & Above: Axial<br>DESIGN SUMMARY | 400.0 lbs * Dead Load Facto<br>Load at 10.0 ft, D = 113.0, L |                                   | Se                      | Not                                                                  |                                                  | DW                                 | 20                 |
| Bending & Shear Check F                                                                        |                                                              |                                   |                         |                                                                      |                                                  |                                    |                    |
| PASS Max. Axial+Bending Str<br>Load Combination                                                |                                                              | 0.5185 ∶<br>0+0.50Lr+1.60L        | :1 <b>Ma</b> :          | ximum Load Reaction<br>Top along X-X                                 | S                                                | 0.0 k                              |                    |
| Location of max.above<br>At maximum location                                                   | e base                                                       | 0.0                               | ft                      | Bottom along X-X                                                     |                                                  | 0.0 k                              |                    |
| Pu                                                                                             |                                                              | 206.380                           | k                       | Top along Y-Y<br>Bottom along Y-Y                                    |                                                  | 0.0 k<br>0.0 k                     |                    |
| 0.9 * Pn                                                                                       |                                                              | 398.017                           | Mos                     | ximum Load Deflectio                                                 | ne                                               |                                    |                    |
| Mu-x                                                                                           |                                                              | 0.0                               | K-ft                    | ng Y-Y                                                               | 0.0 jn at                                        | 0.0ft at                           | ove base           |
| 0.9 * Mn-x :<br>Mu-y                                                                           |                                                              | 196.456  <br>0.0                  | K-IL                    | for load combination                                                 |                                                  |                                    |                    |
| 0.9 * Mn-y :                                                                                   |                                                              | 63.0                              |                         | ng X-X                                                               | 0.0 in at                                        | _0.0ft at                          | ove base           |
| PASS Maximum Shear Stre                                                                        | iss Ratio                                                    | 0.0                               |                         | for load combination                                                 | Prs                                              |                                    | $) \square$        |
| Location of max.above<br>At maximum location<br>Vu : Applied                                   | values are                                                   | 0.0 1                             |                         |                                                                      |                                                  |                                    |                    |
| Vn * Phi : Allov                                                                               | vable                                                        | 0.0                               | k                       |                                                                      |                                                  |                                    |                    |
| Load Combination Results                                                                       |                                                              |                                   |                         |                                                                      |                                                  |                                    |                    |
| Load Combination                                                                               | Maximum Axial + Bending St<br>Stress Ratio Status            | ress Ratios<br>Location           | Cbx Cby                 | KxLx/Rx KyLy/R                                                       | y Stress Ratio                                   | <u>m Shear Ratios</u><br>Status Lo | <u>s</u><br>cation |
| +1.40D<br>+1.20D+0.50Lr+1.60L                                                                  | 0.399 PASS<br>0.519 PASS                                     |                                   | 1.001.001.001.00        | 61.86 23.3<br>61.86 23.3                                             |                                                  | PASS<br>PASS                       | 0.00 ft<br>0.00 ft |
| +1.20D+1.60L                                                                                   | 0.495 PASS                                                   | 0.00 ft                           | 1.00 1.00               | 61.86 23.3                                                           | 9 0.000                                          | PASS                               | 0.00 ft            |
| +1.20D+1.60Lr+L<br>+1.20D+1.60Lr                                                               | 0.514 PASS<br>0.418 PASS                                     |                                   | 1.00 1.00<br>1.00 1.00  | 61.86 23.3<br>61.86 23.3                                             |                                                  |                                    | 0.00 ft<br>0.00 ft |
| (+1.20D+L)                                                                                     | 0.437 PASS                                                   | 0.00 ft                           | 1.00 1.00               | 61.86 23.3                                                           | 9 / / 0.000                                      | PASS                               | 0.00 ft            |
| +1.20D<br>+1.20D+0.50Lr+L                                                                      | 0.342 PASS<br>0.461 PASS                                     |                                   | 1.00 1.00<br>1.00 1.00  | 61.86 23.3<br>61.86 23.3                                             |                                                  | PASS<br>PASS                       | 0.00 ft<br>0.00 ft |
| +0.90D                                                                                         | 0.256 PASS                                                   | 0.00 ft                           | 1.00 1.00               | 61.86 23.3                                                           | 9 0.000                                          | PASS                               | 0.00 ft            |
| +1.40D+L<br>+0.70D                                                                             | 0.494 PASS<br>0.199 PASS                                     |                                   | 1.001.001.001.00        | 61.86 23.3<br>61.86 23.3                                             |                                                  | PASS<br>PASS                       | 0.00 ft<br>0.00 ft |
| Maximum Reactions                                                                              |                                                              |                                   |                         |                                                                      | Note: Only non-ze                                |                                    |                    |
| Load Combination                                                                               | Axial Reaction<br>@ Base                                     | X-X Axis Reaction<br>@ Base @ Top | k Y-Y Ax<br>@ Base      |                                                                      | - End Moments <b>k</b><br>Base @ Top             | - <b>ft</b> My - End<br>@ Base     | Moments<br>@ Top   |
| D Only                                                                                         | 113.400                                                      |                                   |                         |                                                                      | μ                                                |                                    | <u> </u>           |
| +D+L<br>+D+Lr                                                                                  | 151.400<br>132.400                                           |                                   |                         |                                                                      |                                                  |                                    |                    |
| +D+Li<br>+D+0.750Lr+0.750L                                                                     | 156.150                                                      |                                   |                         |                                                                      |                                                  |                                    |                    |
|                                                                                                |                                                              |                                   | $\frown$                | $\nabla / c$                                                         |                                                  |                                    |                    |

| Title Block" selection.<br>Title Block Line 6     |                                 |                               |            |                            |               |                          |                |                 |                    |                      | Printed: 3        | 31 MAR 2020,                              | 11:29PM          |
|---------------------------------------------------|---------------------------------|-------------------------------|------------|----------------------------|---------------|--------------------------|----------------|-----------------|--------------------|----------------------|-------------------|-------------------------------------------|------------------|
| Steel Column                                      |                                 |                               |            |                            |               |                          | File           |                 |                    |                      |                   | ousing Developm                           |                  |
| Lic. # : KW-06090157 - Ed                         | lucational Versior              | 1                             | _          | _                          | _             | _                        | Licens         |                 |                    |                      |                   | 3-2020, Build:12.<br>Y, CIVIL ENGI        |                  |
| DESCRIPTION: B7-                                  |                                 |                               |            |                            |               |                          |                |                 | -                  |                      |                   | ,                                         |                  |
| Maximum Reactions                                 |                                 |                               |            |                            |               |                          |                |                 |                    |                      |                   | reactions ar                              |                  |
| Load Combination                                  | 46                              | Axial Reactio<br>@ Base       |            | X-X Axis React<br>@ Base @ | ion<br>Top    | k Y-Y /<br>@ Ba          | Axis Rea<br>se | action<br>@ Top | Mx - Enc<br>@ Base |                      | nts k-ft<br>D Top | My - End N<br>@ Base                      | loments<br>@ Top |
| +D+0.750L                                         |                                 | 141.900                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| +0.60D                                            |                                 | 68.040                        |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Lr Only<br>L Only                                 |                                 | 19.000<br>38.000              |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Extreme Reactions                                 |                                 | 30.000                        | ,          |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
|                                                   |                                 | Axial Reactio                 | n          | X-X Axis Reac              | tion          | k Y-Y                    | Axis Re        | action          | Mx - End           | Mome                 | nts <b>k-ft</b>   | My - End N                                | Iomente          |
| Item                                              | Extreme Value                   |                               |            |                            | Тор           | @ Ba                     |                | @ Top           | @ Base             |                      | D) Top            | @ Base                                    | @ Top            |
| Axial @ Base                                      | Maximum<br>Minimum              | 156.150<br>19.000             |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Reaction, X-X Axis Base                           | Maximum                         | 113.400                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| "                                                 | Minimum                         | 113.400                       | )          |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Reaction, Y-Y Axis Base                           | Maximum                         | 113.400                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Reaction, X-X Axis Top                            | Minimum<br>Maximum              | 113.400<br>113.400            | 2          |                            | R             |                          |                |                 |                    | $\Delta \setminus [$ |                   |                                           |                  |
| Reaction, Y-Y Axis Top                            | Minimum Maximum                 | 113.400                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           | 9 G              |
| "                                                 | Minimum                         | 113.400                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Moment, X-X Axis Base                             | Maximum                         | 113.400                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Moment, Y-Y Axis Base                             | Minimum<br>Maximum<br>Minimum   | 113.400<br>113.400<br>113.400 | )          |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Moment, X-X Axis Top                              | Maximum                         | 113.400                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| "<br>• • • • • • • •                              | Minimum                         | 113.400                       |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Moment, Y-Y Axis Top                              | Maximum<br>Minimum              | 113.400<br>113.400            |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Maximum Deflection                                |                                 |                               | )          |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
| Load Combination                                  | S IUI LUAU CUII                 | Max. X-X Det                  | flection   | Distance                   |               | Max V                    | -Y Defl        | ection          | Distance           |                      |                   |                                           |                  |
| D Only                                            |                                 | 0.0000                        | in         | 0.000                      | ft            |                          | ).000          | in              | -                  | ft                   | Γ                 |                                           |                  |
| +D+L                                              |                                 | 0.0000                        |            | 0.000                      | ft (          |                          | 0.000          | in /            | 0.000              | ft                   |                   |                                           |                  |
| +D+Lr                                             |                                 | 0.0000                        | in         | 0.000                      | ft            |                          | 0.000          | in V / (        | 0.000              | ft ,                 | >                 | $\left( \cup \right)$                     |                  |
| +D+0.750Lr+0.750L                                 |                                 | 0.0000                        |            | 0.000                      | ft            |                          | 0.000          | in              | 0.000              | ft                   |                   |                                           |                  |
| +D+0.750L                                         |                                 | 0.0000                        | in<br>in   | 0.000                      | ft<br>A       |                          | 000.0          | in<br>in        | 0.000              | ft<br>4              |                   |                                           |                  |
| +0.60D<br>Lr Only                                 |                                 | 0.0000<br>0.0000              | in<br>in   | 0.000<br>0.000             | ft<br>ft      |                          | 0.000<br>0.000 | in<br>in        | 0.000<br>0.000     | ft<br>ft             |                   |                                           |                  |
| L Only                                            |                                 | 0.0000                        | in         | 0.000                      | ft            |                          | 0.000          | in              |                    | ft                   |                   |                                           |                  |
| Steel Section Proper                              | tios · V                        | N12x40                        |            | 0.000                      | it.           |                          |                |                 | 0.000              | it.                  |                   |                                           |                  |
|                                                   | = 11.900                        |                               | l xx       | =                          | 30            | 7.00 in^4                |                |                 | J                  |                      | =                 | 0.906 in^4                                |                  |
|                                                   | = 0.295                         |                               | S xx       | =                          |               | 51.50 in^3               |                |                 | Cw                 |                      |                   | 1,440.00 in^6                             |                  |
|                                                   | = 8.010                         |                               | Rxx        | =                          |               | 5.130 in                 |                |                 |                    |                      |                   | , <b>.</b>                                |                  |
| Flange Width =                                    | - 0.010                         |                               |            |                            |               |                          |                |                 |                    |                      |                   |                                           |                  |
|                                                   | = 0.515                         |                               | Zx         | =                          | 57            | 7.000 in^3               |                |                 |                    |                      |                   |                                           |                  |
| Flange Thick                                      |                                 | in                            | Zx<br>I yy | =                          |               | 7.000 in^3<br>1.100 in^4 |                |                 |                    |                      |                   |                                           |                  |
| Flange Thick Area                                 | = 0.515<br>= 11.700<br>= 40.000 | in<br>in^2<br>plf             |            |                            | 44<br>11      | 100 in^4<br>.000 in^3    |                |                 | Wno                |                      | =                 | 22.800 in^2                               |                  |
| Flange Thick =<br>Area =<br>Weight =<br>Kdesign = | = 0.515<br>= 11.700             | in<br>in^2<br>plf<br>in       | l yy       | =                          | 44<br>11<br>1 | 1.100 in^4               |                |                 | Wno<br>Sw<br>Qf    |                      | -                 | 22.800 in^2<br>23.500 in^4<br>11.300 in^3 |                  |



# Commercial Use Not Allowed

| Title Block" selection.<br>Title Block Line 6 |                                                    |                                    | Printed: 14 MAR 20                                                                                      | 20 6.10PM           |
|-----------------------------------------------|----------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|
| Steel Column                                  |                                                    |                                    | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Develo                                          | pment.ec6           |
| Lic. # : KW-06090157 - Educ                   | ational Version                                    |                                    | Software copyright ENERCALC, INC. 1983-2020, Build:<br>Licensed User : SANTA CLARA UNIVERSITY, CIVIL EN |                     |
| DESCRIPTION: C1-2 S                           |                                                    |                                    |                                                                                                         |                     |
| Code References                               |                                                    |                                    |                                                                                                         |                     |
|                                               | 360-10, IBC 2015, CBC 20 <sup>4</sup>              | 6 ASCE 7-10                        |                                                                                                         |                     |
| Load Combinations Us                          |                                                    |                                    |                                                                                                         |                     |
| General Information                           |                                                    |                                    |                                                                                                         |                     |
| Steel Section Name :                          | W12x65                                             |                                    | Overall Column Height 15.0 ft                                                                           |                     |
| Analysis Method :                             | Load Resistance Factor                             |                                    | Top & Bottom Fixity Top Pinned, Bottom Fixity                                                           | ed                  |
| Steel Stress Grade                            |                                                    | Bra                                | ce condition for deflection (buckling) along columns :                                                  |                     |
| Fy : Steel Yield                              | 50.0 ksi                                           | >                                  | X-X (width) axis :                                                                                      |                     |
| E : Elastic Bending Modulus                   | 29,000.0 ksi                                       | Ň                                  | Unbraced Length for buckling ABOUT Y-Y Axis = 15.0 ft, K = 0.80                                         |                     |
|                                               |                                                    | I                                  | Y-Y (depth) axis :<br>Unbraced Length for buckling ABOUT X-X Axis = 15.0 ft, K = 0.80                   |                     |
| Applied Loads                                 |                                                    |                                    | Service loads entered. Load Factors will be applied for                                                 | calculatior         |
| AXIAL LOADS                                   | ed : 975.0 lbs * Dead Load Facto                   |                                    | a Nat Allan                                                                                             |                     |
| Residential & Above: A                        | xial Load at 15.0 ft, D = 260.0, L                 | R = 29.0, L = 133.0 k              |                                                                                                         | (20)                |
| DESIGN SUMMARY                                |                                                    |                                    |                                                                                                         |                     |
| Bending & Shear Che                           |                                                    | 0 7405 . 4                         | Maximum Load Depatient                                                                                  |                     |
| PASS Max. Axial+Bendin<br>Load Combinatio     |                                                    | <b>0.7425</b> : 1<br>+0.50Lr+1.60L | Maximum Load Reactions<br>Top along X-X 0.0 k                                                           |                     |
| Location of max.                              | above base                                         | 0.0 ft                             | Bottom along X-X 0.0 k                                                                                  |                     |
|                                               | tion values are                                    | 540 47 1                           | Top along Y-Y 0.0 k                                                                                     |                     |
| Pu<br>0.9 * Pn                                |                                                    | 540.47 k<br>727.86 k               | Bottom along Y-Y 0.0 k                                                                                  |                     |
| Mu-x                                          |                                                    | 0.0 k-ft                           | Maximum Load Deflections                                                                                |                     |
| 0.9 * Mn-x                                    | :                                                  | 339.571 k-ft                       | 0                                                                                                       | bove base           |
| Mu-y                                          |                                                    | 0.0 k-ft                           | for load combination :                                                                                  |                     |
| 0.9 * Mn-y                                    | :                                                  | 160.811 k-ft                       | Along X-X 0.0 in at 0.0 ft al                                                                           | bove base           |
|                                               |                                                    |                                    | for load combination :                                                                                  |                     |
| PASS Maximum Shear                            |                                                    |                                    |                                                                                                         |                     |
| Load Combinatio                               |                                                    | 0.0 C                              |                                                                                                         |                     |
| At maximum loca                               | tion values are                                    |                                    |                                                                                                         |                     |
| Vu : Appli<br>Vn * Phi                        | ed<br>Allowable                                    | 0.0 k<br>0.0 k                     |                                                                                                         |                     |
|                                               |                                                    | 0.0 K                              |                                                                                                         |                     |
| Load Combination Res                          |                                                    |                                    |                                                                                                         |                     |
| Load Combination                              | Maximum Axial + Bending Str<br>Stress Ratio Status | <u>ess Ratios</u><br>Location Cb   | x Cby KxLx/Rx KyLy/Ry Stress Ratio Status Lo                                                            | <u>s</u><br>ocation |
| +1.40D                                        | 0.502 PASS                                         | 0.00 ft 1.00                       |                                                                                                         | 0.00 ft             |
| +1.20D+0.50Lr+1.60L                           | 0.743 PASS                                         | 0.00 ft 1.00                       | 0 1.00 47.68 27.27 0.000 PASS                                                                           | 0.00 ft             |
| +1.20D+1.60L                                  | 0.723 PASS                                         | 0.00 ft 1.00                       |                                                                                                         | 0.00 ft             |
| +1.20D+1.60Lr+L<br>+1.20D+1.60Lr              | 0.677 PASS<br>0.494 PASS                           | 0.00 ft 1.00                       |                                                                                                         | 0.00 ft<br>0.00 ft  |
| (+1.20D+L)                                    | 0.613 PASS                                         | 0.00 ft 1.00                       |                                                                                                         | 0.00 ft             |
| (+1.20D))))))))))))))))))))))))))))))))))))   | 0.430 PASS                                         | 0.00 ft 1.00                       |                                                                                                         | 0.00 ft             |
| +1.20D+0.50Lr+L                               | 0.633 PASS<br>0.323 PASS                           | 0.00 ft 1.00<br>0.00 ft 1.00       |                                                                                                         | 0.00 ft             |
| +0.90D<br>+1.40D+L                            | 0.525 PASS<br>0.685 PASS                           | 0.00 ft 1.00                       |                                                                                                         | 0.00 ft             |
| +0.70D                                        | 0.251 PASS                                         | 0.00 ft 1.00                       |                                                                                                         | 0.00 ft             |
| <b>Maximum Reactions</b>                      |                                                    |                                    | Note: Only non-zero reactions                                                                           | s are listed        |
| Land Ormahi "                                 | Axial Reaction                                     | X-X Axis Reaction k                |                                                                                                         | d Moments           |
| Load Combination                              | @ Base                                             | @ Base @ Top                       | @ Base @ Top @ Base @ Top @ Base                                                                        | @ Top               |
| D Only<br>+D+L                                | 260.975<br>393.975                                 |                                    |                                                                                                         |                     |
| +D+Lr                                         | 289.975                                            |                                    |                                                                                                         |                     |
|                                               |                                                    |                                    |                                                                                                         |                     |

| Litle Block" selection.   |                    |                    |          |                |                            |                |                                |                      | Drinte          | H- 14 MAD 2020 6-400                             |
|---------------------------|--------------------|--------------------|----------|----------------|----------------------------|----------------|--------------------------------|----------------------|-----------------|--------------------------------------------------|
| Title Block Line 6        |                    |                    |          |                |                            |                | File = C:\Users\C              | )wner\Desktop\S      |                 | d: 14 MAR 2020, 6:10P<br>Housing Development.ec6 |
| Steel Column              |                    |                    |          |                |                            |                | Softwa                         | are copyright ENE    | ERCALC, INC. 19 | 983-2020, Build:12.20.2.24 .                     |
| Lic. # : KW-06090157 - Ed |                    | 1                  |          |                |                            | Lic            | ensed User :                   | SANTA CLA            | RA UNIVERS      | ITY, CIVIL ENGINEERI                             |
| DESCRIPTION: C1-          | 2 STL COLS         |                    |          |                |                            |                |                                |                      |                 |                                                  |
| Maximum Reactions         |                    |                    |          |                |                            |                |                                | Note:                | Only non-ze     | ero reactions are liste                          |
|                           | +( )               | Axial Reaction     | X-X A    | xis Reactio    |                            | Y-Y Axis       | Reaction                       | Mx - End M           |                 |                                                  |
| Load Combination          |                    | @ Base             | @ Bas    |                |                            | @ Base         | @ Top                          | @ Base               | @ Top           | @ Base @ Top                                     |
| +D+0.750Lr+0.750L         |                    | 382.475            |          |                |                            |                |                                |                      |                 |                                                  |
| +D+0.750L                 |                    | 360.725            |          |                |                            |                |                                |                      |                 |                                                  |
| +0.60D<br>Lr Only         |                    | 156.585<br>29.000  |          |                |                            |                |                                |                      |                 |                                                  |
| L Only                    |                    | 133.000            |          |                |                            |                |                                |                      |                 |                                                  |
| Extreme Reactions         |                    | 100.000            |          |                |                            |                |                                |                      |                 |                                                  |
|                           |                    | Axial Reaction     | X-X A    | xis Reactio    | on <b>k</b>                | Y-Y Axis       | Reaction                       | Mx - End M           | oments k-f      | t My - End Moments                               |
| tem                       | Extreme Value      | @ Base             | @ Bas    | se @ T         | Гор                        | @ Base         | @ Top                          | @ Base               | @ Top           | @ Base @ Top                                     |
| Axial @ Base              | Maximum            | 393.975            |          |                |                            |                |                                |                      |                 |                                                  |
| "                         | Minimum            | 29.000             |          |                |                            |                |                                |                      |                 |                                                  |
| Reaction, X-X Axis Base   | Maximum<br>Minimum | 260.975<br>260.975 |          |                |                            |                |                                |                      |                 |                                                  |
| Reaction, Y-Y Axis Base   | Maximum            | 260.975            |          |                |                            |                |                                | Л                    |                 |                                                  |
| "                         | Minimum            | 260.975            |          |                | $(\bigcirc ( \subset$      | 1 6            | $\mathcal{N}(\mathcal{O})^{L}$ | $1 d / \Delta$       |                 |                                                  |
| Reaction, X-X Axis Top    | Maximum 7          | 260.975            | 0        |                | $\mathcal{O}(\mathcal{C})$ | 7              |                                | ιι / <sub>—</sub>    |                 | リーシー・ハー                                          |
| "                         | Minimum            | 260.975            |          | $\bigcirc$     | <u> </u>                   |                |                                |                      |                 |                                                  |
| Reaction, Y-Y Axis Top    | Maximum            | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
| II                        | Minimum            | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
| Moment, X-X Axis Base     | Maximum            | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
|                           | Minimum            | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
| Moment, Y-Y Axis Base     | Maximum            | 260.975<br>260.975 |          |                |                            |                |                                |                      |                 |                                                  |
| Moment, X-X Axis Top      | Minimum<br>Maximum | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
| "                         | Minimum            | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
| Moment, Y-Y Axis Top      | Maximum            | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
| "                         | Minimum            | 260.975            |          |                |                            |                |                                |                      |                 |                                                  |
| <b>Maximum Deflection</b> | s for Load Con     | nbinations         |          |                |                            |                |                                |                      |                 |                                                  |
| Load Combination          |                    | Max. X-X Defle     | ction    | Distance       |                            | Лах. Ү-Ү D     | Deflection                     | Distance             |                 |                                                  |
| D Only                    |                    | 0.0000             | in (     | 0.000          | ft 🔶                       | 0.000          | ) in /                         | 0.000 ft             | 797             |                                                  |
| +D+L                      |                    | 0.0000             | in U     | 0.000          | ft Q                       | 0.000          |                                | 0.000 ft             |                 |                                                  |
| +D+Lr                     |                    | 0.0000             | in       | 0.000          | ft                         | 0.000          |                                | 0.000 ft             |                 |                                                  |
| +D+0.750Lr+0.750L         |                    | 0.0000<br>0.0000   | in<br>in | 0.000          | ft<br>ft                   | 0.000          |                                | 0.000 ft<br>0.000 ft |                 |                                                  |
| +D+0.750L<br>+0.60D       |                    | 0.0000             | in<br>in | 0.000<br>0.000 | π<br>ft                    | 0.000<br>0.000 |                                | 0.000 ft<br>0.000 ft |                 |                                                  |
| Lr Only                   |                    | 0.0000             | in       | 0.000          | ft                         | 0.000          |                                | 0.000 ft             |                 |                                                  |
| L Only                    |                    | 0.0000             | in       | 0.000          | ft                         | 0.000          |                                | 0.000 ft             |                 |                                                  |
| Steel Section Proper      | rties : W          | /12x65             |          |                |                            |                |                                |                      |                 |                                                  |
|                           | = 12.100 i         |                    | xx       | =              | 533.00                     | in^4           |                                | J                    | =               | 2.180 in^4                                       |
| •                         | = 0.390 i          |                    | xx       | =              | 87.90                      |                |                                | Cw                   | =               | 5,780.00 in^6                                    |
|                           | = 12.000 i         |                    | xx       | =              | 5.280                      |                |                                |                      |                 |                                                  |
| Flange Thick              | = 0.605 i          |                    | х        | =              | 96.800                     |                |                                |                      |                 |                                                  |
|                           | = 19.100 i         | in^2 I             | уу       | =              | 174.000                    | in^4           |                                |                      |                 |                                                  |
|                           | = 65.000           |                    | уу       | =              | 29.100                     |                |                                | Wno                  |                 | 34.500 in^2                                      |
|                           | = 1.200 i          | in R               | уу       | =              | 3.020                      |                | $\mathcal{N}(\mathcal{O})$     | Sw / 🛆               | \ <b>=</b> (    | 62.600/in^4 🛆                                    |
|                           | = 1.000 i          |                    | yO       |                |                            | in^3           | VD                             |                      |                 | 20.200 in^3                                      |
| rts                       | = 3.380 i          | in                 |          |                |                            |                |                                | Qw                   | =               | 47.500 in^3                                      |
| Van                       |                    |                    |          |                |                            |                |                                |                      |                 |                                                  |

0.000 in

=

Ycg



# Commercial Use Not Allowed

| Title Block" selection.               |                                                    |                                   |              |                    |                              |                    | Drinte                  |                             | 0000 0.00DM                   |
|---------------------------------------|----------------------------------------------------|-----------------------------------|--------------|--------------------|------------------------------|--------------------|-------------------------|-----------------------------|-------------------------------|
| Title Block Line 6 Steel Column       |                                                    |                                   |              |                    | File = C:\Users\C            | )wner\Desktop      |                         |                             | 2020, 2:00PM<br>relopment.ec6 |
| Lic. # : KW-06090157 - Educa          | tional Varaian                                     |                                   |              |                    |                              |                    | NERCALC, INC.           |                             | ild:12.20.2.24<br>ENGINEERING |
| DESCRIPTION: C3-4 S                   |                                                    |                                   |              |                    | enseu User .                 | SANTA CLA          | KA UNIVERS              |                             |                               |
|                                       |                                                    |                                   |              |                    |                              | 7                  |                         |                             |                               |
| Code References                       |                                                    | $\bigcirc$                        |              |                    |                              |                    | n                       |                             |                               |
| Calculations per AISC 3               | 60-10, IBC 2015, CBC 201                           | 6, ASCE 7-10                      | 10           |                    |                              |                    | $\square$               |                             |                               |
| Load Combinations Use                 |                                                    |                                   |              |                    |                              |                    |                         |                             |                               |
| General Information                   |                                                    |                                   |              |                    |                              |                    |                         |                             |                               |
| Steel Section Name :                  | W12x45                                             |                                   |              | 0                  | verall Column                | Heiaht             |                         | 10.0 ft                     |                               |
| Analysis Method :                     | Load Resistance Factor                             |                                   |              |                    | p & Bottom Fi                |                    | p & Botton              |                             |                               |
| Steel Stress Grade                    |                                                    |                                   |              |                    | for deflection               | (buckling) a       | long columns            | :                           |                               |
| Fy : Steel Yield                      | 50.0 ksi                                           |                                   |              | (width) a          | XIS :<br>ength for bucklir   |                    | $V \Delta vis = 10.01$  | + K = 10                    |                               |
| E : Elastic Bending Modulus           | 29,000.0 ksi                                       |                                   |              | (depth) a          | -                            | IG ADOUT 1-        | 1 AXI3 - 10.01          | ι, IX = 1.0                 |                               |
|                                       |                                                    |                                   | U            | nbraced Le         | ength for bucklir            | ng ABOUT X-        | X Axis = 10.0 f         | it, K = 1.0                 |                               |
| Applied Loads                         |                                                    |                                   |              | Service I          | oads entered                 | I. Load Fac        | tors will be a          | applied for                 | calculations.                 |
| Column self weight include            | d : 450.0 lbs * Dead Load Facto                    |                                   |              |                    |                              | Д [                |                         |                             |                               |
|                                       | kial Load at 10.0 ft, D = 183.0, LI                | R = 12.0 I = 89.04                | SI           | 2)                 |                              |                    |                         | $\gamma V V c$              |                               |
| DESIGN SUMMARY                        |                                                    |                                   | DC           | J L                |                              | G D-               |                         | 200                         | JAR                           |
| Bending & Shear Chec                  | k Results                                          |                                   |              |                    |                              |                    |                         |                             |                               |
| PASS Max. Axial+Bending               | ) Stress Ratio =                                   | 0.8246                            | :1           | Maxi               | mum Load Rea                 | ctions             |                         |                             |                               |
| Load Combination                      |                                                    | +0.50Lr+1.60L                     |              |                    | Top along X-                 |                    |                         | 0.0 k                       |                               |
| Location of max.a<br>At maximum locat |                                                    | 0.0                               | ft           |                    | Bottom along<br>Top along Y- |                    |                         | 0.0 k<br>0.0 k              |                               |
| Pu                                    |                                                    | 368.540                           | k            |                    | Bottom along                 |                    |                         | 0.0 k                       |                               |
| 0.9 * Pn                              |                                                    | 446.921                           | k            | Mari               | · ·                          |                    |                         |                             |                               |
| Mu-x                                  |                                                    | 0.0                               | k-ft         |                    | mum Load Def                 |                    | at                      | 0.0#                        | ahaya haaa                    |
| 0.9 * Mn-x :                          |                                                    | 222.837                           | k-ft         |                    | g Y-Y<br>or load combir      | 0.0 ir<br>nation : | dl                      | 0.0π                        | above base                    |
| Mu-y<br>0.9 * Mn-y :                  |                                                    | 0.0                               |              |                    | g X-X                        | 0.0 jr             | ot                      | 0.0#                        | above base                    |
| 0.5 Will-y .                          |                                                    | 71.250                            | к-п          |                    | for load combi               |                    | i al                    | 0.01                        |                               |
| PASS Maximum Shear                    | Stress Ratio =                                     | 0.0                               | :10          |                    |                              |                    | $\gamma(<$              |                             | $\gamma$                      |
| Load Combination                      |                                                    | 0.0                               |              |                    |                              | 5                  |                         |                             |                               |
| Location of max.a<br>At maximum locat |                                                    | 0.0                               | ft           |                    |                              |                    |                         |                             |                               |
| Vu : Applie                           | ed                                                 | 0.0                               |              |                    |                              |                    |                         |                             |                               |
| Vn * Phi : /                          | Allowable                                          | 0.0                               | k            |                    |                              |                    |                         |                             |                               |
| Load Combination Resu                 | lts                                                |                                   |              |                    |                              |                    |                         |                             |                               |
| Load Combination                      | Maximum Axial + Bending Sti<br>Stress Ratio Status | <u>ess Ratios</u><br>Location     | Cbx          | Cby                | KxLx/Rx K                    | vLv/Rv             | Maximun<br>Stress Ratio | <u>n Shear Ra</u><br>Status | <u>tios</u><br>Location       |
| +1.40D                                | 0.575 PASS                                         | 0.00 ft                           | 1.00         | 1.00               |                              | 23.30              |                         | PASS                        | 0.00 ft                       |
| +1.20D+0.50Lr+1.60L                   | 0.825 PASS                                         | 0.00 ft                           | 1.00         | 1.00               | 61.54                        | 23.30              | 0.000                   | PASS                        | 0.00 ft                       |
| +1.20D+1.60L                          | 0.811 PASS                                         | 0.00 ft                           | 1.00         | 1.00               |                              | 23.30              |                         | PASS                        | 0.00 ft                       |
| +1.20D+1.60Lr+L<br>+1.20D+1.60Lr      | 0.735 PASS<br>0.536 PASS                           | 0.00 ft<br>0.00 ft                | 1.00<br>1.00 | 1.00<br>1.00       |                              | 23.30<br>23.30 –   |                         | PASS<br>PASS                | 0.00 ft<br>0.00 ft            |
| +1.20D+L                              | 0.692 PASS                                         | 0.00 ft                           | 1.00         | 1.00               | 61.54                        | 23.30 🛛 🗸          | 0.000                   | PASS                        | 0.00 ft                       |
| +1.20D                                | 0.493 PA\$\$                                       | 0.00 ft                           | 1.00         | 1.00               | 61.54                        | 23.30 / 🗠          | 0.000                   | PASS                        | 0.00 ft                       |
| +1.20D+0.50Lr+L                       | 0.705 PASS<br>0.369 PASS                           | 0.00 ft 0.00 ft                   | 1.00         | 1.00               |                              | 23.30<br>23.30     |                         | PASS<br>PASS                | 0.00 ft<br>0.00 ft            |
| +0.90D<br>+1.40D+L                    | 0.369 PASS<br>0.774 PASS                           | 0.00 ft                           | 1.00         | 1.00               |                              | 23.30              |                         | PASS                        | 0.00 ft                       |
| +0.70D                                | 0.287 PASS                                         | 0.00 ft                           | 1.00         | 1.00               |                              | 23.30              |                         | PASS                        | 0.00 ft                       |
| Maximum Reactions                     |                                                    |                                   |              |                    |                              |                    | Only non-ze             |                             |                               |
| Load Combination                      | Axial Reaction<br>@ Base                           | X-X Axis Reaction<br>@ Base @ Top | k            | Y-Y Axis<br>@ Base | Reaction<br>@ Top            | Mx - End<br>@ Base | Moments k<br>@ Top      | -ft My - I<br>@ Bas         | End Moments<br>e @ Top        |
| D Only                                | 183.450                                            | - •                               |              | -                  |                              | -                  |                         | -                           |                               |
| +D+L                                  | 272.450                                            |                                   |              |                    |                              |                    |                         |                             |                               |
| +D+Lr<br>+D+0.750Lr+0.750L            | 195.450<br>259.200                                 |                                   |              |                    |                              |                    |                         |                             |                               |
| +D+0.730LI+0.730L                     | 209.200                                            |                                   |              |                    |                              | 7                  |                         |                             |                               |
|                                       |                                                    |                                   |              |                    |                              |                    |                         |                             |                               |

| Title Block" selection.<br>Title Block Line 6 |                    |                          |                          |                 |                       |                        | Printed                          | : 31 MAR 2020, 2:00PM            |
|-----------------------------------------------|--------------------|--------------------------|--------------------------|-----------------|-----------------------|------------------------|----------------------------------|----------------------------------|
| Steel Column                                  |                    |                          |                          |                 | Fil                   | le = C:\Users\Owner\De |                                  | Housing Development.ec6          |
| Lic. # : KW-06090157 - Edu                    | unational Varaion  |                          |                          |                 | Licon                 |                        | right ENERCALC, INC. 19          | 83-2020, Build:12.20.2.24        |
| DESCRIPTION: C3-4                             |                    |                          |                          |                 | Licen                 | ISEU USEI : SANTA      | A CLARA UNIVERSI                 | T, GIVIE ENGINEERING             |
| Maximum Reactions                             |                    |                          |                          |                 |                       |                        |                                  | reactions are listed.            |
| Load Combination                              |                    | Axial Reaction<br>@ Base | X-X Axis Rea<br>@ Base ( | a) Top          | Y-Y Axis Re<br>@ Base |                        | - End Moments k-ft<br>Base @ Top | My - End Moments<br>@ Base @ Top |
| +D+0.750L<br>+0.60D                           |                    | 250.200<br>110.070       |                          |                 |                       |                        |                                  |                                  |
| Lr Only                                       |                    | 12.000                   |                          |                 |                       |                        |                                  |                                  |
| L Only<br>Extreme Reactions                   |                    | 89.000                   |                          |                 |                       |                        |                                  |                                  |
|                                               |                    | Axial Reaction           | X-X Axis Rea             | action <b>k</b> | Y-Y Axis Re           | eaction Mx -           | End Moments k-ft                 | My - End Moments                 |
| Item                                          | Extreme Value      | @ Base                   |                          | @ Top           |                       |                        | Base @ Top                       | @ Base @ Top                     |
| Axial @ Base                                  | Maximum<br>Minimum | 272.450<br>12.000        |                          |                 |                       |                        |                                  |                                  |
| Reaction, X-X Axis Base                       | Maximum            | 183.450                  |                          |                 |                       |                        |                                  |                                  |
| "<br>Reaction, Y-Y Axis Base                  | Minimum<br>Maximum | 183.450<br>183.450       |                          |                 |                       |                        |                                  |                                  |
|                                               | Minimum            | 183.450                  |                          |                 |                       |                        |                                  |                                  |
| Reaction, X-X Axis Top                        | Maximum Minimum    | 183.450                  |                          | 115S(8          | Э IV                  | ][(0)][                |                                  | )\\//(읝(이                        |
| Reaction, Y-Y Axis Top                        | Maximum            | 183.450                  |                          |                 |                       |                        |                                  |                                  |
| "<br>Moment, X-X Axis Base                    | Minimum<br>Maximum | 183.450<br>183.450       |                          |                 |                       |                        |                                  |                                  |
|                                               | Minimum            | 183.450                  |                          |                 |                       |                        |                                  |                                  |
| Moment, Y-Y Axis Base                         | Maximum<br>Minimum | 183.450<br>183.450       |                          |                 |                       |                        |                                  |                                  |
| Moment, X-X Axis Top                          | Maximum            | 183.450                  |                          |                 |                       |                        |                                  |                                  |
|                                               | Minimum            | 183.450                  |                          |                 |                       |                        |                                  |                                  |
| Moment, Y-Y Axis Top                          | Maximum<br>Minimum | 183.450<br>183.450       |                          |                 |                       |                        |                                  |                                  |
| Maximum Deflections                           | s for Load Com     | binations                |                          |                 |                       |                        |                                  |                                  |
| Load Combination                              |                    | Max. X-X Deflect         |                          |                 | Max. Y-Y Def          |                        | ance                             |                                  |
| D Only<br>+D+L                                |                    |                          | n 0.000<br>n 0.000       |                 | 0.000 0.000           | in 0.00<br>in 0.00     |                                  |                                  |
| +D+Lr                                         |                    |                          | n 0.000                  |                 | 0.000                 | in (0.00               |                                  |                                  |
| +D+0.750Lr+0.750L                             |                    |                          | n 0.000                  |                 | 0.000                 | in 0.00                |                                  |                                  |
| +D+0.750L<br>+0.60D                           |                    |                          | n 0.000<br>n 0.000       |                 | 0.000<br>0.000        | in 0.00<br>in 0.00     |                                  |                                  |
| Lr Only                                       |                    | 0.0000                   | n 0.000                  |                 | 0.000                 | in 0.00                | 10 ft                            |                                  |
| L Only                                        |                    |                          | n 0.000                  | ) ft            | 0.000                 | in 0.00                | 00 ft                            |                                  |
| Steel Section Propert                         |                    | /12x45                   |                          | 0.10.00         | • • • •               |                        |                                  | 4.000 : 44                       |
| Depth =<br>Web Thick =                        |                    |                          |                          | 348.00<br>57.70 |                       | J<br>Cw                | =<br>v =                         | 1.260 in^4<br>1,650.00 in^6      |
| Flange Width =                                |                    |                          |                          | 5.150           |                       | Cw                     |                                  | 1,000.00 III 0                   |
| Flange Thick =                                | 0.575              | in Zx                    | =                        | 64.200          | in^3                  |                        |                                  |                                  |
| Area =                                        |                    |                          |                          | 50.000          |                       |                        |                                  | 00.000 :- 40                     |
| Weight =<br>Kdesian =                         |                    |                          |                          | 12.400          |                       | Wr<br>Sw               |                                  | 23.200 in^2<br>26.800 in^4       |
| Kdesign =                                     | 0.938              |                          |                          | 1950            |                       | Qf                     |                                  | 20.800 in^4<br>12.800 in^3       |
|                                               | 2.230              | in (G)                   |                          | JSC             |                       |                        |                                  | 31/700 in^3                      |



# Commercial Use Not Allowed

| Difference         Description           Calculations per AISC 380-10. (BC 2016, ASCE 7/10         Exe 2 A V12 ACLAS (V12 ACLAS (V1                                                                                                                                                                                                                                                                                                                                                                                                      | Title Block" selection. |                                                  |                   |             |                        |                  | Drinte de Or      |             | 0.44.00014  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|-------------------|-------------|------------------------|------------------|-------------------|-------------|-------------|
| Lice & Avv3cd00x02 # differences         Description:         C5-6 STL COLS           Code References         Calculations per AISC 360-10. IBC 2015, C2C 2016, ASCE 7:10         Code References         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Title Block Line 6      |                                                  |                   |             | File = C:\Users\O      | wner\Desktop\SCU |                   |             |             |
| DESCRIPTION:         C-64 STL COLS           Cade ulations per AISC 360-10. IBC 2015, CBC 2016, ASCE 7/10         Cade ulations per AISC 360-10. IBC 2015, CBC 2016, ASCE 7/10           Cade Combinations Used : ASCE 7-16         General Information           Steel Section Name:         W12:40           Steel Section Name:         U2:40           Steel Section Name:         U2:40           Steel Stees Grade         50.0 ksi           F: Elestic Berding Modula         29,000.0 ksi           Steel Section Name:         U2:400           Courner of wright housded : 40.00 bs 1 Dead Load Factor         XXI(MH) axis:           Courner of wright housded : 40.00 bs 1 Dead Load Factor         Service loads entered. Load Factors will be applied for calculations.           Courner of wright housded : 40.00 bs 1 Dead Load Factor         0.0 ft R           PASS Max. Axael-Bending Stress Ratio         +1.200+0.50Lr+1.610           Max         0.0 ft R           0.3 * In         396.017 k           0.3 * In         0.0 ft R           0.3 * In         396.017 k           0.3 * In         0.0 ft R           0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | ional Varaion                                    |                   |             |                        |                  |                   |             |             |
| Catouslands per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10<br>Load Combinations Used : ASCE 7-16<br>Ceneral Information<br>Steel Stection Name :<br>Prisee Yeal 50.0 ksi<br>E : Elasis Bending Noodula 29,000.0 ksi<br>E : Elasis Bending Noodula 20,000 bs ' Dead Load Factor<br>XIAL LOADS<br>Reademine & Anove: Avial Load at 10.0 ft, D = 106,0,0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10                                                                                                                                                                                                                                                                                            |                         |                                                  |                   |             | icensed User . S       |                  | UNIVERSIT         | , CIVIL EN  | GINEERING   |
| Catouslands per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10<br>Load Combinations Used : ASCE 7-16<br>Ceneral Information<br>Steel Stection Name :<br>Prisee Yeal 50.0 ksi<br>E : Elasis Bending Noodula 29,000.0 ksi<br>E : Elasis Bending Noodula 20,000 bs ' Dead Load Factor<br>XIAL LOADS<br>Reademine & Anove: Avial Load at 10.0 ft, D = 106,0,0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 50,0 + 16.0,0 + 12.0,0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10.0,0 + 10                                                                                                                                                                                                                                                                                            | Cada Datarana           |                                                  |                   |             | $\square$              |                  |                   |             |             |
| Load Combinations Used : ASCE 7-16           General Information           Steel Section Name :         V12x40           Analysis Method :         Load Resistance Factor           Steel Sreads Grade         50.0 ksi           P: Steel Yield         50.0 ksi           Department of the steel Stress Grade         50.0 ksi           P: Steel Yield         50.0 ksi           Column aff weight included : 400.0 lbs * Deed Lead Factor         Top & BOUT XX Avis = 10.0 t, K = 1.0           Column aff weight included : 400.0 lbs * Deed Lead Factor         Service loads entered. Load Factors will be applied for calculations.           Column aff weight included : 400.0 lbs * Deed Lead Factor         -1.200+0.0 LP + 12.0 L + 45.0 kS           PASS Max, Axiel Heading Stress Ratio =         -1.200+0.0 LP + 10.0 L + 12.0 L + 45.0 kS           Load Combination         +1.20D+0.50L+11.60L           Load Combination         +1.20D+0.50L+11.60L           Maximum Sheed Stress Ratio =         -1.200+0.6 kH           .0.3 Pn         396.0 T /k           .0.4 Marky         0.0 k H           .0.5168 : 1         .0.0 k           .0.3 Pn         396.0 T /k           .0.4 Marky         .0.0 k           .0.5168 : 1         .0.0 k           .0.9 Pn         .205.6 80 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 50-10 IBC 2015 CBC 20                            | 16 ASCE 7-10      |             | $\rightarrow \vee / ($ |                  | S                 |             | )           |
| Steel Section Name :<br>Analysis Method :<br>Steel Stress Grade<br>Fy : Steel Yield         W12x40<br>Load Resistance Factor<br>Steel Stress Grade<br>Fy : Steel Yield         Overall Column Height<br>Top & Bottom Finity         10.0 ft<br>Top & Bottom Finity           Steel Stress Grade<br>Fy : Steel Yield         50.0 ksi         29,000.0 ksi         Steel Stress Grade<br>Fy : Steel Yield         10.0 ft<br>Top & Bottom Finity         10.0 ft<br>Top & Bottom Fold           Applied Loads         Service loads entered. Load Factor Swill be applied for calculations.         Service loads entered. Load Factor Swill be applied for calculations.           Column self weight included : 400.0 bs * Deed Load Factor<br>NVAL LOADS.         Pale Hand Stees Rato =<br>Load Combination<br>(0 3* Mrw:<br>103* Mrw:<br>100 tri<br>100         Not kt<br>100 tri<br>100         Maximum Load Reactions<br>Top atom 2x<br>0.0 k         0.0 k           Fease<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>103* Mrw:<br>100 tri<br>100         0.0 k         Maximum Load Reactions<br>Top atom 2x<br>0.0 k         0.0 k           Cod Combination<br>104* Combination<br>105* Mrw:<br>1040* Combination<br>105* Mrw:<br>1040* Combination         0.0 k         0.0 k         0.0 k           Cod Combination<br>1040* Combination<br>105* Mrw:<br>1040* Combination<br>105* Mrw:<br>1040* Combination         0.0 ft Ass<br>0.0 0 ft<br>100         0.0 0 ft Ass<br>0.0 0 ft<br>100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                  |                   |             |                        |                  |                   |             |             |
| Analysis Method::::       Load Resistance Factor         Steel Stress Grade       50.0 ksi         Fy: Steel Yield       50.0 ksi         E: Elastic Banding Modulus       29,000.0 ksi         Paplied Loads       Service loads antered. Load Factors will be applied for calculations.         Column self weight included: 400.0 lbs * Dead Load Factor       Service loads entered. Load Factors will be applied for calculations.         Column self weight included: 400.0 lbs * Dead Load Factor       Service loads entered. Load Factors will be applied for calculations.         Column self weight included: 400.0 lbs * Dead Load Factor       AtAle: Loads Setter Loads (Above: Load Factor will be applied for calculations.         Column self weight included: 400.0 lbs * Dead Load Factor       .0.5168 : 1         Maximum Load Rescitons       Top along XX       0.0 k         Pation SUMMARY       .0.0 k /t       .0.0 k /t         Bending A Shear Check Results       .0.0 k /t       .0.0 k /t         Pation Load Combination       .0.0 k /t       .0.0 k /t         .0.3 * Mn-x:       .0.666 krt       .0.0 k /t         .0.3 * Mn-x:       .0.666 krt       .0.0 k         .0.3 * Mn-x:       .0.666 krt       .0.0 k /t         .0.3 * Mn-x:       .0.666 krt       .0.0 k         .0.3 * Mn-x:       .0.668 krt       .0.0 k <td>General Information</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General Information     |                                                  |                   |             |                        |                  |                   |             |             |
| Steel Stress Grade<br>F: Steel Yeld         Steel Stress Grade<br>St. Steel                                                                                                                                                                                                                                                                                                                                                              |                         |                                                  |                   |             |                        |                  |                   |             |             |
| Fy: Stead Vield       50.0 kil       XX (width) axis:         E: Elastic Banding Modulus       29,000.0 kil       XX (width) axis:       Untraced Length for buckling ABOUT YX Axis = 10.0 ft, K = 1.0         Applied Loads       Service loads entered. Load Factors will be applied for calculations.       Service loads entered. Load Factors will be applied for calculations.         Column self weight includes : 400.0 lbs * Dead Load Factor       Axia (Volum) axis:       Untraced Length for buckling ABOUT XX Axis = 10.0 ft, K = 1.0         Partial & Above: Axial Load at 30.0 ft, D = 106.0, LR = 12.0, L = 45.0 k       Service loads entered. Load Factors will be applied for calculations.         Topa along XX       0.0 kt       Topa along XX       0.0 kt         Partial & Above: Axial Lead at 30.0 ft, D = 106.0, LR = 12.0, L = 45.0 k       Bottom along XX       0.0 kt         Dis * Ph       .0.5168 : 1       Maximum Load Reactions       Topa along XX       0.0 kt         0.0 * Max;       .0.0 kt       .0.0 kt       Bottom along XX       0.0 kt         0.3 * Mn x:       .0.6456 kt, dx       .0.0 kt       .0.0 kt       .0.0 kt         Maximum Decade Combination :       .0.0 kt       .0.0 kt       .0.0 kt       .0.0 kt       .0.0 kt         Maximum Coston or maxabove base       .0.0 kt       .0.0 kt       .0.0 kt       .0.0 kt       .0.0 kt       .0.0 kt       .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | Load Resistance Factor                           |                   |             |                        |                  |                   | inned       |             |
| E : Elastic Bending Modulus 29,000.0 ksi<br>Urbraced Length for buckling ABOUT Y-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Y-Y (digeth) asis:<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K = 1.0<br>Urbraced Length for buckling ABOUT X-X kis = 100 ft, K                                                                                                                                                                                                                                       |                         | 50.0 ksi                                         |                   |             |                        |                  | y columna .       |             |             |
| Applied Loads         Service loads entered. Load Factors will be applied for calculations.           Column self weight included : 400.0 fbs * Dead Load Factor<br>MR4.100A0S         Most All Coad Service loads entered. Load Factors will be applied for calculations.           Pass Max.vall bead at 10.0 ft, D = 106.0 LR = 12.0 L = 45.0 K         Most All Coad Service loads entered. Load Factors will be applied for calculations.           PASS Max.vall-bending Stress Ratio<br>Load Combination         +1.20D+0.50Lr+1.60L<br>Max         0.0 ft           Pu<br>0.9 * Mn x:<br>Mary         0.0 kt<br>0.0 kt         0.0 kt         Most No. Kt           0.9 * Mn x:<br>Maximum Shear Shress Ratio<br>0.0 * Max         0.0 kt         0.0 ft         Maximum Load Deflections           Pass Max.num Shear Shress Ratio<br>Vu * Applied<br>Vu * Phile         0.0 kt         0.0 kt         0.0 ft           Oot function of max.shre base<br>Armanium Boater Shress Ratio<br>Vu * Applied         0.0 kt         0.0 kt         No.th           Dadd Combination<br>Vu * Phile         Maximum Shear Shress Ratio<br>0.0 ft         0.0 kt         No.th         No.th         No.th           Load Combination<br>Vu * Phile         Maximum Axial + Bending Stress Ratios<br>Vu * Applied         0.0 th         No.th         Maximum Shear Ratios<br>Stress Ratio         No.th           Load Combination<br>Vu * Phile         Maximum Axial + Bending Stress Ratio<br>Vu * Phile         No.th         No.th         Maximum Shear Stress Ratio<br>Stress Ratio<br>Stress R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                       |                                                  |                   | Unbraced    | Length for buckling    | g ABOUT Y-Y A    | xis = 10.0 ft, K  | = 1.0       |             |
| Applied Loads         Service loads entered. Load Factors will be applied for calculations.           Column self weight included: 400.0 lbs * Dead Load Factor<br>XMAL LOADS.         Not All Control           Avian Ending & Above. Axial Load at 10.0 ft, D = 106.0, LR + 12.0, L = 45.0 k         Not All Control           DESIGN SUMMARY         Namuum load Reactions         Not All Control           PASS         Max. Avial-Bearding Stress Ratio =<br>Load Combination<br>At maximum location values are<br>0.9 * Pn<br>0.9 * Pn<br>0.9 * Pn<br>0.9 * Pn<br>0.9 * Pn<br>0.9 * Mn-x:<br>0.9 * Mn-y:         O.0 ft all control         Maximum Load Reactions<br>Top along Y-Y         O.0 k it<br>0.0 ft<br>0.0 ft<br>0 |                         |                                                  |                   | Y-Y (depth) | axis :                 |                  | vie – 10.0 ft. K. | -10         |             |
| Output         Output         Maximum self weight included : 400.0 lbs * Dead Load Factor<br>XXIAL LOADS.         Motor All Constructions           Residential & Above: Axial Load at 10.0 ft, D = 106.0, IR = 12.0, L = 45.0 K         Not All Constructions         All Constructions           DESIGN SUMMARY         Bonding & Shear Check Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                  |                   |             | -                      |                  |                   |             |             |
| Maximum Loads         Maximum Load Reactions         No. K           PASS         Max. Multi-Bending Stress Ratio<br>Load Combination<br>At maximum location values are<br>PH         0.5168         :1           9ASS         Max. Multi-Bending Stress Ratio<br>Load Combination<br>Murx *         0.0 ft         *         Maximum Load Reactions<br>Top along X-X         0.0 k           9 <sup>-1</sup> Murx *         0.9 * Mn ·:         196.456 kft         *         0.0 it         Maximum Load Deflections<br>At maximum location values are<br>0.9 * Mn ·:         0.0 kt           9.9 * Mn ·:         0.9 * Mn ·:         0.0 kt         0.0 kt         0.0 it         Add combination           0.9 * Mn ·:         0.9 * Mn ·:         0.0 kt         0.0 it         0.0 it         0.0 ft           Maximum Sharer Stress Ratio =         0.0 it         0.0 kt         0.0 it         0.0 ft         0.0 ft           Maximum Sharer Stress Ratio =         0.0 it         0.0 kt         0.0 ft         0.0 ft         0.0 ft           Load Combination         Kaser Ratio         0.0 tt         0.0 ft         0.0 ft         0.0 ft         0.0 ft           14.00         0.3 ft         0.0 tt         0.0 ft         0.0 tt         0.0 ft         0.0 ft         0.0 ft           14.00         0.0 ft         0.0 ft         0.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                  |                   | Service     | e loads entered.       | Load Factors     | s will be appl    | lied for ca | lculations. |
| Bending & Shear Check Results         0.5168 : 1         Maximum Load Reactions           PASS         Max. Axial-Bending Stress Ratio =<br>Load Combination         1.1.20D+0.50Lr+1.60L<br>0.0 ft         Top along X.X         0.0 k<br>Bottom along X.X         0.0 k           0.3" Pn<br>Max         0.9 "Mn-x:         196.456 krt<br>0.0 k ft         Mory W         0.0 in at<br>0.0 ft         0.0 ft above base<br>for load combination:         0.0 ft above base<br>for load combination:           PASS         Maximum Shear Stress Ratio         0.0 ft<br>0.0 k         0.0 k         Mory W         0.0 in at<br>0.0 ft         0.0 ft above base<br>for load combination:           Load Combination         Maximum Axial + Bending Stress Ratio<br>Vi * Ph: Allowable         0.0 k         Naximum Shear Stress Ratio Status         Location           Load Combination         Maximum Axial + Bending Stress Ratio<br>Vi * Ph: Allowable         0.0 ft         1.00         1.00         61.86         23.39         0.000 PASS         0.00 ft           Load Combination </td <td>AXIAL LOADS</td> <td>noroia</td> <td></td> <td>SA</td> <td>Not</td> <td></td> <td></td> <td></td> <td>20</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AXIAL LOADS             | noroia                                           |                   | SA          | Not                    |                  |                   |             | 20          |
| PASS       Max. Avial-Bending Stress Ratio =<br>Load Combination<br>At maximum location values are<br>Pu       0.5168 : 1<br>.202b of max.above base<br>0.0 ft       Maximum Load Reactions<br>Top along X-X       0.0 k         Pu       205.680 k       Bottom along X-X       0.0 k         0.9 * Pn       398.017 k       0.0 krt         0.9 * Mn-x:       196.456 krt       0.0 krt         Mu-y       0.0 krt       Along Y-Y       0.0 in at<br>for load combination :       0.0 ft above base         Mu-y       0.0 krt       0.0 krt       Along X-X       0.0 in at<br>for load combination :       0.0 ft above base         Maximum Shear Stress Ratio =<br>At maximum calculo relates are<br>Vu : Applied<br>Vn *Pi: .Alowable       0.0 k       0.0 k       Along X-X       0.0 in at<br>for load combination :       0.0 ft above base         Load Combination       Stress Ratio       0.0 k       0.0 k       0.0 k       Along X-X       0.0 ft above base         Load Combination       Stress Ratio       0.0 k       0.0 k       Along X-X       0.0 ft       0.0 ft         1440D       0.374       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000 PASS       0.00 ft         1200+160Lr+1       0.439       PASS       0.00 ft       1.00       1.00       61.86       23.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                  |                   |             |                        |                  |                   |             |             |
| Load Combination         +1.20D+0.50Lr+1.60L         Top along X-X         0.0 k           Pu         205.680 k         Batom along X-X         0.0 k           0.9 'Ph         398.017 k         Batom along Y-Y         0.0 k           0.9 'Ph         398.017 k         Murk         0.0 kft           0.9 'Mn.x:         196.456 k.ft         Mory         0.0 kft           0.9 'Mn.y:         63.0 k.ft         63.0 k.ft         Along Y-Y         0.0 in at           0.9 'Mn.y:         63.0 k.ft         0.0 t         Along X-X         0.0 in at         0.0 ft above base           Maximum Shear Stress Ratio         0.0 t         0.0 t         1.00 t         1.00 t         1.00 t         1.00 t         1.00 t         0.0 t           Load Combination         Xu: Appled         0.0 t         1.00 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                       |                                                  | 0 5168            | ·1 Ma       | ximum Load Read        | tions            |                   |             |             |
| Location of max.above base<br>At maximum location values are         0.0 ft<br>205 fe80 k<br>0.9 * Pn         Bottom along X-X<br>398.017 k<br>0.0 k/t         0.0 k<br>Bottom along Y-Y         0.0 k<br>0.0 k/t           Mu-x         0.0 k/t         196.456 k-ft<br>0.9 * Mn-x:         196.456 k-ft<br>0.9 * Mn-y:         0.0 k/t         Along Y-Y         0.0 in at<br>0.0 in at         0.0 ft above base<br>for load combination :           Maximum Shear Stress Ratio<br>Load Combination         0.0 k/t         0.0 k/t         Along X-X         0.0 in at         0.0 ft above base<br>for load combination :           Maximum Shear Stress Ratio<br>Load Combination         0.0 k/t         0.0 k/t         Along X-X         0.0 in at         0.0 ft above base           At maximum Schear Stress Ratio<br>Load Combination         0.0 k/t         0.0 k/t         Along X-X         0.0 ft         0.0 ft           140D         0.3 74         PASS         0.0 t         0.0 k         0.0 k         0.0 k/t           140D         0.374         PASS         0.00 t         1.00         1.00         61.86         23.39         0.000 PASS         0.00 t           140D         0.502         PASS         0.00 t         1.00         1.00         61.86         23.39         0.000 PASS         0.00 t           140D         0.324         PASS         0.00 t         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                  |                   | . 1 110     |                        |                  | 0.                | 0 k         |             |
| Pu         205.680 k         Bottom along Y-Y         0.0 k           0.9*Pn         398.017 k         Bottom along Y-Y         0.0 k           0.9*Mn-x:         196.456 krt         0.0 krt         Along Y-Y         0.0 in at         0.0 fr above base           Mu-y         0.0 krt         0.0 krt         0.0 krt         Along Y-Y         0.0 in at         0.0 fr above base           Mu-y         0.0 krt         0.0 krt         0.0 in at         0.0 in at         0.0 fr above base           Load Combination         0.0 krt         0.0 krt         0.0 krt         Along X-X         0.0 in at         0.0 fr above base           Load Combination         0.0 krt         0.0 krt         0.0 krt         Along X-X         0.0 in at         0.0 fr above base           Load Combination         0.0 krt         0.0 krt         0.0 krt         0.0 krt         Along X-X         Nong X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                                  | 0.0               | ft          |                        |                  |                   |             |             |
| 0.9 * Pn         339.017 k<br>0.0 krt         Mux         0.0 krt           0.9 * Mn x:<br>0.9 * Mn x:<br>0.9 * Mn x:<br>0.9 * Mn y:<br>0.9 * Mn y:<br>0.0 * Maximum Shear Stress Ratio =<br>0.0 * Maximum Shear Stress Stress Stress Ratio Status Location<br>1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 * 1.                                                                                                                                                                                                                                                   |                         |                                                  | 205 680           | k           |                        |                  |                   |             |             |
| Mu-x         0.0         k-ft         Maximum Lad Deflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                  |                   |             | Bollom along           | 1-1              | 0.                | UΚ          |             |
| Mu-y       0.0 k-ft         0.9 * Mn-y:       63.0 k-ft         Ass       Maximum Shear Stress Ratio         Load Combination       0.0 t         Location of max.above base       0.0 t         At maximum Control natures are       0.0 k         Vi * Ppiied       0.0 k         Vi * Ppiied       0.0 k         Vi * Phi : Allowable       0.0 t         Load Combination       Stress Ratio         Stress Ratio       Status         Load Combination       Stress Ratio         Stress Ratio       Status         Load Combination       0.0 t         1:200-501r+1.60L       0.517         0.502       PASS         0.00 tt       1.00         1:200+1.60L       0.517         0.369       PASS         0.00 tt       1.00         1:200+1.60L       0.517         0.369       PASS         0.00 tt       1.00         1:200+1.60L       0.517         0.369       PASS         0.00 tt       1.00         1:200+1.60L       0.517         1:200+1.60L       0.321       PASS         0.00 tt       1.00       1.00       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mu-x                    |                                                  |                   | Ma          | ximum Load Defle       | ections          |                   |             |             |
| Mury         0.0 k-ft         Along X-X         0.0 in at         0.0 ft         above base           PASS         Maximum Shear Stress Ratio         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td>0.9 * Mn-x :</td><td></td><td>196.456</td><td>k-ft Alo</td><td></td><td></td><td>at</td><td>0.0ft at</td><td>ove base</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9 * Mn-x :            |                                                  | 196.456           | k-ft Alo    |                        |                  | at                | 0.0ft at    | ove base    |
| Maximum Shear Stress Ratio         0.0         item of the stress Ratio         0.00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       |                                                  | 0.0               |             |                        |                  |                   |             |             |
| PASS         Maximum Shear Stress Ratio         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         k         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <th< td=""><td>0.9 * Mn-y :</td><td></td><td>63.0</td><td>k-ft Alo</td><td>-</td><td></td><td>at</td><td>0.0ft at</td><td>ove base</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9 * Mn-y :            |                                                  | 63.0              | k-ft Alo    | -                      |                  | at                | 0.0ft at    | ove base    |
| At maximum location values are         Vu : Applied<br>Vu : Phi: Allowable       0.0 k <b>Load Combination Results</b> Load Combination Results         Load Combination       Stress Ratio<br>Stress Ratio       Status       Location       Cbx       Cby       KxLx/Rx       KyLy/Ry       Stress Ratio<br>Stress Ratio       Status       Location         +1.40D       0.374       PASS       0.00 ft       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+1.60L       0.517       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +120D+1.60L       0.517       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +120D+1.60L       0.482       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +120D+1.60Lr       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +120D+0.50Lr+L       0.449       PASS       0.00 ft       1.00       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Load Combination        | IValu                                            | 0.0               |             |                        |                  |                   |             |             |
| Vu: Applied<br>Vn * Phi: Allowable         0.0 k<br>0.0 k           Load Combination Results         Maximum Axial + Bending Stress Ratios<br>Stress Ratio         Coation         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio         Location           1:40D         0.374         PASS         0.00 ft         1.00         61.86         23.39         0.000         PASS         0.00 ft           1:20D+0.50Lr+1.60L         0.517         PASS         0.00 ft         1.00         61.86         23.39         0.000         PASS         0.00 ft           1:20D+1.60L         0.502         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           1:20D+1.60L         0.502         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           1:20D+1.60Lr         0.432         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           1:20D+1.60Lr         0.321         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft <td></td> <td></td> <td>0.0</td> <td>ft</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                  | 0.0               | ft          |                        |                  |                   |             |             |
| Load Combination Results           Load Combination         Maximum Axial + Bending Stress Ratios<br>Stress Ratio         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio         Location           +1.40D         0.374         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+0.50Lr+1.60L         0.517         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+1.60L         0.502         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.482         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.434         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+1.50Lr+L         0.449         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vu : Applie             | d                                                | 0.0               | k           |                        |                  |                   |             |             |
| Maximum Axial + Bending Stress Ratios<br>Stress Ratio         Status         Location         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio         Status         Location           1:40D         0.374         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000 PASS         0.00 ft           1:20D+0.50Lr+1.60L         0.517         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000 PASS         0.00 ft           1:20D+1.60L         0.502         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000 PASS         0.00 ft           1:20D+1.60Lr+L         0.482         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000 PASS         0.00 ft           1:20D+1.60Lr+L         0.482         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000 PASS         0.00 ft           1:20D+1.60Lr         0.321         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000 PASS         0.00 ft           1:20D+0.50Lr+L         0.321         PASS         0.00 ft         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                  | 0.0               | K           |                        |                  |                   |             |             |
| Load Combination         Stress Ratio         Status         Location         Cbx         Cby         KxLx/Rx         KyLy/Ry         Stress Ratio         Status         Location           +1.40D         0.374         PASS         0.00 ft         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+0.50Lr+1.60L         0.517         PASS         0.00 ft         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.482         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.482         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.434         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+0.50Lr+L         0.434         PASS         0.00 ft         1.00         1.00         61.86         23.39         0.000         PASS         0.00 ft           +1.20D+0.50Lr+L         0.321         PASS <td< td=""><td>Load Combination Resu</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Load Combination Resu   |                                                  |                   |             |                        |                  |                   |             |             |
| +1.40D       0.374       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+1.60L       0.517       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60L       0.502       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.482       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.482       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.321       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.321       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.349       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Load Combination        | Maximum Axial + Bending S<br>Stress Ratio Status |                   | Cbx Cby     | KxLx/Rx Ky             | Ly/Ry Str        |                   |             |             |
| +1.20D+1.60L       0.502       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr+L       0.482       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.369       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.449       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.447       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.90D       0.241       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +1.40D                  |                                                  |                   |             |                        |                  |                   |             |             |
| +1.20D+1.60Lr+L       0.482       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.369       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1.       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+1       0.449       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.90D       0.241       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.40D+L       0.487       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.70D       0.187       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                  |                   |             |                        |                  |                   |             |             |
| +1.20D+1.60Lr       0.369       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+1       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+1       0.321       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.90D       0.241       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.40D+L       0.487       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.70D       0.187       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         Load Combination       0.187       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                  |                   |             |                        |                  |                   |             |             |
| +1.20D+L       0.434       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D       0.321       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.449       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.90D       0.241       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.40D+L       0.487       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.40D+L       0.487       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.70D       0.187       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         Load Combination       @ Base       @ Load       Y-Y Axis Reaction       Mx - End Moments       k-ft       My - End Moments         Load Combination <td< td=""><td>+1.20D+1.60Lr</td><td>0.369 PASS</td><td></td><td>1.00 1.00</td><td>61.86 2</td><td>3.39</td><td>0.000 P/</td><td>ASS</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +1.20D+1.60Lr           | 0.369 PASS                                       |                   | 1.00 1.00   | 61.86 2                | 3.39             | 0.000 P/          | ASS         |             |
| +1.20D+0.50Lr+L       0.449       PASS       0.00 ft       1.00       10.0       61.86       23.39       0.000       PASS       0.00 ft         +0.90D       0.241       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.40D+L       0.487       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.70D       0.187       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         Maximum Reactions       0.187       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         Maximum Reactions       0.187       PASS       0.00 ft       1.00       1.00       61.86       23.39       0.000       PASS       0.00 ft         Load Combination       @ Base       @ Top       k       Y-Y Axis Reaction       Mx - End Moments       k-ft       My - End Moments         Load Combination       @ Base       @ Top       @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +1.20D+L                |                                                  | 0.00 ft           |             | 61.86 2                | 3.39 / \         |                   |             | 0.00 ft     |
| +0.90D       0.241       PASS       0.00 ft       1.00       61.86       23.39       0.000       PASS       0.00 ft         +1.40D+L       0.487       PASS       0.00 ft       1.00       61.86       23.39       0.000       PASS       0.00 ft         +0.70D       0.187       PASS       0.00 ft       1.00       61.86       23.39       0.000       PASS       0.00 ft         Maximum Reactions       0.187       PASS       0.00 ft       1.00       61.86       23.39       0.000       PASS       0.00 ft         Load Combination       @ Base       @ Top       k       Y-Y Axis Reaction       Mx - End Moments       k-ft       My - End Moments         D Only       106.400       -       9       8ase       @ Top       @ Base       @ Top       @ Base       @ Top       @ Base       @ Top       0       0.00 ft       0.00 ft       0       0.00 ft       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                  |                   |             |                        |                  |                   |             |             |
| +0.70D       0.187       PASS       0.00 ft       1.00       61.86       23.39       0.000       PASS       0.00 ft         Maximum Reactions       Note: Only non-zero reactions are listed.         Load Combination       Axial Reaction<br>@ Base       X-X Axis Reaction<br>@ Top       k       Y-Y Axis Reaction<br>@ Base       Mx - End Moments<br>@ Top       k-ft       My - End Moments<br>@ Base       @ Top         D Only       106.400       +D+L       151.400       +V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 0.241 PASS                                       | 0.00 ft           |             | 61.86 2                | 3.39             |                   |             | 0.00 ft     |
| Maximum Reactions       Note: Only non-zero reactions are listed.         Axial Reaction       X-X Axis Reaction       k       Y-Y Axis Reaction       Mx - End Moments       k-ft       My - End Moments         Load Combination       @ Base       @ Top       k       Y-Y Axis Reaction       @ Base       @ Top       @ Dop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                  |                   |             |                        |                  |                   |             |             |
| Axial Reaction<br>@ BaseX-X Axis Reaction<br>@ Basek<br>P-Y Axis Reaction<br>@ BaseMx - End Moments<br>@ BaseMy - End Moments<br>@ BaseD Only106.400<br>+D+L151.400<br>118.400<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | U. 187 PASS                                      | 0.00 π            | 1.00 1.00   | 01.00 2                |                  |                   |             |             |
| Load Combination         @ Base         @ Base         @ Top         @ Base         @ Top         @ Base         @ Top           D Only         106.400         106.400         151.400         151.400         151.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.400         118.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | Axial Reaction                                   | X-X Axis Reaction | k Y-Y Ax    | kis Reaction           |                  |                   |             |             |
| +D+L 151.400<br>+D+Lr 118.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Load Combination        |                                                  |                   |             |                        |                  |                   |             |             |
| +D+Lr 118.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                       |                                                  |                   |             |                        | -                | -                 |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                  |                   |             |                        |                  |                   |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                  |                   |             |                        |                  |                   |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                  |                   |             |                        |                  |                   |             |             |

| Title Block" selection.<br>Title Block Line 6 |                      |                        |              |                             |                  |                   |                     |                      | Printed: 3            | 1 MAR 2020, 11:26PM                             |
|-----------------------------------------------|----------------------|------------------------|--------------|-----------------------------|------------------|-------------------|---------------------|----------------------|-----------------------|-------------------------------------------------|
| Steel Column                                  |                      |                        |              |                             |                  |                   |                     |                      | SCU Faculty Staff Ho  | ousing Development.ec6                          |
| Lic. # : KW-06090157 - Ed                     | lucational Version   |                        | -            |                             | _                | Li                |                     |                      |                       | 3-2020, Build:12.20.2.24<br>, CIVIL ENGINEERING |
| DESCRIPTION: C5-                              |                      |                        |              |                             |                  |                   |                     |                      |                       |                                                 |
| Maximum Reactions                             |                      |                        |              |                             | 7-5-             |                   |                     |                      |                       | reactions are listed.                           |
| Load Combination                              |                      | Axial Reacti<br>@ Base |              | X-X Axis Reacti<br>@ Base @ | on<br>Top        | Y-Y Axi<br>@ Base | s Reaction<br>@ Top | Mx - End I<br>@ Base | Moments k-ft<br>@ Top | My - End Moments<br>@ Base @ Top                |
| +D+0.750L<br>+0.60D                           |                      | 140.15                 |              |                             |                  |                   |                     |                      |                       |                                                 |
| +0.00D<br>Lr Only                             |                      | 63.84<br>12.00         |              |                             |                  |                   |                     |                      |                       |                                                 |
| L Only                                        |                      | 45.00                  |              |                             |                  |                   |                     |                      |                       |                                                 |
| Extreme Reactions                             |                      |                        |              |                             |                  |                   |                     |                      |                       |                                                 |
|                                               |                      | Axial Reaction         | on           | X-X Axis React              | ion <b>k</b>     | Y-Y Axi           | s Reaction          | Mx - End M           | Moments k-ft          | My - End Moments                                |
| Item                                          | Extreme Value        | •                      |              | @ Base @                    | Тор              | @ Base            | @ Top               | @ Base               | @ Top                 | @ Base @ Top                                    |
| Axial @ Base                                  | Maximum<br>Minimum   | 151.40<br>12.00        |              |                             |                  |                   |                     |                      |                       |                                                 |
| Reaction, X-X Axis Base                       | Maximum              | 12.00                  |              |                             |                  |                   |                     |                      |                       |                                                 |
| "                                             | Minimum              | 106.40                 |              |                             |                  |                   |                     |                      |                       |                                                 |
| Reaction, Y-Y Axis Base                       | Maximum              | 106.40                 |              |                             | 1                |                   |                     |                      |                       |                                                 |
| Reaction, X-X Axis Top                        | Minimum<br>Maximum   | 106.40<br>106.40       | 02           |                             | SE               |                   | NO                  | 57 /A                |                       |                                                 |
| Reaction, Y-Y Axis Top                        | Minimum<br>Maximum   | 106.40<br>106.40       |              |                             |                  | 7 L               |                     |                      |                       | MGG                                             |
| "<br>Moment, X-X Axis Base                    | Minimum<br>Maximum   | 106.40<br>106.40       |              |                             |                  |                   |                     |                      |                       |                                                 |
|                                               | Minimum              | 106.40                 |              |                             |                  |                   |                     |                      |                       |                                                 |
| Moment, Y-Y Axis Base                         | Maximum<br>Minimum   | 106.40<br>106.40       |              |                             |                  |                   |                     |                      |                       |                                                 |
| Moment, X-X Axis Top                          | Maximum              | 106.40                 |              |                             |                  |                   |                     |                      |                       |                                                 |
| Moment, Y-Y Axis Top                          | Minimum<br>Maximum   | 106.40<br>106.40       |              |                             |                  |                   |                     |                      |                       |                                                 |
| "                                             | Minimum              | 106.40                 |              |                             |                  |                   |                     |                      |                       |                                                 |
| Maximum Deflection                            | s for Load Com       |                        |              |                             |                  |                   |                     |                      |                       |                                                 |
| Load Combination                              |                      | Max. X-X De            |              |                             |                  |                   | Deflection          | Distance             |                       |                                                 |
| D Only<br>+D+L                                |                      | 0.0000                 |              | 0.000                       | ft (             | 0.0               |                     |                      |                       |                                                 |
| +D+L<br>+D+Lr                                 |                      | 0.0000                 |              | 0.000                       |                  | 0.0               |                     |                      | t                     |                                                 |
| +D+0.750Lr+0.750L                             |                      | 0.0000                 |              | 0.000                       | ft               | 0.0               |                     |                      |                       |                                                 |
| +D+0.750L                                     |                      | 0.0000                 |              | 0.000                       | ft               | 0.0               |                     |                      | t                     |                                                 |
| +0.60D                                        |                      | 0.0000                 |              | 0.000                       | ft<br>#          | 0.0               |                     |                      | t<br>+                |                                                 |
| Lr Only<br>L Only                             |                      | 0.0000<br>0.0000       |              | 0.000<br>0.000              | ft<br>ft         | 0.0<br>0.0        |                     | 0.000 f<br>0.000 f   |                       |                                                 |
| Steel Section Proper                          | ties · V             | V12x40                 |              | 0.000                       |                  | 0.0               |                     | 0.000 1              |                       |                                                 |
|                                               | = 11.900             |                        | l xx         | =                           | 307.00           | ) in^4            |                     | J                    | =                     | 0.906 in^4                                      |
|                                               | = 0.295              |                        | S xx         | =                           |                  | ) in^3            |                     | Cw                   | =                     | 1,440.00 in^6                                   |
|                                               | = 8.010              |                        | R xx         | =                           | 5.130            |                   |                     |                      |                       |                                                 |
| i lange i nen                                 | = 0.515              |                        | Zx           | =                           | 57.000           |                   |                     |                      |                       |                                                 |
| ,                                             | = 11.700<br>= 40.000 |                        | l yy         | =                           | 44.100<br>11.000 |                   |                     | Wno                  | =                     | 22.800 in^2                                     |
|                                               | = 40.000<br>= 1.020  |                        | S yy<br>R yy | -                           | 1.940            |                   |                     | Sw                   | _                     | 23.500 in^4                                     |
| Kuesigii<br>K1                                | - 1.020              |                        | κ yy<br>Ζγ   |                             | 16.800           |                   |                     | Qf /                 |                       | 11.300 /in^3                                    |
| rts<br>Ycg                                    | = 2.210              | in ( ( –               |              |                             | 56               |                   |                     | Qw                   |                       | 27.800 in^3                                     |



# Commercial Use Not Allowed

| and then using the "Printing &                  | L                                        |                      | Р              | roject D                | escr:                   |                |                                           |                             |                          |
|-------------------------------------------------|------------------------------------------|----------------------|----------------|-------------------------|-------------------------|----------------|-------------------------------------------|-----------------------------|--------------------------|
| Title Block" selection.<br>Title Block Line 6   |                                          |                      |                |                         |                         |                | Printe                                    | ed: 31 MAF                  | R 2020, 2:01PM           |
| Steel Column                                    |                                          |                      |                |                         |                         |                | ktop\SCU Faculty Sta<br>ht ENERCALC, INC. |                             |                          |
| Lic. # : KW-06090157 - Educa                    |                                          |                      |                | Li                      |                         |                |                                           |                             | ENGINEERING              |
| DESCRIPTION: C7-Ro                              | of STL COLS                              |                      |                |                         |                         |                |                                           |                             |                          |
| Code References                                 |                                          |                      | $\frown$       |                         |                         | 7              |                                           |                             |                          |
| Calculations per AISC 3                         | 60-10 JBC 2015 CBC                       | 2 2016 ASCE 7-       | 10             | )                       | -                       | $\mathcal{H}$  |                                           | 5 ( (                       |                          |
| Load Combinations Use                           |                                          | 2010, AOUL 1         |                |                         |                         |                |                                           |                             |                          |
| General Information                             |                                          |                      |                |                         |                         |                |                                           |                             |                          |
| Steel Section Name :                            | W10x22                                   |                      |                | 0                       | verall Colun            | nn Heiaht      |                                           | 10.0 ft                     |                          |
| Analysis Method :                               | Load Resistance Fa                       | ctor                 |                | Т                       | op & Bottom             | n Fixity       | Top & Bottor                              | n Pinned                    | l                        |
| Steel Stress Grade                              | 50.0 kci                                 |                      |                | conditior<br>(width) کا |                         | on (buckling   | g) along columns                          | 3:                          |                          |
| Fy : Steel Yield<br>E : Elastic Bending Modulus | 50.0 ksi<br>29,000.0 ksi                 |                      |                |                         |                         | kling ABOU     | T Y-Y Axis = 10.0                         | ft, K = 1.0                 |                          |
| , , , , , , , , , , , , , , , , , , ,           | _0,00010 1.01                            |                      |                | (depth)                 |                         |                |                                           |                             |                          |
|                                                 |                                          |                      | L L            | Inbraced L              | ength for buc           |                | T X-X Axis = 10.0                         | π, κ = 1.0                  |                          |
| Applied Loads                                   |                                          |                      |                | Service                 | loads enter             | red. Load F    | actors will be                            | applied fo                  | r calculations.          |
| Column self weight include                      | ed : 220.0 lbs * Dead Load               | Factor               |                |                         |                         |                |                                           |                             |                          |
| AXIAL LOADS<br>Residential & Above: A           | xial Load at 10.0 ft, D = 67             | .0. LR = 12.0 I = 23 |                | $\Box$                  | MA                      |                |                                           | M                           |                          |
| DESIGN SUMMARY                                  |                                          |                      |                | 7 L                     |                         |                |                                           |                             | JAR                      |
| Bending & Shear Chec                            | k Results                                |                      |                |                         |                         |                |                                           |                             |                          |
| PASS Max. Axial+Bending<br>Load Combinatio      | g Stress Ratio =                         |                      | 666 : 1        | Max                     | imum Load I             |                |                                           | 0.0.1                       |                          |
| Location of max.a                               |                                          | 1.20D+0.50Lr+1.6     | 0.0 ft         |                         | Top along<br>Bottom alo |                |                                           | 0.0 k<br>0.0 k              |                          |
|                                                 | tion values are                          |                      |                |                         | Top along               | Y-Y            |                                           | 0.0 k                       |                          |
| Pu<br>0.9 * Pn                                  |                                          |                      | 464 k<br>048 k |                         | Bottom alo              | ong Y-Y        |                                           | 0.0 k                       |                          |
| Mu-x                                            |                                          |                      | 0.0 k-ft       | Max                     | imum Load I             | Deflections .  |                                           |                             |                          |
| 0.9 * Mn-x                                      |                                          |                      | 188 k-ft       |                         | ng Y-Y                  |                | 0 in at                                   | 0.0ft                       | above base               |
| Mu-y                                            |                                          |                      | 0.0 k-ft       |                         | for load corr           |                |                                           |                             |                          |
| 0.9 * Mn-y                                      | :                                        | 22.8                 | 375 k-ft       | Alor                    | ng X-X                  |                | 0 in at                                   | 0.0ft                       | above base               |
| PASS Maximum Shear                              | Stress Ratio =                           |                      | 0.0 : 1        |                         | for load co             |                | MC                                        |                             | $\sim$                   |
| Load Combinatio                                 |                                          |                      | 0.0            |                         |                         |                |                                           |                             |                          |
| Location of max.a                               | ibove base<br>tion values are            |                      | 0.0 ft         |                         |                         |                |                                           |                             |                          |
| Vu : Appli                                      | ed                                       |                      | 0.0 k          |                         |                         |                |                                           |                             |                          |
| Vn * Phi :                                      |                                          |                      | 0.0 k          |                         |                         |                |                                           |                             |                          |
| Load Combination Resu                           |                                          |                      |                |                         |                         |                |                                           |                             |                          |
| Load Combination                                | Maximum Axial + Bend<br>Stress Ratio Sta |                      | Cbx            | Cby                     | KxLx/Rx                 | KyLy/Ry        | <u>Maximur</u><br>Stress Ratio            | <u>m Shear Ra</u><br>Status | <u>atios</u><br>Location |
| +1.40D                                          | 0.584 PA                                 |                      | 1.00           | 1.00                    | 90.23                   | 28.10          | 0.000                                     | PASS                        | 0.00 ft                  |
| +1.20D+0.50Lr+1.60L                             | 0.767 PA                                 | SS 0.00 ft           | 1.00           | 1.00                    | 90.23                   | 28.10          | 0.000                                     | PASS                        | 0.00 ft                  |
| +1.20D+1.60L<br>+1.20D+1.60Lr+L                 | 0.729 PA<br>0.763 PA                     |                      | 1.00<br>1.00   | 1.00<br>1.00            | 90.23<br>90.23          | 28.10<br>28.10 | 0.000<br>0.000                            | PASS<br>PASS                | 0.00 ft<br>0.00 ft       |
| +1.20D+1.60Lr                                   | 0.620 PA                                 | SS 0.00 ft           | 1.00           | 1.00                    | 90.23                   | 28.10          | 0.000                                     | PASS                        | 0.00 ft                  |
| (+1.20D+L<br>+1.20D                             | 0.644 PA<br>0.501 PA                     |                      | 1.00           | 1.00                    | 90.23<br>90.23          | 28.10<br>28.10 | 0.000                                     |                             | 0.00 ft                  |
| +1.20D<br>+1.20D+0.50Lr+L                       | 0.501 PA                                 | \$S0.00.ft_          | 1.00           | 1.00                    | 90.23                   | 28.10          |                                           |                             | 0.00 ft                  |
| +0.90D                                          | 0.376 PA                                 | SS 0.00 ft           | 1.00           | 1.00                    | 90.23                   | 28.10          | 0.000                                     | PASS                        | 0.00 ft                  |
| +1.40D+L<br>+0.70D                              | 0.727 PA<br>0.292 PA                     |                      | 1.00<br>1.00   | 1.00<br>1.00            | 90.23<br>90.23          | 28.10<br>28.10 | 0.000<br>0.000                            | PASS<br>PASS                | 0.00 ft<br>0.00 ft       |
| Maximum Reactions                               |                                          |                      |                |                         |                         |                | te: Only non-ze                           |                             |                          |
|                                                 | Axial Reacti                             |                      |                |                         | is Reaction             | Mx - E         | nd Moments k                              | a <b>-ft</b> My-            | End Moments              |
| Load Combination                                | @ Base                                   | <u> </u>             | ) Тор          | @ Base                  | @ Top                   | @ Bas          | se @ Top                                  | @ Ba                        | ase @ Top                |
| D Only<br>+D+L                                  | 67.22<br>90.22                           |                      |                |                         |                         |                |                                           |                             |                          |
| +D+Lr                                           | 79.22                                    | 0                    |                |                         |                         |                |                                           |                             |                          |
| +D+0.750Lr+0.750L                               | 93.47                                    | Ū                    |                |                         |                         |                |                                           |                             |                          |
|                                                 |                                          |                      |                |                         |                         |                | Me                                        |                             | $\sim$                   |
|                                                 |                                          |                      |                |                         |                         |                | rs                                        |                             |                          |
|                                                 |                                          |                      |                |                         |                         |                |                                           |                             |                          |

| Title Block" selection.<br>Title Block Line 6 |                                  |                        |      |                                  |                        |                  |                  |                    | Dr                       | intod: 3   | 31 MAR 2020,              | 2.01 DM        |
|-----------------------------------------------|----------------------------------|------------------------|------|----------------------------------|------------------------|------------------|------------------|--------------------|--------------------------|------------|---------------------------|----------------|
|                                               |                                  |                        |      |                                  |                        | F                | ile = C:\Users\  | Owner\Deskto       |                          |            | using Developmen          |                |
| Steel Column                                  |                                  |                        |      |                                  |                        |                  | Softv            | vare copyright     | ENERCALC, II             | NC. 1983   | -2020, Build:12.20        | .2.24          |
| Lic. # : KW-06090157 - Ed                     |                                  |                        |      |                                  |                        | Licer            | nsed User :      | SANTA CL           | ARA UNIVE                | RSITY      | , CIVIL ENGIN             | EERING         |
| DESCRIPTION: C7-                              | Roof STL COL                     | S                      |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Maximum Reactions                             |                                  |                        |      |                                  |                        |                  |                  | Note               | : Only non               |            | eactions are              |                |
| Load Combination                              | 1G                               | Axial Reacti<br>@ Base | -    | X-X Axis Reaction<br>@ Base @ To |                        | Y Axis R<br>Base | eaction<br>@ Top | Mx - End<br>@ Base | d Moments<br>@ Top       | k-ft       | My - End Mo<br>@ Base @   | ments<br>D Top |
| +D+0.750L                                     |                                  | 84.47                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| +0.60D                                        |                                  | 40.33                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Lr Only<br>L Only                             |                                  | 12.00<br>23.00         |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Extreme Reactions                             |                                  | 23.00                  | 0    |                                  |                        |                  |                  |                    |                          |            |                           |                |
|                                               |                                  | Axial Reaction         | 20   | X-X Axis Reactior                | n <b>k</b> Y-          | Y Axis R         | Poaction         | My End             | Moments                  | k-ft       | My - End Mo               | monte          |
| Item                                          | Extreme Value                    |                        |      | @ Base @ To                      |                        |                  | @ Top            | @ Base             |                          |            |                           | D Top          |
| Axial @ Base                                  | Maximum                          | 93.47                  | 0    |                                  | r @                    | Buoo             | @ 10p            | @ 5400             |                          | <b>,</b>   | @ 2000 @                  | <u> </u>       |
|                                               | Minimum                          | 93.47                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Reaction, X-X Axis Base                       | Maximum                          | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| "                                             | Minimum                          | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Reaction, Y-Y Axis Base                       | Maximum                          | 67.22                  |      |                                  |                        |                  |                  | _ /                |                          |            |                           |                |
|                                               | Minimum                          | 67.22                  |      |                                  |                        |                  |                  | 25 /               | $\wedge$                 |            |                           |                |
| Reaction, X-X Axis Top                        | Maximum                          | 67.22                  |      |                                  | 2(H                    |                  | N ( ( ) )        |                    | $\Delta \setminus [ ] ]$ |            | ) / V / V / ( (=          |                |
| Deaction V V Avia Tan                         | Minimum                          | 67.22                  |      |                                  | 90                     |                  |                  | G                  |                          | $\bigcirc$ |                           | 7 GL           |
| Reaction, Y-Y Axis Top                        | Maximum<br>Minimum               | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Moment, X-X Axis Base                         | Maximum                          | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| "                                             | Minimum                          | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Moment, Y-Y Axis Base                         | Maximum                          | 67.22                  | 0    |                                  |                        |                  |                  |                    |                          |            |                           |                |
| "                                             | Minimum                          | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Moment, X-X Axis Top                          | Maximum                          | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
|                                               | Minimum                          | 67.22                  |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Moment, Y-Y Axis Top                          | Maximum<br>Minimum               | 67.22<br>67.22         |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Martine Daffaatter                            |                                  |                        | 0    |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Maximum Deflection                            | s for Load Cor                   |                        | 0    | <b>D</b> : 1                     |                        | V V D            | 0                | D' 1               |                          |            |                           |                |
| Load Combination                              |                                  | Max. X-X De            |      |                                  |                        | . Y-Y De         |                  | Distance           |                          |            |                           |                |
| D Only<br>+D+L                                |                                  | 0.0000                 |      | 0.000 f                          |                        | 0.000 0.000      | in               | 0.000              | ft<br>ft                 |            |                           |                |
| +D+Lr                                         |                                  | 0.0000                 |      | 0.000 f<br>0.000 f               |                        | 0.000            | in V /           | 0.000              | ft                       | 5          | $ (\bigcirc) $            | $\cap$         |
| +D+0.750Lr+0.750L                             |                                  | 0.0000                 |      | 0.000 f                          |                        | 0.000            | in               | 0.000              |                          | 2L         |                           |                |
| +D+0.750L                                     |                                  | 0.0000                 | in   | 0.000 f                          |                        | 0.000            | in               | 0.000              | ft                       |            |                           |                |
| +0.60D                                        |                                  | 0.0000                 | in   | 0.000 f                          | t                      | 0.000            | in               | 0.000              | ft                       |            |                           |                |
| Lr Only                                       |                                  | 0.0000                 |      | 0.000 f                          |                        | 0.000            | in               | 0.000              | ft                       |            |                           |                |
| L Only                                        |                                  | 0.0000                 | in   | 0.000 f                          | t                      | 0.000            | in               | 0.000              | ft                       |            |                           |                |
| Steel Section Proper                          | ties :                           | W10x22                 |      |                                  |                        |                  |                  |                    |                          |            |                           |                |
| Dopar                                         | = 10.200                         |                        | l xx | =                                | 118.00 in <sup>4</sup> |                  |                  | J                  | =                        |            | 0.239 in^4                |                |
|                                               | = 0.240                          |                        | S xx | =                                | 23.20 in/              |                  |                  | Cw                 | =                        |            | 275.00 in^6               |                |
|                                               | = 5.750                          |                        | R xx | =                                | 4.270 in               |                  |                  |                    |                          |            |                           |                |
|                                               | = 0.360                          |                        | Zx   | =                                | 26.000 in              |                  |                  |                    |                          |            |                           |                |
|                                               | = 6.490                          |                        | l yy | =                                | 11.400 in              |                  |                  | 147                |                          |            | 44.400 1 40               |                |
|                                               | = 22.000                         |                        | S уу | =                                | 3.970 in/              | `3               |                  | Wno                | =                        |            | 14.100 in^2               |                |
| /                                             | = 0.660                          |                        | R yy |                                  | 1.330 in               |                  |                  | Sw                 |                          |            | 7.320 in^4                |                |
| K1<br>rts<br>Ycg                              | 0.625<br>0.625<br>1.550<br>0.000 | in ( 5-)               | Zý   |                                  | 6.100 in               | •3               |                  | Qf                 |                          | (0)        | 4.880 in^3<br>12.900 in^3 | $\frac{1}{2}$  |
| -3                                            | 0.000                            |                        |      |                                  |                        |                  |                  |                    |                          |            |                           |                |



