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ABSTRACT 

In this investigation, the main interest was studying low porosity auxetic metamaterials 

generated out of linearly elastic materials, meaning bodies made out of linearly elastic 

materials (e.g., metals) that, due to alternating patterns of elongated voids perforated on 

them, exhibit a negative effective Poisson ratio (property commonly called auxeticity). 

This kind of metamaterials, often obtained by a pattern of elongated ellipsis, generally face 

the issue of presenting high stress concentration when loaded. The objective of this study 

is to solve this problem by adding rounded shapes (stop-holes) at the end of elongated 

grooves, as a replacement for the previously mentioned elongated elliptical voids. 

Particularly, the “superformula”, a generalized ellipse equation in polar coordinates, was 

utilized in this investigation as a way of parametrization to determine the shapes to be 

added in a flexible through way by the alteration of 6 parameters. For the process of 

choosing adequate parameters to ensure optimum stress concentration, firstly, a careful 

selection from a catalog of shapes took place. Then, static FEA simulations of a totally 

parametric Representative Volume Element model that included the selected shapes were 

executed. To do this computer scripts were developed for interconnecting the operation of 

multiple engineering software tools. Finally, the effect that the size of the stop-holes, thus 

the porosity, had over the stress induced in the material and its auxetic deformation 

response due to the new geometry of the pattern of voids was evaluated. The investigation 

successfully found shapes that produced a significant stress reduction, by reducing the 

stress concentration, and in the process found several corollaries and observations of the 

behavior of the metamaterial depending on the shape and size of the stop-holes.
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I. Introduction 

Poisson’s ratio is defined as the negative ratio between the transverse and axial strain in a 

material under load, considering an extensional strain as positive and a compressive strain 

as negative [1]. Typical engineering materials have a positive Poisson’s ratio value 

meaning that, if an axial extensional strain is applied, the transverse directions show a 

shrinking effect. However, a negative effective Poisson’s ratio may exist according to 

thermodynamics principles applied to strain-energy theory (in three dimensions: −1 ≤ 𝜈 ≤

0.5), and it has been observed in several materials in nature (such as cubic metal lattices 

[2] [3], zeolites [4] and ferroelectric materials under electrical loads [5]). Materials that 

present this behavior are called “auxetics”. 

From the very early stages of research in the field of auxetic materials and their properties, 

it has been known that geometry, at the micro and macro levels, plays an important role in 

controlling the response of the material. One early example of this is the work of Lakes 

[6], utilizing reentrant cell geometries in foams to obtain negative effective Poisson’s 

ratios. After that, the study of auxeticity turned also into the study of metamaterials, bodies 

which effective properties are controlled by the properties of its constituent bulk material, 

but also, by their macrostruct, ure. An early example of this are the analytical efforts of 

Wei [7] [8] [9], that pointed out the possibility of generating auxeticity in elastic composite 

materials by introducing ellipsoidal inclusions that induce this behavior to linear elastic 

materials. Also, the more recent observations of Bertoldi [10] and Overvelde [11], in their 

experiments introducing various porous shapes to a elastomeric matrix, identified how the 
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shape controlled the effective Poisson’s ratio and other properties allowing, in some cases, 

auxetic behavior.  

Recent interest in periodic cellular structures created via planar tessellation has increased 

[10] [11] given the potential properties and applications they have. In particular the ones 

that lead to auxetic behavior, of interest for this investigation,  show good potential for use 

in improved acoustics [12], improved penetration properties [13], energy absorption [14], 

among others [15]. This also awakened a recent interest in applying this type of porous 

structure to metals and other linearly elastic materials, like rubber, to control their effective 

properties over the bulk properties of the material. Some of the recent experimental, 

numerical and analytical efforts in this field are diamond and star shaped voids introduced 

to sheets of isotropic materials [16] and tessellated skeletal structures 3D printed in Ti-6Al-

4V [17].  

 

Figure 1 Periodic geometry used as a baseline comparison point. Inset shows a representative volume element, or base 

cell. 
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Taylor, et al., [18] showed a structured path to design porous periodic 2D structures with 

specific Poisson’s ratios by introducing a low porosity pattern of alternatingly oriented 

elliptical voids, and the correlation of high aspect (b/a) ratio voids with auxetic behavior. 

Even though several different geometries have been introduced as periodic voids to induce 

auxetic behavior in metallic materials, most of them have in common a crack-like shape 

[16] [17] [19] producing high stress concentrations, as can be seen in Figure 1, a geometry 

derived from Taylor’s work [18]. These kind of geometries, however, are known to have 

high or even unbounded stress concentrations (in the case of cracks) as it can be seen in 

Figure 2 composed from figures extracted from a commonly used elasticity textbook [20] 

  

Figure 2 Analytical stress concentration of an infinite plate with an elliptical hole (left: representation of the 

geometrical and loading condition; right: analytical stress concentration curve as a function of the aspect 

ratio of the elliptical void) ( reproduced without permission) [20] 

 

Given the potential benefits that auxetic structures have, there is a rising interest in 

addressing the problem of high stress concentrations while maintaining auxeticity. 

Different approaches to a solution have been attempted, e.g., by cleverly choosing the 

shape of the void [21] or a stress reducing geometry to be added at the ends of the void 

[22]. Also, it has been shown how these features and the auxetic behavior might affect the 



4 

 

fatigue life of the part, i.e., through numerically showing how the shapes selected for 

inducing this behavior increased or decreased the likelihood of a crack to propagate from 

the edges of it [21]. This is directly related to the stress concentration associated with the 

geometry of the voids. Improved void shapes might lead to improved auxetic materials 

with better fatigue behavior. 

The goal of this investigation is to find, in a rigorous way, improved auxetic void 

geometries with reduced stress concentration, by adding rounded shapes at the ends of 

elongated crack-like shapes. The final improved geometry must also keep or improve the 

auxetic behavior that these elongated features produce in metallic materials when 

introduced in a low porosity alternating periodic pattern. Achieving this goal is expected 

to improve the fatigue behavior of auxetic structures induced by low porosity patterns of 

voids. 

Adding a rounded shape to the ends of crack-like geometries is inspired by a common 

remedy to arrest crack propagation: drilling circular “stop” holes at the end of the crack, 

increasing the radius of the tip of the void. Several attempts to identify better geometries 

for slowing down crack propagation have been studied [23] [24], showing that it is possible 

to considerably decrease the stress at the tip of crack-like geometries. An improvement 

over previous research on reduction of stress concentration might be found in considering 

as many stop-hole shapes as possible. 

The so-called “super-formula”, a generalized equation derived from the equation of the 

ellipse and super-ellipse equations that describes in polar coordinates a large number of 
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shapes controlled by a total of 6 constants [25], was selected in this investigation as the 

way to parametrize the geometries to add at the ends of the voids. The benefit that this 

equation offered to the goal of this investigation is its versatility at generating shapes, 

ranging from quasi-straight shapes to rounded organic shapes, including circles.  

To achieve the goal of this investigation, finite element simulations were performed on 

multiple periodic geometries to compare their behavior in terms of stress and average 

Poisson’s ratio under uniaxial loading. The periodic geometries to be considered in this 

comparison were based on previous periodic geometries with a proven effect of inducing 

auxetic behavior (see Figure 1) where the elliptical voids were replaced with straight slots 

with rounded shapes added at the ends of the slots that are the result of the superformula 

for a specific set of parameters (see Figure 3). Different geometric constraints and variables 

were considered to set uniform conditions and ensure a fair comparison of the different 

geometries and determine which of them present the best improvement. Several steps of 

screening and filtering were required to narrow down the infinite number of shapes that 

can be obtained from the superformula by altering the parameters. Finally, the chosen 

geometry is expected to present an improved behavior independently of the size of the 

shape added to the end of the slot, compared to the other options analyzed at similar 

conditions, at least for the geometrical conditions stablished in terms of the dimensions of 

the slot. 
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Figure 3 Representative periodic cell of slotted shape with circular stop-holes 

In Chapter II, the details of the procedure followed to screen and choose the most adequate 

stop-hole geometry by looking at the different possibilities that the super formula can offer, 

controlled by its 6 parameters are discussed. This will include, but is not limited to, a brief 

explanation of the superformula as a parametrization tool for generating stop-hole shapes, 

the description and delimitation of the void shape and details on the procedure followed to 

use a parametric finite element model to simulate the behavior of the selected void shapes 

and compare them. Next, in Chapter III, I will present the results obtained from the 

procedure described previously, focusing on the mesh refinement study performed to 

ensure the quality of the results, shape comparisons at specific conditions (i.e., the porosity 

the compounded void represents and geometric delimitations) and a broader study of the 

behavior of the shapes (i.e., auxeticity and peak stress) against the variation of the 

geometric conditions (i.e., porosity). Finally, in Chapter IV, the most important findings 

obtained from the procedure followed are listed and discurssed, as well as, suggestions that 

this work may leave for future research work in this field. 
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II. Procedures 

2.1 Geometrical parametrization: Superformula 

To accomplish the objective of this research, finding improved geometries to induce 

auxetic behavior in metallic materials, the approach selected was to use slot voids, similar 

in behavior to an ellipse but easier to manufacture, in a perpendicular alternating pattern, 

and add at the tips rounded stop-hole geometries that may reduce the stress. As mentioned 

in Chapter I, a similar procedure is followed to slow down crack growth by adding circular 

holes at the tip of the crack, called stop-holes; however, the main motivation of using only 

circular stop-holes is that in-site manufacturing for aeronautics is limited to certain 

operations most times. In this investigation the purpose is to find better geometries than 

the circle for stress reduction knowing already how flexible the manufacturing process 

needs to be to generate auxetic structures. Therefore, a way to parametrize the geometries 

to add at the tips was required. The main requirement of the stop-hole geometry is that it 

must be capable of reducing the stress concentration at the tips, this is directly related to 

having a large curvature radius in the orientation of the stress concentration. A circle and 

other rounded geometries may accomplish this task; however, as their curvature radius 

increases, the behavior of the overall structure may be affected negatively. Some of the 

foreseen possible drawbacks that adding these rounded geometries may produce are: 

causing even higher stresses than the ones already present in the structures with elliptical 

voids, weakening the thinnest sections of the structure by reducing the distance between 

the voids or reducing the auxetic response achieved by introducing the slot pattern in the 

first place. Therefore, achieving this improved behavior while keeping overall similar 
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geometric conditions was also a requirement. Given this objective and limitations, a 

generalization of an ellipse called the superformula [25] was selected as a way to 

parametrize the possible stop-hole geometries due to its capability to generate rounded 

shapes, like the circle, but also limitless geometries that may comply with these conditions. 