# Commercial Use Not Allowed

| Title Block Line 6                                                      | Printed: 14 MAR 2020, 6:06PN                                                                                                              |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Concrete Column                                                         | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6<br>Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24. |
| Lic. # : KW-06090157 - Educational Version                              | Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING                                                                                 |
| DESCRIPTION: D1-2 CONC COLS                                             |                                                                                                                                           |
| Code References                                                         | al Vareian                                                                                                                                |
| Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10              |                                                                                                                                           |
| Load Combinations Used : ASCE 7-16                                      |                                                                                                                                           |
| General Information                                                     |                                                                                                                                           |
| f'c : Concrete 28 day strength = 4.0 ksi                                | Overall Column Height = 15.0 ft                                                                                                           |
| E = = 3,644.15 ksi                                                      | End Fixity Top Fixed, Bottom Fixed                                                                                                        |
| Density = 145.0 pcf                                                     | Brace condition for deflection (buckling) along columns :                                                                                 |
| β = 0.850                                                               | X-X (width) axis :                                                                                                                        |
| fy - Main Rebar = 60.0 ksi                                              | Unbraced Length for buckling ABOUT Y-Y Axis = 15.0 ft, K = 1.0                                                                            |
| E - Main Rebar = 29,000.0 ksi                                           | Y-Y (depth) axis :                                                                                                                        |
| Allow. Reinforcing Limits ASTM A615 Bars Used                           | Unbraced Length for buckling ABOUT X-X Axis = 15.0 ft, K = 1.0                                                                            |
| Min. Reinf. = $1.0\%$                                                   |                                                                                                                                           |
| Max. Reinf. = 8.0 %                                                     |                                                                                                                                           |
| Column Cross Section                                                    | oo Mot Allowed                                                                                                                            |
| Column Dimensions : 24.0in Diameter, Column Edge to Rebar               | "                                                                                                                                         |
| Edge Cover = 1.50in                                                     |                                                                                                                                           |
|                                                                         | • #6 ** • #6                                                                                                                              |
|                                                                         | •#3 •#3                                                                                                                                   |
| Column Reinforcing : 14 - #8 bars                                       |                                                                                                                                           |
|                                                                         |                                                                                                                                           |
|                                                                         | #6 #8                                                                                                                                     |
|                                                                         |                                                                                                                                           |
|                                                                         | *                                                                                                                                         |
| Applied Londo                                                           | 24.0 m                                                                                                                                    |
| Applied Loads                                                           | Entered loads are factored per load combinations specified by use                                                                         |
| Column self weight included : 6,832.96 lbs * Dead Load Factor           |                                                                                                                                           |
| AXIAL LOADS                                                             |                                                                                                                                           |
| Parking Garage Flat Weights & Above: Axial Load at 15.0 ft above base,  | D = 601.0, LR = 24.0, L = 307.0 k                                                                                                         |
| DESIGN SUMMARY                                                          |                                                                                                                                           |
| Load Combination +1.20D+0.50Lr+1.60L                                    | Maximum SERVICE Load Reactions                                                                                                            |
| Location of max.above base 14.899 ft                                    | Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k                                                                                                |
| Maximum Stress Ratio 0.893 : 1                                          | Top along X-X 0.0 k Bottom along X-X 0.0 k                                                                                                |
| Ratio = (Pu^2+Mu^2)^.5 / (PhiPn^2+PhiMn^2)^.5                           |                                                                                                                                           |
| $P_u = 1,232.60 \text{ k}$ $\phi * Pn = 1,379.63 \text{ k}$             | Maximum SERVICE Load Deflections                                                                                                          |
| Mu-x = 0.0 k-ft $\Phi * Mn-x = 0.0 k-ft$                                | Along Y-Y 0.0 in at 0.0 ft above base                                                                                                     |
| Mu-y = 0.0 k-ft $\Phi * Mn-y = 0.0 k-ft$                                | for load combination :                                                                                                                    |
| Mu Angle = 0.0 deg                                                      | Along X-X 0.0 in at 0.0 ft above base                                                                                                     |
| Mu at Angle = 0.0 k-ft φMn at Angle = 0.0 k-ft                          | for load combination :                                                                                                                    |
| Pn & Mn values located at Pu-Mu vector intersection with capacity curve |                                                                                                                                           |
| Column Capacities                                                       | General Section Information $\phi = 0.750$ $\beta = 0.850$ $\theta = 0.850$                                                               |
| Pnmax : Nominal Max. Compressive Axial Capacity 2,164.12 k              | $\rho$ % Reinforcing 2.445 % Rebar % Ok                                                                                                   |
| Pnmin : Nominal Min. Tension Axial Capacity                             | Reinforcing Area 11.060 in <sup>4</sup> 2                                                                                                 |
| φ Pn, max : Usable Compressive Axial Capacity 1,379.63 k                | Concrete Area 452.389 in <sup>2</sup>                                                                                                     |
| $\phi$ Pn, min : Usable Tension Axial Capacity k                        |                                                                                                                                           |
| , ,                                                                     |                                                                                                                                           |

#### **Governing Load Combination Results**

| Governing Factored  | Moment  | Dist. fr | om Ax    | ial Load   |    |                   | В  | ending Anal | ysis k-ft   |             | Ut         | ilization |
|---------------------|---------|----------|----------|------------|----|-------------------|----|-------------|-------------|-------------|------------|-----------|
| Load Combination    | X-X Y-Y | base     | ft Pu    | φ * Pn     | δ× | $\delta^{x*}$ Mux | δУ | δy * Muy    | Alpha (deg) | $\delta$ Mu | φMn        | Ratio     |
| +1.40D              |         | 14.90    | 850.97   | 7 1,379.63 |    |                   |    |             | 0.000       |             |            | 0.617     |
| +1.20D+0.50Lr+1.60L |         | 14.90    | 1,232.60 | 1,379.63   |    |                   |    |             | 0.000       |             |            | 0.893     |
| +1.20D+1.60L        |         | 14.90    | 1,220.60 | 1,379.63   |    |                   |    |             | 0.000       |             |            | 0.885     |
| Edu                 | cai     |          | 0        |            |    |                   |    | /e          |             |             | $\bigcirc$ | $\square$ |

Lr Only

L Only

| Title Block Line 6                                                  |                  |              |               |               |                                           |                                      |                  |          |                              | 20, 6:06PN |  |
|---------------------------------------------------------------------|------------------|--------------|---------------|---------------|-------------------------------------------|--------------------------------------|------------------|----------|------------------------------|------------|--|
| Concrete Column                                                     |                  |              |               |               | File = C                                  | C:\Users\Owner\De<br>Software copyri |                  |          |                              |            |  |
| .ic. # : KW-06090157 - Educati                                      | onal Version     |              |               |               | Licensed                                  | d User : SANTA                       |                  |          |                              |            |  |
| DESCRIPTION: D1-2 CO                                                | NC COLS          |              |               |               |                                           |                                      |                  |          |                              |            |  |
| Governing Load Combina                                              | ation Results    | 38           |               |               |                                           |                                      |                  |          |                              |            |  |
| Governing Factored                                                  | Moment           | Dist. fro    | , Axial       | Load          |                                           | Bending Ana                          | lysis k-ft       |          |                              |            |  |
| Load Combination                                                    | X-X Y-Y          | base f       | n n           | *Pn δ×        | δx*Mux &                                  | 5 <sup>y</sup> δy*Muy                | Alpha (de        | g) δ Mu  |                              |            |  |
| +1.20D+1.60Lr+L                                                     |                  |              | 1,074.80 1,   |               |                                           |                                      | 0.000            |          |                              | 0.77       |  |
| +1.20D+1.60Lr                                                       |                  | 14.90        | 767.80 1,     | ·             |                                           |                                      | 0.000            |          |                              | 0.55       |  |
| +1.20D+L                                                            |                  | 14.90        | 1,036.40 1,   | ,379.63       |                                           |                                      | 0.000            |          |                              | 0.75       |  |
| +1.20D                                                              |                  | 14.90        | 729.40 1,     | ,379.63       |                                           |                                      | 0.000            |          |                              | 0.52       |  |
| +1.20D+0.50Lr+L                                                     |                  | 14.90        | 1,048.40 1,   | ,379.63       |                                           |                                      | 0.000            |          |                              | 0.76       |  |
| +0.70D                                                              |                  | 14.90        | 425.48 1,     | ,379.63       |                                           |                                      | 0.000            |          |                              | 0.30       |  |
| +1.40D+L                                                            |                  | 14.90        | 1,157.97 1,   | ,379.63       |                                           |                                      | 0.000            |          |                              | 0.83       |  |
| Maximum Reactions                                                   |                  |              |               |               |                                           |                                      | Note: Only       |          |                              |            |  |
|                                                                     | X-X Axis         |              |               | Axis Reaction | Axial React                               |                                      | End Moments      |          |                              | Moments    |  |
| Load Combination                                                    | @ Base           | @ Top        | @ B           | ase @ Top     | @ Base                                    | <u> </u>                             | ase @            | Тор      | @ Base                       | @ Top      |  |
| D Only<br>+D+L<br>+D+Lr<br>+D+0.750Lr+0.750L<br>+D+0.750L           | nerc             |              |               | JSE           | 607.8<br>914.8<br>631.8<br>856.0<br>838.0 | 330)<br>33<br>83                     |                  |          |                              | 20         |  |
| +D+0.750Lr                                                          |                  |              |               |               | 625.8                                     |                                      |                  |          |                              |            |  |
| +0.60D                                                              |                  |              |               |               | 364.7                                     |                                      |                  |          |                              |            |  |
| Lr Only                                                             |                  |              |               |               | 24.0                                      |                                      |                  |          |                              |            |  |
| L Only                                                              |                  |              |               |               | 307.0                                     |                                      |                  |          |                              |            |  |
| Maximum Moment React                                                | ions             |              |               |               |                                           |                                      | Note: Only       | non-zero | reactions                    | are listed |  |
|                                                                     |                  | Мо           | ment About X- | -X Axis       | Moment About Y-Y Axis                     |                                      |                  |          |                              |            |  |
| Load Combination                                                    |                  | @ Ba         | ase           | @ Top         |                                           | a                                    | Base             | @ Top    |                              |            |  |
| D Only<br>+D+L                                                      |                  |              |               | k-f<br>k-f    |                                           |                                      |                  |          | k-ft<br>k-ft                 |            |  |
| +D+L<br>+D+Lr                                                       |                  |              |               | k-1           |                                           |                                      |                  |          | k-ft                         |            |  |
| +D+0.750Lr+0.750L<br>+D+0.750L<br>+D+0.750L<br>+D+0.750Lr<br>+0.60D | Cal              |              |               |               | t<br>t                                    | Ve                                   |                  | S        | k-ft<br>k-ft<br>k-ft<br>k-ft |            |  |
| Lr Only<br>L Only                                                   |                  |              |               | k-1           | t                                         |                                      |                  |          | k-ft<br>k-ft                 |            |  |
| Maximum Deflections for                                             | Load Combination | S            |               |               |                                           |                                      |                  |          |                              |            |  |
| Load Combination                                                    |                  | C Deflection | n Distanc     | e             | Max. Y-Y Defle                            | ction Dist                           | ance             |          |                              |            |  |
| D Only                                                              | 0.000            |              | 0.000         | ft            | 0.000                                     |                                      | 000 ft           |          |                              |            |  |
| +D+L                                                                | 0.000            |              | 0.000         | ft            | 0.000                                     |                                      | 000 ft           |          |                              |            |  |
| +D+Lr                                                               | 0.000            |              | 0.000         | ft            | 0.000                                     |                                      | 000 ft           |          |                              |            |  |
| +D+0.750Lr+0.750L                                                   | 0.000            |              | 0.000         | ft            | 0.000                                     |                                      | 000 ft           |          |                              |            |  |
| +D+0.750L                                                           | 0.000            |              | 0.000         | ft            | 0.000                                     |                                      | 000 ft           |          |                              |            |  |
| +D+0.750Lr                                                          | 0.000            | 0 in         | 0.000         | ft            | 0.000                                     | in 0.                                | 000 ft           |          |                              |            |  |
| +0.60D                                                              | 0.000            | 0 in         | 0.000         | ft            | 0.000                                     | in 0.                                | 000 ft           |          |                              |            |  |
| L = Only                                                            | 0.000            | o :          | 0 000         |               | 0 000                                     | : O                                  | 000 <del>u</del> |          |                              |            |  |

# Educational Version

0.000

0.000

ft

ft

0.000

0.000

in

in

0.0000

0.0000

in

in

ft ft

0.000

0.000



# Commercial Use Not Allowed

#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Project Title: Engineer: Project ID: Project Descr:

#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Concrete Column

Lic. # : KW-06090157 - Educational Version



#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Project Title: Engineer: Project ID: Project Descr:

#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Project Title: Engineer: Project ID: Project Descr:

#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



#### Project Title: Engineer: Project ID: Project Descr:

#### Printed: 14 MAR 2020, 6:06PN

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version



| Title Block" selection.<br>Title Block Line 6                           |                        |                |                    |                   |                           |                         |                                              | Printe                        | d <sup>.</sup> 31 MAR | 2020. 2:02PM                   |
|-------------------------------------------------------------------------|------------------------|----------------|--------------------|-------------------|---------------------------|-------------------------|----------------------------------------------|-------------------------------|-----------------------|--------------------------------|
| Steel Column                                                            |                        |                |                    |                   |                           |                         |                                              | SCU Faculty Staf              | f Housing Dev         | velopment.ec6 .                |
| Lic. # : KW-06090157 - Educatio                                         | anal Vorsion           | _              | _                  | _                 |                           |                         |                                              | ENERCALC, INC. '              |                       | uild:12.20.2.24<br>ENGINEERING |
| DESCRIPTION: D3-4 ST                                                    |                        |                |                    |                   |                           | censed 0se              |                                              |                               |                       | ENGINEERING                    |
| Code References                                                         |                        |                |                    | $\sim$            |                           |                         | 7                                            |                               |                       |                                |
| Calculations per AISC 36                                                | 10 /BC 2015 (          |                |                    | 10                | 2                         | -                       | (2)                                          | TS -                          |                       |                                |
| Load Combinations Used<br>General Information                           |                        |                |                    |                   |                           |                         |                                              |                               |                       |                                |
|                                                                         | W12x79                 |                |                    |                   | 0'                        | verall Colun            | nn Heiaht                                    |                               | 10.0 ft               |                                |
|                                                                         | oad Resistance         | Factor         |                    | Brace             | Тс                        | op & Bottom             | Fixity To                                    | op Pinned, I<br>along columns | Bottom F              | ixed                           |
| Fy : Steel Yield                                                        | 50.0 ksi               |                |                    | X-)               | K (width) a               | axis :                  | ( <b>C</b> )                                 | C C                           |                       |                                |
| E : Elastic Bending Modulus                                             | 29,000.0 ksi           |                |                    |                   |                           | -                       | kling ABOUT Y                                | '-Y Axis = 10.0 ft            | ., K = 0.80           |                                |
|                                                                         |                        |                |                    |                   | Y (depth) a<br>Jnbraced L |                         | kling ABOUT X                                | -X Axis = 10.0 fi             | , K = 0.80            |                                |
| Applied Loads                                                           |                        |                |                    |                   | Service                   | loads entei             | red. Load Fa                                 | ctors will be a               | pplied for            | calculations.                  |
| Column self weight included<br>AXIAL LOADS<br>Residential & Above: Axia |                        |                |                    | 189 D.K           |                           | NG                      |                                              |                               |                       |                                |
| DESIGN SUMMARY                                                          |                        |                |                    |                   | 5 L                       | NUC                     |                                              |                               |                       | JGG                            |
| Bending & Shear Check                                                   | Results                |                |                    |                   |                           |                         |                                              |                               |                       |                                |
| PASS Max. Axial+Bending S                                               |                        |                |                    | <b>079</b> : 1    | Maxi                      | imum Load F             |                                              |                               |                       |                                |
| Load Combination<br>Location of max.abo                                 | we hase                | +1.20L         | 0+0.50Lr+1.        | .60L<br>0.0 ft    |                           | Top along               |                                              |                               | 0.0 k<br>0.0 k        |                                |
| At maximum locatio                                                      |                        |                |                    | 0.0 1             |                           | Bottom alc<br>Top along |                                              |                               | 0.0 k<br>0.0 k        |                                |
| Pu                                                                      |                        |                | 784                | 4.55 k            |                           | Bottom alc              |                                              |                               | 0.0 k                 |                                |
| 0.9 * Pn                                                                |                        |                | 971                | 1.05 k            | Maul                      |                         | •                                            |                               |                       |                                |
| Mu-x                                                                    |                        |                |                    | 0.0 k-ft          |                           |                         | Deflections                                  |                               | 0.04                  |                                |
| 0.9 * Mn-x :                                                            |                        |                | 446.               | .250 k-ft         |                           | ig Y-Y<br>for lood com  |                                              | n at                          | 0.0#                  | above base                     |
| Mu-y                                                                    |                        |                |                    | 0.0 k-ft          |                           | or load com             |                                              |                               |                       |                                |
| 0.9 * Mn-y :                                                            |                        |                | 203.               | .625 k-ft         | Alon                      | ig X-X                  |                                              | n at                          | 0.0ft                 | above base                     |
| PASS Maximum Shear St<br>Load Combination<br>Location of max.abo        | ove base               |                |                    | 0.0 : 1<br>0.0 ft |                           | for load cor            | mbination :                                  | rs                            |                       | Dh                             |
| At maximum locatio<br>Vu : Applied                                      |                        |                |                    | 0.0 k             |                           |                         |                                              |                               |                       |                                |
| Vn * Phi : All                                                          |                        |                |                    | 0.0 k             |                           |                         |                                              |                               |                       |                                |
| Load Combination Result                                                 | s<br>Maximum Axial + B | onding St      | ross Patios        |                   |                           |                         |                                              | Movimum                       | Shear Ra              | tion                           |
| Load Combination                                                        | Stress Ratio           | Status         | Location           | Cbx               | Cby                       | KxLx/Rx                 |                                              | Stress Ratio                  | Status                | Location                       |
| +1.40D                                                                  |                        | PASS           | 0.00 ft            | 1.00              | 1.00                      | 31.48                   | 17.98                                        | 0.000                         | PASS                  | 0.00 ft                        |
| +1.20D+0.50Lr+1.60L<br>+1.20D+1.60L                                     |                        | PASS<br>PASS   | 0.00 ft<br>0.00 ft | 1.00<br>1.00      | 1.00<br>1.00              | 31.48<br>31.48          | 17.98<br>17.98                               | 0.000<br>0.000                |                       | 0.00 ft<br>0.00 ft             |
| +1.20D+1.60Lr+L                                                         |                        | PASS           | 0.00 ft            | 1.00              | 1.00                      | 31.48                   | 17.98                                        | 0.000                         | PASS                  | 0.00 ft                        |
| +1.20D+1.60Lr                                                           | 0.524                  | PASS           | 0.00 ft            | 1.00              | 1.00                      | 31.48                   | 17.98                                        | 0.000                         | PASS                  | 0.00 ft                        |
| +1.20D+L                                                                | 0.679                  |                | 0.00 ft            | 1.00              | 1.00                      | 31.48                   | 17.98                                        | 0.000                         | PASS<br>PASS          | 0.00 ft                        |
| +1.20D<br>+1.20D+0.50Lr+L                                               | 0.484                  |                | 0.00 ft<br>0.00 ft | 1.00              | 1.00                      | 31.48<br>31.48          | 17.98 / <sup>L</sup><br>17.98 / <sup>L</sup> | 0.000                         |                       | 0.00 ft<br>0.00 ft             |
| +0.90D                                                                  | 0.363                  | PASS           | 0.00 ft            | 1.00              | 1.00                      | 31.48                   | 17.98                                        | 0.000                         | PASS                  | 0.00 ft                        |
| +1.40D+L                                                                | 0.759                  | PASS           | 0.00 ft            | 1.00              | 1.00                      | 31.48                   | 17.98                                        | 0.000                         |                       | 0.00 ft                        |
| +0.70D<br>Maximum Reactions                                             | 0.282                  | PASS           | 0.00 ft            | 1.00              | 1.00                      | 31.48                   | 17.98<br>Note:                               | 0.000<br>Only non-zer         |                       | 0.00 ft<br>ns are listed.      |
|                                                                         | Axial Re               | eaction        | X-X Axis Rea       | action k          | Y-Y Axis                  | s Reaction              |                                              | Moments k-                    |                       | End Moments                    |
| Load Combination                                                        | @ B                    | ase            |                    | @ Top             | @ Base                    |                         | @ Base                                       | @ Top                         | @ Bas                 |                                |
| D Only                                                                  |                        | 1.790          |                    |                   |                           |                         |                                              |                               |                       |                                |
| +D+L<br>+D+Lr                                                           |                        | 0.790<br>5.790 |                    |                   |                           |                         |                                              |                               |                       |                                |
| +D+Lr<br>+D+0.750Lr+0.750L                                              |                        | 5.790<br>1.540 |                    |                   |                           |                         |                                              |                               |                       |                                |
|                                                                         | 00                     |                |                    |                   |                           |                         |                                              |                               |                       |                                |

nal Version

| Title Block" selection.<br>Title Block Line 6 |                         |                        |          |                             |              |                 |                 |                           |                    |                      | Printed:          | 31 MAR 202                      | 0. 2:02PM |
|-----------------------------------------------|-------------------------|------------------------|----------|-----------------------------|--------------|-----------------|-----------------|---------------------------|--------------------|----------------------|-------------------|---------------------------------|-----------|
| Steel Column                                  |                         |                        |          |                             |              |                 | File =          |                           |                    |                      | aculty Staff H    | ousing Develop                  | ment.ec6  |
| Lic. # : KW-06090157 - Edu                    | ucational Versior       |                        | -        |                             | _            |                 | icense          |                           |                    |                      |                   | 3-2020, Build:1<br>Y, CIVIL ENG |           |
| DESCRIPTION: D3-4                             |                         |                        |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Maximum Reactions                             |                         |                        |          |                             |              |                 |                 |                           |                    |                      |                   | reactions a                     |           |
| Load Combination                              |                         | Axial Reacti<br>@ Base |          | X-X Axis Reacti<br>@ Base @ | on<br>Top    | Y-Y Ax<br>@ Bas | xis Read<br>e @ | Top                       | Mx - End<br>@ Base |                      | nts k-ft<br>@ Top | My - End<br>@ Base              |           |
| +D+0.750L                                     |                         | 533.54                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| +0.60D<br>Lr Only                             |                         | 235.07<br>24.00        |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| L Only                                        |                         | 189.00                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Extreme Reactions                             |                         |                        | •        |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
|                                               |                         | Axial Reaction         | n        | X-X Axis React              | ion <b>k</b> | Y-Y A           | xis Read        | ction                     | Mx - End           | Mome                 | nts <b>k-ft</b>   | My - End                        | Moments   |
| Item                                          | Extreme Value           | @ Base                 |          |                             | Тор          | @ Bas           |                 | Тор                       | @ Base             |                      | @ Top             | @ Base                          | @ Top     |
| Axial @ Base                                  | Maximum<br>Minimum      | 580.79<br>24.00        |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Reaction, X-X Axis Base                       | Maximum                 | 24.00<br>391.79        |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| "                                             | Minimum                 | 391.79                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Reaction, Y-Y Axis Base                       | Maximum                 | 391.79                 |          |                             | 1            |                 |                 |                           | - /                |                      |                   |                                 |           |
| Reaction, X-X Axis Top                        | Minimum<br>Maximum      | 391.79<br>391.79       |          |                             | $\mathbb{C}$ |                 |                 |                           | 2 /                | $\wedge \setminus  $ |                   | )WV(                            |           |
|                                               | Minimum 7               | 391.79                 |          |                             | こう)(         |                 |                 | $\mathbb{R}^{\mathbb{N}}$ | ι, / ·             | = 1                  |                   | $\lambda$                       |           |
| Reaction, Y-Y Axis Top                        | Maximum                 | 391.79                 |          |                             | <u> </u>     |                 |                 |                           |                    |                      |                   |                                 | 0 01      |
| "<br>Moment, X-X Axis Base                    | Minimum                 | 391.79                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| woment, X-X Axis base                         | Maximum<br>Minimum      | 391.79<br>391.79       |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Moment, Y-Y Axis Base                         | Maximum                 | 391.79                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| "                                             | Minimum                 | 391.79                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Moment, X-X Axis Top                          | Maximum<br>Minimum      | 391.79<br>391.79       |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Moment, Y-Y Axis Top                          | Maximum                 | 391.79                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| "                                             | Minimum                 | 391.79                 |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Maximum Deflections                           | s for Load Com          | nbinations             |          |                             |              |                 |                 |                           |                    |                      |                   |                                 |           |
| Load Combination                              |                         | Max. X-X De            |          |                             |              | Max. Y-         |                 |                           | Distance           |                      |                   |                                 |           |
| D Only                                        |                         | 0.0000                 | in       | 0.000                       | ft           |                 | N 1             | in                        | 0.000              | ft                   |                   |                                 |           |
| +D+L<br>+D+Lr                                 |                         | 0.0000                 | in<br>in | 0.000                       | ft ft        |                 |                 | in V/(                    | 0.000              | ft ft                | $\leq$            |                                 |           |
| +D+0.750Lr+0.750L                             |                         | 0.0000                 |          | 0.000                       | ft C         |                 |                 | in                        | 0.000              | ft                   |                   |                                 |           |
| +D+0.750L                                     |                         | 0.0000                 | in       | 0.000                       | ft           |                 |                 | in                        | 0.000              | ft                   |                   |                                 |           |
| +0.60D                                        |                         | 0.0000                 | in       | 0.000                       | ft           |                 |                 | in                        | 0.000              | ft                   |                   |                                 |           |
| Lr Only                                       |                         | 0.0000<br>0.0000       | in<br>in | 0.000<br>0.000              | ft<br>ft     |                 | ~~~             | in<br>in                  | 0.000<br>0.000     | ft<br>ft             |                   |                                 |           |
| L Only<br>Steel Section Propert               | ioc i V                 | 0.0000<br>V12x79       | IN       | 0.000                       | n.           | 0.              | 000             | in                        | 0.000              | ц                    |                   |                                 |           |
| Depth =                                       |                         |                        | l xx     | =                           | 662 0        | 0 in^4          |                 |                           | J                  |                      | =                 | 3.840 in^4                      | L         |
| Web Thick =                                   |                         |                        | S xx     | =                           |              | 0 in^3          |                 |                           | Cw                 |                      |                   | 7,330.00 in^6                   |           |
| Flange Width =                                |                         |                        | R xx     | =                           |              | 0 in            |                 |                           |                    |                      |                   | ,                               |           |
| Flange Thick =                                | 0.735                   | in                     | Zx       | =                           | 119.00       | 0 in^3          |                 |                           |                    |                      |                   |                                 |           |
| Area =                                        | 201200                  |                        | l yy     | =                           | 216.00       |                 |                 |                           |                    |                      |                   |                                 |           |
| Weight =                                      |                         |                        | S yy     | =                           |              | 0 in^3          |                 |                           | Wno                |                      | =                 | 35.300 in^2                     |           |
| Kdesign =                                     |                         |                        | R yy     |                             |              | 0 in            |                 |                           | Sw                 |                      |                   | 78.500 in^4                     |           |
| K1<br>rts<br>Ycg                              | 1.063<br>3.430<br>0.000 | in (G)                 | Zy       |                             | 54.30        | 0 in^3          |                 | (0)                       | Qf<br>Qw           | $\Delta$             |                   | 24.900 in^3<br>58.900 in^3      |           |



# Commercial Use Not Allowed

| Title Block" selection.<br>Title Block Line 6 |                                                         |                                  |               |                      |                                       | Print                                           | ed: 31 MAR                  | 2020, 2:03PM              |
|-----------------------------------------------|---------------------------------------------------------|----------------------------------|---------------|----------------------|---------------------------------------|-------------------------------------------------|-----------------------------|---------------------------|
| Steel Column                                  |                                                         |                                  |               | Fi                   |                                       | Desktop\SCU Faculty St<br>pyright ENERCALC, INC |                             |                           |
| Lic. # : KW-06090157 - Ed                     | ucational Version                                       |                                  |               | Licer                |                                       | TA CLARA UNIVER                                 |                             |                           |
| DESCRIPTION: D5-                              | 6 STL COLS                                              |                                  |               |                      |                                       |                                                 |                             |                           |
|                                               |                                                         |                                  |               |                      | $\nabla$                              |                                                 |                             |                           |
| Code References                               |                                                         |                                  | 12            |                      | -\\//(_                               |                                                 |                             | $\rightarrow$             |
| Calculations per AIS<br>Load Combinations L   | C 360-10, IBC 2015, CBC 20                              | 16, ASCE 7-10                    |               |                      |                                       |                                                 |                             |                           |
| General Information                           | JSEU . ASCE 7-10                                        |                                  |               |                      |                                       |                                                 |                             |                           |
|                                               |                                                         |                                  |               |                      |                                       |                                                 |                             |                           |
| Steel Section Name :<br>Analysis Method :     | W12x53<br>Load Resistance Factor                        |                                  |               |                      | all Column Heigl<br>& Bottom Fixity   | nt<br>Top & Bottor                              | 10.0 ft                     |                           |
| Steel Stress Grade                            |                                                         |                                  | Brace of      |                      |                                       | kling) along column                             |                             |                           |
| Fy : Steel Yield                              | 50.0 ksi                                                |                                  | X-X           | (width) axis         | S:                                    | <i>c, c</i>                                     |                             |                           |
| E : Elastic Bending Modulus                   | s 29,000.0 ksi                                          |                                  |               |                      |                                       | OUT Y-Y Axis = 10.0                             | ft, K = 1.0                 |                           |
|                                               |                                                         |                                  | Y-Y<br>Ur     | (depth) axis         | s :<br>gth for buckling AB            | OUT X-X Axis = 10.0                             | ft, K = 1.0                 |                           |
| Annihad Laada                                 |                                                         |                                  |               |                      |                                       |                                                 |                             |                           |
| Applied Loads                                 |                                                         |                                  | 5             | Service loa          | ids entered. Loa                      | ad Factors will be                              | applied for                 | calculations.             |
| AXIAL LOADS                                   | luded : 530.0 lbs * Dead Load Facto                     | or I I I                         | $\frown$      |                      |                                       |                                                 |                             | $\neg \frown$             |
|                                               | e: Axial Load at 10.0 ft, D = 226.0, I                  | R = 24.0, L = 95.0               | KSF           | D IV                 | $\Gamma(0)$                           |                                                 | O                           | $\pi$                     |
| DESIGN SUMMARY                                |                                                         |                                  |               |                      |                                       |                                                 |                             |                           |
| Bending & Shear Ch                            |                                                         |                                  |               |                      |                                       |                                                 |                             |                           |
| PASS Max. Axial+Ben<br>Load Combin            | ding Stress Ratio =                                     | <b>0.7368</b><br>0+0.50Lr+1.60L  |               |                      | Im Load Reaction                      | S                                               | 0.0.6                       |                           |
|                                               | allon + 1.201<br>ax.above base                          | 0.0 0.0 0.0 0.0                  |               |                      | op along X-X<br>ottom along X-X       |                                                 | 0.0 k<br>0.0 k              |                           |
| At maximum                                    | ocation values are                                      | 0.0                              |               |                      | op along Y-Y                          |                                                 | 0.0 k                       |                           |
| Pu                                            |                                                         | 435.836                          |               | B                    | ottom along Y-Y                       |                                                 | 0.0 k                       |                           |
| 0.9 * Pi<br>Mu-x                              | n                                                       | 591.55                           |               | Maximu               | um Load Deflectio                     | ons                                             |                             |                           |
| 0.9 * M                                       | n_v ·                                                   |                                  | ) k-ft        | Along \              | Y-Y                                   | 0.0 in at                                       | 0.0ft                       | above base                |
| Mu-y                                          | 1-2 -                                                   | 285.315                          | ок-π<br>)k-ft |                      | load combinatior                      | n:                                              |                             |                           |
| 0.9 * M                                       | n-y :                                                   | 109.125                          |               | Along >              | X-X                                   | 0.0 in at                                       | 0.0ft                       | above base                |
|                                               |                                                         |                                  |               |                      | or load combination                   |                                                 |                             |                           |
|                                               | ear Stress Ratio =                                      |                                  |               |                      | $\langle V \rangle \langle G \rangle$ |                                                 | 5 ( (                       |                           |
| Load Combin                                   | ation ax.above base                                     | 0.0                              |               |                      |                                       |                                                 |                             |                           |
| At maximum                                    | ocation values are                                      |                                  |               |                      |                                       |                                                 |                             |                           |
| Vu : A<br>Vn * F                              | pplied<br>hi : Allowable                                | 0.0<br>0.0                       |               |                      |                                       |                                                 |                             |                           |
|                                               |                                                         | 0.0                              | ĸ             |                      |                                       |                                                 |                             |                           |
| Load Combination R                            |                                                         |                                  |               |                      |                                       |                                                 |                             |                           |
| Load Combination                              | <u>Maximum Axial + Bending S</u><br>Stress Ratio Status | tress Ratios<br>Location         | Cbx           | Cby ł                | KxLx/Rx KyLy/F                        | Maximu<br>Ry Stress Ration                      | <u>m Shear Ra</u><br>Status | a <u>tios</u><br>Location |
| Load Combination<br>+1.40D                    | 0.536 PASS                                              | 0.00 ft                          | 1.00          | 1.00                 | 48.39 22.9                            |                                                 |                             | 0.00 ft                   |
| +1.40D<br>+1.20D+0.50Lr+1.60L                 | 0.530 PASS<br>0.737 PASS                                | 0.00 ft                          | 1.00          | 1.00                 | 48.39 22.9                            |                                                 |                             | 0.00 ft                   |
| +1.20D+1.60L                                  | 0.716 PASS                                              | 0.00 ft                          | 1.00          | 1.00                 | 48.39 22.9                            | 4 0.000                                         | PASS                        | 0.00 ft                   |
| +1.20D+1.60Lr+L<br>+1.20D+1.60Lr              | 0.685 PASS<br>0.524 PASS                                | 0.00 ft<br>0.00 ft               | 1.00<br>1.00  | 1.00                 | 48.39 22.9<br>48.39 22.9              |                                                 |                             | 0.00 ft<br>0.00 ft        |
| +1.20D+1.00L1<br>+1.20D+L                     | 0.620 PA\$S                                             | 0.00 ft                          | 1.00          | 1.00                 | 48.39 22.9                            | 4 / \ 0.000                                     | PASS                        | 0.00 ft                   |
| +1.20D                                        | 0.460 PA\$S                                             | 0.00 ft                          | 1.00          | 1.00                 | 48.39 22.9                            | 4 / 🛆 🔪 0.000                                   | PASS                        | 0.00 ft                   |
| +1.20D+0.50Lr+L +0.90D                        | 0.640 PASS<br>0.345 PASS                                | 0.00 ft 0.00 ft                  | 1.00          | 1.00<br>1.00         | 48.39 22.9<br>48.39 22.9              |                                                 | PASS                        | 0.00 ft<br>0.00 ft        |
| +0.90D<br>+1.40D+L                            | 0.345 PASS<br>0.697 PASS                                | 0.00 ft                          | 1.00          | 1.00                 | 48.39 22.9                            |                                                 |                             | 0.00 ft                   |
| +0.70D                                        | 0.268 PASS                                              | 0.00 ft                          | 1.00          | 1.00                 | 48.39 22.9                            |                                                 | PASS                        | 0.00 ft                   |
| Maximum Reactions                             |                                                         |                                  |               |                      |                                       | Note: Only non-z                                |                             |                           |
| Load Combination                              | Axial Reaction<br>@ Base                                | X-X Axis Reaction<br>@ Base @ To |               | Y-Y Axis R<br>@ Base |                                       | c - End Moments I<br>Base @ Top                 | <b>∢-ft</b> My-<br>@Ba      | End Moments<br>se @ Top   |
| D Only                                        | 226.530                                                 |                                  |               |                      |                                       |                                                 |                             |                           |
| +D+L<br>+D+Lr                                 | 321.530<br>250.530                                      |                                  |               |                      |                                       |                                                 |                             |                           |
| +D+Lr<br>+D+0.750Lr+0.750L                    | 250.530<br>315.780                                      |                                  |               |                      |                                       |                                                 |                             |                           |
|                                               |                                                         |                                  |               |                      |                                       |                                                 |                             |                           |
|                                               |                                                         | ()                               | 12            |                      | $\sqrt{//c}$                          | Prs                                             |                             | $\gamma$                  |
|                                               | NAAR                                                    |                                  |               |                      |                                       |                                                 |                             |                           |
|                                               |                                                         |                                  |               |                      |                                       |                                                 |                             |                           |

| Title Block" selection.<br>Title Block Line 6 |                               |                                      |                |                             |                |                  |                              |                |                                  |                      | Printec           | 1: 31 MAR 20                     | 20 2.03PM          |
|-----------------------------------------------|-------------------------------|--------------------------------------|----------------|-----------------------------|----------------|------------------|------------------------------|----------------|----------------------------------|----------------------|-------------------|----------------------------------|--------------------|
| Steel Column                                  |                               |                                      |                |                             |                |                  | File                         |                |                                  |                      | Faculty Staff     | Housing Develo                   | pment.ec6 .        |
| Lic. # : KW-06090157 - E                      | ducational Version            | 1                                    | _              | _                           | _              | _                | Licens                       |                |                                  |                      |                   | 983-2020, Build:<br>TY, CIVIL EN |                    |
| DESCRIPTION: D5                               |                               |                                      |                |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Maximum Reaction                              | S                             |                                      |                |                             |                |                  |                              |                |                                  |                      |                   | o reactions                      |                    |
| Load Combination                              | 46                            | Axial Reactio<br>@ Base              |                | X-X Axis Reacti<br>@ Base @ | on<br>Top      | Q Bas            | xis Rea<br>se @              | Ction<br>Top   | Mx - En<br>@ Base                |                      | ents k-f<br>@ Top | t My - End<br>@ Base             | I Moments<br>@ Top |
| +D+0.750L<br>+0.60D<br>Lr Only                |                               | 297.780<br>135.918<br>24.000         |                |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| L Only                                        |                               | 95.000                               |                |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Extreme Reactions                             |                               | Axial Reaction                       | •              | X-X Axis React              | ion <b>k</b>   | V V /            | Axis Rea                     | otion          | Mx - En                          | d Mome               | ents <b>k-f</b>   | • My Eng                         | I Moments          |
| Item                                          | Extreme Value                 |                                      | I              |                             | тор            | @ Ba             |                              | ) Top          | @ Base                           |                      | @ Top             | @ Base                           | @ Top              |
| Axial @ Base                                  | Maximum<br>Minimum            | 321.530<br>24.000                    |                |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Reaction, X-X Axis Base                       | Maximum<br>Minimum            | 226.530<br>226.530                   | )              |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Reaction, Y-Y Axis Base                       | Maximum                       | 226.530                              | )              |                             | 1              |                  |                              |                |                                  |                      |                   |                                  |                    |
| Reaction, X-X Axis Top                        | Minimum<br>Maximum            | 226.530<br>226.530                   | 2              |                             | 5              |                  | N                            |                | i7 /                             | $\Delta \setminus  $ |                   |                                  |                    |
| Reaction, Y-Y Axis Top                        | Minimum<br>Maximum            | 226.530<br>226.530                   |                |                             |                |                  |                              |                |                                  |                      |                   |                                  | 0G                 |
| Moment, X-X Axis Base                         | Minimum<br>Maximum<br>Minimum | 226.530<br>226.530<br>226.530        | )              |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Moment, Y-Y Axis Base                         | Maximum<br>Minimum            | 226.530<br>226.530                   | )              |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Moment, X-X Axis Top                          | Maximum<br>Minimum            | 226.530<br>226.530                   |                |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Moment, Y-Y Axis Top                          | Maximum<br>Minimum            | 226.530<br>226.530                   | )              |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Maximum Deflection                            | ns for Load Con               | nbinations                           |                |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Load Combination                              |                               | Max. X-X Def                         | lection        | Distance                    |                |                  | -Y Defle                     | ection         | Distanc                          | е                    |                   |                                  |                    |
| D_Only<br>+D+L<br>+D+Lr<br>+D+0.750Lr+0.750L  | UG                            | 0.0000<br>0.0000<br>0.0000<br>0.0000 | in<br>in<br>in | 0.000 0.000 0.000 0.000     | ft<br>ft<br>ft |                  | 0000<br>0000<br>0000<br>0000 | in<br>in<br>in | 0.000<br>0.000<br>0.000<br>0.000 | ft<br>ft<br>ft<br>ft | S                 |                                  | )h                 |
| +D+0.750L<br>+0.60D                           |                               | 0.0000<br>0.0000                     | in<br>in       | 0.000<br>0.000              | ft<br>ft       |                  | 000.<br>000.                 | in<br>in       | 0.000<br>0.000                   | ft<br>ft             |                   |                                  |                    |
| Lr Only                                       |                               | 0.0000                               | in<br>in       | 0.000                       | n<br>ft        |                  | 0.000                        | in<br>in       | 0.000                            | ft                   |                   |                                  |                    |
| L Only                                        |                               | 0.0000                               | in             | 0.000                       | ft             | 0                | .000                         | in             | 0.000                            | ft                   |                   |                                  |                    |
| Steel Section Prope                           |                               | N12x53                               |                |                             |                |                  |                              |                |                                  |                      |                   |                                  |                    |
| Depth                                         | = 12.100                      |                                      | l xx           | =                           |                | 00 in^4          |                              |                | J                                |                      | =                 | 1.580 in^                        |                    |
| Web Thick<br>Flange Width                     | = 0.345<br>= 10.000           |                                      | S xx<br>R xx   | =                           |                | 60 in^3<br>30 in |                              |                | Cw                               |                      | =                 | 3,160.00 in^                     | 6                  |
| Flange Thick                                  | = 0.575                       |                                      | r xx<br>Zx     | =                           |                | 00 in^3          |                              |                |                                  |                      |                   |                                  |                    |
| Area                                          | = 15.600                      | in^2                                 | l yy           | =                           | 95.8           | 00 in^4          |                              |                |                                  |                      |                   |                                  |                    |
| Weight                                        | = 53.000                      |                                      | S yy           | =                           |                | 00 in^3          |                              |                | Wno                              |                      | =                 | 28.800 in^                       |                    |
| Kdesign<br>K1                                 | = 1.180                       |                                      | R yy           |                             |                | 80 in<br>00 in^3 |                              |                | Sw<br>Qf                         |                      |                   | 41.400 in^<br>16.000 /in^        |                    |
| rts<br>Ycg                                    | = 0.938<br>2.790<br>0.000     | in (55)                              | Zy             |                             | S              | 00 M3            |                              |                | Qw                               |                      |                   | 38.300 in^                       |                    |



# Commercial Use Not Allowed

| and then using the "Printing &                  |                                    | I                                                                                    | Toject Desci.                                             |                                                                                           |
|-------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Title Block" selection.<br>Title Block Line 6   |                                    |                                                                                      |                                                           | Printed: 31 MAR 2020, 2:03PM                                                              |
| Steel Column                                    |                                    |                                                                                      |                                                           | SCU Faculty Staff Housing Development.ec6                                                 |
| Lic. # : KW-06090157 - Educa                    | tional Version                     |                                                                                      | Software copyright E<br>Licensed User : SANTA CL          | ARA UNIVERSITY, CIVIL ENGINEERING                                                         |
| DESCRIPTION: D7-Roc                             |                                    |                                                                                      |                                                           |                                                                                           |
|                                                 |                                    |                                                                                      |                                                           |                                                                                           |
| Code References                                 |                                    | OP                                                                                   |                                                           | reion                                                                                     |
| Calculations per AISC 3                         | 60-10, IBC 2015, CBC 20            | 16, ASCE 7-10                                                                        |                                                           |                                                                                           |
| Load Combinations Use                           | d : ASCE 7-16                      |                                                                                      |                                                           |                                                                                           |
| General Information                             |                                    |                                                                                      |                                                           |                                                                                           |
| Steel Section Name :                            | W10x33                             |                                                                                      | Overall Column Height                                     | 10.0 ft                                                                                   |
| Analysis Method :                               | Load Resistance Factor             |                                                                                      |                                                           | op & Bottom Pinned                                                                        |
| Steel Stress Grade                              | 50.0.1.1                           |                                                                                      | e condition for deflection (buckling) a                   | along columns :                                                                           |
| Fy : Steel Yield<br>E : Elastic Bending Modulus | 50.0 ksi<br>29,000.0 ksi           |                                                                                      | -X (width) axis :<br>Unbraced Length for buckling ABOUT Y | -Y Axis = 10.0 ft. K = 1.0                                                                |
| E . Elablic Benaing Modelas                     | 23,000.0 Ка                        | Y.                                                                                   | -Y (depth) axis :                                         |                                                                                           |
|                                                 |                                    |                                                                                      | Unbraced Length for buckling ABOUT X                      | -X Axis = 10.0 ft, K = 1.0                                                                |
| Applied Loads                                   |                                    |                                                                                      | Service loads entered. Load Fa                            | ctors will be applied for calculations.                                                   |
|                                                 | d : 330.0 lbs * Dead Load Facto    | n – –                                                                                |                                                           |                                                                                           |
| AXIAL LOADS                                     | monoig                             |                                                                                      |                                                           |                                                                                           |
|                                                 | xial Load at 10.0 ft, D = 143.0, L | R = 24.0, L = 48.0 k                                                                 | $\exists \exists   [V](0)  ] / =$                         | 1、      ( O ) \ W V ( 号( O                                                                |
| DESIGN SUMMARY                                  |                                    |                                                                                      |                                                           |                                                                                           |
| Bending & Shear Chec                            |                                    | 0 7005 4                                                                             | Marken I and Darachara                                    |                                                                                           |
| PASS Max. Axial+Bending<br>Load Combination     |                                    | <b>0.7895</b> : 1<br>0+0.50Lr+1.60L                                                  | Maximum Load Reactions<br>Top along X-X                   | 0.0 k                                                                                     |
| Location of max.a                               | bove base                          | 0.0 ft                                                                               | Bottom along X-X                                          | 0.0 k                                                                                     |
|                                                 | tion values are                    |                                                                                      | Top along Y-Y                                             | 0.0 k                                                                                     |
| Pu<br>0.9 * Pn                                  |                                    | 260.796 k<br>330.320 k                                                               | Bottom along Y-Y                                          | 0.0 k                                                                                     |
| Mu-x                                            |                                    | 0.0 k-ft                                                                             | Maximum Load Deflections                                  |                                                                                           |
| 0.9 * Mn-x :                                    |                                    | 134.228 k-ft                                                                         | - 5                                                       | n at 0.0 ft above base                                                                    |
| Mu-y                                            |                                    | 0.0 k-ft                                                                             | for load combination :                                    |                                                                                           |
| 0.9 * Mn-y :                                    |                                    | 52.50 k-ft                                                                           | Along X-X 0.0 i                                           | n at 0.0ft above base                                                                     |
|                                                 |                                    |                                                                                      | for load combination :                                    |                                                                                           |
| PASS Maximum Shear                              |                                    |                                                                                      |                                                           |                                                                                           |
| Location of max.a                               |                                    | 0.0 ft                                                                               |                                                           |                                                                                           |
| At maximum locat                                | tion values are                    |                                                                                      |                                                           |                                                                                           |
| Vu : Applie<br>Vn * Phi : J                     |                                    | 0.0 k<br>0.0 k                                                                       |                                                           |                                                                                           |
| Load Combination Door                           | .14.                               |                                                                                      |                                                           |                                                                                           |
| Load Combination Resu                           | lits                               |                                                                                      |                                                           |                                                                                           |
| l a a d O a mala in a ti a n                    | Maximum Axial + Bending Si         |                                                                                      | Cby KxLx/Rx KyLy/Ry                                       | Maximum Shear Ratios                                                                      |
| Load Combination<br>+1.40D                      | Stress Ratio Status 0.607 PASS     | Location Cbx<br>0.00 ft 1.00                                                         |                                                           | Stress Ratio         Status         Location           0.000         PASS         0.00 ft |
| +1.40D<br>+1.20D+0.50Lr+1.60L                   | 0.607 PASS<br>0.790 PASS           | 0.00 ft 1.00                                                                         |                                                           | 0.000 PASS 0.00 ft                                                                        |
| +1.20D+1.60L                                    | 0.753 PASS                         | 0.00 ft 1.00                                                                         | 1.00 61.86 28.64                                          | 0.000 PASS 0.00 ft                                                                        |
| +1.20D+1.60Lr+L                                 | 0.782 PASS                         | 0.00 ft 1.00                                                                         |                                                           | 0.000 PASS 0.00 ft                                                                        |
| +1.20D+1.60Lr<br>+1.20D+L                       | 0.637 PASS<br>0.666 PASS           | 0.00 ft 1.00<br>0.00 ft 1.00                                                         |                                                           | 0.000 PASS 0.00 ft<br>0.000 PASS 0.00 ft                                                  |
| +1.20D                                          | 0.521 PASS                         | 0.00 ft 1.00                                                                         | <b>1</b> 00 61.86 28.64 / <sup>1</sup>                    | 0.000 PASS / / 0.00 ft                                                                    |
| +1.20D+0.50Lr+L                                 | 0.702 PASS                         |                                                                                      |                                                           | 0.000 PASS 0.00 ft                                                                        |
| +0.90D<br>+1.40D+L                              | 0.391 PASS<br>0.753 PASS           | 0.00 ft 1.00<br>0.00 ft 1.00                                                         |                                                           | 0.000 PASS 0.00 ft<br>0.000 PASS 0.00 ft                                                  |
| +0.70D                                          | 0.304 PASS                         | 0.00 ft 1.00                                                                         |                                                           | 0.000 PASS 0.00 ft                                                                        |
| Maximum Reactions                               |                                    |                                                                                      | Note:                                                     | Only non-zero reactions are listed.                                                       |
| Load Combinet                                   | Axial Reaction                     | X-X Axis Reaction k                                                                  |                                                           | Moments k-ft My - End Moments                                                             |
| Load Combination                                | @ Base                             | @ Base @ Top                                                                         | @ Base @ Top @ Base                                       | @ Top @ Base @ Top                                                                        |
| D Only<br>+D+L                                  | 143.330<br>191.330                 |                                                                                      |                                                           |                                                                                           |
| +D+Lr                                           | 167.330                            |                                                                                      |                                                           |                                                                                           |
| +D+0.750Lr+0.750L                               | 197.330                            |                                                                                      |                                                           |                                                                                           |
|                                                 |                                    |                                                                                      |                                                           |                                                                                           |
|                                                 |                                    | $\left( \right) \left( \right) \left( \right) \left( \right) \left( \right) \right)$ |                                                           |                                                                                           |

| Title Block" selection.<br>Title Block Line 6 |                    |                  |              |             |         |                    |          |                |                |                          | Printed:                        | 31 MAR 202              | ), 2:03PM |
|-----------------------------------------------|--------------------|------------------|--------------|-------------|---------|--------------------|----------|----------------|----------------|--------------------------|---------------------------------|-------------------------|-----------|
| Steel Column                                  |                    |                  |              |             |         |                    |          |                | rs\Owner\Deski |                          |                                 |                         |           |
| Lic. # : KW-06090157 - E                      | ducational Versio  | n                |              | _           |         | _                  | Lic      |                | r : SANTA C    |                          |                                 |                         |           |
| DESCRIPTION: D7                               |                    |                  |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Maximum Reaction                              | S C C              | Axial Reacti     |              | X-X Axis Re | action  |                    |          | Reaction       | $( \bigcirc )$ | e: Only no<br>nd Moments | -+                              | reactions a<br>My - End |           |
| Load Combination                              | 46                 | @ Base           | -            | @ Base      | @ Top   |                    | Base     | @ Top          | @ Bas          |                          |                                 | @ Base                  | @ Top     |
| +D+0.750L                                     |                    | 179.33           |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| +0.60D<br>Lr Only                             |                    | 85.99<br>24.00   |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| L Only                                        |                    | 48.00            |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Extreme Reactions                             |                    |                  | •            |             |         |                    |          |                |                |                          |                                 |                         |           |
|                                               |                    | Axial Reaction   | on           | X-X Axis Re | eaction | k `                | Y-Y Axis | Reaction       | Mx - Er        | nd Moments               | k-ft                            | My - End                | Moments   |
| Item                                          | Extreme Value      |                  |              | @ Base      | @ Top   |                    | @ Base   | @ Top          | @ Bas          |                          |                                 | @ Base                  | @ Top     |
| Axial @ Base                                  | Maximum<br>Minimum | 197.33<br>24.00  |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Reaction, X-X Axis Base                       | Maximum            | 143.33           |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| "                                             | Minimum            | 143.33           |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Reaction, Y-Y Axis Base                       | Maximum            | 143.33           |              |             |         |                    |          |                | _              |                          |                                 |                         |           |
|                                               | Minimum            | 143.33           |              |             |         |                    |          |                | )[[ /          |                          |                                 |                         |           |
| Reaction, X-X Axis Top                        | Maximum<br>Minimum | 143.33           | 1/1          |             | 기음      | 516                |          | $\nabla   (0)$ | )[[ /          |                          | $\left( \left( \right) \right)$ | ) / V/V / (             | 出()       |
| Reaction, Y-Y Axis Top                        | Maximum            | 143.33           |              |             |         | 90                 |          |                |                |                          |                                 |                         |           |
| "                                             | Minimum            | 143.33           |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Moment, X-X Axis Base                         | Maximum            | 143.33           | 0            |             |         |                    |          |                |                |                          |                                 |                         |           |
| "                                             | Minimum            | 143.33           |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Moment, Y-Y Axis Base                         | Maximum            | 143.33           |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Moment, X-X Axis Top                          | Minimum<br>Maximum | 143.33<br>143.33 |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| "                                             | Minimum            | 143.33           |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Moment, Y-Y Axis Top                          | Maximum            | 143.33           | 0            |             |         |                    |          |                |                |                          |                                 |                         |           |
| "                                             | Minimum            | 143.33           | 0            |             |         |                    |          |                |                |                          |                                 |                         |           |
| Maximum Deflection                            | ns for Load Cor    |                  |              |             |         |                    |          |                |                |                          |                                 |                         |           |
| Load Combination                              |                    | Max. X-X De      |              |             |         | Ma                 |          | Deflection     | Distanc        |                          | -                               |                         |           |
| D Only<br>+D+L                                |                    | 0.0000           |              | 0.0         |         |                    | 0.00     |                | 0.000          | ft<br>ft                 |                                 |                         |           |
| +D+L<br>+D+Lr                                 |                    | 0.0000           |              | 0.00        | / /     | 2                  | 0.00     |                | 0.000          | ft S                     | 51                              |                         |           |
| +D+0.750Lr+0.750L                             |                    | 0.0000           |              | 0.00        |         |                    | 0.00     |                | 0.000          | li C                     |                                 |                         | /         |
| +D+0.750L                                     |                    | 0.0000           | in           | 0.00        | 00 ft   |                    | 0.00     |                | 0.000          | ft                       |                                 |                         |           |
| +0.60D                                        |                    | 0.0000           | in           | 0.00        |         |                    | 0.00     |                | 0.000          | ft                       |                                 |                         |           |
| Lr Only                                       |                    | 0.0000           | in           | 0.00        |         |                    | 0.00     |                | 0.000          | ft                       |                                 |                         |           |
| L Only                                        |                    | 0.0000           | in           | 0.00        | 00 ft   |                    | 0.00     | 0 in           | 0.000          | ft                       |                                 |                         |           |
| Steel Section Prope                           |                    | W10x33           | 1            |             |         | 474.00             |          |                |                |                          |                                 | 0.500 - 11              |           |
| Depth<br>Web Thick                            | = 9.730<br>= 0.290 |                  | l xx         | =           |         | 171.00 i           |          |                | J              | =                        |                                 | 0.583 in^4              |           |
| Flange Width                                  | = 0.290<br>= 7.960 |                  | S xx<br>R xx | =           |         | 35.00 i<br>4.190 i |          |                | Cw             | -                        |                                 | 791.00 in^6             |           |
| Flange Thick                                  | = 0.435            |                  | Zx           | =           |         | 38.800 i           |          |                |                |                          |                                 |                         |           |
| Area                                          | = 9.710            |                  | L yy         | =           |         | 36.600 i           |          |                |                |                          |                                 |                         |           |
| Weight                                        | = 33.000           |                  | S yy         | =           |         | 9.200 i            |          |                | Wno            | =                        |                                 | 18.500 in^2             |           |
| Kdesign                                       | = 0.935            |                  | R yy         | =           |         | 1.940 i            |          |                | Sw             |                          |                                 | 16.000 in^4             |           |
| K1 OF                                         | = 0.750            |                  | Zy           | =           |         | 14.000 i           |          |                | Qf /           | ∕∧∖ =                    |                                 | 7.750 in^3              |           |
| rts                                           | = 2.200            | in ( ( –         |              |             |         | 96                 | 7        | 00             | Qw             |                          |                                 | 18.900 in^3             | 30        |



# Commercial Use Not Allowed

| and then using the "Printing &                                                             |                                          |                                  | P             | roject D                   | escr:                   |                |                                           |                        |                         |
|--------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|---------------|----------------------------|-------------------------|----------------|-------------------------------------------|------------------------|-------------------------|
| Title Block" selection.<br>Title Block Line 6                                              |                                          |                                  |               |                            |                         |                | Printe                                    | ed: 31 MAR             | 2020, 2:04PM            |
| Steel Column                                                                               |                                          |                                  |               |                            |                         |                | ktop\SCU Faculty Sta<br>ht ENERCALC, INC. | •                      |                         |
| Lic. # : KW-06090157 - Educa                                                               |                                          |                                  |               | Li                         |                         |                | CLARA UNIVERS                             |                        |                         |
| DESCRIPTION: D3-4 S                                                                        | TL COLS (Corridor)                       | _                                |               |                            |                         |                |                                           |                        |                         |
| Code References<br>Calculations per AISC 3<br>Load Combinations Use<br>General Information | 60-10, IBC 2015, CBC 20<br>d : ASCE 7-16 | 016, ASCE 7-10                   |               |                            |                         |                |                                           |                        |                         |
| Steel Section Name :                                                                       | W12x96                                   |                                  |               | 0                          | verall Colun            | nn Height      |                                           | 10.0 ft                |                         |
| Analysis Method :                                                                          | Load Resistance Factor                   |                                  | _             | Te                         | op & Bottom             | n Fixity       | Top Pinned,                               | Bottom F               | ixed                    |
| Steel Stress Grade<br>Fy : Steel Yield                                                     | 50.0 ksi                                 |                                  |               | e condition<br>X (width) a |                         | on (buckling   | g) along columns                          | ;:                     |                         |
| E : Elastic Bending Modulus                                                                | 29,000.0 ksi                             |                                  | l             | Unbraced L                 | ength for bud           | ckling ABOU    | T Y-Y Axis = 10.0                         | ft, K = 0.80           |                         |
|                                                                                            |                                          |                                  |               | Y (depth)<br>Unbraced L    |                         | kling ABOU     | T X-X Axis = 10.0                         | ft, K = 0.80           |                         |
| Applied Loads                                                                              |                                          |                                  |               | Service                    | loads ente              | red I oad I    | Factors will be                           | applied for            | calculations            |
|                                                                                            | ed : 960.0 lbs * Dead Load Fac           | tor                              |               | 0011100                    |                         |                |                                           |                        |                         |
| AXIAL LOADS                                                                                | poroid                                   |                                  |               |                            | NG                      |                |                                           |                        |                         |
| DESIGN SUMMARY                                                                             | xial Load at 10.0 ft, D = 391.0,         | LR = 24.0, L = 284.              | OR            | 5                          |                         | UG Z           | AUU(                                      | <u>D</u> W             | IGU                     |
| Bending & Shear Chec                                                                       | k Results                                |                                  |               |                            |                         |                |                                           |                        |                         |
| PASS Max. Axial+Bending<br>Load Combination                                                |                                          | 0.7922<br>D+0.50Lr+1.60L         |               | Max                        | imum Load I             |                |                                           | 0.0 k                  |                         |
| Location of max.a                                                                          | bove base                                |                                  | D ft          |                            | Top along<br>Bottom alo |                |                                           | 0.0 k                  |                         |
| At maximum loca<br>Pu                                                                      | tion values are                          | 936.75                           | 5 k           |                            | Top along<br>Bottom alo |                |                                           | 0.0 k<br>0.0 k         |                         |
| 0.9 * Pn                                                                                   |                                          | 1,182.53                         | 3 k           | Max                        | imum Load I             | •              |                                           | 0.0 K                  |                         |
| Mu-x<br>0.9 * Mn-x                                                                         |                                          | 0.0<br>551.25                    | )k-ft         |                            | ng Y-Y                  |                | 0in at                                    | 0.0ft                  | above base              |
| Mu-y                                                                                       |                                          |                                  | οκ-π<br>Οk-ft |                            | for load com            | bination :     |                                           |                        |                         |
| 0.9 * Mn-y                                                                                 |                                          | 253.125                          | 5 k-ft        | Alor                       | ng X-X                  |                | 0 in at                                   | 0.0ft                  | above base              |
| PASS Maximum Shear<br>Load Combination                                                     |                                          |                                  |               |                            | for load co             |                | rs                                        |                        | Dh                      |
| Location of max.a<br>At maximum loca                                                       | bove base<br>tion values are             | 0.0                              | D ft          |                            |                         |                |                                           |                        |                         |
| Vu : Applie<br>Vn * Phi :                                                                  |                                          |                                  | ) k<br>) k    |                            |                         |                |                                           |                        |                         |
| Load Combination Resu                                                                      |                                          | 0.0                              |               |                            |                         |                |                                           |                        |                         |
|                                                                                            | Maximum Axial + Bending S                | Stress Ratios                    |               |                            |                         |                | Maximur                                   | n Shear Ra             | atios                   |
| Load Combination                                                                           | Stress Ratio Status                      | Location                         | Cbx           | Cby                        |                         | KyLy/Ry        | Stress Ratio                              | Status                 | Location                |
| +1.40D<br>+1.20D+0.50Lr+1.60L                                                              | 0.464 PASS<br>0.792 PASS                 | 0.00 ft<br>0.00 ft               | 1.00<br>1.00  | 1.00<br>1.00               | 31.07<br>31.07          | 17.65<br>17.65 |                                           | PASS<br>PASS           | 0.00 ft<br>0.00 ft      |
| +1.20D+1.60L                                                                               | 0.782 PASS                               | 0.00 ft                          | 1.00          | 1.00                       | 31.07                   | 17.65          | 0.000                                     | PASS                   | 0.00 ft                 |
| +1.20D+1.60Lr+L<br>+1.20D+1.60Lr                                                           | 0.670 PASS<br>0.430 PASS                 | 0.00 ft<br>0.00 ft               | 1.00<br>1.00  | 1.00<br>1.00               | 31.07<br>31.07          | 17.65<br>17.65 |                                           | PASS<br>PASS           | 0.00 ft<br>0.00 ft      |
| (+1.20D+L<br>+1.20D                                                                        | 0.638 PA\$S<br>0.398 PA\$S               | 0.00 ft<br>0.00 ft               | 1.00          | 1.00                       | 31.07<br>31.07          | 17.65<br>17.65 | 0.000                                     | PASS                   | 0.00 ft<br>0.00 ft      |
| +1.20D+0.50Lr+L                                                                            | 0.648 PASS                               | 0.00 ft                          | 1.00          | 1.00                       | 31.07                   | / 17.65/       | 0.000                                     | PASS                   | 0.00 ft                 |
| +0.90D<br>+1.40D+L                                                                         | 0.298 PASS<br>0.704 PASS                 | 0.00 ft<br>0.00 ft               | 1.00<br>1.00  | 1.00<br>1.00               | 31.07<br>31.07          | 17.65<br>17.65 |                                           | PASS<br>PASS           | 0.00 ft<br>0.00 ft      |
| +0.70D                                                                                     | 0.232 PASS                               | 0.00 ft                          | 1.00          | 1.00                       | 31.07                   | 17.65          | 0.000                                     | PASS                   | 0.00 ft                 |
| Maximum Reactions                                                                          | Avial Departion                          | X X Avia Departies               |               | VVAvi                      | - Depation              |                | te: Only non-ze                           |                        |                         |
| Load Combination                                                                           | Axial Reaction<br>@ Base                 | X-X Axis Reactior<br>@ Base @ To |               | @ Base                     | s Reaction<br>@ Top     | MX - E<br>@ Ba |                                           | - <b>ft</b> My-<br>@Ba | End Moments<br>se @ Top |
| D Only                                                                                     | 391.960                                  |                                  |               |                            |                         |                |                                           |                        |                         |
| +D+L<br>+D+Lr                                                                              | 675.960<br>415.960                       |                                  |               |                            |                         |                |                                           |                        |                         |
| +D+0.750Lr+0.750L                                                                          | 622.960                                  | 1                                |               |                            |                         |                |                                           |                        |                         |
| Edu                                                                                        | Icati                                    | ioh                              |               |                            |                         | /@             | rs                                        |                        | Dh                      |
|                                                                                            |                                          |                                  |               |                            |                         |                |                                           |                        |                         |

| Title Block" selection.      | Ū                   |                        |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
|------------------------------|---------------------|------------------------|-----------------------------------------|---------------------------|-------------|-------------------------|----------------|------------------|------------------|--------------------------|----------|--------------------|------------------|
| Title Block Line 6           |                     |                        |                                         |                           |             |                         | Ei             | le = C:\Users\O  | wpor\Doold       |                          |          | 31 MAR 202         |                  |
| Steel Column                 |                     |                        |                                         |                           |             |                         |                | Softwa           | re copyrigh      | t ENERCALC,              | INC. 198 | 3-2020, Build:     | 12.20.2.24       |
| Lic. # : KW-06090157 - Ed    |                     |                        |                                         |                           |             |                         | Licen          | ised User : S    | SANTA C          | LARA UNIV                | ERSIT    | Y, CIVIL EN        | GINEERING        |
| DESCRIPTION: D3              | -4 STL COLS (C      | Corridor)              |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Maximum Reactions            |                     |                        |                                         |                           |             | $\frown$                |                | $\square$        | Note             | e: Only no               | n-zero   | reactions a        | are listed.      |
| Load Combination             | UG.                 | Axial Reacti<br>@ Base | on                                      | X-X Axis Read<br>@ Base @ | tion<br>Top | k Y-Y<br>@ B            | Axis Re<br>ase | eaction<br>@ Top | Mx - Er<br>@ Bas | nd Moments<br>e @ To     | k-ft     | My - End<br>@ Base | Moments<br>@ Top |
| +D+0.750L                    |                     | 604.96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| +0.60D                       |                     | 235.17                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Lr Only                      |                     | 24.00                  |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| L Only<br>Extreme Reactions  |                     | 284.00                 | 0                                       |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Extreme Reactions            |                     | Axial Reaction         | 20                                      | X-X Axis Rea              | otion       | <b>k</b> Y-Y            | Axis Re        | opation          | My En            | nd Moments               | k-ft     | My End             | Moments          |
| Item                         | Extreme Value       |                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                           | ) Top       | @ B                     |                | @ Top            | @ Base           |                          |          | @ Base             | @ Top            |
| Axial @ Base                 | Maximum             | 675.96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| "<br>Departies VV Avia Data  | Minimum             | 24.00                  |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Reaction, X-X Axis Base      | Maximum<br>Minimum  | 391.96<br>391.96       |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Reaction, Y-Y Axis Base      | Maximum             | 391.96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
|                              | Minimum             | 391.96                 |                                         |                           |             |                         |                |                  | Γ,               | $\square$                |          |                    | $\sim $          |
| Reaction, X-X Axis Top       | Maximum             | 391.96                 |                                         |                           |             | (2)                     |                |                  | Γ /              | $\Delta \setminus [   ]$ |          | ) / V / V / (      |                  |
| Reaction, Y-Y Axis Top       | Minimum Maximum     | 391.96<br>391.96       |                                         |                           |             |                         |                |                  | S L              |                          |          |                    | UG               |
| "                            | Minimum             | 391.90                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Moment, X-X Axis Base        | Maximum             | 391.96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| "                            | Minimum             | 391.96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Moment, Y-Y Axis Base        | Maximum             | 391.96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Moment, X-X Axis Top         | Minimum<br>Maximum  | 391.96<br>391.96       |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| "                            | Minimum             | 391.96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Moment, Y-Y Axis Top         | Maximum             | 391.96                 | 0                                       |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| n                            | Minimum             | 391.96                 | 0                                       |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Maximum Deflection           | ns for Load Cor     |                        |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Load Combination             |                     | Max. X-X De            |                                         |                           |             |                         | Y-Y Def        |                  | Distanc          |                          | -        |                    |                  |
| D Only                       |                     | 0.0000                 | in                                      | 0.000                     | ft          |                         | 0.000          | in               | 0.000            | ft                       |          |                    |                  |
| +D+L<br>+D+Lr                |                     | 0.0000                 | ∣ in<br>In                              | 0.000                     | ft ft       | 21                      | 0.000 0.000    | in (             | 0.000            | ft ft                    | 51       |                    |                  |
| +D+0.750Lr+0.750L            |                     | 0.0000                 |                                         | 0.000                     | ft          | SIL                     | 0.000          | in               | 0.000            |                          |          |                    |                  |
| +D+0.750L                    |                     | 0.0000                 | in                                      | 0.000                     | ft          |                         | 0.000          | in               | 0.000            | ft                       |          |                    |                  |
| +0.60D                       |                     | 0.0000                 | in                                      | 0.000                     | ft          |                         | 0.000          | in               | 0.000            | ft                       |          |                    |                  |
| Lr Only                      |                     | 0.0000                 | in                                      | 0.000                     | ft          |                         | 0.000          | in               | 0.000            | ft                       |          |                    |                  |
| L Only                       |                     | 0.0000                 | in                                      | 0.000                     | ft          |                         | 0.000          | in               | 0.000            | ft                       |          |                    |                  |
| Steel Section Prope          |                     | N12x96                 |                                         |                           |             |                         |                |                  |                  |                          |          |                    |                  |
| Depth                        | = 12.700            |                        | l xx                                    | =                         |             | 333.00 in^4             |                |                  | J                | =                        |          | 6.850 in^          |                  |
|                              | = 0.550             |                        | S xx                                    | =                         | · · · · · · | 131.00 in^3             |                |                  | Cw               | =                        |          | 9,410.00 in^       | b                |
| Flange Width<br>Flange Thick | = 12.200<br>= 0.900 |                        | R xx<br>Zx                              | =                         | 1/          | 5.440 in<br>17.000 in^3 |                |                  |                  |                          |          |                    |                  |
| Area                         | = 0.900             |                        | Zx<br>I yy                              | =                         |             | 70.000 in^3             |                |                  |                  |                          |          |                    |                  |
| Weight                       | = 96.000            |                        | S yy                                    | =                         |             | 14.400 in^3             |                |                  | Wno              | =                        |          | 36.000 in^         | 2                |
| Kdesign                      | = 1.500             |                        | R yy                                    |                           |             | 3.090 in                |                |                  | Sw               |                          |          | 98.800 in^         |                  |
| K1 OF                        | = 1.125             |                        | Zy                                      | =                         |             | 67.500 in^3             |                |                  | Qf               | ∕∧∖   =                  |          | 30.900 in^         |                  |
| rts<br>Ycg                   | = 3.490<br>= 0.000  | in ( ( – )             |                                         |                           | 2           | G                       |                |                  | Qw               |                          | 10       | 73.000 in^         |                  |



# Commercial Use Not Allowed

| and then using the "Printing &            |                                   |                     | Project L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Descr:                     |                                                                                     |
|-------------------------------------------|-----------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------|
| Title Block" selection.                   |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| Title Block Line 6                        |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Printed: 31 MAR 2020, 2:05PM                                                        |
| Steel Column                              |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | ktop\SCU Faculty Staff Housing Development.ec6                                      |
|                                           |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | ht ENERCALC, INC. 1983-2020, Build:12.20.2.24                                       |
| Lic. # : KW-06090157 - Educatio           |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | icensed User : SANTA       | CLARA UNIVERSITY, CIVIL ENGINEERING                                                 |
| DESCRIPTION: D5-6 STI                     | _ COLS (Corridor)                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| Code References                           | Cati                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | reion                                                                               |
| Calculations per AISC 360                 | 0-10, IBC 2015, CBC 201           | 6, ASCE 7-10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| Load Combinations Used                    | : ASCE 7-16                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| General Information                       |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
|                                           |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
|                                           | V12x58                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overall Column Height      | 10.0 ft                                                                             |
| 5                                         | oad Resistance Factor             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Top & Bottom Pinned                                                                 |
| Steel Stress Grade                        | 50.0.1.1                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n for deflection (buckling | g) along columns :                                                                  |
| Fy : Steel Yield                          | 50.0 ksi                          |                     | X-X (width)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Γ Y-Y Axis = 10.0 ft, K = 1.0                                                       |
| E : Elastic Bending Modulus               | 29,000.0 ksi                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 1 + 1 + 1 = 10.0  it,  K = 1.0                                                      |
|                                           |                                   |                     | Y-Y (depth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | T X-X Axis = 10.0 ft, K = 1.0                                                       |
|                                           |                                   |                     | Chibradda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Letter a soluting / DOO    |                                                                                     |
| Applied Loads                             |                                   |                     | Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | loads entered. Load F      | Factors will be applied for calculations.                                           |
| Column self weight included               | : 580.0 lbs * Dead Load Facto     | r – –               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| AXIAL LOADS                               |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
|                                           | al Load at 10.0 ft, D = 226.0, Li | R = 24.0, L = 142.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbb{N}(\mathbb{O})$   | ′ △ \         ( ○ )\ V∧V / ( ≙)( ○                                                  |
| DESIGN SUMMARY                            |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| Bending & Shear Check                     | Populto                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| PASS Max. Axial+Bending S                 |                                   | 0.7896              | ·1 May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kimum Load Reactions       |                                                                                     |
| Load Combination                          |                                   | +0.50Lr+1.60L       | . 1 11102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Top along X-X              | 0.0 k                                                                               |
| Location of max.abo                       |                                   | 0.0                 | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bottom along X-X           | 0.0 k                                                                               |
| At maximum location                       |                                   | 010                 | it is a second s | Top along Y-Y              | 0.0 k                                                                               |
| Pu                                        |                                   | 511.10              | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom along Y-Y           | 0.0 k                                                                               |
| 0.9 * Pn                                  |                                   | 647.26              | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c .                        |                                                                                     |
| Mu-x                                      |                                   | 0.0                 | k-ft Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kimum Load Deflections .   |                                                                                     |
| 0.9 * Mn-x :                              |                                   | 317.580             | A1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng Y-Y 0.                  | 0 in at 0.0 ft above base                                                           |
| Mu-y                                      |                                   |                     | k-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for load combination :     |                                                                                     |
| 0.9 * Mn-y :                              |                                   | 0.0<br>121.875      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng X-X 0.                  | 0 in at 0.0 ft above base                                                           |
| 0.0 Will-y .                              |                                   | 121.070             | K-IL AIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for load combination :     |                                                                                     |
| PASS Maximum Shear St<br>Load Combination | ress Ratio                        | 0.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | rsion                                                                               |
| Location of max.abc                       |                                   | 0.0                 | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                     |
| At maximum location                       | n values are                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| Vu : Applied<br>Vn * Phi : All            | owable                            | 0.0<br>0.0          | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                     |
|                                           |                                   | 0.0                 | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                     |
| Load Combination Result                   | S                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
|                                           | Maximum Axial + Bending St        | ress Ratios         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Maximum Shear Ratios                                                                |
| Load Combination                          | Stress Ratio Status               | Location            | Cbx Cby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KxLx/Rx KyLy/Ry            | Stress Ratio Status Location                                                        |
| +1.40D                                    | 0.490 PASS                        | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| +1.20D+0.50Lr+1.60L                       | 0.790 PASS                        | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| +1.20D+1.60L                              | 0.771 PASS                        | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| +1.20D+1.60Lr+L                           | 0.699 PASS                        | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| +1.20D+1.60Lr                             | 0.479 PASS                        | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| (+1.20D+L                                 | 0.639 PASS                        | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| +1.20D ()                                 |                                   | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | $( \triangle \ 0.000 \ PASS \ ( 0.000 \ ft \ )$                                     |
| +1.20D+0.50Lr+L<br>+0.90D                 | 0.658 PASS<br>0.315 PASS          | 0.00 ft<br>0.00 ft  | 1.00 1.00<br>1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.81 22.73<br>47.81 22.73 | 0.000 PASS 0.00 ft<br>0.000 PASS 0.00 ft                                            |
| +0.90D<br>+1.40D+L                        | 0.315 PASS<br>0.709 PASS          | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| +0.70D                                    | 0.245 PASS                        | 0.00 ft             | 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.81 22.73                | 0.000 PASS 0.00 ft                                                                  |
| Maximum Reactions                         | 5.210 17.00                       | 0.00 10             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
|                                           | Axial Reaction                    | X-X Axis Reaction   | <b>k</b> Y-Y Ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | te: Only non-zero reactions are listed.<br>Ind Moments <b>k-ft</b> My - End Moments |
| Load Combination                          | @ Base                            | @ Base @ To         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | . ,                                                                                 |
| D Only                                    | 226.580                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| +D+L                                      | 368.580                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| +D+Lr<br>+D+0 7501 r+0 7501               | 250.580                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
| +D+0.750Lr+0.750L                         | 351.080                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |
|                                           |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                     |

| Title Block" selection.         | 0                             |                   |          |                   |        |                        |             |                   |                | Drint                      |                                     | 20 2.0EDM   |
|---------------------------------|-------------------------------|-------------------|----------|-------------------|--------|------------------------|-------------|-------------------|----------------|----------------------------|-------------------------------------|-------------|
| Title Block Line 6 Steel Column |                               |                   |          |                   |        |                        | F           | File = C:\Users\O | wner\Deskto    | p\SCU Faculty Sta          | ed: 31 MAR 20<br>aff Housing Develo |             |
| Lic. # : KW-06090157 - E        | ducational Version            | 2                 | _        | _                 | _      | _                      | Lice        |                   |                | ENERCALC, INC.             |                                     |             |
| DESCRIPTION: D5                 |                               |                   |          |                   |        |                        | LICC        |                   |                |                            |                                     | ONLECTING   |
|                                 |                               |                   |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Maximum Reactions               |                               | Axial Reacti      | 00       | X-X Axis Rea      | otion  | - VY                   | V Avia E    | Reaction          |                | : Only non-ze<br>Moments k |                                     | are listed. |
| Load Combination                | 900                           | @ Base            |          |                   | @ Top  |                        | Base        | @ Top             | @ Base         |                            | @ Base                              |             |
| +D+0.750L<br>+0.60D             |                               | 333.08<br>135.94  |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Lr Only                         |                               | 24.00             |          |                   |        |                        |             |                   |                |                            |                                     |             |
| L Only                          |                               | 142.00            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Extreme Reactions               |                               |                   |          |                   |        |                        |             |                   |                |                            |                                     |             |
|                                 |                               | Axial Reaction    | on       | X-X Axis Re       | action | <b>k</b> Y-            | Y Axis F    | Reaction          | Mx - End       | d Moments k                | -ft My - End                        | Moments     |
| Item                            | Extreme Value                 | e @ Base          |          | @ Base            | @ Top  | @                      | Base        | @ Top             | @ Base         | @ Top                      | @ Base                              | @ Top       |
| Axial @ Base                    | Maximum<br>Minimum            | 368.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Reaction, X-X Axis Base         | Maximum                       | 24.00<br>226.58   |          |                   |        |                        |             |                   |                |                            |                                     |             |
| "                               | Minimum                       | 226.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Reaction, Y-Y Axis Base         | Maximum                       | 226.58            | 0        |                   |        |                        |             |                   |                |                            |                                     |             |
|                                 | Minimum                       | 226.58            | 1 / -    |                   | 6      |                        |             |                   | 5 /            | $\wedge$                   |                                     |             |
| Reaction, X-X Axis Top          | Maximum                       | 226.58            |          |                   | 기도     | 2(음                    |             | ∖  ( () )         |                |                            | ) $)$                               |             |
| Reaction, Y-Y Axis Top          | Minimum Maximum               | 226.58<br>226.58  |          |                   |        |                        |             |                   |                |                            | $\mathcal{O}$ UU                    | U GL        |
| "                               | Minimum                       | 226.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Moment, X-X Axis Base           | Maximum                       | 226.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
|                                 | Minimum                       | 226.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Moment, Y-Y Axis Base           | Maximum<br>Minimum            | 226.58<br>226.58  |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Moment, X-X Axis Top            | Maximum                       | 226.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| "                               | Minimum                       | 226.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Moment, Y-Y Axis Top            | Maximum                       | 226.58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
|                                 | Minimum                       | 226.58            | 0        |                   |        |                        |             |                   |                |                            |                                     |             |
| Maximum Deflection              | is for Load Con               | Max. X-X De       | floation | n Diatan          |        | Max                    |             | eflection         | Distance       |                            |                                     |             |
| D Only                          |                               | 0.0000            |          | n Distan<br>0.000 |        | IVIAX                  | 0.000       |                   | Distance       | <del>,</del><br>ft         |                                     |             |
| +D+L                            |                               | 0.0000            |          | 0.000             | -      |                        | 0.000       |                   | 0.000          | ft                         |                                     |             |
| +D+Lr                           |                               | 0.0000            |          | 0.000             |        |                        | 0.000       | in, ∨ / (         | 0.000          | ft                         | $  ( \cup$                          |             |
| +D+0.750Lr+0.750L               |                               | 0.0000            |          | 0.000             |        |                        | 0.000       | in                | 0.000          | ft                         |                                     |             |
| +D+0.750L                       |                               | 0.0000            |          | 0.000             |        |                        | 0.000       | in                | 0.000          | ft                         |                                     |             |
| +0.60D<br>Lr Only               |                               | 0.0000<br>0.0000  |          | 0.000<br>0.000    |        |                        | 0.000 0.000 | in<br>in          | 0.000<br>0.000 | ft<br>ft                   |                                     |             |
| L Only                          |                               | 0.0000            |          | 0.000             |        |                        | 0.000       | in                |                | ft                         |                                     |             |
| Steel Section Prope             | rtios · V                     | V12x58            |          |                   |        |                        |             |                   |                |                            |                                     |             |
| Depth                           | = 12.200                      |                   | l xx     | =                 |        | 475.00 in^             | 4           |                   | J              | =                          | 2.100 in/                           | 4           |
| Web Thick                       | = 0.360                       | in                | S xx     | =                 |        | 78.00 in^              |             |                   | Cw             | =                          | 3,570.00 in/                        |             |
| Flange Width                    | = 10.000                      |                   | R xx     | =                 |        | 5.280 in               |             |                   |                |                            |                                     |             |
| Flange Thick                    | = 0.640                       |                   | Zx       | =                 |        | 86.400 in^             |             |                   |                |                            |                                     |             |
| Area                            | = 17.000                      |                   | l yy     | =                 |        | 107.000 in^            |             |                   | 14/            |                            | 00.000 : .                          | 0           |
| Weight                          | = 58.000                      |                   | S yy     | =                 |        | 21.400 in <sup>^</sup> | ა<br>       |                   | Wno            | =                          | 28.900 in/                          |             |
| Kdesign                         | = 1.240                       |                   | R yy     |                   |        | 2.510 in               | 2           |                   | Sw             |                            | 46.200 in/                          |             |
| K1<br>rts<br>Ycg                | = 0.938<br>= 0.900<br>= 0.000 | in $( \bigcirc )$ | Zy       |                   |        | 32.500 in^             | 3           |                   | Qf<br>Qw       |                            | 17.800 in<br>42.400 in              |             |