The superformula is given in polar coordinates by the equation [25]: 

𝑟(𝜃) = (|
cos (

𝑚 𝜃
4 )

𝑎
|

𝑛2

+ |
sin (

𝑚 𝜃
4 )

𝑏
|

𝑛3

)

− 
1

𝑛1

 

where 𝜃 is the angle and 𝑎, 𝑏, 𝑚, 𝑛1, 𝑛2 𝑎𝑛𝑑 𝑛3 are parameters to control the geometry to 

be generated. 

2.1.1 Shape selection and exploration procedure 

Due to the limitation of trying to maintain uniformity in geometry and behavior, some 

restrictions in the dimensions of the overall geometry were enforced. We restrict the slot 

width to 0.9 mm (dimension considered due to manufacturing limitations and the condition 

of keeping high equivalent aspect ratios in order to maintain the auxetic behavior [18]) and 

the overall length of 9.9 mm (keeping an equivalent aspect ratio of 11 and a constant 

ligament distance). These dimensions are illustrated in Figure 4. 

 (1) 
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Figure 4 General periodic cell (RVE) geometry without stop-holes and enforced dimensions 

Also, previous investigations in the field of introducing auxetic behavior through 

tessellation of voids have shown the impact that porosity has on the behavior of the body 

(e.g., auxeticity) [18]. In this investigation, as in previous ones, the porosity of the 

Representative Volume Element (RVE) is defined as seen in equation (2). It can be 

described as the ratio between the area of the RVE considering the voids and the area of 

RVE without them (i.e. the area of the matrix containing the voids). Due to the fact that 

porosity affects the behavior of the RVE, and to be able to compare the results of this 

investigation to the results of previous investigations, it has been introduced as a main 

variable of comparison. 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝐴𝑣𝑜𝑖𝑑𝑠

𝐴𝑚𝑎𝑡𝑟𝑖𝑥
 

Porosity is a useful measure considering the intention of adding at the tips of the single slot 

a geometry generated by the superformula (see (1)) where changes in the exponents 

(2) 
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(𝑛1, 𝑛2 𝑎𝑛𝑑 𝑛3) causes significant changes in the topology of the result, but also changes 

in the size and superficial area of the geometry generated. This means that a desired change 

in the stop-hole geometry, i.e., to optimize the curvature radius of a certain region, may 

also cause significant changes in the area of the void (𝐴𝑣𝑜𝑖𝑑), changes that may result in 

undesirable changes in the behavior of the RVE given that the area of the matrix without 

voids (𝐴𝑚𝑎𝑡𝑟𝑖𝑥) is already fixed. Therefore, the porosity of the RVE was used in this 

investigation as a way to control and define the scale factor that must be applied to the 

resulting geometry of the superformula in each comparison case. Considering the already 

mentioned constraints to the slot geometry, the porosity of the RVE is, in general, 

controlled by the superficial area of the feature to be added at the tips that is directly related 

to the square of the scale factor applied to the resulting geometry of the superformula. 

2.1.2 General shape comparison 

After defining the framework of comparison for the different proposed geometries, a first 

selection of parametric stop-hole shapes was selected for this exploration. Knowing the 

capabilities of the superformula for yielding an indefinite number of geometries, by 

changing any of its 6 parameters, a selection of 25 different geometries were chosen to 

better understand the behavior of the superformula and its parameters. For that reason, the 

selected sets of parameters display several unique shapes that can be achieved by the 

superformula. The 25 sets of parameters and their corresponding plotted geometries are 

shown in Figure 5. 

After carefully inspecting the 25 shapes, it was clear the capability of the superformula to 

generate unique shapes, but also shapes that are similar with each other in their 
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characteristics (e.g., number of inflexions and curvature). The objective was to reduce the 

field of the search from the 25 obtained shapes to 10, so that the comparison is more 

manageable. To do it in this first screening of geometries, the intention was to select 

geometries as unique as possible while eliminating those that may represent unwanted 

behavior, either by increasing the stress or increasing the Poisson’s ratio, and those that 

may be unfeasible from a manufacturing point of view. By applying the mentioned logic, 

the 10 highlighted shapes in Figure 5 were selected (for reference, the 10 selected shapes 

as part of the RVE geometry are shown in Figure 6). Keeping in mind that the remaining 

steps of analysis are applicable to any parametric shape, reducing the search space is just a 

way to make the analysis more tractable. 
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Figure 5 Geometries obtained from the 25 sets of parameters. Boxes highlight the 10 selected shapes 
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Figure 6 RVE models of the 10 selected shapes used as stop-holes at a porosity of 10% (Insets show superformula 

shapes added at the slot ends) 
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2.2 Modeling and simulation 

A finite element model was used as a numerical tool to determine the behavior of the 

different geometries under uniaxial loading. The two magnitudes that were used to compare 

the behavior of each of the shapes were the effective Poisson’s ratio of the structure and 

the peak normal stress in the vertical direction; as they represent the two main interests of 

the investigation, reducing the stress concentration and maintaining or improving the 

auxetic properties of the meta-material. In this case, the package used was 

ABAQUS/Standard, due to its flexibility, capabilities and the familiarity of the author with 

it. However, the finite element method has some limitations when it comes to these kinds 

of periodic structures of geometries with critically sharp geometrical changes like thin 

voids, due to FEM dependency on uniform and smooth variable fields to maintain its 

approximation accuracy. Therefore, in order to have appropriate and accurate results, it 

requires a fine discretization of the model. However, this may result in unfeasible 

computational times due to the increase in the required numeric operations. This limitation 

was alleviated in this investigation by using a Representative Volume Element with 

periodic boundary conditions and carefully reviewing the mesh parameters of the model, 

both procedures are discussed in this document.  

As mentioned, a Representative Volume Element was used to approximate the behavior 

that the introduction of the void pattern in the material would cause. These kind of models 

have been implemented to understand the response of materials with periodic patterns like 

these in previous work [18] [21] [22]. The RVE simulation models incorporate the 

assumption of an infinite body that can be represented by the same partial geometry, known 



15 

 

as the cell, being reproduced indefinitely in every direction. This assumption can be 

considered as a good approximation of real conditions when the features, in this case voids, 

and its pattern are small compared to the size of the body. In this case, for example, being 

a 2-dimensional model, it refers to reproducing the same geometry indefinitely in the x and 

y directions.  

In practice for RVE models, where only one cell is modeled, it is required to set in place 

constraints for the boundary of the model known as periodic boundary conditions. To 

ensure the periodicity of the model and its behaviors, two main conditions must be imposed 

[26]. The first is that the displacement at parallel boundaries must be equal in magnitude 

and direction, this limitation ensures the continuity in the displacement field meaning that 

gaps or overlaps will not form at the boundaries between the RVEs forming the body after 

the deformation takes place. The second condition is that the tractions at parallel 

boundaries must be equal in magnitude but opposite in direction, these conditions impose 

equilibrium at the RVE in analysis and ensures action-reaction at the boundary between 

one RVE and the next one. 

In order to implement these conditions, the displacement field inside of the RVE (𝒖(𝒙)) can 

be modeled as uniform average strain tensor (�̅�), that represents the average condition of 

the whole body, times the position vector (𝒙) inside the RVE and, added to that, an 

unknown local deviation from average displacement distribution (𝒖(𝒙)
∗ ) that depends on the 

geometrical and material properties of the RVE. This is described by [27]: 
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𝒖(𝒙) = �̅� 𝒙 +  𝒖(𝒙)
∗  

Then, to understand what happens in the boundary of the RVE the following equations can 

be formulated for parallel opposite boundaries. 

𝒖(𝒙)
(+𝒋)

= �̅� 𝒙(+𝒋)  +  𝒖(𝒙)
∗(+𝒋)

    &     𝒖(𝒙)
(−𝒋)

= �̅� 𝒙(−𝒋)  +  𝒖(𝒙)
∗(−𝒋)

 

Where the superscript (+j) means the j boundary at one side of the RVE, while (-j) 

represents that boundary’s counterpart. Also, consider that in this relation the unknown 

displacement distribution in both boundaries must be equal to each other to maintain the 

first condition of periodic boundary conditions. 

 

Figure 7 Location of the periodic boundary conditions for a generic RVE of an auxetic structure 

Therefore, to relate the displacement in each of the parallel boundaries the displacement 

between them can be stated as follows: 

∆𝒖(𝒙) = �̅� ∆𝒙  

(3) 

 

(4) 

) 

 

(5) 

) 

) 
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This relation is independent from the unknown displacement distribution that depends on 

the geometry and the material properties, allowing a direct relation between the 

displacements of each boundary only as a function of the average strain tensor. This can 

be expressed as if external conditions applied over the body can’t be introduced in the 

model through the boundaries, so the main external condition applied in this model is the 

average strain (𝜀)̅. 

𝜀̅ =   [
𝜀𝑥𝑥 𝜀𝑥𝑦

𝜀𝑦𝑥 𝜀𝑦𝑦
] 

In the particular case of this investigation, this was set to be a simple compressive strain in 

the vertical direction (represented by 𝜀𝑦𝑦 in (6)), this means that on average the shear strain 

was restrained to be zero (represented by 𝜀𝑥𝑦 & 𝜀𝑦𝑥 in (6)); however, the normal strain in 

the horizontal direction in the average strain tensor of the RVE was allowed to be defined 

by the response of the system in the FEA simulation (represented by 𝜀𝑥𝑥 in (6)). This 

allowed an equivalent external condition for all the simulations, giving a framework for 

comparison between the different geometries to be suggested. 

To implement periodic boundary conditions into the ABAQUS/Standard simulation model 

in the form presented in equation (5), it is required to relate in a discrete manner the 

displacement of each node in one parallel boundary with its counterpart in the opposite 

boundary, meaning the node that shares the same position coordinate parallel to the 

boundaries in question. This can be achieved using the ABAQUS/Standard utility of 

displacement constraint equations. However, several hundreds or even thousands of 

equations relating the displacement of paired nodes in the top and bottom boundaries 

(6) 
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respectively, as well as the right and left boundaries, are required. This may result in an 

impractical workload to approach by the GUI of ABAQUS/Standard, therefore it is 

necessary to use the python scripting capabilities that ABAQUS/Standard offers to 

automate this process. This also represents benefits from the repeatability point of view, 

since this first exploration may represent the comparison of hundreds of geometries, as will 

be explained in further detail later in this document. Further explanation of the python code 

used to execute the model in ABAQUS standard can be found in Appendix A . 

However, using the ABAQUS/Standard utility of displacement constraint equations also 

presents a different kind of limitation since, as its name implies, the utility only allows 

displacement constraints. Equation (5) also involves the average strain tensor, which 

cannot be directly modeled by this utility. Therefore, the work around used in this case is 

the creation of a set of two virtual points (Vpx and Vpy), which are out of the current RVE 

model and do not interact with it other than through the constraint equations set for the 

displacements of the nodes at the parallel boundaries. These virtual points account for set 

of displacements that are going to play the role of the components of the required strain 

tensor, this is better described by equation (7) for a 2-dimensional system. 

�̅� = [
𝑢𝑥

𝑉𝑝𝑥 𝑢𝑥
𝑉𝑝𝑦

𝑢𝑦
𝑉𝑝𝑥 𝑢𝑦

𝑉𝑝𝑦] 

Where 𝑢𝑥

𝑉𝑝𝑥
 is the displacement in the horizontal direction of the virtual point 𝑉𝑝𝑥, which 

represents the normal strain 𝜀𝑥𝑥; 𝑢𝑦

𝑉𝑝𝑥
 is the displacement in the vertical direction of the 

virtual point 𝑉𝑝𝑥, which represents the shearing strain 𝜀𝑥𝑦; similarly it occurs with the 

(7) 
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displacements 𝑢𝑥

𝑉𝑝𝑦
 and 𝑢𝑦

𝑉𝑝𝑦
 of the virtual point 𝑉𝑝𝑦, which are related to the normal and 

shearing strains 𝜀𝑥𝑥 and 𝜀𝑦𝑥 respectively. In this way, the equations constraining the 

displacement of each node for each pair of parallel boundaries can be written as shown in 

(8) & (9). 

𝑢𝑥
(+𝑛)

− 𝑢𝑥
(−𝑛)

− (𝑢𝑥
(𝑉𝑝𝑥)

∗ 𝛥𝑥 + 𝑢𝑥

(𝑣𝑝𝑦)
∗ 𝛥𝑦) = 0 

𝑢𝑦
(+𝑛)

− 𝑢𝑦
(−𝑛)

− (𝑢𝑦
(𝑉𝑝𝑥)

∗ 𝛥𝑥 + 𝑢𝑦

(𝑣𝑝𝑦)
∗ 𝛥𝑦) = 0 

From the previous discussion can be inferred also that from the information of the virtual 

points displacements the effective Poisson’s ratio of the body can be calculated. This is 

because, as mentioned, the virtual points displacements are a representation of the average 

strain tensor; therefore, the negative of the fraction of the normal vertical strain, set to be 

defined by the FEA model, and the normal horizontal strain represent the effective 

Poisson’s relation for the body. This is better represented by (10). 

𝜈𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = −
𝜀𝑦𝑦

𝜀𝑥𝑥
= −

𝑢𝑦
𝑉𝑝𝑦

𝑢𝑥
𝑉𝑝𝑥 

Some other assumptions and conditions taken to perform the simulations using the finite 

element method were properties of a linear elastic bulk material (Young’s modulus of 

200,000 MPa and Poisson’s ratio of 0.3, similar to those of common steels), and a 2-

dimensional simplification in plane stress (due to thinness) of the body (Discretized in 6 

nodes triangular elements, CPS6, with unit thickness and neither reduced integration nor 

hour-glass implementations).  

(8) 

(9) 

(10) 
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2.2.1 Software tools: MATLAB-python-ABAQUS interaction  

As discussed in Section 2.1, ABAQUS/Standard capabilities of automating, using python 

scripting to set up the model and execute the simulation, were used to implement the 

periodic boundary conditions required in for the RVE model. Also, in Section 2.1 it was 

discussed that the interest of this investigation required the generation of multiple models 

using a parametric geometry and several combinations of parameters and, then, comparing 

their behavior thru the simulations, this task may become intractable as the number of 

models to be simulated increases. In this Section, some of the details of how this series of 

models and simulations were automated is discussed, while also keeping track of their 

meaningful results to compare them in an structured way. 

Due to limitations of the python interface used by ABAQUS/Standard and lack of 

knowledge of the author in the usage of python as a programming language to process data, 

several MATLAB scripts were developed to perform different tasks that required batch 

runs of simulations, data acquisition and operation, and the generation of different plots. 

However, a piece of code to act as the interface of the interaction between the MATLAB 

based operations and python-ABAQUS simulations was required. This code was 

developed as a MATLAB function that required as input the parameters to be written in 

python-ABAQUS code, in this case the superformula parameters. Then, the output of the 

MATLAB code was the values of specific variables of the simulations, as they are the 

Porosity of the RVE, Poisson’s Ratio, maximum and minimum stresses in each direction 

near the tip of the voids and the Number of Elements.  



21 

 

The general behavior of this interaction is presented in the diagram shown in Figure 8. 

 

 

Figure 8 MATLAB-python-ABAQUS interactions and procedure diagram 
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2.2.2 Mesh refinement study 

Before running the first batch of simulations a revision of the mesh parameters used to 

perform the finite element simulations was necessary. At this point, the geometries that are 

going to be simulated are well defined; however, some of the selected shapes for the voids 

still present sensibly sharp geometries at the tips. Therefore, a refined discretization is 

required, at least in the neighborhood of these features, to increase the accuracy of the 

results to an acceptable level. Refining the mesh to ensure a good representation, not only 

of the geometry, but also of the variable fields of interest (i.e., displacement and stress), 

while also keeping the computational load as low as possible, requires making significant 

decisions on how to mesh the model. To make the best decisions possible, a rigorous mesh 

study is necessary. A typical resulting mesh of the process to be described, and which 

results are discussed in Section 3.1, is presented in Figure 9. 
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Figure 9 Typical mesh obtained by applying the mesh refinement procedure implemented. 

In regular circumstances some FEA software offer tools to determine a good meshing 

solution for the given case, ABAQUS/standard, it has a built-in adaptive mesh refinement 

tool. However, in the case of the implemented periodic boundary conditions, it was 

required to relate the displacement of each node in the boundary edges with its symmetric 

counterpart in the opposite edge of the boundary, this usually causes conflict with the 

automated mesh refinement tool given that it changes the definition of the nodes of the 

mesh at the boundaries without reconsidering the relations that this nodes must have with 

their counterparts. Due to this fact it was not used in this investigation. 

The meshing algorithm that ABAQUS/Standard uses allows the user to interact with the 

level of refinement to be obtained through different parameters, some of them, and the one 

to be used to perform this study, are the general seed size and the edge seed size. The 

general seed size refers to the distance between the starting points of the mesh to be created 
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located in all the edges of the model, while the edge seed size refers to the same distance, 

but only of the starting points of the mesh that lie in particular edges of the model chosen 

by the user. Another important definition in this mesh study is that the output variable 

considered in this revision was the normal stress in the vertical direction (S22) taken from 

an integration point close to the stress concentration region and with the highest stress 

value. In this case, the task of interest was modifying the edge seeding of the edges 

generated by the superformula function for different geometries, while the general seed 

size is kept to reasonable value determined by previous experience, to minimize the error 

in the output variable of stress. However, to determine the error in the output variable of 

stress, several procedures can be applied.  The one chosen in this investigation is explained 

in the following paragraphs. 

The normal stress in the vertical direction at the void’s tip versus number of elements were 

analyzed under the idea that the greatest source of error in the model was discretization 

error, and that other error, such as computer truncation error, was negligible or not relevant 

for the comparison. For linear behaviors, the error of the finite elements method with 

respect to the average characteristic length of the elements in the model for any field 

quantity can be represented as 𝑂(ℎ𝑝+1−𝑟) [28] where h represents the average 

characteristic length, p the degree of the highest complete polynomial in the elements and 

r the derivative order  of the field quantity in question. Considering a second order 

polynomial in the elements (due to the 6 node triangles in use) and that the field in question 

is the stress, which represents the first derivative of the displacement field (solution 

variable of the finite element code applied) the expected order of the error is 𝑂(ℎ2). 
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Therefore, when plotting the stress at a specific point in a structure against the square 

effective size of the elements in the model a linear tendency can be expected.  This 

consideration was used in this investigation to determine the error present in the FEA 

simulation. 