# Commercial Use Not Allowed

| Bit Bit Section         Proof 31 MAR 2000. 200PF           Steel Column         N= - X1480-00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and then using the "Printing &  |                                   |                      | Project D  | escr:                         |                                               |                                      |                                   |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|----------------------|------------|-------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------|------------------------------------------------------|
| Steel Column         The : Clusted our Clear Bit (COL) (CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Title Block" selection.         |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| Bit Ber U Cutimin         Softwer conject INTERCALC, IC VIGUE BASINGE DAR'S 2022.           Local Constraints         Learned Vac: ANY A CLARA UNIVERSITY, GOLL ENGINEERING           Description         D7-Roof STL COLS (Condor)         Learned Vac: ANY A CLARA UNIVERSITY, GOLL ENGINEERING           Code References         Constraints         VIO 33         Learned Vac: ANC 380-10, IBC 2015, CBC 2016, ASCE 7-10           Cancel Information         Used Section Name :         VIO 33         Overall Column Height         10.0 ft           Sele Section Name :         VVIO 33         Code Resistance Factor         Overall Column Height         10.0 ft         Top & Bottom Printed           Bee Stess Scole         Steve Value         Social and Status         Steve Instantian         Nummer Instantian           Steve Value         Steve Instantian         Steve Instantian         Nummer Instantian         Overall Column Height         10.0 ft           Applied Loads         Steve Instantian         Steve Instantian         Overall Code Factor         Nummer Instantian           Parking Loads         Steve Instantian         Steve Instantian         Overall Column Height         Overall Code Factor           Applied Loads         Steve Instantian         Maximum Load Resctors         Top & Bottom Find         Overall Code Factor           Parking Novic Askall Load and Stote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Title Block Line 6              |                                   |                      |            |                               |                                               |                                      |                                   | ,                                                    |
| Lice #: RVA3020157 - Educational Version         Licensed User: SANTA CLARA UNVERSITY, COULE NORMERING           DESCRPTION: D/Reof SLL COLS (Contion)         Code References         Calculations per ALSC 360-10. IBC 2015, CBC 2016, ASCE 7:10         Calculations per ALSC 360-10. IBC 2015, CBC 2016, ASCE 7:10         Code References         Calculations per ALSC 360-10. IBC 2015, CBC 2016, ASCE 7:10         Overall Column Height         10.0 ft           Cade Combination Used : ASCE 7:16         Common Used : ASCE 7:16         Common Used : ASCE 7:16         Common Used : ASCE 7:16           Stell Statistics of a control of the Statistics of Eactor         Stell Statistics of a control of the Statistics of the Statis of the Statistics of the Statistics of the Stati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Steel Column                    |                                   |                      |            | File = C:\Users\C<br>Softwa   | )wner\Desktop\SCl<br>are.copyright ENEE       | J Faculty Staff Hou<br>CALC INC 1983 | using Develop<br>-2020 Build.     | oment.ec6 .<br>12 20 2 24                            |
| Code References           Code References           Code Combinations Used : ASCE 7-16           Constructions Used : ASCE 7-16           Constructions Used : ASCE 7-16           Overall Column Height : 10.0.1           Analysis Method           Analysis Method           Construction (buckling) along columns : X, (width) ast : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lic. # : KW-06090157 - Educatio | onal Version                      |                      | Li         | censed User : :               | SANTA CLARA                                   | UNIVERSITY,                          | CIVIL EN                          | GINEERING                                            |
| Calculations per / NBC 280-10, UBC 2015, CBC 2016, ASCE 7-10           Load Combinations Used : ASCE 7-16         Overall Column Height         10.0 ft           Analysis Method:         Load Resistance Factor         Top & Bottom Finity         10.0 ft           Sted Section Name :         V10x39         Overall Column Height         10.0 ft           Sted Section Name :         V10x39         Sted Section Name :         XX (within Top & Bottom Finity)           Sted Section Name :         V10x39         Sted Section Name :         XX (within Top & Bottom Finity)           Sted Section Name :         20,000.0 ksi         V10x49         Sted Section Name :         XX (within Section Name :           Price Section Name :         20,000.0 ksi         Sted Section Name :         XX (within Section Name :         XX (within Section Name :           Paper :         Sted Section Name :         XX (within Section Name :         XX (within Section Name :         XX (within Section Name :           Paper :         Sted Section Name :         Sted Section Name :         XX (within Section Name :         XX (within Section Name :           Paper :         Sted Section Name :         -         -         -         -         -           Contraction Name :         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DESCRIPTION: D7-Roof            | STL COLS (Corridor)               |                      |            |                               |                                               |                                      |                                   |                                                      |
| Calculations per / NEC 280-10, UBC 2015, CBC 2916, ASCE 7-10           Load Combinations Used : ASCE 7-16         Overall Column Height         10.0 ft           Analysis Method:         Load Resistance Factor         Top & Bottom Finity         10.0 ft           Sted Section Name :         V10x39         Overall Column Height         10.0 ft           Sted Section Name :         V10x39         Overall Column Height         10.0 ft           Sted Section Name :         V10x39         Sted Section Number of the Name of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| Load Combinations Used : ASCE 7-16<br>General Information<br>Steel Section Name :<br>Analysis Method :<br>50:0 kis<br>E : Bank Sherd Sected<br>Fy: Sher Yield 50:0 kis<br>E : Bank Sherd Modula: 29,000.0 kis<br>E : Bank Sherd Modula: 29,000.0 kis<br>E : Bank Sherd Modula: 29,000.0 kis<br>Column soft weight Induced : 390 0 lbs * Dead Load Factor<br>Analysis Alendon Stress Ratio =<br>Load Combination<br>At maximum Sheer Stress Ratio =<br>At maximum Code Modula: 290 0 lbs * Dead Load Factor<br>At maximum Sheer Stress Ratio =<br>Load Combination / maximum Load Pactors will be applied for calculations.<br>Column soft weight Induced : 390 0 lbs * Dead Load Factor<br>Rescleribid & Above: Asia Load at:00 ft, D = 143.0 LR = 24.0 L = 710 k<br>PASS Max.Nail-Bending Stress Ratio =<br>Load Combination<br>At maximum Sheer Stress Ratio =<br>Load Combination<br>At maximum Load Pactors will be applied for calculations.<br>At maximum Load Pactors will be applied for calculations.<br>At maximum Load Pactors will be applied for calculations.<br>At maximum Load Combination<br>At maximum Load Stress Ratio =<br>Load Combination<br>At maximum Load Stress Ratio Stress Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                   | ()                   | ( )        |                               |                                               |                                      | $ \langle \cap \rangle$           | $\left( \begin{array}{c} 1 \\ 1 \end{array} \right)$ |
| General Information           Steel Section Name :<br>Analysis Mehaits:<br>Steel Stress Grade<br>Fy: Seet Yeld         10.0 ft         10.0 ft           Steel Stress Grade<br>Fy: Seet Yeld         50.0 ksi         29,00.0 ksi         10.0 ft           Date Resistance Factor<br>Steel Stress Grade<br>Fy: Seet Yeld         10.0 ft         10.0 ft           Steel Stress Grade<br>Fy: Seet Yeld         10.0 ft         10.0 ft           Column sett weight Included : 390.0 lbs * Dead Load Factor           Applied Loads           Column sett weight Included : 390.0 lbs * Dead Load Factor           Ask Mail LoAde<br>Column sett weight Included : 390.0 lbs * Dead Load Factor           Ask Max Avail-Bending Stress Ratio =<br>Location of maxabove base<br>Maximum botator values are           Part Stress Ratio =<br>Location of maxabove base<br>Maximum botator values are           Part Stress Ratio =<br>Location of maxabove base<br>Maximum botator values are         0.0 kt           Q3 * Mn :<br>Var Apple         0.0 kt           Q3 * Mn :<br>Var Apple         0.0 ft           Q3 * Mn :<br>Var Apple         0.0 ft <tr< td=""><td></td><td></td><td>6, ASCE 7-10</td><td></td><td></td><td>5</td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                   | 6, ASCE 7-10         |            |                               | 5                                             |                                      |                                   |                                                      |
| Steel Section Name:         W10x39         Overall Column Height         10.0 ft           Analysis Method :         Load Resistance Factor         Top & Bottom Fairly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | : ASCE 7-16                       |                      |            |                               |                                               |                                      |                                   |                                                      |
| Analysis Method:       Load Resistance Factor       Top & Bottom Pinned         Steal Stress Grade       50.0 ksi       Brace condition for deflection (buckling) along columns ::         Y: Steal Yind       29,00.0 ksi       Stress Resistance Factor         Applied Loads       Service loads entered. Load Factor       XX (width) xsis ::         Column self weight induced : 390.0 bs* Dead Load Factor       Service loads entered. Load Factors will be applied for calculations.         Column self weight induced : 390.0 bs* Dead Load Factor       Service loads entered. Load Factors will be applied for calculations.         Column self weight induced : 390.0 bs* Dead Load Factor       Not to the sectors will be applied for calculations.         Column self weight induced : 390.0 bs* Dead Load Factor       National Residential & Above: Axial Lead at 100 ft, D = 143.0, LR = 24.0, L = 71.0 Stress         Descing Stress Ratio       +1.20D+0.50Lr*11.60L       ft         Max       0.0 ft       National Residential .         Maximum Shear Stress Ratio       -1.20D+0.50Lr*11.60L       ft deat combination:         Max       0.0 ft       National Residentian.         Maximum Shear Stress Ratio       -0.0 ft       Nog YA         Maximum Shear Stress Ratio       -0.0 ft       Nog YA         Load Combination       Stress Ratio       Status       Load Status       Load Status       Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General Information             |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| Shee Stress Grade         Brace condition for deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in deflection (bucking) along columns:         Intervent of the provide a condition in the provide condition in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                   |                      |            |                               |                                               | 10.0                                 | D ft                              |                                                      |
| Fy: Selet Viad       50.0 ksi       XX (width) axis:         E: Elscis Bending Modulus       29,000.0 ksi       XX (width) axis:       Utrivace Length for bucking ABOUT YX Axis = 10.01, K = 1.0         Applied Loads       Service loads entered. Load Factors will be applied for calculations.         Column self weight induced: 390.0 lbs * Dead Load Factor       Service loads entered. Load Factors will be applied for calculations.         Descing SUMMARY       Part 10.01, D = 143.0, LF = 24.0, L = 71.01K       Not All Dower Columns         Descing SUMARY       0.0 ksi       1.1.20D+0.0L = 71.01K       Not All Dower Columns         Descing SUMARY       0.0 ksi       1.2.0D+0.0L = 71.01K       Not All Dower Columns         Particular Columnation       1.2.0D+0.0L = 71.01K       Not All Dower Columns       Not All Dower Columns         Particular Columnation       Naximum Load Resctions       Top along XX       0.0 k         0.9 * Pn       395.616 k       Not K       Not K       Not K         0.9 * Pn       395.616 k       Not K       Not K       Not K       Not K         0.9 * Pn       395.616 k       Not K       Not K       Not K       Not K       Not K         0.9 * Mnry:       0.0 kt       Not K       Not K       Not K       Not K       Not K         Maximum Load Resctions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                               | oad Resistance Factor             | -                    |            |                               |                                               |                                      | nned                              |                                                      |
| E Elesico Bending Modulus       29,000.0 ksi       Urbinead Length for buckling ADUT YY Axis = 100.1 K = 10         Applied Loads       Service loads entered. Load Factor       Y Y (dept) axis:       Urbinead Length for buckling ADUT YX Axis = 100.1 K = 10         Applied Loads       Service loads entered. Load Factor       AXIA LOADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 50 0 kai                          | E                    |            |                               | (buckling) alon                               | g columns :                          |                                   |                                                      |
| Name         O         No         O         No           0.9 *Pn         395 616 k         Maximum Load Reactions         Top all output its where the set of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                               |                                   |                      |            |                               | na ABOUT Y-Y A                                | xis = 10.0 ft. K :                   | = 1.0                             |                                                      |
| Applied Loads         Service loads entered. Load Factors will be applied for calculations.           Column self weight included : 390.0 bs * Dead Load Factor<br>Axital: Loads<br>Bestinet & Above: Axial Load at 10.0 ft. D= 143.0; R = 24.0; L = 71.0; C         Not All Columns and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E . Elastic Denaing Modulus     | 29,000.0 KSI                      |                      |            | •                             |                                               |                                      |                                   |                                                      |
| Column self weight included : 390.0 lbs * Dead Load Factor<br>AXIAL LOADS         Maximum Load Reactions           AXIAL LOADS         Above Akial Load at 10.0 ft, D = 143.0, LR + 24.0, L = 71.0 K         Maximum Load Reactions           DESIGN SUMMARY         I.coadion of maximum location values are         0.7524 : 1           PASS         Max Ardial-Bending Stress Ratio =<br>Load Combination         0.0 k           Q3* Ph         395.616 k         0.0 k kt           Q3* Ph         395.616 k         0.0 k kt           Q3* Mm x:         0.0 k kt         0.0 k kt           Q3* Mm x:         0.0 k kt         0.0 k kt           Q3* Mm y:         0.0 k kt         0.0 k kt           Q3* Mm y:         0.0 k kt         0.0 k           V: Appled<br>V: Y 20, Sk kt         0.0 k         0.0 k           Maximum Coadion of max.above base<br>At maximum location or max.above base<br>At maximum location or max.above base<br>At maximum location of max.above base<br>At maximum location of max.above base<br>At maximum location or max.above base<br>At maximum location or max.above base         0.0 k           14.00         0.507 PASS         0.00 ft         1.000         1.000         1.000         0.00 k           1.200-1.60Lr+1.60L         0.7522 PASS         0.00 ft         1.000         1.000         1.000         0.00 ft         28.10         0.000 PASS <t< td=""><td></td><td></td><td></td><td>Unbraced L</td><td>ength for bucklin</td><td>ng ABOUT X-X A</td><td>xis = 10.0 ft, K =</td><td>= 1.0</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                   |                      | Unbraced L | ength for bucklin             | ng ABOUT X-X A                                | xis = 10.0 ft, K =                   | = 1.0                             |                                                      |
| Column self weight included : 390.0 lbs * Dead Load Factor<br>AXIAL LOADS         Maximum Load Reactions           AXIAL LOADS         Above Akial Load at 10.0 ft, D = 143.0, LR + 24.0, L = 71.0 K         Maximum Load Reactions           DESIGN SUMMARY         I.coadion of maximum location values are         0.7524 : 1           PASS         Max Ardial-Bending Stress Ratio =<br>Load Combination         0.0 k           Q3* Ph         395.616 k         0.0 k kt           Q3* Ph         395.616 k         0.0 k kt           Q3* Mm x:         0.0 k kt         0.0 k kt           Q3* Mm x:         0.0 k kt         0.0 k kt           Q3* Mm y:         0.0 k kt         0.0 k kt           Q3* Mm y:         0.0 k kt         0.0 k           V: Appled<br>V: Y 20, Sk kt         0.0 k         0.0 k           Maximum Coadion of max.above base<br>At maximum location or max.above base<br>At maximum location or max.above base<br>At maximum location of max.above base<br>At maximum location of max.above base<br>At maximum location or max.above base<br>At maximum location or max.above base         0.0 k           14.00         0.507 PASS         0.00 ft         1.000         1.000         1.000         0.00 k           1.200-1.60Lr+1.60L         0.7522 PASS         0.00 ft         1.000         1.000         1.000         0.00 ft         28.10         0.000 PASS <t< td=""><td>Applied Loads</td><td></td><td></td><td>Service</td><td>loads entered</td><td>I. Load Factor</td><td>s will be appl</td><td>ied for ca</td><td>Iculations.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Applied Loads                   |                                   |                      | Service    | loads entered                 | I. Load Factor                                | s will be appl                       | ied for ca                        | Iculations.                                          |
| Maximum Deal A above. Axial Load at 10.0 ft, D = 143.0, LR = 24.0, L = 71.0 k         Mot Add Construction           Pass Max Xual-Bending Stress Ratio =<br>Load Combination<br>At maximum Deal on values are<br>Pu<br>0.9 ° Pn<br>0.9 ° Pn<br>0.0 ° Ft<br>0.0 ° |                                 | : 390.0 lbs * Dead Load Factor    |                      |            |                               |                                               |                                      |                                   |                                                      |
| DESIGN SUMMARY           Bending & Shear Chock Results<br>PASS Max Kaide-Bending Stress Ratio =<br>Lead Combination<br>Maximum location values are<br>Pu<br>0.9 * Pn<br>0.9 * Pn<br>0.0 * * * Pn<br>0.0 * * * Pn<br>0.0                                 |                                 |                                   |                      |            |                               | $\mathcal{L}$                                 |                                      |                                   |                                                      |
| Bending & Shear Check Results           PASS Max. Axial-Bending Stress Ratio =<br>Load Combination<br>A maximum Location max.above base<br>At maximum Location Males are<br>Pu         C 297.668 k<br>395.616 k<br>0.0 ft         Maximum Load Reactions<br>Top along XX         0.0 k<br>Bottom along YY         0.0 k<br>Bottom along YY         0.0 k<br>Bottom along YY         0.0 k<br>Bottom along                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Residential & Above: Axia       | ll Load at 10.0 ft, D = 143.0, LF | R = 24.0, L = 71.0 k | 2(2) I     | $ \langle   ( ( ) ) \rangle $ | $\left  \left  \right\rangle \right  \Delta $ |                                      | $\langle V \rangle V / ($         |                                                      |
| PASS       Max. Axial-Bending Stress Ratio =<br>Load combination<br>At maximum location values are<br>Pu       0.7524 :1<br>1.20D+0.50Lr+1.60L       Maximum Cade Reactions<br>Top along XX       0.0 k<br>Bottom along YX       0.0 k<br>0.0 k<br>Bottom along YY       0.0 k<br>0.0 k         Pu       297.668 k<br>0.9 * Pn       395.616 k<br>0.9 * Mn x:       164.176 k-ft<br>0.9 * Mn y       0.0 k-ft<br>64.50 k-ft       Along XY       0.0 in at<br>0.0 in at<br>0.0 in at       0.0 ft<br>above base         PASS       Maximum Shear Stress Ratio =<br>At maximum location values are<br>V: Applied<br>1.20D+1.60L       0.0 k-ft<br>0.0 k-ft       Along XY       0.0 in at<br>0.0 in at       0.0 ft above base         Load Combination<br>At maximum location values are<br>V: Applied<br>1.20D+1.60L       Maximum Shear Stress Ratio =<br>0.0 k       0.0 k<br>0.0 k       Maximum Shear Ratios<br>0.0 k       Maximum Shear Ratios<br>Stress Ratio Status       Maximum Shear Ratios<br>0.0 k         Load Combination<br>1.20D+1.60L       Maximum Axial + Bending Stress Ratio<br>Stress Ratio       0.0 k       1.00       1.00       1.00       0.00 k-ft<br>ft       Maximum Shear Ratios<br>Stress Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESIGN SUMMARY                  |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| Load Combination       +1.20D+0.50Lr+1.60L       Top along X-X       0.0 k         At maximum location values are       0.0 ft       Bottom along X-X       0.0 k         Pu       297.668 k       Bottom along X-X       0.0 k         Mu-x       0.0 k-ft       Along Y-Y       0.0 in at       0.0 ft         Mu-x       0.0 k-ft       Along Y-Y       0.0 in at       0.0 ft         0.9 * Pn       395.616 k       Nork ft       Along Y-Y       0.0 in at       0.0 ft         0.9 * Mn-x:       164.176 k-ft       Nork ft       Along Y-Y       0.0 in at       0.0 ft         0.9 * Mn-y:       64.50 k-ft       Along Y-Y       0.0 in at       0.0 ft       above base         Load Combination       0.0 ft       0.0 ft       Along Y-Y       0.0 in at       0.0 ft         At maximum location values are       0.0 ft       0.0 ft       Along X-X       0.0 ft       Along X-X         Load Combination       Stress Ratio       Stress       0.0 ft       Along X-X       0.0 ft       Along X-X       0.0 ft         +1400       0.507       PASS       0.0 ft       1.00       1.00       1.00       1.00       0.00 PASS       0.00 ft         +120D+160Lr+1       0.722 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| Location of max.above base<br>Atmaximum Control values are         0.0 ft         Bottom along A:X         0.0 k           Pu         297.668 k         395.616 k         Top along Y-Y         0.0 k           Mu-x         0.0 kft         Bottom along Y-Y         0.0 k           Mu-x         0.0 kft         Bottom along Y-Y         0.0 k           Mu-y         0.0 kft         Admaximum Load Deflections         Along Y-Y         0.0 ft           My-y         0.0 kft         Along X-X         0.0 in at         0.0 ft above base           Mu-y         0.0 kft         Along X-X         0.0 in at         0.0 ft above base           Atmaximum Sheer Stress Ratio         0.0 it         0.0 it         Along X-X         0.0 in at         0.0 ft above base           Atmaximum Sheer Stress Ratio         0.0 it         0.0 it         Along X-X         0.0 in at         0.0 ft above base           Atmaximum Sheer Stress Ratio         0.0 it         0.0 it         Along X-X         0.0 in at         0.0 ft above base           Atmaximum Coad Combination         Stress Ratio Status         Location         Cbx         KxLv/Rx         KyLv/Ry         Stress Ratio Status         Location           1:40D         0.572         PASS         0.00 ft         1.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                   |                      | 1 Max      |                               |                                               | 0                                    | 0.1                               |                                                      |
| At maximum location values are       Pi       297.668 k       395.616 k       0.0 k kt         0.9 * Pn       395.616 k       0.0 k kt       Maximum Load Deflections       Along Y.Y       0.0 k         0.9 * Mn.x:       164.176 k-ft       0.0 k kt       Along Y.Y       0.0 in at       0.0 ft above base         0.9 * Mn.y:       64.50 k-ft       0.0 kt       Along X.X       0.0 in at       0.0 ft above base         1.0 colorion of max hove base       0.0 kt       0.0 kt       Intravious are       0.0 ft       Along X.X       0.0 in at       0.0 ft above base         At maximum location values are       0.0 kt       0.0 kt       Intravious are       0.0 kt       Intravious are       Intravious are       0.0 kt         Load Combination       Stress Ratio Status       Location       Do 0 k       Do 0 k       Stress Ratio Status       Location         1400       0.572       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         1200+1.60L+1.60L       0.752       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         1.200+1.60L+1.60L       0.752       PASS       0.00 ft       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                   |                      | ł          |                               |                                               |                                      |                                   |                                                      |
| Pu       297.668 k       Bottom along Y-Y       0.0 k         0.3*Pn       395.616 k       0.0 kft       Maximum Lada Deflections       Maximum Lada Deflections         0.3*Mn-x:       164.176 kft       0.0 kft       Along Y-Y       0.0 in at       0.0 ft above base         Mu-y       0.0 kft       64.50 kft       Along XX       0.0 in at       0.0 ft above base         Maximum Shear Stress Ratio =       0.0 ft       0.0 ft       Along XX       0.0 in at       0.0 ft above base         At maximum location values are       0.0 ft       0.0 ft       0.0 ft       Along XX       0.0 in at       0.0 ft above base         At maximum location values are       0.0 ft       0.0 k       0.0 k       Stress Ratio Status       Location       Cbay       Stress Ratio Status       Location         14.00       0.507       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         1.200+0.50Lr+1.60L       0.752       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         1.200+0.50Lr+1.60L       0.752       PASS       0.00 ft       1.00       1.00       0.00 ft       0.00 PASS       0.00 ft <tr< td=""><td></td><td></td><td>0.0 1</td><td>•</td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                   | 0.0 1                | •          |                               |                                               |                                      |                                   |                                                      |
| Mu-x         0.0         k-ft           0.9 * Mn-x:         164.176         k-ft           0.9 * Mn-y:         0.0         k-ft           0.9 * Mn-y:         0.0         k-ft           0.9 * Mn-y:         64.50         k-ft           0.0 ded Combination         0.0         it           1.0 ded Combination         0.0         it           Load Combination         0.0         it           V: Applied         0.00 ft         1.00           V: Applied         0.00 ft         0.00 ft           V: Applied         0.00 ft         0.00 ft           1.200 + 1.60L         0.752         PASS         0.00 ft           1.200 + 1.60L         0.752         PASS         0.00 ft         1.00         0.00 PASS         0.00 ft           1.200 + 1.60L         0.752         PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                   |                      |            |                               |                                               | 0.                                   | 0 k                               |                                                      |
| 0.9* Mn-x:       0.0 krt         0.9* Mn-y:       164.176 krt         0.9* Mn-y:       64.50 krt         0.0 krt       0.0 in at         0.9* Mn-y:       64.50 krt         0.0 transmitter       0.0 in at         1.200+1.50L       0.572 PASS       0.00 ft         1.200+1.50Lr+1.50L       0.752 PASS       0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                   |                      | May        | imum Load Defl                | lections                                      |                                      |                                   |                                                      |
| 0.9 minA.       104.1/0 krt         Muy       0.0 krt         0.9*Mny:       64.50 krt         Along X-X       0.0 in at         0.0 combination       0.0 in at         Load Combination       0.0 k         V: Applied       0.0 ft         V: App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                   |                      | -ft Alor   |                               |                                               | at                                   | 0.0ft at                          | ove base                                             |
| 0.9*Mn-y:       64.50 k.t.       Along X-X       0.0 in at       0.0 ft above base         Maximum Shear Stress Ratio       0.0       0.0       for load combination:       0.0       for load combination:       0.0         Load Combination       Load combination       0.0       it       0.0       it       0.0         Vu: Applied<br>Vn * Ph:: Allowable       0.0 k       0.0 k       it       0.0 k       it         Maximum Axial + Bending Stress Ratios<br>Vu: Applied<br>Vn * Ph:: Allowable       0.0 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         Hass Stress Ratio Stress Ratio Stress Ratio Stress Ratio Status       Location         Maximum Axial + Bending Stress Ratios         Load Combination         Stress Ratio Stress Ratio Status       Location         + Atomation         Stress Ratio Stress Ratio Status       Location         + Atomation         - Maximum Axial + Bending Stress Ratios         - Counting the stress Ratio Stress Ratio Status       Location         + Counting the stress Ratio Stress Ratio Stress Ratio Status       Location         + Counting the stress Ratio Stress Ratio Stress Ratio Stress Ratio Stress Ratio Stress Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                   |                      | -it (      |                               |                                               |                                      |                                   |                                                      |
| PASS         Maximum Shear Stress Ratio         Image: Control of Max.above base At maximum location or values are Vu: Applied On Vn * Phi: Allowable         O.0 ft           Vu: Applied Vn * Phi: Allowable         0.0 ft         0.0 k         0.0 k           Load Combination Nesults           Load Combination Results           Load Combination         Stress Ratio Status         Location         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios           1400         0.507         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+.50Lr+1.60L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+.160L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+.160L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+.160Lr         0.517         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                   |                      |            | na X-X                        | 0 0 in                                        | at                                   | 0.0ft at                          | ove hase                                             |
| Maximum Shear Stress Ratio         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 </td <td></td> <td></td> <td>04.00 K</td> <td></td> <td>-</td> <td>7</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                   | 04.00 K              |            | -                             | 7                                             |                                      |                                   |                                                      |
| Location of max above base<br>At maximum location values are<br>V: Applied<br>Vn * Phi: Allowable         0.0 ft           Load Combination Results         0.0 k           Load Combination         Maximum Axial + Bending Stress Ratios<br>Stress Ratio         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio           Load Combination         Stress Ratio         Location         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio           +1.40D         0.507         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.40D+1.60L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+1.60L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+1.60L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+1.60L         0.435         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft <td>PASS Maximum Shear St</td> <td>ress Ratio =</td> <td>0.0 :</td> <td></td> <td><math>\sim</math></td> <td>( )</td> <td></td> <td><math>\left \left( \cap\right)\right </math></td> <td>) (n)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PASS Maximum Shear St           | ress Ratio =                      | 0.0 :                |            | $\sim$                        | ( )                                           |                                      | $\left \left( \cap\right)\right $ | ) (n)                                                |
| At maximum location values are         Vu : Applied<br>Vn * Phi: Allowable       0.0 k         Load Combination Results         Load Combination Results         Maximum Axial + Bending Stress Ratios         Maximum Axial + Bending Stress Ratios         Maximum Axial + Bending Stress Ratios         Load Combination       Maximum Shear Ratios         ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | Gall                              |                      |            |                               |                                               |                                      |                                   |                                                      |
| Vu : Applied<br>Vn * Phi: Allowable         0.0 k<br>0.0 k           Load Combination Results           Load Combination         Maximum Axial + Bending Stress Ratios<br>Stress Ratio         Cox ion         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio         Location           +1.40D         0.507         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+0.50Lr+1.60L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.711         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.711         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+1.60Lr+L         0.645         PASS         0.00 ft         1.00         1.00         60.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                                   | 0.0 ft               |            |                               |                                               |                                      |                                   |                                                      |
| Vn * Phi: Allowable         0.0 k           Load Combination Results         Maximum Axial + Bending Stress Ratios<br>Stress Ratio Status Location         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio Status Location           +1.400         0.5017         PASS         0.00 ft         1.00         60.61         28.10         0.0000         PASS         0.00 ft           +1.40D         0.752         PASS         0.00 ft         1.00         60.61         28.10         0.0000         PASS         0.00 ft           +1.20D+1.60L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+1.60Lr         0.711         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+1.60Lr         0.614         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000 PASS         0.00 ft           +1.20D+1.60Lr         0.645         PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vu : Applied                    |                                   | 0.0 k                |            |                               |                                               |                                      |                                   |                                                      |
| Maximum Axial + Bending Stress Ratios<br>Stress Ratio         Cbx         Cby         KxLx/Rx         KyLy/Ry         Maximum Shear Ratios<br>Stress Ratio         Stress Ratio         Status         Location           +1.40D         0.507         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+0.50Lr+1.60L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.512         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+L         0.614         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+L         0.637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vn * Phi : All                  | owable                            | 0.0 k                |            |                               |                                               |                                      |                                   |                                                      |
| Load Combination         Stress Ratio         Status         Location         Cbx         Cby         KxLx/Rx         KyLy/Ry         Stress Ratio         Status         Location           +1.40D         0.507         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+0.50Lr+1.60L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.711         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.532         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.645         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +0.90D         0.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Load Combination Result         | s                                 |                      |            |                               |                                               |                                      |                                   |                                                      |
| Load Combination         Stress Ratio         Status         Location         Cbx         Cby         KxLx/Rx         KyLy/Ry         Stress Ratio         Status         Location           +1.40D         0.507         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+0.50Lr+1.60L         0.752         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.722         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr+L         0.711         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.532         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +1.20D+1.60Lr         0.645         PASS         0.00 ft         1.00         1.00         60.61         28.10         0.000         PASS         0.00 ft           +0.90D         0.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | Maximum Axial + Bending St        | ress Ratios          |            |                               |                                               | Maximum Sh                           | ear Ratio                         | :                                                    |
| +1.20D+0.50Lr+1.60L       0.752       PASS       0.00 ft       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60L       0.722       PASS       0.00 ft       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr+L       0.711       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.532       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.614       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.645       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         +1.40D+L       0.687       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 PASS       0.00 ft         +1.40D+L       0.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Load Combination                |                                   |                      | Cbx Cby    | KxLx/Rx Ky                    | yLy/Ry St                                     |                                      |                                   |                                                      |
| +1.20D+1.60L       0.722       PASS       0.00 ft       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr+L       0.711       PASS       0.00 ft       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.532       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.614       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.614       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.645       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +1.40D                          |                                   | 0.00 ft 1            | .00 1.00   | 60.61 2                       | 28.10                                         | 0.000 PA                             | ASS                               | 0.00 ft                                              |
| +1.20D+1.60Lr+L       0.711       PASS       0.00 ft       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.532       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr       0.614       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+1.60Lr+L       0.614       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.645       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.40D+L       0.687       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| +1.20D+1.60Lr       0.532       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+L       0.614       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+L       0.435       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.40D+L       0.687       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.70D       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.70D       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| +1.20D+L       0.614       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D       0.435       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.20D+0.50Lr+L       0.645       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.40D+L       0.687       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.70D       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         torot       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                   |                      |            |                               |                                               |                                      | ASS                               |                                                      |
| +1.20D+0.50Lr+L       0.645       PASS       0.00 ft       1.00       7.00       60.61       28.10       0.000       PASS       0.00 ft         +0.90D       0.326       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.40D+L       0.687       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.70D       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         Maximum Reactions       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         Maximum Reactions       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         Maximum Reactions       Axial Reaction       X-X Axis Reaction       k       Y-Y Axis Reaction       Mx - End Moments       k-ft       My - End Moments         Load Combination       @ Base       @ Top       @ Base       @ Top       @ Base       @ Top       @ Base       @ Top       @ Base       @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (+1.20D+L                       | 0.614 PA\$S                       | 0.00 ft 1            | .00 1.00   | 60.61                         | 28.10 / \ \                                   | 0.000 PA                             | ASS                               | 0.00 ft                                              |
| +0.90D       0.326       PASS       0.00 ft       1.00       60.61       28.10       0.000       PASS       0.00 ft         +1.40D+L       0.687       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         +0.70D       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         Maximum Reactions       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         Maximum Reactions       Axial Reaction       X-X Axis Reaction       k       Y-Y Axis Reaction       Mx - End Moments       k-ft       My - End Moments         Load Combination       @ Base       @ Top       @ Base       @ Top       @ Base       @ Top       @ Base       @ Top         D Only       143.390       +D+L       214.390       +D+Lr       167.390       If 7.390       If 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| +1.40D+L<br>+0.70D       0.687<br>0.254       PASS<br>PASS       0.00 ft<br>0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS<br>0.00 ft       0.00 ft         Maximum Reactions       Note: Only non-zero reactions are listed.         Load Combination       Axial Reaction<br>@ Base       X-X Axis Reaction<br>@ Base       k       Y-Y Axis Reaction<br>@ Base       Mx - End Moments<br>@ Top       My - End Moments<br>@ Base       My - End Moments         D Only<br>+D+L<br>+D+Lr       143.390<br>+D+Lr       143.390<br>167.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| +0.70D       0.254       PASS       0.00 ft       1.00       1.00       60.61       28.10       0.000       PASS       0.00 ft         Maximum Reactions       Note: Only non-zero reactions are listed.         Axial Reaction       X-X Axis Reaction       k       Y-Y Axis Reaction       Mx - End Moments       k-ft       My - End Moments         Load Combination       @ Base       @ Top       @ Base       @ Top       @ Base       @ Top       @ Base       @ Top         D Only       143.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390       214.390 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| Axial Reaction     X-X Axis Reaction     k     Y-Y Axis Reaction     Mx - End Moments     k-ft     My - End Moments       Load Combination     @ Base     @ Base     @ Top     @ Base     @ Top     @ Base     @ Top       D Only     143.390       +D+L     214.390       +D+Lr     167.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| Load Combination         @ Base         @ Top         @ Base         @ Top         @ Base         @ Top           D Only         143.390           +D+L         214.390           +D+Lr         167.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maximum Reactions               |                                   |                      |            |                               | Note: On                                      | ,                                    |                                   |                                                      |
| D Only 143.390<br>+D+L 214.390<br>+D+Lr 167.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lead Cambin att                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
| +D+L 214.390<br>+D+Lr 167.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | •                                 | @ Base @ Top         | @ Base     | @ lop                         | @ Base                                        | @ IOP                                | @ Base                            | @ I op                                               |
| +D+Lr 167.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                   |                      |            |                               |                                               |                                      |                                   |                                                      |

| Title Block" selection.<br>Title Block Line 6 | 0                  |                          |              |                         |                 |                      |                                                 |                      | Printed:              | 31 MAR 2020, 2:05PM                              |
|-----------------------------------------------|--------------------|--------------------------|--------------|-------------------------|-----------------|----------------------|-------------------------------------------------|----------------------|-----------------------|--------------------------------------------------|
| Steel Column                                  |                    |                          |              |                         |                 |                      |                                                 |                      | CU Faculty Staff He   | ousing Development.ec6                           |
| Lic. # : KW-06090157 - Ec                     | lucational Version |                          | _            | _                       | _               | Lice                 |                                                 |                      |                       | 3-2020, Build:12.20.2.24<br>(, CIVIL ENGINEERING |
| DESCRIPTION: D7-                              |                    |                          |              |                         |                 |                      |                                                 |                      |                       | ,                                                |
|                                               |                    | (,                       |              |                         |                 |                      |                                                 | 7                    |                       |                                                  |
| Maximum Reactions                             |                    |                          |              |                         | 7-6-            |                      |                                                 |                      |                       | reactions are listed.                            |
| Load Combination                              |                    | Axial Reaction<br>@ Base |              | K Axis Reacti<br>Base @ |                 | Y-Y Axis I<br>@ Base | @ Top                                           | Mx - End M<br>@ Base | loments k-ft<br>@ Top | My - End Moments<br>@ Base @ Top                 |
| +D+0.750L                                     |                    | 196.640                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| +0.60D<br>Lr Only                             |                    | 86.034<br>24.000         |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| L Only                                        |                    | 71.000                   |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Extreme Reactions                             |                    | 11.000                   |              |                         |                 |                      |                                                 |                      |                       |                                                  |
|                                               |                    | Axial Reaction           | X-2          | X Axis React            | ion <b>k</b>    | Y-Y Axis             | Reaction                                        | Mx - End M           | oments k-ft           | My - End Moments                                 |
| Item                                          | Extreme Value      | @ Base                   | @            | Base @                  | Тор             | @ Base               | @ Top                                           | @ Base               | @ Top                 | @ Base @ Top                                     |
| Axial @ Base                                  | Maximum            | 214.640                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| "<br>Deceller VVA: - D-                       | Minimum            | 24.000                   |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Reaction, X-X Axis Base                       | Maximum<br>Minimum | 143.390<br>143.390       |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Reaction, Y-Y Axis Base                       | Maximum            | 143.390                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
|                                               | Minimum            | 143.390                  |              |                         |                 |                      |                                                 | Γ, /                 |                       |                                                  |
| Reaction, X-X Axis Top                        | Maximum            | 143.390                  | 21           |                         |                 |                      | $\mathbb{V}\left[\left( \cap\right)^{L}\right]$ | $      / \Delta$     |                       | wed                                              |
|                                               | Minimum            | 143.390                  |              |                         | DC              | 7 🗌                  |                                                 |                      |                       |                                                  |
| Reaction, Y-Y Axis Top                        | Maximum<br>Minimum | 143.390<br>143.390       |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Moment, X-X Axis Base                         | Maximum            | 143.390                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| "                                             | Minimum            | 143.390                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Moment, Y-Y Axis Base                         | Maximum            | 143.390                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
|                                               | Minimum            | 143.390                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Moment, X-X Axis Top                          | Maximum<br>Minimum | 143.390<br>143.390       |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Moment, Y-Y Axis Top                          | Maximum            | 143.390                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| "                                             | Minimum            | 143.390                  |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Maximum Deflection                            | is for Load Com    | binations                |              |                         |                 |                      |                                                 |                      |                       |                                                  |
| Load Combination                              |                    | Max. X-X Defle           |              | Distance                |                 | /lax. Y-Y D          |                                                 | Distance             |                       |                                                  |
| D Only                                        |                    | 0.0000                   | in           | 0.000                   | ft              | 0.000                |                                                 | 0.000 ft             |                       |                                                  |
| +D+L                                          |                    | 0.0000                   | in<br>in     | 0.000                   |                 | 0.000                |                                                 | 0.000 ft<br>0.000 ft |                       |                                                  |
| +D+0.750Lr+0.750L                             |                    | 0.0000                   | in           | 0.000                   | ft C            | 0.000                |                                                 | 0.000 ft             |                       |                                                  |
| +D+0.750L                                     |                    | 0.0000                   | in           | 0.000                   | ft              | 0.000                |                                                 | 0.000 ft             |                       |                                                  |
| +0.60D                                        |                    | 0.0000                   | in           | 0.000                   | ft              | 0.000                |                                                 | 0.000 ft             |                       |                                                  |
| Lr Only                                       |                    | 0.0000                   | in           | 0.000                   | ft              | 0.000                |                                                 | 0.000 ft             |                       |                                                  |
| L Only                                        |                    | 0.0000                   | in           | 0.000                   | ft              | 0.000                | ) in                                            | 0.000 ft             |                       |                                                  |
| Steel Section Proper                          |                    | V10x39                   |              |                         |                 | • • •                |                                                 |                      |                       | 0.070 : 44                                       |
|                                               | = 9.920            |                          | XX           | =                       | 209.00<br>42.10 |                      |                                                 | J                    | =                     | 0.976 in^4                                       |
|                                               | = 0.315<br>= 7.990 |                          | S xx<br>R xx | =                       | 42.10           |                      |                                                 | Cw                   | =                     | 992.00 in^6                                      |
| -                                             | = 0.530            |                          | Σx           | =                       | 46.800          |                      |                                                 |                      |                       |                                                  |
| •                                             | = 11.500           |                          | уу           | =                       | 45.000          |                      |                                                 |                      |                       |                                                  |
|                                               | = 39.000           |                          | уу<br>Буу    | =                       | 11.300          |                      |                                                 | Wno                  | =                     | 18.800 in^2                                      |
| -                                             | = 1.030            |                          | ₹yy          | =                       | 1.980           |                      |                                                 | Sw                   | F                     | 19.900 in^4                                      |
| K1 G COO                                      | - 0.813            | ind                      | y l          | =                       | 17.200          |                      |                                                 | Qf                   |                       | 9.550 in^3                                       |
| rts<br>Ycg                                    | = 2.240<br>= 0.000 | in ( ( – ) – ,           |              |                         | SE              |                      | UU                                              | Qw                   |                       | 23.000 in^3                                      |



# Commercial Use Not Allowed

#### Gravity Beam Schedule

| Steel Gravity Beams                            | Largest Trib.<br>Width (ft) | Dead (ksf) | Live (ksf) | Dead (klf) | Live (klf) | Sizes   | Camber (in) |
|------------------------------------------------|-----------------------------|------------|------------|------------|------------|---------|-------------|
| Residential - 11 ft and below                  | 15.1                        | 0.07       | 0.04       | 1.06       | 0.604      | W8X13   |             |
| Residential - 20 ft to 30 ft spans             | 30.2                        | 0.07       | 0.04       | 2.11       | 1.00       | W16X100 |             |
| Residential - 30 to 37 ft spans                | 30.2                        | 0.07       | 0.04       | 2.11       | 1.00       | W18X97  | 3.25        |
| Residential - 40 to 45 ft spans                | 18.0                        | 0.07       | 0.04       | 1.26       | 0.720      | W18X130 | 3.25        |
| Residential (corridor) - 25.5 ft & below spans | 20.0                        | 0.07       | 0.06       | 1.40       | 1.20       | W14X68  |             |
| Residential (corridor) - 30 to 37 ft spans     | 20.0                        | 0.07       | 0.06       | 1.40       | 1.20       | W18X119 |             |
| Residential (corridor) - 40 to 48 ft spans     | 20.8                        | 0.07       | 0.06       | 1.45       | 1.245      | W21X122 | 4.0         |
| Residential (Roof) - 11 ft and below           | 15.1                        | 0.051      | 0.02       | 0.77       | 0.302      | W6X16   |             |
| Residential (Roof) - 20 ft to 30 ft spans      | 30.2                        | 0.051      | 0.02       | 1.54       | 1.00       | W16X67  |             |
| Residential (Roof) - 30 to 37 ft spans         | 30.2                        | 0.051      | 0.02       | 1.54       | 1.00       | W18X106 |             |
| Residential (Roof) - 40 to 45 ft spans         | 18.0                        | 0.051      | 0.02       | 0.918      | 0.360      | W18X119 |             |

|                                        | Largest Trib. |            |            |            |            |                   |            | Lay       | er 1       | Lay       | er 2       | Lay       | ver 3      |
|----------------------------------------|---------------|------------|------------|------------|------------|-------------------|------------|-----------|------------|-----------|------------|-----------|------------|
| Concrete Gravity Beams                 |               | Dead (ksf) | Live (ksf) | Dead (klf) | Live (klf) | Total Height (in) | Width (in) | # of Bars | Bar Size # | # of Bars | Bar Size # | # of Bars | Bar Size # |
| Parking Garage - 18'3" and below spans | 24.0          | 0.108      | 0.06       | 2.59       | 1.44       | 16.0              | 18.0       | 7         | 9          |           |            |           |            |
| Parking Garage - 19 to 29.5 ft spans   | 31.0          | 0.108      | 0.06       | 3.35       | 1.86       | 22.0              | 24.0       | 8         | 10         | 8         | 10         |           |            |
| Parking Garage - 30' to 45'3" spans    | 28.3          | 0.108      | 0.06       | 3.06       | 1.698      | 26.0              | 28.0       | 10        | 10         | 10        | 10         | 10        | 9          |

Title Block Line 1 Project Title: Engineer: You can change this area Project ID: using the "Settings" menu item Project Descr: and then using the "Printing & Title Block" selection. Title Block Line 6 Printed: 31 MAR 2020, 2:10PM File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 Steel Beam Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING Lic. # : KW-06090157 - Educational Version DESCRIPTION: Residential - 11 ft and below spans **CODE REFERENCES** Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-16 **Material Properties** Analysis Method : Load Resistance Factor Design Fy: Steel Yield: 50.0 ksi Beam is Fully Braced against lateral-torsional buckling E: Modulus : 29,000.0 ksi Beam Bracing : Major Axis Bending Bending Axis : D(1.057) L(0.604) W8x13 Span = 11.0 ft Applied Loads Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 15.10 ft, (Typical Residential Floor)

| DESIGN SUMMARY                    |                |                               | Design OK        |
|-----------------------------------|----------------|-------------------------------|------------------|
| Maximum Bending Stress Ratio =    | 0.796:1 N      | /laximum Shear Stress Ratio = | <b>0.225</b> : 1 |
| Section used for this span        | W8x13          | Section used for this span    | W8x13            |
| Mu : Applied                      | 34.037 k-ft    | Vu : Applied                  | 12.377 k         |
| Mn * Phi : Allowable              | 42.750 k-ft    | Vn * Phi : Allowable          | 55.131 k         |
| Load Combination                  | +1.20D+1.60L   | Load Combination              | +1.20D+1.60L     |
| Location of maximum on span       | 5.500 ft       | Location of maximum on span   | 0.000 ft         |
| Span # where maximum occurs       | Span #1        | Span # where maximum occurs   | ( Span #)1       |
| Maximum Deflection                |                |                               |                  |
| Max Downward Transient Deflection | 0.174 in Ratio | = 758>=360.                   |                  |
| Max Upward Transient Deflection   | 0.000 in Ratio |                               |                  |
| Max Downward Total Deflection     | 0.482 in Ratio |                               |                  |
| Max Upward Total Deflection       | 0.000 in Ratio | = 0 <240.0                    |                  |

#### Maximum Forces & Stresses for Load Combinations

| Load Combination              |           | Max Stre  | ss Ratios    |          | S          | Summary of M  | Moment Value | S       |      |       | Summ          | Summary of Shear Values |         |  |
|-------------------------------|-----------|-----------|--------------|----------|------------|---------------|--------------|---------|------|-------|---------------|-------------------------|---------|--|
| Segment Length                | Span #    | М         | V            | max Mu + | max Mu -   | Mu Max        | Mnx          | Phi*Mnx | Cb   | Rm    | VuMax         | Vnx                     | Phi*Vnx |  |
| +1.40D                        |           |           |              |          |            |               |              |         |      |       |               |                         |         |  |
| Dsgn. L = 11.00 ft            | 1         | 0.530     | 0.149        | 22.66    |            | 22.66         | 47.50        | 42.75   | 1.00 | 1.00  | 8.24          | 55.13                   | 55.13   |  |
| +1.20D+1.60L                  |           |           |              |          |            |               |              |         |      |       |               | /-                      |         |  |
| Dsgn. L = 11.00 ft            | 1         | 0.796     | 0.225        | 34.04    |            | 34.04         | 47.50        | 42.75   | 1.00 | 1.00  | 12.38         | 55.13                   | 55.13   |  |
| +1.20D+L                      | 4         | 0.000     | 0 400        | 00.50    |            | 00.50         | 47.50        | 40.75   | 4 00 | 4 00  | 40.00         | FF 40                   | FF 40   |  |
| Dsgn. L = 11.00 ft            |           | 0.668     | 0.188        | 28.56    |            | 28.56         | 47.50        | 42.75   | 1.00 | 1.00  | 10.38         | 55.13                   | 55.13   |  |
| +1.20D<br>Dsgn. L = 1/1.00 ft | 1         | 0.454     | 0.128        | 19.42    |            | 19.42         | 47.50        | 42.75   | 1 00 | 1.00  | 7.06          | 55.13                   | 7 55.13 |  |
| +0.90D                        |           | 0.454     | 0.120        | 13.42    | <u> </u>   | 13.42         | 47.30        | 42.15   | 1.00 | 1.00  | 1.00          | 55.15                   | 00.10   |  |
| Dsgn. L = 11.00 ft            | 1         | 0.341     | 0.096        | 14.57    |            | 14.57         | 47.50        | 42.75   | 1.00 | 1.00  | 5.30          | 55.13                   | 55.13   |  |
| +1.40D+L                      |           |           |              |          |            |               |              |         |      |       |               |                         |         |  |
| Dsgn. L = 11.00 ft            | 1         | 0.744     | 0.210        | 31.79    |            | 31.79         | 47.50        | 42.75   | 1.00 | 1.00  | 11.56         | 55.13                   | 55.13   |  |
| +0.70D                        |           |           |              |          |            |               |              |         |      |       |               |                         |         |  |
| Dsgn. L = 11.00 ft            | 1         | 0.265     | 0.075        | 11.33    |            | 11.33         | 47.50        | 42.75   | 1.00 | 1.00  | 4.12          | 55.13                   | 55.13   |  |
| Overall Maximu                | ım Defleo | ctions    |              |          |            |               |              |         |      |       |               |                         |         |  |
| Load Combination              |           | Span      | Max. "-" Def | Locatio  | on in Span | Load Cor      | nbination    |         |      | N     | lax. "+" Defl | Location i              | n Span  |  |
| +D+L                          |           | 1         | 0.4824       |          | 5.531      |               |              |         |      |       | 0.0000        | 0                       | .000    |  |
| Vertical Reaction             | ons       |           |              |          | Support    | notation : Fa | r left is #1 |         |      | Value | s in KIPS     |                         |         |  |
| Load Combination              |           | Support 1 | Support 2    |          |            |               |              |         |      |       |               |                         |         |  |
| Overall MAXimum               |           | 9.207     | 9.207        |          |            |               |              | HG      |      | 7     |               | $\bigcirc$              | $\Box$  |  |
| Overall MINimum               |           | 3.322     | 3.322        |          |            | 0             |              | 7 =     |      |       |               | $\left( \cup \right)$   |         |  |
|                               |           |           |              |          |            | L             |              |         |      |       |               |                         |         |  |

3.322

3.322

L Only

| Title Block Line 6          |                         |           | Printed: 31 MAR 2020, 2:10PM                                                                                                               |
|-----------------------------|-------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Steel Beam                  |                         |           | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 .<br>Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 |
| Lic. # : KW-06090157 - Educ | ational Version         |           | Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING                                                                                  |
| DESCRIPTION: Reside         | ential - 11 ft and belo | w spans   |                                                                                                                                            |
| Vertical Reactions          |                         |           | Support notation : Far left is #1 Values in KIPS                                                                                           |
| Load Combination            | Support 1               | Support 2 |                                                                                                                                            |
| D Only                      | 5.885                   | 5.885     |                                                                                                                                            |
| +D+L                        | 9.207                   | 9.207     |                                                                                                                                            |
| +D+0.750L                   | 8.377                   | 8.377     |                                                                                                                                            |
| +0.60D                      | 3.531                   | 3.531     |                                                                                                                                            |

### Commercial Use Not Allowed

## Educational Version

# Commercial Use Not Allowed

| Title Block Line 1                                                                                                                                  | Project Title:                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| You can change this area                                                                                                                            | Engineer:                                                                                                                                  |
| using the "Settings" menu item                                                                                                                      | Project ID:                                                                                                                                |
| and then using the "Printing &                                                                                                                      | Project Descr:                                                                                                                             |
| Title Block" selection.                                                                                                                             |                                                                                                                                            |
| Title Block Line 6                                                                                                                                  | Printed: 31 MAR 2020, 2:11PM                                                                                                               |
| Steel Beam                                                                                                                                          | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 .<br>Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 |
| Lic. # : KW-06090157 - Educational Version                                                                                                          | Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING                                                                                  |
| DESCRIPTION: Residential - 20 to 30 ft spans                                                                                                        |                                                                                                                                            |
| CODE REFERENCES                                                                                                                                     | al Vareian                                                                                                                                 |
| Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10<br>Load Combination Set : ASCE 7-16                                                     |                                                                                                                                            |
| Material Properties                                                                                                                                 |                                                                                                                                            |
| Analysis Method :Load Resistance Factor DesignBeam Bracing :Beam bracing is defined as a set spacing over all spansBending Axis :Major Axis Bending | Fy : Steel Yield : 50.0 ksi<br>E: Modulus : 29,000.0 ksi                                                                                   |
| Unbraced Lengths                                                                                                                                    |                                                                                                                                            |
| First Brace starts at 10.0 ft from Left-Most support                                                                                                |                                                                                                                                            |
| Regular spacing of lateral supports on length of beam = 10.0 ft                                                                                     |                                                                                                                                            |
|                                                                                                                                                     |                                                                                                                                            |
| D(2.114) L(1                                                                                                                                        | 208)                                                                                                                                       |
| * * * * * * * * * * * * * * * * * * *                                                                                                               | × * *                                                                                                                                      |
|                                                                                                                                                     |                                                                                                                                            |
| × W16x100                                                                                                                                           | ×                                                                                                                                          |
|                                                                                                                                                     |                                                                                                                                            |
| Span = 30.                                                                                                                                          | 0 ft                                                                                                                                       |
| •                                                                                                                                                   |                                                                                                                                            |
|                                                                                                                                                     |                                                                                                                                            |
| Applied Loads                                                                                                                                       | Service loads entered. Load Factors will be applied for calculations.                                                                      |
| Beam self weight calculated and added to loading                                                                                                    |                                                                                                                                            |
| Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 30.20 ft, (Typica                                                                        | al Residential Floor)                                                                                                                      |
|                                                                                                                                                     |                                                                                                                                            |
| DESIGN SUMMARY                                                                                                                                      | Design OK                                                                                                                                  |
| Maximum Bending Stress Ratio = 0.699 1 Maxi                                                                                                         | mum Shear Stress Ratio = 0.231 : 1                                                                                                         |

| Maximum Bending Stress Ratio =    | <b>0.699</b> : 1 | Maximum Shear Stress Ratio = | <b>0.231</b> : 1 |
|-----------------------------------|------------------|------------------------------|------------------|
| Section used for this span        | W16x100          | Section used for this span   | W16x100          |
| Mu : Applied                      | 516.330 k-ft     | Vu : Applied                 | 68.844 k         |
| Mn * Phi : Allowable              | 738.158 k-ft     | Vn * Phi : Allowable         | 298.350 k        |
| Load Combination                  | +1.20D+1.60L     | Load Combination             | +1.20D+1.60L     |
| Location of maximum on span       | 15.000ft         | Location of maximum on span  | 0.000 ft         |
| Span # where maximum occurs       | Span # 1         | Span # where maximum occurs  | Span # 1         |
| Maximum Deflection                |                  |                              |                  |
| Max Downward Transient Deflection | 0.511 in Ratio   | = 703>=360.                  |                  |
| Max Upward Transient Deflection   | 0.000 in Ratio   | = 0 <360.0                   |                  |
| Max Downward Total Deflection     | 1.450 in Ratio   | = 248 >=240.                 |                  |
| Max Upward Total Deflection       | 0.000 in Ratio   | = 0 <240.0                   |                  |

#### Maximum Forces & Stresses for Load Combinations

| Load Combination                   |                            | Max Stress Ratios Summary o |       |          |          |        | y of Moment Values |         |      |      |         | Summary of Shear Values |         |  |
|------------------------------------|----------------------------|-----------------------------|-------|----------|----------|--------|--------------------|---------|------|------|---------|-------------------------|---------|--|
| Segment Length                     | Span #                     | М                           | V     | max Mu + | max Mu - | Mu Max | Mnx                | Phi*Mnx | Cb   | Rm   | VuMax   | Vnx                     | Phi*Vnx |  |
| +1.40D                             |                            |                             |       |          |          |        |                    |         |      |      |         |                         |         |  |
| Dsgn. L = 9.94 ft                  | _1                         | 0.416                       | 0.156 | 309.07   |          | 309.07 | 825.00             | 742.50  | 1.46 | 1.00 | 46.49   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 | $(\Gamma_{1}, \Gamma_{1})$ | 0.472                       | 0.053 | 348.71   | 309.07   | 348.71 | 820.18             | 738.16  | 1.01 | 1.00 | 15.68   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft<br>+1.20D+1.60L |                            | 0.418                       | 0.156 | 310.40   | US       | 310.40 | 825.00             | 742.50  | 1.45 | 1.00 | 46.49   | 298.35                  | 298.35  |  |
| Dsgn. L = 9.94 ft                  | 1                          | 0.616                       | 0.231 | 457.64   |          | 457.64 | 825.00             | 742.50  | 1.46 | 1.00 | 68.84   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 | 1                          | 0.699                       | 0.078 | 516.33   | 457.64   | 516.33 | 820.18             | 738.16  | 1.01 | 1.00 | 23.21   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 | 1                          | 0.619                       | 0.231 | 459.61   |          | 459.61 | 825.00             | 742.50  | 1.45 | 1.00 | 68.84   | 298.35                  | 298.35  |  |
| +1.20D+L                           |                            |                             |       |          |          |        |                    |         |      |      |         |                         |         |  |
| Dsgn. L = 9.94 ft                  | 1                          | 0.519                       | 0.194 | 385.37   |          | 385.37 | 825.00             | 742.50  | 1.46 | 1.00 | 57.97   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 | 1                          | 0.589                       | 0.066 | 434.79   | 385.37   | 434.79 | 820.18             | 738.16  | 1.01 | 1.00 | 19.54   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 | 1                          | 0.521                       | 0.194 | 387.03   |          | 387.03 | 825.00             | 742.50  | 1.45 | 1.00 | 57.97   | 298.35                  | 298.35  |  |
| +1.20D                             |                            |                             |       |          |          |        |                    |         |      |      |         |                         |         |  |
| Dsgn. L = 9.94 ft                  | 1                          | 0.357                       | 0.134 | 264.92   |          | 264.92 | 825.00             | 742.50  | 1.46 | 1.00 | 39.85   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 | 1                          | 0.405                       | 0.045 | 298.89   | 264.92   | 298.89 | 820.18             | 738.16  | 1.01 | 1.00 | 13.44   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 | 1                          | 0.358                       | 0.134 | 266.06   |          | 266.06 | 825.00             | 742.50  | 1.45 | 1.00 | 39.85   | 298.35                  | 298.35  |  |
| +0.90D                             |                            |                             |       |          |          |        |                    |         |      |      |         |                         |         |  |
| Dsgn. L = 9.94 ft                  | 1                          | 0.268                       | 0.100 | 198.69   |          | 198.69 | 825.00             | 742.50  | 1.46 | 1.00 | 29.89   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 |                            | 0.304                       | 0.034 | 224.17   | 198.69   | 224.17 | 820.18             | 738.16  | 1,01 | 1.00 | 10.08   | 298.35                  | 298.35  |  |
| Dsgn. L = 10.03 ft                 |                            | 0.269                       | 0.100 | 199.54   | /     (  | 199.54 | 825.00             | 742.50  | 1.45 | 1.00 | > 29.89 | 298.35                  | 298.35  |  |

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24

Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

#### **Steel Beam**

#### Lic. # : KW-06090157 - Educational Version DESCRIPTION: Residential - 20 to 30 ft spans

| Load Combination      |             |       | Summary of Moment Values |          |          |        |        |         | Summary of Shear Values |      |       |        |         |
|-----------------------|-------------|-------|--------------------------|----------|----------|--------|--------|---------|-------------------------|------|-------|--------|---------|
| Segment Length        | Span #      |       | V                        | max Mu + | max Mu - | Mu Max | Mnx 🗸  | Phi*Mnx | Cb                      | Rm   | VuMax | Vnx    | Phi*Vnx |
| +1.40D+L              |             | ЛЧ.   |                          |          |          |        |        |         |                         |      |       |        |         |
| Dsgn. L = 9.94 ft     | 1           | 0.578 | 0.217                    | 429.52   |          | 429.52 | 825.00 | 742.50  | 1.46                    | 1.00 | 64.61 | 298.35 | 298.35  |
| Dsgn. L = 10.03 ft    | 1           | 0.657 | 0.073                    | 484.61   | 429.52   | 484.61 | 820.18 | 738.16  | 1.01                    | 1.00 | 21.78 | 298.35 | 298.35  |
| Dsgn. L = 10.03 ft    | 1           | 0.581 | 0.217                    | 431.37   |          | 431.37 | 825.00 | 742.50  | 1.45                    | 1.00 | 64.61 | 298.35 | 298.35  |
| +0.70D                |             |       |                          |          |          |        |        |         |                         |      |       |        |         |
| Dsgn. L = 9.94 ft     | 1           | 0.208 | 0.078                    | 154.53   |          | 154.53 | 825.00 | 742.50  | 1.46                    | 1.00 | 23.25 | 298.35 | 298.35  |
| Dsgn. L = 10.03 ft    | 1           | 0.236 | 0.026                    | 174.35   | 154.53   | 174.35 | 820.18 | 738.16  | 1.01                    | 1.00 | 7.84  | 298.35 | 298.35  |
| Dsgn. L = 10.03 ft    | 1           | 0.209 | 0.078                    | 155.20   |          | 155.20 | 825.00 | 742.50  | 1.45                    | 1.00 | 23.25 | 298.35 | 298.35  |
| <b>Overall Maximu</b> | m Deflectio | ons   |                          |          |          |        |        |         |                         |      |       |        |         |

| Load Combination                              | Span                       | Max. "-" Defl              | Location in Span | Load Combination            | Max. "+" Defl  | Location in Span |
|-----------------------------------------------|----------------------------|----------------------------|------------------|-----------------------------|----------------|------------------|
| +D+L                                          | 1                          | 1.4499                     | 15.086           |                             | 0.0000         | 0.000            |
| Vertical Reactions                            |                            |                            | Suppor           | t notation : Far left is #1 | Values in KIPS |                  |
| Load Combination                              | Support 1                  | Support 2                  |                  |                             |                |                  |
| Overall MAXimum<br>Overall MINimum<br>D. Only | 51.330<br>18.120<br>33.210 | 51.330<br>18.120<br>33.210 |                  | se No                       | DI AIIO        | Wed              |
| +D+L<br>+D+0.750L                             | 51.330<br>46.800           | 51.330<br>46.800           |                  |                             |                |                  |
| +0.60D<br>L Only                              | 19.926<br>18.120           | 19.926<br>18.120           |                  |                             |                |                  |



### Commercial Use Not Allowed

| Title Block Line 1<br>You can change this area<br>using the "Settings" menu item<br>and then using the "Printing &<br>Title Block" selection.        | Project Title:<br>Engineer:<br>Project ID:<br>Project Descr:                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Title Block Line 6                                                                                                                                   | Printed: 2 APR 2020, 8:39PN                                                                                                  |
| Steel Beam                                                                                                                                           | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6                                                      |
| Lic. # : KW-06090157 - Educational Version                                                                                                           | Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 .<br>Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING |
| DESCRIPTION: Residential - 30 to 37 ft spans                                                                                                         |                                                                                                                              |
|                                                                                                                                                      | al Vareian                                                                                                                   |
| Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10                                                                                          |                                                                                                                              |
| Load Combination Set : ASCE 7-16                                                                                                                     |                                                                                                                              |
| Material Properties                                                                                                                                  |                                                                                                                              |
| Analysis Method : Load Resistance Factor DesignBeam Bracing :Beam bracing is defined as a set spacing over all spansBending Axis :Major Axis Bending | Fy : Steel Yield : 50.0 ksi<br>E: Modulus : 29,000.0 ksi                                                                     |
| Unbraced Lengths                                                                                                                                     |                                                                                                                              |
| First Brace starts at 10.0 ft from Left-Most support<br>Regular spacing of lateral supports on length of beam = 10.0 ft                              |                                                                                                                              |
|                                                                                                                                                      |                                                                                                                              |
|                                                                                                                                                      |                                                                                                                              |
|                                                                                                                                                      | 1.208)<br>* *                                                                                                                |
| ×                                                                                                                                                    | * * *                                                                                                                        |
| × W18x9                                                                                                                                              | × × ×                                                                                                                        |
| Span = 37                                                                                                                                            | .0 ft                                                                                                                        |
| •                                                                                                                                                    |                                                                                                                              |
| 1                                                                                                                                                    |                                                                                                                              |
| Applied Loads                                                                                                                                        | Service loads entered. Load Factors will be applied for calculatior                                                          |
| Beam self weight calculated and added to loading<br>Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 30.20 ft, (Typi                       | cal Residential Floor)                                                                                                       |
| DESIGN SUMMARY                                                                                                                                       | Design N.G.                                                                                                                  |
| Maximum Bending Stress Ratio = 0.992 : 1 Max<br>Section used for this span W18x97                                                                    | timum Shear Stress Ratio =     0.284 : 1       Section used for this span     W18x97                                         |
| Mu Applied 784.779 k-ft                                                                                                                              | Vu : Applied                                                                                                                 |
| Mn * Phi: Allowable 791.250 k-ft                                                                                                                     | Vn * Phi : Allowable 298.530 k                                                                                               |
| Load Combination +1.20D+1.60L<br>Location of maximum on span 18.500ft                                                                                | Load Combination +1.20D+1.60L<br>Location of maximum on span 0.000 ft                                                        |
| Span # where maximum occurs Span # 1                                                                                                                 | Span # where maximum occurs Span # 1                                                                                         |
| Maximum Deflection                                                                                                                                   |                                                                                                                              |
| Max Downward Transient Deflection 1.007 in Ratio =                                                                                                   | 440 >= 360.                                                                                                                  |
| Max Upward Transient Deflection 0.000 in Ratio =                                                                                                     | <mark>0</mark> <360.0                                                                                                        |
| Max Downward Total Deflection 2.854 in Ratio =<br>Max Upward Total Deflection 0.000 in Ratio =                                                       | 156 <240.0                                                                                                                   |
| Max Upward Total Deflection 0.000 in Ratio =                                                                                                         | 0 <240.0                                                                                                                     |
| Maximum Forces & Stresses for Load Combinations                                                                                                      |                                                                                                                              |

| Load Combination    |         | Max Stres | ss Ratios |          | S                     | ummary of N | Noment Values | ;        |      |      | Summ    | Summary of Shear Values |         |  |
|---------------------|---------|-----------|-----------|----------|-----------------------|-------------|---------------|----------|------|------|---------|-------------------------|---------|--|
| Segment Length      | Span #  | М         | V         | max Mu + | max Mu -              | Mu Max      | Mnx           | Phi*Mnx  | Cb   | Rm   | VuMax   | Vnx                     | Phi*Vnx |  |
| +1.40D              |         |           |           |          |                       |             |               |          |      |      |         |                         |         |  |
| Dsgn. L = 9.94 ft   | 1       | 0.526     | 0.192     | 416.22   |                       | 416.22      | 879.17        | 791.25   | 1.52 | 1.00 | 57.26   | 298.53                  | 298.53  |  |
| Dsgn. L = 10.04 ft  | l(h)    | 0.669     | 0.089     | 529.70   | 416.22                | 529.70      | 879.17        | 791.25   | 1.04 | 1.00 | 26.51   | 298.53                  | 298.53  |  |
| Dsgn.L = 9.94 ft    | 1       | 0.665     | 0.118     | 526.31   | 327.96                | 526.31      | 879.17        | 791.25   | 1.11 | 1.00 | 35.34   | 298.53                  | 298.53  |  |
| Dsgn. L = 7.08 ft □ |         | 0.414     | 0.192     | 327.96   | $\bigcirc$ $\bigcirc$ | 327.96      | 879.17        | 791.25   | 1.55 | 1.00 | 57.26   | 298.53                  | 298.53  |  |
| +1.20D+1.60L        |         | 0 770     | 0.004     | 040.05   |                       | 040.05      | 070 47        | 704.05   | 4 50 | 4.00 |         | 000 50                  | 000 50  |  |
| Dsgn. L = 9.94 ft   | 1       | 0.779     | 0.284     | 616.65   | o / o o=              | 616.65      | 879.17        | 791.25   | 1.52 | 1.00 | 84.84   | 298.53                  | 298.53  |  |
| Dsgn. L = 10.04 ft  | 1       | 0.992     | 0.132     | 784.78   | 616.65                | 784.78      | 879.17        | 791.25   | 1.04 | 1.00 | 39.27   | 298.53                  | 298.53  |  |
| Dsgn. L = 9.94 ft   | 1       | 0.985     | 0.175     | 779.76   | 485.88                | 779.76      | 879.17        | 791.25   | 1.11 | 1.00 | 52.36   | 298.53                  | 298.53  |  |
| Dsgn. L = 7.08 ft   | 1       | 0.614     | 0.284     | 485.88   |                       | 485.88      | 879.17        | 791.25   | 1.55 | 1.00 | 84.84   | 298.53                  | 298.53  |  |
| +1.20D+L            |         |           |           |          |                       |             |               |          |      |      |         |                         |         |  |
| Dsgn. L = 9.94 ft   | 1       | 0.656     | 0.239     | 519.19   |                       | 519.19      | 879.17        | 791.25   | 1.52 | 1.00 | 71.43   | 298.53                  | 298.53  |  |
| Dsgn. L = 10.04 ft  | 1       | 0.835     | 0.111     | 660.75   | 519.19                | 660.75      | 879.17        | 791.25   | 1.04 | 1.00 | 33.06   | 298.53                  | 298.53  |  |
| Dsgn. L = 9.94 ft   | 1       | 0.830     | 0.148     | 656.52   | 409.09                | 656.52      | 879.17        | 791.25   | 1.11 | 1.00 | 44.08   | 298.53                  | 298.53  |  |
| Dsgn. L = 7.08 ft   | 1       | 0.517     | 0.239     | 409.09   |                       | 409.09      | 879.17        | 791.25   | 1.55 | 1.00 | 71.43   | 298.53                  | 298.53  |  |
| +1.20D              |         |           |           |          |                       |             |               |          |      |      |         |                         |         |  |
| Dsgn. L = 9.94 ft   | 1       | 0.451     | 0.164     | 356.76   |                       | 356.76      | 879.17        | 791.25   | 1.52 | 1.00 | 49.08   | 298.53                  | 298.53  |  |
| Dsgn. L = 10.04 ft  |         | 0.574     | 0.076     | 454.03   | 356.76                | 454.03      | 879.17        | 791.25   | 1.04 | 1.00 | 22.72   | 298.53                  | 298.53  |  |
| Dsgn. L = 9.94 ft   | 1 1 ( ( | 0.570     | 0.101     | 451.12   | 281.11                | 451.12      | 879.17        | 791.25   | 1.11 | 1.00 | 30.29   | 298.53                  | 298.53  |  |
| Dsgn. L = 7.08 ft   | S1C     | 0.355     | 0.164     | 281.11   |                       | 281.11      | 879.17        | / 791.25 | 1.55 | 1.00 | → 49.08 | 298.53                  | 298.53  |  |

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

#### **Steel Beam**

+D+0.750L

+0.60D

L Only

### Lic. # : KW-06090157 - Educational Version DESCRIPTION: Residential - 30 to 37 ft spans

|                |                  |          | 50 10 57 11 | spans         |            |            |              |               |         |      |           |            |             |                            |
|----------------|------------------|----------|-------------|---------------|------------|------------|--------------|---------------|---------|------|-----------|------------|-------------|----------------------------|
| Load Combinati | on               |          | Max Stree   | ss Ratios     |            | S          | ummary of M  | Moment Values | s       |      |           | Summ       | ary of Shea | r Values                   |
| Segment L      | ength            | Span #   |             | Vr            | max Mu +   | max Mu -   | Mu Max       | Mnx 🗸         | Phi*Mnx | Cb   | Rm        | VuMax      | Vnx         | Phi*Vnx                    |
| +0.90D         | SIC              | X        | TE          |               | $\bigcirc$ |            | SIL          |               |         |      |           |            |             |                            |
| Dsgn.L = 9     | 9.94 ft          | 1        | 0.338       | 0.123         | 267.57     |            | 267.57       | 879.17        | 791.25  | 1.52 | 1.00      | 36.81      | 298.53      | 298.53                     |
| Dsgn. L = 1    | 0.04 ft          | 1        | 0.430       | 0.057         | 340.52     | 267.57     | 340.52       | 879.17        | 791.25  | 1.04 | 1.00      | 17.04      | 298.53      | 298.53                     |
| Dsgn.L = 9     | 9.94 ft          | 1        | 0.428       | 0.076         | 338.34     | 210.83     | 338.34       | 879.17        | 791.25  |      | 1.00      | 22.72      | 298.53      | 298.53                     |
| Dsgn.L = 7     | 7.08 ft          | 1        | 0.266       | 0.123         | 210.83     |            | 210.83       | 879.17        | 791.25  | 1.55 | 1.00      | 36.81      | 298.53      | 298.53                     |
| +1.40D+L       |                  |          |             |               |            |            |              |               |         |      |           |            |             |                            |
| - 0            | 9.94 ft          | 1        | 0.731       | 0.267         | 578.65     |            | 578.65       | 879.17        | 791.25  |      |           | 79.61      | 298.53      | 298.53                     |
| 0              | 0.04 ft          | 1        | 0.931       | 0.123         | 736.42     | 578.65     | 736.42       | 879.17        | 791.25  | 1.04 | 1.00      | 36.85      | 298.53      | 298.53                     |
|                | 9.94 ft          | 1        | 0.925       | 0.165         | 731.71     | 455.94     | 731.71       | 879.17        | 791.25  | 1.11 | 1.00      | 49.13      | 298.53      | 298.53                     |
|                | 7.08 ft          | 1        | 0.576       | 0.267         | 455.94     |            | 455.94       | 879.17        | 791.25  | 1.55 | 1.00      | 79.61      | 298.53      | 298.53                     |
| +0.70D         |                  |          |             |               |            |            |              |               |         |      |           |            |             |                            |
|                | 9.94 ft          | 1        | 0.263       | 0.096         | 208.11     |            | 208.11       | 879.17        | 791.25  |      | 1.00      | 28.63      | 298.53      | 298.53                     |
| Dsgn. L = 1    |                  | 1        | 0.335       | 0.044         | 264.85     | 208.11     | 264.85       | 879.17        | 791.25  | 1.04 |           | 13.25      | 298.53      | 298.53                     |
| - 0            | 9.94 ft          | 1        | 0.333       | 0.059         | 263.16     | 163.98     | 263.16       | 879.17        | 791.25  | 1.11 | 1.00      | 17.67      | 298.53      | 298.53                     |
| Dsgn. L = 7    | 7.08 ft          | 1        | 0.207       | 0.096         | 163.98     |            | 163.98       | 879.17        | 791.25  | 1.55 | 1.00      | 28.63      | 298.53      | 298.53                     |
| Overall N      | <i>l</i> laximun | 1 Deflec | ctions      | 216           |            |            |              |               |         |      |           |            | $\Pi \Pi G$ | $\mathcal{D}(\mathcal{C})$ |
| Load Combina   | ation            |          | Span        | Max. "-" Defl | Locatio    | on in Span | Load Cor     | nbination     | 刀氏      |      | Max       | . "+" Defl | Location i  | n Span                     |
| +D+L           |                  |          | 1           | 2.8539        |            | 18.606     |              |               |         |      |           | 0.0000     | 0.          | 000                        |
| Vertical       | Reactior         | IS       |             |               |            | Support r  | otation : Fa | r left is #1  |         |      | Values in | KIPS       |             |                            |
| Load Combina   | ation            |          | Support 1   | Support 2     |            |            |              |               |         |      |           |            |             |                            |
| Overall MAX    | imum             |          | 63.252      | 63.252        |            |            |              |               |         |      |           |            |             | <u> </u>                   |
| Overall MINi   |                  |          | 22.348      | 22.348        |            |            |              |               |         |      |           |            |             |                            |
| D Only         |                  |          | 40.904      | 40.904        |            |            |              |               |         |      |           |            |             |                            |
| +D+L           |                  |          | 63.252      | 63.252        |            |            |              |               |         |      |           |            |             |                            |

### **Educational Version**

57.665

24.542

22.348

57.665

24.542

22.348

## Commercial Use Not Allowed

#### Pre-Composite Camber Beam Design (Residential - 30 to 37 ft spans)

Design Per AISC 360-16

| Material Properties  |                 |                |                 | Section Propertie | S      |      |
|----------------------|-----------------|----------------|-----------------|-------------------|--------|------|
| G =                  | 11200           | ksi            |                 | Designation =     | W18X97 |      |
| E =                  | 29000           | ksi            |                 | Beamweight =      | 97     | plf  |
| Fy =                 | 50              | ksi            |                 | Area =            | 28.5   | in^2 |
| φb =                 | 0.9             |                |                 | Depth =           | 18.6   | in   |
| φv =                 | 0.9             |                |                 | bf =              | 11.1   | in   |
| Cb =                 | 1               |                |                 | tw =              | 0.535  | in   |
| C =                  | 1               |                |                 | tw/2=             | 5/16   | in   |
|                      |                 |                |                 | tf =              | 0.87   | in   |
| Stud Properties      |                 |                |                 | k =               | 1.27   | in   |
| Fu =                 | 60              | ksi            |                 | bf/2tf=           | 6.41   |      |
|                      |                 |                |                 | h/tw=             | 30     |      |
| Type of Construction | l               |                |                 | Ix =              | 1750   | in^4 |
| Type =               | IIIA            | (Assumption: C | Ordinary)       | Zx =              | 211    | in^3 |
| Fire Rating =        | 1               | hour           |                 | Sx =              | 188    | in^3 |
| Type of Concrete =   | NWC             |                |                 | rx =              | 7.82   | in   |
|                      |                 |                |                 | ly =              | 201    | in^4 |
| Beam Data            |                 |                |                 | Zy =              | 55.3   | in^3 |
| Trib. Width =        | 30.2            | ft             |                 | Sy =              | 36.1   | in^3 |
| Beam Length =        | 37              | ft             |                 | ry =              | 2.65   | in   |
| Unbraced Length =    | 10              | ft             |                 | J =               | 5.86   | in^4 |
| Fcr =                | 207             | ksi            |                 | Cw =              | 15800  | in^6 |
|                      |                 |                |                 | rts =             | 3.08   | in   |
| Total Dead Load      |                 |                |                 | ho =              | 17.7   | in   |
| Typical Resi         | dential Floor = | = 70.0         | psf             |                   |        |      |
| Concrete & Metal De  | eck Gage 20 =   | 62.5           | psf             |                   |        |      |
| Beam                 | Self-Weight =   | 3.2            | psf             |                   |        |      |
|                      |                 | 135.7          | psf             |                   |        |      |
|                      |                 |                |                 |                   |        |      |
| Total Live Load      |                 |                |                 |                   |        |      |
| Typical Resi         | dential Floor = | 40.0           | psf             |                   |        |      |
|                      |                 | 40.0           | psf             |                   |        |      |
|                      |                 |                |                 |                   |        |      |
| Deflection           |                 |                |                 |                   |        |      |
| ΔD =                 | 3.41            | in             |                 |                   |        |      |
|                      |                 |                |                 |                   |        |      |
| Round Camber Down    |                 |                |                 | ,                 |        |      |
| Use:                 | 3.25            | in             | (Req'd Pre-Camb | er)               |        |      |

#### Return to TABLE OF CONTENTS

#### 2.4 **3WxH-36 Composite Deck** 6<sup>1</sup>/<sub>2</sub>" Total Slab Depth



Normal Weight Concrete (145 pcf)