According with the previous explanation, it is required to assign an effective element size 

to each of the discretizations performed in the following study, but for complex geometries 

and different meshing parameters (i.e., global seed size and edge seed size) several 

approaches can be used. In this case, the average characteristic length in each of the models 

was computed using ℎ =
1

𝑁
1

𝑛⁄
 [28], where h is the characteristic length of the elements, N 

is the number of elements in the model and n refers to the number of dimensions considered 

in the model (i.e., two dimensions in this case). In particular, for this study, the number of 

elements is not evenly distributed, since the parameter used to control the mesh is only the 

edge seed size, it is expected that the error should decrease faster when the average 

characteristic length decreases due to this fact. 

Therefore, the distribution of the stress at the voids tip versus the average size of the 

elements pairs was expected to have a good fitting with a quadratic equation, allowing us 

to extrapolate the value of the stress at the tip when the average size of the elements is close 

to zero, which can be considered as the most exact result possible. Finally, the error for 

each of the average size of element executed in the simulations was computed as  

𝑒 =
𝜙𝑥−𝜙0

𝜙0
 (11) 
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where 𝑒 represents the estimated error for the current simulation, 𝜙𝑥 represents the field 

variable at the comparison location for the current simulation (i.e., the normal stress in the 

vertical direction) and 𝜙0 the extrapolated field variable at the comparison location, if 

infinitesimally small elements were used (h≈0), this allowed us to choose the error level 

that was acceptable for the comparison required in this investigation. 

However, it is relevant for some of the shapes in use to understand that the error estimation 

can only be considered good if the conditions for a linear and continuous response of the 

model are sustained. In the case of interest, the elongated voids that are being analyzed can 

be compared to a crack in the behavior of their stress field, meaning that the stress presents 

a singularity when the position approaches the void tips. This singularity breaks the 

continuity of the stress field near the crack tip and the assumption of the error behavior 

previously explained does not apply. Some of the stop-hole shapes to be added to the voids 

shapes are different enough from a crack shape to overcome this problem, other of the 

selected shapes present this singularity behavior. This is shown afterwards through the 

fitting that the quadratic assumption presents in the plots stress at the voids tip versus the 

average size of the elements. For those cases that did not show a good fitting under the 

quadratic assumption other polynomial degrees for the fitting where tried to get a better 

fitting and be able to at least estimate the error in a comparable way to the process explained 

before. 

This procedure of computing the error in the output variable was performed as a revision 

of the mesh parameters in two of the 10 selected shapes. The main criterion for choosing 

the two shapes was to choose in at least one case a promising stress reduction and one in 
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which the stress reduction was not prominent, avoiding those that obviously caused 

singularities in the model. Further information about how the revision was planned and 

executed using MATLAB code can be found at the Section 2.2.3. 

2.2.3 Software tools: MATLAB script: mesh study  

A MATLAB script was developed to perform the mesh revision explained in Section 2.2.2 

to automate the process of executing simulations of the multiple mesh parameters required 

and the different models selected. As mentioned in Section 2.2.1, a MATLAB script can 

interact with the python script through OS commands and force ABAQUS to run it, then 

the results may be interrogated  by the MATLAB script to generate plots, manage data, and 

perform operations, among other tasks; in this way, the data generated by the simulations 

was treated for its analysis. 

In general, the MATLAB script alters the edge seed size in the general python model script 

(that already applies this parameter only to the edges generated using the superformula), 

while keeping the superformula parameters as required for each of the shapes selected. 

Then, it executed the model in ABAQUS/Standard and waited for the simulation to be 

completed. After that, it compiles the relevant information, such as the displacement and 

stress reports. Finally, the MATLAB script performs some required operations, such as 

finding the average size of the elements, computing the effective Poisson’s ratio, and 

finding the highest stress near the void tips, and it saves the results for further analysis of 

the data.  
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2.2.4 Shape comparison through simulations  

After selecting the set of 10 parametric shapes, a first batch of RVE simulations was 

executed. The 10 shapes were compared at fixed porosities (10%, 12% and 14%) to 

understand the different behaviors these geometries may have. The intention of fixing the 

porosity of the models and performing simulations for several porosities was to verify the 

effect that the scale of the added stop-hole geometry may have over the behavior of the 

RVE. These conditions represented a total of 30 simulations.  

The purpose of these first set of simulations was to start looking at the stress concentration 

that the pattern of voids may present under a standard external loading and how the 

different selected shapes may affect the displacement fields. Based on this analysis, the 

field of search was reduced to 6 shapes, discarding the 4 less promising shapes. To do this, 

a set of contour plots of the stress, combined with the magnitude in the direction of the 

applied average strain, were compared to discriminate among the batch of shapes and 

establish criteria to define which ones were more promising. In this case, the criteria were 

to have the lowest magnitude of the normal stress in the vertical direction near the void tip, 

and, for those geometries that were close in stress magnitude, the level of stress 

concentration that could be recognized in the contour plots. Further information about the 

MATLAB code used to perform the batch of simulations mentioned can be found in 

Section 2.2.5. 

2.2.5 Software tools: MATLAB script: Batch simulation 

After reviewing the mesh discretization for a few geometries, the next step was to start 

comparing the results that can be achieved in terms of maximum stress reduction at the 
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voids tips and changes in the stress distributions. To do this, after choosing 10 unique 

shapes from the wide variety that the superformula can offer, a set of simulations of the 

RVE models incorporating these shapes as stop-hole geometries was prepared. However, 

arbitrarily choosing a scale for the stop-holes was considered not appropriate given the 

interest in minimizing the effect on the geometries in this first preliminary set of 

simulations. Therefore, the scale was associated with a porosity that the RVE achieved 

when the stop-hole was added to the voids, and 3 porosities were chosen to give a good 

first view of the stress reduction and stress distribution results.  

To execute the batch of 30 simulations that this combination represented, a MATLAB 

script was developed that used the superformula parameters put in an array previously 

prepared of each of the 10 stop-hole shapes and the scale corresponding to that shape and 

one of the porosities chosen. These results were evaluated in the interface function between 

MATLAB and python-ABAQUS as presented in the Section 2.2.1. As the python general 

model already was capable of performing the required file management and file saving and 

exporting, when each of the simulations was executed from the python script, the script 

saved the data that was processed.   It analyzed the afterwards, through stress contour plots, 

the maximum stress caused by the complete geometry, the effective Poisson’s ratio, and 

displacement contour plots. 

2.2.6 Total search over the scale using simulations (6 shapes) 

Finally, during this first exploration of the shapes that the superformula yields, and having 

chosen 6 promising stop-hole geometries using the previous simulations, the next step was 

to determine which one of the remaining shapes represent a better improvement for the 
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stress concentration point of view independently from the porosity. This was achieved by 

running RVE simulations for each of the 6 shapes selected, but in this case in steps along 

a range of porosities. The purpose was to generate graphs that will show the behavior of 

each of the void shapes with the added stop-hole geometry in terms of its maximum 

magnitude of the normal stress in the vertical direction and Poisson’s ratio against the 

porosity, keeping in mind that the porosity of the RVE is mainly controlled by the size of 

the added geometry. These graphs showed the limitations of the improvement that can be 

achieved with each of the added stop-holes, while also reviewing the change on the auxetic 

behavior that the stop-holes might be causing when added to the pattern. More information 

about how this study was performed can be found in the Section 2.2.7. 

2.2.7 Software tools: MATLAB script: Total search of scale for a batch of geometries.  

After the results obtained with the execution of the codes mentioned in the Section above, 

a more in-depth review of the behavior caused by the addition of these shapes was required. 

The intention was to be able to understand the dependency of variables, such as the 

maximum stress in the model in the direction of the applied average strain and the Poisson 

ratio, had with respect to the porosity that the scale of the stop-hole feature caused. To get 

that understanding several more simulations were required. 

At the beginning, a set of 20 equally distributed scales in between a range was executed. 

However, given the non-linear relationship between the scale and the porosity, the variable 

that was desired as a control variable, more simulations were required to generate enough 

resulting points to fill the graph up to a desired porosity value. For most superformula stop-

hole shapes, around 9% porosity was the minimum reachable due to the geometric 
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constraints previously established, and for most shapes in the preliminary simulations 

around 25% porosity was identified as having a more stable behavior, reducing the capacity 

of the shape to modify the behavior.  Thus, the range of porosities desired was set at 10% 

to 25%, 

To perform the previously explained batch of simulations, and similar to the case presented 

in previous sections, a MATLAB script was developed to execute the task. Before the 

execution, an array with the superformula parameters and the boundaries of the scale range 

for each of the superformula stop-hole shapes was prepared. In the beginning, the analysis 

was performed for the total 10 shapes, but then it was reduced to only 6 of them.   This 

represented around 300 simulations. For, each of the parameter sets the simulations were 

performed by using the MATLAB function presented at Section 2.2.1 to execute the 

corresponding models in ABAQUS and then process the data generated into plots of the 

maximum stress and Poisson’s ratio. Finally, the data was processed in Microsoft Excel to 

present it in condensed graphs. 
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III. Results and Discussion 

3.1 Mesh study 

As described in Sections 2.2.2 and 2.2.3, a mesh study to determine optimal mesh 

parameters was performed. In this case, the normal stress in the vertical direction, in one 

specific location, the tip of the voids (see Figure 6), was used as the comparison variable 

to obtain an extrapolated estimate of it when the mesh is absolutely refined and to use that 

value to define an error estimate for each mesh parameter combination. The mesh study 

was performed for 2 of the first geometries of interest, geometries B and C (see Figure 6), 

at 2 of the lowest porosities to be studied in this investigation (10% and 12%). 

As explained in the Sections 2.2.3, multiple combinations of one general seed size and 

increasingly smaller edge seed sizes were simulated, obtaining different element quantities, 

Normal stresses in the vertical direction at the tip of the voids, average Poisson’s ratio (ν) 

and times of execution. Using the element number, an average element size was computed 

(h) and then squared (h2). Finally, in each case, a plot of the stress as a function of the 

average size squared was presented, and with it a linear regression that allowed the stress 

to be extrapolated when the value of h is zero, which hypothetically can be considered the 

most accurate value of stress at that location. Against that hypothetical value of stress, the 

error percentage of each seeding combination was computed by using (11). 
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3.1.1 Geometry B – 10% porosity 

In this case, the extrapolated stress for a mesh with infinitesimally small elements (h≈0) 

was of -2954.7 MPa (See Figure 10). Also, the correlation coefficient of the linear 

regression between h2 and S22 was of R2=0.9792, this shows that for this geometry there 

is a good linear correlation between the variables used, something that can be expected 

from a stress field with no singularities. Also, most of the seeding combinations used were 

below 4% error (See Table 1), which can be considered as a good metric of accuracy for 

the discretization model. 

Table 1 Mesh study results for geometry B at 10% porosity 

Edge 
Seed 
(mm) 

Element 
Number 

(#) 

Normal stress 
22 at tip (MPa) 

Poison’s 
ratio - ν 
(adim) 

Process 
Time (s) 

Average 
element size 

- h (mm) 

Squared average 
element size - h2 

(mm2) 

Error 
(%) 

0.14 18970 -2860.74 -0.2666 63.55 0.1195 0.01428 3.18% 

0.13 19880 -2860.65 -0.2666 62.62 0.1167 0.01363 3.18% 

0.12 20988 -2863.22 -0.26658 66.26 0.1136 0.01291 3.10% 

0.11 22052 -2873.06 -0.26658 68.64 0.1108 0.01229 2.76% 

0.1 22624 -2880.16 -0.26658 69.57 0.1094 0.01198 2.52% 

0.09 24996 -2884.27 -0.26658 74.64 0.1041 0.01084 2.38% 

0.08 28884 -2897.78 -0.26658 80.60 0.0969 0.00938 1.93% 

0.07 32430 -2903.29 -0.26658 87.05 0.0914 0.00836 1.74% 

0.06 38618 -2908.58 -0.26658 97.30 0.0838 0.00702 1.56% 

0.05 45094 -2914.41 -0.26658 111.10 0.0775 0.00601 1.36% 

0.04 55348 -2920.93 -0.26658 133.34 0.0700 0.00490 1.14% 

0.03 72282 -2926.49 -0.26658 174.18 0.0612 0.00375 0.95% 
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Figure 10 Normal stress vs Average size of the elements squared for geometry B at 10% porosity 

3.1.2 Geometry B – 12% porosity 

Comparing these results with the previous ones now the extrapolated stress was of -2476.5 

MPa and the correlation coefficient of 0.9906 (see Figure 11). The results obtained can be 

considered as expected, since the porosity was increased, meaning that the feature added 

at the tip of the void increased in size, therefor the stress concentration was diminished. 

Here the linear correlation between the average size of the elements squared and the stress 

was even better, and the errors were smaller too. It suggests that for geometries that 

effectively reduce the stress concentration when the porosity increases, and with 

comparable mesh parameters, the accuracy of the simulation increases (see Table 2). 
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Table 2 Mesh study results for geometry B at 12% porosity 

Edge 
Seed 
(mm) 

Element 
Number 
(#) 

Vertical 
Normal stress 
at tip (MPa) 

Poison’s 
ratio - ν 
(adim) 

Process 
Time (s) 

Average 
element size 
- h (mm) 

Squared average 
element size - h2 

(mm2) 

Error 
(%) 

0.14 20444 -2426.93 -0.2653 63.10 0.1151 0.01325 2.00% 

0.13 21882 -2431.14 -0.26528 58.94 0.1113 0.01238 1.83% 

0.12 23826 -2431.45 -0.2653 59.87 0.1066 0.01137 1.82% 

0.11 25696 -2438 -0.26528 60.46 0.1027 0.01055 1.55% 

0.1 28344 -2443.03 -0.26528 61.17 0.0978 0.00956 1.35% 

0.09 33222 -2447.35 -0.26528 65.16 0.0903 0.00816 1.18% 

0.08 38004 -2448.45 -0.26528 67.80 0.0844 0.00713 1.13% 

0.07 43836 -2453.43 -0.26528 72.65 0.0786 0.00618 0.93% 

0.06 52356 -2456.93 -0.26528 78.65 0.0719 0.00518 0.79% 

0.05 65654 -2459.83 -0.26528 89.06 0.0642 0.00413 0.67% 

0.04 84564 -2464.67 -0.26528 98.24 0.0566 0.00320 0.48% 

0.03 117660 -2468.91 -0.26528 118.28 0.0480 0.00230 0.31% 

 

 

Figure 11 Normal stress vs Average size of the elements squared for geometry B at 12% porosity 
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3.1.3 Geometry C - 10% porosity 

At geometry C and a lower porosity, the extrapolated stress and linear correlation 

coefficient were -6677.6 MPa and 0.9397 (see Figure 12). This correlation coefficient is 

much lower than the ones found previously for geometry B.  That effect can be attributed 

to having a sharper curve at the tip of the void, getting closer to crack conditions, which 

may affect the stress field about the void tip causing singularities. However, this correlation 

coefficient can be considered acceptable. On the other hand, the stress is increasing in 

magnitude rapidly when the average size of the elements decreases, causing a high 

magnitude extrapolated stress. At lower element counts the error computed can be 

considered high. To keep the error below 5%, the edge seed size must be lower than 0.07 

(see Table 3). 

Table 3 Mesh study results for geometry C at 10% porosity 

Edge 
Seed 
(mm) 

Element 
Number 
(#) 

Vertical 
Normal stress 
at tip (MPa) 

Poison’s 
ratio - ν 
(adim) 

Process 
Time (s) 

Average 
element size 
- h (mm) 

Squared average 
element size - h2 
(mm2) 

Error 
(%) 

0.14 20552 -6004.84 -0.20392 72.10 0.1161 0.01348 10.08% 

0.13 22294 -6128.54 -0.20392 71.27 0.1115 0.01243 8.22% 

0.12 24390 -6028.51 -0.20398 72.67 0.1066 0.01136 9.72% 

0.11 26572 -6099.11 -0.20398 76.96 0.1021 0.01043 8.66% 

0.1 29420 -6171.24 -0.20398 82.68 0.0971 0.00942 7.58% 

0.09 35246 -6286.29 -0.204 87.58 0.0887 0.00786 5.86% 

0.08 40810 -6338.4 -0.20402 91.18 0.0824 0.00679 5.08% 

0.07 47928 -6312.73 -0.20402 102.31 0.0760 0.00578 5.46% 

0.06 57464 -6454.63 -0.20402 117.90 0.0694 0.00482 3.34% 

0.05 71570 -6494.95 -0.20402 129.96 0.0622 0.00387 2.74% 

0.04 91836 -6550.41 -0.20402 154.89 0.0549 0.00302 1.91% 
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Figure 12 Normal stress vs Average size of the elements squared for geometry C at 10% porosity 

 

3.1.4 Geometry C - 12% porosity 

Again, for a high porosity, even for a sharper void geometry, the magnitude of the 

extrapolated stress decreased, and the linear correlation coefficient improved. This is 

probably caused by the larger curvature radius presented by the geometry at high scales 

(meaning higher porosities). For the conditions presented, to maintain an error percentage 

below 5% it is enough to keep the edge seed size below 0.1 (see Table 4). Another point is 

that for geometry C when the porosity level was increased, the execution times also 

increased, meaning a higher computation load. 
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Table 4 Mesh study results for geometry C at 12% porosity 

Edge 
Seed 
(mm) 

Element 
Number 
(#) 

Vertical 
Normal stress 
at tip (MPa) 

Poison’s 
ratio - ν 
(adim) 

Process 
Time (s) 

Average 
element size 
- h (mm) 

Squared average 
element size - h2 
(mm2) 

Error 
(%) 

0.14 23430 -5407.98 -0.19771 72.83 0.1075 0.01157 9.09% 

0.13 25372 -5538.14 -0.19771 75.38 0.1033 0.01068 6.91% 

0.12 27134 -5562.38 -0.1977 79.25 0.0999 0.00999 6.50% 

0.11 31416 -5594.49 -0.19772 85.26 0.0929 0.00863 5.96% 

0.1 36030 -5632.68 -0.19772 88.47 0.0867 0.00752 5.32% 

0.09 42456 -5664.24 -0.19774 99.02 0.0799 0.00638 4.79% 

0.08 49694 -5728.89 -0.19775 109.45 0.0738 0.00545 3.70% 

0.07 59364 -5800 -0.19775 118.37 0.0676 0.00456 2.50% 

0.06 71916 -5813.12 -0.19775 140.00 0.0614 0.00377 2.28% 

0.05 91318 -5812.1 -0.19775 164.74 0.0545 0.00297 2.30% 

0.04 120976 -5819.2 -0.19775 200.93 0.0473 0.00224 2.18% 

 

 

Figure 13 Normal stress vs Average size of the elements squared for geometry C at 12% porosity 

In general, the mesh study suggests that to keep the accuracy of the results better than the 

5% error, the edge seed size should be less than 0.06 for most geometries, even the ones 
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that show sharper curvature radius at the tips. Also, it can be considered that, at higher 

porosities, larger edge seed sizes can be used without substantially affecting the accuracy 

of the results to be obtained. This can be useful to reduce the computational load that this 

may represent.  

3.2 Shape comparison through simulations (10 Shapes) 

As discussed in Section 2.2.4, after carefully reviewing the variety of geometries that can 

be parametrized using the superformula, a total of 10 shapes were chosen to be evaluated. 

This evaluation consisted of the simulation of an RVE using each of the selected shapes as 

stop-holes geometries. That was reproduced for at least three different low porosity levels, 

due to being close to the lowest possible porosity that can be achieved for the geometrical 

conditions enforced for the voids in Figure 4. 