Concrete Volume 1.543yd3/100ft2

1 Hour Fire Rating



#### 3WxH-36 6 1/2 " Slab Depth, 145 pcf NWC

|                        | Gage | Single   | Double   | Triple   | Gage   | Single   | Double   | Triple   |
|------------------------|------|----------|----------|----------|--------|----------|----------|----------|
| Maximum Unshored Span  | 22   | 8' - 11" | 9" - 9"  | 10" - 1" | 19     | 11' - 3" | 12' - 4" | 12' - 9" |
| maximum orishored Span | 21   | 9' - 8"  | 10' - 5" | 10' - 9" | <br>18 | 11' - 8" | 13' - 5" | 13' - 8" |
|                        | 20   | 10' - 5" | 11' - 1" | 11' - 5" | 16     | 12' - 3" | 15' - 0" | 14' - 5" |

| Gage | Vertical Load Span (ft-in)       | 8'-0" | 8'-6"               | 9'-0"   | 9'-6"             | 10'-0"              | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12'-6" | 13"-0"    | 13"-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|-------|---------------------|---------|-------------------|---------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS    | SD & LF             | RFD - A | vailable          | e Super             | rimpose             | ed Load | d Capao | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 516   | 452                 | 398     | 352               | 313                 | 280                 | 251     | 226     | 203                 | 184    | 166       | 151    | 137                 | 125    | 113    |
|      | LRFD, øW                         | 691   | 603                 | 530     | 468               | 415                 | 370                 | 330     | 296     | 265                 | 239    | 215       | 194    | 175                 | 158    | 143    |
|      | L/360                            | -     | -                   | -       | -                 | -                   | -                   | -       | -       | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | Diaph | iragm S             | Shear C | apacity           | , φS <sub>n</sub> ( | (plf / ft)          | 36/4    | Attach  | ment P              | attern |           |        |                     |        |        |
| 22   | Arc Spot Weld 1/2" Effective Dia | 3839  | 3813                | 3790    | 3781              | 3762                | 3745                | 3729    | 3715    | 3702                | 3698   | 3687      | 3677   | 3667                | 3658   | 3649   |
|      | PAF Base Steel ≥ .25"            | 3649  | 3635                | 3622    | 3621              | 3610                | 3600                | 3592    | 3583    | 3576                | 3577   | 3571      | 3564   | 3559                | 3553   | 3548   |
|      | PAF Base Steel ≥ 0.125"          | 3634  | 3621                | 3609    | 3609              | 3598                | 3589                | 3581    | 3573    | 3566                | 3568   | 3561      | 3556   | 3550                | 3545   | 3541   |
|      | #12 Screw Base Steel ≥ .0385"    | 3621  | 3608                | 3597    | 3597              | 3587                | 3579                | 3571    | 3564    | 3557                | 3559   | 3553      | 3548   | 3542                | 3538   | 3533   |
|      | Concrete + Deck =                | 62.2  | psf                 |         | l <sub>ar</sub> = | 78.7                | in⁴/ft              | ASD     | 1       | M <sub>no</sub> /Ω= | 48.0   | kip-in/fl | t      | V <sub>n</sub> /Ω = | 4.14   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 154.9 | in <sup>4</sup> /ft |         | l <sub>u</sub> =  | 231.1               | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 73.5   | kip-in/fl |        | φ V <sub>n</sub> =  | 6.01   | kip/ft |

| Gage | Vertical Load Span (ft-in)       | 8'-0"   | 8'-6"               | 9'-0"    | 9'-6"             | 10'-0"          | 10'-6"              | 11'-0"  | 11'-6" | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|---------|---------------------|----------|-------------------|-----------------|---------------------|---------|--------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS      | SD & LF             | RFD - Av | vailable          | Super           | impose              | ed Load | l Capa | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 569     | 498                 | 439      | 390               | 347             | 310                 | 279     | 251    | 227                 | 205    | 186       | 169    | 154                 | 140    | 128    |
|      | LRFD, øW                         | 762     | 666                 | 586      | 519               | 461             | 411                 | 368     | 330    | 297                 | 268    | 242       | 219    | 198                 | 180    | 163    |
|      | L/360                            | -       | -                   | -        | -                 | -               | -                   | -       | -      | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | e Diaph | nragm S             | Shear C  | apacity           | , <b>¢S</b> n ( | plf / ft)           | 36/4    | Attacl | hment P             | attern |           |        |                     |        |        |
| 21   | Arc Spot Weld 1/2" Effective Dia | 3902    | 3872                | 3846     | 3836              | 3815            | 3795                | 3777    | 3761   | 3746                | 3742   | 3729      | 3717   | 3706                | 3695   | 3685   |
|      | PAF Base Steel ≥ .25"            | 3684    | 3667                | 3652     | 3653              | 3640            | 3629                | 3619    | 3609   | 3600                | 3603   | 3595      | 3588   | 3581                | 3575   | 3569   |
|      | PAF Base Steel ≥ 0.125"          | 3667    | 3651                | 3638     | 3639              | 3627            | 3616                | 3606    | 3597   | 3589                | 3592   | 3585      | 3578   | 3572                | 3566   | 3560   |
|      | #12 Screw Base Steel ≥ .0385"    | 3652    | 3638                | 3624     | 3626              | 3615            | 3605                | 3596    | 3587   | 3579                | 3583   | 3576      | 3569   | 3563                | 3558   | 3552   |
|      | Concrete + Deck =                | 62.4    | psf                 |          | l <sub>ar</sub> = | 84.9            | in⁴/ft              | ASD     |        | M <sub>no</sub> /Ω= | 52.5   | kip-in/ft | t      | V <sub>n</sub> /Ω = | 4.80   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 159.4   | in <sup>4</sup> /ft |          | l <sub>u</sub> =  | 233.8           | in <sup>4</sup> /ft | LRFD    |        | φM <sub>no</sub> =  | 80.3   | kip-in/ft | t      | φ V <sub>n</sub> =  | 6.91   | kip/ft |

| Gage | Vertical Load Span (ft-in)       | 8'-0"   | 8'-6"               | 9'-0"    | 9'-6"             | 10'-0"                      | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|---------|---------------------|----------|-------------------|-----------------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS      | SD & LF             | RFD - Av | vailable          | Super                       | rimpose             | ed Load | l Capad | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 618     | 542                 | 478      | 424               | 378                         | 339                 | 305     | 275     | 249                 | 225    | 205       | 187    | 170                 | 155    | 142    |
|      | LRFD, øW                         | 829     | 726                 | 639      | 566               | 504                         | 450                 | 403     | 362     | 327                 | 295    | 267       | 242    | 220                 | 200    | 182    |
|      | L/360                            | -       | -                   | -        | -                 | -                           | -                   | -       | -       | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | e Diaph | nragm S             | Shear C  | apacity           | , <b>¢</b> S <sub>n</sub> ( | (plf / ft)          | 36/4    | Attach  | ment P              | attern |           |        |                     |        |        |
| 20   | Arc Spot Weld 1/2" Effective Dia | 3949    | 3916                | 3887     | 3878              | 3854                        | 3832                | 3812    | 3794    | 3778                | 3775   | 3760      | 3747   | 3735                | 3723   | 3712   |
|      | PAF Base Steel ≥ .25"            | 3710    | 3691                | 3675     | 3677              | 3663                        | 3650                | 3639    | 3628    | 3619                | 3622   | 3614      | 3606   | 3598                | 3591   | 3585   |
|      | PAF Base Steel ≥ 0.125"          | 3692    | 3674                | 3659     | 3662              | 3648                        | 3636                | 3626    | 3616    | 3607                | 3611   | 3602      | 3595   | 3588                | 3581   | 3575   |
|      | #12 Screw Base Steel ≥ .0385"    | 3676    | 3660                | 3645     | 3649              | 3636                        | 3625                | 3614    | 3605    | 3596                | 3601   | 3593      | 3586   | 3579                | 3573   | 3567   |
|      | Concrete + Deck =                | 62.5    | psf                 |          | l <sub>er</sub> = | 90.6                        | in⁴/ft              | ASD     | 1       | M <sub>no</sub> /Ω= | 56.7   | kip-in/ft |        | V <sub>n</sub> /Ω = | 5.38   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 163.5   | in <sup>4</sup> /ft |          | I <sub>u</sub> =  | 236.4                       | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 86.8   | kip-in/ft |        | φ V <sub>n</sub> =  | 7.71   | kip/ft |

|       | LRFD - Available Diaphrag | m Shear Capacity, øS          | , (plf / ft) for all verti    | cal load spans, WWF           | Size or Area of Stee          | I per foot width              |
|-------|---------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| ŝ     | 3/4" Welded Shear Studs   | 6x6 W1.4xW1.4                 | 6x6 W2.9xW2.9                 | 6x6 W4.0xW4.0                 | 4x4 W4xW4                     | 4x4 W6xW6                     |
| Gage  | 3/4" Welded Shear Studs   | A <sub>s</sub> = 0.028 in*/tt | A <sub>s</sub> = 0.058 in*/tt | A <sub>s</sub> = 0.080 in*/tt | A <sub>s</sub> = 0.120 in*/tt | A <sub>s</sub> = 0.180 in*/tt |
| AII G | 12 in o.c.                | n/a                           | 6030                          | 7020                          | 8820                          | 11520                         |
| ₹     | 24 in o.c.                | n/a                           | 6030                          | 7020                          | 7750                          | 7750                          |
|       | 36 in o.c.                | n/a                           | 5170                          | 5170                          | 5170                          | 5170                          |

www.ascsd.com

| Title Block Line 1<br>You can change this are<br>using the "Settings" mer<br>and then using the "Prin<br>Title Block" selection.<br>Title Block Line 6 | nu item                                           |                |                       |                       |                          | Project<br>Engine<br>Project<br>Project | er:<br>ID:                  |                          |              |          | Printed: 2                  | APR 2020            | , 8:41₽№         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|-----------------------|-----------------------|--------------------------|-----------------------------------------|-----------------------------|--------------------------|--------------|----------|-----------------------------|---------------------|------------------|
| Steel Beam                                                                                                                                             |                                                   |                |                       |                       |                          |                                         | File = C:\L                 |                          |              |          | ty Staff Housin             |                     |                  |
| Lic. # : KW-06090157 - E                                                                                                                               | Educational Ver                                   | sion           |                       | _                     | _                        | _                                       | Licensed L                  |                          |              |          | INC. 1983-202<br>/ERSITY, C |                     |                  |
| DESCRIPTION: Re                                                                                                                                        | esidential - 40                                   | to 45 ft s     | oans                  |                       |                          |                                         |                             |                          |              |          |                             |                     |                  |
| CODE REFER                                                                                                                                             | ENCES                                             |                |                       |                       |                          |                                         |                             | $\prod$                  |              | nc       |                             |                     |                  |
| Calculations per Als                                                                                                                                   |                                                   |                | , CBC 2               | 2016, ASC             | E 7-10                   | 3                                       |                             | 7(8                      |              |          | 5                           | ( )                 |                  |
| Load Combination S                                                                                                                                     |                                                   | -16            |                       |                       |                          |                                         |                             |                          |              |          |                             |                     |                  |
| Material Proper                                                                                                                                        |                                                   |                |                       |                       |                          |                                         |                             |                          |              |          |                             |                     |                  |
|                                                                                                                                                        | oad Resistar<br>eam bracing is o<br>lajor Axis Be | defined as     | or Desig<br>a set spa | In<br>acing over a    | ll spans                 |                                         |                             | Steel Yield<br>Iodulus : | : t          |          | 50.0 ksi<br>00.0 ksi        |                     |                  |
| Unbraced Lengt                                                                                                                                         | ths                                               |                |                       |                       |                          |                                         |                             |                          |              |          |                             |                     |                  |
| First Brace starts at 1                                                                                                                                |                                                   |                |                       | - 10.0 ft             |                          |                                         |                             |                          |              |          |                             |                     |                  |
| Regular spacing of la                                                                                                                                  | teral supports o                                  | on length      | or beam               | = 10.0 ft             |                          |                                         |                             |                          |              |          |                             |                     |                  |
|                                                                                                                                                        |                                                   |                |                       |                       |                          |                                         |                             |                          |              |          |                             |                     |                  |
| *                                                                                                                                                      | ~                                                 | ¢              |                       |                       | D(1.26) L(0              | ).72)                                   | ~                           |                          | 4            |          | ~                           |                     |                  |
|                                                                                                                                                        | ~<br>×                                            |                |                       |                       | ^<br>×                   |                                         | Ŷ                           |                          |              |          | ×                           |                     |                  |
|                                                                                                                                                        |                                                   |                |                       |                       | W18x13                   | 0                                       |                             |                          |              |          |                             |                     |                  |
| L                                                                                                                                                      |                                                   |                |                       |                       | Span = 45.               | 20 ft                                   |                             |                          |              |          |                             |                     | 1                |
| -                                                                                                                                                      |                                                   |                |                       |                       |                          |                                         |                             |                          |              |          |                             |                     | 1                |
| Applied Loads                                                                                                                                          |                                                   |                |                       |                       |                          | Se                                      | rvice loads                 | entered. L               | .oad F       | actors v | vill be app                 | lied for ca         | alculatior       |
| Beam self weight ca                                                                                                                                    | alculated and ad                                  | ded to loa     | dina                  |                       |                          |                                         |                             |                          |              |          |                             |                     |                  |
|                                                                                                                                                        | D = 0.070, L =                                    |                |                       | ry Width =            | 18.0 ft, (Typic          | al Residen                              | tial Floor)                 |                          |              |          |                             |                     |                  |
|                                                                                                                                                        |                                                   |                |                       |                       |                          |                                         |                             |                          |              | _        |                             |                     |                  |
| DESIGN SUMM                                                                                                                                            |                                                   |                |                       |                       |                          |                                         |                             |                          |              |          | De                          | sign N.(            |                  |
| Maximum Bendin<br>Section used for t                                                                                                                   |                                                   | 0 =            |                       | 0.662 :<br>V18x130    | 1 Max                    |                                         | near Stres                  |                          | =            |          | v                           | 0.164<br>V18x13     |                  |
|                                                                                                                                                        | Applied                                           |                |                       | 720.172               |                          |                                         | Vu : Applie                 |                          |              | n C      |                             | 63.732              | 2 K              |
| Load Combination                                                                                                                                       | Phi : Allowable                                   |                |                       | ,087.500<br>20D+1.60L | k-ft                     |                                         | Vn * Phi : .<br>Combination |                          |              |          |                             | 387.930<br>20D+1.60 |                  |
| Location of maxim                                                                                                                                      | um on span                                        |                | , <u> </u>            | 2007-1.002<br>22.600  |                          |                                         | on of maxim                 |                          | n            |          | - +1.4                      | 0.00                |                  |
| Span # where max                                                                                                                                       |                                                   |                |                       | Span # 1              |                          | Span ‡                                  | # where ma                  | ximum occ                | urs          |          |                             | Span # 1            |                  |
| Maximum Deflect<br>Max Downward T                                                                                                                      |                                                   | ction          |                       | 0 952                 | in Ratio =               | 569 >=                                  | =360                        |                          |              |          |                             |                     |                  |
| Max Upward Trar                                                                                                                                        | nsient Deflectio                                  | n              |                       | 0.000                 | in Ratio =               | 0 <                                     | 360.0                       |                          |              |          |                             |                     |                  |
| Max Downward T<br>Max Upward Tota                                                                                                                      |                                                   |                |                       |                       | in Ratio =<br>in Ratio = | 194 < <u>2</u><br>0 <2                  | 240.0<br>240.0              |                          |              |          |                             |                     |                  |
| Maximum Force                                                                                                                                          | e & Stroce                                        | os for l       | o ad C                | ombinat               | lione                    |                                         |                             |                          |              |          |                             |                     |                  |
| Load Combination                                                                                                                                       |                                                   | Max Stress     |                       | ombina                |                          | ummary of N                             | Noment Value                | es                       |              |          | Summ                        | ary of Shea         | ar Values        |
| Segment Length                                                                                                                                         | Span #                                            | М              | V                     | max Mu +              | max Mu -                 | Mu Max                                  | Mnx                         | Phi*Mnx                  | Cb           | Rm       | VuMax                       | Vnx                 | Phi*Vnx          |
| +1.40D<br>Dsgn. L = 9.94 ft                                                                                                                            | 1                                                 | 0.314          | 0.113                 | 341.12                |                          | 2/1 10                                  | 1.208.33                    | 1 007 50                 | 1.56         | 1.00     | 12 00                       | 387.93              | 387.93           |
| Dsgn. L = 9.94 ft                                                                                                                                      | ma                                                | 0.450          | 0.063                 | 489.81                | 341.12                   | 341.12<br>489.81                        | 1,208.33                    | 1,087.50<br>1,087.50     | 1.10         | 1.00     | 43.98<br>24.63              | 387.93              | 387.93           |
| Dsgn. L = 10.07 ft<br>Dsgn. L = 9.94 ft                                                                                                                |                                                   | 0.457          | 0.037                 | 496.97                | 444.25 205.59            | 496.97<br>444.25                        | 1,208.33                    | 1,087.50                 | 1.01<br>1.21 |          | 14.32<br>33.68              | 387.93<br>387.93    | 387.93<br>387.93 |
| Dsgn. L = 5.29 ft                                                                                                                                      | 1                                                 | 0.409          | 0.007                 | 205.59                | 200.09                   | 444.25<br>205.59                        | 1,208.33                    | 1,087.50                 | 1.58         |          | 43.98                       | 387.93 <            | 387.93           |
| +1.20D+1.60L<br>Dsgn. L = 9.94 ft                                                                                                                      | 1                                                 | 0 /55          | 0 16/                 | 494.33                |                          | 494.33                                  | 1,208.33                    | 1,087.50                 | 1.56         | 1.00     | 63.73                       | 387.93              | 387.93           |
| Dsgn. L = $9.94 \text{ ft}$<br>Dsgn. L = $9.94 \text{ ft}$                                                                                             | 1                                                 | 0.455<br>0.653 | 0.164<br>0.092        | 494.33<br>709.80      | 494.33                   | 494.33<br>709.80                        | 1,208.33                    | 1,087.50                 | 1.10         |          | 35.69                       | 387.93<br>387.93    | 387.93<br>387.93 |
| Dsgn. L = 10.07 ft<br>Dsgn. L = 9.94 ft                                                                                                                | 1<br>1                                            | 0.662<br>0.592 | 0.054<br>0.126        | 720.17<br>643.77      | 643.77<br>297.92         | 720.17<br>643.77                        | 1,208.33<br>1,208.33        | 1,087.50<br>1,087.50     | 1.01<br>1.21 |          | 20.76<br>48.80              | 387.93<br>387.93    | 387.93<br>387.93 |

1

1

1

1

1

1

Dsgn. L = 5.29 ft

Dsgn. L = 9.94 ft Dsgn. L = 9.94 ft

Dsgn. L = 10.07 ft

Dsgn. L = 9.94 ft

Dsgn. L = 9.94 ft

Dsgn. L = 5.29 ft +1.20D

+1.20D+L

0.274

0.385

0.553

0.561

0.501

0.232

0.269

0.164

0.139

0.078

0.045

0.107

0.139

0.097

297.92

418.60

601.07

609.85

545.15

252.28

292.39

418.60

545.15

252.28

297.92

418.60

601.07

609.85

545.15

252.28

292.39

1,208.33

1,208.33

1,208.33

1,208.33 1,208.33

1,208.33

1,208.33

1,087.50

1,087.50

1,087.50

1,087.50

1,087.50

1,087.50

1.58 1.00

1.56 1.00

1.10 1.00

1.01 1.00

1.21 1.00

1.58 1.00

1,087.50 1.56 1.00

63.73

53.97

30.22

17.58

41.32

53.97

37.70

387.93

387.93

387.93

387.93

387.93

387.93

387.93

387.93

387.93

387.93

387.93

387.93

387.93

387.93

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

Lic. # : KW-06090157 - Educational Version

DESCRIPTION: Residential - 40 to 45 ft spans

**Steel Beam** 

|              | Printed: 2 APR 2020, 8:41PN                                             |
|--------------|-------------------------------------------------------------------------|
|              | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 |
|              | Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24           |
|              | Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING               |
|              |                                                                         |
| _            |                                                                         |
| Summary of I | Noment Values Summary of Shear Values                                   |

| Load Combination  |            | Max Stree | Ration |          |              | Summary of M    | Annont Value |                 |           |      | Summ                 | ary of Shea | r Values |
|-------------------|------------|-----------|--------|----------|--------------|-----------------|--------------|-----------------|-----------|------|----------------------|-------------|----------|
|                   |            |           |        |          |              |                 |              | 11/0            |           | 4    |                      | $ \land $   | V        |
| Segment Leng      | gth Span # |           | V      | max Mu + | max Mu -     | Mu Max          | Mnx          | Phi*Mnx         | Ċb        | Rm   | VuMax                | Vnx         | Phi*Vnx  |
| Dsgn. L = 9.94    | 1 ft1      | 0.386     | 0.054  | 419.84   | 292.39       | 419.84          | 1,208.33     | 1,087.50        | 1.10      | 1.00 | 21.11                | 387.93      | 387.93   |
| Dsgn. L = 10.0    | 7 ft 1     | 0.392     | 0.032  | 425.97   | 380.78       | 425.97          | 1,208.33     | 1,087.50        | 1.01      | 1.00 | 12.28                | 387.93      | 387.93   |
| Dsgn. L = 9.94    | 4 ft 1     | 0.350     | 0.074  | 380.78   | 176.22       | 380.78          | 1,208.33     | 1,087.50        | 1.21      | 1.00 | 28.86                | 387.93      | 387.93   |
| Dsgn. L = 5.29    | 9ft 1      | 0.162     | 0.097  | 176.22   |              | 176.22          | 1,208.33     | 1,087.50        | 1.58      | 1.00 | 37.70                | 387.93      | 387.93   |
| +0.90D            |            |           |        |          |              |                 |              |                 |           |      |                      |             |          |
| Dsgn. L = 9.94    | 4 ft 1     | 0.202     | 0.073  | 219.29   |              | 219.29          | 1,208.33     | 1,087.50        | 1.56      | 1.00 | 28.27                | 387.93      | 387.93   |
| Dsgn. L = 9.94    | 4 ft 1     | 0.290     | 0.041  | 314.88   | 219.29       | 314.88          | 1,208.33     | 1,087.50        | 1.10      | 1.00 | 15.83                | 387.93      | 387.93   |
| Dsgn. L = 10.0    | 7 ft 1     | 0.294     | 0.024  | 319.48   | 285.59       | 319.48          | 1,208.33     | 1,087.50        | 1.01      | 1.00 | 9.21                 | 387.93      | 387.93   |
| Dsgn. L = 9.94    | 4ft 1      | 0.263     | 0.056  | 285.59   | 132.16       | 285.59          | 1,208.33     | 1,087.50        | 1.21      | 1.00 | 21.65                | 387.93      | 387.93   |
| Dsgn. L = 5.29    | Əft 1      | 0.122     | 0.073  | 132.16   |              | 132.16          | 1,208.33     | 1,087.50        | 1.58      | 1.00 | 28.27                | 387.93      | 387.93   |
| +1.40D+L          |            |           |        |          |              |                 |              |                 |           |      |                      |             |          |
| Dsgn. L = 9.94    | 4 ft 1     | 0.430     | 0.155  | 467.33   |              | 467.33          | 1,208.33     | 1,087.50        | 1.56      | 1.00 | 60.25                | 387.93      | 387.93   |
| Dsgn. L = 9.94    | 4 ft 1     | 0.617     | 0.087  | 671.04   | 467.33       | 671.04          | 1,208.33     | 1,087.50        | 1.10      | 1.00 | 33.74                | 387.93      | 387.93   |
| Dsgn. L = 10.0    | 7 ft 1     | 0.626     | 0.051  | 680.84   | 608.61       | 680.84          | 1,208.33     | 1,087.50        | 1.01      | 1.00 | 19.62                | 387.93      | 387.93   |
| Dsgn. L = 9.94    | 4 ft 1     | 0.560     | 0.119  | 608.61   | 281.65       | 608.61          | 1,208.33     | 1,087.50        | 1.21      | 1.00 | 46.14                | 387.93      | 387.93   |
| Dsgn. L = 5.29    |            | 0.259     | 0.155  | 281.65   |              | 281.65          | 1,208.33     | 1,087.50        | 1.58      | 1.00 | 60.25                | 387.93      | 387.93   |
| +0.70D            |            | 1917      |        | 211      |              | $\leq (\Delta)$ |              | $\bigcirc$ )] [ | $/\Delta$ |      | $  ( \cap )\rangle $ | V A V 7 ( 4 |          |
| Dsgn. L = 9.94    | 4 ft 1     | 0.157     | 0.057  | 170.56   | $\mathbb{C}$ | 170.56          | 1,208.33     | 1,087.50        | 1.56      | 1.00 | 21.99                | 387.93      | 387.93   |
| Dsgn. L = 9.94    |            | 0.225     | 0.032  | 244.91   | 170.56       | 244.91          | 1,208.33     | 1,087.50        | 1.10      | 1.00 | 12.31                | 387.93      | 387.93   |
| Dsgn. L = 10.0    | 7 ft 1     | 0.228     | 0.018  | 248.48   | 222.12       | 248.48          | 1,208.33     | 1,087.50        | 1.01      | 1.00 | 7.16                 | 387.93      | 387.93   |
| Dsgn. L = 9.94    | 4 ft 1     | 0.204     | 0.043  | 222.12   | 102.79       | 222.12          | 1,208.33     | 1,087.50        | 1.21      | 1.00 | 16.84                | 387.93      | 387.93   |
| Dsgn. L = 5.29    | 9ft 1      | 0.095     | 0.057  | 102.79   |              | 102.79          | 1,208.33     | 1,087.50        | 1.58      | 1.00 | 21.99                | 387.93      | 387.93   |
| <b>Overall Ma</b> | ximum Defl | ections   |        |          |              |                 |              |                 |           |      |                      |             |          |

| Load Combination   | Span      | Max. "-" Defl | Location in Span | Load Combination          | Max. "+" Defl Location in Span |
|--------------------|-----------|---------------|------------------|---------------------------|--------------------------------|
| +D+L               | 1         | 2.7904        | 22.729           |                           | 0.0000 0.000                   |
| Vertical Reactions |           |               | Support          | notation : Far left is #* | Values in KIPS                 |
| Load Combination   | Support 1 | Support 2     |                  |                           |                                |
| Overall MAXimum    | 47.686    | 47.686        |                  |                           |                                |
| Overall MINimum    | 16.272    | 16.272        |                  |                           |                                |
| D Only             | 31.414    | 31.414        |                  |                           |                                |
| +D+L               | 47.686    | 47.686        |                  |                           | VARCIAN                        |
| +D+0.750L          | 43.618    | 43.618        |                  | G                         |                                |
| +0.60D             | 18.848    | 18.848        |                  |                           |                                |
| L Only             | 16.272    | 16.272        |                  |                           |                                |
|                    |           |               |                  |                           |                                |

# Commercial Use Not Allowed

### Pre-Composite Camber Beam Design (Residential - 40 to 45.2 ft spans)

Design Per AISC 360-16

| Material Properties | i                |              |                 | Section Propertie | es      |      |
|---------------------|------------------|--------------|-----------------|-------------------|---------|------|
| G                   | = 11200          | ksi          |                 | Designation =     | W18X130 |      |
| E                   | = 29000          | ksi          |                 | Beamweight =      | 130     | plf  |
| Fy                  | = 50             | ksi          |                 | Area =            | 38.3    | in^2 |
| φb                  | = 0.9            |              |                 | Depth =           | 19.3    | in   |
| φν                  | = 0.9            |              |                 | bf =              | 11.2    | in   |
| Cb                  | = 1              |              |                 | tw =              | 0.67    | in   |
| С                   | = 1              |              |                 | tw/2=             | 3/8     | in   |
|                     |                  |              |                 | tf =              | 1.2     | in   |
| Stud Properties     |                  |              |                 | k =               | 1.6     | in   |
| Fu                  | = 60             | ksi          |                 | bf/2tf=           | 4.65    |      |
|                     |                  |              |                 | h/tw=             | 23.9    |      |
| Type of Constructi  | on               |              |                 | Ix =              | 2460    | in^4 |
| Туре                | = IIIA           | (Assumption: | Ordinary)       | Zx =              | 290     | in^3 |
| Fire Rating         | = 1              | hour         |                 | Sx =              | 256     | in^3 |
| Type of Concrete    | = NWC            |              |                 | rx =              | 8.03    | in   |
|                     |                  |              |                 | ly =              | 278     | in^4 |
| Beam Data           |                  |              |                 | Zy =              | 76.7    | in^3 |
| Trib. Width         | = 18.0           | ft           |                 | Sy =              | 49.9    | in^3 |
| Beam Length         | = 45.2           | ft           |                 | ry =              | 2.7     | in   |
| Unbraced Length     | = 10.0           | ft           |                 | J =               | 14.5    | in^4 |
| Fcr                 | = 227            | ksi          |                 | Cw =              | 22700   | in^6 |
|                     |                  |              |                 | rts =             | 3.13    | in   |
| Total Dead Load     |                  |              |                 | ho =              | 18.1    | in   |
| Typical Re          | esidential Floor | = 70.0       | psf             |                   |         |      |
| Concrete & Metal    | Deck Gage 20     | = 62.5       | psf             |                   |         |      |
| Bea                 | am Self-Weight   | = 7.2        | psf             |                   |         |      |
|                     |                  | 139.7        | psf             |                   |         |      |
|                     |                  |              |                 |                   |         |      |
| Total Live Load     |                  |              |                 |                   |         |      |
| Typical Re          | esidential Floor | = 40.0       | psf             |                   |         |      |
|                     |                  | 40.0         | psf             |                   |         |      |
|                     |                  |              |                 |                   |         |      |
| Deflection          |                  |              |                 |                   |         |      |
| ΔD                  | = 3.31           | in           |                 |                   |         |      |
|                     |                  |              |                 |                   |         |      |
| Round Camber Dow    |                  |              |                 | ,                 |         |      |
| Use                 | e: 3.25          | in           | (Req'd Pre-Camb | er)               |         |      |

#### Return to TABLE OF CONTENTS

#### 2.4 **3WxH-36 Composite Deck** 6<sup>1</sup>/<sub>2</sub>" Total Slab Depth



Normal Weight Concrete (145 pcf)

Concrete Volume 1.543yd3/100ft2

1 Hour Fire Rating



#### 3WxH-36 6 1/2 " Slab Depth, 145 pcf NWC

|                       | Gage | Single   | Double   | Triple   | Gage   | Single   | Double   | Triple   |
|-----------------------|------|----------|----------|----------|--------|----------|----------|----------|
| Maximum Unshored Span | 22   | 8' - 11" | 9" - 9"  | 10" - 1" | 19     | 11' - 3" | 12" - 4" | 12' - 9" |
|                       | 21   | 9' - 8"  | 10' - 5" | 10' - 9" | <br>18 | 11' - 8" | 13" - 5" | 13' - 8" |
|                       | 20   | 10' - 5" | 11' - 1" | 11' - 5" | 16     | 12' - 3" | 15' - 0" | 14' - 5" |

| Gage | Vertical Load Span (ft-in)       | 8'-0" | 8'-6"               | 9'-0"   | 9'-6"             | 10'-0"              | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|-------|---------------------|---------|-------------------|---------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS    | SD & LF             | RFD - A | vailable          | e Super             | rimpose             | ed Load | d Capao | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 516   | 452                 | 398     | 352               | 313                 | 280                 | 251     | 226     | 203                 | 184    | 166       | 151    | 137                 | 125    | 113    |
|      | LRFD, øW                         | 691   | 603                 | 530     | 468               | 415                 | 370                 | 330     | 296     | 265                 | 239    | 215       | 194    | 175                 | 158    | 143    |
|      | L/360                            | -     | -                   | -       | -                 | -                   | -                   | -       | -       | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | Diaph | iragm S             | Shear C | apacity           | , φS <sub>n</sub> ( | (plf / ft)          | 36/4    | Attach  | ment P              | attern |           |        |                     |        |        |
| 22   | Arc Spot Weld 1/2" Effective Dia | 3839  | 3813                | 3790    | 3781              | 3762                | 3745                | 3729    | 3715    | 3702                | 3698   | 3687      | 3677   | 3667                | 3658   | 3649   |
|      | PAF Base Steel ≥ .25"            | 3649  | 3635                | 3622    | 3621              | 3610                | 3600                | 3592    | 3583    | 3576                | 3577   | 3571      | 3564   | 3559                | 3553   | 3548   |
|      | PAF Base Steel ≥ 0.125"          | 3634  | 3621                | 3609    | 3609              | 3598                | 3589                | 3581    | 3573    | 3566                | 3568   | 3561      | 3556   | 3550                | 3545   | 3541   |
|      | #12 Screw Base Steel ≥ .0385"    | 3621  | 3608                | 3597    | 3597              | 3587                | 3579                | 3571    | 3564    | 3557                | 3559   | 3553      | 3548   | 3542                | 3538   | 3533   |
|      | Concrete + Deck =                | 62.2  | psf                 |         | l <sub>ar</sub> = | 78.7                | in⁴/ft              | ASD     | 1       | M <sub>no</sub> /Ω= | 48.0   | kip-in/fl | t      | V <sub>n</sub> /Ω = | 4.14   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 154.9 | in <sup>4</sup> /ft |         | l <sub>u</sub> =  | 231.1               | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 73.5   | kip-in/f  | t      | φ V <sub>n</sub> =  | 6.01   | kip/ft |

| Gage | Vertical Load Span (ft-in)                                 | 8'-0"   | 8'-6"               | 9'-0"   | 9'-6"             | 10'-0"          | 10'-6"              | 11'-0" | 11'-6" | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14'-0"             | 14'-6" | 15'-0" |
|------|------------------------------------------------------------|---------|---------------------|---------|-------------------|-----------------|---------------------|--------|--------|---------------------|--------|-----------|--------|--------------------|--------|--------|
|      | ASD & LRFD - Available Superimposed Load Capacity, W (psf) |         |                     |         |                   |                 |                     |        |        |                     |        |           |        |                    |        |        |
|      | ASD, W/Ω                                                   | 569     | 498                 | 439     | 390               | 347             | 310                 | 279    | 251    | 227                 | 205    | 186       | 169    | 154                | 140    | 128    |
|      | LRFD, øW                                                   | 762     | 666                 | 586     | 519               | 461             | 411                 | 368    | 330    | 297                 | 268    | 242       | 219    | 198                | 180    | 163    |
|      | L/360                                                      | -       | -                   | -       | -                 | -               | -                   | -      | -      | -                   | -      | -         | -      | -                  | -      | -      |
|      | LRFD - Available                                           | e Diaph | nragm S             | Shear C | apacity           | , <b>¢S</b> n ( | plf / ft)           | 36/4   | Attacl | hment P             | attern |           |        |                    |        |        |
| 21   | Arc Spot Weld 1/2" Effective Dia                           | 3902    | 3872                | 3846    | 3836              | 3815            | 3795                | 3777   | 3761   | 3746                | 3742   | 3729      | 3717   | 3706               | 3695   | 3685   |
|      | PAF Base Steel ≥ .25"                                      | 3684    | 3667                | 3652    | 3653              | 3640            | 3629                | 3619   | 3609   | 3600                | 3603   | 3595      | 3588   | 3581               | 3575   | 3569   |
|      | PAF Base Steel ≥ 0.125"                                    | 3667    | 3651                | 3638    | 3639              | 3627            | 3616                | 3606   | 3597   | 3589                | 3592   | 3585      | 3578   | 3572               | 3566   | 3560   |
|      | #12 Screw Base Steel ≥ .0385"                              | 3652    | 3638                | 3624    | 3626              | 3615            | 3605                | 3596   | 3587   | 3579                | 3583   | 3576      | 3569   | 3563               | 3558   | 3552   |
|      | Concrete + Deck =                                          | 62.4    | psf                 |         | l <sub>ar</sub> = | 84.9            | in⁴/ft              | ASD    |        | M <sub>no</sub> /Ω= | 52.5   | kip-in/ft | t      | $V_n/\Omega =$     | 4.80   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$                                       | 159.4   | in <sup>4</sup> /ft |         | l <sub>u</sub> =  | 233.8           | in <sup>4</sup> /ft | LRFD   |        | φM <sub>no</sub> =  | 80.3   | kip-in/ft | t      | φ V <sub>n</sub> = | 6.91   | kip/ft |

| Gage | Vertical Load Span (ft-in)       | 8'-0"   | 8'-6"               | 9'-0"    | 9'-6"             | 10'-0"                      | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|---------|---------------------|----------|-------------------|-----------------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS      | SD & LF             | RFD - Av | vailable          | Super                       | rimpose             | ed Load | l Capad | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 618     | 542                 | 478      | 424               | 378                         | 339                 | 305     | 275     | 249                 | 225    | 205       | 187    | 170                 | 155    | 142    |
|      | LRFD, øW                         | 829     | 726                 | 639      | 566               | 504                         | 450                 | 403     | 362     | 327                 | 295    | 267       | 242    | 220                 | 200    | 182    |
|      | L/360                            | -       | -                   | -        | -                 | -                           | -                   | -       | -       | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | e Diaph | nragm S             | Shear C  | apacity           | , <b>φ</b> S <sub>n</sub> ( | (plf / ft)          | 36/4    | Attach  | ment P              | attern |           |        |                     |        |        |
| 20   | Arc Spot Weld 1/2" Effective Dia | 3949    | 3916                | 3887     | 3878              | 3854                        | 3832                | 3812    | 3794    | 3778                | 3775   | 3760      | 3747   | 3735                | 3723   | 3712   |
|      | PAF Base Steel ≥ .25"            | 3710    | 3691                | 3675     | 3677              | 3663                        | 3650                | 3639    | 3628    | 3619                | 3622   | 3614      | 3606   | 3598                | 3591   | 3585   |
|      | PAF Base Steel ≥ 0.125"          | 3692    | 3674                | 3659     | 3662              | 3648                        | 3636                | 3626    | 3616    | 3607                | 3611   | 3602      | 3595   | 3588                | 3581   | 3575   |
|      | #12 Screw Base Steel ≥ .0385"    | 3676    | 3660                | 3645     | 3649              | 3636                        | 3625                | 3614    | 3605    | 3596                | 3601   | 3593      | 3586   | 3579                | 3573   | 3567   |
|      | Concrete + Deck =                | 62.5    | psf                 |          | l <sub>er</sub> = | 90.6                        | in⁴/ft              | ASD     | 1       | M <sub>no</sub> /Ω= | 56.7   | kip-in/ft |        | V <sub>n</sub> /Ω = | 5.38   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 163.5   | in <sup>4</sup> /ft |          | l <sub>u</sub> =  | 236.4                       | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 86.8   | kip-in/ft |        | φ V <sub>n</sub> =  | 7.71   | kip/ft |

|       | LRFD - Available Diaphrag | m Shear Capacity, øS          | , (plf / ft) for all verti    | cal load spans, WWF           | Size or Area of Stee          | I per foot width              |
|-------|---------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| ŝ     | 3/4" Welded Shear Studs   | 6x6 W1.4xW1.4                 | 6x6 W2.9xW2.9                 | 6x6 W4.0xW4.0                 | 4x4 W4xW4                     | 4x4 W6xW6                     |
| Gage  | 3/4" weided Shear Studs   | A <sub>s</sub> = 0.028 in*/tt | A <sub>s</sub> = 0.058 in*/tt | A <sub>s</sub> = 0.080 in*/tt | A <sub>s</sub> = 0.120 in*/tt | A <sub>s</sub> = 0.180 in*/tt |
| AII G | 12 in o.c.                | n/a                           | 6030                          | 7020                          | 8820                          | 11520                         |
| ₹     | 24 in o.c.                | n/a                           | 6030                          | 7020                          | 7750                          | 7750                          |
|       | 36 in o.c.                | n/a                           | 5170                          | 5170                          | 5170                          | 5170                          |

www.ascsd.com

| Title Block Line 6                                                                                                                                   | Printed: 31 MAR 2020, 2:15PM                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Steel Beam                                                                                                                                           | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 .<br>Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 |
| Lic. # : KW-06090157 - Educational Version                                                                                                           | Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING                                                                                  |
| DESCRIPTION: Residential (corridor) - 25.5 ft & below spans                                                                                          |                                                                                                                                            |
| CODE REFERENCES                                                                                                                                      |                                                                                                                                            |
| Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10<br>Load Combination Set : ASCE 7-16                                                      | VEISIOII                                                                                                                                   |
| Material Properties                                                                                                                                  |                                                                                                                                            |
| Analysis Method : Load Resistance Factor DesignBeam Bracing :Beam bracing is defined as a set spacing over all spansBending Axis :Major Axis Bending | Fy : Steel Yield : 50.0 ksi<br>E: Modulus : 29,000.0 ksi                                                                                   |
| Unbraced Lengths                                                                                                                                     |                                                                                                                                            |
| First Brace starts at 10.0 ft from Left-Most support<br>Regular spacing of lateral supports on length of beam = 10.0 ft                              |                                                                                                                                            |
|                                                                                                                                                      |                                                                                                                                            |
| <u>له (1.4) لر(1.2)</u>                                                                                                                              | ÷                                                                                                                                          |
| × ×                                                                                                                                                  | × × ×                                                                                                                                      |
| W14x68                                                                                                                                               |                                                                                                                                            |
| Span = 25.50 ft                                                                                                                                      |                                                                                                                                            |
| •                                                                                                                                                    |                                                                                                                                            |
|                                                                                                                                                      |                                                                                                                                            |

#### **Applied Loads**

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Uniform Load : D = 0.070, L = 0.060 ksf, Tributary Width = 20.0 ft, (Typical Residential Floor (Corridor))

| DESIGN SUMMARY                                                                                                                                             |                                                                      |                                      | Design OK                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|-------------------------------------|
| Maximum Bending Stress Ratio =                                                                                                                             | 0.694 : 1                                                            | Maximum Shear Stress Ratio =         | <b>0.269</b> : 1                    |
| Section used for this span                                                                                                                                 | W14x68                                                               | Section used for this span           | W14x68                              |
| Mu : Applied<br>Mn * Phi : Allowable<br>Load Combination                                                                                                   | 299.245 k-ft<br>431.250 k-ft<br>+1.20D+1.60                          | Vu : Applied<br>Vn * Phi : Allowable | 46.940 k<br>174.30 k<br>+1 20D+1.60 |
| Location of maximum on span                                                                                                                                | 12.750ft                                                             | Location of maximum on span          | 0.000 ft                            |
| Span # where maximum occurs                                                                                                                                | Span # 1                                                             | Span # where maximum occurs          | Span # 1                            |
| Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection | 0.547 in Ratio<br>0.000 in Ratio<br>1.218 in Ratio<br>0.000 in Ratio | = 0 <360.0<br>= 251 >=240.           |                                     |

#### **Maximum Forces & Stresses for Load Combinations**

| Load Combination               |           | Max Stres | ss Ratios |          | S        | ummary of I | Moment Values | S       |      |      | Summ     | ary of Shea | ar Values |
|--------------------------------|-----------|-----------|-----------|----------|----------|-------------|---------------|---------|------|------|----------|-------------|-----------|
| Segment Leng                   | th Span # | М         | V         | max Mu + | max Mu - | Mu Max      | Mnx           | Phi*Mnx | Cb   | Rm   | VuMax    | Vnx         | Phi*Vnx   |
| +1.40D                         |           |           |           |          |          |             |               |         |      |      |          |             |           |
| Dsgn. L = 9.98                 |           | 0.369     | 0.150     | 159.17   |          | 159.17      | 479.17        | 431.25  | 1.42 |      | 26.20    | 174.30      | 174.30    |
| Dsgn. L = 9.98                 |           | 0.387     | 0.085     |          | 113.59   |             | 479.17        | 431.25  | 1.04 |      | 14.82    | 174.30      | 174.30    |
| Dsgn. L = 5.54<br>+1.20D+1.60L | ft 1      | 0.263     | 0.150     | 113.59   | US       | 113.59      | 479.17        | 431.25  | 1.55 | 1.00 | 26.20    | 174.30      | 174.30    |
| Dsgn. L = 9.98                 | ft 1      | 0.661     | 0.269     | 285.14   |          | 285.14      | 479.17        | 431.25  | 1.42 | 1.00 | 46.94    | 174.30      | 174.30    |
| Dsgn. L = 9.98                 | ft 1      | 0.694     | 0.152     | 299.25   | 203.48   | 299.25      | 479.17        | 431.25  | 1.04 | 1.00 | 26.55    | 174.30      | 174.30    |
| Dsgn. L = 5.54                 | ft 1      | 0.472     | 0.269     | 203.48   |          | 203.48      | 479.17        | 431.25  | 1.55 | 1.00 | 46.94    | 174.30      | 174.30    |
| +1.20D+L                       |           |           |           |          |          |             |               |         |      |      |          |             |           |
| Dsgn. L = 9.98                 |           | 0.532     | 0.217     | 229.37   |          | 229.37      | 479.17        | 431.25  | 1.42 | 1.00 | 37.76    | 174.30      | 174.30    |
| Dsgn. L = 9.98                 |           | 0.558     | 0.123     | 240.72   | 163.68   | 240.72      | 479.17        | 431.25  | 1.04 | 1.00 | 21.36    | 174.30      | 174.30    |
| Dsgn. L = 5.54                 | ft 1      | 0.380     | 0.217     | 163.68   |          | 163.68      | 479.17        | 431.25  | 1.55 | 1.00 | 37.76    | 174.30      | 174.30    |
| +1.20D                         |           |           |           |          |          |             |               |         |      |      |          |             |           |
| Dsgn. L = 9.98                 |           | 0.316     | 0.129     | 136.43   |          | 136.43      | 479.17        | 431.25  | 1.42 | 1.00 | 22.46    | 174.30      | 174.30    |
| Dsgn. L = 9.98                 |           | 0.332     | 0.073     | 143.19   | 97.36    | 143.19      | 479.17        | 431.25  | 1.04 | 1.00 | 12.71    | 174.30      | 174.30    |
| Dsgn. L = 5.54                 | ft 1      | 0.226     | 0.129     | 97.36    |          | 97.36       | 479.17        | 431.25  | 1.55 | 1.00 | 22.46    | 174.30      | 174.30    |
| +0.90D                         |           |           |           |          |          |             |               |         |      |      |          |             |           |
| Dsgn. L = 9.98                 |           | 0.237     | 0.097     | 102.33   |          | 102.33      | 479.17        | 431.25  |      | 1.00 | 16.85    | 174.30      | 174.30    |
| Dsgn. L = 9.98                 |           | 0.249     | 0.055     | 107.39   | 73.02    | 107.39      | 479.17        | 431.25  | 1.04 | 1.00 | 9.53     | 174.30      | 174.30    |
| Dsgn. L = 5.54                 |           | 0.169     | 0.097     | 73.02    |          | 73.02       | 479.17        | 431.25  | 1.55 | 1.00 | <u> </u> | 174.30      | 174.30    |

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24

Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

#### Steel Beam

L Only

#### Lic. # : KW-06090157 - Educational Version

#### **DESCRIPTION:** Residential (corridor) - 25.5 ft & below spans

15.300

15.300

| Load Combination  |              | Max Stress | Ratios |          |          | Summary of M | loment Value | s       |      |      | Summ  | ary of Shea | r Values |
|-------------------|--------------|------------|--------|----------|----------|--------------|--------------|---------|------|------|-------|-------------|----------|
| Segment Length    | Span #       |            | V      | max Mu + | max Mu - | Mu Max       | Mnx 🗸        | Phi*Mnx | Cb   | Rm   | VuMax | Vnx         | Phi*Vnx  |
| +1.40D+L          | HCHC         | ЛСL        |        |          |          |              |              |         |      |      |       |             |          |
| Dsgn. L = 9.98 ft | 1            | 0.585      | 0.238  | 252.11   |          | 252.11       | 479.17       | 431.25  | 1.42 | 1.00 | 41.50 | 174.30      | 174.30   |
| Dsgn. L = 9.98 ft | 1            | 0.614      | 0.135  | 264.59   | 179.91   | 264.59       | 479.17       | 431.25  | 1.04 | 1.00 | 23.48 | 174.30      | 174.30   |
| Dsgn. L = 5.54 ft | 1            | 0.417      | 0.238  | 179.91   |          | 179.91       | 479.17       | 431.25  | 1.55 | 1.00 | 41.50 | 174.30      | 174.30   |
| +0.70D            |              |            |        |          |          |              |              |         |      |      |       |             |          |
| Dsgn. L = 9.98 ft | 1            | 0.185      | 0.075  | 79.59    |          | 79.59        | 479.17       | 431.25  | 1.42 | 1.00 | 13.10 | 174.30      | 174.30   |
| Dsgn. L = 9.98 ft | 1            | 0.194      | 0.043  | 83.52    | 56.79    | 83.52        | 479.17       | 431.25  | 1.04 | 1.00 | 7.41  | 174.30      | 174.30   |
| Dsgn. L = 5.54 ft | 1            | 0.132      | 0.075  | 56.79    |          | 56.79        | 479.17       | 431.25  | 1.55 | 1.00 | 13.10 | 174.30      | 174.30   |
| Overall Maxir     | num Doflocti | one        |        |          |          |              |              |         |      |      |       |             |          |

#### **Overall Maximum Deflections**

| Load Combination   | Span      | Max. "-" Defl | Location in Span | Load Combination            | Max. "+"      | Defl Location in Span |
|--------------------|-----------|---------------|------------------|-----------------------------|---------------|-----------------------|
| +D+L               | 1         | 1.2178        | 12.823           |                             | 0.0           | 000 0.000             |
| Vertical Reactions |           |               | Support          | t notation : Far left is #1 | Values in KIF | PS                    |
| Load Combination   | Support 1 | Support 2     |                  |                             |               |                       |
| Overall MAXimum    | 34.017    | 34.017        |                  |                             |               |                       |
| Overall MINimum    | 11.230    | 11.230        |                  |                             |               | ())\V/V/( 岩( () )     |
| D Only             | 18.717    | 18.717        |                  |                             |               | 9 4 9 GI              |
| +D+L               | 34.017    | 34.017        |                  |                             |               |                       |
| +D+0.750L          | 30.192    | 30.192        |                  |                             |               |                       |
| +0.60D             | 11.230    | 11.230        |                  |                             |               |                       |

### Educational Version

### Commercial Use Not Allowed

| Title Block Line 1<br>You can change this area<br>using the "Settings" menu item<br>and then using the "Printing &<br>Title Block" selection.                                      | Project Title:<br>Engineer:<br>Project ID:<br>Project Descr:                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Title Block Line 6                                                                                                                                                                 | Printed: 31 MAR 2020, 2:16PM                                                                                                               |
| Steel Beam                                                                                                                                                                         | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 .<br>Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 |
| Lic. # : KW-06090157 - Educational Version                                                                                                                                         | Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING                                                                                  |
| DESCRIPTION: Residential (corridor) - 30 to 37 ft spans                                                                                                                            | _                                                                                                                                          |
| CODE REFERENCES<br>Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10<br>Load Combination Set : ASCE 7-16                                                                 | al Version                                                                                                                                 |
| Material Properties                                                                                                                                                                |                                                                                                                                            |
| Analysis Method : Load Resistance Factor Design<br>Beam Bracing : Beam bracing is defined as a set spacing over all spans<br>Bending Axis : Major Axis Bending<br>Unbraced Lengths | Fy : Steel Yield : 50.0 ksi<br>E: Modulus : 29,000.0 ksi                                                                                   |
| First Brace starts at 10.0 ft from Left-Most support<br>Regular spacing of lateral supports on length of beam = 10.0 ft                                                            |                                                                                                                                            |
| D(1.4) L(1                                                                                                                                                                         | .2)                                                                                                                                        |
| $\overset{\diamond}{\times}$                                                                                                                                                       | × × × ×                                                                                                                                    |
| × W18x115                                                                                                                                                                          | × × ×                                                                                                                                      |
| Span = 37.                                                                                                                                                                         | 0 ft                                                                                                                                       |
| t Copur or.                                                                                                                                                                        |                                                                                                                                            |
| Applied Loads                                                                                                                                                                      | Service loads entered. Load Factors will be applied for calculations.                                                                      |
| Beam self weight calculated and added to loading<br>Uniform Load: D = 0.070,L = 0.060 ksf,Tributary Width = 20.0 ft, (Typical                                                      | Residential Floor (Corridor))                                                                                                              |
|                                                                                                                                                                                    | Design OK                                                                                                                                  |

| DESIGN SUMMANT                    |                |                              | Design OK        |
|-----------------------------------|----------------|------------------------------|------------------|
| Maximum Bending Stress Ratio =    | 0.652:1        | Maximum Shear Stress Ratio = | <b>0.185</b> : 1 |
| Section used for this span        | W18x119        | Section used for this span   | <b>W18x119</b>   |
| Mu : Applied                      | 640.487 k-ft   | Vu : Applied                 | 69.242 k         |
| Mn * Phi : Allowable              | 982.500 k-ft   | Vn * Phi : Allowable         | 373.350 k        |
| Load Combination                  | +1.20D+1.60L   | Load Combination             | +1.20D+1.60L     |
| Location of maximum on span       | 18.500ft       | Location of maximum on span  | 0.000 ft         |
| Span # where maximum occurs       | Span # 1       | Span # where maximum occurs  | Span # 1         |
| Maximum Deflection                |                |                              |                  |
| Max Downward Transient Deflection | 0.800 in Ratio | <b>9</b> = 554 >=360.        |                  |
| Max Upward Transient Deflection   | 0.000 in Ratio | o = 0 <360.0                 |                  |
| Max Downward Total Deflection     | 1.814 in Ratio |                              |                  |
| Max Upward Total Deflection       | 0.000 in Ratio | o = 0 <240.0                 |                  |
|                                   |                |                              |                  |

#### **Maximum Forces & Stresses for Load Combinations**

| Load Combination                        |        | Max Stres      | ss Ratios |                  | Summary of Moment Values |                  |                      |                  |      |      |                | ary of Shea      | r Values         |
|-----------------------------------------|--------|----------------|-----------|------------------|--------------------------|------------------|----------------------|------------------|------|------|----------------|------------------|------------------|
| Segment Length                          | Span # | М              | V         | max Mu +         | max Mu -                 | Mu Max           | Mnx                  | Phi*Mnx          | Cb   | Rm   | VuMax          | Vnx              | Phi*Vnx          |
| +1.40D                                  |        |                |           |                  |                          |                  |                      |                  |      |      |                |                  |                  |
| Dsgn. L = 9.94 ft                       | 1      | 0.291          | 0.105     | 285.95           |                          | 285.95           | 1,091.67             | 982.50           |      | 1.00 | 39.34          | 373.35           | 373.35           |
| Dsgn. L = 10.04 ft                      | 155)   | 0.370          | 0.049     | 363.91           | 285.95                   | 363.91           | 1,091.67             | 982.50           | 1.04 | 1.00 | 18.21          | 373.35           | 373.35           |
| Dsgn. L = 9.94 ft                       |        | 0.368          | 0.065     | 361.59           | 225.31                   | 361.59           | 1,091.67             | 982.50           | 1.11 | 1.00 | 24.28          | 373.35           | 373.35           |
| Dsgn. L = 7.08 ft                       |        | 0.229          | 0.105     | 225.31           | $\bigcirc$ $\bigcirc$    | 225.31           | 1,091.67             | 982.50           | 1.55 | 1.00 | 39.34          | 373.35           | 373.35           |
| +1.20D+1.60L<br>Dsgn. L = 9.94 ft       | 1      | 0.512          | 0.185     | 503.27           |                          | 503.27           | 1,091.67             | 982.50           | 1 50 | 1.00 | 69.24          | 373.35           | 373.35           |
| Dsgn. L = 9.94 ft<br>Dsgn. L = 10.04 ft | 1      | 0.652          | 0.185     | 640.49           | 503.27                   | 640.49           | 1.091.67             | 982.50           | 1.02 | 1.00 | 32.05          | 373.35           | 373.35           |
| Dsgn. L = 9.94 ft                       | 1      | 0.648          | 0.000     | 636.39           | 396.55                   | 636.39           | 1.091.67             | 982.50           |      | 1.00 | 42.73          | 373.35           | 373.35           |
| Dsgn. L = 7.08 ft                       | 1      | 0.404          | 0.185     | 396.55           | 000.00                   | 396.55           | 1,091.67             | 982.50           |      | 1.00 | 69.24          | 373.35           | 373.35           |
| +1.20D+L                                |        |                |           |                  |                          |                  | ,                    |                  |      |      |                |                  |                  |
| Dsgn. L = 9.94 ft                       | 1      | 0.414          | 0.150     | 406.46           |                          | 406.46           | 1,091.67             | 982.50           | 1.52 | 1.00 | 55.92          | 373.35           | 373.35           |
| Dsgn. L = 10.04 ft                      | 1      | 0.526          | 0.069     | 517.28           | 406.46                   | 517.28           | 1,091.67             | 982.50           | 1.04 | 1.00 | 25.88          | 373.35           | 373.35           |
| Dsgn. L = 9.94 ft                       | 1      | 0.523          | 0.092     | 513.97           | 320.26                   | 513.97           | 1,091.67             | 982.50           |      | 1.00 | 34.51          | 373.35           | 373.35           |
| Dsgn. L = 7.08 ft                       | 1      | 0.326          | 0.150     | 320.26           |                          | 320.26           | 1,091.67             | 982.50           | 1.55 | 1.00 | 55.92          | 373.35           | 373.35           |
| +1.20D                                  | 4      | 0.040          | 0 000     | 045 40           |                          | 045 40           | 1 001 07             | 000 50           | 4 50 | 1 00 | 22.20          | 272.25           | 272.25           |
| Dsgn. L = 9.94 ft<br>Dsgn. L = 10.04 ft | 1      | 0.249<br>0.317 | 0.090     | 245.10           | 245 10                   | 245.10<br>311.93 | 1,091.67             | 982.50<br>982.50 | 1.52 | 1.00 | 33.72<br>15.61 | 373.35           | 373.35<br>373.35 |
| Dsgn. L = 10.04 ft<br>Dsgn. L = 9.94 ft |        | 0.317          | 0.042     | 311.93<br>309.93 | 245.10                   | 309.93           | 1,091.67<br>1,091.67 | 982.50           | 1.11 | 1.00 | 20.81          | 373.35<br>373.35 | 373.35           |
| Dsgn. L = 7.08 ft                       |        | 0.197          | 0.090     | 193.12           | 133.12                   | 193.12           | 1,091.67             | 982.50           | 1.55 | 1.00 | 33.72          | 373.35           | 373.35           |
| Dogin E 1.00 It                         |        |                | 0.000     |                  |                          |                  | 1,001.07             | 002.00           |      |      | 3.12           | 0.00             | 010.00           |

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24

Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

#### Steel Beam

L Only

#### Lic. # : KW-06090157 - Educational Version DESCRIPTION: Residential (corridor) - 30 to 37 ft spans

22.200

22.200

| DESCINITION.                           | Residential | (comuor) - 5 |                | ans              |           |                  |              |                  |              |           |                |                  |                  |
|----------------------------------------|-------------|--------------|----------------|------------------|-----------|------------------|--------------|------------------|--------------|-----------|----------------|------------------|------------------|
| Load Combination                       |             | Max Stree    | ss Ratios      |                  |           | Summary of N     | /oment Value | s                |              |           | Summ           | ary of Shea      | r Values         |
| Segment Length                         | Span #      | M            | V              | max Mu +         | max Mu -  | Mu Max           | Mnx          | Phi*Mnx          | Ċb           | Rm        | VuMax          | Vnx              | Phi*Vnx          |
| +0.90D                                 | HCHI        | 9Q           |                | $\bigcirc$       |           | <u>A</u> L       |              |                  | 7 -          | $\sim$    |                |                  |                  |
| Dsgn. L = 9.94 ft                      | 1           | 0.187        | 0.068          | 183.83           |           | 183.83           | 1,091.67     | 982.50           | 1.52         | 1.00      | 25.29          | 373.35           | 373.35           |
| Dsgn. L = 10.04 ft                     | 1           | 0.238        | 0.031          | 233.94           | 183.83    | 233.94           | 1,091.67     | 982.50           | 1.04         | 1.00      | 11.71          | 373.35           | 373.35           |
| Dsgn. L = 9.94 ft                      | 1           | 0.237        | 0.042          | 232.45           | 144.84    | 232.45           | 1,091.67     | 982.50           | 1.11         |           | 15.61          | 373.35           | 373.35           |
| Dsgn. L = 7.08 ft                      | 1           | 0.147        | 0.068          | 144.84           |           | 144.84           | 1,091.67     | 982.50           | 1.55         | 1.00      | 25.29          | 373.35           | 373.35           |
| +1.40D+L                               |             |              |                |                  |           |                  |              |                  |              |           |                |                  |                  |
| Dsgn. L = 9.94 ft                      | 1           | 0.455        | 0.165          | 447.31           |           | 447.31           | 1,091.67     | 982.50           | 1.52         |           | 61.54          | 373.35           | 373.35           |
| Dsgn. L = 10.04 ft                     | 1           | 0.579        | 0.076          | 569.26           | 447.31    | 569.26           | 1,091.67     | 982.50           |              | 1.00      | 28.49          | 373.35           | 373.35           |
| Dsgn. L = 9.94 ft                      | 1           | 0.576        | 0.102          | 565.62           | 352.45    | 565.62           | 1,091.67     | 982.50           | 1.11         |           | 37.98          | 373.35           | 373.35           |
| Dsgn. L = 7.08 ft                      | 1           | 0.359        | 0.165          | 352.45           |           | 352.45           | 1,091.67     | 982.50           | 1.55         | 1.00      | 61.54          | 373.35           | 373.35           |
| +0.70D                                 |             | 0.440        | 0.050          | 440.00           |           | 440.00           | 4 004 07     | 000 50           | 4 50         | 4.00      | 40.07          | 070.05           | 070.05           |
| Dsgn. L = 9.94 ft                      | 1           | 0.146        | 0.053          | 142.98           | 440.00    | 142.98           | 1,091.67     | 982.50           | 1.52         |           | 19.67          | 373.35           | 373.35           |
| Dsgn. L = 10.04 ft                     | 1           | 0.185        | 0.024          | 181.96           | 142.98    | 181.96           | 1,091.67     | 982.50           | 1.04         |           | 9.10           | 373.35           | 373.35           |
| Dsgn. L = 9.94 ft<br>Dsgn. L = 7.08 ft | 1           | 0.184        | 0.033<br>0.053 | 180.79<br>112.66 | 112.66    | 180.79<br>112.66 | 1,091.67     | 982.50<br>982.50 | 1.11<br>1.55 | 1.00      | 12.14<br>19.67 | 373.35<br>373.35 | 373.35<br>373.35 |
|                                        | 1           | 0.115        | 0.055          | 112.00           |           | 112.00           | 1,091.67     | 902.50           | 1.55         | 1.00      | 19.07          | 373.33           | 57 5.55          |
| Overall Maxin                          | num Defle   | ctions       | $\Lambda 16$   |                  |           |                  |              |                  |              |           |                | $\Pi \Pi G$      |                  |
| Load Combination                       |             | Span         | Max. "-" Defl  | Locatio          | n in Span | Load Con         | nbination    | JJL              |              | Max.      | "+" Defl       | Location i       | n Span           |
| +D+L                                   |             | 1            | 1.8136         |                  | 18.606    |                  |              |                  |              |           | 0.0000         | 0.               | .000             |
| Vertical Reac                          | tions       |              |                |                  | Support   | notation : Fa    | r left is #1 |                  | ,            | Values in | KIPS           |                  |                  |
| Load Combination                       |             | Support 1    | Support 2      |                  |           |                  |              |                  |              |           |                |                  |                  |
| Overall MAXimum                        |             | 50.302       | 50.302         |                  |           |                  |              |                  |              |           |                |                  |                  |
| Overall MINimum                        |             | 16.861       | 16.861         |                  |           |                  |              |                  |              |           |                |                  |                  |
| D Only                                 |             | 28.102       | 28,102         |                  |           |                  |              |                  |              |           |                |                  |                  |
| +D+L                                   |             | 50.302       | 50.302         |                  |           |                  |              |                  |              |           |                |                  |                  |
| +D+0.750L                              |             | 44.752       | 44.752         |                  |           |                  |              |                  |              |           |                |                  |                  |
| +0.60D                                 |             | 16.861       | 16.861         |                  |           |                  |              |                  |              |           |                |                  |                  |

Educational Version

## Commercial Use Not Allowed

| Title Block Line 1<br>You can change this area<br>using the "Settings" menu<br>and then using the "Printin<br>Title Block" selection. | ' menu item Project ID:<br>"Printing & Project Descr: |                |                |                      |                        |                      |                           |                                |              |        |                |                |                  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------|----------------|----------------------|------------------------|----------------------|---------------------------|--------------------------------|--------------|--------|----------------|----------------|------------------|
| Title Block Line 6                                                                                                                    |                                                       |                |                |                      |                        |                      |                           |                                |              |        |                | 2 APR 2020     | - , -            |
| Steel Beam                                                                                                                            |                                                       |                |                |                      |                        |                      | File = C:\l               | Jsers\Owner\D<br>Software copy |              |        |                | U 1            |                  |
| Lic. # : KW-06090157 - Ec                                                                                                             |                                                       |                | 40.40          |                      |                        |                      | Licensed l                | Jser : SANT                    | ACLA         | RA UN  | IVERSITY       | , CIVIL ENC    | BINEERING        |
| DESCRIPTION: Res                                                                                                                      | sidential (cor                                        | ridor)- 40     | το 48 π ε      | spans                |                        |                      |                           |                                |              |        |                |                |                  |
| CODE REFERE                                                                                                                           |                                                       |                |                |                      |                        |                      |                           | He                             |              | 7      |                |                |                  |
| Calculations per AIS<br>Load Combination S                                                                                            |                                                       |                | 5, CBC 2       | 016, ASC             | E 7-10                 |                      |                           |                                | ۶L           |        | >)             |                |                  |
| Material Properti                                                                                                                     |                                                       | -10            |                |                      |                        |                      |                           |                                |              |        |                |                |                  |
| Analysis Method : Lo                                                                                                                  |                                                       | nce Fact       | or Desig       | n                    |                        |                      | Fv                        | : Steel Yield                  | 1:           |        | 50.0 ks        |                |                  |
| Beam Bracing : Bea                                                                                                                    | am bracing is                                         | defined as     |                |                      | ll spans               |                      |                           | Nodulus :                      |              | 29,    | 000.0 ks       |                |                  |
| •                                                                                                                                     | ajor Axis Be                                          | ending         |                |                      |                        |                      |                           |                                |              |        |                |                |                  |
| Unbraced Length<br>First Brace starts at 10                                                                                           |                                                       | t-Most su      | pport          |                      |                        |                      |                           |                                |              |        |                |                |                  |
| Regular spacing of late                                                                                                               |                                                       |                |                | = 10.0 ft            |                        |                      |                           |                                |              |        |                |                |                  |
|                                                                                                                                       |                                                       |                |                |                      |                        |                      |                           |                                |              |        |                |                |                  |
| *                                                                                                                                     | ~                                                     | ÷              |                |                      | D(1.4525) L            | (1.245)              | ~                         |                                | Ą            |        | ~              |                | →                |
| Ĵ                                                                                                                                     | ~                                                     |                |                | ~                    |                        |                      | ~                         |                                |              |        | ~              |                | T I              |
| $\mathbf{\hat{x}}$                                                                                                                    | ~                                                     |                |                | ~                    | W21x1                  | 22                   | ~                         |                                |              |        | ~              |                |                  |
|                                                                                                                                       |                                                       |                |                |                      | Span = 4               | 8.0 ft               |                           |                                |              |        |                |                |                  |
| 4                                                                                                                                     |                                                       |                |                |                      |                        |                      |                           |                                |              |        |                |                |                  |
|                                                                                                                                       |                                                       |                |                |                      |                        |                      |                           |                                |              |        |                |                |                  |
| Applied Loads                                                                                                                         |                                                       |                |                |                      |                        | Se                   | rvice loads               | entered. L                     | oad F        | actors | s will be a    | oplied for a   | alculatior       |
| Beam self weight cal                                                                                                                  |                                                       |                |                |                      | 0 750 <del>4</del> (T. | unional Denial       | antial Eleca              | (Corridor))                    |              |        |                |                |                  |
| Uniform Load :                                                                                                                        | D = 0.070, L                                          | = 0.060 KS     | it, I ributa   | ry width = 2         | 20.750 π, (Τ)          | pical Resid          | ential Floor              | (Corridor))                    |              |        |                |                |                  |
| DESIGN SUMMA                                                                                                                          | DV                                                    |                |                |                      |                        |                      |                           |                                |              |        |                | esign N.       | G                |
| Maximum Bending                                                                                                                       |                                                       | io =           |                | 0.971:               | 1 Ma                   | ximum Sh             | near Stres                | ss Ratio =                     |              |        | L              | 0.23           |                  |
| Section used for th                                                                                                                   | is span                                               |                |                | V21x122              |                        |                      | on used for               | r this span                    |              |        |                | W21x12         |                  |
| Mu : A                                                                                                                                | pplied<br>hi : Allowable                              | 16             |                | ,117.843<br>,151.250 |                        |                      | Vu : Applie<br>Vn * Phi : |                                |              | 7      |                | 93.15<br>390.6 |                  |
| Load Combination                                                                                                                      |                                                       | 7 Q_           |                | 20D+1.60L            |                        |                      | Combination               |                                | 7 L          |        | $\mathbf{D}$   | 1.20D+1.60     |                  |
| Location of maximum<br>Span # where maximum                                                                                           |                                                       |                |                | 24.000f<br>Span # 1  | ft                     |                      |                           | num on spa<br>ximum occi       |              |        |                | 0.00<br>Span # | 00 ft            |
| Maximum Deflection                                                                                                                    |                                                       |                |                | Span# 1              |                        | Span                 |                           |                                | 115          |        |                | Span #         | I .              |
| Max Downward Tra                                                                                                                      | ansient Defle                                         |                |                |                      | n Ratio =              | <mark>330</mark> <3  |                           |                                |              |        |                |                |                  |
| Max Upward Trans<br>Max Downward To                                                                                                   |                                                       |                |                |                      | n Ratio =<br>n Ratio = | )> 0<br>2> 146       | 360.0                     |                                |              |        |                |                |                  |
| Max Upward Total                                                                                                                      |                                                       |                |                | 0.000 i              | n Ratio =              |                      | 240.0                     |                                |              |        |                |                |                  |
| Maximum Forces                                                                                                                        | s & Stress                                            | es for l       | Load C         | ombinat              | ions                   |                      |                           |                                |              |        |                |                |                  |
| Load Combination                                                                                                                      |                                                       | Max Stress     |                |                      |                        | Summary of N         |                           |                                |              | _      |                | nmary of She   |                  |
| Segment Length<br>+1.40D                                                                                                              | Span #                                                | М              | V              | max Mu +             | max Mu -               | Mu Max               | Mnx                       | Phi*Mnx                        | Cb           | Rm     | VuMa           | x Vnx          | Phi*Vnx          |
| Dsgn. L = 9.87 ft                                                                                                                     | 1                                                     | 0.360          | 0.135          | 414.92               |                        | 414.92               | 1,279.17                  | 1,151.25                       | 1.55         |        | 52.90          |                | 390.60           |
| Dsgn. L = 10.01-ft<br>Dsgn. L = 10.01 ft                                                                                              | hh)(e                                                 | 0.535          | 0.080          | 616.18<br>634.84     | 414.92                 | 616.18<br>634.84     | 1,279.17<br>1,279.17      | 1,151.25                       | 1.11<br>1.01 |        | 31.14<br>13.00 |                | 390.60           |
| Dsgn. L = 10.01 ft                                                                                                                    |                                                       | 0.518          | 0.090          | 596.51               | 355.90                 | 596.51               | 1,279.17                  | 1,151.25                       | 1.15         | 1.00   | 35.07          | 390.60         | 390.60           |
| Dsgn. L = 8.09 ft<br>+1.20D+1.60L                                                                                                     | 1                                                     | 0.309          | 0.135          | 355.90               |                        | 355.90               | 1,279.17                  | 1,151.25                       | 1.56         | 1.00   | 52.90          | 390.60         | 390.60           |
| Dsgn. L = 9.87 ft                                                                                                                     | 1<br>1                                                | 0.635          | 0.238          | 730.60               | 720 60                 | 730.60               | 1,279.17                  | 1,151.25                       | 1.55         |        | 93.15          |                | 390.60           |
| Dsgn. L = 10.01 ft<br>Dsgn. L = 10.01 ft                                                                                              | 1                                                     | 0.942<br>0.971 | 0.140<br>0.059 | 1,084.99<br>1,117.84 | 730.60<br>1,050.35     | 1,084.99<br>1,117.84 | 1,279.17<br>1,279.17      | 1,151.25<br>1,151.25           | 1.11<br>1.01 |        | 54.83<br>22.89 |                | 390.60<br>390.60 |
| Dsgn. L = 10.01 ft<br>Dsgn. L = 8.09 ft                                                                                               | 1<br>1                                                | 0.912<br>0.544 | 0.158<br>0.238 | 1,050.35<br>626.69   | 626.69                 | 1,050.35<br>626.69   | 1,279.17<br>1,279.17      | 1,151.25<br>1,151.25           | 1.15<br>1.56 | 1.00   | 61.75<br>93.15 | 390.60         | 390.60<br>390.60 |
| +1.20D+L                                                                                                                              | I                                                     |                |                |                      |                        |                      |                           |                                |              |        |                |                |                  |
| Dsgn. L = 9.87 ft<br>Dsgn. L = 10.01 ft                                                                                               | 1<br>1                                                | 0.512<br>0.761 | 0.193<br>0.113 | 589.99<br>876.18     | 589.99                 | 589.99<br>876.18     | 1,279.17<br>1,279.17      | 1,151.25<br>1,151.25           | 1.55<br>1.11 |        | 75.23<br>44.28 |                | 390.60<br>390.60 |
| Dsgn. L = 10.01 ft                                                                                                                    | 1                                                     | 0.784          | 0.047          | 902.71               | 848.21                 | 902.71               | 1,279.17                  | 1,151.25                       | 1.01         | 1.00   | 18.48          | 390.60         | 390.60           |
| Dsgn. L = $10.01 \text{ ft}$                                                                                                          | 1                                                     | 0.737          | 0.128          | 848.21               | 506.08                 | 848.21               | 1,279.17                  | 1, <del>15</del> 1.25          | 1.15         | 1.00   | 49.86          | 390.60         | 390.60           |

506.08

355.65

0.193

0.116

1

Dsgn. L = 8.09 ft +1.20D

Dsgn. L = 9.87 ft

0,440

0.309

506.08

355.65

1,279.17

1,151.25

1,279.17 1,151.25 1.55 1.00

1.56 1.00

390.60

390.60

75.23

45.35

390.60

390.60

| Printed:                                           | 2 APR 2020,     | 8:42PN  |
|----------------------------------------------------|-----------------|---------|
| File = C:\Users\Owner\Desktop\SCU Faculty Staff Ho | using Developme | ent.ec6 |
| Software copyright ENERCALC, INC. 1983             |                 |         |
| Licensed User : SANTA CLARA UNIVERSITY             | , CIVIL ENGI    | NEERIN  |

**Steel Beam** 

#### Lic. # : KW-06090157 - Educational Version DESCRIPTION: Residential (corridor)- 40 to 48 ft spans

|                    | · · · · · · | · · ·     |               |          |            |              |             |          |            |              |                 |            |
|--------------------|-------------|-----------|---------------|----------|------------|--------------|-------------|----------|------------|--------------|-----------------|------------|
| Load Combination   |             | Max Stres | ss Ratios     |          | 5          | Summary of N | oment Value | es       |            | St           | immary of She   | ear Values |
| Segment Length     | Span #      |           | V             | max Mu + | max Mu -   | Mu Max       | Mnx         | Phi*Mnx  | Ċb         | Rm VuM       | ax Vnx          | Phi*Vnx    |
| Dsgn. L = 10.01 ft |             | 0.459     | 0.068         | 528.16   | 355.65     | 528.16       | 1,279.17    | 1,151.25 | 7.11_1     | .00 26.6     | 390.60          | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.473     | 0.029         | 544.15   | 511.29     | 544.15       | 1,279.17    | 1,151.25 | 1.01 1     | .00 11.1     | 4 390.60        | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.444     | 0.077         | 511.29   | 305.06     | 511.29       | 1,279.17    | 1,151.25 | 1.15 1     | .00 30.0     | 6 390.60        | 390.60     |
| Dsgn. L = 8.09 ft  | 1           | 0.265     | 0.116         | 305.06   |            | 305.06       | 1,279.17    | 1,151.25 | 1.56 1     | .00 45.3     | 390.60          | 390.60     |
| +0.90D             |             |           |               |          |            |              |             |          |            |              |                 |            |
| Dsgn. L = 9.87 ft  | 1           | 0.232     | 0.087         | 266.73   |            | 266.73       | 1,279.17    | 1,151.25 | 1.55 1     | .00 34.0     | 390.60          | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.344     | 0.051         | 396.12   | 266.73     | 396.12       | 1,279.17    | 1,151.25 | 1.11 1     | .00 20.0     | 390.60          | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.354     | 0.021         | 408.11   | 383.47     | 408.11       | 1,279.17    | 1,151.25 | 1.01 1     | .00 8.3      | 390.60          | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.333     | 0.058         | 383.47   | 228.80     | 383.47       | 1,279.17    | 1,151.25 | 1.15 1     | .00 22.5     | 54 390.60       | 390.60     |
| Dsgn. L = 8.09 ft  | 1           | 0.199     | 0.087         | 228.80   |            | 228.80       | 1,279.17    | 1,151.25 | 1.56 1     | .00 34.0     | 390.60          | 390.60     |
| +1.40D+L           |             |           |               |          |            |              |             |          |            |              |                 |            |
| Dsgn. L = 9.87 ft  | 1           | 0.564     | 0.212         | 649.27   |            | 649.27       | 1,279.17    | 1,151.25 | 1.55 1     | .00 82.7     | 78 390.60       | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.838     | 0.125         | 964.20   | 649.27     | 964.20       | 1,279.17    | 1,151.25 | 1.11 1     | .00 48.7     | 2 390.60        | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.863     | 0.052         | 993.40   | 933.42     | 993.40       | 1,279.17    | 1,151.25 | 1.01 1     | .00 20.3     | 34 390.60       | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.811     | 0.140         | 933.42   | 556.92     | 933.42       | 1,279.17    | 1,151.25 | 1.15 1     | .00 54.8     | 390.60          | 390.60     |
| Dsgn. L = 8.09 ft  |             | 0.484     | 0.212         | 556.92   |            | 556.92       | 1,279.17    | 1,151.25 | 1.56 1     | .00 82.7     | 8 390.60        | 390.60     |
| +0.70D             |             |           | $\mathbb{C}$  |          |            | 5(2)         |             | ()       | $/ \Delta$ |              | 3 \ V A V / ( : |            |
| Dsgn. L = 9.87 ft  |             | 0.180     | 0.068         | 207.46   | UC         | 207.46       | 1,279.17    | 1,151.25 | 1.55 1     | .00 26.4     | 5 390.60        | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.268     | 0.040         | 308.09   | 207.46     | 308.09       | 1,279.17    | 1,151.25 | 1.11 1     | .00 15.5     | 57 390.60       | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.276     | 0.017         | 317.42   | 298.25     | 317.42       | 1,279.17    | 1,151.25 | 1.01 1     | .00 6.5      | 50 390.60       | 390.60     |
| Dsgn. L = 10.01 ft | 1           | 0.259     | 0.045         | 298.25   | 177.95     | 298.25       | 1,279.17    | 1,151.25 | 1.15 1     | .00 17.5     | 53 390.60       | 390.60     |
| Dsgn. L = 8.09 ft  | 1           | 0.155     | 0.068         | 177.95   |            | 177.95       | 1,279.17    | 1,151.25 | 1.56 1     | .00 26.4     | 5 390.60        | 390.60     |
| Overall Maximu     | m Deflec    | ctions    |               |          |            |              |             |          |            |              |                 |            |
| Load Combination   |             | Span      | Max. "-" Defl | Locatio  | on in Span | Load Corr    | bination    |          |            | Max. "+" Def | Location        | in Span    |

| Load Combination   | Span      | Max. "-" Defi | Location in Span | Load Combination          | Max. "+" Defi  | Location in Span |
|--------------------|-----------|---------------|------------------|---------------------------|----------------|------------------|
| +D+L               | 1         | 3.9410        | 24.137           |                           | 0.0000         | 0.000            |
| Vertical Reactions |           |               | Support          | notation : Far left is #1 | Values in KIPS |                  |
| Load Combination   | Support 1 | Support 2     |                  |                           |                |                  |
| Overall MAXimum    | 67.668    | 67.668        |                  |                           |                |                  |
| Overall MINimum    | 22.673    | 22.673        |                  |                           |                |                  |
| D Only             | 37.788    | 37.788        |                  |                           |                |                  |
| +D+L               | 67.668    | 67.668        |                  |                           |                |                  |
| +D+0.750L          | 60.198    | 60.198        |                  |                           |                |                  |
| +0.60D             | 22.673    | 22.673        |                  |                           |                |                  |
| L Only             | 29.880    | 29.880        |                  |                           |                |                  |
|                    |           |               |                  |                           |                |                  |

### **Commercial Use Not Allowed**

### Pre-Composite Camber Beam Design (Residential (corridor) - 40 to 48 ft spans)

Design Per AISC 360-16

| Material Properties  |                  |             |                | Section Propertie | es      |      |
|----------------------|------------------|-------------|----------------|-------------------|---------|------|
| G =                  | 11200            | ksi         |                | Designation =     | W21X122 |      |
| E =                  | 29000            | ksi         |                | Beamweight =      | 122     | plf  |
| Fy =                 | 50               | ksi         |                | Area =            | 35.9    | in^2 |
| φb =                 | 0.9              |             |                | Depth =           | 21.7    | in   |
| φv =                 | 0.9              |             |                | bf =              | 12.4    | in   |
| Cb =                 | 1                |             |                | tw =              | 0.6     | in   |
| C =                  | 1                |             |                | tw/2=             | 5/16    | in   |
|                      |                  |             |                | tf =              | 0.96    | in   |
| Stud Properties      |                  |             |                | k =               | 1.46    | in   |
| Fu =                 | 60               | ksi         |                | bf/2tf=           | 6.45    |      |
|                      |                  |             |                | h/tw=             | 31.3    |      |
| Type of Construction | ı                |             |                | x =               | 2960    | in^4 |
| Type =               | IIIA             | (Assumption | : Ordinary)    | Zx =              | 307     | in^3 |
| Fire Rating =        | 1                | hour        |                | Sx =              | 273     | in^3 |
| Type of Concrete =   | NWC              |             |                | rx =              | 9.09    | in   |
|                      |                  |             |                | Iy =              | 305     | in^4 |
| Beam Data            |                  |             |                | Zy =              | 75.6    | in^3 |
| Trib. Width =        | 20.8             | ft          |                | Sy =              | 49.2    | in^3 |
| Beam Length =        | 48.0             | ft          |                | ry =              | 2.92    | in   |
| Unbraced Length =    | 10.0             | ft          |                | J =               | 8.98    | in^4 |
| Fcr =                | 247              | ksi         |                | Cw =              | 32700   | in^6 |
|                      |                  |             |                | rts =             | 3.4     | in   |
| Total Dead Load      |                  |             |                | ho =              | 20.7    | in   |
| ••                   | idential Floor   |             | psf            |                   |         |      |
| Concrete & Metal D   | -                |             | psf            |                   |         |      |
| Beam                 | Self-Weight      |             | psf            |                   |         |      |
|                      |                  | 138.4       | psf            |                   |         |      |
| Total Live Load      |                  |             |                |                   |         |      |
|                      | idential Floor : | = 40.0      | psf            |                   |         |      |
|                      |                  | 40.0        | psf            |                   |         |      |
|                      |                  | 10.0        | poi            |                   |         |      |
| Deflection           |                  |             |                |                   |         |      |
| ΔD =                 | 4.00             | in          |                |                   |         |      |
|                      |                  |             |                |                   |         |      |
| Round Camber Down    | to Nearest 1/4   | 4"          |                |                   |         |      |
| Use:                 | 4.0              | in          | (Req'd Pre-Cam | iber)             |         |      |

#### Return to TABLE OF CONTENTS

#### 2.4 **3WxH-36 Composite Deck** 6<sup>1</sup>/<sub>2</sub>" Total Slab Depth



Normal Weight Concrete (145 pcf)