3.2.1 10 % Porosity 

From Figure 14, the first observation that can be made is that stress concentration is 

apparent in all the selected shapes since in all the cases the stress level only gets higher in 

the neighborhood of the void tip. Also, looking at these isolated results, we identify that a 

change in the stress distribution is generated by each of the geometries, since even while 

keeping a constant porosity among them, the stress patterns are remarkably different. 

Another important observation that can be made from Figure 14 is that some of the selected 

geometries present a better stress distribution, meaning an improvement in the stress 

concentration; however, this is going to be more evident in further simulation results. 
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Figure 14 Stress plots of the 10 selected stop-hole geometries for 10% porosity (MPa) 

Considering that the average normal strain was applied in the vertical direction, a high 

compressive displacement response can be appreciated in the vertical direction (see Figure 

15). More interestingly, in the opposite direction the displacement response also presents 

an average compressive response. This shows that the RVE has an effective negative 

2 

1 
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Poisson’s ratio, which represents an auxetic response. At this level that fact is enough for 

considering the geometries effective for the objective of this investigation. 

 

Figure 15 Displacement plots in the directions 1 and 2 for each of the 10 selected geometries (mm) 

3.2.2 12% Porosity 

Comparing this set of results for the stress in the vertical direction with the results presented 

in the previous Section the stress reduction can already be seen for all geometries, this 

means that for all 10 selected geometries the magnitude of the stress shown in response to 

2 

1 
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the applied average strain is less intense. Another positive observation is that in this case 

there is already one geometry showing no stresses over the value of -2440 MPa, geometry 

B, meaning that this geometry already shows an advantage over the others in the stress 

reduction sense. However, the stress reduction and the concentration improvements are not 

so evident for some of the geometries such as C, F, I and J. 

 

Figure 16 Stress plots of the 10 selected stop-hole geometries for 12% porosity (MPa) 

2 

1 
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3.2.3 14% Porosity 

 

Figure 17 Stress plots of the 10 selected stop-hole geometries for 14% porosity (MPa) 

Again, when the porosity was increased minimum stress in most of the models decreased 

in magnitude, this demonstrates that the scale, that is the curvature radius, affects the stress 

distribution in a positive manner. However, the stress concentration was not effectively 

reduced in all cases, at least from the visual results obtained. 

2 
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At this point of the analysis, it is apparent that some shapes perform better than others even 

when the size of the stop-hole is increased and, therefore, the porosity of the voids. Some 

particularly interesting observations about the geometries that exhibit the best results 

regarding stress reduction are, for example, that the peak stress is strongly related to the 

curvature of the shape at the mid axis of the void, this observation is similar to what can be 

deduced from the idea of stress concentration (see Figure 17, shapes B and E). Also, it can 

be observed that the shapes performing well are significantly better at utilizing the provided 

area of the hole to accommodate large curvature radius in this orientation (see Figure 17, 

shapes B, E and J), meanwhile less effective shapes in this regard perform significantly 

worse (see Figure 17, shapes G and H). However, incorrect selection of the shapes can lead 

to conditions in which, for example, the maximum stress moves from the mid axis of the 

void, generating in most cases a higher stress concentration (see Figure 17, shapes D, F 

and I). This general observation of how geometrical properties of the shapes can lead to 

different peak stresses and stress distributions can be of further use for selecting adequate 

shapes for specific objectives. 

Further studies were executed to better understand how the scale of the features can affect 

the behavior of the material. However, these more extensive studies were performed only 

for a few of the more promising geometries. The geometries that presented less stress 

reduction or more concentered stress distributions were discarded from the next set of 

analyses, this means that the geometries C, F, I and J were not considered in further 

analysis.  
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3.3 Total search over the scale using simulations (6 shapes) 

After performing the analysis presented in Section 3.2, some of the geometries were 

discarded due to poor results in stress reduction and stress concentration. However, this 

preliminary study did not show in detail how the scale can affect the resulting behavior of 

the material for these conditions. Therefore, several more simulations were performed for 

each of the 6 remaining geometries of interest (A, B, D, E, G and H). Their condensed 

results are presented in this Section, along the results of a similarly sized RVE model 

simulated with elliptical voids at several different porosities for comparison. The output 

variables of interest in this case were the average Poisson’s ratio and the minimum normal 

stress in the vertical direction present in the model for the applied conditions. The average 

Poisson’s ratio was important for showing how different porosities were affecting the 

auxetic behavior obtained, meanwhile the minimum normal stress in the vertical direction 

shows how the geometries improve the stress distribution. 
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Figure 18 Average Poisson’s ratio vs porosity for the 6 selected geometry and the ellipses for comparison. 

In Figure 18, the Poisson’s ratio is plotted against the porosity of each of the models 

corresponding to the different geometries that are being studied. Several observations can 

be made from these results, some of them are pointed out in the following paragraphs. 

At lower porosities, the average Poisson’s ratio shows a similar value for all the geometries. 

This is caused by the similarity of all the geometries at low porosities (low scale factors for 

the stop-holes) to a simple slot void pattern. Also, for all the cases the effective Poisson’s 

ratio is well below the results obtained for the similar sized models with elliptical voids.  
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Inside of a range of porosities, particular for each geometry, the average Poisson’s ratio 

seams to become more negative. This means that the addition of that geometry at that scale 

as a stop-hole is contributing to the auxetic behavior of the material. However, the behavior 

of the average Poisson’s ratio against the porosity shows an inflection point for most 

geometries where it starts an increasing tendency. This happens inside the range of 

porosities studied for all geometries except for D. 

After the inflection point, two different kinds of behaviors were noticed. The first behavior 

(geometries B and E) is a tendency to increase with no asymptotic behavior found, at least 

for the porosity range studied. The second behavior (geometries H, G and A) is some 

fluctuating behavior around a constant value, this was noticed also for the porosity range 

studied. 
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Figure 19 Normal stress in the vertical direction vs porosity for the 6 selected geometry and the ellipsis for 

comparison. 

In Figure 19, are presented the minimum normal stress in the vertical direction against the 

porosity that each model presents for the corresponding scale of the stop-hole geometry. 

Several important observations can be obtained from these results: 

All stop-hole geometries presented similar behaviors when the scale of the stop-holes and, 

therefore, the porosity, was increased. For all the stop-hole geometries the magnitude of 
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the minimum normal stress decreases when the porosity is increased. Also, all the 

geometries present an asymptotic behavior when they approach a specific stress value, 

particular for each of the geometries. Also, it can be noticed that all the geometries 

presented a better reduction in the minimum normal stress in the vertical direction than 

simply increasing the porosity of the elliptical voids in a similarly sized model. 

On one hand, geometries A, D, G and H present very similar stress reduction behaviors. 

Notice that the geometry A was the typical circular stop-hole geometry; this geometry has 

been previously analyzed for slowing down the crack propagation with acceptable results 

[24].  On the other hand, geometries B and E present a slight advantage over the other 

geometries, meaning a better reduction of the minimum normal stress in the vertical 

direction, uniformly over the range of porosities studied.  
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IV.  Summary & Conclusions 

In the present investigation, the objective was to find a structured way to reduce the stresses 

in the neighborhood of the tips of the elongated voids required in the patterns that induce 

effective auxetic behavior in linear materials. To achieve this objective, the idea of the 

stop-hole was used since it has proven its effectiveness to reduce stress concentration and 

crack propagation for crack-like geometries. However, to reduce the stress while keeping 

the porosity low and maintaining or increasing the auxetic behavior of the structure, it was 

necessary find a more effective shape of stop-hole than a circle. We used a generalized 

ellipse known as the “superformula”, a parametric equation capable of yielding an almost 

infinite variety of rounded shapes controlled by 6 parameters, allowing the parametrization 

of the geometry. Given the broad variety of shapes that the superformula may yield, a first 

set of parameters was selected due to the uniqueness of the shapes they yielded and, from 

that initial set, a smaller group of shapes was selected to be evaluated as potential stop-hole 

geometries for the purpose of the investigation. 

Once a parametric model of the geometry was accessible it was necessary to evaluate the 

stress concentration and the effective Poisson ratio of the structure generated by the new 

void geometry.  To do this, a finite element model was prepared using ABAQUS standard 

and its built-in python scripting capabilities. The model was a Representative Volume 

Element representation, under the assumption of periodic boundary conditions subjected 

to an equivalent average compressive strain in the vertical direction equal for each of the 

geometries evaluated.  The mesh and mesh parameter applied uniformly to each of the 

modeled geometries were validated via an estimation of the error in the stress located at 
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the tip.  This error was calculated by comparing the stress obtained by running the 

simulation at specific meshing parameters with an ideal stress extrapolated from multiple 

simulations and the idea of the error being proportional to h2 (average size of the elements 

squared). This validation was executed on the model for a set of the evaluated shapes, some 

of which presented the sharpest changes in geometry; after that, the assumption was made 

that under similar meshing parameters the error was going to be similar or lower in the rest 

of the more rounded shapes to be evaluated. This way, a final python script to define the 

parametric geometry, material, mesh parameters, element selection and periodic boundary 

conditions was set up in order to evaluate each of the selected shapes. 

The next step was to evaluate each of the selected shapes of the superformula using the 

developed simulation model. At this level of the investigation, it was possible to run FEA 

simulations of multiple shapes, particularly the set of 10 shapes selected in previous steps 

of the investigation. All evaluations at this step were performed with the stop-hole shapes 

scaled to achieve an specific porosity of the voids. The analysis was focused on evaluating 

the contour plots of the displacements in the horizontal and vertical directions (U1, U2) to 

make sure of the auxetic response of the structure, and evaluating the contour plot and 

maximum magnitude of normal compressive stress in the vertical direction (S22) to 

determine which geometry performs the best regarding stress reduction. From this 

evaluation, a smaller group of promising shapes was selected for a broader analysis. 