Concrete Volume 1.543yd3/100ft2

1 Hour Fire Rating



#### 3WxH-36 6 1/2 " Slab Depth, 145 pcf NWC

|                        | Gage | Single   | Double   | Triple   | Gage   | Single   | Double   | Triple   |
|------------------------|------|----------|----------|----------|--------|----------|----------|----------|
| Maximum Unshored Span  | 22   | 8' - 11" | 9" - 9"  | 10' - 1" | 19     | 11' - 3" | 12' - 4" | 12' - 9" |
| maximum orishored Span | 21   | 9' - 8"  | 10' - 5" | 10' - 9" | <br>18 | 11' - 8" | 13' - 5" | 13' - 8" |
|                        | 20   | 10' - 5" | 11' - 1" | 11' - 5" | 16     | 12' - 3" | 15' - 0" | 14' - 5" |

| Gage | Vertical Load Span (ft-in)       | 8'-0" | 8'-6"               | 9'-0"   | 9'-6"             | 10'-0"              | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12'-6" | 13"-0"    | 13"-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|-------|---------------------|---------|-------------------|---------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS    | SD & LF             | RFD - A | vailable          | e Super             | rimpose             | ed Load | d Capao | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 516   | 452                 | 398     | 352               | 313                 | 280                 | 251     | 226     | 203                 | 184    | 166       | 151    | 137                 | 125    | 113    |
|      | LRFD, øW                         | 691   | 603                 | 530     | 468               | 415                 | 370                 | 330     | 296     | 265                 | 239    | 215       | 194    | 175                 | 158    | 143    |
|      | L/360                            | -     | -                   | -       | -                 | -                   | -                   | -       | -       | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | Diaph | iragm S             | Shear C | apacity           | , φS <sub>n</sub> ( | (plf / ft)          | 36/4    | Attach  | ment P              | attern |           |        |                     |        |        |
| 22   | Arc Spot Weld 1/2" Effective Dia | 3839  | 3813                | 3790    | 3781              | 3762                | 3745                | 3729    | 3715    | 3702                | 3698   | 3687      | 3677   | 3667                | 3658   | 3649   |
|      | PAF Base Steel ≥ .25"            | 3649  | 3635                | 3622    | 3621              | 3610                | 3600                | 3592    | 3583    | 3576                | 3577   | 3571      | 3564   | 3559                | 3553   | 3548   |
|      | PAF Base Steel ≥ 0.125"          | 3634  | 3621                | 3609    | 3609              | 3598                | 3589                | 3581    | 3573    | 3566                | 3568   | 3561      | 3556   | 3550                | 3545   | 3541   |
|      | #12 Screw Base Steel ≥ .0385"    | 3621  | 3608                | 3597    | 3597              | 3587                | 3579                | 3571    | 3564    | 3557                | 3559   | 3553      | 3548   | 3542                | 3538   | 3533   |
|      | Concrete + Deck =                | 62.2  | psf                 |         | l <sub>ar</sub> = | 78.7                | in⁴/ft              | ASD     | 1       | M <sub>no</sub> /Ω= | 48.0   | kip-in/fl | t      | V <sub>n</sub> /Ω = | 4.14   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 154.9 | in <sup>4</sup> /ft |         | l <sub>u</sub> =  | 231.1               | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 73.5   | kip-in/fl |        | φ V <sub>n</sub> =  | 6.01   | kip/ft |

| Gage | Vertical Load Span (ft-in)       | 8'-0"   | 8'-6"               | 9'-0"    | 9'-6"             | 10'-0"          | 10'-6"              | 11'-0"  | 11'-6" | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|---------|---------------------|----------|-------------------|-----------------|---------------------|---------|--------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS      | SD & LF             | RFD - Av | vailable          | Super           | impose              | ed Load | l Capa | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 569     | 498                 | 439      | 390               | 347             | 310                 | 279     | 251    | 227                 | 205    | 186       | 169    | 154                 | 140    | 128    |
|      | LRFD, øW                         | 762     | 666                 | 586      | 519               | 461             | 411                 | 368     | 330    | 297                 | 268    | 242       | 219    | 198                 | 180    | 163    |
|      | L/360                            | -       | -                   | -        | -                 | -               | -                   | -       | -      | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | e Diaph | nragm S             | Shear C  | apacity           | , <b>¢S</b> n ( | plf / ft)           | 36/4    | Attacl | hment P             | attern |           |        |                     |        |        |
| 21   | Arc Spot Weld 1/2" Effective Dia | 3902    | 3872                | 3846     | 3836              | 3815            | 3795                | 3777    | 3761   | 3746                | 3742   | 3729      | 3717   | 3706                | 3695   | 3685   |
|      | PAF Base Steel ≥ .25"            | 3684    | 3667                | 3652     | 3653              | 3640            | 3629                | 3619    | 3609   | 3600                | 3603   | 3595      | 3588   | 3581                | 3575   | 3569   |
|      | PAF Base Steel ≥ 0.125"          | 3667    | 3651                | 3638     | 3639              | 3627            | 3616                | 3606    | 3597   | 3589                | 3592   | 3585      | 3578   | 3572                | 3566   | 3560   |
|      | #12 Screw Base Steel ≥ .0385"    | 3652    | 3638                | 3624     | 3626              | 3615            | 3605                | 3596    | 3587   | 3579                | 3583   | 3576      | 3569   | 3563                | 3558   | 3552   |
|      | Concrete + Deck =                | 62.4    | psf                 |          | l <sub>ar</sub> = | 84.9            | in⁴/ft              | ASD     |        | M <sub>no</sub> /Ω= | 52.5   | kip-in/ft | t      | V <sub>n</sub> /Ω = | 4.80   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 159.4   | in <sup>4</sup> /ft |          | l <sub>u</sub> =  | 233.8           | in <sup>4</sup> /ft | LRFD    |        | φM <sub>no</sub> =  | 80.3   | kip-in/ft | t      | φ V <sub>n</sub> =  | 6.91   | kip/ft |

| Gage | Vertical Load Span (ft-in)       | 8'-0"   | 8'-6"               | 9'-0"    | 9'-6"             | 10'-0"                      | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14'-0"              | 14'-6" | 15'-0" |
|------|----------------------------------|---------|---------------------|----------|-------------------|-----------------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|---------------------|--------|--------|
|      |                                  | AS      | SD & LF             | RFD - Av | vailable          | Super                       | rimpose             | ed Load | l Capad | city, W             | (psf)  |           |        |                     |        |        |
|      | ASD, W/Ω                         | 618     | 542                 | 478      | 424               | 378                         | 339                 | 305     | 275     | 249                 | 225    | 205       | 187    | 170                 | 155    | 142    |
|      | LRFD, øW                         | 829     | 726                 | 639      | 566               | 504                         | 450                 | 403     | 362     | 327                 | 295    | 267       | 242    | 220                 | 200    | 182    |
|      | L/360                            | -       | -                   | -        | -                 | -                           | -                   | -       | -       | -                   | -      | -         | -      | -                   | -      | -      |
|      | LRFD - Available                 | e Diaph | nragm S             | Shear C  | apacity           | , <b>¢</b> S <sub>n</sub> ( | (plf / ft)          | 36/4    | Attach  | ment P              | attern |           |        |                     |        |        |
| 20   | Arc Spot Weld 1/2" Effective Dia | 3949    | 3916                | 3887     | 3878              | 3854                        | 3832                | 3812    | 3794    | 3778                | 3775   | 3760      | 3747   | 3735                | 3723   | 3712   |
|      | PAF Base Steel ≥ .25"            | 3710    | 3691                | 3675     | 3677              | 3663                        | 3650                | 3639    | 3628    | 3619                | 3622   | 3614      | 3606   | 3598                | 3591   | 3585   |
|      | PAF Base Steel ≥ 0.125"          | 3692    | 3674                | 3659     | 3662              | 3648                        | 3636                | 3626    | 3616    | 3607                | 3611   | 3602      | 3595   | 3588                | 3581   | 3575   |
|      | #12 Screw Base Steel ≥ .0385"    | 3676    | 3660                | 3645     | 3649              | 3636                        | 3625                | 3614    | 3605    | 3596                | 3601   | 3593      | 3586   | 3579                | 3573   | 3567   |
|      | Concrete + Deck =                | 62.5    | psf                 |          | l <sub>er</sub> = | 90.6                        | in⁴/ft              | ASD     | 1       | M <sub>no</sub> /Ω= | 56.7   | kip-in/ft |        | V <sub>n</sub> /Ω = | 5.38   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 163.5   | in <sup>4</sup> /ft |          | I <sub>u</sub> =  | 236.4                       | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 86.8   | kip-in/ft |        | φ V <sub>n</sub> =  | 7.71   | kip/ft |

|       | LRFD - Available Diaphrag | m Shear Capacity, øS          | , (plf / ft) for all verti    | cal load spans, WWF           | Size or Area of Stee          | I per foot width              |
|-------|---------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| ŝ     | 3/4" Welded Shear Studs   | 6x6 W1.4xW1.4                 | 6x6 W2.9xW2.9                 | 6x6 W4.0xW4.0                 | 4x4 W4xW4                     | 4x4 W6xW6                     |
| Gage  | 3/4" Welded Shear Studs   | A <sub>s</sub> = 0.028 in*/tt | A <sub>s</sub> = 0.058 in*/tt | A <sub>s</sub> = 0.080 in*/tt | A <sub>s</sub> = 0.120 in*/tt | A <sub>s</sub> = 0.180 in*/tt |
| AII G | 12 in o.c.                | n/a                           | 6030                          | 7020                          | 8820                          | 11520                         |
| ₹     | 24 in o.c.                | n/a                           | 6030                          | 7020                          | 7750                          | 7750                          |
|       | 36 in o.c.                | n/a                           | 5170                          | 5170                          | 5170                          | 5170                          |

www.ascsd.com

| Title Block Line 1<br>You can change this area<br>using the "Settings" menu<br>and then using the "Printi<br>Title Block" selection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | u item                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | Project<br>Enginee<br>Project<br>Project                                                                                                          | er:<br>ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     |                                                        |                                              | Drintod: 2                                                           |                                                                                                                                                           | 2-25DM                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Title Block Line 6 Steel Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              | Printed: 2<br>ulty Staff Housin                                      | ng Developme                                                                                                                                              | ent.ec6                                                                                             |
| Lic. # : KW-06090157 - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ducational Versi                                                                                                                                                                 | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                      | _                                                                                                                                                 | S<br>Licensed Us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                        |                                              | , INC. 1983-20<br>IVERSITY, 0                                        |                                                                                                                                                           |                                                                                                     |
| DESCRIPTION: Rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d below s                                                                                                      | pans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
| CODE REFERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NCES                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        | NC                                           |                                                                      |                                                                                                                                                           |                                                                                                     |
| Calculations per AIS<br>Load Combination S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CBC 201                                                                                                        | 6, ASCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-10                                                                   |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     | 7                                                      |                                              | $\mathbf{D}$                                                         | $\bigcirc$                                                                                                                                                |                                                                                                     |
| Material Propert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ad Resistanc<br>am is Fully Brace<br>ajor Axis Benc                                                                                                                              | ed against l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                | ional buc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kling                                                                  |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Steel Yielo<br>odulus :                                                                                             | 1:                                                     | 29,0                                         | 50.0 ksi<br>000.0 ksi                                                |                                                                                                                                                           |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.7701) L                                                             | (0.302)                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                   | \$                                                     |                                              |                                                                      |                                                                                                                                                           | →×                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           | <b>_</b>                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W6x16                                                                  | 6                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span = 11                                                              | I.0 ft                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           | •                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
| Applied Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aulated and add                                                                                                                                                                  | ad to loadin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | Ser                                                                                                                                               | vice loads e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entered. L                                                                                                          | .oad I                                                 | -actors                                      | will be app                                                          | lied for ca                                                                                                                                               | Iculatior                                                                                           |
| Beam self weight cal<br>Uniform Load :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D = 0.0510, L =                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                | Width = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.10 ft, (Ty                                                           | pical Roof)                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        | . ,                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              |                                                                      |                                                                                                                                                           |                                                                                                     |
| DESIGN SUMMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RY                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                        |                                              | De                                                                   | esign Oł                                                                                                                                                  | ٢                                                                                                   |
| Maximum Bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stress Ratio                                                                                                                                                                     | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                | 0.492 : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l Max                                                                  |                                                                                                                                                   | iear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     | =                                                      |                                              | De                                                                   | 0.160                                                                                                                                                     | :1                                                                                                  |
| Maximum Bending<br>Section used for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J Stress Ratio                                                                                                                                                                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N                                                                                                              | /6x16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | Sectio                                                                                                                                            | on used for t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | his span                                                                                                            | :                                                      |                                              | De                                                                   | 0.160<br>W6x16                                                                                                                                            | :1                                                                                                  |
| Maximum Bending<br>Section used for the<br>Mu : A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J Stress Ratio                                                                                                                                                                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>W</b><br>2                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -ft                                                                    | Sectio                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | his span<br>I                                                                                                       | :                                                      |                                              | De                                                                   | 0.160                                                                                                                                                     | : 1<br>k                                                                                            |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y Stress Ratio<br>nis span<br>pplied<br>hi : Allowable                                                                                                                           | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>N</b><br>2<br>4                                                                                             | <b>/6x16</b><br>21.576 k<br>3.875 k<br>)+1.60L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -ft                                                                    | Sectio                                                                                                                                            | on used for t<br>Vu : Applied<br>Vn * Phi : A<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | his span<br>I<br>Ilowable                                                                                           |                                                        |                                              |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.60                                                                                                             | : 1<br>k<br>k                                                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y Stress Ratio<br>nis span<br>pplied<br>hi : Allowable<br>m on span                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>4<br>+1.20D                                                                                               | /6x16<br>21.576 k<br>3.875 k<br>0+1.60L<br>5.500 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -ft                                                                    | Section<br>Load C                                                                                                                                 | on used for t<br>Vu : Applied<br>Vn * Phi : A<br>Combination<br>on of maximu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | his span<br>I<br>Ilowable<br>Im on spa                                                                              | n –                                                    | 20                                           |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000                                                                                                   | : 1<br>k<br>k                                                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y Stress Ratio<br>his span<br>pplied<br>'hi : Allowable<br>m on span<br>mum occurs                                                                                               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>4<br>+1.20D                                                                                               | <b>/6x16</b><br>21.576 k<br>3.875 k<br>)+1.60L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -ft                                                                    | Section<br>Load C                                                                                                                                 | on used for t<br>Vu : Applied<br>Vn * Phi : A<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | his span<br>I<br>Ilowable<br>Im on spa                                                                              | n –                                                    |                                              |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.60                                                                                                             | : 1<br>k<br>k                                                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y Stress Ratio<br>his span<br>pplied<br>'hi : Allowable<br>m on span<br>mum occurs<br>on<br>ansient Deflecti                                                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4<br>+1.20D                                                                                                    | <b>/6x16</b><br>21.576 k<br>3.875 k<br>0+1.60L<br>5.500ft<br>ban # 1<br>0.107 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -ft<br>-ft<br>Ratio =                                                  | Section<br>Load C<br>Location<br>Span #<br>1,229 >=                                                                                               | on used for t<br>Vu : Applied<br>Vn * Phi : A<br>Combination<br>on of maximu<br>where maxi<br>=360.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | his span<br>I<br>Ilowable<br>Im on spa                                                                              | n –                                                    |                                              |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000                                                                                                   | : 1<br>k<br>k                                                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr<br>Max Upward Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y Stress Ratio<br>his span<br>pplied<br>'hi : Allowable<br>m on span<br>mum occurs<br>on<br>ansient Deflection                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¥<br>2<br>4<br>+1.20D                                                                                          | <b>/6x16</b><br>21.576 k<br>3.875 k<br>0+1.60L<br>5.500ft<br>ban #1<br>0.107 in<br>0.000 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -ft<br>-ft<br>Ratio =<br>Ratio =                                       | Load C<br>Locatic<br>Span #<br>1,229 >=<br>0 <3                                                                                                   | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>on of maximu<br>f where maxi<br>s360.<br>360.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | his span<br>I<br>Ilowable<br>Im on spa                                                                              | n –                                                    |                                              |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000                                                                                                   | : 1<br>k<br>k                                                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y Stress Ratio<br>his span<br>pplied<br>'hi : Allowable<br>m on span<br>mum occurs<br>on<br>ansient Deflection<br>tal Deflection                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¥<br>2<br>4<br>+1.20D                                                                                          | <b>/6x16</b><br>21.576 k<br>3.875 k<br>5.500ft<br>ban #1<br>0.107 in<br>0.000 in<br>0.387 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -ft<br>-ft<br>Ratio =                                                  | Section<br>Load C<br>Location<br>Span #<br>1,229 >=<br>0 <3<br>341 >=                                                                             | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>on of maximu<br>f where maxi<br>s360.<br>360.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | his span<br>I<br>Ilowable<br>Im on spa                                                                              | n –                                                    |                                              |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000                                                                                                   | : 1<br>k<br>k                                                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s Stress Ratio<br>his span<br>pplied<br>'hi : Allowable<br>mon span<br>mum occurs<br>ansient Deflection<br>sient Deflection<br>Deflection                                        | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +1:20D                                                                                                         | <b>/6x16</b><br>(1.576 k<br>3.875 k<br>)+1.60L<br>5.500ft<br>ban #1<br>0.107 in<br>0.000 in<br>0.387 in<br>0.000 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft<br>ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =                   | Section<br>Load C<br>Location<br>Span #<br>1,229 >=<br>0 <3<br>341 >=                                                                             | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>on of maximu<br>f where maxi<br>s360.<br>360.0<br>:240.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | his span<br>I<br>Ilowable<br>Im on spa                                                                              | n –                                                    |                                              |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000                                                                                                   | : 1<br>k<br>k                                                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Trans<br>Max Downward Trans<br>Max Upward Trans<br>Max Upward Total<br>Maximum Forces<br>Load Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stress Ratio<br>his span<br>pplied<br>hi : Allowable<br>mon span<br>mum occurs<br>on<br>ansient Deflection<br>bal Deflection<br>Deflection<br>S & Stresses                       | on<br>s for Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>+1.200<br>st<br>ad Com                                                                                    | /6x16<br>11.576 k<br>3.875 k<br>)+1.60L<br>5.500ft<br>0.107 in<br>0.000 in<br>0.387 in<br>0.000 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Load C<br>Locatic<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2                                                                                 | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>of maximu<br>where maxi<br>* 360.<br>60.0<br>-240.<br>240.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | his span<br>I<br>Ilowable<br>m on spa<br>mum occ                                                                    |                                                        |                                              |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.600<br>Span # 1                                                                                                | : 1<br>k<br>k<br>ft<br>r Values                                                                     |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * P<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward To<br>Max Upward Total<br>Maximum Forces<br>Load Combination<br>Segment Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stress Ratio<br>his span<br>pplied<br>hi : Allowable<br>mon span<br>mum occurs<br>on<br>ansient Deflection<br>bal Deflection<br>Deflection<br>S & Stresses                       | on<br>s for Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>+1.200<br>st<br>ad Com                                                                                    | <b>/6x16</b><br>(1.576 k<br>3.875 k<br>)+1.60L<br>5.500ft<br>ban #1<br>0.107 in<br>0.000 in<br>0.387 in<br>0.000 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =      | Section<br>Load C<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2                                                                                 | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>of maximu<br>where maxi<br>where maxi<br>\$60.0<br>:240.<br>:40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | his span<br>I<br>Ilowable<br>m on spa<br>mum occ                                                                    | n –                                                    | Rm                                           | 5                                                                    | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.60U<br>0.000<br>Span # 1                                                                                       | :1<br>k<br>k                                                                                        |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Trans<br>Max Upward Trans<br>Max Upward Total<br><b>Maximum Forces</b><br>Load Combination<br>Segment Length<br>+1.40D<br>Dsgn. L = 11.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Stress Ratio<br>his span<br>pplied<br>thi : Allowable<br>m on span<br>mum occurs<br>ansient Deflection<br>btal Deflection<br>Deflection<br><b>s &amp; Stresse</b><br>Span #    | on<br>s for Lo<br>ax Stress Ra<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br>+1.200<br>st<br>ad Com                                                                                    | /6x16<br>11.576 k<br>3.875 k<br>)+1.60L<br>5.500ft<br>0.107 in<br>0.000 in<br>0.387 in<br>0.000 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Load C<br>Locatic<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2                                                                                 | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>of maximu<br>where maxi<br>* 360.<br>60.0<br>-240.<br>240.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | his span<br>I<br>Ilowable<br>m on spa<br>mum occ                                                                    | n<br>urs<br>Cb                                         | Rm<br>1.00                                   |                                                                      | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.600<br>Span # 1                                                                                                | : 1<br>k<br>k<br>ft<br>r Values                                                                     |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Total<br>Max Upward Total<br>Max Upward Total<br>Max Upward Total<br>Cod Combination<br>Segment Length<br>+1.40D<br>Dsgn. L = 11.00 ft<br>+1.20D+1.60L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stress Ratio<br>his span<br>pplied<br>hi : Allowable<br>m on span<br>mum occurs<br>on<br>ansient Deflection<br>bal Deflection<br>Deflection<br><b>s &amp; Stresses</b><br>Span # | on<br>s for Lo<br>ax Stress Ra<br>M<br>0.379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +1.20D<br>+1.20D<br>sp<br>ad Com<br>atios<br>V ma<br>0.124                                                     | <b>/6x16</b><br>11.576 k<br>3.875 k<br>+1.60L<br>5.500 f<br>0.107 in<br>0.000 in<br>0.000 in<br><b>binati</b><br>ax Mu +<br>16.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Load C<br>Locatic<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2<br>Summary of M<br>Mu Max                                                       | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>of maximu<br>where maxi<br>360.<br>360.<br>360.<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | his span<br>i<br>llowable<br>m on spa<br>mum occ<br>Phi*Mnx<br>43.88                                                | n<br>urs<br>Cb<br>1.00                                 | 1.00                                         | +1.<br>5 -                                                           | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.60U<br>0.000<br>Span # 1                                                                                       | : 1<br>k<br>k<br>ft<br>ft<br>Phi*Vnx<br>48.98                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectii<br>Max Downward Tr<br>Max Upward Trans<br>Max Upward Total<br><b>Maximum Forces</b><br>Load Combination<br>Segment Length<br>+1.40D<br>Dsgn. L = 11.00 ft<br>+1.20D+1.60L<br>Dsgn. L = 11.00 ft<br>+1.20D+L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y Stress Ratio<br>his span<br>pplied<br>thi : Allowable<br>mon span<br>mum occurs<br>ansient Deflection<br>beflection<br>Deflection<br><b>s &amp; Stresses</b><br>Span #         | on<br>s for Lo<br>ax Stress Ra<br>M<br>0.379<br>0.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **************************************                                                                         | <b>/6x16</b><br>11.576 k<br>3.875 k<br>)+1.60L<br>5.500ft<br>0.107 in<br>0.000 in<br>0.000 in<br>0.000 in<br><b>hbinati</b><br>ax Mu +<br>16.65<br>21.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Section<br>Load C<br>Location<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2<br>Summary of M<br>Mu Max<br>16.65<br>21.58                         | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>in of maximu<br>where maxi<br>360.<br>360.<br>360.<br>240.<br>240.<br>240.<br>440.0<br>Mnx<br>48.75<br>48.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | his span<br>i<br>llowable<br>m on spa<br>mum occ<br>Phi*Mnx<br>43.88<br>43.88                                       | n<br>urs<br>Cb<br>1.00<br>1.00                         | 1.00<br>1.00                                 | +1.<br>Summ<br>VuMax<br>6.05<br>7.85                                 | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000<br>Span # 1<br>hary of Shea<br>Vnx<br>48.98<br>48.98                                              | : 1<br>k<br>k<br>ft<br>ft<br>Phi*Vnx<br>48.98<br>48.98                                              |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectin<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward To<br>Max Upward Total<br>Maximum Forces<br>Load Combination<br>Segment Length<br>+1.40D<br>Dsgn. L = 11.00 ft<br>+1.20D+L<br>Dsgn. L = 11.00 ft<br>+1.20D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y Stress Ratio<br>his span<br>pplied<br>thi : Allowable<br>mon span<br>mum occurs<br>ansient Deflection<br>beal Deflection<br>Deflection<br><b>s &amp; Stresses</b><br>Span #    | on<br><b>s for Lo</b><br>ax Stress Ra<br>M<br>0.379<br>0.492<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0.429<br>0 | +1.20D<br>+1.20D<br>sp<br>ad Com<br>atios<br>V ma<br>0.124                                                     | <b>/6x16</b><br>11.576 k<br>3.875 k<br>+1.60L<br>5.500 f<br>0.107 in<br>0.000 in<br>0.000 in<br><b>binati</b><br>ax Mu +<br>16.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Load C<br>Locatic<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2<br>Summary of M<br>Mu Max                                                       | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>of maximu<br>where maxi<br>360.<br>360.<br>360.<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | his span<br>i<br>llowable<br>m on spa<br>mum occ<br>Phi*Mnx<br>43.88                                                | n<br>urs<br>Cb<br>1.00<br>1.00                         | 1.00                                         | +1.<br>5 -                                                           | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.60U<br>0.000<br>Span # 1                                                                                       | : 1<br>k<br>k<br>ft<br>ft<br>Phi*Vnx<br>48.98                                                       |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F         Load Combination<br>Location of maximu<br>Span # where maxi         Maximum Deflectii<br>Max Downward Tr<br>Max Upward Trans<br>Max Upward Total         Maximum Forces         Load Combination<br>Segment Length         +1.40D<br>Dsgn. L = 11.00 ft         +1.20D+1.60L<br>Dsgn. L = 11.00 ft         Dsgn. L = 11.00 ft         +1.20D+L<br>Dsgn. L = 11.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s Stress Ratio<br>his span<br>pplied<br>hi : Allowable<br>m on span<br>mum occurs<br>ansient Deflection<br>bal Deflection<br>Deflection<br>s & Stresses<br>Span #                | on <b>s for Lo</b> ax Stress Ra M 0.379 0.492 0.429 0.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>+1.20D<br>sr<br>ad Com<br>atios<br>V ma<br>0.124<br>0.160<br>0.140                                        | <b>/6x16</b><br>11.576 k<br>3.875 k<br>b+1.60L<br>5.500ft<br>5.500ft<br>0.107 in<br>0.000 in<br>0.000 in<br>0.387 in<br>0.000 in<br><b>hbinati</b><br>ax Mu +<br>16.65<br>21.58<br>18.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Section<br>Load C<br>Location<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2<br>Summary of M<br>Mu Max<br>16.65<br>21.58                         | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>on of maximu<br>where maxi<br>360.<br>360.0<br>2240.<br>240.0<br>Moment Values<br>Mnx<br>48.75<br>48.75<br>48.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | his span<br>i<br>llowable<br>m on spa<br>mum occi<br>Phi*Mnx<br>43.88<br>43.88<br>43.88                             | n<br>urs<br>Cb<br>1.00<br>1.00<br>1.00                 | 1.00<br>1.00<br>1.00                         | +1.<br>Summ<br>VuMax<br>6.05<br>7.85<br>6.85                         | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000<br>Span # 1<br>hary of Shea<br>Vnx<br>48.98<br>48.98                                              | : 1<br>k<br>k<br>ft<br>ft<br>r Values<br>Phi*Vnx<br>48.98<br>48.98<br>48.98                         |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Tr<br>Max Upward Total<br>Max Upward Total<br>Dagn. L = 11.00 ft<br>+1.20D+1.60L<br>Dsgn. L = 11.00 ft<br>+1.20D+L<br>Dsgn. L = 11.00 ft<br>+1.40D<br>Dsgn. L = 11.00 ft<br>+1.40D+L<br>Dsgn. L = 11.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s Stress Ratio<br>his span<br>pplied<br>hi : Allowable<br>m on span<br>mum occurs<br>ansient Deflection<br>beflection<br>Deflection<br><b>5 &amp; Stresses</b><br>Span #         | on<br><b>s for Lo</b><br>ax Stress Ra<br>M<br>0.379<br>0.492<br>0.429<br>0.325<br>0.244<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A<br>+1.20D<br>+1.20D<br>S<br>ad Com<br>ad Com<br>0.124<br>0.160<br>0.140<br>0.106                             | /6x16<br>11.576 k<br>3.875 k<br>)+1.60L<br>5.500ft<br>0.107 in<br>0.000 in<br>0.0000 in<br>0.00000 in<br>0.0000 in<br>0.0000 in<br>0.0000 in<br>0.0000 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Section<br>Load C<br>Location<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2<br>summary of M<br>Mu Max<br>16.65<br>21.58<br>18.84<br>14.27       | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>of maximu<br>where maxi<br>360.<br>240.<br>240.<br>240.<br>240.<br>240.<br>240.<br>240.<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | his span<br>Ilowable<br>Im on spa<br>mum occ<br>Phi*Mnx<br>43.88<br>43.88<br>43.88<br>43.88                         | n<br>urs<br>Cb<br>1.00<br>1.00<br>1.00<br>1.00         | 1.00<br>1.00<br>1.00<br>1.00                 | +1.<br>Summ<br>VuMax<br>6.05<br>7.85<br>6.85<br>5.19                 | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.60U<br>Span # 1<br>hary of Shea<br>Vnx<br>48.98<br>48.98<br>48.98<br>48.98                                     | : 1<br>k<br>k<br>ft<br>ft<br>Phi*Vnx<br>48.98<br>48.98<br>48.98                                     |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectii<br>Max Downward Tr<br>Max Upward Trans<br>Max Upward Total<br>Max Upward Total<br>Dsgn. L = 11.00 ft<br>+1.20D +1.<br>Dsgn. L = 11.00 ft<br>+1.40D +L<br>Dsgn. L = 11.00 ft<br>+1.40D +L<br>Dsgn. L = 11.00 ft<br>+0.90D<br>Dsgn. L = 11.00 ft<br>+1.40D +L<br>Dsgn. L = 11.00 ft<br>+0.90D | s Stress Ratio<br>his span<br>pplied<br>thi : Allowable<br>mon span<br>mum occurs<br>ansient Deflection<br>beflection<br><b>s &amp; Stresses</b><br>Span #                       | on<br><b>s for Lo</b><br>ax Stress Ra<br>M<br>0.379<br>0.492<br>0.325<br>0.244<br>0.483<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Atios<br>V<br>ad Com<br>atios<br>V<br>0.124<br>0.160<br>0.140<br>0.160<br>0.160<br>0.1740<br>0.106             | <b>/6x16</b><br><b>/1.576 k</b><br>3.875 k<br>)+1.60L<br>5.500ft<br>ban #1<br>0.107 in<br>0.000 in<br>0.000 in<br>0.000 in<br><b>1binati</b><br>ax Mu +<br>16.65<br>21.58<br>18.84<br>14.27<br>10.70<br>21.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Section<br>Load C<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2<br>Summary of M<br>Mu Max<br>16.65<br>21.58<br>18.84<br>14.27<br>10.70<br>21.21 | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>in of maximu<br>where maxi<br>360.<br>360.<br>240.<br>240.<br>40.0<br>Mnx<br>48.75<br>48.75<br>48.75<br>48.75<br>48.75<br>48.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | his span<br>i<br>llowable<br>im on spa<br>mum occi<br>Phi*Mnx<br>43.88<br>43.88<br>43.88<br>43.88<br>43.88<br>43.88 | n<br>urs<br>Cb<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | +1.<br>Summ<br>VuMax<br>6.05<br>7.85<br>6.85<br>5.19<br>3.89<br>7.71 | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.601<br>0.000<br>Span # 1<br>hary of Shea<br>Vnx<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98 | : 1<br>k<br>k<br>ft<br>ft<br>Phi*Vnx<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98 |
| Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Tr<br>Max Upward Total<br>Max Upward Total<br>Dagn. L = 11.00 ft<br>+1.20D+1.60L<br>Dsgn. L = 11.00 ft<br>+1.20D+L<br>Dsgn. L = 11.00 ft<br>+1.40D<br>Dsgn. L = 11.00 ft<br>+1.40D+L<br>Dsgn. L = 11.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s Stress Ratio<br>his span<br>pplied<br>hi : Allowable<br>m on span<br>mum occurs<br>ansient Deflection<br>beflection<br>s & Stresses<br>Span #                                  | on <b>s for Lo</b> ax Stress Ra M 0.379 0.492 0.429 0.325 0.244 0.483 0.190 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A 2<br>4<br>+1.20D<br>5<br>7<br>ad Com<br>atios<br>V ma<br>0.124<br>0.160<br>0.140<br>0.160<br>0.106<br>0.0079 | <b>/6x16</b><br><b>/1.576 k</b><br>3.875 k<br>+1.60L<br>5.500 fr<br>0.107 in<br>0.000 in<br>0.000 in<br><b>1011</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b><br><b>111</b> | -ft<br>-ft<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>Ratio =<br>S | Section<br>Load C<br>Span #<br>1,229 >=<br>0 <3<br>341 >=<br>0 <2<br>Summary of M<br>Mu Max<br>16.65<br>21.58<br>18.84<br>14.27<br>10.70          | on used for t<br>Vu : Appliec<br>Vn * Phi : A<br>Combination<br>of maximu<br>where maxi<br>= 360.<br>= 360.<br>= 240.<br>= 240. | his span<br>Ilowable<br>Im on spa<br>mum occ<br>Phi*Mnx<br>43.88<br>43.88<br>43.88<br>43.88                         | n<br>urs<br>Cb<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00         | +1.<br>Summ<br>VuMax<br>6.05<br>7.85<br>6.85<br>5.19<br>3.89         | 0.160<br>W6x16<br>7.846<br>48.984<br>20D+1.60U<br>Span # 1<br>hary of Shea<br>Vnx<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98                            | : 1<br>k<br>k<br>ft<br>ft<br>Phi*Vnx<br>48.98<br>48.98<br>48.98<br>48.98<br>48.98                   |

+D+L 1 0.3868 5.531 0.0000 0.000 Values in KIPS **Vertical Reactions** Support notation : Far left is #1 Load Combination Support 1 Support 2

Overall MAXimum Overall MINimum

5.985 1.661

5.985 1.661

+D+0.750L +0.60D

L Only

2.594

1.661

2.594

1.661

| THE DIOCK SELECTION.         |                        |                 |                  |                  |                    |                      |                  |         |
|------------------------------|------------------------|-----------------|------------------|------------------|--------------------|----------------------|------------------|---------|
| Title Block Line 6           |                        |                 |                  |                  |                    | Printed: 2           | 2 APR 2020,      | 3:35PN  |
| Steel Beam                   |                        |                 |                  |                  |                    | J Faculty Staff Hous | <b>U</b> 1       |         |
| Oleci Dealli                 |                        |                 |                  | Softwa           | are copyright ENEF | RCALC, INC. 1983-2   | 020, Build:12.20 | .2.24 . |
| Lic. # : KW-06090157 - Educa | tional Version         |                 |                  | Licensed User :  | SANTA CLAR         | A UNIVERSITY,        | CIVIL ENGIN      | EERING  |
| DESCRIPTION: Reside          | ntial (Roof) - 11 ft a | and below spans | ;                |                  |                    |                      |                  |         |
| Vertical Reactions           |                        |                 | Support notation | : Far left is #1 | Va                 | lues in KIPS         |                  |         |
| Load Combination             | Support 1              | Support 2       |                  |                  |                    |                      |                  |         |
| D-Only                       | 4.324                  | 4.324           |                  |                  |                    |                      |                  |         |
| +D+L                         | 5.985                  | 5.985           |                  |                  |                    |                      |                  |         |
| +D+0.750L                    | 5.569                  | 5.569           |                  |                  |                    |                      |                  |         |

### Commercial Use Not Allowed

## Educational Version

# Commercial Use Not Allowed

| Title Block Line 1<br>You can change this area<br>using the "Settings" menu item<br>and then using the "Printing &<br>Title Block" selection.<br>Title Block Line 6                | Project Title:<br>Engineer:<br>Project ID:<br>Project Descr:                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Steel Beam                                                                                                                                                                         | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6                                                      |
| Lic. # : KW-06090157 - Educational Version                                                                                                                                         | Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 .<br>Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING |
| <b>DESCRIPTION:</b> Residential (Roof) - 20 to 30 ft spans                                                                                                                         | LICENSER USER . DANIA CLARA UNIVERSITI, SIVIE ENSINEERING                                                                    |
| CODE REFERENCES                                                                                                                                                                    |                                                                                                                              |
| Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10<br>Load Combination Set : ASCE 7-16                                                                                    | al version                                                                                                                   |
| Material Properties                                                                                                                                                                |                                                                                                                              |
| Analysis Method : Load Resistance Factor Design<br>Beam Bracing : Beam bracing is defined as a set spacing over all spans<br>Bending Axis : Major Axis Bending<br>Unbraced Lengths | Fy : Steel Yield : 50.0 ksi<br>E: Modulus : 29,000.0 ksi                                                                     |
| First Brace starts at 10.0 ft from Left-Most support                                                                                                                               |                                                                                                                              |
| Regular spacing of lateral supports on length of beam = 10.0 ft                                                                                                                    |                                                                                                                              |
|                                                                                                                                                                                    |                                                                                                                              |
| <u>ب</u> D(1.5402) L(۱                                                                                                                                                             | 0.604)                                                                                                                       |
| ×                                                                                                                                                                                  | × ×                                                                                                                          |
| *                                                                                                                                                                                  | *                                                                                                                            |
| W16x67                                                                                                                                                                             | 7                                                                                                                            |
| Span = 30                                                                                                                                                                          | .0 ft                                                                                                                        |
| •                                                                                                                                                                                  |                                                                                                                              |
|                                                                                                                                                                                    |                                                                                                                              |
| Applied Loads                                                                                                                                                                      | Service loads entered. Load Factors will be applied for calculatior                                                          |
| Beam self weight calculated and added to loading                                                                                                                                   |                                                                                                                              |
| Uniform Load : D = 0.0510, L = 0.020 ksf, Tributary Width = 30.20 ft, (Typ                                                                                                         | pical Roof)                                                                                                                  |
|                                                                                                                                                                                    |                                                                                                                              |
| DESIGN SUMMARY                                                                                                                                                                     | Design OK                                                                                                                    |
|                                                                                                                                                                                    | timum Shear Stress Ratio = 0.225 : 1                                                                                         |
| Section used for this spanW16x67                                                                                                                                                   | Section used for this span W16x67                                                                                            |
| Mu : Applied 325.692 k-ft                                                                                                                                                          | Vu : Applied 43.426 k                                                                                                        |
| Mn * Phi : Allowable 479.756 k-ft                                                                                                                                                  | Vn * Phi : Allowable 193.155 k                                                                                               |
| Load Combination +1.20D+1.60L                                                                                                                                                      | Load Combination +1.20D+1.60L                                                                                                |
| Location of maximum on span 15.000ft<br>Span # where maximum occurs Span # 1                                                                                                       | Location of maximum on span 0.000 ft<br>Span # where maximum occurs Span # 1                                                 |
| Maximum Deflection                                                                                                                                                                 |                                                                                                                              |
| Max Downward Transient Deflection 0.400 in Ratio =                                                                                                                                 | 900 >=360.                                                                                                                   |
| Max Upward Transient Deflection 0.000 in Ratio =                                                                                                                                   | <mark>0</mark> <360.0                                                                                                        |
| Max Downward Total Deflection 1.463 in Ratio =                                                                                                                                     | 246 >=240.                                                                                                                   |
| Max Upward Total Deflection 0.000 in Ratio =                                                                                                                                       | 0 <240.0                                                                                                                     |
| Maximum Forces & Stresses for Load Combinations                                                                                                                                    |                                                                                                                              |
|                                                                                                                                                                                    | ummary of Moment Values Summary of Shear Values                                                                              |
| Segment Length Span # M V max Mu + max Mu -                                                                                                                                        | Mu Max Mnx Phi*Mnx Cb Rm VuMax Vnx Phi*Vnx                                                                                   |
| +1.40D<br>Dsgn. L = 9.94 ft 1 0.460 0.175 224.36                                                                                                                                   | 224.36 541.67 487.50 1.46 1.00 33.75 193.16 193.16                                                                           |
| Dsgn. L = 10.03 ft 1 0.528 0.059 253.13 224.36                                                                                                                                     | 2224.30 541.87 407.30 1.40 1.00 53.75 193.16 193.16<br>253.13 533.06 479.76 1.01 1.00 11.38 193.16 193.16                    |
| Dsgn. L = 10.03 ft 1 1 0.462 0.175 225.33                                                                                                                                          | 225.33 541.67 487.50 1.45 1.00 33.75 193.16 193.16                                                                           |
| +1.20D+1.60L<br>Dsgn. L = 9.94 ft 1 0.592 0.225 288.67                                                                                                                             | 288.67 541.67 487.50 1.46 1.00 43.43 193.16 193.16                                                                           |

Dsgn. L = 10.03 ft

Dsgn. L = 10.03 ft

Dsgn. L = 9.94 ft

Dsgn. L = 10.03 ft

Dsgn. L = 10.03 ft

Dsgn. L = 9.94 ft

Dsgn. L = 10.03 ft

Dsgn. L = 10.03 ft

Dsgn. L = 9.94 ft Dsgn. L = 10.03 ft

Dsgn. L = 10.03 ft

+1.20D+L

+1.20D

+0.90D

1

1

1

1

1

1

1

1

1

1

0.679

0.595

0.518

0.594

0.520

0.394

0.452

0.396

0.296

0.339

0.297

0.076

0.225

0.197

0.066

0.197

0.150

0.050

0.150

0.112

0.038

0.112

325.69

289.92

252.54

284.92

253.62

192.31

216.97

193.14

144.23

162.73

144.85

288.67

252.54

192.31

144.23

325.69

289.92

252.54

284.92

253.62

192.31

216.97

193.14

144.23

162.73

144.85

533.06

541.67

541.67

533.06

541.67

541.67

533.06

541.67

541.67

533.06

541.67

479.76

487.50

487.50

479.76

487.50

487.50

479.76

487.50

487.50

479.76

1.01 1.00

1.45 1.00

1.46 1.00

1.01 1.00

1.45 1.00

1.46 1.00

1.01 1.00

1.45 1.00

1.46 1.00

1.01 1.00

487.50 1.45 1.00

14.64

43.43

37.99

12.81

37.99

28.93

9.75

28.93

21.70

7.32

21.70

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

193.16

Load Combination

Location in Span

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Max. "+" Defl

#### **Steel Beam**

#### Lic. # : KW-06090157 - Educational Version

#### DESCRIPTION: Residential (Roof) - 20 to 30 ft spans

| Load Combination     |             | Max Stress | Ratios |          |          | Summary of M | oment Value | s       |      |      | Summ  | ary of Shea | r Values |
|----------------------|-------------|------------|--------|----------|----------|--------------|-------------|---------|------|------|-------|-------------|----------|
| Segment Length       | \$pan #     |            | V      | max Mu + | max Mu - | Mu Max       | Mnx         | Phi*Mnx | Cb   | Rm   | VuMax | Vnx         | Phi*Vnx  |
| +1.40D+L             |             | Л.G.       |        |          |          |              |             |         |      |      |       |             |          |
| Dsgn. L = 9.94 ft    | 1           | 0.584      | 0.222  | 284.59   |          | 284.59       | 541.67      | 487.50  | 1.46 | 1.00 | 42.81 | 193.16      | 193.16   |
| Dsgn. L = 10.03 ft   | 1           | 0.669      | 0.075  | 321.08   | 284.59   | 321.08       | 533.06      | 479.76  | 1.01 | 1.00 | 14.43 | 193.16      | 193.16   |
| Dsgn. L = 10.03 ft   | 1           | 0.586      | 0.222  | 285.81   |          | 285.81       | 541.67      | 487.50  | 1.45 | 1.00 | 42.81 | 193.16      | 193.16   |
| +0.70D               |             |            |        |          |          |              |             |         |      |      |       |             |          |
| Dsgn. L = 9.94 ft    | 1           | 0.230      | 0.087  | 112.18   |          | 112.18       | 541.67      | 487.50  | 1.46 | 1.00 | 16.88 | 193.16      | 193.16   |
| Dsgn. L = 10.03 ft   | 1           | 0.264      | 0.029  | 126.57   | 112.18   | 126.57       | 533.06      | 479.76  | 1.01 | 1.00 | 5.69  | 193.16      | 193.16   |
| Dsgn. L = 10.03 ft   | 1           | 0.231      | 0.087  | 112.66   |          | 112.66       | 541.67      | 487.50  | 1.45 | 1.00 | 16.88 | 193.16      | 193.16   |
| <b>Overall Maxim</b> | um Deflecti | ons        |        |          |          |              |             |         |      |      |       |             |          |

Location in Span

### Load Combination Span Max. "-" Defi

| opun                      | inesia Ben                                                      |                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                          | Econation in opan                                                                                                                                                                                                                                                                |
|---------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                         | 1.4633                                                          | 15.086                                                                                                                                                                                                              |                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                            |
|                           |                                                                 | Support                                                                                                                                                                                                             | notation : Far left is #1                                                                                            | Values in KIPS                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                  |
| Support 1                 | Support 2                                                       |                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |
| 33.168<br>9.060<br>24.108 | 33.168<br>9.060<br>24.108                                       |                                                                                                                                                                                                                     | se no                                                                                                                |                                                                                                                                                                                                                                                                          | Wed                                                                                                                                                                                                                                                                              |
| 33.168<br>30.903          | 33.168<br>30.903                                                |                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |
| 14.465<br>9.060           | 14.465<br>9.060                                                 |                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |
|                           | 1<br>Support 1<br>9.060<br>24.108<br>33.168<br>30.903<br>14.465 | 1         1.4633           Support 1         Support 2           33.168         9.060           9.060         9.060           24.108         33.168           30.903         30.903           14.465         14.465 | 1 1.4633 15.086<br>Support<br>Support 1 Support 2<br>9.060 24.108<br>33.168 33.168<br>30.903 30.903<br>14.465 14.465 | 1       1.4633       15.086         Support notation : Far left is #1         Support 1       Support 2         33.168       9.060       9.060         24.108       9.060       24.108         33.168       33.168       33.168         30.903       30.903       14.465 | 1       1.4633       15.086       0.0000         Support notation : Far left is #1       Values in KIPS         Support 1       Support 2       0.0000         24.108       9.060       24.108         33.168       33.168       33.168         30.903       30.903       14.465 |

### Educational Version

### Commercial Use Not Allowed

| Title Block Line 1<br>You can change this area<br>using the "Settings" menu item<br>and then using the "Printing &<br>Title Block" selection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Title:<br>Engineer:<br>Project ID:<br>Project Descr:                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title Block Line 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Printed: 2 APR 2020, 3:34PN                                                                                                                                                                                                                  |
| Steel Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6<br>Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24                                                                                                     |
| Lic. # : KW-06090157 - Educational Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING                                                                                                                                                                                    |
| <b>DESCRIPTION:</b> Residential (Roof) - 30 to 37 ft spans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |
| CODE REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | al Vareian                                                                                                                                                                                                                                   |
| Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10<br>Load Combination Set : ASCE 7-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
| Material Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                              |
| Analysis Method : Load Resistance Factor Design<br>Beam Bracing : Beam bracing is defined as a set spacing over all spans<br>Bending Axis : Major Axis Bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fy : Steel Yield : 50.0 ksi<br>E: Modulus : 29,000.0 ksi                                                                                                                                                                                     |
| Unbraced Lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |
| First Brace starts at 10.0 ft from Left-Most support<br>Regular spacing of lateral supports on length of beam = 10.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
| <u>لا المراجعة من مراجعة من مراجعة من مراجعة من مراجعة من مراجعة من مراجعة من المراجعة من المراجعة من المراجعة من المراجعة من المراجعة من مراجعة من المراجعة من مراجعة من مراجع من مراجعة من م<br/>مراجعة من مراجعة من م</u> | 0.604)<br>*                                                                                                                                                                                                                                  |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | × × ×                                                                                                                                                                                                                                        |
| × W18x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 × ×                                                                                                                                                                                                                                        |
| Span = 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0 ft                                                                                                                                                                                                                                        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
| Applied Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Service loads entered. Load Factors will be applied for calculation                                                                                                                                                                          |
| Beam self weight calculated and added to loading<br>Uniform Load : D = 0.0510, L = 0.020 ksf, Tributary Width = 30.20 ft, (Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bical Roof)                                                                                                                                                                                                                                  |
| DESIGN SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Design OK                                                                                                                                                                                                                                    |
| Section used for this span W18x106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | imum Shear Stress Ratio = 0.164 : 1<br>Section used for this span W18x106                                                                                                                                                                    |
| Mu : Applied<br>Mn * Phi : Allowable<br>Load Combination<br>Location of maximum on span<br>Span # where maximum occurs<br>Mn * Phi : Allowable<br>18.500 k-ft<br>18.500 ft<br>Span # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vu : Applied       54.424       k         Vn * Phi : Allowable       330.990       k         Load Combination       +1.20D+1.60L         Location of maximum on span       0.000       ft         Span # where maximum occurs       Span # 1 |
| Maximum Deflection<br>Max Downward Transient Deflection0.462 in Ratio =Max Upward Transient Deflection0.000 in Ratio =Max Downward Total Deflection1.721 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 961 >=360.<br>0 <360.0                                                                                                                                                                                                                       |
| Max Upward Total Deflection 0.000 in Ratio =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 258 >=240.<br>0 <240.0                                                                                                                                                                                                                       |

#### **Maximum Forces & Stresses for Load Combinations**

| Load Combination                        |                                | Max Stres | ss Ratios |               | Summary of Moment Values S |                  |        |         |      |      | Summ           | Summary of Shear Values |         |  |
|-----------------------------------------|--------------------------------|-----------|-----------|---------------|----------------------------|------------------|--------|---------|------|------|----------------|-------------------------|---------|--|
| Segment Length                          | Span #                         | М         | V         | max Mu +      | max Mu -                   | Mu Max           | Mnx    | Phi*Mnx | Cb   | Rm   | VuMax          | Vnx                     | Phi*Vnx |  |
| +1.40D                                  |                                |           |           |               |                            |                  |        |         |      |      |                |                         |         |  |
| Dsgn. L = 9.94 ft                       | 1                              | 0.359     | 0.129     | 309.90        |                            | 309.90           | 958.33 | 862.50  | 1.52 | 1.00 | 42.64          | 330.99                  | 330.99  |  |
| Dsgn. L = 10.04 ft                      | )  'n <b>h</b> )( <sub>'</sub> | 0.457     | 0.060     | 394.39        | 309.90                     | 394.39           | 958.33 | 862.50  | 1.04 |      | 19.73          | 330.99                  | 330.99  |  |
| Dsgn. L = 9.94 ft                       | 1 1                            | 0.454     | 0.079     | 391.86        | 244.18                     | 391.86           | 958.33 | 862.50  | 1.11 | 1.00 | 26.31          | 330.99                  | 330.99  |  |
| Dsgn. L = 7.08 ft<br>+1.20D+1.60L       |                                | 0.283     | 0.129     | 244.18        | $\bigcirc$ $\bigcirc$      | 244.18           | 958.33 | 862.50  | 1.55 | 1.00 | 42.64          | 330.99                  | 330.99  |  |
|                                         | 1                              | 0.459     | 0.164     | 395.57        |                            | 395.57           | 958.33 | 862.50  | 1.52 | 1.00 | F1 10          | 330.99                  | 330.99  |  |
| Dsgn. L = 9.94 ft<br>Dsgn. L = 10.04 ft | 1                              | 0.439     | 0.104     | 503.42        | 395.57                     | 503.42           | 958.33 | 862.50  | 1.04 | 1.00 | 54.42<br>25.19 | 330.99                  | 330.99  |  |
| Dsgn. L = 9.94 ft                       | 1                              | 0.580     | 0.070     | 500.20        | 311.69                     | 500.20           | 958.33 | 862.50  | 1.11 | 1.00 | 33.59          | 330.99                  | 330.99  |  |
| Dsgn. L = 7.08 ft                       | 1                              | 0.361     | 0.164     | 311.69        | 011.00                     | 311.69           | 958.33 | 862.50  | 1.55 | 1.00 | 54.42          | 330.99                  | 330.99  |  |
| +1.20D+L                                | -                              |           |           | • • • • • • • |                            |                  |        |         |      |      | • · · · =      |                         |         |  |
| Dsgn. L = 9.94 ft                       | 1                              | 0.402     | 0.144     | 346.84        |                            | 346.84           | 958.33 | 862.50  | 1.52 | 1.00 | 47.72          | 330.99                  | 330.99  |  |
| Dsgn. L = 10.04 ft                      | 1                              | 0.512     | 0.067     | 441.41        | 346.84                     | 441.41           | 958.33 | 862.50  | 1.04 | 1.00 | 22.09          | 330.99                  | 330.99  |  |
| Dsgn. L = 9.94 ft                       | 1                              | 0.509     | 0.089     | 438.58        | 273.29                     | 438.58           | 958.33 | 862.50  | 1.11 | 1.00 | 29.45          | 330.99                  | 330.99  |  |
| Dsgn. L = 7.08 ft                       | 1                              | 0.317     | 0.144     | 273.29        |                            | 273.29           | 958.33 | 862.50  | 1.55 | 1.00 | 47.72          | 330.99                  | 330.99  |  |
| +1.20D                                  |                                |           |           |               |                            |                  |        |         |      |      |                |                         |         |  |
| Dsgn. L = 9.94 ft                       | 1                              | 0.308     | 0.110     | 265.63        | 005.00                     | 265.63           | 958.33 | 862.50  | 1.52 | 1.00 | 36.55          | 330.99                  | 330.99  |  |
| Dsgn. L = 10.04 ft                      |                                | 0.392     | 0.051     | 338.05        | 265.63                     | 338.05           | 958.33 | 862.50  | 1.04 |      | 16.92          | 330.99                  | 330.99  |  |
| Dsgn. L = $9.94$ ft                     |                                | 0.389     | 0.068     | 335.88        | 209.30                     | 335.88<br>209.30 | 958.33 | 862.50  | 1.11 | 1.00 | 22.55          | 330.99                  | 330.99  |  |
| Dsgn. L = 7.08 ft                       |                                | 0.243     | 0.110     | 209.30        |                            | 209.50           | 958.33 | 862.50  | 1.55 | 1.00 | 36.55          | 330.99                  | 330.99  |  |

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 . Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

#### **Steel Beam**

+0.60D

L Only

#### Lic. # : KW-06090157 - Educational Version DESCRIPTION: Residential (Roof) - 30 to 37 ft spans

18.273

11.174

18.273

11.174

| DESCRIPTION.         | Residential | (1001) - 30 t            |              | 115      |            |                |              |         |                |          |             |             |          |
|----------------------|-------------|--------------------------|--------------|----------|------------|----------------|--------------|---------|----------------|----------|-------------|-------------|----------|
| Load Combination     |             | Max Stree                | ss Ratios    |          |            | Summary of N   | Ioment Value | s       |                |          | Summ        | ary of Shea | r Values |
| Segment Length       | Span #      |                          | V            | max Mu + | max Mu -   | Mu Max         | Mnx          | Phi*Mnx | Ċb             | Rm       | VuMax       | Vnx         | Phi*Vnx  |
| +0.90D               |             | $\mathcal{P}\mathcal{Q}$ |              |          |            |                |              |         | $\supset \Box$ |          |             |             |          |
| Dsgn. L = 9.94 ft    | 1           | 0.231                    | 0.083        | 199.22   |            | 199.22         | 958.33       | 862.50  | 1.52           | 1.00     | 27.41       | 330.99      | 330.99   |
| Dsgn. L = 10.04 ft   | 1           | 0.294                    | 0.038        | 253.54   | 199.22     | 253.54         | 958.33       | 862.50  | 1.04           | 1.00     | 12.69       | 330.99      | 330.99   |
| Dsgn. L = 9.94 ft    | 1           | 0.292                    | 0.051        | 251.91   | 156.97     | 251.91         | 958.33       | 862.50  |                | 1.00     | 16.92       | 330.99      | 330.99   |
| Dsgn. L = 7.08 ft    | 1           | 0.182                    | 0.083        | 156.97   |            | 156.97         | 958.33       | 862.50  | 1.55           | 1.00     | 27.41       | 330.99      | 330.99   |
| +1.40D+L             |             |                          |              |          |            |                |              |         |                |          |             |             |          |
| Dsgn. L = 9.94 ft    | 1           | 0.453                    | 0.163        | 391.11   |            | 391.11         | 958.33       | 862.50  |                | 1.00     | 53.81       | 330.99      | 330.99   |
| Dsgn. L = 10.04 ft   | 1           | 0.577                    | 0.075        | 497.75   | 391.11     | 497.75         | 958.33       | 862.50  |                | 1.00     | 24.91       | 330.99      | 330.99   |
| Dsgn. L = 9.94 ft    | 1           | 0.573                    | 0.100        | 494.56   | 308.17     | 494.56         | 958.33       | 862.50  |                | 1.00     | 33.21       | 330.99      | 330.99   |
| Dsgn. L = 7.08 ft    | 1           | 0.357                    | 0.163        | 308.17   |            | 308.17         | 958.33       | 862.50  | 1.55           | 1.00     | 53.81       | 330.99      | 330.99   |
| +0.70D               |             |                          |              |          |            |                |              |         |                |          |             |             |          |
| Dsgn. L = 9.94 ft    | 1           | 0.180                    | 0.064        | 154.95   |            | 154.95         | 958.33       | 862.50  |                | 1.00     | 21.32       | 330.99      | 330.99   |
| Dsgn. L = 10.04 ft   | 1           | 0.229                    | 0.030        | 197.19   | 154.95     | 197.19         | 958.33       | 862.50  |                | 1.00     | 9.87        | 330.99      | 330.99   |
| Dsgn. L = 9.94 ft    | 1           | 0.227                    | 0.040        | 195.93   | 122.09     | 195.93         | 958.33       | 862.50  |                | 1.00     | 13.16       | 330.99      | 330.99   |
| Dsgn. L = 7.08 ft    | 1           | 0.142                    | 0.064        | 122.09   |            | 122.09         | 958.33       | 862.50  | 1.55           | 1.00     | 21.32       | 330.99      | 330.99   |
| <b>Overall Maxin</b> | num Defle   | ctions                   | $\mathbb{A}$ |          |            |                |              | 717     |                |          |             | $\Pi \Pi G$ |          |
| Load Combination     |             | Span                     | Max. "-" Def | Locatio  | on in Span | Load Corr      | bination     | JL      |                | Ma       | x. "+" Defl | Location i  | n Span   |
| +D+L                 |             | 1                        | 1.7209       |          | 18.606     |                |              |         |                |          | 0.0000      | 0.          | 000      |
| Vertical Reac        | tions       |                          |              |          | Support    | notation : Far | left is #1   |         |                | Values i | in KIPS     |             |          |
| Load Combination     |             | Support 1                | Support 2    |          |            |                |              |         |                |          |             |             |          |
| Overall MAXimum      |             | 41.629                   | 41.629       |          |            |                |              |         |                |          |             |             |          |
| Overall MINimum      |             | 11.174                   | 11.174       |          |            |                |              |         |                |          |             |             |          |
| D Only               |             | 30.455                   | 30.455       | 5        |            |                |              |         |                |          |             |             |          |
| +D+L                 |             | 41.629                   | 41.629       |          |            |                |              |         |                |          |             |             |          |
| +D+0.750L            |             | 38.835                   | 38.835       |          |            |                |              |         |                |          |             |             |          |
| 0.000                |             | 40.000                   | 40.000       |          |            |                |              |         |                |          |             |             |          |

**Educational Version** 

### Commercial Use Not Allowed

| Title Block Line 1<br>You can change this area<br>using the "Settings" menu<br>and then using the "Printi<br>Title Block" selection.<br>Title Block Line 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u item                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project<br>Engine<br>Project<br>Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er:<br>ID:<br>Descr:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Printed: 2 APR 2020, 3:39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Steel Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | File = C:\Users\Owner\Deskt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | top\SCU Faculty Staff Housing Development.ec6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t ENERCALC, INC. 1983-2020, Build:12.20.2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| Lic. # : KW-06090157 - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                         | 45 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Licensed User : SANTA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLARA UNIVERSITY, CIVIL ENGINEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KING                                                |
| DESCRIPTION: Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sidentiai (Root) - 40 ti                                                                                                                                                                                                                                                | o 45 π spans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| CODE REFERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                   |
| Calculations per AIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+ \cdot \cdot \cdot (- 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| Load Combination S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                         | 5, CBC 2010, ASCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I V G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| Material Propert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| Beam Bracing : Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ajor Axis Bending                                                                                                                                                                                                                                                       | tor Design<br>s a set spacing over all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | spans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fy : Steel Yield :<br>E: Modulus :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.0 ksi<br>29,000.0 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
| First Brace starts at 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                         | upport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| Regular spacing of late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¢                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D(0.918) L(0.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                       | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W18x119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Span = 45.20 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| Applied Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rvice loads entered. Loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Factors will be applied for calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tior                                                |
| Beam self weight cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | culated and added to lo                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rvice loads entered. Loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Factors will be applied for calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tior                                                |
| Beam self weight cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         | ading<br>ksf, Tributary Width = '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rvice loads entered. Loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Factors will be applied for calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tior                                                |
| Beam self weight cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rvice loads entered. Loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Factors will be applied for calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tior                                                |
| Beam self weight cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rvice loads entered. Loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.0 ft, (Typical Roof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d Factors will be applied for calcula           Design OK           0.110 : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tior                                                |
| Beam self weight cal<br>Uniform Load :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.0 ft, (Typical Roof)<br>1 Maximum Sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rvice loads entered. Loa<br>near Stress Ratio =<br>on used for this span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Design OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for the<br>Mu ; A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D = 0.0510, L = 0.020<br><b>RY</b><br>Stress Ratio =<br>his span<br>pplied                                                                                                                                                                                              | ksf, Tributary Width =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.0 ft, (Typical Roof)<br>1 Maximum Sl<br>Secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | near Stress Ratio =<br>on used for this span<br>Vu : Applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for the<br>Mu ; A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D = 0.0510, L = 0.020<br><b>RY</b><br>g Stress Ratio =<br>his span                                                                                                                                                                                                      | ksf, Tributary Width = 1<br>0.473 : 1<br>W18x119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.0 ft, (Typical Roof)<br>1 Maximum Sl<br>Secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | near Stress Ratio =<br>on used for this span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Design OK<br>0.110 : 1<br>W18x119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for the<br>Mu : A<br>Mn * F<br>Load Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | <b>0.473</b> :<br><b>W18x119</b><br>464.894 k<br>982.500 k<br>+1.20D+1.60L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft Coad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu A<br>Mn * F<br>Load Combination<br>Location of maximu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | <b>0.473</b> :<br><b>W18x119</b><br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft Load<br>Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span                                                                                                                                                                                                                                                                                                                                                                                                                                 | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for the<br>Mu : A<br>Mn * F<br>Load Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | <b>0.473</b> :<br><b>W18x119</b><br>464.894 k<br>982.500 k<br>+1.20D+1.60L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft Load<br>Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | <b>0.473</b><br><b>W18x119</b><br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft<br>-ft<br>Load<br>Locati<br>Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs                                                                                                                                                                                                                                                                                                                                                                                                       | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | <b>0.473</b> :<br><b>W18x119</b><br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft<br>-ft<br>Load<br>Load<br>Load<br>Span<br>Ratio = 1,014 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs<br>=360.                                                                                                                                                                                                                                                                                                                                                                                              | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectii<br>Max Downward Tr<br>Max Upward Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | <b>0.473</b> :<br><b>W18x119</b><br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 in<br>0.000 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft<br>-ft<br>Load<br>Locati<br>Span<br>Ratio = 1,014 ><br>Ratio = 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs<br>=360.<br>360.0                                                                                                                                                                                                                                                                                                                                                                                     | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectii<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 ir<br>0.000 ir<br>2.075 jr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft<br>-ft<br>Load<br>Locati<br>Span<br>Ratio = 1,014 ><br>Ratio = 0 <<br>Ratio = 261 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs<br>=360.<br>360.0<br>=240.                                                                                                                                                                                                                                                                                                                                                                            | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Maximum Deflection<br>Max Downward Trans<br>Max Downward Trans<br>Max Downward Trans<br>Max Upward Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | <b>0.473</b> :<br><b>W18x119</b><br><b>464.894 k</b><br><b>982.500 k</b><br><b>464.894 k</b><br><b>982.500 k</b><br><b>1.20D+1.60</b><br><b>22.600ft</b><br>Span # 1<br><b>0.535 in</b><br><b>0.000 in</b><br><b>2.075 in</b><br><b>0.000 in</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft<br>-ft<br>Load<br>Locati<br>Span<br>1,014 ><br>Ratio = 1,014 ><br>Ratio = 261 ><br>Ratio = 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs<br>=360.<br>360.0                                                                                                                                                                                                                                                                                                                                                                                     | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tior                                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflecti<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir<br>2.075 ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.0 ft, (Typical Roof)         1       Maximum Si Secti         -ft       Load I         -ft       Load I         -ft       Load I         -ft       Ratio = 1,014 >         Ratio = 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs<br>=360.<br>360.0<br>=240.<br>240.0                                                                                                                                                                                                                                                                                                                                                                   | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft<br>Span # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectin<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Total<br>Max Upward Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.0 ft, (Typical Roof)         1       Maximum Si Secti         -ft       Load         -ft       Load         -ft       Load         -ft       Load         -ft       Ratio = 1,014 >         Ratio = 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs<br>=360.<br>360.0<br>=240.<br>240.0                                                                                                                                                                                                                                                                                                                                                                   | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft<br>Span # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectii<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Trans<br>Max Downward Trans<br>Max Downward Trans<br>Max Downward Trans<br>Max Upward Trans<br>Max Upward Trans<br>Max Upward Trans<br>Max Upward Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir<br>2.075 ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.0 ft, (Typical Roof)         1       Maximum Si Secti         -ft       Load I         -ft       Load I         -ft       Load I         -ft       Ratio = 1,014 >         Ratio = 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | near Stress Ratio =<br>on used for this span<br>Vu : Applied<br>Vn * Phi : Allowable<br>Combination<br>on of maximum on span<br># where maximum occurs<br>=360.<br>360.0<br>=240.<br>240.0                                                                                                                                                                                                                                                                                                                                                                   | Design OK<br>0.110 : 1<br>W18x119<br>41.141 k<br>373.350 k<br>+1.20D+1.60L<br>0.000 ft<br>Span # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflecti<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Tran:<br>Max Upward Total<br>Max Upward Total<br>Maximum Forces<br>Load Combination<br>Segment Length<br>+1.40D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir | 18.0 ft, (Typical Roof)<br>1 Maximum Si<br>Secti<br>-ft<br>-ft<br>Load<br>Locati<br>Span<br>1 Ratio = 1,014 ><br>1 Ratio = 0 <<br>1 Ratio = 261 ><br>1 Ratio = 0 <<br>0 Summary of 1<br>max Mu - Mu Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | near Stress Ratio =         on used for this span         Vu : Applied         Vn * Phi : Allowable         Combination         on of maximum on span         # where maximum occurs         =360.         360.0         =240.         240.0         Moment Values         Mnx       Phi*Mnx                                                                                                                                                                                                                                                                 | Design OK           0.110 : 1           W18x119           41.141           41.373.350           +1.20D+1.60L           0.000 ft           Span # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | res<br>i*Vnx                                        |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflection<br>Max Downward Tr<br>Max Upward Trans<br>Max Upward Total<br>Max Upward Total<br>Max Upward Total<br>Max Upward Total<br>Max Upward Total<br>Max Upward Total<br>Max Upward Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir<br>ELoad Combinati<br>is Ratios<br>V max Mu +<br>0.088 254.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.0 ft, (Typical Roof)         1       Maximum Si Secti Secti Span         -ft       Load I Locati Span         1       Ratio = 1,014 > 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | near Stress Ratio =         on used for this span         Vu : Applied         Vn * Phi : Allowable         Combination         on of maximum on span         # where maximum occurs         =360.         360.0         =240.         240.0         Moment Values         Mnx       Phi*Mnx         1,091.67       982.50                                                                                                                                                                                                                                   | Design OK           0.110 : 1           W18x119           41.141 k           373.350 k           +1.20D+1.60L           0.000 ft           Span # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ies<br>i*Vnx<br>3.35                                |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflecti<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Tran:<br>Max Upward Total<br>Max Upward Total<br>Maximum Forces<br>Load Combination<br>Segment Length<br>+1.40D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D = 0.0510, L = 0.020                                                                                                                                                                                                                                                   | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>+1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 ir<br>0.000 ir<br>2.075 ir<br>0.000 ir | 18.0 ft, (Typical Roof)         1       Maximum Si Secti         -ft       Load         -ft       Load         -ft       Load         -ft       Load         -ft       Ratio =         1       Ratio =         1       Ratio =         2       Ratio =         2       Ratio =         0       Cons         Summary of I         max Mu -       Mu Max         254.49       254.49                                                                                                                                                                                                                                                                                                                                                               | Dear Stress Ratio =         on used for this span         Vu : Applied         Vn * Phi : Allowable         Combination         con of maximum on span         # where maximum occurs         =360.         360.0         =240.         240.0         Moment Values         Mnx       Phi*Mnx         1,091.67       982.50         1,091.67       982.50                                                                                                                                                                                                    | Design OK           0.110 : 1           W18x119           41.141 k           373.350 k           +1.20D+1.60L           0.000 ft           Span # 1           25 Rm           VuMax         Vnx           26 1.00           32.81         373.35           37           10 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | res<br>i*Vnx                                        |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Max Downward Tr<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Total<br>Max Down Total<br>Max Down Max Down Total<br>Max Down Max Down Max Down Max Down<br>Nat Down Max Down Max Down Max Down<br>Nat Down Max Down Max Down Max Down<br>Nat Down Max Down Max Down Max Down Max Down<br>Nat Down Max Do | D = 0.0510, L = 0.020<br><b>IRY</b><br>Stress Ratio =<br>his span<br>pplied<br>hi : Allowable<br>m on span<br>mum occurs<br>on<br>ansient Deflection<br>beflection<br>Deflection<br><b>5 &amp; Stresses for</b><br>Max Stress<br>Span # M<br>0.259<br>0.372<br>0.377    | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>982.500 k<br>982.500 k<br>1.20D+1.60<br>22.600ft<br>Span # 1<br>0.535 in<br>0.000 in<br>2.075 in<br>0.000 in<br>ELOAD Combinati<br>ss Ratios<br>V max Mu +<br>0.088 254.49<br>0.049 365.42<br>0.029 370.76<br>0.067 331.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.0 ft, (Typical Roof)         1       Maximum Sl<br>Secti         -ft       Load<br>Locati         -ft       Load<br>Locati         -ft       Ratio = 1,014 >         Ratio = 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mear Stress Ratio =           on used for this span           Vu : Applied           Vn * Phi : Allowable           Combination           on of maximum on span           # where maximum occurs           =360.           360.0           =240.           240.0           Moment Values           Mnx         Phi*Mnx           1,091.67         982.50           1,091.67         982.50           1,091.67         982.50           1,091.67         982.50                                                                                               | Design OK           0.110 : 1           W18x119           41.141           41.141           373.350           +1.20D+1.60L           0.000           0.000           ft           Span # 1           Summary of Shear Value           2000           32.81         373.35           10         1.00           14.37         373.35           37         373.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ies<br>i*Vnx<br>(3.35)                              |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu - A<br>Mn + F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Maximum Deflectii<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Trans<br>Max Upward Trans<br>Max Upward Total<br>Max Upward Total<br>Max Upward Total<br>Dsgn. L = 9.94 ft<br>Dsgn. L = 9.94 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D = 0.0510, L = 0.020<br><b>ARY</b><br>Stress Ratio =<br>his span<br>pplied<br>thi : Allowable<br>m on span<br>mum occurs<br>on<br>ansient Deflection<br>beflection<br>Deflection<br><b>5 &amp; Stresses for</b><br>Max Stress<br>Span # M<br>1 0.259<br>0.372<br>0.377 | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>982.500 k<br>982.500 k<br>1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 in<br>0.000 in<br>2.075 in<br>0.000 in<br>ELOAD Combinati<br>is Ratios<br>V max Mu +<br>0.088 254.49<br>0.049 365.42<br>-0.029 370.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.0 ft, (Typical Roof)         1       Maximum Si Secti         -ft       Load         -ft       Load         -ft       Load         -ft       Load         -ft       Load         -ft       Ratio =         -ft       Q         -ft       Ratio =         -ft       Q         -ft       Ratio =         -ft       Q         -g       Ratio =         -g       Summary of I         max Mu -       Mu Max         254.49       365.42         331.43       370.76 | Applied         Applied           Vu : Applied         Vu : Applied           Vn * Phi : Allowable         Combination           Combination         on of maximum on span           # where maximum occurs         =           =360.         360.0           =240.         240.0           Moment Values         Mnx                                                                                                                                                                                                                                        | Design OK           0.110 : 1           W18x119           41.141           47.3350           +1.200+1.60L           0.000           0.000           ft           Span # 1           Summary of Shear Value           VuMax         Vnx           VuMax         Vnx           10         10.0           11.00         32.81           373.35         37           10         10.69           373.35         37           21         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | res<br>*Vnx<br>3.35<br>3.35<br>3.35                 |
| Beam self weight cal<br>Uniform Load :<br>DESIGN SUMMA<br>Maximum Bending<br>Section used for th<br>Mu : A<br>Mn * F<br>Load Combination<br>Location of maximu<br>Span # where maxi<br>Max Downward Tr<br>Max Downward Tr<br>Max Downward Tr<br>Max Upward Trans<br>Max Downward Total<br>Max Down Total<br>Max Down Max Down Total<br>Max Down Max Down Max Down Max Down<br>Nat Down Max Down Max Down Max Down<br>Nat Down Max Down Max Down Max Down<br>Nat Down Max Down Max Down Max Down Max Down<br>Nat Down Max Do | D = 0.0510, L = 0.020<br><b>IRY</b><br>Stress Ratio =<br>his span<br>pplied<br>hi : Allowable<br>m on span<br>mum occurs<br>on<br>ansient Deflection<br>beflection<br>Deflection<br><b>5 &amp; Stresses for</b><br>Max Stress<br>Span # M<br>0.259<br>0.372<br>0.377    | ksf, Tributary Width =<br>0.473 :<br>W18x119<br>464.894 k<br>982.500 k<br>982.500 k<br>982.500 k<br>1.20D+1.60L<br>22.600ft<br>Span # 1<br>0.535 in<br>0.000 in<br>2.075 in<br>0.000 in<br>ELOAD Combinati<br>ss Ratios<br>V max Mu +<br>0.088 254.49<br>0.049 365.42<br>0.029 370.76<br>0.067 331.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.0 ft, (Typical Roof)         1       Maximum Sl<br>Secti         -ft       Load<br>Locati         -ft       Load<br>Locati         -ft       Ratio = 1,014 >         Ratio = 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mear Stress Ratio =           on used for this span           Vu : Applied           Vn * Phi : Allowable           Combination           on of maximum on span           # where maximum occurs           =360.           360.0           =240.           240.0           Moment Values           Mnx         Phi*Mnx           1,091.67         982.50         1.4           1,091.67         982.50         1.4           1,091.67         982.50         1.4           1,091.67         982.50         1.4           1,091.67         982.50         1.4 | Summary of Shear Valu           Summary of Shear Valu           Vullax         Vnx         Phi           Stars         Summary of Shear Valu         Summary of Shear Valu           Value         Value         Value         Summary of Shear Valu           Stars         Summary of Shear Valu         Value         Summary of Shear Value           Stars         Summary of Shear Value         Value         Stars         Stars           Stars         Stars         Stars         Stars         Stars         Stars           Stars         Stars         Stars         Stars         Stars         Stars         Stars           Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars         Stars <ths< td=""><td>res<br/>*Vnx<br/>3.35<br/>3.35<br/>3.35<br/>3.35<br/>3.35</td></ths<> | res<br>*Vnx<br>3.35<br>3.35<br>3.35<br>3.35<br>3.35 |

415.57

192.32

281.24

366.26

169.50

464.89

415.57

192.32

281.24

403.83

409.73

366.26

169.50

218.13

1,091.67

1,091.67

1,091.67

1,091.67

1,091.67

1,091.67

1,091.67

1,091.67

1,091.67

1

1

1

1

1

1

1

1

Dsgn. L = 10.07 ft

Dsgn. L = 9.94 ft

Dsgn. L = 5.29 ft

Dsgn. L = 9.94 ft Dsgn. L = 9.94 ft

Dsgn. L = 10.07 ft

Dsgn. L = 9.94 ft

Dsgn. L = 9.94 ft

Dsgn. L = 5.29 ft +1.20D

+1.20D+L

0.473

0.423

0.196

0.286

0.411

0.417

0.373

0,173

0.222

0.036

0.084

0.110

0.097

0.054

0.032

0.074

0.097

0.075

464.89

415.57

192.32

281.24

403.83

409.73

366.26

169.50

218.13

982.50

982.50

982.50

982.50

982.50

982.50

982.50

982.50

1.01 1.00

1.21 1.00

1.58 1.00

1.56 1.00

1.10 1.00

1.01 1.00

1.21 1.00

1.58 1.00

982.50 1.56 1.00

13.40

31.50

41.14

36.26

20.31

11.81

27.76

36.26

28.12

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

373.35

Lic. # : KW-06090157 - Educational Version

Steel Beam

| Printed: 2 APR 2020, 3:39PN                                             |
|-------------------------------------------------------------------------|
| File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 |
| Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 .         |
| Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING               |
|                                                                         |

#### DESCRIPTION: Residential (Roof) - 40 to 45 ft spans Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # М V max Mu + max Mu Mu Max Mnx Phi\*Mnx Cb Rm VuMax Vnx Phi\*Vnx Dsgn. L = 9.94 ft 0.319 0.042 313.22 218.13 313.22 982.50 1.10 1.00 373.35 373.35 1 1,091.67 15.75 Dsgn. L = 10.07 ft 317.79 284.08 317.79 1,091.67 982.50 373.35 1 0.323 0.025 1.01 1.00 9.16 373.35 Dsgn. L = 9.94 ft 0.289 0.058 284.08 131.47 284 08 1,091.67 982 50 1.21 1.00 21 53 373.35 373.35 1 28.12 Dsgn. L = 5.29 ft 0.134 0.075 131.47 131.47 1,091.67 982.50 1.58 1.00 373.35 373.35 1 +0.90D Dsgn. L = 9.94 ft 0.167 0.056 163.60 163.60 1,091.67 982.50 1.56 1.00 21.09 373.35 373.35 1 234.91 163.60 1.10 Dsgn. L = 9.94 ft 1 0.239 0.032 234.91 1,091.67 982.50 1.00 11.81 373.35 373.35 Dsgn. L = 10.07 ft 0.243 0.018 238.35 213.06 238.35 1,091.67 982.50 1.01 1.00 6.87 373.35 373.35 1 Dsgn. L = 9.94 ft 0.217 0.043 213.06 98.60 213.06 1.091.67 982.50 1.21 1.00 373.35 373.35 16 15 1 Dsgn. L = 5.29 ft 1 0.100 0.056 98.60 98 60 1,091.67 982.50 1.58 1.00 21.09 373.35 373.35 +1.40D+L Dsgn. L = 9.94 ft 1 0.323 0.110 317.60 317.60 1,091.67 982.50 1.56 1.00 40.95 373.35 373.35 Dsgn. L = 9.94 ft 0.464 456.03 317.60 982.50 1.10 22.93 0.061 456.03 1,091.67 1.00 373.35 373.35 1 0.036 1,091.67 13.34 Dsgn. L = 10.07 ft 1 0.471 462.70 413.61 462.70 982.50 1.01 1.00 373.35 373.35 191.41 31.35 373.35 Dsgn. L = 9.94 ft 1 0.421 0.084 413.61 413.61 1,091.67 982.50 1.21 1.00 373.35 Dsgn. L = 5.29 ft 1 0.195 0.110 191.41 191.41 1,091.67 982.50 1.58 1.00 40.95 373.35 373.35 +0.70D 0.044 1.00 Dsgn. L = 9.94 ft 0 130 127.25 127.25 1.091.67 982.50 1.56 16.41 373.35 373.35 Dsgn. L = 9.94 ft 0.186 0.025 182.71 127.25 182.71 1,091.67 982.50 1.10 1.00 9.19 373.35 373.35 Dsgn. L = 10.07 ft 0.189 0.014 185.38 165.71 185.38 1,091.67 982.50 1.01 1.00 5.34 373.35 373.35 Dsgn. L = 9.94 ft 0.169 0.034 165.71 76.69 165.71 1,091.67 982.50 1.21 1.00 12.56 373.35 373.35 Dsan. L = 5.29 ft0.078 0.044 76.69 76.69 1.091.67 982.50 1.58 1.00 16.41 373.35 373.35 1 **Overall Maximum Deflections** Max. "-" Defl Max. "+" Defl Load Combination Location in Span Load Combination Location in Span Span +D+L 2.0753 22.729 0.0000 0.000 1 Vertical Reactions Support notation : Far left is #1 Values in KIPS

| Load Combination | Support 1 | Support 2 |              |
|------------------|-----------|-----------|--------------|
| Overall MAXimum  | 31.572    | 31.572    |              |
| Overall MINimum  | 8.136     | 8.136     |              |
| D Only           | 23.436    | 23.436    |              |
| +D+L             | 31,572    | 31.572    | ABAL VARCIAR |
| +D+0.750L        | 29.538    | 29.538    |              |
| +0.60D           | 14.062    | 14.062    |              |
| L Only           | 8.136     | 8.136     |              |
|                  |           |           |              |

# Commercial Use Not Allowed



#### **Concrete Beam**

Lic. # : KW-06090157 - Educational Version

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

DESCRIPTION: Parking Garage - 18'3" and below spans

| Vertical Reactions         |           |           | Support notation : Far left is #1 |
|----------------------------|-----------|-----------|-----------------------------------|
| Load Combination           | Support 1 | Support 2 |                                   |
| +D+0.750L+0.750S+0.5250E+H | 36.153    | 36.153    |                                   |
| +0.60D+0.70E+H             | 15.779    | 15.779    |                                   |
| D Only                     | 26.298    | 26.298    |                                   |
| Lr Only                    |           |           |                                   |
| L Only                     | 13.140    | 13.140    |                                   |
| S Only                     |           |           |                                   |
| W Only                     |           |           |                                   |
| E Only                     |           |           |                                   |

#### H Only

#### **Detailed Shear Information**

| Detailed Shear Inforn    | nation                                          |          |       |        |        |        |         |        |                 |               |        |                 |
|--------------------------|-------------------------------------------------|----------|-------|--------|--------|--------|---------|--------|-----------------|---------------|--------|-----------------|
|                          | Span                                            | Distance |       | Vu     | (k)    | Mu     | d*Vu/Mu | Phi*Vc | Comment         | Phi*Vs        | Phi*Vn | Spacing (in)    |
| Load Combination         | Number                                          | (ft)     | (in)  | Actual | Design | (k-ft) |         | (k)    | _               | (k)           | (k)    | Req'd Suggest   |
| +1.20D+1.60L+0.50S+1.60H | $\sim$                                          | 0.00     | 13.00 | 52.58  | 52.58  | 0.00   | 1.00    | 34.21  | PhiVc < Vu      | 18.368        | 55.7   | 4.7 4.0         |
| +1.20D+1.60L+0.50S+1.60H | ] [( 🔁                                          | 0.20     | 13.00 | 51.43  | 51.43  | 10.37  | 1.00    | 34.21  | PhiVc < Vu      | 17.218        | 55.7   | 5.0 4.0         |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 0.40     | 13.00 | 50.28  | 50.28  | 20.52  | 1.00    | 34.21  | PhiVc < Vu      | 16.069        | 55.7   | 5.3 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 0.60     | 13.00 | 49.13  | 49.13  | 30.43  | 1.00    | 34.21  | PhiVc < Vu      | 14.920        | 55.7   | 5.8 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 0.80     | 13.00 | 47.98  | 47.98  | 40.12  | 1.00    | 34.21  | PhiVc < Vu      | 13.770        | 55.7   | 6.2 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.00     | 13.00 | 46.84  | 46.84  | 49.57  | 1.00    | 34.21  | PhiVc < Vu      | 12.621        | 55.7   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.20     | 13.00 | 45.69  | 45.69  | 58.80  | 0.84    | 32.14  | PhiVc < Vu      | 13.549        | 53.6   | 6.3 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.40     | 13.00 | 44.54  | 44.54  | 67.80  | 0.71    | 30.43  | PhiVc < Vu      | 14.107        | 51.9   | 6.1 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.60     | 13.00 | 43.39  | 43.39  | 76.57  | 0.61    | 29.15  | PhiVc < Vu      | 14.241        | 50.6   | 6.0 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.80     | 13.00 | 42.24  | 42.24  | 85.10  | 0.54    | 28.15  | PhiVc < Vu      | 14.092        | 49.6   | 6.1 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.99     | 13.00 | 41.09  | 41.09  | 93.41  | 0.48    | 27.34  | PhiVc < Vu      | 13.745        | 48.8   | 6.2 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 2.19     | 13.00 | 39.94  | 39.94  | 101.50 | 0.43    | 26.68  | PhiVc < Vu      | 13.255        | 48.1   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 2.39     | 13.00 | 38.79  | 38.79  | 109.35 | 0.38    | 26.13  | PhiVc < Vu      | 12.657        | 47.6   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 2.59     | 13.00 | 37.64  | 37.64  | 116.97 | 0.35    | 25.66  | PhiVc < Vu      | 11.976        | 47.1   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | $\frown$                                        | 2.79     | 13.00 | 36.49  | 36.49  | 124.36 | 0.32    | 25.26  | PhiVc < Vu      | 11.230        | 46.7   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | $\left( \begin{array}{c} 1 \end{array} \right)$ | 2,99     | 13.00 | 35.34  | 35.34  | 131.53 | 0.29    | 24.91  | PhiVc < Vu      | 10.432        | 46.4   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 3.19     | 13.00 | 34.19  | 34.19  | 138.46 | 0.27    | 24.60  | PhiVc < Vu      | 9.592         | 46.1   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 3.39     | 13.00 | 33.04  | 33.04  | 145.17 | 0.25    | 24.33  | PhiVc < Vu      | 8.717         | 45.8   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 3.59     | 13.00 | 31.89  | 31.89  | 151.64 | 0.23    | 24.08  | PhiVc < Vu      | 7.814         | 45.5   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 3.79     | 13.00 | 30.74  | 30.74  | 157.89 | 0.21    | 23.86  | PhiVc < Vu      | 6.887         | 45.3   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 3.99     | 13.00 | 29.60  | 29.60  | 163.91 | 0.20    | 23.66  | PhiVc < Vu      | 5.939         | 45.1   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 4.19     | 13.00 | 28.45  | 28.45  | 169.69 | 0.18    | 23.47  | PhiVc < Vu      | 4.973         | 44.9   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 4.39     | 13.00 | 27.30  | 27.30  | 175.25 | 0.17    | 23.30  | PhiVc < Vu      | 3.993         | 44.8   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 4.59     | 13.00 | 26.15  | 26.15  | 180.58 | 0.16    | 23.15  | PhiVc < Vu      | 2.999         | 44.6   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 4.79     | 13.00 | 25.00  | 25.00  | 185.68 | 0.15    | 23.00  | PhiVc < Vu      | 1.994         | 44.5   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 4.99     | 13.00 | 23.85  | 23.85  | 190.55 | 0.14    | 22.87  | PhiVc < Vu      | 0.9799        | 44.3   | 6.5 4.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 5.19     | 13.00 | 22.70  | 22.70  | 195.20 | 0.13    | 22.74  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 37.0   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 5.39     | 13.00 | 21.55  | 21.55  | 199.61 | 0.12    | 22.62  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.9   | 6.5 6. <u>0</u> |
| +1.20D+1.60L+0.50S+1.60H | $\sim$ $\sim$                                   | 5.58     | 13.00 | 20.40  | 20.40  | 203.79 | 0.11    | 22.51  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.8   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | n ( ( <del>_i</del> )                           | 5.78     | 13.00 | 19.25  | 19.25  | 207.75 | 0.10    | 22.41  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.7   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 5.98     | 13.00 | 18.10  | 18.10  | 211.47 | 0.09    | 22.31  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.6   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.18     | 13.00 | 16.95  | 16.95  | 214.97 | 0.09    | 22.21  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.5   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.38     | 13.00 | 15.80  | 15.80  | 218.23 | 0.08    | 22.12  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.4   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.58     | 13.00 | 14.65  | 14.65  | 221.27 | 0.07    | 22.03  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.3   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.78     | 13.00 | 13.50  | 13.50  | 224.08 | 0.07    | 21.95  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.2   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.98     | 13.00 | 12.36  | 12.36  | 226.66 | 0.06    | 21.86  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.2   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.18     | 13.00 | 11.21  | 11.21  | 229.01 | 0.05    | 21.78  | PhiVc/2 < Vu <= | Min 9.6.3.1   | 36.1   | 6.5 6.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.38     | 13.00 | 10.06  | 10.06  | 231.13 | 0.05    | 21.71  | Vu < PhiVc/2    | lot Regd 9.6. | 21.7   | 0.0 0.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.58     | 13.00 | 8.91   | 8.91   | 233.02 | 0.04    | 21.63  | Vu < PhiVc/2    | lot Reqd 9.6. | 21.6   | 0.0 0.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.78     | 13.00 | 7.76   | 7.76   | 234.68 | 0.04    | 21.56  | Vu < PhiVc/2    | lot Regd 9.6. | 21.6   | 0.0 0.0         |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.98     | 13.00 | 6.61   | 6.61   | 236.12 | 0.03    | 21.49  | Vu < PhiVc/2    | lot Regd 9.6. |        | 0.0 0.0         |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 8.18     | 13.00 | 5.46   | 5.46   | 237.32 | 0.03    | 21.43  | Vu < PhiVc/2    | lot Regd 9.6. | 21.4   | 0.0 0.0         |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 8.38     | 13.00 | 4.31   | 4.31   | 238.29 | 0.02    | 21.35  | Vu < PhiVc/2    | lot Regd 9.6. | 21.3   | 0.0 0.0         |
|                          |                                                 | 0.00     | 10.00 | 10.7   | 10.1   | 200.23 | 0.02    | 21.00  |                 | Stricqu 3.0.  | 41.0   | 0.0             |