Even though the results regarding stress reduction were promising for the final selected set 

of shapes, the results are still incomplete since the analysis was performed only for specific 

porosity values for the voids. To ensure that the final selected shape performs with better 
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effectiveness, regarding stress reduction, than any of its counterparts the analysis should 

show that this is true for any porosity. At this point, an automated MATLAB-python script 

was implemented to perform FEA analysis of the reduced set of shapes for a significant 

range of porosities recording their Poisson’s ratio and maximum compressive stress in the 

vertical direction. Using this data, a set of two plots were generated to compare the 

performance of the shapes at multiple porosities within this range and exposing their 

behavior. 

From the results of this process, it can be concluded that adding stop-holes at the ends of 

the elongated voids used to induce auxetic behavior in meta materials is an effective 

method to reduce the stress concentration. Also, that the stress reduction generated by 

circular stop-holes can be improved by using a different parametric shape (compare A and 

B in Figure 19) and that the improvement was maintained along the range of porosities 

evaluated. All this can be done while maintaining or improving the auxetic behavior 

obtained (compare A and B in Figure 18) for the range of porosities evaluated. 

As a corollary of the evaluation of maximum compressive stress and effective Poisson’s 

ratio, a few more things can be concluded about the behavior of these structures. The 

effectiveness of the stop-hole geometry converges for any geometry when the porosity 

approaches the limit value of the porosity of the elongated void, this can be explained due 

the fact that the size of the stop-hole is not comparable any more to the size of the stop-

hole. Also, the stress reduction increases rapidly when the porosity is initially increased 

from that critical porosity of an elongated void with no stop-hole; however, it reaches an 

asymptotic value of stress reduction as the porosity increases. Regarding the behavior of 



53 

 

the Poisson’s ratio as the porosity increases, its evaluation infers that different behaviors 

can be achieved, in some cases the auxeticity of the structure kept increasing along the 

porosity range evaluated, while in some other cases it presented an inflexion point where 

it started increasing in auxeticity up to a critical point. 

Other relevant observations showed interesting relationships between simple geometrical 

properties and the behavior of the structure (i.e., peak stress and stress distribution). 

Particularly, one relevant observation was that high performing shapes, regarding stress 

reduction, are usually capable of accommodating large curvature radii at the mid axis of 

the void for a given area. This observation can lead to a more effective shape selection in 

future work, since it points to promising shapes even before performing any FEA analysis, 

allowing for a more effective shape selection. 

In general, the investigation was successful in finding improved geometries to induce 

auxeticity in linear materials using low porosity patterns of voids, regarding their stress 

concentration while keeping or improving their auxetic behavior. 

However, there is significant work to be done regarding finding the best possible shape to 

induce auxeticity in linear elastic materials. One suggested area of interest is performing 

numerical optimization, meaning the use of search algorithms to numerically find optimal 

shapes with the objective of reducing the stress in the material while maintaining or 

improving their auxetic behavior. Also, mentioned in this investigation is the fact that the 

decrease in stress concentration can improve the fatigue life of these metamaterials; 

however, this has not been proven yet. Further numerical and experimental work can be 
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done regarding the performance of the new shapes to determine how much better they 

perform under fatigue loading. This can greatly improve the usability of auxetic 

metamaterials and increase the confidence in their capabilities, increasing their direct use 

in industry. 
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APPENDIX 

Appendix A  python script: General model.  

As mentioned before, finite element simulations were used to compare the behaviors of 

several geometries. The conditions used to perform the simulations of the models are those 

of a periodic model following the RVE definitions. To implement this in ABAQUS 

standard was required to use its capability of receiving instructions via python scripts that 

can be run using it as a platform, due to its limitation to implement periodic boundary 

conditions. Other advantages that the usage of python scripting on ABAQUS standard to 

fully define the model to be simulated presented was that this allowed more repeatability 

of the analysis performed. 

This python script was based on previous work of Dr. Michael Taylor. The code that served 

as a base for the code used in this investigation was used in Dr. Taylor’s research [18] and 

in his introductory course of finite elements offered in Santa Clara University at the 

undergraduate level. Therefore, it already implemented the generation of the geometrical 

model, definition of the material properties, meshing, implementation of the periodic 

boundary conditions, simulation configuration and execution. However, several additions 

and modifications were required to adapt this code to the new tasks required. One of the 

main additions was the introduction of a python function to generate xy points in an array 

corresponding to positions in the superformula shape to be added at the tip, afterwards this 

array was going to be used to generate the geometry of the void connecting the points using 

a spline. Followingly was required the modification of the voids geometry definition, in 

the original python script the shape of the voids were simply a vertical and a horizontal 
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ellipse, but in this investigation the voids can be described as a symmetrical disposition of 

two stop-hole features generated by the superformula and connected by the center using a 

rectangular slot, this can by generated horizontally for the first void and rotated 90 degrees 

to generate the geometry of an equivalent vertical void to be subtracted from a rectangular 

matrix geometry by assembly operations in order to generate the RVE of the pattern. Due 

to the limitation the finite element method to represent accurately the stress fields of 

geometrical sharp discontinuities and, considering that even though the added stop-holes 

reduced the sharpness of the voids, they still represented a challenge for the discretization, 

edge refinement was added to the python script of the model at every geometry related to 

the stop-hole feature at the tips of the pattern of voids. Those modifications meant that 

some alterations to the periodic boundary conditions implementation was required to 

ensure the functionality and validity of it, this meant some deep understanding of the 

concept of the periodic boundary conditions and its assumptions. Finally, some code was 

added to the python script to add the capability of generating particular csv reports, 

exporting images of the different contour plots of interest, and other functions. 

The main structure of the python code used to define and execute the simulations of the 

models in this investigation is outlined below, along with some of the concepts used in its 

development: 

• Import ABAQUS libraries 

• Import OS capabilities and CSV capabilities 

• Define the superformula points generator function 

• Set up parameters: 
o Distance center to center 
o Minor axis (slot width) 
o Pseudo-Axes-Ratio (Enforced void length) 
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o Material’s linear properties (Youngs Modulus, Poisson Ratio) 
o Mesh Parameters (Seed Mesh, Edge Seed Mesh) 
o Superformula and scaling parameters: 

▪ Exponents: n1, n2, n3 

▪ Frequency: m 

▪ Amplitude: a, b 

▪ Scale: B 

▪ Reference point: x0, y0 

• File management conditions for saving information after the execution of the 

simulations 

• Create parts and instances for RVE 
o Matrix 
o Void 1 
o Void 2 
o Assembly 

• Create instances for virtual points 

• Create mesh 
o General mesh seeding 
o Edge mesh seeding 
o Element type 

• Material and section assignment 

• Node sets definition 
o General All Nodes and All Elements sets 
o Array of nodes per edge 
o Set of virtual points 
o Periodic node pairing 

• Create analysis step 

• Boundary Conditions 
o Rigid body motion constraint 
o Virtual points constraints 
o Periodic constraints per node pair top-bottom 
o Periodic constraints per node pair right-left 

• Definition of the field output 

• Job creation and submission 

• Post processing 

• File saving 

• View setting and image capture 
o View settings 
o Undeformed capture 
o Stress 22 contour plot setting and capture 
o Zoomed stress 22 contour plot setting and capture 
o Displacement 2 contour plot setting and capture 
o Displacement 1 contour plot setting and capture 

• Report and .csv file generation 
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o Field report of Displacements 
o Field Report of Stress 22 
o Csv file of tip position 
o Csv file of Area of the RVE 
o Csv file of Porosity of the RVE 
o Csv file of Element number 

Appendix B  python script: ABAQUS/standar- simulation model 

# -------------------------------------------------------------------------------------------------------- 

# Michael Taylor & Max Barillas 

# 10/6/2016 

# 12/27/2017 

# 

#  

# 2D Periodic RVE with Adjustable Hole Shape 

# -------------------------------------------------------------------------------------------------------- 

pathName = "Z:/dcengr/Downloads/Auxetic_Stopholes/" 

## "C:/Users/Max Barillas/Documents/Research(Auxtetics)/" 

os.chdir(pathName) 

# Includes ------------------------------------------------------------------------------------------------ 

from abaqus import *  

from abaqusConstants import * 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

import visualization 

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE) 

# --------------------------------------------------------------------------------------------------------- 

 

##Superformula shape point generator----------------------------------------------------------------------- 

def superforTip(n1,n2,n3,m,a,b,A,B): 

 import math as math 

 td=0 

 t=td*(math.pi/180.0) 

 c1=math.cos(t) 

 s1=math.sin(t) 

 alpha=m*t*0.25 

 c=math.cos(alpha) 

 s=math.sin(alpha) 

 e=-1/float(n1) 

 p1=abs(c/a)**n2 
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 p2=abs(s/b)**n3 

 r=(p1+p2)**e 

 xb=r*c1 

 yb=r*s1 

 x=(A*xb) 

 y=(B*yb) 

 pointTip=[x,y] 

 return pointTip 

# --------------------------------------------------------------------------------------------------------  

 

 

##Superformula shape point generator----------------------------------------------------------------------- 

def superfor(n1,n2,n3,m,a,b,A,B,xo,yo): 

    import math as math 

    points=[] 

    for td in range(0,3600): 

        t=td*(math.pi/1800.0) 

        c1=math.cos(t) 

        s1=math.sin(t) 

        alpha=m*t*0.25 

        c=math.cos(alpha) 

        s=math.sin(alpha) 

        e=-1/float(n1) 

        p1=abs(c/a)**n2 

        p2=abs(s/b)**n3 

        r=(p1+p2)**e 

        xb=r*c1 

        yb=r*s1 

        x=(A*xb)+xo  

        y=(B*yb)+yo 

        pair=[x,y] 

        points.append(pair) 

    points.append(points[0]) 

    return points 

# --------------------------------------------------------------------------------------------------------  

# Rename model -------------------------------------------------------------------------------------------  

modelName = 'model_2DVoidPlate' 

mdb.models.changeKey(fromName='Model-1', toName=modelName) 