#### **Concrete Beam**

Lic. # : KW-06090157 - Educational Version

DESCRIPTION: Parking Garage - 18'3" and below spans

| Detailed Shear Info                                  | rmation      |          |         |        |                  |         |                | 700                      |                |        |           |            |
|------------------------------------------------------|--------------|----------|---------|--------|------------------|---------|----------------|--------------------------|----------------|--------|-----------|------------|
|                                                      | Span Dist    | ance 'd' | Vu      | (k)    | Mu               | d*Vu/Mu | Phi*Vc         | Comment                  | Phi*Vs         | Phi*Vn | Spacing ( | (in)       |
| Load Combination                                     | Number (ft   | (in)     | Actual  | Design | (k-ft)           |         | (k)            |                          | (k)            | (k)    | Req'd Su  |            |
| +1.20D+1.60L+0.50S+1.60H                             | 1 8          | 58 13.00 | 3.16    | 3.16   | 239.04           | 0.01    | 21.28          | Vu < PhiVc/2             | lot Reqd 9.6.  | 21.3   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 8          | 78 13.00 | 2.01    | 2.01   | 239.55           | 0.01    | 21.21          | Vu < PhiVc/2             | lot Regd 9.6.  | 21.2   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 8          | 98 13.00 | 0.86    | 0.86   | 239.84           | 0.00    | 21.14          | Vu < PhiVc/2             | lot Regd 9.6.  | 21.1   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 9          | 17 13.00 | -0.29   | 0.29   | 239.90           | 0.00    | 21.11          | Vu < PhiVc/2             | lot Reqd 9.6.  | 21.1   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 9          | 37 13.00 | -1.44   | 1.44   | 239.73           | 0.01    | 21.17          | Vu < PhiVc/2             | lot Regd 9.6.  | 21.2   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 9          | 57 13.00 | -2.59   | 2.59   | 239.32           | 0.01    | 21.24          | Vu < PhiVc/2             | lot Regd 9.6.  | 21.2   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 9          | 77 13.00 | -3.74   | 3.74   | 238.69           | 0.02    | 21.31          | Vu < PhiVc/2             | lot Regd 9.6.  |        | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 9          | 97 13.00 | -4.88   | 4.88   | 237.83           | 0.02    | 21.38          | Vu < PhiVc/2             | lot Regd 9.6.  |        | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 10         | 17 13.00 | -6.03   | 6.03   | 236.75           | 0.03    | 21.45          | Vu < PhiVc/2             | lot Regd 9.6.  |        | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 10         |          | -7.18   | 7.18   | 235.43           | 0.03    | 21.52          | Vu < PhiVc/2             | lot Regd 9.6.  | 21.5   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 10         |          | -8.33   | 8.33   | 233.88           | 0.04    | _21.60         | Vu < PhiVc/2             | lot Regd 9.6.  | 21.6   | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             |              |          | -9.48   | 9.48   | 232.10           | 0.04    | 21.67          | Vu < PhiVc/2             | lot Regd 9.6.  |        | 0.0       | 0.0        |
| +1.20D+1.60L+0.50S+1.60H                             |              |          |         | 10.63  | 230.10           | 0.05    | 21.75          | Vu < PhiVc/2             | lot Regd 9.6.  | 21.7   |           | 0,0        |
| +1.20D+1.60L+0.50S+1.60H                             |              | 17 13.00 | -11.78  | 11.78  | 227.86           | 0.06    | 21.82          | PhiVc/2 < Vu <=          |                | 36.1   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 11         |          | -12.93  | 12.93  | 225.40           | 0.06    | 21.90          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.2   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 11         |          | -14.08  | 14.08  | 222.70           | 0.07    | 21.99          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.3   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 11         |          | -15.23  | 15.23  | 219.78           | 0.08    | 22.07          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.4   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 11         |          | -16.38  | 16.38  | 216.63           | 0.08    | 22.07          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.5   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 12         |          | -17.53  | 17.53  | 213.25           | 0.00    | 22.10          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.6   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 12         |          | -18.68  | 18.68  | 209.64           | 0.00    | 22.20          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.7   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 12         |          | -19.83  | 19.83  | 205.80           | 0.10    | 22.30          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.8   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 12         |          | -20.98  | 20.98  | 203.00           | 0.10    | 22.40          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 36.9   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 12         |          | -20.90  | 20.90  | 197.43           | 0.11    | 22.57          | PhiVc/2 < Vu <=          | Min 9.6.3.1    | 37.0   | 6.5       | 6.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 12         |          | -22.12  | 23.27  | 197.43           | 0.12    | 22.00          | PhiVc < Vu               | 0.4692         | 44.3   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 13         |          | -23.27  | 23.27  | 192.90           | 0.13    | 22.80          | PhiVc < Vu               | 1.488          | 44.3   | 6.5       | 4.0<br>4.0 |
| +1.20D+1.60L+0.50S+1.60H                             |              |          | -24.42  | 24.42  | 183.16           | 0.14    | 22.93          | PhiVc < Vu               | 2.498          | 44.4   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             |              |          | -25.57  | 25.57  | 177,95           | 0.15    | 23.07          | PhiVc < Vu               | 3.498          | 44.5   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             |              |          | -20.72  | 27.87  | 172.50           | 0.10    | 23.22          | PhiVc < Vu               | 4.485          | 44.8   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             |              |          | -27.07  | 29.02  | 166.83           |         |                | PhiVc < Vu               |                |        | 6.5       | 4.0<br>4.0 |
| +1.20D+1.60L+0.50S+1.60H                             | 1 14<br>1 14 |          |         | 30.17  | 160.03           | 0.19    | 23.56          | PhiVc < Vu<br>PhiVc < Vu | 5.458<br>6.415 | 45.0   | 6.5       | 4.0<br>4.0 |
| +1.20D+1.60L+0.50S+1.60H                             | 1 14         |          | -30.17  | 30.17  | 154.79           | 0.20    | 23.75<br>23.97 | PhiVc < Vu<br>PhiVc < Vu | 7.353          | 45.2   | 6.5       | 4.0<br>4.0 |
| +1.20D+1.60L+0.50S+1.60H                             |              |          | -31.32  |        |                  | 0.22    |                | PhiVc < Vu<br>PhiVc < Vu |                | 45.4   |           |            |
| +1.20D+1.60L+0.50S+1.60H                             | 1 14         |          | -32.47  | 32.47  | 148.43           | 0.24    | 24.20          | PhiVc < Vu<br>PhiVc < Vu | 8.269          | 45.6   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 14         |          | -33.62  | 33.62  | 141.84           | 0.26    | 24.46          | PhiVc < Vu<br>PhiVc < Vu | 9.159          | 45.9   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 15         |          | -34.77  | 34.77  | 135.02           | 0.28    | 24.75          | PhiVc < Vu<br>PhiVc < Vu | 10.017         | 46.2   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 15         |          | -35.92  | 35.92  | 127.97           | 0.30    | 25.08          |                          | 10.837         | 46.5   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 15         |          | -37.07  | 37.07  | 120.69           | 0.33    | 25.46          | PhiVc < Vu               | 11.610         | 46.9   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 15         |          | -38.22  | 38.22  | 113.19           | 0.37    | 25.89          | PhiVc < Vu               | 12.325         | 47.3   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 15         |          | -39.36  | 39.36  | 105.45           | 0.40    | 26.40          | PhiVc < Vu               | 12.967         | 47.8   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 16         |          | -40.51  | 40.51  | 97.48            | 0.45    | 27.00          | PhiVc < Vu               | 13.515         | 48.4   | 6.3       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             |              |          |         | 41.66  |                  | 0.51    | 27.72          | PhiVc < Vu               | 13.939         | 49.2   | 6.2       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             |              | 55 13.00 |         | 42.81  |                  | 0.57    | 28.62          | PhiVc < Vu               | 14.195         | 50.1   | 6.0       | 4.0        |
|                                                      | 1 16         |          | -43.96  | 43.96  | 72.21            | 0.66    | 29.75          | PhiVc < Vu               | 14.216         | 51.2   | 6.0       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H<br>+1.20D+1.60L+0.50S+1.60H | 1 16         |          | -45.11  | 45.11  | 63.33            | 0.77    | 31.22          | PhiVc < Vu               | 13.893         | 52.7   | 6.2       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H<br>+1.20D+1.60L+0.50S+1.60H | 1 17         |          | -46.26  | 46.26  | 54.21            | 0.92    | 33.22          | PhiVc < Vu               | 13.039         | 54.7   | 6.5       | 4.0        |
|                                                      | 1 17         |          | -47.41  | 47.41  | 44.87            | 1.00    | 34.21          | PhiVc < Vu               | 13.196         | 55.7   | 6.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 17         |          | -48.56  | 48.56  | 35.30            | 1.00    | 34.21          | PhiVc < Vu               | 14.345         | 55.7   | 6.0       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 17         |          |         | 49.71  | 25.50            | 1.00    | 34.21          | PhiVc < Vu               | 15.494         | 55.7   | 5.5       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 17         |          | -50.86  | 50.86  | 15.47            | 1.00    | 34.21          | PhiVc < Vu               | 16.644         | 55.7   | 5.2       | 4.0        |
| +1.20D+1.60L+0.50S+1.60H                             | 1 18         |          | -52.01  | 52.01  | 5.22             | 1.00    | 34.21          | PhiVc < Vu               | 17.793         | 55.7   | 4.8       | 4.0        |
| Maximum Forces &                                     | Stresses for | Load C   | Combina | tions  | e e e tiere (ft) |         |                |                          | (1.5.)         |        |           |            |

| Load Combination         |        | Location (ft)     | Bending Stress Results (k-ft) |
|--------------------------|--------|-------------------|-------------------------------|
| Segment                  | Span # | along Beam        | Mu : Max Phi*Mnx Stress Ratio |
| MAXimum BENDING Envelope |        | $\square \square$ |                               |
| Span # 1                 | 1      | 18.250            | 239,90 294,76 0.81            |

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

#### **Concrete Beam**

Lic. # : KW-06090157 - Educational Version

#### **DESCRIPTION:** Parking Garage - 18'3" and below spans

| DESCRIPTION. Parking Ga               | alaye - 105 a                                                     | and below spans    |                       |                            |                |                    |                               |
|---------------------------------------|-------------------------------------------------------------------|--------------------|-----------------------|----------------------------|----------------|--------------------|-------------------------------|
| Load Combination                      |                                                                   |                    | Location (ft)         | Bendin                     | Stress Results | ( k-ft )           |                               |
| Segment                               |                                                                   | Spa                | an # along Beam       | Mu : Max                   | Phi*Mnx        | Stress Rat         | $( \cap ) ( \cap )$           |
| +1.40D+1.60H                          | 779                                                               |                    |                       |                            |                |                    |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 167.98                     | 294.76         | 0.57               |                               |
| +1.20D+0.50Lr+1.60L+1.60H             |                                                                   |                    |                       |                            |                |                    |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 239.90                     | 294.76         | 0.81               |                               |
| +1.20D+1.60L+0.50S+1.60H              |                                                                   |                    |                       |                            |                |                    |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 239.90                     | 294.76         | 0.81               |                               |
| +1.20D+1.60Lr+L+1.60H                 |                                                                   |                    | 4 40.050              | 000.00                     | 004.70         | 0.00               |                               |
| Span # 1<br>+1.20D+1.60Lr+0.50W+1.60H |                                                                   |                    | 1 18.250              | 203.93                     | 294.76         | 0.69               |                               |
| +1.20D+1.60L1+0.50W+1.60H<br>Span # 1 |                                                                   |                    | 1 18.250              | 143.98                     | 294.76         | 0.49               |                               |
| +1.20D+1.60Lr-0.50W+1.60H             |                                                                   |                    | 1 10.230              | 145.50                     | 254.70         | 0.49               |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 143.98                     | 294.76         | 0.49               |                               |
| +1.20D+L+1.60S+1.60H                  |                                                                   |                    | 1 10.200              | 140.00                     | 204.10         | 0.40               |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 203.93                     | 294.76         | 0.69               |                               |
| +1,20D+1.60S+0.50W+1.60H              |                                                                   |                    |                       |                            |                | _                  |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 143.98                     | 294.76         | 0.49               |                               |
| +1.20D+1.60S-0.50W+1.60H              | $\left  \left( - \right) \right  \left  \left( - \right) \right $ |                    |                       | $ \geq $ $           ( ) $ |                | $   (\cap)\rangle$ | $V_{\Lambda}V/(-)V_{\Lambda}$ |
| Span/#1                               |                                                                   | $\mathcal{S}$      | 1 18:250              | -7 143.98                  | 294.76         | 0.49               |                               |
| +1.20D+0.50Lr+L+W+1.60H               |                                                                   | 0 - 0              |                       |                            |                |                    |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 203.93                     | 294.76         | 0.69               |                               |
| +1.20D+0.50Lr+L-W+1.60H               |                                                                   |                    | 1 18 250              | 000.00                     | 004.70         | 0.00               |                               |
| Span # 1<br>+1.20D+L+0.50S+W+1.60H    |                                                                   |                    | 1 18.250              | 203.93                     | 294.76         | 0.69               |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 203.93                     | 294.76         | 0.69               |                               |
| +1.20D+L+0.50S-W+1.60H                |                                                                   |                    | 1 10.230              | 205.95                     | 234.70         | 0.03               |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 203.93                     | 294.76         | 0.69               |                               |
| +0.90D+W+1.60H                        |                                                                   |                    |                       | 200100                     | 200            | 0.00               |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 107.99                     | 294.76         | 0.37               |                               |
| +0.90D-W+1.60H                        |                                                                   |                    |                       |                            |                |                    |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 107.99                     | 294.76         | 0.37               |                               |
| +1.40D+L+0.20S+E+1.60H                |                                                                   |                    |                       |                            |                |                    |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 227.93                     | 294.76         | 0.77               |                               |
| +1.40D+L+0.20S-E+1.60H                | $\frown$                                                          |                    |                       |                            | 004.70         |                    |                               |
| Span # 1                              | $\sim \sim \sim$                                                  |                    | 1 18.250              | 227.93                     | 294.76         | 0.77               | $( \cap ) ( \cap )$           |
| +0.70D+E+0.90H                        | $\nabla (\mathcal{O})$                                            |                    | 1 18.250              | 83.99                      | 294.76         | 0.28               |                               |
| Span # 1<br>+0.70D-E+0.90H            |                                                                   |                    | 10.250                | 83.99                      | 294.70         | 0.28               |                               |
| Span # 1                              |                                                                   |                    | 1 18.250              | 83.99                      | 294.76         | 0.28               |                               |
|                                       | o officing                                                        |                    | . 10.200              | 00.00                      | 204.70         | 0.20               |                               |
| Overall Maximum Defl                  |                                                                   |                    | Lessting in Oper (6)  | Lood Combination           |                |                    | Leasting in Oney (ft)         |
| Load Combination                      | Span                                                              | Max. "-" Defl (in) | Location in Span (ft) | Load Combination           | М              | ax. "+" Defl (in)  | Location in Span (ft)         |
| +D+L+H                                | 1                                                                 | 0.7381             | 9.125                 |                            |                | 0.0000             | 0.000                         |
|                                       |                                                                   |                    |                       |                            |                |                    |                               |

### Commercial Use Not Allowed

Title Block Line 1 Project Title: You can change this area Engineer: Project ID: using the "Settings" menu item Project Descr: and then using the "Printing & Title Block" selection. Title Block Line 6 Printed: 31 MAR 2020, 2:19PM File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 **Concrete Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Lic. # : KW-06090157 - Educational Version Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING DESCRIPTION: Parking Garage - 19 to 29.5 ft spans CODE REFERENCES Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : ASCE 7-16 **Material Properties** f'c 4.0 ksi h Phi Values Flexure : 0.90  $fr = fc^{1/2} * 7.50$ 474.342 psi 0.750 = Shear : Ψ Density = 145.0 pcf  $\beta_1$ 0.850 λ LtWt Factor = 1.0 Elastic Modulus = 3,644.15 ksi Fy - Stirrups 40.0 ksi E - Stirrups 29,000.0 ksi fy - Main Rebar = 60.0 ksi Stirrup Bar Size # 3 E - Main Rebar = 29,000.0 ksi 2.0 Number of Resisting Legs Per Stirrup = D(3.348) L(1.86) 29.50 ft 24" w x 22" h **Cross Section & Reinforcing Details** Rectangular Section, Width = 24.0 in, Height = 22.0 in Span #1 Reinforcing... 8-#10 at 2.0 in from Bottom, from 0.0 to 29.50 ft in this span 8-#10 at 3.0 in from Bottom, from 0.0 to 29.50 ft in this span Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D = 0.1080, L = 0.060 ksf, Tributary Width = 31.0 ft, (Parking Garage) **DESIGN SUMMARY Design OK** Maximum Bending Stress Ratio = Maximum Deflection 0.879:1 0.390 in Ratio = Max Downward Transient Deflection Section used for this span 907 >= 360 **Typical Section** Max Upward Transient Deflection 0.000 in Ratio = 0<360.0 Mu : Applied 830.17 k-ft Max Downward Total Deflection 1.200 in Ratio = 294 >=240 Mn \* Phi : Allowable 944.78 k-ft 0.000 in Ratio = Max Upward Total Deflection 0<240.0 14.723 ft Location of maximum on span Span # where maximum occurs Span #1 Support notation : Far left is #1 **Vertical Reactions** Load Combination Support 1 Support 2 **Overall MAXimum** 84.660 84.660

**Overall MINimum** 27.435 27.435 +D+H 57.225 57.225 +D+L+H 84.660 84.660 +D+Lr+H 57.225 57.225 +D+S+H 57.225 57.225 +D+0.750Lr+0.750L+H 77.801 77.801 +D+0.750L+0.750S+H 77.801 77.801 +D+0.60W+H 57.225 57.225 +D+0.750Lr+0.750L+0.450W+H 77.801 77.801 +D+0.750L+0.750S+0.450W+H 77.801 77.801 34.335 34.335 +0.60D+0.60W+0.60H +D+0.70E+0.60H 57.225 57.225

#### **Concrete Beam**

Lic. # : KW-06090157 - Educational Version

#### DESCRIPTION: Parking Garage - 19 to 29.5 ft spans

| Vertical Reactions         |           |           | Support notation : Far left is #1 |
|----------------------------|-----------|-----------|-----------------------------------|
| Load Combination           | Support 1 | Support 2 |                                   |
| +D+0.750L+0.750S+0.5250E+H | 77.801    | 77.801    |                                   |
| +0.60D+0.70E+H             | 34.335    | 34.335    |                                   |
| D Only                     | 57.225    | 57.225    |                                   |
| Lr Only                    |           |           |                                   |
| L Only                     | 27.435    | 27.435    |                                   |
| S Only                     |           |           |                                   |
| W Only                     |           |           |                                   |
| E Only                     |           |           |                                   |
| H Only                     |           |           |                                   |

#### **Detailed Shear Information**

| Detailed Offear Infor    | Span                                            | Distance | 'd'   | Vu       | (k)    | Mu d   | l*Vu/Mu   | Phi*Vc | Comment         | Phi*Vs        | Phi*Vn | Spacing (in)  |
|--------------------------|-------------------------------------------------|----------|-------|----------|--------|--------|-----------|--------|-----------------|---------------|--------|---------------|
| Load Combination         | Number                                          |          | (in)  | Actual   | Design | (k-ft) | i vu/iviu | (k)    | Common          | (k)           | (k)    | Req'd Suggest |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 0.00     | 20.00 | 112.57   | 112.57 | 0.00   | 1.00      | 79.69  | PhiVc < Vu      | 32.877        |        | 4.0 4.0       |
| +1.20D+1.60L+0.50S+1.60H | $h(\underline{A})$                              | 0.32     | 20.00 | 2 110.11 | 110.11 | 35.90  | 1.00      | 79.69  | PhiVc < Vu      | 30.416        | 112.7  | 4.3 4.0       |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 0.64     | 20.00 | 107.65   | 107.65 | 71.00  | 1.00      | 79.69  | PhiVc < Vu      | 27.956        | 112.7  | 4.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 0.97     | 20.00 | 105.18   | 105.18 | 105.31 | 1.00      | 79.69  | PhiVc < Vu      | 25.495        | 112.7  | 5.2 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.29     | 20.00 | 102.72   | 102.72 | 138.82 | 1.00      | 79.69  | PhiVc < Vu      | 23.035        | 112.7  | 5.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.61     | 20.00 | 100.26   | 100.26 | 171.54 | 0.97      | 79.69  | PhiVc < Vu      | 20.574        | 112.7  | 6.4 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 1.93     | 20.00 | 97.80    | 97.80  | 203.47 | 0.80      | 73.78  | PhiVc < Vu      | 24.021        | 106.8  | 5.5 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 2.26     | 20.00 | 95.34    | 95.34  | 234.61 | 0.68      | 69.07  | PhiVc < Vu      | 26.277        | 102.1  | 5.0 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 2.58     | 20.00 | 92.88    | 92.88  | 264.95 | 0.58      | 65.52  | PhiVc < Vu      | 27.362        | 98.5   | 4.8 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 2.90     | 20.00 | 90.42    | 90.42  | 294.50 | 0.51      | 62.76  | PhiVc < Vu      | 27.665        | 95.8   | 4.8 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 3.22     | 20.00 | 87.96    | 87.96  | 323.25 | 0.45      | 60.54  | PhiVc < Vu      | 27.422        | 93.5   | 4.8 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 3.55     | 20.00 | 85.50    | 85.50  | 351.22 | 0.41      | 58.72  | PhiVc < Vu      | 26.783        | 91.7   | 4.9 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 3.87     | 20.00 | 83.04    | 83.04  | 378.39 | 0.37      | 57.20  | PhiVc < Vu      | 25.845        | 90.2   | 5.1 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 4.19     | 20.00 | 80.58    | 80.58  | 404.76 | 0.33      | 55.90  | PhiVc < Vu      | 24.679        | 88.9   | 5.3 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 4.51     | 20.00 | 78.12    | 78.12  | 430.35 | 0.30      | 54.79  | PhiVc < Vu      | 23.333        | 87.8   | 5.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | $\left( \begin{array}{c} 1 \end{array} \right)$ | 4.84     | 20.00 | 75.66    | 75.66  | 455.13 | 0.28      | 53.82  | PhiVc < Vu      | 21.843        | 86.8   | 6.0 4.0       |
| +1.20D+1.60L+0.50S+1.60H | V.                                              | 5.16     | 20.00 | 73.20    | 73.20  | 479.13 | 0.25      | 52.96  | PhiVc < Vu      | 20.238        | 86.0   | 6.5 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 5.48     | 20.00 | 70.74    | 70.74  | 502.33 | 0.23      | 52.20  | PhiVc < Vu      | 18.536        | 85.2   | 7.1 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 5.80     | 20.00 | 68.28    | 68.28  | 524.74 | 0.22      | 51.52  | PhiVc < Vu      | 16.755        | 84.5   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.13     | 20.00 | 65.82    | 65.82  | 546.36 | 0.20      | 50.91  | PhiVc < Vu      | 14.908        | 83.9   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.45     | 20.00 | 63.36    | 63.36  | 567.18 | 0.19      | 50.35  | PhiVc < Vu      | 13.004        | 83.4   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 6.77     | 20.00 | 60.90    | 60.90  | 587.21 | 0.17      | 49.85  | PhiVc < Vu      | 11.051        | 82.8   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.09     | 20.00 | 58.44    | 58.44  | 606.45 | 0.16      | 49.38  | PhiVc < Vu      | 9.057         | 82.4   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.42     | 20.00 | 55.98    | 55.98  | 624.89 | 0.15      | 48.95  | PhiVc < Vu      | 7.027         | 81.9   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 7.74     | 20.00 | 53.52    | 53.52  | 642.54 | 0.14      | 48.55  | PhiVc < Vu      | 4.966         | 81.5   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 8.06     | 20.00 | 51.05    | 51.05  | 659.40 | 0.13      | 48.18  | PhiVc < Vu      | 2.878         | 81.2   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 8.38     | 20.00 | 48.59    | 48.59  | 675.46 | 0.12      | 47.83  | PhiVc < Vu      | 0.7658        | 80.8   | 7.7 4.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 8.70     | 20.00 | 46.13    | 46.13  | 690.73 | 0.11      | 47.50  | PhiVc/2 < Vu <= | Min_11.5.6.3  | 66.4   | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | $\neg \neg \uparrow$                            | 9.03     | 20.00 | 43.67    | 43.67  | 705.21 | 0.10      | 47.19  | PhiVc/2 < Vu <∓ | Min 11.5.6.3  | 66.0   | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | n ) ( <u>A</u> )                                | 9.35     | 20.00 | 41.21    | 41.21  | 718.89 | 0.10      | 46.90  | PhiVc/2 < Vu <= | Min 11.5.6.3  |        | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 9.67     | 20.00 | 38.75    | 38.75  | 731.79 | 0.09      | 46.62  | PhiVc/2 < Vu <= | Min 11.5.6.3  |        | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 9.99     | 20.00 | 36.29    | 36.29  | 743.88 | 0.08      | 46.36  | PhiVc/2 < Vu <= | Min 11.5.6.3  |        | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 10.32    | 20.00 | 33.83    | 33.83  | 755.19 | 0.07      | 46.10  | PhiVc/2 < Vu <= | Min 11.5.6.3  |        | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 10.64    | 20.00 | 31.37    | 31.37  | 765.70 | 0.07      | 45.86  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 64.7   | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 10.96    | 20.00 | 28.91    | 28.91  | 775.42 | 0.06      | 45.63  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 64.5   | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 11.28    | 20.00 | 26.45    | 26.45  | 784.34 | 0.06      | 45.40  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 64.3   | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 11.61    | 20.00 | 23.99    | 23.99  | 792.47 | 0.05      | 45.18  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 64.0   | 7.3 7.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 11.93    | 20.00 | 21.53    | 21.53  | 799.81 | 0.04      | 44.97  | Vu < PhiVc/2    | lot Regd 9.6. | 45.0   | 0.0 0.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 12.25    | 20.00 | 19.07    | 19.07  | 806.35 | 0.04      | 44.76  | Vu < PhiVc/2    | lot Reqd 9.6. | 44.8   | 0.0 0.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 12.57    | 20.00 | 16.61    | 16.61  | 812.10 | 0.03      | 44.56  | Vu < PhiVc/2    | lot Regd 9.6. | 44.6   | 0.0 0.0       |
| +1.20D+1.60L+0.50S+1.60H | 1                                               | 12.90    | 20.00 | 14.15    | 14.15  | 817.06 | 0.03      | 44.36  | Vu < PhiVc/2    | lot Regd 9.6. |        | 0.0 0.0       |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 13.22    | 20.00 | 11.69    | 11.69  | 821.23 | 0.02      | 44.16  | Vu < PhiVc/2    | lot Regd 9.6. | 44.2   | 0.0 0.0       |
| +1.20D+1.60L+0.50S+1.60H |                                                 | 13.54    | 20.00 | 9.23     | 9.23   | 824.60 | 0.02      | 43.97  | Vu < PhiVc/2    | lot Regd 9.6. | 44.0   | 0.0 0.0       |
|                          | $\bigcirc$                                      |          |       |          |        |        |           |        |                 |               |        |               |

**Concrete Beam** 

Printed: 31 MAR 2020, 2:19PM

#### File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version DESCRIPTION: Parking Garage - 19 to 29.5 ft spans

| Detailed Sh | ear Information |  |
|-------------|-----------------|--|
| Detailed Sh |                 |  |

| Lead Continuity         Spane         Bitmane         ord         Attual         Desk         Ph/V         Ph/V<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detailed Shear Information |        |       |       |               |        |        |        |       |                 |               |       |            |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-------|-------|---------------|--------|--------|--------|-------|-----------------|---------------|-------|------------|-------|
| 1200+1601.458-160H       1       136       200       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77       6.77 </th <th></th> <th></th> <th></th> <th>'d'</th> <th>Vu</th> <th>(k)</th> <th></th> <th>*Vu/Mu</th> <th></th> <th>Comment</th> <th>Phi*Vs</th> <th></th> <th>Spacing (i</th> <th>in)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |        |       | 'd'   | Vu            | (k)    |        | *Vu/Mu |       | Comment         | Phi*Vs        |       | Spacing (i | in)   |
| 1200-1601-058-160H       1       141       200       4.31       4.31       28.36       0.0       4.32       Vii - Phivo2       bit Regd 56.       4.34       0.0         1200-1601-058-160H       1       14.31       2000       -162       28.015       0.00       4.33       0.0       0.0         1200-1601-058-160H       1       15.5       20.0       -0.08       3.08       22.946       0.01       4.33       Vii < PhivO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Number | (ft)  | (in)  | Actual        | Design | (k-ft) |        | (k)   |                 | (k)           | (k)   | Req'd Sug  | ggest |
| 1200-1600-0355-160H       1       1451       2000       165       1255       252.95       0.00       43.00       VU < Phi/O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 1      | 13.86 | 20.00 | 6.77          | 6.77   | 827.18 | 0.01   | 43.78 | Vu < PhiVc/2    | lot Reqd 9.6. | 43.8  | 0.0        | 0.0   |
| +1200+1600-0395+160H       1       1428       2000       0.02       283.0       0.00       43.31       VU < Phi/V22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 1      | 14.19 | 20.00 | 4.31          | 4.31   | 828.96 | 0.01   | 43.59 | Vu < PhiVc/2    | lot Reqd 9.6. | 43.6  | 0.0        | 0.0   |
| +1200-1600-0395-160H       1       1515       2000       308       2255       0.01       4350       VU < Phi/O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 1      | 14.51 | 20.00 | 1.85          | 1.85   | 829.95 | 0.00   | 43.40 | Vu < PhiVc/2    | lot Reqd 9.6. | 43.4  | 0.0        | 0.0   |
| +1200+1600-0395+160H       154       200       554       825.07       0.01       43.68       Vu <phv62< td="">       UI Requise.       43.97       0.0       0.0         +1200+1600-0395+160H       1564       20.00       -0.00       43.07       Vu <phv62< td="">       UI Requise.       43.97       0.0       0.0         +1200+1600-0395+160H       1617       20.00       -16.40       82.509       0.02       44.76       Vu <phv62< td="">       VI Requise.       44.30       0.0       0.0         +1200+1600-0395+160H       1677       20.00       -17.84       17.84       17.84       17.84       0.04       44.66       Vu <phv62< td="">       VI Requise.       44.7       0.0       0.0       0.0       41.66       Vu <phv62< td="">       Vu Requise.       44.7       0.0       0.0       0.0       41.00       44.66       Vu PhV62       Vu Requise.       44.7       0.0       0.0       0.0       41.00       44.66       Vu PhV62       Vu Requise.       44.7       0.0       0.0       0.0       41.00       41.00       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0</phv62<></phv62<></phv62<></phv62<></phv62<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 1      | 14.83 | 20.00 | -0.62         | 0.62   | 830.15 | 0.00   | 43.31 | Vu < PhiVc/2    | lot Reqd 9.6. | 43.3  | 0.0        | 0.0   |
| $ \begin{array}{c} 1200-1601-0595+160H \\ 1 1580 \\ 2 200 \\ 1 200-1601-0595+160H \\ 1 1612 \\ 2 200 \\ 1 200-1601-0595+160H \\ 1 1617 \\ 2 200 \\ 1 200-1601-0595+160H \\ 1 1677 \\ 2 200 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1538 \\ 1 200-1$                                                                                                                                                               |                            | 1      | 15.15 | 20.00 | -3.08         | 3.08   | 829.56 | 0.01   | 43.50 | Vu < PhiVc/2    | lot Reqd 9.6. | 43.5  | 0.0        | 0.0   |
| $ \begin{array}{c} +1200 + 1601 + 0.505 + 160H \\ +1200 + 1601 + 0.505 + 160H $                                                                                                                                                                                                                                                        |                            | 1      | 15.48 | 20.00 | -5.54         | 5.54   | 828.17 | 0.01   | 43.68 | Vu < PhiVc/2    | lot Reqd 9.6. | 43.7  | 0.0        | 0.0   |
| $ \begin{array}{c} +1200+1601+0595+160H \\ +1200+1601+0595+160H \\ +1200+1601+0595+160H \\ +1200+1601+0595+160H \\ +1200+1601+0595+160H \\ +1747 \\ +1200+1601+0595+160H \\ +1747 \\ +1200+1601+0595+160H \\ +1747 \\ +1200+1601+0595+160H \\ +1805 \\ +1200+1601+0595+160H \\ +1902 \\ +1200+1601+0595+160H \\ +1205 \\ +1200+1601+0595+160H \\ +1216 \\ +2000 \\ +1200 \\ +1200+1601+0595+160H \\ +1216 \\ +200 \\ +1200+1601+0595+160H \\ +1216 \\ +200 \\ +1200+1601+0595+$                                                                                                                                                                       |                            | 1      | 15.80 | 20.00 | -8.00         | 8.00   | 825.99 | 0.02   | 43.87 |                 | lot Reqd 9.6. | 43.9  | 0.0        | 0.0   |
| $ \begin{array}{c} 1200+1601-0503+160H \\ 1 1020+1601-0503+160H \\ 1 177 \\ 2000 \\ 1200+1601-0503+160H \\ 1 183 \\ 2000 \\ 2276 \\ 2272 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 227 \\ 227 \\ 200 \\ 200 \\ 227 \\ 227 \\ 200 \\ 200 \\ 227 \\ 227 \\ 200 \\ 200 \\ 227 \\ 227 \\ 200 \\ 200 \\ 227 \\ 200 \\ 200 \\ 227 \\ 227 \\ 200 \\ 200 \\ 227 \\ 200 \\ 200 \\ 227 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 2$ |                            | 1      | 16.12 | 20.00 | -10.46        | 10.46  | 823.01 | 0.02   | 44.07 | Vu < PhiVc/2    | lot Reqd 9.6. | 44.1  | 0.0        | 0.0   |
| $ \begin{array}{c} + 1200 + 1601 - 603 + 160H & 1 & 17.09 & 20.00 & -17.24 & 17.24 & 09.33 & 0.04 & 44.66 & Vu < PNIV22 & Ut Red 56. & 44.7 & 0.0 & 0.0 \\ \hline + 1200 + 1601 - 603 + 160H & 1 & 17.4 & 20.00 & 25.22 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2 & 25.2$                                                                                                                                                                                                                                                                                                                     |                            | 1      | 16.44 | 20.00 | -12.92        | 12.92  | 819.24 | 0.03   | 44.26 | Vu < PhiVc/2    | lot Reqd 9.6. | 44.3  | 0.0        | 0.0   |
| $\begin{array}{c} + 1200 + 1601 - 0508 + 160H \\ + 1201 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 1200 + 1601 - 0508 + 160H \\ + 2260 $                                                                                                                                                                                                                                                    |                            | 1      | 16.77 | 20.00 | -15.38        | 15.38  | 814.68 | 0.03   | 44.46 | Vu < PhiVc/2    | lot Reqd 9.6. | 44.5  | 0.0        | 0.0   |
| $ \begin{array}{c} 1 200+1 60 + 050 + 160 + 160 + 160 + 160 + 160 + 160 + 200 + 2276 + 2276 + 796 + 20 + 60 + 60 + 160 + 160 + 508 + 160 + 180.5 + 200 + 2252 + 2252 + 788.5 + 0.55 + 4529 + PhV22 < Vu <= Min 115.6.3 + 644 + 7.3 + 7.0 + 1200 + 160 + 0508 + 160 + 190.2 + 200 + 30.4 + 30.4 + 779.8 + 0.65 + 510 + PhV22 < Vu <= Min 115.6.3 + 644 + 7.3 + 7.0 + 1200 + 160 + 0508 + 160 + 190.2 + 200 + 32.6 + 76.5 + 79.8 + 20.6 + 20.7 + 20.8 + 20.6 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20.8 + 20$                                                                                                                                                                                                                                                                                                                           |                            | 1      | 17.09 | 20.00 | -17.84        | 17.84  | 809.33 | 0.04   | 44.66 |                 | lot Reqd 9.6. | 44.7  | 0.0        | 0.0   |
| $ \begin{array}{c} + 1200 + 60.4 + 60.8 + 160.4 \\ + 1200 + 160.4 + 60.8 + 160.4 \\ + 1200 + 160.4 + 60.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 120.8 + 160.4 \\ + 1200 + 160.4 + 50.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8 + 160.4 \\ + 120.8$                                                                                                                                                                                                                                                 |                            |        | 17.41 | 20.00 | -20.30        | 20.30  | 803.18 |        |       |                 | lot Reqd 9.6. | 44.9  |            |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |        | 17.73 | 20.00 | -22.76        | 22.76  | 796.24 | 0.05   | 45.08 |                 | Min 11.5.6.3  | 63.9  | / 7.3      | (7,0  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |        | 18.05 | 20.00 | -25.22        | 25.22  | 788.50 | 0.05   | 45.29 |                 | Min 11.5.6.3  | 64.1  | 7.3        | 7.0   |
| $\begin{array}{c} +1200+1601-0508+160H \\ +1202+1601-0508+160H \\ +1228+2000 \\ -5677 \\ -5677 \\ -5677 \\ -5677 \\ -5687 \\ -5667 \\ -5667 \\ -5667 \\ -5667 \\ -5667 \\ -5667 \\ -5667 \\ -5667 \\ -5667 \\ -562 \\ -170 \\ -170 \\ -170 \\ -170 \\ -170 \\ -100 \\ -100-1601-0508+160H \\ -1228+2000 \\ -5728 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -572 \\ -5$                                                                                                                              |                            | 1      | 18.38 | 20.00 | -27.68        | 27.68  | 779.98 | 0.06   | 45.51 |                 | Min 11.5.6.3  | 64.4  | 7.3        |       |
| $\begin{array}{c} +1200+1601-0505+160H & 1 \\ +1200+1601-050$                                                                                                                                                                                                                                                |                            | 1      | 18.70 | 20.00 | -30.14        | 30.14  | 770.66 | 0.07   | 45.74 |                 | Min 11.5.6.3  | 64.6  | 7.3        | 7.0   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 1      | 19.02 | 20.00 | -32.60        | 32.60  | 760.54 | 0.07   | 45.98 | PhiVc/2 < Vu <= | Min 11.5.6.3  | 64.8  | 7.3        | 7.0   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 1      | 19.34 | 20.00 | -35.06        | 35.06  | 749.63 | 0.08   | 46.23 | PhiVc/2 < Vu <= | Min 11.5.6.3  | 65.1  |            | 7.0   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 1      | 19.67 | 20.00 | -37.52        | 37.52  | 737.93 | 0.08   | 46.49 |                 | Min 11.5.6.3  | 65.3  | 7.3        | 7.0   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 1      | 19.99 | 20.00 | -39.98        | 39.98  | 725.44 | 0.09   | 46.76 | PhiVc/2 < Vu <= | Min 11.5.6.3  | 65.6  | 7.3        | 7.0   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 1      | 20.31 | 20.00 | -42.44        | 42.44  | 712.15 | 0.10   | 47.04 | PhiVc/2 < Vu <= | Min 11.5.6.3  | 65.9  | 7.3        |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 1      |       |       | -44.90        |        |        | 0.11   |       |                 | Min 11.5.6.3  | 66.2  |            |       |
| +120D+1.60L+0.50S+1.60H       1       21.60       20.00       -52.2       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       52.28       53.57       59.67       59.67       59.67       59.67       59.67       59.67       59.67       59.67       59.67       59.67       59.67       59.67       59.62       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 1      |       |       | -47.36        |        |        |        |       |                 |               |       |            |       |
| +120D+1.60L+0.50S+1.60H       12130       20.00       54.75       54.75       56.33.82       0.14       48.74       PhiVe < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | -      |       | 20.00 |               |        |        |        |       |                 |               |       |            |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 1      |       |       |               | 52.28  |        |        |       |                 | L             |       |            |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +120D+1.60L+0.50S+1.60H       1       22.51       20.00       -62.13       62.13       577.30       0.18       50.61       PhiVe < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | -1     |       |       |               |        |        |        | \ /   |                 |               |       | - /        |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       22.54       20.00       -67.05       535.65       0.21       51.21       PhiVe < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 1      |       |       |               |        |        |        |       |                 |               |       |            |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 1      |       |       |               |        |        |        |       |                 |               |       |            |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | •      |       |       |               |        |        |        |       |                 |               |       |            |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | •      |       |       |               |        |        |        |       |                 |               |       |            |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | •      |       |       |               |        |        |        |       |                 |               |       |            |       |
| +120D+1.60L+0.50S+1.60H       1       25.15       20.00       -79.35       79.35       417.65       0.32       55.32       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       25.47       20.00       -81.81       81.81       391.67       0.35       56.52       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       25.79       20.00       -84.27       84.27       364.90       0.38       57.92       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       26.13       20.00       -86.73       337.34       0.43       59.59       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +120D+1.60L+0.50S+1.60H       1       26.44       20.00       -89.19       308.98       0.48       61.59       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 1      |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       27.08       20.00       -94.11       94.11       249.88       0.63       67.18       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |        |       |       | $\sim$ $\sim$ |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       27.40       20.00       -96.57       96.57       219.14       0.73       71.24       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | JUT    |       |       |               |        |        | /      |       |                 | \             |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       27.73       20.00       -99.03       99.03       187.61       0.88       76.78       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 1      |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       28.05       20.00       -101.49       101.49       155.28       1.00       79.69       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       28.37       20.00       -103.95       103.95       122.16       1.00       79.69       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | -      |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       28.69       20.00       -106.41       106.41       88.25       1.00       79.69       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H       1       29.02       20.00       -108.88       108.88       53.55       1.00       79.69       PhiVc < Vu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | -      |       |       |               |        |        |        |       |                 |               |       |            |       |
| +1.20D+1.60L+0.50S+1.60H 1 29.34 20.00 -111.34 111.34 18.05 1.00 79.69 PhiVc < Vu 31.646 112.7 4.2 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |        |       |       |               |        |        |        |       |                 |               |       |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |        |       |       |               |        | CU.01  | 1.00   | 19.09 | T THVC > VU     | 51.040        | 112.7 | 4.2        | 4.0   |

#### Maximum Forces & Stresses for Load Combinations

| Load Combination         | Location (ft)     | Bending Stress Results (k-ft) |
|--------------------------|-------------------|-------------------------------|
| Segment                  | Span # along Beam | Mu : Max Phi*Mnx Stress Ratio |
| MAXimum BENDING Envelope |                   |                               |
| Span # 1                 | 1 29.500          | 830,17 944,78 0.88            |

**Concrete Beam** 

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

Lic. # : KW-06090157 - Educational Version

| DESCRIPTION: Parking (                | Garage - 19 to 29                                                                                                                                                                | 9.5 ft spans           |                                       |                |                |                            |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------|----------------|----------------|----------------------------|
| Load Combination                      | $\frown$                                                                                                                                                                         |                        | Location (ft)                         | Bending Stress | Results (k-ft) |                            |
| Segment                               | (C22)                                                                                                                                                                            | Span #                 | along Beam                            |                |                | Ratio                      |
| +1.40D+1.60H                          | C C                                                                                                                                                                              |                        |                                       |                |                |                            |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 590.85         | 944.78 (       | ).63                       |
| +1.20D+0.50Lr+1.60L+1.60H<br>Span # 1 |                                                                                                                                                                                  | 1                      | 29.500                                | 830.17         | 944.78 (       | ).88                       |
| +1.20D+1.60L+0.50S+1.60H              |                                                                                                                                                                                  | I                      | 23.300                                | 000.17         | 344.70         |                            |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 830.17         | 944.78 (       | ).88                       |
| +1.20D+1.60Lr+L+1.60H                 |                                                                                                                                                                                  |                        |                                       |                |                |                            |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 708.77         | 944.78 (       | ).75                       |
| +1.20D+1.60Lr+0.50W+1.60H<br>Span # 1 |                                                                                                                                                                                  | 1                      | 29.500                                | 506.44         | 944.78 (       | ).54                       |
| +1.20D+1.60Lr-0.50W+1.60H             |                                                                                                                                                                                  | I                      | 29.500                                | 500.44         | 944.70         | ).04                       |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 506.44         | 944.78 (       | ).54                       |
| +1.20D+L+1.60S+1.60H                  |                                                                                                                                                                                  |                        |                                       |                |                |                            |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 708.77         | 944.78 (       | ).75                       |
| +1.20D+1.60S+0.50W+1.60H<br>Span # 1  |                                                                                                                                                                                  |                        | 29.500                                | 506.44         | 944.78         | 0.54                       |
| +1.20D+1.60S-0.50W+1.60H              |                                                                                                                                                                                  | 21911                  | 29.300                                | JU0.44         | 344.70         |                            |
| Span # 1                              |                                                                                                                                                                                  |                        | 29.500                                | 506.44         | 944.78         | 0.54 //// 📛 🔾 🛛            |
| +1.20D+0.50Lr+L+W+1.60H               |                                                                                                                                                                                  |                        | $\bigcirc \bigcirc \bigcirc \bigcirc$ |                |                |                            |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 708.77         | 944.78 (       | ).75                       |
| +1.20D+0.50Lr+L-W+1.60H               |                                                                                                                                                                                  |                        | 00 500                                | 700 77         | 04470          |                            |
| Span # 1<br>+1.20D+L+0.50S+W+1.60H    |                                                                                                                                                                                  | 1                      | 29.500                                | 708.77         | 944.78 (       | ).75                       |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 708.77         | 944.78 (       | ).75                       |
| +1.20D+L+0.50S-W+1.60H                |                                                                                                                                                                                  |                        | 20.000                                | 100.11         | 011.10         |                            |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 708.77         | 944.78 (       | ).75                       |
| +0.90D+W+1.60H                        |                                                                                                                                                                                  |                        |                                       |                |                |                            |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 379.83         | 944.78 (       | ).40                       |
| +0.90D-W+1.60H<br>Span # 1            |                                                                                                                                                                                  | 1                      | 29.500                                | 379.83         | 944.78 (       | ).40                       |
| +1.40D+L+0.20S+E+1.60H                |                                                                                                                                                                                  | I                      | 29.500                                | 579.05         | 944.70         | J.40                       |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 793.18         | 944.78 (       | ).84                       |
| +1.40D+L+0.20S-E+1.60H                |                                                                                                                                                                                  |                        |                                       |                |                |                            |
| Span # 1                              | $\square$                                                                                                                                                                        |                        | 29.500                                | 793.18         | 944.78         | ).84                       |
| +0.70D+E+0.90H                        | $\left( \int \partial $ |                        | 00,500                                |                |                |                            |
| Span # 1<br>+0.70D-E+0.90H            |                                                                                                                                                                                  |                        | 29.500                                | 295.42         | 944.78         | 0.31                       |
| Span # 1                              |                                                                                                                                                                                  | 1                      | 29.500                                | 295.42         | 944.78 (       | ).31                       |
| Overall Maximum Def                   | floctions                                                                                                                                                                        | I                      | 20.000                                | 200.72         | 01110          |                            |
| Load Combination                      |                                                                                                                                                                                  | Max. "-" Defl (in) Loc | ation in Span (ft) Lo                 | ad Combination | Max. "+" Defl  | (in) Location in Span (ft) |
| +D+L+H                                | 1                                                                                                                                                                                | 1.2002                 | 14.750                                |                | 0.000          | . ,                        |
|                                       | 1                                                                                                                                                                                | 1.2002                 | 17.700                                |                | 0.000          | 0.000                      |
|                                       |                                                                                                                                                                                  |                        |                                       |                |                |                            |

### Commercial Use Not Allowed



#### Printed: 31 MAR 2020, 2:19PM File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

**Concrete Beam** 

#### Lic. # : KW-06090157 - Educational Version

#### DESCRIPTION: Parking Garage - 30' to 45'3" spans

| Vertical Reactions         |           |           | Support notation : Far left is #1 |
|----------------------------|-----------|-----------|-----------------------------------|
| Load Combination           | Support 1 | Support 2 |                                   |
| +D+0.70E+0.60H             | 78.631    | 78.631    |                                   |
| +D+0.750L+0.750S+0.5250E+H | 105.056   | 105.056   |                                   |
| +0.60D+0.70E+H             | 47.179    | 47.179    |                                   |
| D Only                     | 78.631    | 78.631    |                                   |
| Lr Only                    |           |           |                                   |
| L Only                     | 35.233    | 35.233    |                                   |
| S Only                     |           |           |                                   |
| W Only                     |           |           |                                   |
| E Only                     |           |           |                                   |

E Only H Only

#### **Detailed Shear Information**

|                          | Span                                                      | Distance | 'd'            | Vu     | (k)    | Mu       | d*Vu/ | /Mu          | Phi*Vc | Comment                      | Phi*Vs         | Phi*Vn | Spacing ( | (in) |
|--------------------------|-----------------------------------------------------------|----------|----------------|--------|--------|----------|-------|--------------|--------|------------------------------|----------------|--------|-----------|------|
| Load Combination         | Number                                                    | _(ft)    | (in)           | Actual | Design | (k-ft)   |       |              | (k)    | л Л                          | (k)            | _(k)   | Req'd Su  |      |
| +1.20D+1.60L+0.50S+1.60H | $\left( \begin{array}{c} -1 \end{array} \right)$          | 0.00     | 24.50          | 150.73 | 150.73 | 0.00     | - / C | 1.00         | 113.89 | PhiVc < Vu                   | 36.842         | 154.3  | 4.4       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H |                                                           | 0.45     | 24.50          | 147.44 | 147.44 | 67.62    | 7 ·   | 1.00         | 113.89 | PhiVc < Vu                   | 33.547         | 154.3  | 4.8       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 0.91     | 24.50          | 144.14 | 144.14 | 133.74   |       | 1.00         | 113.89 | PhiVc < Vu                   | 30.252         | 154.3  | 5.3       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 1.36     | 24.50          | 140.85 | 140.85 | 198.37   |       | 1.00         | 113.89 | PhiVc < Vu                   | 26.958         | 154.3  | 6.0       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 1.81     | 24.50          | 137.55 | 137.55 | 261.50   |       | 1.00         | 113.89 | PhiVc < Vu                   | 23.663         | 154.3  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 2.27     | 24.50          | 134.26 | 134.26 | 323.14   |       | ).85         | 113.89 | PhiVc < Vu                   | 20.368         | 154.3  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 2.72     | 24.50          | 130.96 | 130.96 | 383.29   | (     | ).70         | 108.13 | PhiVc < Vu                   | 22.834         | 148.6  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 3.17     | 24.50          | 127.67 | 127.67 | 441.94   |       | ).59         | 100.97 | PhiVc < Vu                   | 26.695         | 141.4  | 6.1       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 3.63     | 24.50          | 124.37 | 124.37 | 499.10   |       | ).51         | 95.60  | PhiVc < Vu                   | 28.778         | 136.0  | 5.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 4.08     | 24.50          | 121.08 | 121.08 | 554.76   |       | ).45         | 91.40  | PhiVc < Vu                   | 29.676         | 131.8  | 5.4       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 4.54     | 24.50          | 117.78 | 117.78 | 608.93   |       | ).39         | 88.04  | PhiVc < Vu                   | 29.746         | 128.5  | 5.4       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 4.99     | 24.50          | 114.49 | 114.49 | 661.60   |       | ).35         | 85.28  | PhiVc < Vu                   | 29.213         | 125.7  | 5.5       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 5.44     | 24.50          | 111.20 | 111.20 | 712.78   |       | ).32         | 82.97  | PhiVc < Vu                   | 28.229         | 123.4  | 5.7       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 5.90     | 24.50          | 107.90 | 107.90 | 762.47   |       | ).29         | 81.00  | PhiVc < Vu                   | 26.897         | 121.4  | 6.0       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | $\left( \begin{array}{c} \\ \end{array} \right)^{\prime}$ | 6.35     | 24.50          | 104.61 | 104.61 | 810.66   |       | ).26         | 79.31  | PhiVc < Vu                   | 25.293         | 119.7  | 6.4       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | $\sqrt{\sqrt{2}}$                                         | 6.80     | 24.50          | 101.31 | 101.31 | 857.36   |       | ).24         | 77.84  | PhiVc < Vu                   | 23.472         | 118.3  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 7.26     | 24.50          | 98.02  | 98.02  | 902.56   |       | ).22         | 76.54  | PhiVc < Vu                   | 21.474         | 117.0  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 7.71     | 24.50          | 94.72  | 94.72  | 946.27   |       | ).20         | 75.39  | PhiVc < Vu                   | 19.331         | 115.8  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 8.16     | 24.50          | 91.43  | 91.43  | 988.48   |       | ).19         | 74.36  | PhiVc < Vu                   | 17.067         | 114.8  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 8.62     | 24.50          | 88.13  | 88.13  | 1,029.20 |       | ).17         | 73.43  | PhiVc < Vu                   | 14.702         | 113.9  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 9.07     | 24.50          | 84.84  | 84.84  | 1,068.43 |       | D.16         | 72.59  | PhiVc < Vu                   | 12.251         | 113.0  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 9.52     | 24.50          | 81.54  | 81.54  | 1,106.16 |       | ).15         | 71.82  | PhiVc < Vu                   | 9.727          | 112.2  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 9.98     | 24.50          | 78.25  | 78.25  | 1,142.39 |       | ).14         | 71.11  | PhiVc < Vu                   | 7.141          | 111.5  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 10.43    | 24.50          | 74.95  | 74.95  | 1,177.14 |       | 0.13         | 70.45  | PhiVc < Vu                   | 4.499          | 110.9  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 10.89    | 24.50          | 71.66  | 71.66  | 1,210.39 |       | ).12         | 69.85  | PhiVc < Vu                   | 1.810          | 110.3  | 6.6       | 4.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 11.34    | 24.50          | 68.36  | 68.36  | 1,242.14 |       | ).11         | 69.28  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 96.2   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 11.79    | 24.50          | 65.07  | 65.07  | 1,272.40 |       | D.10         | 68.76  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 95.7   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 12.25    | 24.50          | 61.78  | 61.78  | 1,301.16 |       | 0.10         | 68.26  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 95.2   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H |                                                           | 12.70    | 24.50          | 58.48  | 58.48  | 1,328.44 |       | 0.09         | 67.79  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 94.7   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H |                                                           | 13.15    | 24.50          | 55.19  | 55.19  | 1,354.21 |       | 0.03         | 67.35  |                              | Min 11.5.6.3   | 94.3   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 13.61    | 24.50          | 51.89  | 51.89  | 1,378.49 |       | 0.08         | 66.93  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 93.9   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 14.06    | 24.50          | 48.60  | 48.60  | 1,401.28 |       | ).07         | 66.53  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 93.5   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 14.50    | 24.50          | 45.30  | 45.30  | 1,422.58 |       | ).07         | 66.14  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 93.1   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 14.97    | 24.50          | 42.01  | 42.01  | 1,442.38 |       | 0.06         | 65.77  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 92.7   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 15.42    | 24.50          | 38.71  | 38.71  | 1,460.68 |       | ).05         | 65.42  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 92.4   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 15.87    | 24.50          | 35.42  | 35.42  | 1,477.49 |       | ).05<br>).05 | 65.07  | PhiVc/2 < Vu <=              | Min 11.5.6.3   | 92.0   | 6.3       | 6.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 16.33    | 24.50          | 32.12  | 32.12  | 1,492.81 |       | ).03         | 64.74  | Vu < PhiVc/2                 | lot Regd 9.6.  | 64.7   | 0.0       | 0.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 16.78    | 24.50          | 28.83  | 28.83  | 1,506.63 |       | ).04<br>).04 | 64.42  | Vu < PhiVc/2                 | lot Regd 9.6.  | 64.4   | 0.0       | 0.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 17.23    | 24.50<br>24.50 | 25.53  | 25.53  | 1,518.96 |       | ).04<br>).03 | 64.10  | Vu < PhiVc/2                 | lot Reqd 9.6.  | 64.1   | 0.0       | 0.0  |
| +1.20D+1.60L+0.50S+1.60H | 1                                                         | 17.23    | 24.50          | 23.55  | 25.55  | 1,516.90 |       | ).03<br>).03 | 63.80  | Vu < PhiVc/2                 | lot Reqd 9.6.  | 63.8   | 0.0       | 0.0  |
| +1.20D+1.60L+0.50S+1.60H |                                                           | 18.14    | 24.50          | 18.94  | 18.94  | 1,529.79 |       | ).03<br>).03 | 63.49  | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6.  | 63.5   | 0.0       | 0.0  |
| +1.20D+1.60L+0.50S+1.60H |                                                           | 18.60    | 24.50          | 15.65  | 15.65  | 1,546.98 |       | ).03<br>).02 | 63.20  | Vu < PhiVc/2                 | lot Regd 9.6.  | 63.2   | 0.0       | 0.0  |
|                          |                                                           | 10.00    | 24.50          | 13.05  | 15.05  | 1,540.98 |       | J.02         | 03.20  | VU STHIVUZ                   | iul riedu a.o. | 03.2   | 0.0       | 0.0  |

DESCRIPTION: Parking Garage - 30' to 45'3" spans

|                               | liaye - C | 0 10 40  | o spai | 15        |        |          |         |        |                 | -             |        |            |     |
|-------------------------------|-----------|----------|--------|-----------|--------|----------|---------|--------|-----------------|---------------|--------|------------|-----|
| <b>Detailed Shear Informa</b> | ation     |          |        |           |        |          |         |        |                 |               |        |            |     |
|                               | Span      | Distance | 'd'    | Vu        | (k)    | Mu       | d*Vu/Mu | Phi*Vc | Comment         | Phi*Vs        | Phi*Vn | Spacing (i | in) |
| Load Combination              | Number    |          | (in)   | Actual    | Design | (k-ft)   |         | (k)    |                 | (k)           | (k)    | Req'd Sug  |     |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 19.05    | 24.50  | 12.36     | 12.36  | 1,553.33 | 0.02    | 62.90  | Vu < PhiVc/2    | lot Regd 9.6. | 62.9   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 19.50    | 24.50  | 9.06      | 9.06   | 1,558.18 |         | 62.61  | Vu < PhiVc/2    | lot Regd 9.6. | 62.6   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 19.96    | 24.50  | 5.77      | 5.77   | 1,561.55 |         | 62.33  | Vu < PhiVc/2    | lot Reqd 9.6. |        | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 20.41    | 24.50  | 2.47      | 2.47   | 1,563.41 | 0.00    | 62.04  | Vu < PhiVc/2    | lot Regd 9.6. | 62.0   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 20.86    | 24.50  | -0.82     | 0.82   | 1,563.79 |         | 61.90  | Vu < PhiVc/2    | lot Regd 9.6. | 61.9   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 21.32    | 24.50  | -4.12     | 4.12   | 1,562.67 |         | 62.18  | Vu < PhiVc/2    | lot Regd 9.6. | 62.2   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 21.77    | 24.50  | -7.41     | 7.41   | 1,560.05 |         | 62.47  | Vu < PhiVc/2    | lot Regd 9.6. | 62.5   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 22.22    | 24.50  | -10.71    | 10.71  | 1,555.94 | 0.01    | 62.76  | Vu < PhiVc/2    | lot Regd 9.6. | 62.8   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 22.68    | 24.50  | -14.00    | 14.00  | 1,550.34 | 0.02    | 63.05  | Vu < PhiVc/2    | lot Regd 9.6. | 63.0   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 23.13    | 24.50  | -17.30    | 17.30  | 1,543.24 | 0.02    | 63.34  | Vu < PhiVc/2    | lot Regd 9.6. | 63.3   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 23.58    | 24.50  | -20.59    | 20.59  | 1,534.65 |         | 63.64  | Vu < PhiVc/2    | lot Regd 9.6. | 63.6   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      |           | 24.04    | 24.50  | -23.89    | 23.89  | 1,524.56 |         | 63.95  | Vu < PhiVc/2    | lot Regd 9.6. |        | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      |           | 24.49    | 24.50  | -27.18    | 27.18  | 1,512.98 |         | 64.26  | Vu < PhiVc/2    | lot Regd 9.6. | 64.3   | 0.0        | 0,0 |
| +1.20D+1.60L+0.50S+1.60H      |           | 24.95    | 24.50  | -30.48    | 30.48  | 1,499.91 |         | 64.58  | Vu < PhiVc/2    | lot Regd 9.6. | 64.6   | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 25.40    | 24.50  | -33.77    | 33.77  | 1,485.34 | 0.05    | 64.91  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 91.9   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 25.85    | 24.50  | -37.07    | 37.07  | 1,469.27 | 0.05    | 65.24  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 92.2   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 26.31    | 24.50  | -40.36    | 40.36  | 1,451.72 | 0.06    | 65.59  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 92.5   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 26.76    | 24.50  | -43.65    | 43.65  | 1,432.66 |         | 65.95  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 92.9   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 27.21    | 24.50  | -46.95    | 46.95  | 1,412.12 |         | 66.33  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 93.3   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 27.67    | 24.50  | -50.24    | 50.24  | 1,390.08 | 0.07    | 66.72  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 93.7   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 28.12    | 24.50  | -53.54    | 53.54  | 1,366.54 | 0.08    | 67.13  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 94.1   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 28.57    | 24.50  | -56.83    | 56.83  | 1,341.51 | 0.09    | 67.57  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 94.5   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 29.03    | 24.50  | -60.13    | 60.13  | 1,314.99 | 0.09    | 68.02  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 95.0   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 29.48    | 24.50  | -63.42    | 63.42  | 1,286.97 | 0.10    | 68.50  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 95.5   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 29.93    | 24.50  | -66.72    | 66.72  | 1,257.46 | 0.11    | 69.02  | PhiVc/2 < Vu <= | Min 11.5.6.3  | 96.0   | 6.3        | 6.0 |
| +1.20D+1.60L+0.50S+1.60H      |           | 30.39    | 24.50  | -70.01    | 70.01  | 1,226.45 | 0.12    | 69.56  | PhiVc < Vu      | 0.4501        | 110.0  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      |           | 30.84    | 24.50  | -73.31    | 73.31  | 1,193.95 | 0.13    | 70.15  | PhiVc < Vu      | 3.160         | 110.6  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 31.30    | 24.50  | -76.60    | 76.60  | 1,159.95 | 0.13    | 70.77  | PhiVc < Vu      | 5.826         | 111.2  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 31.75    | 24.50  | -79.90    | 79.90  | 1,124.46 | 0.15    | 71.45  | PhiVc < Vu      | 8.441         | 111.9  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 32.20    | 24.50  | -83.19    | 83.19  | 1,087.48 | 0.16    | 72.19  | PhiVc < Vu      | 10.998        | 112.6  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 32.66    | 24.50  | -86.49    | 86.49  | 1,049.00 | 0.17    | 73.00  | PhiVc < Vu      | 13.487        | 113.4  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 33.11    | 24.50  | -89.78    | 89.78  | 1,009.03 | 0.18    | 73.88  | PhiVc < Vu      | 15.896        | 114.3  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 33.56    | 24.50  | -93.07    | 93.07  | 967.56   | 0.20    | 74.86  | PhiVc < Vu      | 18.213        | 115.3  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 34.02    | 24.50  | -96.37    | 96.37  | 924.60   | 0.21    | 75.95  | PhiVc < Vu      | 20.419        | 116.4  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 34.47    | 24.50  | -99.66    | 99.66  | 880.14   | 0.23    | 77.17  | PhiVc < Vu      | 22.493        | 117.6  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 34.92    | 24.50  | -102.96   | 102.96 | 834.19   | 0.25    | 78.55  | PhiVc < Vu      | 24.407        | 119.0  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 35.38    | 24.50  | -106.25   | 106.25 | 786.75   | 0.28    | 80.13  | PhiVc < Vu      | 26.126        | 120.6  | 6.2        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 35.83    | 24.50  | -109.55   | 109.55 | 737.81   | 0.30    | 81.95  | PhiVc < Vu      | 27.601        | 122.4  | 5.9        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 36.28    | 24.50  | -112.84   | 112.84 | 687.38   | 0.34    | 84.07  | PhiVc < Vu      | 28.770        | 124.5  | 5.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      |           | 36.74    | 24.50  | -116.14   | 116.14 | 635.45   | 0.37    | 86.59  | PhiVc < Vu      | 29.544        | 127.0  | 5.5        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      |           | 37.19    | 24.50  | 0 -119.43 | 119.43 | 582.03   | - /     | 89.63  | PhiVc < Vu      | 29.798        | 130.1  | 5.4        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 37.64    | 24.50  | -122.73   | 122.73 | 527.12   | 0.48    | 93.38  | PhiVc < Vu      | 29.349        | 133.8  | 5.5        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 38.10    | 24.50  | -126.02   | 126.02 | 470.71   | 0.55    | 98.11  | PhiVc < Vu      | 27.914        | 138.5  | 5.8        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 38.55    | 24.50  | -129.32   | 129.32 | 412.80   |         | 104.28 | PhiVc < Vu      | 25.038        | 144.7  | 6.5        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 39.01    | 24.50  | -132.61   | 132.61 | 353.40   |         | 112.68 | PhiVc < Vu      | 19.934        | 153.1  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 39.46    | 24.50  | -135.91   | 135.91 | 292.51   | 0.95    | 113.89 | PhiVc < Vu      | 22.016        | 154.3  | 6.6        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 39.91    | 24.50  | -139.20   | 139.20 | 230.12   |         | 113.89 | PhiVc < Vu      | 25.310        | 154.3  | 6.4        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 40.37    | 24.50  | -142.49   | 142.49 | 166.24   |         | 113.89 | PhiVc < Vu      | 28.605        | 154.3  | 5.7        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 40.82    | 24.50  | -145.79   | 145.79 | 100.87   |         | 113.89 | PhiVc < Vu      | 31.90         | 154.3  | 5.1        | 4.0 |
| +1.20D+1.60L+0.50S+1.60H      | 1         | 41.27    | 24.50  | -149.08   | 149.08 | 34.00    | 1.00    | 113.89 | PhiVc < Vu      | 35.194        | 154.3  | 4.6        | 4.0 |
| Maximum Forces & Stu          | neene     | forle    | O her  | ombing    | tione  |          |         |        |                 |               |        |            |     |

#### Maximum Forces & Stresses for Load Combinations

| Load Combination         |     |        | Location (ft) | Bending  | g Stress Results ( | (k-ft)       |
|--------------------------|-----|--------|---------------|----------|--------------------|--------------|
| Segment                  |     | Span # | along Beam    | Mu : Max | Phi*Mnx            | Stress Ratio |
| MAXimum BENDING Envelope | Odd |        |               |          |                    |              |

Project Title: Engineer: Project ID: Project Descr:

Printed: 31 MAR 2020, 2:19PM

File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING **Concrete Beam** 

#### File = C:\Users\Owner\Desktop\SCU Faculty Staff Housing Development.ec6 . Software copyright ENERCALC, INC. 1983-2020, Build:12.20.2.24 Licensed User : SANTA CLARA UNIVERSITY, CIVIL ENGINEERING

DESCRIPTION: Parking Garage - 30' to 45'3" spans

Lic. # : KW-06090157 - Educational Version

| Load Combination<br>Segment                           | C2                    | Spa                |                       | Mu: Max          | g Stress Results (<br>Phi <sup>*</sup> Mnx | Stress Rati       |                       |
|-------------------------------------------------------|-----------------------|--------------------|-----------------------|------------------|--------------------------------------------|-------------------|-----------------------|
| Span # 1                                              | OC                    |                    | 1 41.500              | 1,563.83         | 1,665.19                                   | 0.94              |                       |
| +1.40D+1.60H<br>Span # 1<br>+1.20D+0.50Lr+1.60L+1.60H |                       |                    | 1 41.500              | 1,142.11         | 1,665.19                                   | 0.69              |                       |
| Span # 1                                              |                       |                    | 1 41.500              | 1,563.83         | 1,665.19                                   | 0.94              |                       |
| +1.20D+1.60L+0.50S+1.60H<br>Span # 1                  |                       |                    | 1 41.500              | 1,563.83         | 1,665.19                                   | 0.94              |                       |
| +1.20D+1.60Lr+L+1.60H<br>Span # 1                     |                       |                    | 1 41.500              | 1,344.50         | 1,665.19                                   | 0.81              |                       |
| +1.20D+1.60Lr+0.50W+1.60H<br>Span # 1                 |                       |                    | 1 41.500              | 978.96           | 1,665.19                                   | 0.59              |                       |
| +1.20D+1.60Lr-0.50W+1.60H                             |                       |                    |                       |                  | ,                                          |                   |                       |
| Span # 1<br>+1.20D+L+1.60S+1.60H                      |                       |                    | 1 41.500              | 978.96           | 1,665.19                                   | 0.59              |                       |
| Span # 1<br>+1.20D+1.60S+0.50W+1.60H                  |                       |                    | 1 41.500              | 1,344.50         | 1,665.19                                   | 0.81              |                       |
| Span # 1<br>+1.20D+1.60S-0.50W+1.60H                  | 기(은)(건                | (G Z)              | 1 41.500              | 978.96           | 1,665.19                                   | 0.59              | //V/(은)(이             |
| Span # 1<br>+1.20D+0.50Lr+L+W+1.60H                   |                       |                    | 1 41.500              | 978.96           | 1,665.19                                   | 0.59              |                       |
| Span # 1                                              |                       |                    | 1 41.500              | 1,344.50         | 1,665.19                                   | 0.81              |                       |
| +1.20D+0.50Lr+L-W+1.60H<br>Span # 1                   |                       |                    | 1 41.500              | 1,344.50         | 1,665.19                                   | 0.81              |                       |
| +1.20D+L+0.50S+W+1.60H<br>Span # 1                    |                       |                    | 1 41.500              | 1,344.50         | 1,665.19                                   | 0.81              |                       |
| +1.20D+L+0.50S-W+1.60H<br>Span # 1                    |                       |                    | 1 41.500              | 1.344.50         | 1.665.19                                   | 0.81              |                       |
| +0.90D+W+1.60H<br>Span # 1                            |                       |                    | 1 41.500              | 734.22           | 1,665.19                                   | 0.44              |                       |
| +0.90D-W+1.60H                                        |                       |                    |                       |                  | ,                                          |                   |                       |
| Span # 1<br>+1.40D+L+0.20S+E+1.60H                    |                       |                    | 1 41.500              | 734.22           | 1,665.19                                   | 0.44              |                       |
| Span # 1<br>+1.40D+L+0.20S-E+1.60H                    |                       |                    | 1 41.500              | 1,507.66         | 1,665.19                                   | 0.91              |                       |
| Span # 1<br>+0.70D+E+0.90H                            |                       |                    | 1 41,500              | 1,507.66         | 1,665.19                                   | 0.91              |                       |
| Span # 1                                              | $\bigcirc$ $\bigcirc$ |                    | 1 41.500              | 571.06           | 1,665.19                                   | 0.34              |                       |
| +0.70D-E+0.90H<br>Span # 1                            |                       |                    | 1 41.500              | 571.06           | 1,665.19                                   | 0.34              |                       |
| <b>Overall Maximum De</b>                             | flections             |                    |                       |                  |                                            |                   |                       |
| Load Combination                                      | Span                  | Max. "-" Defl (in) | Location in Span (ft) | Load Combination | Ма                                         | ax. "+" Defl (in) | Location in Span (ft) |
| +D+L+H                                                | 1                     | 1.9467             | 20.750                |                  |                                            | 0.0000            | 0.000                 |
|                                                       |                       |                    |                       |                  |                                            |                   |                       |

### Commercial Use Not Allowed

#### **Metal Decking**

From ASC Steel Deck Catalog: www.ascsd.com

**Residential Units** 

Return to TABLE OF CONTENTS

#### 2.4 **3WxH-36 Composite Deck** 6<sup>1</sup>/<sub>4</sub>" Total Slab Depth



......

Light Weight Concrete (110 pcf) Concrete Volume 1.466yd<sup>3</sup>/100ft<sup>2</sup> 2 Hour Fire Rating



|                       |      |          |           |           | 3WxH-3 | 661/4"SI | ab Depth, 11 | 10 pcf LWC |
|-----------------------|------|----------|-----------|-----------|--------|----------|--------------|------------|
|                       | Gage | Single   | Double    | Triple    | Gage   | Single   | Double       | Triple     |
| Maximum Unshored Span | 22   | 10' - 1" | 10' - 11" | 11'-4"    | 19     | 12' - 2" | 13' - 10"    | 14' - 3"   |
| Maximum Unshored Span | 21   | 11" - 0" | 11' - 9"  | 12' - 1"  | 18     | 12' - 7" | 15' - 1"     | 14' - 9"   |
|                       | 20   | 11" - 9" | 12" - 5"  | 12' - 10" | 16     | 13' - 3" | 16" - 6"     | 15' - 7"   |
|                       |      |          |           |           |        |          |              |            |

| Gage | Vertical Load Span (ft-in)       | 8"-0"   | 8'-6"               | 9'-0"   | 9'-6"             | 10'-0"                      | 10'-6"              | 11'-0"  | 11'-6" | 12'-0"              | 12'-6" | 13'-0"    | 13'-6" | 14"-0"             | 14'-6" | 15'-0" |
|------|----------------------------------|---------|---------------------|---------|-------------------|-----------------------------|---------------------|---------|--------|---------------------|--------|-----------|--------|--------------------|--------|--------|
|      |                                  | A       | SD & LF             | RFD - A | vailable          | e Super                     | rimpose             | ed Load | l Capa | city, W (           | (psf)  |           |        |                    |        |        |
| I    | ASD, W/Ω                         | 474     | 416                 | 368     | 327               | 291                         | 261                 | 235     | 212    | 192                 | 174    | 159       | 145    | 132                | 121    | 111    |
| I    | LRFD, ØW                         | 637     | 558                 | 492     | 436               | 388                         | 347                 | 311     | 280    | 253                 | 229    | 208       | 188    | 171                | 156    | 142    |
| I    | L/360                            | -       | -                   | -       | -                 | -                           | -                   | -       | -      | -                   | -      | -         | -      | -                  | -      | -      |
| I    | LRFD - Available                 | e Diaph | nragm S             | ihear C | apacity           | , <b>¢</b> S <sub>n</sub> ( | (plf / ft)          | 36/4    | Attach | nment P             | attern |           |        |                    |        |        |
| 22   | Arc Spot Weld 1/2" Effective Dia | 2522    | 2496                | 2473    | 2464              | 2445                        | 2428                | 2412    | 2398   | 2385                | 2381   | 2370      | 2360   | 2350               | 2341   | 2332   |
| I    | PAF Base Steel ≥ .25*            | 2332    | 2318                | 2305    | 2304              | 2293                        | 2283                | 2275    | 2266   | 2259                | 2260   | 2254      | 2247   | 2242               | 2236   | 2231   |
| I    | PAF Base Steel ≥ 0.125"          | 2317    | 2304                | 2292    | 2292              | 2281                        | 2272                | 2264    | 2256   | 2249                | 2251   | 2244      | 2239   | 2233               | 2228   | 2224   |
| I    | #12 Screw Base Steel ≥ .0385"    | 2304    | 2291                | 2280    | 2280              | 2270                        | 2262                | 2254    | 2247   | 2240                | 2242   | 2236      | 2231   | 2225               | 2221   | 2216   |
|      | Concrete + Deck =                | 45.3    | psf                 |         | l <sub>cr</sub> = | 97.0                        | in <sup>4</sup> /ft | ASD     |        | M <sub>no</sub> /Ω= | 43.4   | kip-in/ft |        | $V_n/\Omega =$     | 3.34   | kip/ft |
|      | $(l_{cr}+l_{u})/2 =$             | 157.6   | in <sup>4</sup> /ft |         | I., =             | 218.1                       | in <sup>4</sup> /ft | LRFD    |        | φM <sub>no</sub> =  | 66.4   | kip-in/ft |        | φ V <sub>n</sub> = | 4.82   | kip/ft |

| Gage | Vertical Load Span (ft-in)       | 8'-0" | 8'-6"               | 9'-0"  | 9'-6"            | 10'-0"                      | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12"-6" | 13'-0"    | 13'-6" | 14"-0"             | 14'-6" | 15'-0" |
|------|----------------------------------|-------|---------------------|--------|------------------|-----------------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|--------------------|--------|--------|
|      |                                  | AS    | SD & LR             | FD - A | vailable         | Super                       | impose              | ed Load | l Capad | city, W             | (psf)  |           |        |                    |        |        |
|      | ASD, W/Ω                         | 521   | 458                 | 404    | 359              | 321                         | 288                 | 259     | 234     | 213                 | 193    | 176       | 161    | 147                | 135    | 124    |
|      | LRFD, øW                         | 700   | 614                 | 542    | 481              | 428                         | 384                 | 345     | 311     | 281                 | 255    | 231       | 210    | 192                | 175    | 160    |
|      | L/360                            | -     | -                   | -      | -                | -                           | -                   | -       | -       | -                   | -      | -         | -      | -                  | -      | -      |
|      | LRFD - Available                 | Diaph | iragm S             | hear C | apacity          | , <b>φ</b> S <sub>n</sub> ( | plf / ft)           | 36/4    | Attach  | ment P              | attern |           |        |                    |        |        |
| 21   | Arc Spot Weld 1/2" Effective Dia | 2586  | 2557                | 2530   | 2521             | 2499                        | 2479                | 2461    | 2445    | 2430                | 2427   | 2413      | 2401   | 2390               | 2379   | 2370   |
|      | PAF Base Steel ≥ .25*            | 2368  | 2352                | 2337   | 2337             | 2325                        | 2313                | 2303    | 2293    | 2285                | 2287   | 2279      | 2272   | 2265               | 2259   | 2253   |
|      | PAF Base Steel ≥ 0.125"          | 2351  | 2336                | 2322   | 2323             | 2311                        | 2300                | 2291    | 2282    | 2274                | 2276   | 2269      | 2262   | 2256               | 2250   | 2245   |
|      | #12 Screw Base Steel ≥ .0385*    | 2337  | 2322                | 2309   | 2311             | 2299                        | 2289                | 2280    | 2271    | 2264                | 2267   | 2260      | 2254   | 2247               | 2242   | 2237   |
|      | Concrete + Deck =                | 45.6  | psf                 |        | l <sub>α</sub> = | 104.2                       | in <sup>4</sup> /ft | ASD     | 1       | M <sub>nd</sub> /Ω= | 47.4   | kip-in/ft |        | $V_n/\Omega =$     | 3.89   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 163   | in <sup>4</sup> /ft |        | I., =            | 221.7                       | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 72.5   | kip-in/ft |        | φ V <sub>n</sub> = | 5.71   | kip/ft |

| Gage | Vertical Load Span (ft-in)       | 8"-0" | 8'-6"               | 9'-0"    | 9'-6"             | 10"-0"                      | 10'-6"              | 11'-0"  | 11'-6"  | 12'-0"              | 12"-6" | 13'-0"    | 13'-6" | 14"-0"             | 14'-6" | 15'-0" |
|------|----------------------------------|-------|---------------------|----------|-------------------|-----------------------------|---------------------|---------|---------|---------------------|--------|-----------|--------|--------------------|--------|--------|
|      |                                  | AS    | SD & LR             | RFD - Av | vailable          | Super                       | impose              | ed Load | d Capao | city, W             | (psf)  |           |        |                    |        |        |
| I    | ASD, W/Ω                         | 564   | 496                 | 439      | 390               | 349                         | 313                 | 282     | 255     | 232                 | 211    | 192       | 176    | 161                | 148    | 136    |
| I    | LRFD, øW                         | 759   | 666                 | 588      | 522               | 466                         | 418                 | 376     | 339     | 307                 | 279    | 254       | 231    | 211                | 193    | 177    |
|      | L/360                            | -     | -                   | -        | -                 | -                           | -                   | -       | -       | -                   | -      | -         | -      | -                  | -      | -      |
| I    | LRFD - Available                 | Diaph | iragm S             | ihear C  | apacity           | , <b>¢</b> S <sub>n</sub> ( | plf / ft)           | 36/4    | Attach  | ment P              | attern |           |        |                    |        |        |
| 20   | Arc Spot Weld 1/2" Effective Dia | 2634  | 2601                | 2573     | 2563              | 2539                        | 2517                | 2498    | 2480    | 2463                | 2460   | 2446      | 2432   | 2420               | 2408   | 2397   |
| I    | PAF Base Steel ≥ .25"            | 2395  | 2377                | 2360     | 2362              | 2348                        | 2336                | 2324    | 2314    | 2304                | 2308   | 2299      | 2291   | 2283               | 2277   | 2270   |
| I    | PAF Base Steel ≥ 0.125"          | 2377  | 2360                | 2344     | 2347              | 2334                        | 2322                | 2311    | 2301    | 2292                | 2296   | 2288      | 2280   | 2273               | 2267   | 2260   |
|      | #12 Screw Base Steel ≥ .0385"    | 2362  | 2345                | 2331     | 2334              | 2321                        | 2310                | 2300    | 2290    | 2282                | 2286   | 2278      | 2271   | 2264               | 2258   | 2252   |
|      | Concrete + Deck =                | 45.6  | psf                 |          | l <sub>cr</sub> = | 110.8                       | in <sup>4</sup> /ft | ASD     |         | M <sub>nd</sub> /Ω= | 51.1   | kip-in/ft |        | $V_n/\Omega =$     | 3.89   | kip/ft |
|      | $(I_{cr}+I_{u})/2 =$             | 167.9 | in <sup>4</sup> /ft |          | l <sub>u</sub> =  | 225.1                       | in <sup>4</sup> /ft | LRFD    |         | φM <sub>no</sub> =  | 78.1   | kip-in/ft |        | φ V <sub>n</sub> = | 6.51   | kip/ft |

|       | LRFD - Available Diaphrag | n Shear Capacity, 🕸                  | n (plf / ft) for all vert            | ical load spans, WWF                 | Size or Area of Stee                 | I per foot width                     |
|-------|---------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| ŝ     | 3/4" Welded Shear Studs   | 6x6 W1.4xW1.4                        | 6x6 W2.9xW2.9                        | 6x6 W4.0xW4.0                        | 4x4 W4xW4                            | 4x4 W6xW6                            |
| age   | 3r4 Weided Shear Studs    | $A_s = 0.028 \text{ in}^2/\text{ft}$ | $A_s = 0.058 \text{ in}^2/\text{ft}$ | $A_s = 0.080 \text{ in}^2/\text{ft}$ | $A_s = 0.120 \text{ in}^2/\text{ft}$ | $A_s = 0.180 \text{ in}^2/\text{ft}$ |
| II Ga | 12 in o.c.                | n/a                                  | 4990                                 | 5980                                 | 7780                                 | 10480                                |
| A     | 24 in o.c.                | n/a                                  | 4990                                 | 5980                                 | 7750                                 | 7750                                 |
|       | 36 in o.c.                | n/a                                  | 4990                                 | 5170                                 | 5170                                 | 5170                                 |

#### <u>Roof</u>

#### Return to TABLE OF CONTENTS

2.2 DGBF-36 & BF-36







| -     |        |      |
|-------|--------|------|
| Panel | Proper | ties |

Note: Weld sizes are effective not visible. Refer to AISI S100-2016 or AWS D1.3 for additional welding requirements.

|       |                                |              |                |                     |              | Gros                 | s Section Prop                     | erties                   |                       |
|-------|--------------------------------|--------------|----------------|---------------------|--------------|----------------------|------------------------------------|--------------------------|-----------------------|
| Gage  | Base Metal<br>Weight Thickness |              | Yield Strength | Tensile<br>Strength | Area         | Moment of<br>Inertia | Distance to<br>N.A. from<br>Bottom | Section<br>Modulus       | Radius of<br>Gyration |
|       | w<br>psf                       | t            | Fy<br>ksi      | F.<br>ksi           | Ag<br>in²/ft | lg<br>in4/ft         | y₀<br>in                           | S <sub>9</sub><br>in³/ft | r<br>in               |
| 20/20 | 3.54                           | 0.0359/0.036 | 40             | 55                  | 1.047        | 0.460                | 0.58                               | 0.462                    | 0.663                 |
| 20/18 | 4.01                           | 0.0359/0.047 | 40             | 55                  | 1.190        | 0.503                | 0.52                               | 0.472                    | 0.650                 |
| 20/16 | 4.68                           | 0.0359/0.059 | 40             | 55                  | 1.330        | 0.535                | 0.48                               | 0.479                    | 0.634                 |
| 18/20 | 4.35                           | 0.0478/0.036 | 40             | 55                  | 1.231        | 0.564                | 0.65                               | 0.601                    | 0.677                 |
| 18/18 | 4.83                           | 0.0478/0.047 | 40             | 55                  | 1.370        | 0.614                | 0.59                               | 0.613                    | 0.670                 |
| 18/16 | 5.35                           | 0.0478/0.059 | 40             | 55                  | 1.521        | 0.661                | 0.55                               | 0.624                    | 0.659                 |
| 16/20 | 5.03                           | 0.0598/0.036 | 40             | 55                  | 1.423        | 0.661                | 0.70                               | 0.736                    | 0.682                 |
| 16/18 | 5.51                           | 0.0598/0.047 | 40             | 55                  | 1.562        | 0.721                | 0.65                               | 0.752                    | 0.679                 |
| 16/16 | 6.03                           | 0.0598/0.059 | 40             | 55                  | 1.713        | 0.777                | 0.60                               | 0.767                    | 0.674                 |

|       |                            | Effective Se  | ection Modulus f<br>at F <sub>y</sub> | Effective Moment of Inertia for Deflection<br>at Service Load |             |               |               |                           |              |
|-------|----------------------------|---------------|---------------------------------------|---------------------------------------------------------------|-------------|---------------|---------------|---------------------------|--------------|
|       |                            | Section       | Distance to<br>N.A. from              | Section                                                       | Distance to | Moment of     | Moment of     | Uniform I                 | Load Only    |
| Gage  | Area                       | Modulus       | Bottom                                | Modulus                                                       | Bottom      | Inertia       | Inertia       | I <sub>d</sub> = (2       | l₀+l₀)/3     |
|       | A <sub>n</sub> +<br>in²/ft | Se+<br>in³/ft | y₀<br>in                              | S₀-<br>in³/ft                                                 | y₀<br>in    | le+<br>in4/ft | l₀-<br>in⁴/ft | l+<br>in <sup>4</sup> /ft | I-<br>in⁴/ft |
| 20/20 | 0.691                      | 0.288         | 0.44                                  | 0.442                                                         | 0.71        | 0.370         | 0.402         | 0.401                     | 0.421        |
| 20/18 | 0.797                      | 0.294         | 0.39                                  | 0.456                                                         | 0.63        | 0.401         | 0.462         | 0.435                     | 0.475        |
| 20/16 | 0.914                      | 0.299         | 0.36                                  | 0.468                                                         | 0.55        | 0.423         | 0.517         | 0.461                     | 0.523        |
| 18/20 | 0.906                      | 0.433         | 0.54                                  | 0.573                                                         | 0.76        | 0.508         | 0.496         | 0.526                     | 0.519        |
| 18/18 | 1.016                      | 0.443         | 0.50                                  | 0.590                                                         | 0.70        | 0.550         | 0.560         | 0.572                     | 0.578        |
| 18/16 | 1.141                      | 0.451         | 0.46                                  | 0.608                                                         | 0.63        | 0.590         | 0.632         | 0.613                     | 0.642        |
| 16/20 | 1.141                      | 0.596         | 0.63                                  | 0.701                                                         | 0.80        | 0.639         | 0.592         | 0.646                     | 0.615        |
| 16/18 | 1.252                      | 0.610         | 0.58                                  | 0.723                                                         | 0.74        | 0.695         | 0.660         | 0.704                     | 0.681        |
| 16/16 | 1.377                      | 0.622         | 0.54                                  | 0.744                                                         | 0.68        | 0.749         | 0.741         | 0.758                     | 0.753        |

| Reactions at Supports (plf) E | Based on Web Crippling |
|-------------------------------|------------------------|
|-------------------------------|------------------------|

|                                         |              |               |         |                        | Bearing Len | gth of Webs             |      |       |      |  |  |
|-----------------------------------------|--------------|---------------|---------|------------------------|-------------|-------------------------|------|-------|------|--|--|
|                                         |              |               | Allowab | le (R <sub>n</sub> /Ω) |             | Factored ( $\Phi R_n$ ) |      |       |      |  |  |
| Gage                                    | Condition    | 1"            | 1.5"    | 2"                     | 3"          | 1"                      | 1.5" | 2"    | 3"   |  |  |
| 22                                      | End          | 586           | 664     | 730                    | 840         | 897                     | 1016 | 1117  | 1285 |  |  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Interior     | 934           | 1038    | 1126                   | 1273        | 1390                    | 1544 | 1675  | 1894 |  |  |
| 20                                      | End          | 822           | 927     | 1016                   | 1164        | 1258                    | 1418 | 1554  | 1781 |  |  |
| 20                                      | Interior     | 1320          | 1461    | 1579                   | 1778        | 1964                    | 2173 | 2349  | 2644 |  |  |
| 18                                      | End          | 1393          | 1561    | 1701                   | 1938        | 2132                    | 2388 | 2603  | 2965 |  |  |
| 10                                      | Interior     | 2268          | 2491    | 2679                   | 2994        | 3374                    | 3705 | 3985  | 4454 |  |  |
| 16                                      | End          | 2106          | 2345    | 2547                   | 2885        | 3222                    | 3588 | 3897  | 4415 |  |  |
| 10                                      | Interior     | 3462          | 3781    | 4050                   | 4501        | 5150                    | 5624 | 6065  | 6696 |  |  |
|                                         | Web Cripplin | g Constraints | h=1     | .32"                   | r=0.        | 125*                    | θ=7  | '8.3° |      |  |  |

36 V2.0 • Roof Deck Catalog

www.ascsd.com

### Appendix D:

### Water Resources Calculations Package

| BASELINE WA | TER USE AN | IALYSIS FOR MULTI                                          | -FAMILY RI                            | ESIDENTIA                  | TOTAL BLDG<br>SQUARE<br>FOOTAGE             |                                     |
|-------------|------------|------------------------------------------------------------|---------------------------------------|----------------------------|---------------------------------------------|-------------------------------------|
|             |            |                                                            |                                       |                            | 292,563                                     |                                     |
|             |            | Aver also of models which with                             | 1000                                  |                            | 290                                         | No. of units                        |
|             |            | Avg. size of residential units<br>Occupancy (persons/unit) | 1000                                  | 2                          | 580                                         | No. of units<br>No. of persons/unit |
|             | Flush      | fixtures<br>Toilets-Males & Females                        | (flushes per<br>dav/person)<br>5      | (gallons per flush)<br>1.6 | WATER USE<br>(GAL PER<br>YEAR)<br>1,693,600 |                                     |
|             | Flow       | fittings                                                   | (uses per<br>day/person)              | (gallons per use)          |                                             |                                     |
|             |            | Residential lavatory faucets                               | 8                                     | 1.25                       | 2,117,000                                   |                                     |
|             |            | Residential showerheads                                    | 1                                     | 15                         | 3,175,500                                   |                                     |
|             |            | Resid. kitchen sink faucets                                | 4                                     | 7.5                        | 6,351,000                                   |                                     |
|             | Pesid      | ential Appliances                                          | <u>(U.S. EPA</u><br>cycles per<br>yr) | (gallons/yr per<br>unit)   |                                             |                                     |
|             | Kesiu      | Clothes Washer                                             | 392                                   | 11760                      | 3,410,400                                   |                                     |
|             |            | Dishwasher                                                 | 215                                   | 1720                       | 498,800                                     | 1                                   |

SUB-TOTAL-PLUMBING & APPLIANCES

ASSUMPTIONS (from "input" tab) Shower use (minutes) Baseline shower flow rate (gpm) Baseline water factor (clothes washer) Cubic ft (clothes washer) Baseline water factor (dishwasher) Kitchen faucet use (min) Baseline lav faucet flow rate (gpm) Lavatory faucet use (min)

Other Systems Comfort systems (HVAC) Landscape irrigation

246,300

0.18

TOTAL WATER USE - BASELINE 17,246,300

6 2.5 10 8 2.5 0.5

Table D-1: Baseline potable water demand in the residential space using GBI's Green Globes consumption

Table D-2: Reduced potable water demand in the residential space using GBI's Green Globes consumption calculator.

| NATERUS | E ANALYSIS FOR | MULTI-FAMILY RES                               | SIDENTI                     | AL PROJECT            | BUILDING<br>SQUARE<br>FOOTAGE |                    |                            |
|---------|----------------|------------------------------------------------|-----------------------------|-----------------------|-------------------------------|--------------------|----------------------------|
|         |                |                                                |                             |                       | 292,563                       |                    |                            |
|         |                | Avg size of residential units (sf)             | 1000                        |                       | 293                           | No. of units       |                            |
|         |                | Occupancy (persons/unit)                       |                             | 2                     | 585                           | No. of persons     |                            |
|         |                |                                                |                             |                       | WATER USE                     |                    |                            |
|         | Flush          | fixtures                                       | (flushes per<br>day/person) | (WATERSENSE max.      | (GAL PER<br>YEAR)             |                    |                            |
|         |                | Toilets-Males & Females                        | 5                           | 0.8                   | 854,284                       |                    |                            |
|         |                |                                                |                             |                       |                               |                    |                            |
|         | Flow f         |                                                | (uses per<br>dav/person)    | (gallons per use)     |                               |                    |                            |
|         |                | Residential lavatory faucets                   | 8                           | 0.9                   | 1,537,711                     | ]                  |                            |
|         |                | Residential showerheads                        | 1                           | 10.8                  | 2,306,567                     |                    |                            |
|         |                | Resid. kitchen sink faucets                    | 4                           | 5.25                  | 4,484,991                     |                    |                            |
|         | Reside         | ential Appliances                              | cycles per<br>yr)           | (gallons/vr.per.unit) |                               |                    | COMPARISON<br>WITH BASELIN |
|         |                | Clothes Washer                                 | 392                         | 7056                  | 2,064,325                     |                    |                            |
|         |                | Dishwasher                                     | 215                         | 1247                  | 364,826                       |                    | (gallons per year          |
|         |                |                                                |                             |                       |                               | Baseline Water Use |                            |
|         | SUB-1          | TOTAL-PLUMBING & APPLIAN                       | 9                           |                       | 11,612,703                    |                    |                            |
|         |                |                                                |                             | Acre-feet/yr          |                               | Percent Reduction  | 32.7%                      |
|         |                |                                                |                             | Acre-feet/yr/unit     | 0.12                          |                    |                            |
|         | Other          | Systems                                        |                             |                       |                               |                    |                            |
|         |                | Comfort systems (HVAC)<br>Landscape irrigation |                             |                       |                               | -                  |                            |
|         |                |                                                | WATER I                     | SE - PROJECT          | 11 612 703                    |                    |                            |
|         |                |                                                |                             |                       | 11,012,703                    |                    |                            |
|         | OTHE           | R ASSUMPTIONS:<br>Shower use (minutes)         | 6                           |                       |                               |                    |                            |
|         |                | Shower flow rate (gpm)                         | 1.8                         |                       |                               |                    |                            |
|         |                | Water factor (clothes washer)                  | 6                           |                       |                               |                    |                            |
|         |                | Cubic ft (clothes washer)                      | 3                           |                       |                               |                    |                            |
|         |                | Water use (dishwasher)                         | 5.8                         |                       |                               |                    |                            |
|         |                | Kitchen faucet use (min)                       | 3                           |                       |                               |                    |                            |
|         |                | Kitchen faucet flow rate (gpm)                 | 1.75                        |                       |                               |                    |                            |
|         |                | Lavatory faucet flow rate (gpm)                |                             |                       |                               |                    |                            |
|         |                | Lavatory faucet use (min)                      | 0.5                         |                       |                               |                    |                            |

| iform Flow Gradually V | aried Flow 🕕 Messages |                          |               |       |
|------------------------|-----------------------|--------------------------|---------------|-------|
| olve For: Discharge    | ~ 2                   | Friction Method: Manning | Formula       | 1     |
| Roughness Coefficient  | 0.013                 | Flow Area:               | 0.2           | ft²   |
| Channel Slope:         | þ.020 ft/ft           | Wetted Perimeter:        | 1.2           | ft    |
| lormal Depth:          | 4.8 in                | Hydraulic Radius:        | 2.2           | in    |
| Diameter:              | 8.0 in                | Top Width:               | 0.65          | ft    |
| Discharge:             | 1.15 cfs              | Critical Depth:          | 6.1           | in    |
|                        |                       | Percent Full:            | 60.0          | %     |
|                        |                       | Critical Slope:          | 0.010         | ft/ft |
|                        |                       | Velocity:                | 5.25          | ft/s  |
|                        |                       | Velocity Head:           | 0.43          | ft    |
|                        |                       | Specific Energy:         | 0.83          | ft    |
|                        |                       | Froude Number:           | 1.599         |       |
|                        |                       | Maximum Discharge:       | 1.84          | cfs   |
|                        |                       | Discharge Full:          | 1.71          | cfs   |
|                        |                       | Slope Full:              | 0.009         | ft/ft |
|                        |                       | Flow Type:               | Supercritical |       |
|                        |                       |                          |               |       |

Calculation Successful. Figure D-1: Screen capture of the calculations performed in Bentley FlowMaster for the sanitary sewer pipes.

### **Appendix E:**

### Stormwater Management Calculations Package

|                             | Licensed for        | Academic Use Uniy             |  |
|-----------------------------|---------------------|-------------------------------|--|
| Project Description         |                     |                               |  |
| Friction Method             | Manning             |                               |  |
| Friction Method             | Formula             |                               |  |
| Solve For                   | Normal Depth        |                               |  |
| Input Data                  |                     |                               |  |
| Roughness Coefficient       | 0.013               |                               |  |
| Channel Slope               | 0.010 ft/ft         |                               |  |
| Diameter                    | 6.0 in              |                               |  |
| Discharge                   | 0.21 cfs            |                               |  |
| Results                     |                     |                               |  |
| Normal Depth                | 2.6 in              |                               |  |
| Flow Area                   | 0.1 ft <sup>2</sup> |                               |  |
| Wetted Perimeter            | 0.7 ft              |                               |  |
| Hydraulic Radius            | 1.3 in              |                               |  |
| Top Width                   | 0.49 ft             |                               |  |
| Critical Depth              | 2.8 in              |                               |  |
| Percent Full                | 42.6 %              |                               |  |
| Critical Slope              | 0.008 ft/ft         |                               |  |
| Velocity                    | 2.66 ft/s           |                               |  |
| Velocity Head               | 0.11 ft             |                               |  |
| Specific Energy             | 0.32 ft             |                               |  |
| Froude Number               | 1.167               |                               |  |
| Maximum Discharge           | 0.60 cfs            |                               |  |
| Discharge Full              | 0.56 cfs            |                               |  |
| Slope Full                  | 0.001 ft/ft         |                               |  |
| Flow Type                   | Supercritical       |                               |  |
| GVF Input Data              |                     |                               |  |
| Downstream Depth            | 0.0 in              |                               |  |
| Length                      | 0.0 ft              |                               |  |
| Number Of Steps             | 0                   |                               |  |
| GVF Output Data             |                     |                               |  |
| Upstream Depth              | 0.0 in              |                               |  |
| Profile Description         | N/A                 |                               |  |
| Profile Headloss            | 0.00 ft             |                               |  |
| Average End Depth Over Rise | 0.0 %               |                               |  |
| Normal Depth Over Rise      | 42.6 %              |                               |  |
| Downstream Velocity         | Infinity ft/s       |                               |  |
| Upstream Velocity           | Infinity ft/s       |                               |  |
| Normal Depth                | 2.6 in              |                               |  |
| Critical Depth              | 2.8 in              |                               |  |
| Channel Slope               | 0.010 ft/ft         |                               |  |
| Critical Slope              | 0.008 ft/ft         |                               |  |
|                             | Bentlev Svstems.    | Inc. Haestad Methods Solution |  |
| Senior Design.fm8           |                     | Center                        |  |
|                             | 1/ Sigmon C         |                               |  |

#### Inlet A Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only FlowMaster [10.02.00.01] Page 1 of 1

|                             | Licensed for        | Academic Use Uniy                |
|-----------------------------|---------------------|----------------------------------|
| Project Description         |                     |                                  |
| Friction Method             | Manning             |                                  |
|                             | Formula             |                                  |
| Solve For                   | Normal Depth        |                                  |
| Input Data                  |                     |                                  |
| Roughness Coefficient       | 0.013               |                                  |
| Channel Slope               | 0.010 ft/ft         |                                  |
| Diameter                    | 24.0 in             |                                  |
| Discharge                   | 10.23 cfs           |                                  |
| Results                     |                     |                                  |
| Normal Depth                | 11.3 in             |                                  |
| Flow Area                   | 1.5 ft <sup>2</sup> |                                  |
| Wetted Perimeter            | 3.0 ft              |                                  |
| Hydraulic Radius            | 5.8 in              |                                  |
| Top Width                   | 2.00 ft             |                                  |
| Critical Depth              | 13.7 in             |                                  |
| Percent Full                | 47.1 %              |                                  |
| Critical Slope              | 0.005 ft/ft         |                                  |
| Velocity                    | 7.02 ft/s           |                                  |
| Velocity Head               | 0.77 ft             |                                  |
| Specific Energy             | 1.71 ft             |                                  |
| Froude Number               | 1.449               |                                  |
| Maximum Discharge           | 24.33 cfs           |                                  |
| Discharge Full              | 22.62 cfs           |                                  |
| Slope Full                  | 0.002 ft/ft         |                                  |
| Flow Type                   | Supercritical       |                                  |
| GVF Input Data              |                     |                                  |
| Downstream Depth            | 0.0 in              |                                  |
| Length                      | 0.0 ft              |                                  |
| Number Of Steps             | 0                   |                                  |
| GVF Output Data             |                     |                                  |
| Upstream Depth              | 0.0 in              |                                  |
| Profile Description         | N/A                 |                                  |
| Profile Headloss            | 0.00 ft             |                                  |
| Average End Depth Over Rise | 0.0 %               |                                  |
| Normal Depth Over Rise      | 47.1 %              |                                  |
| Downstream Velocity         | Infinity ft/s       |                                  |
| Upstream Velocity           | Infinity ft/s       |                                  |
| Normal Depth                | 11.3 in             |                                  |
| Critical Depth              | 13.7 in             |                                  |
| Channel Slope               | 0.010 ft/ft         |                                  |
| Critical Slope              | 0.005 ft/ft         |                                  |
|                             | Bentley Systems     | s, Inc. Haestad Methods Solution |
| Senior Design.fm8           | 27 Siemen           | Center                           |
|                             |                     |                                  |

#### Inlet B Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only FlowMaster [10.02.00.01] Page 1 of 1

|                             | Licenseu for Academic U                  | seony   |
|-----------------------------|------------------------------------------|---------|
| Project Description         |                                          |         |
| Friction Method             | Manning                                  |         |
|                             | Formula                                  |         |
| Solve For                   | Normal Depth                             |         |
| Input Data                  |                                          |         |
| Roughness Coefficient       | 0.013                                    |         |
| Channel Slope               | 0.010 ft/ft                              |         |
| Diameter                    | 24.0 in                                  |         |
| Discharge                   | 9.65 cfs                                 |         |
| Results                     |                                          |         |
| Normal Depth                | 10.9 in                                  |         |
| Flow Area                   | 1.4 ft <sup>2</sup>                      |         |
| Wetted Perimeter            | 3.0 ft                                   |         |
| Hydraulic Radius            | 5.6 in                                   |         |
| Top Width                   | 1.99 ft                                  |         |
| Critical Depth              | 13.3 in                                  |         |
| Percent Full                | 45.6 %                                   |         |
| Critical Slope              | 0.005 ft/ft                              |         |
| Velocity                    | 6.91 ft/s                                |         |
| Velocity Head               | 0.74 ft                                  |         |
| Specific Energy             | 1.66 ft                                  |         |
| Froude Number               | 1.456                                    |         |
| Maximum Discharge           | 24.33 cfs                                |         |
| Discharge Full              | 22.62 cfs                                |         |
| Slope Full                  | 0.002 ft/ft                              |         |
| Flow Type                   | Supercritical                            |         |
| GVF Input Data              |                                          |         |
| Downstream Depth            | 0.0 in                                   |         |
| Length                      | 0.0 ft                                   |         |
| Number Of Steps             | 0                                        |         |
| GVF Output Data             |                                          |         |
| Upstream Depth              | 0.0 in                                   |         |
| Profile Description         | N/A                                      |         |
| Profile Headloss            | 0.00 ft                                  |         |
| Average End Depth Over Rise | 0.0 %                                    |         |
| Normal Depth Over Rise      | 45.6 %                                   |         |
| Downstream Velocity         | Infinity ft/s                            |         |
| Upstream Velocity           | Infinity ft/s                            |         |
| Normal Depth                | 10.9 in                                  |         |
| Critical Depth              | 13.3 in                                  |         |
| Channel Slope               | 0.010 ft/ft                              |         |
| Critical Slope              | 0.005 ft/ft                              |         |
|                             | Bentley Systems, Inc. Haestad Methods So | olution |
| Senior Design.fm8           | Center                                   |         |
|                             | 27 Siemon Company Drive Suite 200 V      | N       |

## Inlet C Licensed for Academic Use Only

Senior Design.fm8 4/30/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

|                             | Licensed for        | Academic Use Uniy                |
|-----------------------------|---------------------|----------------------------------|
| Project Description         |                     |                                  |
| Friction Method             | Manning             |                                  |
|                             | Formula             |                                  |
| Solve For                   | Normal Depth        |                                  |
| Input Data                  |                     |                                  |
| Roughness Coefficient       | 0.013               |                                  |
| Channel Slope               | 0.010 ft/ft         |                                  |
| Diameter                    | 8.0 in              |                                  |
| Discharge                   | 0.46 cfs            |                                  |
| Results                     |                     |                                  |
| Normal Depth                | 3.4 in              |                                  |
| Flow Area                   | 0.1 ft <sup>2</sup> |                                  |
| Wetted Perimeter            | 1.0 ft              |                                  |
| Hydraulic Radius            | 1.8 in              |                                  |
| Top Width                   | 0.66 ft             |                                  |
| Critical Depth              | 3.8 in              |                                  |
| Percent Full                | 42.9 %              |                                  |
| Critical Slope              | 0.007 ft/ft         |                                  |
| Velocity                    | 3.23 ft/s           |                                  |
| Velocity Head               | 0.16 ft             |                                  |
| Specific Energy             | 0.45 ft             |                                  |
| Froude Number               | 1.224               |                                  |
| Maximum Discharge           | 1.30 cfs            |                                  |
| Discharge Full              | 1.21 cfs            |                                  |
| Slope Full                  | 0.001 ft/ft         |                                  |
| Flow Type                   | Supercritical       |                                  |
| GVF Input Data              |                     |                                  |
| Downstream Depth            | 0.0 in              |                                  |
| Length                      | 0.0 ft              |                                  |
| Number Of Steps             | 0                   |                                  |
| GVF Output Data             |                     |                                  |
| Upstream Depth              | 0.0 in              |                                  |
| Profile Description         | N/A                 |                                  |
| Profile Headloss            | 0.00 ft             |                                  |
| Average End Depth Over Rise | 0.0 %               |                                  |
| Normal Depth Over Rise      | 42.9 %              |                                  |
| Downstream Velocity         | Infinity ft/s       |                                  |
| Upstream Velocity           | Infinity ft/s       |                                  |
| Normal Depth                | 3.4 in              |                                  |
| Critical Depth              | 3.8 in              |                                  |
| Channel Slope               | 0.010 ft/ft         |                                  |
| Critical Slope              | 0.007 ft/ft         |                                  |
|                             | Bentley System      | s, Inc. Haestad Methods Solution |
| enior Design.fm8            | Bentiey System      | Center                           |
|                             |                     |                                  |

## Inlet E Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

|                             | Licensed for Academ                        | iic use uniy    |
|-----------------------------|--------------------------------------------|-----------------|
| Project Description         |                                            |                 |
| Friction Method             | Manning                                    |                 |
| Fliction Method             | Formula                                    |                 |
| Solve For                   | Normal Depth                               |                 |
| Input Data                  |                                            |                 |
| Roughness Coefficient       | 0.013                                      |                 |
| Channel Slope               | 0.010 ft/ft                                |                 |
| Diameter                    | 24.0 in                                    |                 |
| Discharge                   | 11.88 cfs                                  |                 |
| Results                     |                                            |                 |
| Normal Depth                | 12.4 in                                    |                 |
| Flow Area                   | 1.6 ft <sup>2</sup>                        |                 |
| Wetted Perimeter            | 3.2 ft                                     |                 |
| Hydraulic Radius            | 6.1 in                                     |                 |
| Top Width                   | 2.00 ft                                    |                 |
| Critical Depth              | 14.9 in                                    |                 |
| Percent Full                | 51.5 %                                     |                 |
| Critical Slope              | 0.006 ft/ft                                |                 |
| Velocity                    | 7.29 ft/s                                  |                 |
| Velocity Head               | 0.83 ft                                    |                 |
| Specific Energy             | 1.85 ft                                    |                 |
| Froude Number               | 1.423                                      |                 |
| Maximum Discharge           | 24.33 cfs                                  |                 |
| Discharge Full              | 22.62 cfs                                  |                 |
| Slope Full                  | 0.003 ft/ft                                |                 |
| Flow Type                   | Supercritical                              |                 |
| GVF Input Data              |                                            |                 |
| Downstream Depth            | 0.0 in                                     |                 |
| Length                      | 0.0 ft                                     |                 |
| Number Of Steps             | 0                                          |                 |
| GVF Output Data             |                                            |                 |
| Upstream Depth              | 0.0 in                                     |                 |
| Profile Description         | N/A                                        |                 |
| Profile Headloss            | 0.00 ft                                    |                 |
| Average End Depth Over Rise | 0.0 %                                      |                 |
| Normal Depth Over Rise      | 51.5 %                                     |                 |
| Downstream Velocity         | Infinity ft/s                              |                 |
| Upstream Velocity           | Infinity ft/s                              |                 |
| Normal Depth                | 12.4 in                                    |                 |
| Critical Depth              | 14.9 in                                    |                 |
| Channel Slope               | 0.010 ft/ft                                |                 |
| Critical Slope              | 0.006 ft/ft                                |                 |
|                             |                                            |                 |
| enior Design.fm8            | Bentley Systems, Inc. Haestad Me<br>Center | ethods Solution |
| -                           | 27 Siemon Company Drive St                 |                 |

## Inlet G Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

|                             | LICENSEU IUI ACAUEIIIIC USE                              | onny |
|-----------------------------|----------------------------------------------------------|------|
| Project Description         |                                                          |      |
| Friction Method             | Manning                                                  |      |
| Friction Metriod            | Formula                                                  |      |
| Solve For                   | Normal Depth                                             |      |
| Input Data                  |                                                          |      |
| Roughness Coefficient       | 0.013                                                    |      |
| Channel Slope               | 0.010 ft/ft                                              |      |
| Diameter                    | 8.0 in                                                   |      |
| Discharge                   | 0.66 cfs                                                 |      |
| Results                     |                                                          |      |
| Normal Depth                | 4.2 in                                                   |      |
| Flow Area                   | 0.2 ft <sup>2</sup>                                      |      |
| Wetted Perimeter            | 1.1 ft                                                   |      |
| Hydraulic Radius            | 2.1 in                                                   |      |
| Top Width                   | 0.67 ft                                                  |      |
| Critical Depth              | 4.6 in                                                   |      |
| Percent Full                | 52.6 %                                                   |      |
| Critical Slope              | 0.008 ft/ft                                              |      |
| Velocity                    | 3.54 ft/s                                                |      |
| Velocity Head               | 0.19 ft                                                  |      |
| Specific Energy             | 0.54 ft                                                  |      |
| Froude Number               | 1.179                                                    |      |
| Maximum Discharge           | 1.30 cfs                                                 |      |
| Discharge Full              | 1.21 cfs                                                 |      |
| Slope Full                  | 0.003 ft/ft                                              |      |
| Flow Type                   | Supercritical                                            |      |
| GVF Input Data              |                                                          |      |
| Downstream Depth            | 0.0 in                                                   |      |
| Length                      | 0.0 ft                                                   |      |
| Number Of Steps             | 0                                                        |      |
| GVF Output Data             |                                                          |      |
| -                           | 0.0 in                                                   |      |
| Upstream Depth              | 0.0 in                                                   |      |
| Profile Description         | N/A                                                      |      |
| Profile Headloss            | 0.00 ft                                                  |      |
| Average End Depth Over Rise | 0.0 %                                                    |      |
| Normal Depth Over Rise      | 52.6 %                                                   |      |
| Downstream Velocity         | Infinity ft/s                                            |      |
| Upstream Velocity           | Infinity ft/s                                            |      |
| Normal Depth                | 4.2 in                                                   |      |
| Critical Depth              | 4.6 in                                                   |      |
| Channel Slope               | 0.010 ft/ft                                              |      |
| Critical Slope              | 0.008 ft/ft                                              |      |
|                             | Poptiev Systems Inc. Lisested Methods Schröser           |      |
| Senior Design.fm8           | Bentley Systems, Inc. Haestad Methods Solution<br>Center |      |
|                             | 27 Siemon Company Drive Suite 200 W                      |      |

## Inlet I Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

|                             | Licensed for        | Academic Use Uniy             |   |
|-----------------------------|---------------------|-------------------------------|---|
| Project Description         |                     |                               |   |
| Friction Method             | Manning             |                               |   |
|                             | Formula             |                               |   |
| Solve For                   | Normal Depth        |                               |   |
| Input Data                  |                     |                               |   |
| Roughness Coefficient       | 0.013               |                               |   |
| Channel Slope               | 0.010 ft/ft         |                               |   |
| Diameter                    | 5.0 in              |                               |   |
| Discharge                   | 0.16 cfs            |                               |   |
| Results                     |                     |                               |   |
| Normal Depth                | 2.4 in              |                               |   |
| Flow Area                   | 0.1 ft <sup>2</sup> |                               |   |
| Wetted Perimeter            | 0.6 ft              |                               |   |
| Hydraulic Radius            | 1.2 in              |                               |   |
| Top Width                   | 0.42 ft             |                               |   |
| Critical Depth              | 2.5 in              |                               |   |
| Percent Full                | 47.2 %              |                               |   |
| Critical Slope              | 0.008 ft/ft         |                               |   |
| Velocity                    | 2.47 ft/s           |                               |   |
| Velocity Head               | 0.09 ft             |                               |   |
| Specific Energy             | 0.29 ft             |                               |   |
| Froude Number               | 1.116               |                               |   |
| Maximum Discharge           | 0.37 cfs            |                               |   |
| Discharge Full              | 0.35 cfs            |                               |   |
| Slope Full                  | 0.002 ft/ft         |                               |   |
| Flow Type                   | Supercritical       |                               |   |
| GVF Input Data              |                     |                               |   |
| Downstream Depth            | 0.0 in              |                               |   |
| Length                      | 0.0 ft              |                               |   |
| Number Of Steps             | 0                   |                               |   |
| GVF Output Data             |                     |                               |   |
| Upstream Depth              | 0.0 in              |                               |   |
| Profile Description         | N/A                 |                               |   |
| Profile Headloss            | 0.00 ft             |                               |   |
| Average End Depth Over Rise | 0.0 %               |                               |   |
| Normal Depth Over Rise      | 47.2 %              |                               |   |
| Downstream Velocity         | Infinity ft/s       |                               |   |
| Upstream Velocity           | Infinity ft/s       |                               |   |
| Normal Depth                | 2.4 in              |                               |   |
| Critical Depth              | 2.5 in              |                               |   |
| Channel Slope               | 0.010 ft/ft         |                               |   |
| Critical Slope              | 0.008 ft/ft         |                               |   |
|                             | Bentlev Systems     | Inc. Haestad Methods Solution |   |
| Senior Design.fm8           |                     | Center                        | I |
|                             |                     |                               |   |

## Inlet J Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

|                             | LICENSEU IUI ACAUEIIIIC                        | Use Unity  |
|-----------------------------|------------------------------------------------|------------|
| Project Description         |                                                |            |
| Friction Method             | Manning                                        |            |
| Friction Method             | Formula                                        |            |
| Solve For                   | Normal Depth                                   |            |
| Input Data                  |                                                |            |
| Roughness Coefficient       | 0.013                                          |            |
| Channel Slope               | 0.010 ft/ft                                    |            |
| Diameter                    | 20.0 in                                        |            |
| Discharge                   | 8.52 cfs                                       |            |
| Results                     |                                                |            |
| Normal Depth                | 11.3 in                                        |            |
| Flow Area                   | 1.3 ft <sup>2</sup>                            |            |
| Wetted Perimeter            | 2.8 ft                                         |            |
| Hydraulic Radius            | 5.4 in                                         |            |
| Top Width                   | 1.65 ft                                        |            |
| Critical Depth              | 13.2 in                                        |            |
| Percent Full                | 56.6 %                                         |            |
| Critical Slope              | 0.006 ft/ft                                    |            |
| Velocity                    | 6.70 ft/s                                      |            |
| Velocity Head               | 0.70 ft                                        |            |
| Specific Energy             | 1.64 ft                                        |            |
| Froude Number               | 1.345                                          |            |
| Maximum Discharge           | 14.96 cfs                                      |            |
| Discharge Full              | 13.91 cfs                                      |            |
| Slope Full                  | 0.004 ft/ft                                    |            |
| Flow Type                   | Supercritical                                  |            |
| GVF Input Data              |                                                |            |
| Downstream Depth            | 0.0 in                                         |            |
| Length                      | 0.0 ft                                         |            |
| Number Of Steps             | 0                                              |            |
| -                           | 5                                              |            |
| GVF Output Data             |                                                |            |
| Upstream Depth              | 0.0 in                                         |            |
| Profile Description         | N/A                                            |            |
| Profile Headloss            | 0.00 ft                                        |            |
| Average End Depth Over Rise | 0.0 %                                          |            |
| Normal Depth Over Rise      | 56.6 %                                         |            |
| Downstream Velocity         | Infinity ft/s                                  |            |
| Upstream Velocity           | Infinity ft/s                                  |            |
| Normal Depth                | 11.3 in                                        |            |
| Critical Depth              | 13.2 in                                        |            |
| Channel Slope               | 0.010 ft/ft                                    |            |
| Critical Slope              | 0.006 ft/ft                                    |            |
|                             |                                                |            |
| enior Design.fm8            | Bentley Systems, Inc. Haestad Method<br>Center | s Solution |
| -                           | 27 Siemon Company Drive Suite 2                |            |

## Inlet L Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

|                             | Licensed for Academic Us                            | se only |
|-----------------------------|-----------------------------------------------------|---------|
| Project Description         |                                                     |         |
| Friction Method             | Manning                                             |         |
| Friction Method             | Formula                                             |         |
| Solve For                   | Normal Depth                                        |         |
| Input Data                  |                                                     |         |
| Roughness Coefficient       | 0.013                                               |         |
| Channel Slope               | 0.010 ft/ft                                         |         |
| Diameter                    | 20.0 in                                             |         |
| Discharge                   | 8.42 cfs                                            |         |
| Results                     |                                                     |         |
| Normal Depth                | 11.2 in                                             |         |
| Flow Area                   | 1.3 ft <sup>2</sup>                                 |         |
| Wetted Perimeter            | 2.8 ft                                              |         |
| Hydraulic Radius            | 5.4 in                                              |         |
| Top Width                   | 1.65 ft                                             |         |
| Critical Depth              | 13.1 in                                             |         |
| Percent Full                | 56.1 %                                              |         |
| Critical Slope              | 0.006 ft/ft                                         |         |
| Velocity                    | 6.68 ft/s                                           |         |
| Velocity Head               | 0.69 ft                                             |         |
| Specific Energy             | 1.63 ft                                             |         |
| Froude Number               | 1.348                                               |         |
| Maximum Discharge           | 14.96 cfs                                           |         |
| Discharge Full              | 13.91 cfs                                           |         |
| Slope Full                  | 0.004 ft/ft                                         |         |
| Flow Type                   | Supercritical                                       |         |
| GVF Input Data              |                                                     |         |
| Downstream Depth            | 0.0 in                                              |         |
| Length                      | 0.0 ft                                              |         |
| Number Of Steps             | 0                                                   |         |
| GVF Output Data             |                                                     |         |
| Upstream Depth              | 0.0 in                                              |         |
| Profile Description         | N/A                                                 |         |
| Profile Headloss            | 0.00 ft                                             |         |
| Average End Depth Over Rise | 0.0 %                                               |         |
| Normal Depth Over Rise      | 56.1 %                                              |         |
| Downstream Velocity         | Infinity ft/s                                       |         |
| Upstream Velocity           | Infinity ft/s                                       |         |
| Normal Depth                | 11.2 in                                             |         |
| Critical Depth              | 13.1 in                                             |         |
| Channel Slope               | 0.010 ft/ft                                         |         |
| Critical Slope              | 0.006 ft/ft                                         |         |
|                             |                                                     |         |
| Genior Design.fm8           | Bentley Systems, Inc. Haestad Methods Sol<br>Center | lution  |
| Series Doolghamo            | 27 Siemon Company Drive Suite 200 W                 | 1       |

## Inlet K Licensed for Academic Use Only

Senior Design.fm8 4/21/2020 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

#### North Underdrain

#### **Licensed for Academic Use Only**

| Project Description         |                     |                                 |  |
|-----------------------------|---------------------|---------------------------------|--|
| Friction Method             | Manning<br>Formula  |                                 |  |
| Solve For                   | Normal Depth        |                                 |  |
|                             | •                   |                                 |  |
| Input Data                  |                     |                                 |  |
| Roughness Coefficient       | 0.013               |                                 |  |
| Channel Slope               | 0.005 ft/ft         |                                 |  |
| Diameter                    | 6.0 in              |                                 |  |
| Discharge                   | 0.37 cfs            |                                 |  |
| Results                     |                     |                                 |  |
| Normal Depth                | 4.5 in              |                                 |  |
| Flow Area                   | 0.2 ft <sup>2</sup> |                                 |  |
| Wetted Perimeter            | 1.1 ft              |                                 |  |
| Hydraulic Radius            | 1.8 in              |                                 |  |
| Top Width                   | 0.43 ft             |                                 |  |
| Critical Depth              | 3.7 in              |                                 |  |
| Percent Full                | 75.6 %              |                                 |  |
| Critical Slope              | 0.009 ft/ft         |                                 |  |
| Velocity                    | 2.29 ft/s           |                                 |  |
| Velocity Head               | 0.08 ft             |                                 |  |
| Specific Energy             | 0.46 ft             |                                 |  |
| Froude Number               | 0.663               |                                 |  |
| Maximum Discharge           | 0.43 cfs            |                                 |  |
| Discharge Full              | 0.40 cfs            |                                 |  |
| Slope Full                  | 0.004 ft/ft         |                                 |  |
| Flow Type                   | Subcritical         |                                 |  |
| GVF Input Data              |                     |                                 |  |
| Downstream Depth            | 0.0 in              |                                 |  |
| Length                      | 0.0 ft              |                                 |  |
| Number Of Steps             | 0                   |                                 |  |
| GVF Output Data             |                     |                                 |  |
| Upstream Depth              | 0.0 in              |                                 |  |
| Profile Description         | N/A                 |                                 |  |
| Profile Headloss            | 0.00 ft             |                                 |  |
| Average End Depth Over Rise | 0.0 %               |                                 |  |
| Normal Depth Over Rise      | 56.1 %              |                                 |  |
| Downstream Velocity         | Infinity ft/s       |                                 |  |
| Upstream Velocity           | Infinity ft/s       |                                 |  |
| Normal Depth                | 4.5 in              |                                 |  |
| Critical Depth              | 3.7 in              |                                 |  |
| Channel Slope               | 0.005 ft/ft         |                                 |  |
| Critical Slope              | 0.009 ft/ft         |                                 |  |
|                             |                     |                                 |  |
|                             | Bentley Systems     | , Inc. Haestad Methods Solution |  |
| enior Design.fm8            | 07 Signan           | Center                          |  |
| /21/2020                    |                     | Company Drive Suite 200 W       |  |

4/21/2020

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

#### West Underdrain

#### **Licensed for Academic Use Only**

| Project Description         |                         |                                  |  |
|-----------------------------|-------------------------|----------------------------------|--|
| Friction Method             | Manning<br>Formula      |                                  |  |
| Solve For                   | Formula<br>Normal Depth |                                  |  |
| 50176 1 01                  | Normal Depth            |                                  |  |
| Input Data                  |                         |                                  |  |
| Roughness Coefficient       | 0.013                   |                                  |  |
| Channel Slope               | 0.005 ft/ft             |                                  |  |
| Diameter                    | 4.0 in                  |                                  |  |
| Discharge                   | 0.07 cfs                |                                  |  |
| Results                     |                         |                                  |  |
| Normal Depth                | 2.0 in                  |                                  |  |
| Flow Area                   | 0.0 ft <sup>2</sup>     |                                  |  |
| Wetted Perimeter            | 0.5 ft                  |                                  |  |
| Hydraulic Radius            | 1.0 in                  |                                  |  |
| Top Width                   | 0.33 ft                 |                                  |  |
| Critical Depth              | 1.7 in                  |                                  |  |
| Percent Full                | 49.4 %                  |                                  |  |
| Critical Slope              | 0.008 ft/ft             |                                  |  |
| Velocity                    | 1.54 ft/s               |                                  |  |
| Velocity Head               | 0.04 ft                 |                                  |  |
| Specific Energy             | 0.20 ft                 |                                  |  |
| Froude Number               | 0.754                   |                                  |  |
| Maximum Discharge           | 0.14 cfs                |                                  |  |
| Discharge Full              | 0.13 cfs                |                                  |  |
| Slope Full                  | 0.001 ft/ft             |                                  |  |
| Flow Type                   | Subcritical             |                                  |  |
| GVF Input Data              |                         |                                  |  |
| Downstream Depth            | 0.0 in                  |                                  |  |
| Length                      | 0.0 ft                  |                                  |  |
| Number Of Steps             | 0                       |                                  |  |
| GVF Output Data             |                         |                                  |  |
| Upstream Depth              | 0.0 in                  |                                  |  |
| Profile Description         | N/A                     |                                  |  |
| Profile Headloss            | 0.00 ft                 |                                  |  |
| Average End Depth Over Rise | 0.0 %                   |                                  |  |
| Normal Depth Over Rise      | 56.1 %                  |                                  |  |
| Downstream Velocity         | Infinity ft/s           |                                  |  |
| Upstream Velocity           | Infinity ft/s           |                                  |  |
| Normal Depth                | 2.0 in                  |                                  |  |
| Critical Depth              | 1.7 in                  |                                  |  |
| Channel Slope               | 0.005 ft/ft             |                                  |  |
| Critical Slope              | 0.008 ft/ft             |                                  |  |
|                             | Rentlev Svetem          | s, Inc. Haestad Methods Solution |  |
| enior Design.fm8            |                         | Center                           |  |
| 121/2020                    | 27 Siemon               | Company Drive Suite 200 W        |  |

4/21/2020

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

#### **North Bioretention Outflow Pipe**

#### **Licensed for Academic Use Only**

| Friction Method             | Manning                                       |             |
|-----------------------------|-----------------------------------------------|-------------|
|                             | Formula                                       |             |
| Solve For                   | Normal Depth                                  |             |
| Input Data                  |                                               |             |
| Roughness Coefficient       | 0.013                                         |             |
| Channel Slope               | 0.005 ft/ft                                   |             |
| Diameter                    | 8.0 in                                        |             |
| Discharge                   | 0.50 cfs                                      |             |
| Results                     |                                               |             |
| Normal Depth                | 4.4 in                                        |             |
| Flow Area                   | 0.2 ft <sup>2</sup>                           |             |
| Wetted Perimeter            | 1.1 ft                                        |             |
| Hydraulic Radius            | 2.1 in                                        |             |
| Top Width                   | 0.66 ft                                       |             |
| Critical Depth              | 4.0 in                                        |             |
| Percent Full                | 54.7 %                                        |             |
| Critical Slope              | 0.007 ft/ft                                   |             |
| Velocity                    | 2.54 ft/s                                     |             |
| Velocity Head               | 0.10 ft                                       |             |
| Specific Energy             | 0.46 ft                                       |             |
| Froude Number               | 0.825                                         |             |
| Maximum Discharge           | 0.92 cfs                                      |             |
| Discharge Full              | 0.85 cfs                                      |             |
| Slope Full                  | 0.002 ft/ft                                   |             |
| Flow Type                   | Subcritical                                   |             |
| GVF Input Data              |                                               |             |
| Downstream Depth            | 0.0 in                                        |             |
| Length                      | 0.0 ft                                        |             |
| Number Of Steps             | 0                                             |             |
| GVF Output Data             |                                               |             |
| Upstream Depth              | 0.0 in                                        |             |
| Profile Description         | N/A                                           |             |
| Profile Headloss            | 0.00 ft                                       |             |
| Average End Depth Over Rise | 0.0 %                                         |             |
| Normal Depth Over Rise      | 45.6 %                                        |             |
| Downstream Velocity         | Infinity ft/s                                 |             |
| Upstream Velocity           | Infinity ft/s                                 |             |
| Normal Depth                | 4.4 in                                        |             |
| Critical Depth              | 4.0 in                                        |             |
| Channel Slope               | 0.005 ft/ft                                   |             |
| Critical Slope              | 0.007 ft/ft                                   |             |
|                             |                                               |             |
| enior Design.fm8            | Bentley Systems, Inc. Haestad Metho<br>Center | ds Solution |
| -                           | 27 Siemon Company Drive Suite                 | 200 W/      |

5/12/2020

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only

#### **West Bioretention Outflow Pipe**

## Licensed for Academic Use Only

| Project Description         |                     |                                   |
|-----------------------------|---------------------|-----------------------------------|
| Friction Method             | Manning             |                                   |
| Friction Method             | Formula             |                                   |
| Solve For                   | Normal Depth        |                                   |
| Input Data                  |                     |                                   |
| Roughness Coefficient       | 0.013               |                                   |
| Channel Slope               | 0.005 ft/ft         |                                   |
| Diameter                    | 4.0 in              |                                   |
| Discharge                   | 0.09 cfs            |                                   |
| Results                     |                     |                                   |
| Normal Depth                | 2.3 in              |                                   |
| Flow Area                   | 0.1 ft <sup>2</sup> |                                   |
| Wetted Perimeter            | 0.6 ft              |                                   |
| Hydraulic Radius            | 1.1 in              |                                   |
| Top Width                   | 0.33 ft             |                                   |
| Critical Depth              | 2.0 in              |                                   |
| Percent Full                | 58.5 %              |                                   |
| Critical Slope              | 0.009 ft/ft         |                                   |
| Velocity                    | 1.64 ft/s           |                                   |
| Velocity Head               | 0.04 ft             |                                   |
| Specific Energy             | 0.24 ft             |                                   |
| Froude Number               | 0.719               |                                   |
| Maximum Discharge           | 0.14 cfs            |                                   |
| Discharge Full              | 0.13 cfs            |                                   |
| Slope Full                  | 0.002 ft/ft         |                                   |
| Flow Type                   | Subcritical         |                                   |
| GVF Input Data              |                     |                                   |
| Downstream Depth            | 0.0 in              |                                   |
| Length                      | 0.0 ft              |                                   |
| Number Of Steps             | 0                   |                                   |
| GVF Output Data             |                     |                                   |
| Upstream Depth              | 0.0 in              |                                   |
| Profile Description         | N/A                 |                                   |
| Profile Headloss            | 0.00 ft             |                                   |
| Average End Depth Over Rise | 0.0 %               |                                   |
| Normal Depth Over Rise      | 45.6 %              |                                   |
| Downstream Velocity         | Infinity ft/s       |                                   |
| Upstream Velocity           | Infinity ft/s       |                                   |
| Normal Depth                | 2.3 in              |                                   |
| Critical Depth              | 2.0 in              |                                   |
| Channel Slope               | 0.005 ft/ft         |                                   |
| Critical Slope              | 0.009 ft/ft         |                                   |
|                             | Dentle: Outers 1    | Lineated Matheda Colution         |
| Senior Design.fm8           | C                   | Haestad Methods Solution<br>enter |
|                             | 27 Siemon Compa     | any Drive Suite 200 W             |

5/12/2020

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Licensed for Academic Use Only







Santa Clara University

SCU's Faculty & Staff Housing Development 1200 Campbell Avenue San Jose, CA 95126

| No. | Description | Date | NORTH BIO      | RETENTION CF   | ROSS-SECTION |
|-----|-------------|------|----------------|----------------|--------------|
|     |             |      | Project number | 20352          |              |
|     |             |      | Date           | April 25, 2020 | E 15         |
|     |             |      | Drawn by       | RH             |              |
|     |             |      | Checked by     | LD             |              |

1:58:24 PM 9/20 õ



ELEVATION (SE) 69.03'

SIDEWALK 

| BIORETENTION CROS | S-SECTION |
|-------------------|-----------|
|                   |           |

Project number 20352 E.16 April 25, 2020 RH Checked by LD

'9/20 1:58:26 PM

õ



/9/20 1:58:27 PM

õ



| /<br>E,                                              |                   |
|------------------------------------------------------|-------------------|
| ≪~~                                                  |                   |
| RDRAIN PIPE, 4"<br>VC                                |                   |
| T OVERFLOW STRUCTURE                                 | 28 PM             |
| April 25, 2020<br>April 25, 2020<br>By RH<br>d by LD | 6/9/20 1:58:28 PM |

## Appendix F:

# **Construction Management Package**

| 1                                                                       | 0 | Task<br>Mode | Task Name                                                                                                                                                                                                                            | Duration                                                                                                                                   | Start Finish Predecessors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mar  | Qtr 2, 2021<br>Apr | May                            | Qtr 3,<br>Jun Ju | Sep (                   |
|-------------------------------------------------------------------------|---|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|--------------------------------|------------------|-------------------------|
|                                                                         | _ | ->           | 1200 Campbell                                                                                                                                                                                                                        | 426 days                                                                                                                                   | Mon 4/5/21 Mon 11/28/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                    |                                |                  |                         |
| 2                                                                       | _ | ->           | Preconstruction Activity                                                                                                                                                                                                             | 63 days                                                                                                                                    | Mon 4/5/21 Thu 7/1/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                    |                                |                  |                         |
| 3                                                                       |   | ÷            | Detailed Design                                                                                                                                                                                                                      | 60 edays                                                                                                                                   | Mon 4/5/21 Fri 6/4/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                    | $\rightarrow$                  |                  |                         |
| +                                                                       |   | ->           | Archaeology Dig<br>Permitting                                                                                                                                                                                                        | 5 days                                                                                                                                     | Fri 6/4/21         Thu 6/10/21         3           Fri 6/4/21         Fri 6/25/21         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                    | -                              |                  |                         |
|                                                                         | _ |              | Site Mobilization                                                                                                                                                                                                                    | 21 edays<br>5 days                                                                                                                         | Fri 6/25/21 Thu 7/1/21 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                    |                                | $\rightarrow$    |                         |
|                                                                         |   |              | Site Utlities                                                                                                                                                                                                                        | 20 days                                                                                                                                    | Fri 7/2/21 Thu 7/29/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                    |                                |                  |                         |
|                                                                         | _ |              | Exisiting Site Markings                                                                                                                                                                                                              | 3 days                                                                                                                                     | Fri 7/2/21 Tue 7/6/21 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| }                                                                       |   |              | Install Utility Lines                                                                                                                                                                                                                | 14 days                                                                                                                                    | Wed 7/7/21 Mon 7/26/218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| 0                                                                       |   |              | Tie In to Main                                                                                                                                                                                                                       | 3 days                                                                                                                                     | Tue 7/27/21 Thu 7/29/21 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 1                                                                       | _ |              | Site Work                                                                                                                                                                                                                            | 306 days                                                                                                                                   | Fri 7/30/21 Thu 10/6/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| 2                                                                       |   |              | Demolition                                                                                                                                                                                                                           | 10 days                                                                                                                                    | Fri 7/30/21 Thu 8/12/21 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 3                                                                       | _ |              | Rough Grading                                                                                                                                                                                                                        | 3 days                                                                                                                                     | Tue 8/24/21 Thu 8/26/21 14,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                    |                                |                  | 、<br>、                  |
| 4                                                                       |   | -,           | Excavation                                                                                                                                                                                                                           | 7 days                                                                                                                                     | Fri 8/13/21 Mon 8/23/2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 15                                                                      |   | -,           | Backfill                                                                                                                                                                                                                             | 2 days                                                                                                                                     | Fri 8/27/21 Mon 8/30/2113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 6                                                                       | _ | -,           | Landscaping                                                                                                                                                                                                                          | 14 days                                                                                                                                    | Mon 9/19/22Thu 10/6/22 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 7                                                                       |   | -,           | Paving                                                                                                                                                                                                                               | 4 days                                                                                                                                     | Tue 9/13/22 Fri 9/16/22 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                    |                                |                  |                         |
| 8                                                                       |   | -,           | Foundation                                                                                                                                                                                                                           | 45 days                                                                                                                                    | Tue 8/31/21 Wed 11/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| 9                                                                       |   | -,           | Rebar Placement                                                                                                                                                                                                                      | 7 days                                                                                                                                     | Tue 8/31/21 Thu 9/9/21 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 0                                                                       | _ | -,           | Foundation Formwork Install                                                                                                                                                                                                          | 4 days                                                                                                                                     | Fri 9/10/21 Wed 9/15/2119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 1                                                                       | _ | -,           | 4' Mat Foundation concrete                                                                                                                                                                                                           | 2 days                                                                                                                                     | Thu 9/16/21 Fri 9/17/21 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |                                |                  |                         |
|                                                                         |   | -            | placement                                                                                                                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                    |                                |                  | -                       |
| 2                                                                       |   |              | Structural Footings                                                                                                                                                                                                                  | 4 days                                                                                                                                     | Mon 9/20/21 Thu 9/23/21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |                                |                  | 1                       |
| 3                                                                       |   |              | Structural Cure                                                                                                                                                                                                                      | 7 edays                                                                                                                                    | Fri 9/17/21 Fri 9/24/21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |                                |                  | <b>*</b>                |
| 4                                                                       |   |              | Foundation Formwork Remove                                                                                                                                                                                                           | 1 day                                                                                                                                      | Mon 9/27/21Mon 9/27/2123,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                    |                                |                  | Υ,                      |
| 5                                                                       |   |              | Waterproof Membrane                                                                                                                                                                                                                  | 4 days                                                                                                                                     | Tue 9/28/21 Fri 10/1/21 23,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                    |                                |                  | *                       |
|                                                                         |   |              |                                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                    |                                |                  | _                       |
| 6                                                                       |   | ÷            | Protection Board                                                                                                                                                                                                                     | 2 days                                                                                                                                     | Mon 10/4/21Tue 10/5/21 23,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                    |                                |                  |                         |
| 7                                                                       |   |              | Insulation                                                                                                                                                                                                                           | 3 days                                                                                                                                     | Wed 10/6/21Fri 10/8/21 23,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                    |                                |                  |                         |
| 8                                                                       |   | ->           | Drainage Layer                                                                                                                                                                                                                       | 3 days                                                                                                                                     | Tue 10/12/21Thu 10/14/2123,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                    |                                |                  |                         |
| 9                                                                       |   |              | Steel Embeds for Steel Columns                                                                                                                                                                                                       | 2 days                                                                                                                                     | Fri 10/15/21 Mon 28<br>10/18/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                    |                                |                  |                         |
| 0                                                                       |   | -            | Topping Slab                                                                                                                                                                                                                         | 5 days                                                                                                                                     | Tue 10/19/21Mon 10/25/229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 1                                                                       |   |              | Topping Slab Cure                                                                                                                                                                                                                    | 7 days                                                                                                                                     | Tue 10/26/21Wed 11/3/2130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 2                                                                       |   | -            | Shell                                                                                                                                                                                                                                | 383 days                                                                                                                                   | Fri 6/4/21 Mon 11/28/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                    |                                |                  |                         |
| 3                                                                       |   | ÷            | Level 1                                                                                                                                                                                                                              | 23 days                                                                                                                                    | Thu 11/4/21 Wed 12/8/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| ŀ                                                                       |   | ÷            | Concrete Garage                                                                                                                                                                                                                      | 23 days                                                                                                                                    | Thu 11/4/21 Wed 12/8/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| ,                                                                       |   |              | Concrete Columns                                                                                                                                                                                                                     | 20 days                                                                                                                                    | Thu 11/4/21 Fri 12/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| 5                                                                       |   |              | Column Rebar                                                                                                                                                                                                                         | 5 days                                                                                                                                     | Thu 11/4/21 Wed 11/10/231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 7                                                                       |   |              | Column Forms                                                                                                                                                                                                                         | 7 days                                                                                                                                     | Tue 11/16/21Wed 11/24/236,42,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                    |                                |                  |                         |
|                                                                         |   | ÷            | Pour Columns and Finsh<br>Columns                                                                                                                                                                                                    | 1 day                                                                                                                                      | Fri 11/26/21 Fri 11/26/21 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                    |                                |                  |                         |
| 39                                                                      |   | -,           | Cure Time                                                                                                                                                                                                                            | 4 days                                                                                                                                     | Mon 11/29/2 Thu 12/2/21 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |                                |                  |                         |
| 0                                                                       |   | -,           | Remove Column Formwork                                                                                                                                                                                                               | 1 day                                                                                                                                      | Fri 12/3/21 Fri 12/3/21 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |                                |                  |                         |
| 1                                                                       | - | -,           | Concrete Shear Walls                                                                                                                                                                                                                 | 23 days                                                                                                                                    | Thu 11/4/21 Wed 12/8/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| 2                                                                       |   | -,           | Wall Rebar                                                                                                                                                                                                                           | 3 days                                                                                                                                     | Thu 11/4/21 Mon 11/8/2131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 3                                                                       | _ |              | Wall Forms                                                                                                                                                                                                                           | 4 days                                                                                                                                     | Tue 11/9/21 Mon 11/15/242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 1                                                                       | - |              | Pour Columns and Finsh Walls                                                                                                                                                                                                         |                                                                                                                                            | Fri 11/26/21 Fri 11/26/21 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                    |                                |                  |                         |
|                                                                         |   | -,           | Cure Time                                                                                                                                                                                                                            | 7 days                                                                                                                                     | Mon 11/29/2Tue 12/7/21 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 5                                                                       | _ |              | Remove Wall Formwork                                                                                                                                                                                                                 | 1 day                                                                                                                                      | Wed 12/8/21Wed 12/8/2145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                    |                                |                  |                         |
|                                                                         |   | -9           |                                                                                                                                                                                                                                      | 19 days                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                    |                                |                  |                         |
| 5                                                                       | _ | -            | Open Space Mixed Lise                                                                                                                                                                                                                |                                                                                                                                            | Mon 11/29/2Thu 12/23/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                    |                                |                  |                         |
| 5<br>7                                                                  |   |              | Open Space Mixed Use<br>Erect Steel in Steel Embeds                                                                                                                                                                                  | 1 day                                                                                                                                      | Mon 11/29/2 Thu 12/23/2           Mon         Mon         44           11/29/21         11/29/21         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                    |                                |                  |                         |
| 5<br>7<br>3                                                             |   | -            |                                                                                                                                                                                                                                      | -                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                    |                                |                  |                         |
| 6<br>7<br>8<br>9                                                        |   |              | Erect Steel in Steel Embeds                                                                                                                                                                                                          | 1 day                                                                                                                                      | Mon         Mon         44           11/29/21         11/29/21         48           Tue         Wed         48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                    |                                |                  |                         |
| 16<br>17<br>18<br>19                                                    |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking                                                                                                                                                                                   | 1 day<br>2 days<br>2 days                                                                                                                  | Mon         Mon         44           11/29/21         11/29/21         44           Tue         Wed         48           11/30/21         12/1/21         48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                    |                                |                  |                         |
| 6<br>7<br>8<br>9<br>0                                                   |   | -5           | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar                                                                                                                                                               | 1 day<br>2 days<br>2 days<br>4 days                                                                                                        | Mon         Mon         44           11/29/21         11/29/21         44           Tue         Wed         48           11/30/21         12/1/21         48,49           Thu 12/2/21         Fri 12/3/21         48,49           Mon 12/6/21         Thu 12/9/21         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                    |                                |                  |                         |
| 46<br>47<br>48<br>49<br>50<br>51<br>52                                  |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework                                                                                                                                             | 1 day<br>2 days<br>2 days                                                                                                                  | Mon         Mon         44           11/29/21         11/29/21         48           Tue         Wed         48           11/30/21         12/1/21         48,49           Thu 12/2/21         Fri 12/3/21         48,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                    |                                |                  |                         |
| .6<br>.7<br>.8<br>.9<br>.0<br>.1<br>.2<br>.3                            |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework<br>Pour Concrete Deck                                                                                                                       | 1 day<br>2 days<br>2 days<br>4 days<br>2 days                                                                                              | Mon       Mon       44         11/29/21       11/29/21       48         Tue       Wed       48         11/30/21       12/1/21       48,49         Thu 12/2/21       Fri 12/3/21       48,49         Mon 12/6/21       Thu 12/9/21       50         Fri 12/10/21       Mon 12/13/2       51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                    |                                |                  |                         |
| 6<br>.7<br>.8<br>.9<br>.0<br>.1<br>.2<br>.3<br>.4                       |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework<br>Pour Concrete Deck<br>Concrete Cure                                                                                                      | 1 day<br>2 days<br>2 days<br>4 days<br>2 days<br>7 days<br>1 day                                                                           | Mon         Mon         44           11/29/21         11/29/21         48           Tue         Wed         48           11/30/21         12/1/21         48,49           Thu 12/2/21         Fri 12/3/21         48,49           Mon 12/6/21         Thu 12/9/21         50           Fri 12/10/21         Mon 12/13/2         51           Tue 12/14/21         Wed 12/22/2         52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                    |                                |                  |                         |
| 45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56    |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework<br>Pour Concrete Deck<br>Concrete Cure<br>Remove Deck Formwork                                                                              | 1 day<br>2 days<br>2 days<br>4 days<br>2 days<br>7 days                                                                                    | Mon       Mon       44         11/29/21       11/29/21       48         Tue       Wed       48         11/30/21       12/1/21       48,49         Thu 12/2/21       Fri 12/3/21       48,49         Mon 12/6/21       Thu 12/9/21       50         Fri 12/10/21       Mon 12/13/2       51         Tue 12/14/21       Wed 12/22/2       52         Thu 12/23/21       Thu 12/23/21       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                    |                                |                  |                         |
| 6<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>4<br>5<br>6                     |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework<br>Pour Concrete Deck<br>Concrete Cure<br>Remove Deck Formwork<br>Level 2                                                                   | 1 day<br>2 days<br>2 days<br>2 days<br>4 days<br>2 days<br>7 days<br>1 day<br><b>45 days</b>                                               | Mon       Mon       44         11/29/21       11/29/21       48         Tue       Wed       48         11/30/21       12/1/21       48,49         Thu 12/2/21       Fri 12/3/21       48,49         Mon 12/6/21       Thu 12/9/21       50         Fri 12/10/21       Mon 12/13/2       51         Tue 12/14/21       Wed 12/22/2       52         Thu 12/23/21       Thu 12/23/21       53         Thu 12/9/21       Wed 2/9/22       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                    |                                |                  |                         |
| 5<br>7<br>3<br>9<br>0<br>1<br>2<br>3<br>4<br>5<br>5<br>7                |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework<br>Pour Concrete Deck<br>Concrete Cure<br>Remove Deck Formwork<br>Level 2<br>Concrete Garage                                                | 1 day<br>2 days<br>2 days<br>4 days<br>2 days<br>2 days<br>7 days<br>1 day<br>45 days<br>45 days                                           | Mon       Mon       44         11/29/21       11/29/21       48         11/30/21       12/1/21       48         11/30/21       12/1/21       48,49         Thu 12/2/21       Fri 12/3/21       48,49         Mon 12/6/21       Thu 12/9/21       50         Fri 12/10/21       Mon 12/13/2       51         Tue 12/14/21       Wed 12/22/2       52         Thu 12/9/21       Wed 2/9/22       53                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                    |                                |                  |                         |
| 6<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework<br>Pour Concrete Deck<br>Concrete Cure<br>Remove Deck Formwork<br>Level 2<br>Concrete Garage<br>Concrete Deck<br>Concrete Deck              | 1 day<br>2 days<br>2 days<br>4 days<br>2 days<br>7 days<br>7 days<br>1 day<br><b>45 days</b><br><b>45 days</b><br><b>19 days</b><br>5 days | Mon       Mon       44         11/29/21       11/29/21         Tue       Wed       48         11/30/21       12/1/21         Thu 12/2/21       Fri 12/3/21       48,49         Mon 12/6/21       Fri 12/3/21       50         Fri 12/10/21       Mon 12/13/2       51         Tue 12/14/21       Wed 12/22/2       52         Thu 12/9/21       Wed 2/9/22       53         Thu 12/9/21       Wed 2/9/22       54         Thu 12/9/21 </td <td>mary</td> <td></td> <td>Manual</td> <td>Summany</td> <td></td> | mary |                    | Manual                         | Summany          |                         |
| 5<br>7<br>3<br>3<br>9<br>0<br>1<br>2<br>2<br>3<br>4<br>5<br>5<br>7<br>3 |   |              | Erect Steel in Steel Embeds Erect Metal Decking Place Deck Rebar Deck Framework Deck Framework Pour Concrete Deck Concrete Cure Remove Deck Formwork Level 2 Concrete Garage Concrete Deck Concrete Deck Concrete Deck Concrete Deck | 1 day<br>2 days<br>2 days<br>4 days<br>2 days<br>7 days<br>1 day<br>45 days<br>19 days<br>5 days                                           | Mon       Mon       44         11/29/21       11/29/21         Tue       Wed       48         11/30/21       12/1/21         Thu 12/2/21       Fri 12/3/21         Mon 12/6/21       Fri 12/3/21         Mon 12/6/21       Mon 12/13/2         Fri 12/10/21       Mon 12/13/2         Tue 12/14/21       Ved 12/22/2         Thu 12/23/21       Thu 12/23/21         Thu 12/9/21       Wed 2/9/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mary |                    |                                | Summary          |                         |
| 6<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8           |   |              | Erect Steel in Steel Embeds<br>Erect Metal Decking<br>Place Deck Rebar<br>Deck Framework<br>Pour Concrete Deck<br>Concrete Cure<br>Remove Deck Formwork<br>Level 2<br>Concrete Garage<br>Concrete Deck<br>Concrete Deck              | 1 day<br>2 days<br>2 days<br>4 days<br>2 days<br>7 days<br>1 day<br>45 days<br>45 days<br>19 days<br>5 days<br>Sumr<br>Proje               | Mon       Mon       44         11/29/21       11/29/21       48         Tue       Wed       48         11/30/21       12/1/21       48,49         Thu 12/2/21       Fri 12/3/21       48,49         Mon 12/6/21       Thu 12/9/21       50         Fri 12/10/21       Mon 12/13/2       51         Tue 12/14/21       Wed 12/22/2       52         Thu 12/9/21       Wed 2/9/22       53         Thu 12/9/21       Wed 2/9/22       54                                                                        | -    |                    | Manual<br>Start-or<br>Finish-c | nly              | Exten<br>Dead<br>Critid |



|     | 0 | Task<br>Mode | Task Name                         | Duration          | Start                  | Finish                  | Predecessors  | Mar   | Qtr 2, 2021<br>Apr | May   | Jun         | Qtr 3, 2021<br>Jul | Aug | Sep        | 0 |
|-----|---|--------------|-----------------------------------|-------------------|------------------------|-------------------------|---------------|-------|--------------------|-------|-------------|--------------------|-----|------------|---|
| 59  | - |              | Concrete Pour                     | 3 days            | Thu                    | Mon                     | 58            | iviai |                    | iviay | <u>Juli</u> | Jui                | Aug | <u>2ch</u> |   |
|     |   |              |                                   |                   | 12/16/21               | 12/20/21                |               |       |                    |       |             |                    |     |            |   |
| 60  |   |              |                                   | 7 days            |                        | Mon 1/3/22              |               |       |                    |       |             |                    |     |            |   |
| 61  |   |              |                                   | 1 day             | Tue 1/4/22             |                         |               |       |                    |       |             |                    |     |            |   |
| 62  |   | ÷            |                                   | 23 days           | Wed 1/5/22             |                         |               |       |                    |       |             |                    |     |            |   |
| 63  |   |              | Column Rebar                      | 7 days            | Wed 1/5/22             | Thu 1/13/22             | 60            |       |                    |       |             |                    |     |            |   |
| 64  |   |              | Column Forms                      | 7 days            | Fri 1/14/22            | Mon<br>1/24/22          | 63,69,70      |       |                    |       |             |                    |     |            |   |
| 65  |   | -5           | Pour Columns and Finsh<br>Columns | 1 day             | Tue 1/25/22            | Tue 1/25/22             | 64            |       |                    |       |             |                    |     |            |   |
| 66  |   |              |                                   | 7 days            | Wed 1/26/2             | 2Thu 2/3/22             | 65            |       |                    |       |             |                    |     |            |   |
| 67  |   | -,           |                                   | ,<br>1 day        | Fri 2/4/22             |                         | 66            |       |                    |       |             |                    |     |            |   |
| 68  |   | -,           |                                   | 26 days           | Wed 1/5/22             |                         |               |       |                    |       |             |                    |     |            |   |
| 69  |   | -,           |                                   | 3 days            | Wed 1/5/22             |                         |               |       |                    |       |             |                    |     |            |   |
| 70  |   | -,           |                                   | 4 days            | Mon 1/10/2             |                         | 69            |       |                    |       |             |                    |     |            |   |
| 71  |   |              | Pour Columns and Finsh Walls      | •                 | Tue 1/25/22            |                         | 64            | _     |                    |       |             |                    |     |            |   |
|     |   |              |                                   | •                 |                        | 1/26/22                 |               |       |                    |       |             |                    |     |            |   |
| 72  |   |              | Cure Time                         | 7 days            | Thu 1/27/22            |                         | 71            |       |                    |       |             |                    |     |            |   |
| 73  |   |              | Install L2 Stair                  | 3 days            | Mon 2/7/22             | Wed 2/9/22              | 72,67         |       |                    |       |             |                    |     |            |   |
| 74  |   |              | Residential                       | 383 days          | Fri 6/4/21             | Mon 11/28/              | 2             |       |                    |       |             |                    |     |            |   |
| 75  |   |              | Steel Erect                       | 77 days           | Thu 11/4/21            | Tue 2/22/22             | 2             |       |                    |       |             |                    |     |            |   |
| 76  |   | -,           | Level 1                           | 2 days            | Thu 11/4/21            | Fri 11/5/21             | 31            |       |                    |       |             |                    |     |            |   |
| 77  |   |              | L2 Deck                           | 1 day             | Mon                    | Mon                     | 76            |       |                    |       |             |                    |     |            |   |
| 78  |   | -,           | Level 2                           | 2 days            | 11/8/21<br>Tue 11/9/21 | 11/8/21<br>Wed          | 77            |       |                    |       |             |                    |     |            |   |
|     |   |              |                                   |                   |                        | 11/10/21                |               |       |                    |       |             |                    |     |            |   |
| 79  |   |              | L3 Deck                           | 1 day             | Fri 11/12/21           | Fri 11/12/21            | 78            |       |                    |       |             |                    |     |            |   |
| 80  |   |              | Level 3                           | 2 days            | Thu 12/9/21            | Fri 12/10/21            | 79,130        |       |                    |       |             |                    |     |            |   |
| 81  |   | -5           | L4 Deck                           | 1 day             | Mon                    | Mon                     | 80            | _     |                    |       |             |                    |     |            |   |
| 02  |   | _            |                                   | 2 dava            | 12/13/21               | 12/13/21                | 101 104       |       |                    |       |             |                    |     |            |   |
| 82  |   | ->           |                                   | 2 days            |                        | 2Tue 12/28/2            |               |       |                    |       |             |                    |     |            |   |
| 83  |   | ->           |                                   | 1 day             |                        | 2 Wed 12/29/            |               |       |                    |       |             |                    |     |            |   |
| 84  |   | ÷            |                                   | 2 days            |                        | 2Thu 1/13/22            |               |       |                    |       |             |                    |     |            |   |
| 85  |   | ÷            |                                   | 1 day             |                        | Fri 1/14/22             |               | _     |                    |       |             |                    |     |            |   |
| 86  |   | ÷            |                                   | 2 days            |                        | 2Tue 1/18/22            |               |       |                    |       |             |                    |     |            |   |
| 87  |   | ÷            |                                   | 1 day             |                        | 2Wed 1/19/2             |               |       |                    |       |             |                    |     |            |   |
| 88  |   | ÷            | Level 7                           | 2 days            | Wed                    | Thu 2/17/22             | 87,146        |       |                    |       |             |                    |     |            |   |
| 89  |   | -5           | Roof Deck                         | 1 day             | 2/16/22<br>Fri 2/18/22 | Fri 2/18/22             | 88,73         |       |                    |       |             |                    |     |            |   |
| 90  |   |              | Top of Parapet steel              | 2 days            | Mon<br>2/21/22         | Tue 2/22/22             | 89            |       |                    |       |             |                    |     |            |   |
| 91  |   |              | Stairs                            | 50 days           |                        | 2Mon 1/24/2             | 2             |       |                    |       |             |                    |     |            |   |
| 92  |   |              |                                   | 3 days            |                        | 2 Wed 11/17/            |               |       |                    |       |             |                    |     |            |   |
| 93  |   | -,           |                                   | 3 days            | Tue 12/14/2            |                         |               |       |                    |       |             |                    |     |            |   |
| 94  |   | -,           |                                   | 3 days            | Thu 12/30/2            |                         |               |       |                    |       |             |                    |     |            |   |
| 95  |   |              |                                   | 3 days            |                        | 2Wed 1/19/2             |               |       |                    |       |             |                    |     |            |   |
| 96  |   |              |                                   | 3 days            | Thu 1/20/22            |                         |               | _     |                    |       |             |                    |     |            |   |
| 97  |   |              |                                   | 90 days           | Mon 12/6/2             |                         |               | _     |                    |       |             |                    |     |            |   |
| 98  |   |              |                                   | 5 days            |                        | 1Fri 12/10/21           | 79,128        |       |                    |       |             |                    |     |            |   |
| 99  |   |              |                                   | 4 days            | Tue 12/21/2            |                         |               |       |                    |       |             |                    |     |            |   |
| 100 |   |              |                                   | 4 days<br>10 days | Thu 1/6/22             | Wed                     | 99,136        |       |                    |       |             |                    |     |            |   |
| 101 |   | -,           | Level 4                           | 10 days           | Mon 1/24/2             | 1/19/22<br>2 Eri 2/4/22 | 100,140       |       |                    |       |             |                    |     |            |   |
|     |   |              |                                   | -                 |                        |                         |               |       |                    |       |             |                    |     |            |   |
| 102 |   |              | Level 5                           | 10 days           | Thu 2/10/22            | wed<br>2/23/22          | 101,144       |       |                    |       |             |                    |     |            |   |
| 103 |   |              | Level 6                           | 10 days           | Mon 2/28/2             | 2 Fri 3/11/22           | 102,148       |       |                    |       |             |                    |     |            |   |
| 104 |   |              | Level 7                           | 10 days           | Thu 3/17/22            | Wed 3/30/2              | 2103,152      |       |                    |       |             |                    |     |            |   |
| 105 |   |              | Roof                              | 7 days            | Thu 3/31/22            | Fri 4/8/22              | 104,152       |       |                    |       |             |                    |     |            |   |
| 106 |   | -5           | Exterior Walls                    | 87 days           | Mon 12/12/             | 2Tue 4/12/22            |               |       |                    |       |             |                    |     |            |   |
| 106 |   |              |                                   | -                 |                        | 2 Wed 12/15/            |               |       |                    |       |             |                    |     |            |   |
| 107 |   |              |                                   | 3 days<br>3 days  | Mon 12/13/.<br>Mon     | 2 Wed 12/15/<br>Wed     | 298<br>107,99 |       |                    |       |             |                    |     |            |   |
|     |   |              |                                   | , -               | 12/27/21               | 12/29/21                |               |       |                    |       |             |                    |     |            |   |
| 109 |   | -5           | Level 3                           | 5 days            | Thu 1/20/22            | Wed<br>1/26/22          | 108,100       |       |                    |       |             |                    |     |            |   |
|     |   |              | Level 4                           | 6 days            | Mon 2/7/22             | Mon 2/14/2              | 2109 101      |       |                    |       |             |                    |     |            |   |

|                               | Childar Activity |          | Summary            | • •        | mactive Summary       | U U | Ivialiual Sullillary |   |   | Exteri  |
|-------------------------------|------------------|----------|--------------------|------------|-----------------------|-----|----------------------|---|---|---------|
| Project: 050720r1Construction | Task             |          | Project Summary    |            | Manual Task           |     | Start-only           | E | ļ | Dead    |
| Date: Wed 6/3/20              | Split            |          | Inactive Task      |            | Duration-only         |     | Finish-only          | С | 1 | Critica |
|                               | Milestone        | <b>♦</b> | Inactive Milestone | $\diamond$ | Manual Summary Rollup | )   | External Tasks       |   |   | Critica |



| )   | 1 | Task | Task Name                     | Duration    | Start                  | Finish                 | Predecessors  |     | Qtr 2, 2021 |     |     | Qtr 3, 2021 |     |  |
|-----|---|------|-------------------------------|-------------|------------------------|------------------------|---------------|-----|-------------|-----|-----|-------------|-----|--|
|     | 0 | Mode |                               |             |                        |                        |               | Mar | Apr         | May | Jun | Jul         | Aug |  |
| 111 |   | ÷    | Level 5                       | 6 days      | Thu 2/24/22            | Thu 3/3/22             | 110,102       |     |             |     |     |             |     |  |
| 12  |   | -,   | Level 6                       | 6 days      | Mon                    | Mon                    | 111,103       |     |             |     |     |             |     |  |
| 13  |   | -,   | Level 7                       | 6 days      | 3/14/22<br>Thu 3/31/22 | 3/21/22                | 112 104       | _   |             |     |     |             |     |  |
| 14  |   |      | Roof                          | 2 days      |                        | 2Tue 4/12/22           |               |     |             |     |     |             |     |  |
| 15  |   | -    | Electrical Branch In          |             |                        |                        |               |     |             |     |     |             |     |  |
|     |   | ÷    |                               | 49 days     | Mon 12/13/             |                        |               |     |             |     |     |             |     |  |
| 16  |   | -    | Level 1                       | 3 days      | Mon 12/13/2            |                        |               | _   |             |     |     |             |     |  |
| 17  |   | ÷    | Level 2                       | 4 days      | Mon<br>12/27/21        | Thu<br>12/30/21        | 116,99        |     |             |     |     |             |     |  |
| 18  |   | -,   | Level 3                       | 4 days      | Thu 1/20/22            | Tue 1/25/22            | 117,100       |     |             |     |     |             |     |  |
| 19  |   | -    | Level 4                       | 4 days      | Wed 1/26/22            | 2 Mon 1/31/2           | 2118          |     |             |     |     |             |     |  |
| 20  |   | -,   | Level 5                       | 4 days      | Tue 2/1/22             | Fri 2/4/22             | 119           |     |             |     |     |             |     |  |
| 21  | 1 | ÷    | Level 6                       | 4 days      | Mon 2/7/22             | Thu 2/10/22            | 120           |     |             |     |     |             |     |  |
| 22  |   | -,   | Level 7                       | 4 days      | Fri 2/11/22            |                        | 121           |     |             |     |     |             |     |  |
| 123 |   | -,   | Roof                          | 1 day       | Thu 2/17/22            | 2/16/22<br>Thu 2/17/22 | 122           |     |             |     |     |             |     |  |
| 124 |   |      | Concrete over Metal Deck      | 88 days     | Fri 11/12/21           | Wed 3/16/2             | 2             | _   |             |     |     |             |     |  |
| 125 |   | -,   | L2 Formwork                   | 2 days      |                        | Mon 11/15/             |               | _   |             |     |     |             |     |  |
| 126 |   |      | L2 Concrete Pour              | 1 day       | Tue                    | Tue                    | 77,125        |     |             |     |     |             |     |  |
|     |   |      |                               | -           | 11/16/21               | 11/16/21               |               | -   |             |     |     |             |     |  |
| 127 |   | ÷    | L2 Cure Time                  | 7 days      |                        | 2Fri 11/26/21          |               |     |             |     |     |             |     |  |
| 28  |   | ÷    | Remove Formwork               | 3 days      |                        |                        | 127FS+4 edays | _   |             |     |     |             |     |  |
| 129 |   | -,   | L3 Formwork                   | 2 days      | Mon 12/6/2             | 1Tue 12/7/21           | 128           |     |             |     |     |             |     |  |
| 130 |   | ÷    | L3 Concrete Pour              | 1 day       | Wed<br>12/8/21         | Wed<br>12/8/21         | 79,129,92     |     |             |     |     |             |     |  |
| 131 |   | -,   | L3 Cure Time                  | 7 days      |                        | Fri 12/17/21           | 130           |     |             |     |     |             |     |  |
| 132 |   | -    | Remove Formwork               | ,<br>1 day  |                        | 2Mon 12/20/2           |               | -   |             |     |     |             |     |  |
| 33  |   | -    | L4 Formwork                   | 3 days      | Tue 12/21/2            |                        |               | _   |             |     |     |             |     |  |
| 134 |   | -,   | L4 Concrete Pour              | 1 day       |                        | Fri 12/24/21           |               |     |             |     |     |             |     |  |
| 135 |   | ÷    | Cure Time                     | 7 days      | Mon                    | Tue 1/4/22             | 134           |     |             |     |     |             |     |  |
|     |   |      |                               |             | 12/27/21               |                        |               |     |             |     |     |             |     |  |
| 136 |   | ÷    | Remove Formwork               | 1 day       | Wed 1/5/22             |                        |               | _   |             |     |     |             |     |  |
| 137 |   | -,   | L5 Formwork                   | 3 days      | Thu 1/6/22             | Mon 1/10/2             | 2136          |     |             |     |     |             |     |  |
| 138 |   | ÷    | L5 Concrete Pour              | 1 day       | Tue 1/11/22            | Tue 1/11/22            | 83,137,94     |     |             |     |     |             |     |  |
| 139 |   | -,   | Cure Time                     | 7 days      | Wed 1/12/22            | 2Thu 1/20/22           | 138           |     |             |     |     |             |     |  |
| 140 |   | -    | Remove Formwork               | 1 day       | Fri 1/21/22            |                        |               |     |             |     |     |             |     |  |
| 141 |   | -,   | L6 Formwork                   | ,<br>3 days | Mon 1/24/22            |                        |               |     |             |     |     |             |     |  |
| 142 |   | -,   | L6 Concrete Pour              | 2 days      | Thu 1/27/22            |                        |               | _   |             |     |     |             |     |  |
|     |   |      |                               | -           |                        |                        |               | _   |             |     |     |             |     |  |
| 143 |   | ÷    | Cure Time                     | 7 days      | Mon<br>1/31/22         | Tue 2/8/22             | 142           | _   |             |     |     |             |     |  |
| 144 |   | -,   | Remove Formwork               | 1 day       | Wed 2/9/22             | Wed 2/9/22             | 143           |     |             |     |     |             |     |  |
| 145 |   |      | L7 Formwork                   | 3 days      | Thu 2/10/22            | Mon 2/14/2             | 2144          |     |             |     |     |             |     |  |
| 146 |   | -    | L7 Concrete Pour              | 1 day       | Tue 2/15/22            | Tue 2/15/22            | 87,145,96     |     |             |     |     |             |     |  |
| 147 | • | ÷    | Cure Time                     | 7 days      | Wed                    | Thu 2/24/22            | 146           |     |             |     |     |             |     |  |
| 148 |   | -,   | Remove Formwork               | 1 day       | 2/16/22<br>Fri 2/25/22 | Fri 2/25/22            | 147           |     |             |     |     |             |     |  |
| 149 |   | -,   | Roof Formwork                 | 2 days      |                        | 2Tue 3/1/22            |               |     |             |     |     |             |     |  |
| 150 |   | -,   | Roof Concrete Pour            | 3 days      | Wed 3/2/22             |                        | 89,149        |     |             |     |     |             |     |  |
| 51  |   | ÷    | Cure Time                     | 7 days      | Mon 3/7/22             | Tue 3/15/22            | 150           | -   |             |     |     |             |     |  |
| 52  |   | -    | Remove Formwork               | 1 day       | Wed 3/16/22            | 2 Wed 3/16/2           | 2151,123      |     |             |     |     |             |     |  |
| 153 |   | -,   | Elevators                     | 204 days    | Fri 6/4/21             | Tue 3/22/22            |               |     |             |     | I   |             |     |  |
| 54  | • | ÷    | Shop Drawings and Fabrication | 45 days     | Fri 6/4/21             | Thu 8/5/21             | 3             |     |             |     | +   |             |     |  |
| 155 | - | -    | Install Elevators             | 4 days      | Thu 3/17/22            | Tue 3/22/22            | 152,154       | -   |             |     |     |             |     |  |
| 156 |   | -,   | Interior Partitions - Opening | 58 days     | Wed                    | Fri 7/1/22             |               |     |             |     |     |             |     |  |
|     |   | -    | Frames                        | , -         | 4/13/22                | –                      |               |     |             |     |     |             |     |  |
| 157 |   | -,   | Level 2                       | 8 days      |                        | 2Fri 4/22/22           | 114,155       |     |             |     |     |             |     |  |
| 158 | ľ | -    | Level 3                       | 12 days     | Mon                    | Tue 5/10/22            |               |     |             |     |     |             |     |  |
| 159 | - | ÷    | Level 4                       | 12 days     | 4/25/22<br>Wed         | Thu 5/26/22            | 158           |     |             |     |     |             |     |  |
|     |   |      |                               |             | 5/11/22                |                        |               | 1   |             |     |     |             |     |  |

|                               | Critical Activity |          | Summary            | <b>—</b>   | Inactive Summary      | [ | Manual Summary | I1 | Extern  |
|-------------------------------|-------------------|----------|--------------------|------------|-----------------------|---|----------------|----|---------|
| Project: 050720r1Construction | Task              |          | Project Summary    | 1          | Manual Task           |   | Start-only     | C  | Deadli  |
| Date: Wed 6/3/20              | Split             |          | Inactive Task      |            | Duration-only         |   | Finish-only    | 3  | Critica |
|                               | Milestone         | <b>♦</b> | Inactive Milestone | $\diamond$ | Manual Summary Rollup |   | External Tasks |    | Critica |



| Level 5<br>Level 6<br>Level 7 | Duration                                                                                                                                                                                                                                                            | Start Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level 6                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Qtr 2, 2021     Qtr 3, 2021     Qtr 4, 2021     Qtr 4, 2021     Qtr 1, 2022     Qtr 2, 2022     Qtr 3, 2022     Qtr 4, 2022       Aar     Apr     May     Jun     Jul     Aug     Sep     Oct     Nov     Dec     Jan     Feb     Mar     Apr     May     Jun     Jul     Aug     Sep     Oct     Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                               | 12 days                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hu 5/26/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 10 4                                                                                                                                                                                                                                                                | 5/11/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 E /12 /22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 12 days                                                                                                                                                                                                                                                             | Fri 5/27/22 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 12 days                                                                                                                                                                                                                                                             | Fri 5/27/22 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Roof                          | 4 days                                                                                                                                                                                                                                                              | Fri 5/27/22 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Doors and Windows             | 50 days                                                                                                                                                                                                                                                             | Mon 4/25/22Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ř – – – – – – – – – – – – – – – – – – –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Electrical Branch In          | 66 days                                                                                                                                                                                                                                                             | Wed 5/4/22 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ved 8/3/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 1                       | 4 days                                                                                                                                                                                                                                                              | Wed 5/4/22 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /lon 5/9/22 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 2                       | 7 days                                                                                                                                                                                                                                                              | Tue 5/10/22 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ved 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .66,174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     | 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/18/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 3                       | 7 days                                                                                                                                                                                                                                                              | Tue 5/31/22 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ved 6/8/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 4                       | 7 days                                                                                                                                                                                                                                                              | Thu 6/16/22 Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ri 6/24/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68,176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 5                       | 7 days                                                                                                                                                                                                                                                              | Mon 6/27/22Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ue 7/5/22 1 <sup>/</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .69,177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 6                       | 7 days                                                                                                                                                                                                                                                              | Wed 7/6/22 Tł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hu 7/14/22 1 <sup>°</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 7                       | 7 days                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71,179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Roof                          | 7 days                                                                                                                                                                                                                                                              | Tue 7/26/22 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ved 8/3/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | F0 1                                                                                                                                                                                                                                                                | <b>T</b> . <b>•</b> <i>la</i> <b>i i a</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 2                       | 14 days                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nu 6/16/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | రర                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 11 -                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bu 6/10/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 3                       | 14 days                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nu 0/16/22 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 14 dave                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ned 7/6/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | TH MAA2                                                                                                                                                                                                                                                             | 111 U/1//22 VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ieu //0/22 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 5                       | 14 days                                                                                                                                                                                                                                                             | Fri 6/17/22 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ved 7/6/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | ,.                                                                                                                                                                                                                                                                  | , _ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ., 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 6                       | 14 days                                                                                                                                                                                                                                                             | Thu 7/7/22 Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ue 7/26/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 7                       | ,<br>14 days                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Roof                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | -                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tiling                        |                                                                                                                                                                                                                                                                     | , -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , -, ==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 1 Storefront            | 2 days                                                                                                                                                                                                                                                              | Thu 8/4/22 Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ri 8/5/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83,181,190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 2                       | ,<br>5 days                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 3                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 4                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | -                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 5                       | 5 days                                                                                                                                                                                                                                                              | Mon 9/5/22 Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 6                       | 5 days                                                                                                                                                                                                                                                              | Mon 9/12/22Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 5 days                                                                                                                                                                                                                                                              | Mon 9/19/22Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Level 7                       | 21 days                                                                                                                                                                                                                                                             | Mon 8/15/22M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Façade Finishes               | 1 1 -1 -                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1 10/10/0701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 14 days<br>32 days                                                                                                                                                                                                                                                  | Mon 9/26/22Th<br>Fri 10/14/22 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | Level 6<br>Level 7<br>Roof<br>MEP Finishes<br>Level 1<br>Level 2<br>Level 3<br>Level 3<br>Level 4<br>Level 5<br>Level 5<br>Level 6<br>Level 7<br>Roof<br>Interior Finishes<br>Interior Flooring - Carpeting a<br>Tiling<br>Level 1 Storefront<br>Level 2<br>Level 3 | Level 67 daysLevel 77 daysRoof7 daysMEP Finishes58 daysLevel 114 daysLevel 214 daysLevel 314 daysLevel 414 daysLevel 514 daysLevel 614 daysLevel 714 daysLevel 72 daysInterior Finishes83 daysInterior Flooring - Carpeting and<br>Tilling22 daysLevel 1 Storefront2 daysLevel 35 daysLevel 45 daysLevel 55 daysLevel 65 daysLevel 75 daysLevel 75 daysLevel 35 daysLevel 45 daysLevel 55 daysLevel 75 daysLevel 75 daysLevel 75 daysLevel 75 daysLevel 1 Storefront5 daysLevel 75 daysLevel 1 Storefront5 daysLevel 25 daysLevel 1 Storefront5 daysLevel 25 daysLevel 35 daysLevel 25 daysLevel 25 daysLevel 35 daysLevel 25 daysLevel 35 daysLevel 35 daysLevel | Level 67 daysWed 7/6/227Level 77 daysFri 7/15/22NRoof7 daysTue 7/26/22NMEP Finishes58 daysTue 5/10/22FLevel 114 daysTue 5/10/22FLevel 214 daysMon<br>5/30/22TLevel 314 daysMon<br>5/30/22TLevel 414 daysFri 6/17/22NLevel 514 daysFri 6/17/22NLevel 614 daysThu 7/7/22TRoof2 daysWed 7/27/27TRoof2 daysThu 8/4/22FInterior Finishes83 daysThu 8/4/22FLevel 1 Storefront2 daysMon 8/8/22FLevel 35 daysMon 8/8/22FLevel 45 daysMon 8/8/22FLevel 55 daysMon 8/8/22FLevel 1 Storefront5 daysMon 8/8/22FLevel 55 daysMon 8/8/22FLevel 65 daysMon 8/8/22FLevel 75 daysMon 8/8/22FLevel 75 daysMon 8/8/22FLevel 1 Storefront5 daysMon 8/8/22FLevel 75 daysMon 8/8/22FLevel 1 Storefront5 daysMon 8/8/22FLevel 1 Storefront5 daysMon 8/8/22FLevel 1 Storefront5 daysMon 8/8/22FLevel 25 daysMon 8/8/22FL | Level 6       7 days       Wed 7/6/22       Thu 7/14/22       1         Level 7       7 days       Fri 7/15/22       Mon       1         Roof       7 days       Tue 7/26/22       Wed 8/3/22       1         MEP Finishes       58 days       Tue 5/10/22       Thu 7/28/22       1         Level 1       14 days       Tue 5/10/22       Fri 5/27/22       1         Level 2       14 days       Mon       Thu 6/16/22       1         Level 3       14 days       Mon       Thu 6/16/22       1         Level 4       14 days       Mon       Thu 6/16/22       1         Level 5       14 days       Fri 6/17/22       Wed 7/6/22       1         Level 6       14 days       Thu 7/122       Tue 7/26/22       1         Level 7       14 days       Thu 7/122       Tue 7/26/22       1         Roof       2 days       Wed 7/2/22       Tue 7/26/22       1         Interior Finishes       83 days       Thu 8/4/22       Fri 8/5/22       1         Level 1 Storefront       2 days       Mon 8/3/22       Fri 8/5/22       1         Level 1 Storefront       2 days       Mon 8/3/22       Fri 8/2/22       1 | Level 6       7 days       Wed 7/6/22       Thu 7/14/22       170,178         Level 7       7 days       Fri 7/15/22       Mon<br>7/25/22       171,179         Roof       7 days       Tue 7/26/22       Wed 8/3/22       172,180         MEP Finishes       58 days       Tue 5/10/22       Thu 7/28/22       174         Level 1       14 days       Tue 5/10/22       Fri 5/27/22       174         Level 2       14 days       Mon<br>5/30/22       Thu 6/16/22       183         Level 3       14 days       Mon<br>5/30/22       Thu 6/16/22       183         Level 4       14 days       Fri 6/17/22       Wed 7/6/22       185         Level 5       14 days       Thu 7/72/27       Tue 7/26/22       185         Level 6       14 days       Thu 7/72/27       Tue 7/26/22       187         Roof       2 days       Thu 8/4/22       Mon 11/28/7       187         Interior Floring - Carpeting and<br>St days       Thu 8/4/22       Fri 8/12/22       189         Interior Flooring - Carpeting and<br>St days       Mon 8/8/22       Fri 8/12/22       183,181,190         Level 1 Storefront       2 days       Mon 8/8/22       Fri 8/12/22       193,184         Level 1 Storefront </td |

|                               | Critical Activity |   | Summary            | <b></b> 1  | Inactive Summary      | Manual Summary | 1 | Ext |
|-------------------------------|-------------------|---|--------------------|------------|-----------------------|----------------|---|-----|
| Project: 050720r1Construction | Task              |   | Project Summary    | 1          | Manual Task           | Start-only     | E | De  |
| Date: Wed 6/3/20              | Split             |   | Inactive Task      |            | Duration-only         | Finish-only    | C | Cri |
|                               | Milestone         | • | Inactive Milestone | $\diamond$ | Manual Summary Rollup | External Tasks |   | Cri |

|           | Project Estimate Sheet                     |                 |            |                     |   |
|-----------|--------------------------------------------|-----------------|------------|---------------------|---|
| Project:  |                                            |                 |            |                     |   |
| Location: |                                            |                 |            |                     |   |
| Construct | tion Start Year                            | 2021            |            |                     |   |
| RSMeans   | Cost Data Year                             | 2019            |            |                     |   |
| <b></b>   |                                            |                 | <u></u>    |                     | _ |
| Division  | Scope                                      | Amount          | City Index | Adjusted Amount [1] |   |
| 1         | General Requirements                       | \$19,205,605.77 | 1          | \$19,205,605.77     |   |
|           | Existing Conditions                        | \$92,750.00     |            | \$113,062.25        |   |
|           | Concrete                                   | \$3,977,645.71  | 1.219      | \$5,044,639.62      |   |
| 5         | Metals                                     | \$8,102,951.86  | 1.219      | \$9,877,498.32      |   |
| 7         | Thermal & Moisture Protection              | \$16,054.19     | 1.219      | \$19,570.06         |   |
| 8         | Openings                                   | \$5,195,182.63  | 1.219      | \$6,332,927.62      |   |
| 9         | Finishes                                   | \$9,644,781.95  | 1.219      | \$11,756,989.20     |   |
| 11        | Equipment                                  | \$863,209.88    | 1.219      | \$1,052,252.84      |   |
| 12        | Furnishings                                | \$6,656,940.54  | 1.219      | \$8,114,810.52      |   |
| 14        | Conveying Equipment                        | \$1,266,000.00  | 1.219      | \$1,543,254.00      |   |
| 21        | Fire Suppression                           | \$2,770,463.40  | 1.219      | \$3,377,194.88      |   |
| 22        | Plumbing                                   | \$3,862,469.92  | 1.219      | \$4,708,350.84      |   |
| 23        | Heating, Ventilation, and Air Conditioning | \$12,560,056.68 | 1.219      | \$15,310,709.09     |   |
| 26        | Electrical                                 | \$5,550,701.08  | 1.219      | \$6,766,304.61      |   |
| 27        | Communications                             | \$925,988.78    | 1.219      | \$1,128,780.32      |   |
| 31        | Earthwork                                  | \$404,215.55    | 1.219      | \$492,738.76        |   |
| 32        | Exterior Improvements                      | \$1,095,145.59  | 1.219      | \$1,334,982.47      |   |
|           | Utilities                                  | \$93,709.96     | 1.219      | \$114,232.44        |   |
|           | TOTAL Project Value                        | · ·             | 1          | \$96,293,903.60     |   |

| 0.199  |
|--------|
| 0.001  |
| 0.052  |
| 0.103  |
| 0.0002 |
| 0.066  |
| 0.122  |
| 0.011  |
| 0.084  |
| 0.016  |
| 0.035  |
| 0.049  |
| 0.159  |
| 0.070  |
| 0.012  |
| 0.005  |
| 0.014  |
| 0.001  |
| 1.000  |

|     |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 19205605.77        |
|-----|------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description       | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [2] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
|     | General Contractor Fee |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 2   | 2 10% Overhead         |                     | 0.1      |      |              |                 |                 |      |              |          |                 | 76822423.1     | 7682242.31         |
| 3   | 3 5% Profit            |                     | 0.05     |      |              |                 |                 |      |              |          |                 | 76822423.1     | 3841121.155        |
| 4   | Design Fee 10%         |                     | 0.1      |      |              |                 |                 |      |              |          |                 | 76822423.1     | 7682242.31         |
| Ę   |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 6   | 3                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 7   | 7                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 8   | 3                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| ę   | )                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 1(  | )                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 1'  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 12  | 2                      |                     | 1        |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 13  | 3                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 14  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 15  | 5                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 16  | 3                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 17  | 7                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 18  | 3                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 19  | )                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 20  | )                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 2   |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 22  | 2                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 23  | 3                      |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 24  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 25  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 26  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 27  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 28  |                        |                     | 1        |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 29  |                        |                     | 1        |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 30  |                        |                     | 1        |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 3   |                        |                     | 1        |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 32  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 33  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 34  |                        |                     | 1        |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 35  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 36  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 37  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 38  |                        |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 39  |                        |                     |          |      | 1            |                 |                 |      |              |          |                 |                | 0                  |
| 4(  |                        |                     |          |      | -            |                 |                 |      |              |          |                 |                | 0                  |

|     |                     |          |      |              |                 |              |      |              |          |                 |                | 19205605.77        |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [2] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |

|     |                               |                     |          |      |              |                 |                 |      |              |          |                 |                | 92750              |
|-----|-------------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description              | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [3] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1   | Demolition                    |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
|     | 2 Site Preparation (36000 SF) |                     |          | 2 SF | G.2040-1100  |                 |                 |      |              |          | 37100           | 46375          | 92750              |
| 3   |                               |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 4   | 1                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 5   | 5                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 6   | 3                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 7   | 7                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 8   | 3                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| ç   | )                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 10  | )                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 11  |                               |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 12  | 2                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 13  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 14  | 1                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 15  | 5                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 16  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 17  | 7                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 18  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 19  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 20  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 21  | 1                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 22  | 2                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 23  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 24  | 1                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 25  | 5                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 26  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 27  | 7                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 28  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 29  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 30  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 31  |                               |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 32  | 2                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 33  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 34  | 1                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 35  | 5                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 36  | 6                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 37  | 7                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 38  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 39  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 40  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |

|     |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 92750              |
|-----|------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [3] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 42  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 43  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 44  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 45  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 46  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 47  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 48  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 49  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 50  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |

|     |                                         |                     |      |                  |         |      |              |       |         | \$3,977,645.71 |              |
|-----|-----------------------------------------|---------------------|------|------------------|---------|------|--------------|-------|---------|----------------|--------------|
|     |                                         | Self-               |      |                  | RSMeans |      |              |       |         | Total Item     |              |
| No. | Item Description                        | Performed? Quantity | Unit | RSMeans Code     | page    | Crew | Daily Output |       | ncl O&P | Cost           |              |
|     | Concrete Mat Slab 4 ft                  | Yes 14751           |      | 03-31-13-2950    |         |      | 400          | 9.29  | 13.05   |                |              |
| 1   | Slab on Grade 9.25 in                   | Yes 2756            |      | 03-31-13-4650    |         |      | 185          | 20.1  | 28.5    | \$55,395.60    | 14.8972973   |
|     | Level 2 Concrete/Metal Deck             | Yes 24914           |      | 03-30-53-3250    |         | C-8  | 2685         | 2.37  | 3.01    | \$59,046.18    | 9.278957169  |
| 3   | Level 2 6.25in Concrete Slab            | Yes 66405           |      | 03-30-53-3200    |         | C-8  | 2585         | 3.82  | 4.59    | \$253,667.10   | 25.68858801  |
|     | Parking Ramp                            | Yes 2180            |      | 03-30-53-3200    |         | C-8  | 2585         | 3.82  | 4.59    | \$8,327.60     | 0.8433268859 |
|     | Level 3 Concrete/Metal Deck             | 24489               | SF   | 03-30-53-3250    | 77      | C-8  | 2685         | 2.37  | 3.01    | \$73,711.89    | 9.120670391  |
| 4   | Level 3 Concrete                        | Yes 68350           |      | 03-30-53-3200    |         | C-8  | 2585         | 3.82  | 4.59    | \$261,097.00   | 26.4410058   |
| 5   | Level 4 Concrete                        | Yes 74816           |      | 03-30-53-3250    |         | C-8  | 2685         | 2.37  | 3.01    | \$177,313.92   | 27.86443203  |
| 6   | Level 5 Concrete                        | Yes 74816           | SF   | 03-30-53-3250    | 77      | C-8  | 2685         | 2.37  | 3.01    | \$177,313.92   | 27.86443203  |
| 7   | Level 6 Concrete                        | Yes 74816           | SF   | 03-30-53-3250    | 77      | C-8  | 2685         | 2.37  | 3.01    | \$177,313.92   | 27.86443203  |
| 8   | Level 7 Concrete                        | Yes 74816           | SF   | 03-30-53-3250    | 77      | C-8  | 2685         | 2.37  | 3.01    | \$177,313.92   | 27.86443203  |
| 9   | Roof Concrete                           | Yes 73701           | SF   | 03-30-53-3250    | 77      | C-8  | 2685         | 2.37  | 3.01    | \$174,671.37   | 27.44916201  |
| 10  | Top of Parapet Concrete                 | Yes                 |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
| 11  |                                         |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
|     | Concrete Beams                          |                     |      |                  |         |      |              |       |         |                | #DIV/0!      |
| 12  | Level 2 16 x 18                         | Yes 17.77           | CY   | 03-31-13.70-0600 | 80      | C-20 | 90           | 41.45 | 58      | \$736.57       | 0.197444444  |
| 13  | Level 3 16 x 18                         | Yes 16.75           |      | 03-31-13-0601    | 80      | C-21 | 90           | 41.45 | 58      | \$694.29       | 0.186111111  |
| 14  | Level 2 22 x 24                         | Yes 157.54          |      | 03-31-13-0800    | 80      | C-20 | 92           | 40.25 | 57      | \$6,340.99     | 1.712391304  |
| 15  | Level 3 22 x 24                         | Yes 157.54          |      | 03-31-13-0801    | 80      | C-21 | 92           | 40.25 | 57      | \$6,340.99     | 1.712391304  |
| 16  | Level 2 26 x 28                         | Yes 314.48          |      | 03-31-13-1000    | 80      | C-20 | 140          | 26.4  | 37.5    | \$8,302.27     | 2.246285714  |
| 17  | Level 2 26 x 28                         | Yes 314.48          |      | 03-31-13-1001    | 80      | C-21 | 140          | 26.4  | 37.5    | \$8,302.27     | 2.246285714  |
| 18  |                                         |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
| 19  | Concrete Columns                        |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
|     | Level 0                                 |                     |      |                  |         |      |              |       |         |                | #DIV/0!      |
|     | 30" Concrete Columns                    | Yes 252             |      |                  |         |      |              |       |         |                | #DIV/0!      |
| 20  | Level 1                                 |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
| 21  | 12X18                                   | Yes 24              | CY   | 03-31-13.70-0800 |         |      | 92           | 40.25 | 57      | \$966.00       | 0.2608695652 |
| 22  | 24"                                     | Yes 222             | CY   | 03-31-13.70-0800 |         |      | 92           | 40.25 | 57      | \$8,935.50     | 2.413043478  |
| 23  |                                         |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
| 24  | Level 2                                 |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
| 25  | 12x18                                   | Yes 32              | CY   | 03-31-13.70-0600 | 80      | C-20 | 90           | 41.45 | 58      | \$1,326.40     | 0.3555555556 |
| 26  |                                         |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
|     | Concrete Slab Formwork (4 Uses)         |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
|     | Level 2 Elevated Slab (SF*1.10)         | 73045.5             | SF   | 03-11-13.35-7000 | 55      |      | 500          | 3.37  | 5       | \$365,227.50   | 146.091      |
|     | Level 3 Elevated Slab (SF*1.10)         | 75185               |      | 03-11-13.35-7000 | 55      |      | 500          | 3.37  | 5       | \$375,925.00   | 150.37       |
| 30  |                                         |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
|     | Concrete Beam Formwork                  |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
|     | Accounted for in Concrete Slab Formwork |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
| 33  |                                         |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |
|     | Concrete Column Formwork                |                     |      |                  |         |      |              |       |         | \$0.00         | #DIV/0!      |

|     |                               |                              |         |                   |                 |       |              |                 |                | \$3,977,645.71     |               |
|-----|-------------------------------|------------------------------|---------|-------------------|-----------------|-------|--------------|-----------------|----------------|--------------------|---------------|
| No. | Item Description              | Self-<br>Performed? Quantity | Unit    |                   | RSMeans<br>bage | Crew  | Daily Output | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |               |
| 35  | Level1                        |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| 36  | 12X18                         | Yes 2970                     | SFCA    | 03-11-13.25-6000  |                 |       | 180          | 11.13           | 15.7           | \$33,056.10        | 16.5          |
| 37  | 24"                           | 3942                         | SFCA    | 03-11-13.25-1800  |                 | C-1   | 130          | 22.2            | 29.5           | \$116,289.00       | 30.32307692   |
| 38  |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| 39  | Level 2                       |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| 40  | 12x18                         | 135                          | SFCA    | 03-11-13.25-6000  |                 |       | 2.63         | 11.13           | 15.7           | \$2,119.50         | 51.33079848   |
|     |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | Concrete Shear Walls          |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | Concrete Shear Walls 14"      | 227                          | ' CY    | 03-30-53.40-4300  | 78              | C-140 | 80.02        | 302.85          | 385            | \$87,395.00        | 2.836790802   |
|     |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | Concrete Shear Walls Formwork |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | Level 1 to Level 2            | 10470                        | SF      | 03-11-19-0150     |                 |       | 992          | 6.54            | 7.85           | \$82,189.50        | 10.55443548   |
| 41  |                               |                              | 1       |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| -   | Concrete Slab Rebar           |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | 9" Concrete Slab              | 104                          | TON     | 03-21-11.60-0600  |                 |       | 2.3          | 1790            | 2275           | \$236,600.00       | 45.2173913    |
| 44  |                               |                              |         |                   |                 |       | 2.0          |                 |                | \$0.00             | #DIV/0!       |
| 46  |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | Shear Walls Rebar             |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | Tension Reinforcing           | 5.676                        | Ton     |                   |                 |       | 95           | 64.1            | 84             | \$476.78           | 0.05974736842 |
|     | Shear Reinforcing             |                              | Ton     |                   |                 |       | 130          | 22.95           | 30.5           | \$301.95           | 0.07615384615 |
| 50  | •                             | 0.0                          |         |                   |                 |       | 100          | 22:00           | 00.0           | \$0.00             | #DIV/0!       |
|     | Roof Construction             |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | Roof Structure                | No 73701                     | SE      | M.020 Apt,4-7     | 81              |       |              | 1.76            | 2.2            | \$162,142.20       | #DIV/0!       |
|     | Roof Covering                 | No 73701                     |         | M.020 Apt,4-7     | 81              |       |              | 1.39            | 1.7375         | \$128,055.49       | #DIV/0!       |
| 50  |                               |                              |         | W.02077pt,+7      | 01              |       |              | 1.00            | 1.1010         | \$0.00             | #DIV/0!       |
|     | Stair Construction            | No 56                        | Flights | C2010 Stair Const | 414             |       |              |                 |                | \$0.00             | #DIV/0!       |
|     | NW Stair                      | 14                           |         | C2010 Stair Const | 414             |       |              | 10725           | 13406.25       |                    | #DIV/0!       |
| -   | NE Stair                      | 14                           |         | C2010 Stair Const | 414             |       |              | 10725           | 13406.25       | \$187,687.50       | #DIV/0!       |
|     | SW Stair                      | 14                           |         | C2010 Stair Const | 414             |       |              | 10725           | 13406.25       |                    | #DIV/0!       |
|     | SE Stair                      | 14                           |         | C2010 Stair Const | 414             |       |              | 10725           | 13406.25       | \$187,687.50       | #DIV/0!       |
| 50  |                               |                              | ,<br>   |                   |                 |       |              | 10723           | 10400.20       | \$0.00             | #DIV/0!       |
| 50  |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| 50  |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| 50  |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| 50  |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             | #DIV/0!       |
| 50  |                               |                              |         | ╂────┼            |                 |       |              |                 |                | \$0.00             |               |
| 50  |                               |                              |         | ╢────┼            |                 |       |              |                 |                |                    |               |
|     |                               |                              |         | ╢────┼            |                 |       |              |                 |                | \$0.00             |               |
| 50  |                               |                              |         | ╢────┼            |                 |       |              |                 |                | \$0.00             |               |
| 50  |                               |                              |         | ╢────┼            |                 |       |              |                 |                | \$0.00             |               |
| 50  |                               |                              |         |                   |                 |       |              |                 |                | \$0.00             |               |

|     |                                     |          |      |              |                 |      |              |                 |                | \$3,977,645.71     |  |
|-----|-------------------------------------|----------|------|--------------|-----------------|------|--------------|-----------------|----------------|--------------------|--|
| No. | Item Description Self-<br>Performed | Quantity | Unit | RSMeans Code | RSMeans<br>page | Crew | Daily Output | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |  |
| 50  |                                     |          |      |              |                 |      |              |                 |                | \$0.00             |  |
| 50  |                                     |          |      |              |                 |      |              |                 |                | \$0.00             |  |

| 760 |                         |                     |          |      |                  |                 |                 |      |              |          |                 |                | 8102951.86         |
|-----|-------------------------|---------------------|----------|------|------------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description        | Self-<br>Performed? | Quantity | Unit | RSMeans Code     | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [4] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1   | L1 2" Deep Metal Deck   |                     | 24914    | SF   | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 75738.56           |
| 2   | L2 2" Deep Metal Deck   |                     | 24489    |      | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 74446.56           |
| 3   | L3 2" Deep Metal Deck   |                     | 74816    |      | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 227440.64          |
| 4   | L4 2" Deep Metal Deck   |                     | 74816    |      | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 227440.64          |
| 5   | L5 2" Deep Metal Deck   |                     | 74816    |      | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 227440.64          |
| 6   | L6 2" Deep Metal Deck   |                     | 74816    |      | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 227440.64          |
| 7   | L7 2" Deep Metal Deck   |                     | 74816    |      | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 227440.64          |
| 8   | ROOF 2" Deep Metal Deck |                     | 73701    |      | 05-31-13-5200    | 2019            | 141             | E-4  | 3860         |          | 2.54            | 3.04           | 224051.04          |
| 9   |                         |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 10  | Level 1                 |                     |          |      |                  |                 |                 |      |              |          |                 |                | C                  |
| 11  | W10X33                  |                     | 1        | LF   | 05-12-23.75-0740 |                 | 131             | E-2  | 550          | LF       | 56.74           | 65.5           | 65.5               |
| 12  | W12X65                  |                     | 330      | LF   | 05-12-23.75-1580 |                 | 132             | E-2  | 750          | LF       | 90.91           | 102            | 33660              |
| 13  | W12X72                  |                     | 81       | LF   | 05-12-23.75-1700 |                 | 132             | E-2  | 640          | LF       | 112.51          | 126            | 10206              |
| 14  | 12X106                  |                     | 345      | LF   | 05-12-23.75-1740 |                 | 132             | E-2  | 640          | LF       | 133.51          | 150            | 51750              |
| 15  | W18X76                  |                     | 90       | LF   | 3940             |                 | 132             | E-2  | 900          | LF       | 116.96          | 132            | 11880              |
| 16  | W18X97                  |                     | 195      | LF   | 3960             |                 | 132             | E-2  | 900          | LF       | 131.96          | 148            | 28860              |
| 19  |                         |                     |          |      |                  |                 |                 |      |              |          |                 |                | (                  |
| 20  | Level 2                 |                     |          |      |                  |                 |                 |      |              |          |                 |                | C                  |
| 21  | W16x26                  |                     | 129      | LF   | 05-12-23-2700    |                 | 133             | E-2  | 1000         | LF       | 42.81           | 48.5           | 6256.5             |
| 22  | W8X13                   |                     | 269      | LF   | 300              |                 | 131             | E-2  | 600          | LF       | 22.58           | 27.5           | 7397.5             |
| 23  | W16X100                 |                     | 254      | LF   | 3140             |                 | 132             | E-2  | 760          | LF       | 103.82          | 116            | 29464              |
| 24  | W18X60                  |                     | 46       |      | 3920             |                 | 132             |      | 900          | LF       | 101.46          | 114            | 5244               |
|     | W18X97                  |                     | 1529     |      | 3960             |                 |                 | E-2  | 900          |          | 131.96          | 148            | 226292             |
|     | W21X73                  |                     | 58       |      | 4700             |                 |                 |      | 1036         |          | 105.04          | 118            | 6844               |
|     | W21X93                  |                     | 187      | LF   | 4740             |                 | 132             |      | 1000         |          | 141.26          | 158            | 29546              |
|     | W21X101                 |                     | 126      | LF   | 4760             |                 |                 |      | 1000         |          | 153.26          | 171            |                    |
|     | W21X132                 |                     | 120      |      | 4780             | 1               | 132             |      | 1000         |          | 183.26          |                | 24480              |
| 30  |                         |                     |          | LF   |                  |                 |                 |      |              | LF       |                 |                | (                  |
|     | Level 3                 |                     |          | LF   |                  |                 |                 |      |              | LF       |                 |                | (                  |
|     | W8X13                   | 1                   | 315      |      | 300              |                 | 131             | E-2  | 600          |          | 22.58           | 27.5           | 8662.5             |
|     | W14x68                  |                     | 271      |      | 2360             |                 | 132             |      | 760          |          | 114.32          | 127            | 34417              |
|     | W16X100                 |                     | 417      |      | 3140             |                 |                 | E-2  | 760          |          | 103.82          |                |                    |
|     | W18X60                  |                     |          | LF   | 3920             |                 | 132             |      | 900          |          | 101.46          |                |                    |
|     | W18X97                  |                     | 1413     |      | 3960             |                 |                 | E-2  | 900          |          | 131.96          |                | 209124             |
|     | W18x119                 |                     | 164      |      | 3960             |                 |                 |      | 900          |          | 131.96          |                |                    |
|     | W18x130                 |                     | 79       |      | 3960             |                 |                 |      | 900          |          | 131.96          |                | 11692              |
|     | W18X143                 |                     | 64       |      | 3960             |                 |                 |      | 900          |          | 131.96          |                |                    |
|     | W10X145                 |                     |          | LF   | 4700             | -               | +               | 1    | 1036         |          | 105.04          |                |                    |
|     | W21X93                  |                     | 186      |      | 4740             | -               | 132             |      | 1000         |          | 141.26          |                |                    |
|     | W21X33                  |                     | 132      |      | 4740             |                 | 132             |      | 1000         |          | 153.26          |                | 23588              |

| 760 |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 8102951.86         |
|-----|------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [4] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 43  | W21X122          |                     | 39       | LF   | 4780         |                 |                 |      | 1000         | LF       | 183.26          | 204            | 7956               |
| 44  |                  |                     |          | LF   |              |                 |                 |      |              | LF       |                 |                | 0                  |
| 45  | Level 4          |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 46  | W8X13            |                     | 332      | LF   | 300          |                 | 131             | E-2  | 600          | LF       | 22.58           | 27.5           | 9130               |
| 47  | W14x68           |                     | 547      | LF   | 2360         |                 | 132             |      | 760          | LF       | 114.32          | 127            | 69469              |
| 48  | W16X67           |                     | 106      | LF   | 3140         |                 |                 |      | 760          | LF       | 103.82          | 116            | 12296              |
| 49  | W16X100          |                     | 1114     | LF   | 3140         |                 | 132             | E-2  | 760          | LF       | 103.82          | 116            | 129224             |
| 50  | W18X60           |                     | 75       | LF   | 3920         |                 | 132             |      | 900          | LF       | 101.46          | 114            | 8550               |
| 51  | W18X76           |                     | 109      |      | 3940         |                 |                 |      | 900          |          | 116.96          | 132            | 14388              |
| 52  | W18X97           |                     | 2753     | LF   | 3960         |                 |                 | E-2  | 900          | LF       | 131.96          | 148            | 407444             |
| 53  | W18x119          |                     | 817      | LF   | 3960         |                 |                 |      | 900          | LF       | 131.96          | 148            | 120916             |
| 54  | W18x130          |                     | 171      | LF   | 3960         |                 |                 |      | 900          | LF       | 131.96          | 148            | 25308              |
| 55  | W18X143          |                     | 64       | LF   | 3960         |                 |                 |      | 900          | LF       | 131.96          | 148            | 9472               |
| 56  | W21X73           |                     | 145      | LF   | 4700         |                 |                 |      | 1036         | LF       | 105.04          | 118            | 17110              |
| 57  | W21X93           |                     | 186      | LF   | 4740         |                 | 132             |      | 1000         | LF       | 141.26          | 158            | 29388              |
| 58  | W21X101          |                     | 132      | LF   | 4760         |                 |                 |      | 1000         | LF       | 153.26          | 171            | 22572              |
| 59  | W21X122          |                     | 352      | LF   | 4780         |                 |                 |      | 1000         | LF       | 183.26          | 204            | 71808              |
| 60  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 61  | Level 5          |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 62  | W8X13            |                     | 309      | LF   | 300          |                 | 131             | E-2  | 600          | LF       | 22.58           | 27.5           | 8497.5             |
| 63  | W14x68           |                     | 531      | LF   | 2360         |                 | 132             |      | 760          | LF       | 114.32          | 127            | 67437              |
| 64  | W16X67           |                     | 132      |      | 3140         |                 |                 |      | 760          |          | 103.82          | 116            | 15312              |
|     | W16X100          |                     | 1013     |      | 3140         |                 | 132             | E-2  | 760          |          | 103.82          | 116            | 117508             |
|     | W18X60           |                     | 120      |      | 3920         |                 | 132             |      | 900          |          | 101.46          | 114            | 13680              |
| 67  | W18x76           |                     | 109      |      | 3940         |                 |                 |      | 900          |          | 116.96          | 132            | 14388              |
|     | W18X97           |                     | 2647     | LF   | 3960         |                 |                 | E-2  | 900          | LF       | 131.96          | 148            |                    |
|     | W18x119          |                     | 912      |      | 3960         |                 |                 |      | 900          |          | 131.96          |                |                    |
|     | W18x130          |                     | 171      |      | 3960         |                 |                 |      | 900          |          | 131.96          |                |                    |
|     | W18X143          |                     |          | LF   | 3960         |                 |                 |      | 900          |          | 131.96          |                |                    |
|     | W21X73           |                     | 145      |      | 4700         |                 |                 |      | 1036         |          | 105.04          |                |                    |
|     | W21X93           |                     | 186      |      | 4740         |                 | 132             |      | 1000         |          | 141.26          |                |                    |
|     | W21X101          |                     | 132      |      | 4760         |                 |                 |      | 1000         |          | 153.26          |                | 22572              |
|     | W21X122          |                     | 477      |      | 4780         |                 |                 |      | 1000         |          | 183.26          |                | 97308              |
| 76  |                  |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
|     | Level 6          |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
|     | W8X13            |                     | 324      | LF   | 300          |                 | 131             | E-2  | 600          | LF       | 22.58           | 27.5           | 8910               |
|     | W14x68           |                     | 540      |      | 2360         |                 | 132             |      | 760          |          | 114.32          |                | 68580              |
|     | W14X60           |                     | 132      |      | 3140         |                 | 102             |      | 760          |          | 103.82          |                |                    |
|     | W16X100          |                     | 1048     |      | 3140         |                 | 132             | E-2  | 760          |          | 103.82          |                |                    |
|     | W18X60           |                     | 120      |      | 3920         |                 | 132             |      | 900          |          | 103.82          |                |                    |

| 760 |                  |                              |      |               | <b>D</b> 014    |                 |      |              |          |                 |                | 8102951.8          |
|-----|------------------|------------------------------|------|---------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description | Self-<br>Performed? Quantity | Unit | RSMeans Code  | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [4] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 83  | W18x76           | 109                          |      | 3940          |                 |                 |      | 900          |          | 116.96          | 132            | 1438               |
| 84  | W18X97           | 2618                         | LF   | 3960          |                 |                 | E-2  | 900          | LF       | 131.96          | 148            | 38746              |
| 85  | W18x119          | 946                          | LF   | 3960          |                 |                 |      | 900          | LF       | 131.96          | 148            | 14000              |
| 86  | W18x130          | 171                          | LF   | 3960          |                 |                 |      | 900          | LF       | 131.96          | 148            | 2530               |
| 87  | W18X143          | 65                           | LF   | 3960          |                 |                 |      | 900          | LF       | 131.96          | 148            | 962                |
| 88  | W21X73           | 145                          | LF   | 4700          |                 |                 |      | 1036         | LF       | 105.04          | 118            | 1711               |
| 89  | W21X93           | 186                          | LF   | 4740          |                 | 132             |      | 1000         | LF       | 141.26          | 158            | 2938               |
| 90  | W21X101          | 132                          | LF   | 4760          |                 |                 |      | 1000         | LF       | 153.26          | 171            | 2257               |
| 91  | W21X122          | 385                          | LF   | 4780          |                 |                 |      | 1000         | LF       | 183.26          | 204            | 7854               |
| 92  |                  |                              |      |               |                 |                 |      |              |          |                 |                |                    |
| 93  | Level 7          |                              |      |               |                 |                 |      |              |          |                 |                |                    |
| 94  | W8X13            | 324                          | LF   | 300           |                 | 131             | E-2  | 600          | LF       | 22.58           | 27.5           | 891                |
| 95  | W14x68           | 564                          | LF   | 2360          |                 | 132             |      | 760          | LF       | 114.32          | 127            | 7162               |
| 96  | W16X67           | 132                          | LF   | 3140          |                 |                 |      | 760          | LF       | 103.82          | 116            | 1531               |
| 97  | W16X100          | 1008                         | LF   | 3140          |                 | 132             | E-2  | 760          | LF       | 103.82          | 116            | 11692              |
| 98  | W18X60           | 120                          | LF   | 3920          |                 | 132             |      | 900          | LF       | 101.46          | 114            | 1368               |
| 99  | W18x76           | 109                          |      | 3940          |                 |                 |      | 900          |          | 116.96          | 132            | 1438               |
| 100 | W18X97           | 2535                         | LF   | 3960          |                 |                 | E-2  | 900          | LF       | 131.96          | 148            | 37518              |
| 101 | W18x119          | 935                          | LF   | 3960          |                 |                 |      | 900          | LF       | 131.96          | 148            | 13838              |
| 102 | W18x130          | 259                          | LF   | 3960          |                 |                 |      | 900          | LF       | 131.96          | 148            | 3833               |
| 103 | W18X143          | 65                           | LF   | 3960          |                 |                 |      | 900          | LF       | 131.96          | 148            | 962                |
| 104 | W21X73           | 145                          | LF   | 4700          |                 |                 |      | 1036         | LF       | 105.04          | 118            | 1711               |
| 105 | W21X93           | 186                          | LF   | 4740          |                 | 132             |      | 1000         | LF       | 141.26          | 158            | 2938               |
| 106 | W21X101          | 132                          | LF   | 4760          |                 |                 |      | 1000         | LF       | 153.26          | 171            | 2257               |
| 107 | W21X122          | 432                          | LF   | 4780          |                 |                 |      | 1000         | LF       | 183.26          | 204            | 8812               |
| 108 |                  |                              |      |               |                 |                 |      |              |          |                 |                |                    |
| 109 | Roof             |                              |      |               |                 |                 |      |              |          |                 |                |                    |
| 110 | W16x26           | 23                           | LF   | 05-12-23-2700 |                 | 133             | E-2  | 1000         | LF       | 42.81           | 48.5           | 1115.              |
| 111 | W6X16            | 363                          |      | 120           |                 | 131             |      | 600          |          | 30.03           | 35.5           | 12886.             |
| 112 | W8X13            | 145                          | LF   | 300           |                 | 131             | E-2  | 600          | LF       | 22.58           | 27.5           | 3987.              |
| 113 | W14x68           | 58                           | LF   | 2360          |                 | 132             |      | 760          | LF       | 114.32          | 127            | 736                |
| 114 | W16X67           | 1448                         | LF   | 3140          |                 |                 |      | 760          | LF       | 103.82          | 116            | 16796              |
| 115 | W16X100          | 192                          | LF   | 3140          |                 | 132             | E-2  | 760          | LF       | 103.82          | 116            | 2227               |
| 116 | W18X60           | 120                          | LF   | 3920          |                 | 132             |      | 900          | LF       | 101.46          | 114            | 1368               |
| 117 | W18x76           | 109                          |      | 3940          |                 |                 |      | 900          |          | 116.96          | 132            | 1438               |
| 118 | W18X97           | 234                          | LF   | 3960          |                 |                 | E-2  | 900          | LF       | 131.96          | 148            | 3463               |
| 119 | W18x106          | 2353                         |      |               |                 |                 |      | 900          |          | 160.96          | 180            | 42354              |
| 120 | W18x119          | 902                          | LF   | 3960          |                 |                 |      | 900          | LF       | 131.96          | 148            | 13349              |
| 121 | W18x130          | 45                           | LF   | 3960          |                 |                 | 1    | 900          | LF       | 131.96          | 148            | 666                |
| 123 | W21X73           | 100                          | LF   | 4700          |                 |                 |      | 1036         | LF       | 105.04          | 118            | 1180               |

| 760 |                                         |                     |              |                  |                 |                 |          |              |          |                 |                | 8102951.86         |
|-----|-----------------------------------------|---------------------|--------------|------------------|-----------------|-----------------|----------|--------------|----------|-----------------|----------------|--------------------|
| No. |                                         | Self-<br>Performed? | Quantity Uni | it RSMeans Code  | RSMeans<br>Year | RSMeans<br>page | Crew     | Daily Output | Unit [4] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 124 | W21X93                                  |                     | 186 LF       | 4740             |                 | 132             |          | 1000         | LF       | 141.26          | 158            | 29388              |
| 125 | W21X101                                 |                     | 132 LF       | 4760             |                 |                 |          | 1000         | LF       | 153.26          | 171            | 22572              |
| 126 | W21X122                                 |                     | 128 LF       | 4780             |                 |                 |          | 1000         | LF       | 183.26          | 204            | 26112              |
| 127 |                                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
| 128 | Level Parapet                           |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
| 129 | W6X16                                   |                     | 99           | 120              |                 | 131             |          | 600          |          | 30.03           | 35.5           | 3514.5             |
| 130 | W8X13                                   |                     | 97 LF        | 300              |                 | 131             | E-2      | 600          | LF       | 22.58           | 27.5           | 2667.5             |
| 131 | W16X67                                  |                     | 163 LF       | 3140             |                 |                 |          | 760          | LF       | 103.82          | 116            | 18908              |
| 132 |                                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
| 133 | Level 1 Columns                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
| 134 | W 16 x 26                               |                     | 419 LF       | 05-12-23-2700    |                 | 133             | E-2      | 1000         | LF       | 42.81           | 48.5           | 20321.5            |
| 135 | W 18X97                                 |                     | 77 LF        | 3960             |                 |                 | E-2      | 900          | LF       | 131.96          | 148            | 11396              |
| 136 |                                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
| 137 | Level 2 Columns                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
| 138 | W12x45                                  | No                  | 264 LF       | 05-12-23.75-1560 | 2019            | 132             | E-2      | 750          | LF       | 78.91           | 89             | 23496              |
|     |                                         | No                  | 108 LF       | 05-12-23.75-1580 | 2019            |                 | E-2      | 750          | LF       | 90.91           | 102            | 11016              |
| 140 |                                         | No                  | 144 LF       | 05-12-23.75-1740 | 2019            |                 | E-2      | 640          |          | 133.51          | 150            | 21600              |
| 141 |                                         | No                  | 108 LF       | 05-12-23.75-3940 | 2019            |                 | E-2      | 900          |          | 116.96          | 132            | 14256              |
|     |                                         | No                  | 156 LF       | 05-12-23.75-3960 | 2019            |                 | E-2      | 900          |          | 131.96          | 148            | 23088              |
| 143 |                                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
| 144 | ł – – – – – – – – – – – – – – – – – – – |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
|     |                                         | No                  | 250 LF       | 1560             |                 |                 |          | 750          | LF       | 78.91           | 89             | 22250              |
|     |                                         | No                  | 160 LF       | 05-12-23.75-1580 |                 |                 |          | 750          |          | 90.91           | 102            | 16320              |
|     |                                         | No                  | 40           | 05-12-23.75-1700 |                 |                 |          | 640          |          | 112.51          | 126            | 5040               |
|     |                                         | No                  | 660 LF       | 05-12-23.75-1700 |                 |                 |          | 640          |          | 112.51          | 126            | 83160              |
|     |                                         | No                  | 100 LF       | 3940             |                 |                 |          | 900          |          | 116.96          |                |                    |
|     |                                         | No                  | 230 LF       |                  |                 |                 | E-2      | 900          |          | 131.96          |                |                    |
|     |                                         | No                  | 80 LF        |                  |                 |                 |          | 900          |          | 131.96          |                |                    |
| 152 |                                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
|     | Level 4 Columns                         |                     |              |                  |                 |                 |          |              |          |                 |                | 0                  |
|     | W12X40                                  |                     | 220 LF       | 1560             |                 |                 |          | 750          | LE       | 78.91           | 89             | 19580              |
|     | W12X45                                  |                     | 170 LF       |                  |                 |                 |          | 750          |          | 78.91           | 89             |                    |
|     | W12X50                                  |                     | 30 LF        | 1560             |                 |                 |          | 750          |          | 78.91           | 89             |                    |
|     | W12X53                                  |                     | 640 LF       | 1560             |                 |                 |          | 750          |          | 78.91           | 89             |                    |
|     | W12X65                                  |                     | 20 LF        | 05-12-23.75-1580 |                 |                 |          | 750          |          | 90.91           | 102            |                    |
|     | W12X79                                  |                     | 10 LF        | 05-12-23.75-1700 |                 |                 |          | 640          |          | 112.51          | 102            |                    |
|     | W12X79                                  |                     | 100 LF       | 3940             |                 |                 |          | 900          |          | 116.96          |                | 13200              |
|     | W18X70                                  |                     | 240 LF       |                  |                 |                 | E-2      | 900          |          | 131.96          |                |                    |
|     | W18x119                                 |                     | 80 LF        |                  |                 |                 | <u> </u> | 900          |          | 131.90          |                |                    |
| 163 |                                         |                     |              | 5900             |                 |                 |          | 900          |          | 131.90          | 140            | 11040              |

| 760 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 8102951.86         |
|-----|------------------|---------------------|----------|------|------------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description | Self-<br>Performed? | Quantity | Unit | RSMeans Code     | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [4] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 164 | Level 5 Columns  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 165 | W12X40           |                     | 230      | LF   | 1560             |                 |                 |      | 750          | LF       | 78.91           | 89             | 20470              |
| 166 | W12X45           |                     | 180      | LF   | 1560             |                 |                 |      | 750          | LF       | 78.91           | 89             | 16020              |
| 167 | W12X50           |                     | 40       | LF   | 1560             |                 |                 |      | 750          | LF       | 78.91           | 89             | 3560               |
| 168 | W12X53           |                     | 640      | LF   | 1560             |                 |                 |      | 750          | LF       | 78.91           | 89             | 56960              |
| 169 | W12X79           |                     | 10       | LF   | 05-12-23.75-1700 |                 |                 |      | 640          | LF       | 112.51          | 126            | 1260               |
| 170 | W18X76           |                     | 100      | LF   | 3940             |                 |                 |      | 900          | LF       | 116.96          | 132            | 13200              |
| 171 | W18X97           |                     | 240      | LF   | 3960             |                 |                 | E-2  | 900          | LF       | 131.96          | 148            | 35520              |
| 172 | W18x119          |                     | 80       | LF   | 3960             |                 |                 |      | 900          | LF       | 131.96          | 148            | 11840              |
| 173 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 174 | Level 6 Columns  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 175 | W10X22           |                     | 220      | LF   | 05-12-23.75-0700 |                 |                 |      | 600          | LF       | 40.03           | 46.5           | 10230              |
| 176 | W10X33           |                     | 650      | LF   | 05-12-23.75-0740 |                 |                 |      | 550          | LF       | 56.74           | 65.5           | 42575              |
| 177 | W12X40           |                     | 190      | LF   | 1560             |                 |                 |      | 750          | LF       | 78.91           | 89             | 16910              |
| 178 | W12X45           |                     | 30       | LF   | 1560             |                 |                 |      | 750          | LF       | 78.91           | 89             | 2670               |
| 179 | W12X79           |                     | 10       | LF   | 05-12-23.75-1700 |                 |                 |      | 640          | LF       | 112.51          | 126            | 1260               |
| 180 | W18X76           |                     | 100      | LF   | 3940             |                 |                 |      | 900          | LF       | 116.96          | 132            | 13200              |
| 181 | W18X97           |                     | 240      | LF   | 3960             |                 |                 | E-2  | 900          | LF       | 131.96          | 148            | 35520              |
| 182 | W18x119          |                     | 80       | LF   | 3960             |                 |                 |      | 900          | LF       | 131.96          | 148            | 11840              |
| 183 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 184 | Level 7 Columns  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 185 | W10X22           |                     | 230      | LF   | 05-12-23.75-0700 |                 |                 |      | 600          | LF       | 40.03           | 46.5           | 10695              |
| 186 | W10X33           |                     | 630      | LF   | 05-12-23.75-0740 |                 |                 |      | 550          | LF       | 56.74           | 65.5           | 41265              |
| 187 | W12X40           |                     | 220      | LF   | 1560             |                 |                 |      | 750          | LF       | 78.91           | 89             | 19580              |
| 188 | W12X79           |                     | 10       | LF   | 05-12-23.75-1700 |                 |                 |      | 640          | LF       | 112.51          | 126            | 1260               |
| 189 | W18X76           |                     | 100      | LF   | 3940             |                 |                 |      | 900          | LF       | 116.96          | 132            | 13200              |
| 190 | W18X97           |                     | 240      | LF   | 3960             |                 |                 | E-2  | 900          | LF       | 131.96          | 148            | 35520              |
| 191 | W18x119          |                     | 80       | LF   | 3960             |                 |                 |      | 900          | LF       | 131.96          | 148            | 11840              |
| 192 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 193 | Roof Columns     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 194 | W10X22           |                     | 120      | LF   | 05-12-23.75-0700 |                 |                 |      | 600          | LF       | 40.03           | 46.5           | 5580               |
| 195 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 196 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 197 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 198 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 199 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 200 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 201 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 202 |                  |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 203 |                  | 1                   |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |

| 760 |                  |                     |          |      |              |                 |      |              |          |                 |                | 8102951.86         |
|-----|------------------|---------------------|----------|------|--------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>page | Crew | Daily Output | Unit [4] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 204 |                  |                     |          |      |              |                 |      |              |          |                 |                | 0                  |
| 205 |                  |                     |          |      |              |                 |      |              |          |                 |                | 0                  |
| 206 |                  |                     |          |      |              |                 |      |              |          |                 |                | 0                  |
| 207 |                  |                     |          |      |              |                 |      |              |          |                 |                | 0                  |
| 208 |                  |                     |          |      |              |                 |      |              |          |                 |                | 0                  |

|      |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 16054.189          |
|------|---------------------|---------------------|----------|------|------------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No.  | Item Description    | Self-<br>Performed? | Quantity | Unit | RSMeans Code     | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [5] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
|      | Bioretention        |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 14   | 2 EPDM 45 mil Thick |                     | 4338.97  | SF   | 07-13-53-10.0090 |                 | 225             |      | 580          |          | 2.72            | 3.7            | 16054.189          |
| 3    | 3                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 2    | 1                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| Ę    | 5                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 6    | 6                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 7    | 7                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 8    | 3                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| ę    | )                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 10   | )                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 11   | 1                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 12   | 2                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 13   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 14   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 15   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 16   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 17   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 18   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 19   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 20   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 2    |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 22   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 23   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 24   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| - 25 |                     |                     |          |      | _                |                 |                 |      |              |          |                 |                | 0                  |
| 26   |                     |                     |          |      | _                |                 |                 |      |              |          |                 |                | 0                  |
| 27   |                     |                     |          |      | _                |                 |                 |      |              |          |                 |                | 0                  |
| 28   |                     |                     |          |      | -                |                 |                 |      |              |          |                 |                | 0                  |
| 29   |                     |                     |          |      | -                |                 |                 |      |              |          |                 |                | 0                  |
| 30   |                     |                     |          |      | _                |                 |                 |      |              |          |                 |                | 0                  |
| 3    |                     |                     |          |      | _                |                 |                 |      |              |          |                 |                | 0                  |
| 32   |                     |                     |          |      | _                |                 |                 |      |              |          |                 |                | 0                  |
| 33   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 34   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 35   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
| 36   |                     |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |
|      |                     |                     |          |      | -                |                 |                 |      |              |          |                 |                |                    |
| 37   |                     |                     |          |      | -                |                 |                 |      |              |          |                 |                | 0                  |
| 38   |                     |                     |          |      | -                |                 |                 |      |              |          |                 |                | 0                  |
| 39   |                     |                     |          |      | _                |                 |                 |      |              |          |                 |                | 0                  |
| 40   | )                   |                     |          |      |                  |                 |                 |      |              |          |                 |                | 0                  |

|     |                     |          |      |              |                 |              |      |              |          |                 |                | 16054.189          |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [5] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |

|     |                               |                     |          |      |              |                 |                 |      |              |          |                 |                | 5195182.625        |               |
|-----|-------------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|---------------|
| No. | Item Description              | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [6] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |               |
| 1   | Exterior Walls (Curtain Wall) | No                  |          | SF   |              |                 | 8               | 1    |              |          | 20.82           |                | 0                  | #DIV/0!       |
| 2   | North Wall 3-7                | No                  | 20405    | SF   | M.020-2020   |                 |                 |      |              | SF       | 20.82           | 26.025         | 531040.125         | #DIV/0!       |
| 3   | B East Wall 3-7               |                     | 13970    | SF   | M.020-2020   |                 |                 |      |              | SF       | 20.82           | 26.025         | 363569.25          | #DIV/0!       |
| 4   | South Wall 3-7                | No                  | 21615    | SF   | M.020-2020   |                 |                 |      |              | SF       | 20.82           | 26.025         | 562530.375         | #DIV/0!       |
| 5   | 5 West Wall 3-7               | No                  | 13915    | SF   | M.020-2020   |                 |                 |      |              | SF       | 20.82           | 26.025         | 362137.875         | #DIV/0!       |
| 6   | 3                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 7   | / Interior Doors              |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 8   | B Level 1                     |                     | 1        | Each | M.020-1020   |                 |                 |      | 1            | 2 Each   | 1244            | 1555           | 1555               | 0.08333333333 |
| ç   | Eevel 2                       |                     | 106      |      | M.020-1020   |                 |                 |      | 1            | 2        | 1244            | 1555           | 164830             | 8.833333333   |
| 10  | ) Level 3                     |                     | 395      |      | M.020-1020   |                 |                 |      | 1            | 2        | 1244            | 1555           | 614225             | 32.91666667   |
| 11  | Level 4                       |                     | 410      |      | M.020-1020   |                 |                 |      | 1            | 2        | 1244            | 1555           | 637550             | 34.16666667   |
| 12  | 2 Level 5                     |                     | 410      |      | M.020-1020   |                 |                 |      | 1            | 2        | 1244            | 1555           | 637550             | 34.16666667   |
| 13  | B Level 6                     |                     | 429      |      | M.020-1020   |                 |                 |      | 1            | 2        | 1244            | 1555           | 667095             | 35.75         |
| 14  | Level 7                       |                     | 420      |      | M.020-1020   |                 |                 |      | 1            | 2        | 1244            | 1555           | 653100             | 35            |
| 15  | 5                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 16  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 17  | 7                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 18  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 19  | )                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 20  | )                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 21  |                               |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  | #DIV/0!       |
| 22  | 2                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  | #DIV/0!       |
| 23  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  | #DIV/0!       |
| 24  |                               |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  | #DIV/0!       |
| 25  | 5                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  | #DIV/0!       |
| 26  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  | #DIV/0!       |
| 27  | 7                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 28  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 29  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 30  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 31  |                               |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 32  | 2                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 33  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 34  | L .                           |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 35  | 5                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 36  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 37  | 7                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 38  | 3                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 39  | )                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |
| 40  |                               |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |               |

|     |                  |                     |          |      |  |                 |      |              |          |                 |                | 5195182.625        |  |
|-----|------------------|---------------------|----------|------|--|-----------------|------|--------------|----------|-----------------|----------------|--------------------|--|
| No. | Item Description | Self-<br>Performed? | Quantity | Unit |  | RSMeans<br>page | Crew | Daily Output | Unit [6] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |  |
| 41  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 42  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 43  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 44  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 45  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 46  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 47  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 48  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 49  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |
| 50  |                  |                     |          |      |  |                 |      |              |          |                 |                | 0                  |  |

|     |                            |                     |          |      |              |                 |                 |      |              |          |                 |                | 9644781.95         |
|-----|----------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description           | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [7] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1   | Glazed/Prefab Metal Panels |                     |          |      |              |                 |                 |      |              |          |                 | 0              | (                  |
| 2   | Level 1                    |                     | 15480    | SF   | M0.20-2020   |                 | 81              |      |              |          | 20.82           | 26.025         | 402867             |
| 3   | Level 2                    |                     | 7979     |      |              |                 |                 |      |              |          | 20.82           | 26.025         | 207653.47          |
| 4   | Level 3                    |                     | 25815    |      |              |                 |                 |      |              |          | 20.82           | 26.025         | 671835.37          |
| 5   | Level 4                    |                     | 25989    |      |              |                 |                 |      |              |          | 20.82           | 26.025         | 676363.72          |
| 6   | Level 5                    |                     | 25120    |      |              |                 |                 |      |              |          | 20.82           | 26.025         | 653748             |
| 7   | Level 6                    |                     | 26923    |      |              |                 |                 |      |              |          | 20.82           | 26.025         | 700671.07          |
| 8   | Level 7                    |                     | 2692     |      |              |                 |                 |      |              |          | 20.82           | 26.025         | 70059.3            |
| 9   |                            |                     | 26929    |      |              |                 |                 |      |              |          | 20.82           | 26.025         | 700827.22          |
| 10  | Interior Walls             |                     |          |      | M.020-1010   |                 | 81              |      |              |          |                 | 0              |                    |
| 11  | Level 1                    |                     |          |      |              |                 |                 |      |              |          | 9.17            | 11.4625        | (                  |
| 12  | Level 2                    |                     | 24515    |      |              |                 |                 |      |              |          | 9.17            | 11.4625        | 281003.187         |
| 13  | Level 3                    |                     | 88532    |      |              |                 |                 |      |              |          | 9.17            | 11.4625        | 1014798.0          |
| 14  | Level 4                    |                     | 94355    |      |              |                 |                 |      |              |          | 9.17            | 11.4625        | 1081544.188        |
| 15  | Level 5                    |                     | 90544    |      |              |                 |                 |      |              |          | 9.17            | 11.4625        | 1037860.0          |
| 16  | Level 6                    |                     | 94293    |      |              |                 |                 |      |              |          | 9.17            | 11.4625        | 1080833.513        |
| 17  | Level 7                    |                     | 92887    | 81   |              |                 |                 |      |              |          | 9.17            | 11.4625        | 1064717.238        |
| 18  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 19  | Parapet Wall               |                     | 12219    |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 20  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 21  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 22  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 23  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 24  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 25  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 26  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 27  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 28  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 29  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 30  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 31  |                            |                     |          |      |              |                 |                 |      |              |          |                 | 0              |                    |
| 32  |                            |                     |          |      |              |                 |                 |      |              |          |                 |                |                    |
| 33  |                            |                     |          |      |              |                 |                 |      |              |          |                 |                |                    |
| 34  |                            |                     |          |      |              |                 |                 |      |              |          |                 |                |                    |
| 35  |                            |                     |          |      |              |                 |                 |      |              |          |                 |                |                    |
| 36  |                            |                     |          |      |              |                 |                 | 1    |              |          |                 |                |                    |
| 37  |                            |                     |          |      |              |                 |                 | 1    |              |          |                 |                |                    |
| 38  |                            |                     |          |      |              |                 |                 | 1    |              |          |                 |                |                    |
| 39  |                            |                     |          |      |              |                 |                 |      |              |          |                 |                |                    |
| 40  |                            |                     |          |      |              |                 |                 |      |              |          |                 |                | (                  |

|     |                     |          |      |              |                 |              |      |              |          |                 |                | 9644781.95         |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [7] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |

| No. | Item Description              | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [8] | Total Bare Cost | Total Incl O |
|-----|-------------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|--------------|
|     | 1 Residential Gas Ranges, Dis |                     |          |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 2 Level 1 Mixed Use           |                     | 24914    |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 3 L2 Res                      |                     | 24914    |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 4 L3 Res                      |                     | 69434    |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 5 L4 Res                      |                     | 74816    |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 6 L5 Res                      |                     | 74816    |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 7 L6 Res                      |                     | 74816    |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 8 L7 Res                      |                     | 74816    |      |              |                 |                 |      |              |          | 1.65            |              |
|     | 9                             |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 10                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 11                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 12                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 13                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 14                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 15                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 16                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 17                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 18                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 19                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 20                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 21                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 22                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 23                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 24                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 25                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 26                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 27                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 28                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 29                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 30                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 31                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 32                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 33                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 34                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 35                            |                     |          |      |              |                 |                 |      |              |          |                 | +            |
|     | 36                            |                     |          |      |              |                 |                 |      |              |          |                 | <u> </u>     |
|     | 37                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 38                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 39                            |                     |          |      |              |                 |                 |      |              |          |                 |              |
|     | 40                            |                     |          |      | 1            |                 |                 |      |              |          |                 | <u> </u>     |

|        | 863209.875         |         |
|--------|--------------------|---------|
| O&P    | Total Item<br>Cost |         |
| 2.0625 | 0                  |         |
| 2.0625 | 51385.125          |         |
| 2.0625 | 51385.125          | #DIV/0! |
| 2.0625 | 143207.625         |         |
| 2.0625 | 154308             |         |
| 2.0625 | 154308             |         |
| 2.0625 | 154308             |         |
| 2.0625 | 154308             |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |
|        | 0                  |         |

|     |                     |          |      |  |              |      |              |          |                 |                | 863209.875         |  |
|-----|---------------------|----------|------|--|--------------|------|--------------|----------|-----------------|----------------|--------------------|--|
| No. | Self-<br>Performed? | Quantity | Unit |  | RSMeans page | Crew | Daily Output | Unit [8] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |  |
| 41  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 42  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 43  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 44  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 45  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 46  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 47  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 48  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 49  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |
| 50  |                     |          |      |  |              |      |              |          |                 |                | 0                  |  |

|     |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 6656940.54         |
|-----|-----------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Item Description            | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [9] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1   | <b>Residential Fittings</b> | No                  |          | SF   |              |                 |                 |      |              |          |                 |                | 0                  |
| 2   | Level 2 Residential         | No                  | 24914    | SF   | M.020-1030   |                 |                 |      |              |          | 4.98            | 6.225          | 155089.65          |
| 3   | Level 3 Residential         | No                  | 69434    |      | M.020-1030   |                 |                 |      |              |          | 4.98            | 6.225          | 432226.65          |
| 4   | Level 4 Residential         |                     | 74816    |      | M.020-1030   |                 |                 |      |              |          | 4.98            | 6.225          | 465729.6           |
| 5   | Level 5 Residential         |                     | 74816    |      | M.020-1030   |                 |                 |      |              |          | 4.98            | 6.225          | 465729.6           |
| 6   | Level 6 Residential         |                     | 74816    |      | M.020-1030   |                 |                 |      |              |          | 4.98            | 6.225          | 465729.6           |
| 7   | Level 7 Residential         |                     | 74816    |      | M.020-1030   |                 |                 |      |              |          | 4.98            | 6.225          | 465729.6           |
| 8   |                             |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 9   | Floor Finishes              |                     |          |      |              |                 |                 |      |              |          |                 | 0              | 0                  |
| 10  | Level 1 Mixed Use           |                     | 24914    |      | M.020-3020   |                 |                 |      |              |          | 5.32            | 6.65           | 165678.1           |
| 11  | L2 Res                      |                     | 24914    |      | M.020-3020   |                 |                 |      |              |          | 5.32            | 6.65           | 165678.1           |
| 12  | L3 Res                      |                     | 69434    |      | M.020-3020   |                 |                 |      |              |          | 5.32            | 6.65           | 461736.1           |
| 13  | L4 Res                      |                     | 74816    |      | M.020-3020   |                 |                 |      |              |          | 5.32            | 6.65           | 497526.4           |
| 14  | L5 Res                      |                     | 74816    |      | M.020-3020   |                 |                 |      |              |          | 5.32            | 6.65           | 497526.4           |
|     | L6 Res                      |                     | 74816    |      | M.020-3020   |                 |                 |      |              |          | 5.32            | 6.65           | 497526.4           |
| 16  | L7 Res                      |                     | 74816    |      | M.020-3020   |                 |                 |      |              |          |                 | 0              | 0                  |
| 17  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
|     | Ceiling Finishes            |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
|     | Level 1 Mixed Use           |                     | 24914    |      | M.020-3030   |                 |                 |      |              |          | 4.59            | 4.59           | 114355.26          |
|     | L2 Res                      |                     | 24914    |      | M.020-3030   |                 |                 |      |              |          | 4.59            | 4.59           | 114355.26          |
|     | L3 Res                      |                     | 69434    |      | M.020-3030   |                 |                 |      |              |          | 4.59            | 4.59           | 318702.06          |
|     | L4 Res                      |                     | 74816    |      | M.020-3030   |                 |                 |      |              |          | 4.59            | 4.59           | 343405.44          |
| 23  |                             |                     | 74816    |      | M.020-3030   |                 |                 |      |              |          | 4.59            | 4.59           | 343405.44          |
|     | L6 Res                      |                     | 74816    |      | M.020-3030   |                 |                 |      |              |          | 4.59            | 4.59           | 343405.44          |
|     | L7 Res                      |                     | 74816    |      | M.020-3030   |                 |                 |      |              |          | 4.59            | 4.59           | 343405.44          |
| 26  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 27  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 28  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 29  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 30  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 31  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 32  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 33  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 34  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0                  |
| 35  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                | 0<br>0             |
| 36  |                             |                     |          |      | -            |                 |                 |      |              |          |                 |                | 0                  |
| 30  |                             |                     |          |      | -            |                 |                 |      |              |          |                 |                | 0                  |
| 38  |                             |                     |          |      | -            |                 |                 |      |              |          |                 |                | 0                  |
| 30  |                             |                     |          |      | -            |                 |                 |      |              |          |                 |                | 0                  |
|     |                             |                     |          |      |              |                 |                 |      |              |          | + +             |                | 0                  |
| 40  |                             |                     |          |      |              |                 |                 |      |              |          |                 |                |                    |

|     |                     |          |      |              |                 |              |      |              |          |                 |                | 6656940.54         |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [9] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |          |                 |                | 0                  |

|     |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 1266000            |
|-----|------------------|---------------------|----------|--------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Item Description | Self-<br>Performed? | Quantity | Unit   | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [10] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
|     | Elevators        |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 2   | 2 NW Elevators   |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
|     | B NE Elevator    |                     |          | 2 Each | M.020-1010   |                 | 81              |      |              | Each      | 253200          | 316500         | 633000             |
| 4   | SW Elevator      |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| Ę   | 5 SE Elevator    |                     |          | 2      |              |                 | 811             |      |              | Each      | 253200          | 316500         | 633000             |
| 6   | 6                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 7   | 7                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
|     | 3                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| ç   | )                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 10  | )                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 1′  |                  |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 12  | 2                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 13  | 3                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 14  | ł                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 15  | 5                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 16  | )                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 17  | 7                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 18  | 3                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 19  | )                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 20  | )                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 2′  |                  |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 22  | 2                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 23  | 3                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 24  |                  |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 25  | +                |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 26  |                  |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 27  |                  |                     |          |        |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 28  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 29  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 30  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 32  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 32  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 33  |                  |                     | 1        |        |              |                 | 1               |      |              |           |                 |                | 0                  |
| 34  |                  |                     | 1        |        |              |                 | 1               |      |              |           |                 |                | 0                  |
| 35  |                  |                     | 1        |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 36  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 37  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 38  |                  |                     | 1        |        |              |                 |                 |      | 1            |           |                 |                | 0                  |
| 39  |                  |                     |          |        |              |                 |                 |      |              |           |                 |                | 0                  |
| 4(  |                  |                     |          |        | -            |                 |                 |      |              |           |                 |                | 0                  |

|     |                     |          |      |              |                 |                 |      |              |           |                 |                | 1266000            |
|-----|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [10] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 42  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 43  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 44  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 45  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 46  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 47  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 48  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 49  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 50  |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |

|          |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 2770463.4          |
|----------|------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
|          | Item Description       | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [11] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1        | Sprinkler Residential  | No                  |          |      |              |                 | 81              |      |              |           |                 | 0              | 0                  |
| 2        | L2 Res                 |                     | 24914    |      |              |                 | 81              |      |              |           | 3.03            | 3.7875         | 94361.775          |
| 3        | L3 Res                 |                     | 69434    |      |              |                 |                 |      |              |           | 3.03            | 3.7875         | 262981.275         |
| 4        | L4 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 3.03            | 3.7875         | 283365.6           |
| 5        | L5 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 3.03            | 3.7875         | 283365.6           |
| 6        | L6 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 3.03            | 3.7875         | 283365.6           |
| 7        | L7 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 3.03            | 3.7875         | 283365.6           |
| 8        |                        |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 9        | Standpipes Residential |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
|          | L2 Res                 |                     | 24914    |      |              |                 |                 |      |              |           | 0.99            | 1.2375         | 30831.075          |
| 11       | L3 Res                 |                     | 69434    |      |              |                 |                 |      |              |           | 0.99            | 1.2375         | 85924.575          |
|          | L4 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 0.99            | 1.2375         | 92584.8            |
|          | L5 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 0.99            | 1.2375         | 92584.8            |
|          | L6 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 0.99            | 1.2375         | 92584.8            |
|          | L7 Res                 |                     | 74816    |      |              |                 |                 |      |              |           | 0.99            |                | 92584.8            |
| 16       |                        |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
|          | Sprinkler Garage       |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
|          | Level 1                |                     | 66405    |      |              |                 |                 |      |              |           | 3.03            | 3.7875         | 251508.9375        |
|          | Level 2                |                     | 66405    |      |              |                 |                 |      |              |           | 3.03            | 3.7875         | 251508.9375        |
| 20       | 201012                 |                     |          |      |              |                 |                 |      |              |           | 0.00            | 0              | 0                  |
|          | Standpipes Garage      |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
|          | Level 1                |                     | 66405    |      |              |                 |                 |      |              |           | 0.99            | 1.2375         | 82176.1875         |
|          | Level 2                |                     | 66405    |      |              |                 |                 |      |              |           | 0.99            | 1.2375         | 82176.1875         |
| 24       | 2010.2                 |                     | 00100    |      |              |                 |                 |      |              |           | 0.00            | 0              | 0                  |
|          | Sprinkler for Offices  |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
|          | Level 1 Mixed Use      |                     | 24914    |      |              |                 |                 |      |              |           | 3.03            |                |                    |
| 27       |                        |                     | 21011    |      |              |                 |                 |      |              |           | 0.00            | 0.1010         | 0                  |
|          | Standpipes Offices     |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
|          | Level 1 Mixed Use      |                     | 24914    |      |              |                 |                 |      |              |           | 0.99            | _              | 30831.075          |
| 30       |                        |                     |          |      |              |                 |                 |      |              |           | 0.00            | 0              |                    |
| 31       |                        |                     |          |      | -            |                 |                 |      |              |           |                 | 0              | 0                  |
| 32       |                        |                     |          |      | -            |                 |                 |      |              |           |                 | 0              | 0<br>0             |
| 33       |                        |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 33       |                        |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 34       |                        |                     |          |      | -            |                 |                 |      |              |           |                 | 0              | 0                  |
| 36       |                        |                     |          |      | -            |                 |                 |      |              |           |                 | 0              | 0                  |
| 30       |                        |                     |          |      | -            |                 |                 |      |              |           |                 | 0              | 0                  |
| 37       |                        |                     |          |      | -            |                 |                 |      |              |           |                 |                | 0                  |
|          |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 39<br>40 |                        |                     |          |      | -            |                 |                 |      |              |           |                 |                | 0                  |

|     |                     |          |      |              |                 |              |      |              |           |                 |                | 2770463.4          |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [11] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |

|     |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 3862469.924        |
|-----|------------------------------------|---------------------|-------------|------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Item Description                   | Self-<br>Performed? | Quantity    | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [12] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1   | Plumbing Fixtures (1 fixture/      |                     |             |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 2   | Level 1 Mixed Use                  |                     | 87.41754386 | each | M.020-2010   |                 | 81              |      |              | each      | 1942            | 2427.5         | 212206.0877        |
| 3   | Level 2 Residential                |                     | 87.41754386 | each | M.020-2010   |                 |                 |      |              | each      | 1942            | 2427.5         | 212206.0877        |
| 4   | Level 3 Residential                |                     | 243.6280702 | each | M.020-2010   |                 |                 |      |              | each      | 1942            | 2427.5         | 591407.1404        |
| 5   | Level 4 Residential                |                     | 262.5122807 | each | M.020-2010   |                 |                 |      |              | each      | 1942            | 2427.5         | 637248.5614        |
| 6   | Level 5 Residential                |                     | 262.5122807 | each | M.020-2010   |                 |                 |      |              | each      | 1942            | 2427.5         | 637248.5614        |
| 7   | Level 6 Residential                |                     | 262.5122807 | each | M.020-2010   |                 |                 |      |              | each      | 1942            | 2427.5         | 637248.5614        |
| 8   | Level 7 Residential                |                     | 262.5122807 | each | M.020-2010   |                 |                 |      |              | each      | 1942            | 2427.5         | 637248.5614        |
| 9   |                                    |                     |             |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 10  | <b>Domestic Water Distribution</b> |                     |             |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 11  | Level 1 Mixed Use                  |                     | 24914       | SF   | M.020-2020   |                 |                 |      |              | SF        | 8.7             | 10.875         | 270939.75          |
| 12  | Level 2 Residential                |                     | 24914       | SF   | M.020-2020   |                 |                 |      |              | SF        |                 | 0              | 0                  |
| 13  | Level 3 Residential                |                     | 69434       | SF   | M.020-2020   |                 |                 |      |              | SF        |                 | 0              | 0                  |
| 14  | Level 4 Residential                |                     | 74816       | SF   | M.020-2020   |                 |                 |      |              | SF        |                 | 0              | 0                  |
| 15  | Level 5 Residential                |                     | 74816       | SF   | M.020-2020   |                 |                 |      |              | SF        |                 | 0              | 0                  |
| 16  | Level 6 Residential                |                     | 74816       | SF   | M.020-2020   |                 |                 |      |              | SF        |                 | 0              | 0                  |
| 17  | Level 7 Residential                |                     | 74816       | SF   | M.020-2020   |                 |                 |      |              | SF        |                 | 0              | 0                  |
| 18  |                                    |                     |             |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 19  | Roof Drains                        |                     |             |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 20  | Roof Drain                         |                     | 73701       | SF   |              |                 |                 |      |              | SF        | 0.29            | 0.3625         | 26716.6125         |
| 21  |                                    |                     |             |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 22  |                                    |                     |             |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 23  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 24  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 25  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 26  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 27  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 28  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 29  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 30  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 31  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 32  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 33  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 34  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 35  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 36  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 37  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 38  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 39  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 40  |                                    |                     |             |      |              |                 |                 |      |              |           |                 |                | 0                  |

|     |                     |          |      |              |                 |              |      |              |           |                 |                | 3862469.924        |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [12] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |

|     |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 12560056.68        |
|-----|---------------------------------------------|---------------------|----------|------------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Item Description                            | Self-<br>Performed? | Quantity | Unit       | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [13] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
|     |                                             |                     |          |            |              |                 |                 |      |              |           |                 | 0              |                    |
| -   | Energy Supply for residential area          | No                  |          | S.F. Floor | M.020-3010   |                 |                 |      |              |           |                 | 0              | 0                  |
| 2   | L2 Res                                      |                     | 24914    | SF/floor   |              |                 |                 |      |              |           | 8.42            | 10.525         | 262219.85          |
| 3   | L3 Res                                      |                     | 69434    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 837547.625         |
| 4   | L4 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 8.42            | 10.525         | 787438.4           |
| 5   | L5 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 8.42            | 10.525         | 787438.4           |
| 6   | L6 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 8.42            | 10.525         | 787438.4           |
| 7   | L7 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 8.42            | 10.525         | 787438.4           |
| 8   |                                             |                     |          |            |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 9   | <b>Cooling Generating Systems for resid</b> |                     |          |            | M.020-3030   |                 |                 |      |              |           |                 | 0              | 0                  |
| 10  | L2 Res                                      |                     | 24914    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 300525.125         |
| 11  | L3 Res                                      |                     | 69434    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 837547.625         |
| 12  | L4 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 902468             |
| 13  | L5 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 902468             |
| 14  | L6 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 902468             |
| 15  | L7 Res                                      |                     | 74816    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 902468             |
| 16  |                                             |                     |          |            |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 17  | Energy Supply for garage                    |                     |          |            | M.020-3010   |                 |                 |      |              |           |                 | 0              | 0                  |
| 18  | Level 1                                     |                     | 66405    |            |              |                 |                 |      |              |           | 8.42            | 10.525         | 698912.625         |
| 19  | Level 2                                     |                     | 66405    |            |              |                 |                 |      |              |           | 8.42            | 10.525         | 698912.625         |
| 20  |                                             |                     |          |            |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 21  | Cooling for garage                          |                     |          |            | M.020-3030   |                 |                 |      |              |           |                 | 0              | 0                  |
| 22  | Level 1                                     |                     | 66405    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 801010.3125        |
| 23  | Level 2                                     |                     | 66405    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 801010.3125        |
| 24  |                                             |                     |          |            |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 25  | Energy supply for offices                   |                     |          |            | M.020-3010   |                 |                 |      |              |           |                 | 0              | 0                  |
| 26  | Level 1 Mixed Use                           |                     | 24914    |            |              |                 |                 |      |              |           | 8.42            | 10.525         | 262219.85          |
| 27  |                                             |                     |          |            |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 28  | Cooling supply for offices                  |                     |          |            | M.020-3030   |                 |                 |      |              |           |                 | 0              | 0                  |
| 29  | Level 1 Mixed Use                           |                     | 24914    |            |              |                 |                 |      |              |           | 9.65            | 12.0625        | 300525.125         |
| 30  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 31  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 32  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 33  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 34  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 35  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 36  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 37  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 38  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |
| 39  |                                             |                     |          |            |              |                 |                 |      |              |           |                 |                | 0                  |

|                                           |                     |          |      |              |                 |              |      |              |           |                 |                | 12560056.68        |
|-------------------------------------------|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|-----------------|----------------|--------------------|
|                                           | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [13] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 40                                        |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 41                                        |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 42                                        |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 43                                        |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 44                                        |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 45 Cooling Generating Systems for residen |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 46 Energy Supply for garage               |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 47 Cooling for garage                     |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 48 Energy supply for offices              |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 49 Cooling supply for offices             |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 50                                        |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |

|     |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 5550701.075        |
|-----|--------------------------------|-------------------|----------|------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Item Description Pe            | elf-<br>erformed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [14] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1   | Electrical Service Distributio |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 2   | Level 1 Mixed Use              |                   | 24914    |      |              |                 | 81              |      |              |           | 2.82            | 3.525          | 87821.85           |
| 3   | L2 Res                         |                   | 24914    |      |              |                 | 81              |      |              |           | 2.82            | 3.525          | 87821.85           |
| 4   | L3 Res                         |                   | 69434    |      |              |                 | 81              |      |              |           | 2.82            | 3.525          | 244754.85          |
| 5   | L4 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 2.82            | 3.525          | 263726.4           |
| 6   | L5 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 2.82            | 3.525          | 263726.4           |
| 7   | L6 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 2.82            | 3.525          | 263726.4           |
| 8   | L7 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 2.82            | 3.525          | 263726.4           |
| 9   |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 10  | Lighting/Branch Wiring         |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 11  | Level 1 Mixed Use              |                   | 24914    |      |              |                 | 81              |      |              |           | 7.79            | 9.7375         | 242600.075         |
| 12  | L2 Res                         |                   | 24914    |      |              |                 | 81              |      |              |           | 7.79            | 9.7375         | 242600.075         |
| 13  | L3 Res                         |                   | 69434    |      |              |                 | 81              |      |              |           | 7.79            | 9.7375         | 676113.575         |
| 14  | L4 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 7.79            | 9.7375         | 728520.8           |
| 15  | L5 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 7.79            | 9.7375         | 728520.8           |
| 16  | L6 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 7.79            | 9.7375         | 728520.8           |
| 17  | L7 Res                         |                   | 74816    |      |              |                 | 81              |      |              |           | 7.79            | 9.7375         | 728520.8           |
| 18  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 19  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 20  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 21  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 22  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 23  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 24  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 25  |                                |                   |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 26  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 27  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 28  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 29  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 30  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 31  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 32  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 33  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 34  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 35  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 36  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 37  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 38  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 39  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 40  |                                |                   |          |      |              |                 |                 |      |              |           |                 |                | 0                  |

|     |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 5550701.075        |
|-----|------------------|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Item Description | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [14] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 42  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 43  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 44  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 45  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 46  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 47  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 48  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 49  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 50  |                  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |

|     |                           |                     |          |      |              |                 |                 |      |              |           |                 |                | 925988.775         |
|-----|---------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. |                           | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [15] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1   | Communications and Securi |                     |          |      |              |                 |                 |      |              |           | 1.77            | 2.2125         | 0                  |
| 2   | 2 Level 1 Mixed Use       |                     | 24914    |      |              |                 | 81              |      |              |           | 1.77            | 2.2125         | 55122.225          |
| 3   | B L2 Res                  |                     | 24914    |      |              |                 |                 |      |              |           | 1.77            | 2.2125         | 55122.225          |
| 2   | L3 Res                    |                     | 69434    |      |              |                 |                 |      |              |           | 1.77            | 2.2125         | 153622.725         |
| 5   | 5 L4 Res                  |                     | 74816    |      |              |                 |                 |      |              |           | 1.77            | 2.2125         | 165530.4           |
| 6   | 6 L5 Res                  |                     | 74816    |      |              |                 |                 |      |              |           | 1.77            | 2.2125         | 165530.4           |
| 7   | L6 Res                    |                     | 74816    |      |              |                 |                 |      |              |           | 1.77            | 2.2125         | 165530.4           |
| 8   | B L7 Res                  |                     | 74816    |      |              |                 |                 |      |              |           | 1.77            | 2.2125         | 165530.4           |
| g   | )                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 10  | )                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 11  |                           |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 12  | 2                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 13  | 3                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 14  | L .                       |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 15  | 5                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 16  | 3                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 17  | 7                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 18  | 3                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 19  | )                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 20  |                           |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 21  |                           |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 22  | 2                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 23  | 3                         |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 24  | ł                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 25  | 5                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 26  | 3                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 27  | 7                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 28  | 3                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 29  | )                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 30  | )                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 31  |                           |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 32  | 2                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 33  | 3                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 34  | ł                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 35  | 5                         |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 36  | 3                         |                     |          |      |              |                 |                 | 1    |              |           |                 |                | 0                  |
| 37  |                           |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 38  | 3                         |                     |          |      |              |                 |                 | 1    |              |           |                 |                | 0                  |
| 39  |                           |                     |          |      |              |                 |                 | 1    |              |           |                 |                | 0                  |
| 40  |                           |                     |          |      |              |                 |                 | 1    |              |           |                 |                | 0                  |

|     |                     |          |      |              |                 |              |      |              |           |                 |                | 925988.775         |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [15] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |

|     |                               |                     |          |      |              |                 |              |      |              |           |                                | 404215.55          |
|-----|-------------------------------|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|--------------------------------|--------------------|
| No. | Item Description              | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [16] | Total Bare Cost Total Incl O&P | Total Item<br>Cost |
|     | Building Excavation and Backf |                     | 99194    |      | A2010.6940   | 2019            |              |      |              |           | 3.26 4.075                     |                    |
| 2   |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 3   |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 4   |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 5   | 5                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 6   |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 7   | 7                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 8   | 3                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| g   | )                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 10  | )                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 11  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 12  | 2                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 13  | 3                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 14  | ł                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 15  | 5                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 16  | 3                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 17  | 7                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 18  | 3                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 19  | )                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 20  | )                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 21  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 22  | 2                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 23  | 3                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 24  | ł                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 25  | 5                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 26  | 3                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 27  | 7                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 28  | 3                             |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 29  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 30  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 31  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 32  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 33  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 34  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 35  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 36  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 37  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 38  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 39  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |
| 40  |                               |                     |          |      |              |                 |              |      |              |           |                                | 0                  |

|     |                     |          |      |              |                 |              |      |              |           |                 |                | 404215.55          |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [16] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |

|          |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 1095145.59         |
|----------|------------------------|---------------------|----------|------|--------------|-----------------|-----------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No.      | Item Description       | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans<br>page | Crew | Daily Output | Unit [17] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 1        | Bioretention           |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 2        | Biorentention Package  |                     | 1        |      |              |                 |                 |      |              |           | 78855.84        | 91645.59       | 91645.59           |
| 3        | 3                      |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 4        |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 5        | Pavement (36000 SF)    |                     | 2        | SF   | G.2040-1104  |                 |                 |      |              |           | 239000          | 298750         | 597500             |
| 6        | Sidewalks (36000 SF)   |                     | 2        | SF   | G.2040-1108  |                 |                 |      |              |           | 23800           | 29750          | 59500              |
| 7        | Lighting (36000 SF)    |                     | 2        | SF   | G.2040-1110  |                 |                 |      |              |           | 55800           | 69750          | 139500             |
|          | Landscaping (36000 SF) |                     | 2        | SF   | G.2040-1112  |                 |                 |      |              |           | 82800           | 103500         | 207000             |
| ç        |                        |                     |          |      |              |                 |                 |      |              |           |                 | 0              | 0                  |
| 10       | )                      |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 11       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 12       | 2                      |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 13       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 14       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 15       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 16       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 17       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 18       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 19       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 20       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 21       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 22       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 23       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 24       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 25       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 26       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 20       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
|          |                        |                     |          |      |              |                 |                 |      |              |           | -               |                |                    |
| 28<br>29 |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
|          |                        |                     |          |      | -            |                 |                 |      |              |           |                 |                | 0                  |
| 30       |                        |                     |          |      | -            |                 |                 |      |              |           |                 |                | 0                  |
| 31       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 32       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 33       |                        |                     |          |      | _            |                 |                 |      |              |           |                 |                | 0                  |
| 34       |                        |                     |          |      | _            |                 |                 |      |              |           |                 |                | 0                  |
| 35       |                        |                     |          |      | _            |                 |                 |      |              |           |                 |                | 0                  |
| 36       |                        |                     |          |      | -            |                 |                 |      |              |           |                 |                | 0                  |
| 37       |                        |                     |          |      | _            |                 |                 |      |              |           |                 |                | 0                  |
| 38       |                        |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |
| 39       |                        |                     |          |      | _            |                 |                 |      |              |           |                 |                | 0                  |
| 40       | )                      |                     |          |      |              |                 |                 |      |              |           |                 |                | 0                  |

|     |                     |          |      |              |                 |              |      |              |           |                 |                | 1095145.59         |
|-----|---------------------|----------|------|--------------|-----------------|--------------|------|--------------|-----------|-----------------|----------------|--------------------|
| No. | Self-<br>Performed? | Quantity | Unit | RSMeans Code | RSMeans<br>Year | RSMeans page | Crew | Daily Output | Unit [17] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |
| 41  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 42  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 43  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 44  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 45  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 46  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 47  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 48  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 49  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |
| 50  |                     |          |      |              |                 |              |      |              |           |                 |                | 0                  |

|     |                                |                     |               |                  |                 |                      |              |           |                 |                | 93709.955          |       |
|-----|--------------------------------|---------------------|---------------|------------------|-----------------|----------------------|--------------|-----------|-----------------|----------------|--------------------|-------|
| No. | Item Description               | Self-<br>Performed? | Quantity Unit | RSMeans Code     | RSMeans<br>Year | RSMeans<br>page Crew | Daily Output | Unit [18] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |       |
| 1   | Utility Connection Identificat |                     | Each          | 33-05-97.05      |                 | 677 B-14             |              | Each      | 5445            | 6825           | 0                  |       |
| 2   | 2 Water Utility                |                     | 1             | 33-05-97.05-0020 |                 |                      |              |           | 5445            | 6825           | 6825               |       |
| 3   | Sanitary Utility               |                     | 1             | 33-05-97.05      |                 |                      |              |           | 5445            | 6825           | 6825               |       |
| 4   | Stormwater Utility             |                     | 1             | 33-05-97.05      |                 |                      |              |           | 5445            | 6825           | 6825               |       |
| 5   | Gas Utility                    |                     | 1             | 33-05-97.05      |                 |                      |              |           | 5445            | 6825           | 6825               |       |
| 6   | Telecommunication              |                     | 1             | 33-05-97.05-0030 |                 |                      |              |           |                 |                | 0                  |       |
| 7   | ,                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 8   | Potable Water Main Piping 14"  |                     | 839 LF        | 33-14-13.25-3010 |                 | 679 B-20A            | 213          | LF        | 21.3            | 26.5           | 22233.5            |       |
|     | Hydrant Lateral 8"             |                     | 187 LF        | 33-14-13.15-2060 |                 | 678 B-21A            | 133.33       | LF        | 71.59           | 84.5           | 15801.5            |       |
|     | Hydrant Lateral 4"             |                     | 52 LF         | 33-14-13.25-2160 |                 | 679 B-20             | 430          | LF        | 4.18            | 5.65           | 293.8              |       |
| 9   | Sanitary Sewage Piping 8"      |                     | 364 LF        | 33-31-11-2080    |                 | 682 B-21             | 335          | LF        | 21.19           | 25.5           | 9282               |       |
| 10  | Stormwater Gravity Piping 8"   |                     | 956.7 LF      | 33-42-11.40-2040 | `               | 684 B-14             | 330          | LF        | 15.52           | 19.65          | 18799.155          | 148   |
| 11  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 14.3  |
| 12  | )                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 155.5 |
| 13  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 17.7  |
| 14  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 8.3   |
| 15  | <b>;</b>                       |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 132.5 |
| 16  | •                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 129.5 |
| 17  | ,                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 14.8  |
| 18  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 124.7 |
| 19  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 127.2 |
| 20  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 40    |
| 21  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 13.8  |
| 22  | )                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 14.8  |
| 23  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  | 15.6  |
| 24  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 25  | ;                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 26  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 27  | ,                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 28  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 29  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 30  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 31  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 32  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 33  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 34  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 35  | ;                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 36  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 37  | ,                              |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |
| 38  |                                |                     |               |                  |                 |                      |              |           |                 |                | 0                  |       |

|     |                     |          |      |  |              |      |              |           |                 |                | 93709.955          |  |
|-----|---------------------|----------|------|--|--------------|------|--------------|-----------|-----------------|----------------|--------------------|--|
| No. | Self-<br>Performed? | Quantity | Unit |  | RSMeans page | Crew | Daily Output | Unit [18] | Total Bare Cost | Total Incl O&P | Total Item<br>Cost |  |
| 39  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 40  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 41  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 42  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 43  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 44  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 45  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 46  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 47  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 48  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 49  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |
| 50  |                     |          |      |  |              |      |              |           |                 |                | 0                  |  |

[1] Adjusting for location and inflation

[2] Make sure this unit matches your quantity take off unit [3] Make sure this unit matches your quantity take off unit [4] Make sure this unit matches your quantity take off unit [5] Make sure this unit matches your quantity take off unit [6] Make sure this unit matches your quantity take off unit [7] Make sure this unit matches your quantity take off unit [8] Make sure this unit matches your quantity take off unit [9] Make sure this unit matches your quantity take off unit [10] Make sure this unit matches your quantity take off unit [11] Make sure this unit matches your quantity take off unit [12] Make sure this unit matches your quantity take off unit [13] Make sure this unit matches your quantity take off unit [14] Make sure this unit matches your quantity take off unit [15] Make sure this unit matches your quantity take off unit [16] Make sure this unit matches your quantity take off unit [17] Make sure this unit matches your quantity take off unit [18] Make sure this unit matches your quantity take off unit

Thursday, April 23, 2020 3:43 PM



 $24''B' = \pi(12)^2$ .  $\pi r^2 \times L = \pi(12)^2$ .  $2' \times 27'^2 = 54f^2/pr com$ 73 total columns 54fr/ wumn

Link to Synchro Pro Animation

https://drive.google.com/file/d/1F3Gc96dHH3IYk9YWuuKRWI8Lg-j LWda4/view?usp=sharing