# --------------------------------------------------------------------------------------------------------  

# Create virtual point parts ------------------------------------------------------------------------------ 

mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, name='part_VPx', 

type=DEFORMABLE_BODY) 

mdb.models[modelName].parts['part_VPx'].ReferencePoint(point=(0.0, 0.0, 0.0)) 

mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, name='part_VPy', 

type=DEFORMABLE_BODY) 

mdb.models[modelName].parts['part_VPy'].ReferencePoint(point=(0.0, 0.0, 0.0)) 

# --------------------------------------------------------------------------------------------------------  

# Material properties ------------------------------------------------------------------------------------ 

YoungsMod = 200e3   # Young's modulus (in MPa) 

PoissonRatio = 0.3 

# --------------------------------------------------------------------------------------------------------  

# Geometric properties ----------------------------------------------------------------------------------- 

center_to_center = 10    # center to center distance for the holes (in mm) 
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width_plate = 2.0*center_to_center;  # width of plate 

height_plate = 2.0*center_to_center; # height of plate 

minor_axis = 0.45 # minor axis of each void 

axes_ratio = 11.0    # ratio between major and minor axis for the holes 

thickness = 0.0    # thickness of the plates 

seed_mesh =#      # seed-mesh (in mm) 

edge_seed_mesh =#           # edge-seed-mesh (in mm)edge_seed_mesh =# 

major_axis = minor_axis*axes_ratio;  # major axis of each void 

print minor_axis, major_axis 

 

#Parameters for the superformula shaped stop holes 

___________________________________________________________ 

n1=#  #exponent 

n2=#  #exponent 

n3=#  #exponent 

m=#   #frequency 

a=#   #symmetry 

b=#   #symmetry 

 

B=#  #scale in y 

A=B #scale in x 

xTip, yTip=superforTip(n1,n2,n3,m,a,b,A,B) 

xo=major_axis - xTip#center position in x 

yo=0.0 #center position in y 

#_____________________________________________________________________________________

________________________ 

subPath = pathName + "_mA" + str(minor_axis) + "_AR" + str(axes_ratio) + "_sS" + 

str(int(seed_mesh*100)) + "B" + str(int(round(B*1000000))) + "n1" + str(int(round(n1*100))) + "n2" + 

str(int(round(n2*100))) + "n3" + str(int(round(n3*100))) + "m" + str(int(round(m*100))) + "a" + 

str(int(round(a*100))) + "b" + str(int(round(b*100))) + "eSs" + str(int(round(edge_seed_mesh*100))) + "/" 

if not os.path.exists(subPath): 

    os.makedirs(subPath) 

os.chdir(subPath) 

# --------------------------------------------------------------------------------------------------------  

 

# Create parts and instances for plate ------------------------------------------------------------------- 

partName='part_Plate' 

#matrix 

mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

mdb.models[modelName].sketches['__profile__'].rectangle(point1=(0.0, 0.0), 

    point2=(width_plate, height_plate)) 

mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, 

name='Matrix',type=DEFORMABLE_BODY) 

mdb.models[modelName].parts['Matrix'].BaseShell(sketch=mdb.models[modelName].sketches['__profile_

_']) 

del mdb.models[modelName].sketches['__profile__'] 

#void1 

# Points of the parametric function 

Points=superfor(n1,n2,n3,m,a,b,A,B,xo,yo) 

l=len(Points)-1 

i=0 

while i<l: 

    phi1=1800-i 
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    phi2=1800+i 

    yPhi1=Points[phi1][1] 

    yPhi2=Points[phi2][1] 

    diffY=yPhi1-yPhi2 

    if diffY>2.0*minor_axis: 

        linePoint1=Points[phi1] 

        linePoint2=Points[phi2] 

        i=l+1 

    i=i+1 

linePoint0_1=[0,linePoint1[1]] 

linePoint0_2=[0,linePoint2[1]] 

interestPoint=[center_to_center+Points[0][0],center_to_center+Points[0][1]] 

interestPoint2=[center_to_center+Points[phi1-10][0],center_to_center+Points[phi1-10][1]] 

interestPoint3=[center_to_center+Points[phi2+10][0],center_to_center+Points[phi2+10][1]] 

# Generate Geometry 

mdb.models[modelName].ConstrainedSketch(name='--profile--', sheetSize=20.0) 

mdb.models[modelName].sketches['--profile--'].Spline(points=Points) 

mdb.models[modelName].sketches['--profile--'].Line(point1=linePoint1,point2=linePoint0_1) 

mdb.models[modelName].sketches['--profile--'].Line(point1=linePoint2,point2=linePoint0_2) 

mdb.models[modelName].sketches['--profile--'].Line(point1=linePoint0_1,point2=linePoint0_2) 

mdb.models[modelName].sketches['--profile--

'].autoTrimCurve(curve1=mdb.models[modelName].sketches['--profile--'].geometry.findAt(Points[0], ), 

point1=Points[1800]) 

mdb.models[modelName].sketches['--profile--

'].copyMirror(mirrorLine=mdb.models[modelName].sketches['--profile--'].geometry.findAt((0.0,0.0), ), 

                                                         objectList=(mdb.models[modelName].sketches['--profile--

'].geometry.findAt(Points[0], ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((linePoint1[0]-0.01,linePoint1[1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((linePoint2[0]-0.01,linePoint2[1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt(Points[10], ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt(Points[l-5], ),)) 

mdb.models[modelName].sketches['--profile--

'].autoTrimCurve(curve1=mdb.models[modelName].sketches['--profile--'].geometry.findAt((0.0,0.0), ), 

point1=(0.0,0.0)) 

mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, 

name='Void1',type=DEFORMABLE_BODY) 

mdb.models[modelName].parts['Void1'].BaseShell(sketch=mdb.models[modelName].sketches['--profile--

']) 

#void2 

mdb.models[modelName].sketches['--profile--'].rotate(centerPoint=(0.0,0.0), angle=90.0, 

                                                         objectList=(mdb.models[modelName].sketches['--profile--

'].geometry.findAt(Points[0], ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((linePoint1[0]-0.01,linePoint1[1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((linePoint2[0]-0.01,linePoint2[1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt(Points[10], ), 
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                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt(Points[l-5], ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((-Points[0][0],Points[0][1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((-(linePoint1[0]-0.01),linePoint1[1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((-(linePoint2[0]-0.01),linePoint2[1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((-Points[10][0],Points[10][1]), ), 

                                                                     mdb.models[modelName].sketches['--profile--

'].geometry.findAt((-Points[l-5][0],Points[l-5][1]), ),)) 

mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, 

name='Void2',type=DEFORMABLE_BODY) 

mdb.models[modelName].parts['Void2'].BaseShell(sketch=mdb.models[modelName].sketches['--profile--

']) 

del mdb.models[modelName].sketches['--profile--'] 

#Assembly 

#matrix 

mdb.models[modelName].rootAssembly.DatumCsysByDefault(CARTESIAN) 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Matrix-1', part=mdb.models[modelName].parts['Matrix']) 

#Void 1A 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void1-1', part=mdb.models[modelName].parts['Void1']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void1-1', ), 

vector=(0.0, 0.0, 0.0)) 

#Void 1B 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void1-2', part=mdb.models[modelName].parts['Void1']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void1-2', ), 

vector=(2.0*center_to_center, 0.0, 0.0)) 

#Void 1C 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void1-3', part=mdb.models[modelName].parts['Void1']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void1-3', ), 

vector=(1.0*center_to_center, 1.0*center_to_center, 0.0)) 

#Void 1D 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void1-4', part=mdb.models[modelName].parts['Void1']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void1-4', ), 

vector=(0.0, 2.0*center_to_center, 0.0)) 

#Void 1E 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void1-5', part=mdb.models[modelName].parts['Void1']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void1-5', ), 

vector=(2.0*center_to_center, 2.0*center_to_center, 0.0)) 

#Void 2A 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void2-1', part=mdb.models[modelName].parts['Void2']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void2-1', ), 

vector=(0.0, 1.0*center_to_center, 0.0)) 

#Void 2B 
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mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void2-2', part=mdb.models[modelName].parts['Void2']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void2-2', ), 

vector=(1.0*center_to_center, 0.0, 0.0)) 

#Void 2C 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void2-3', part=mdb.models[modelName].parts['Void2']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void2-3', ), 

vector=(2.0*center_to_center, 1.0*center_to_center, 0.0)) 

#Void 2D 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name= 

    'Void2-4', part=mdb.models[modelName].parts['Void2']) 

mdb.models[modelName].rootAssembly.translate(instanceList=('Void2-4', ), 

vector=(1.0*center_to_center, 2.0*center_to_center, 0.0)) 

#cut 

mdb.models[modelName].rootAssembly.InstanceFromBooleanCut(name=partName, 

       instanceToBeCut=mdb.models[modelName].rootAssembly.instances['Matrix-1'], 

        cuttingInstances=( 

        mdb.models[modelName].rootAssembly.instances['Void1-1'], 

        mdb.models[modelName].rootAssembly.instances['Void1-2'], 

        mdb.models[modelName].rootAssembly.instances['Void1-3'], 

        mdb.models[modelName].rootAssembly.instances['Void1-4'], 

        mdb.models[modelName].rootAssembly.instances['Void1-5'], 

        mdb.models[modelName].rootAssembly.instances['Void2-1'], 

        mdb.models[modelName].rootAssembly.instances['Void2-2'], 

        mdb.models[modelName].rootAssembly.instances['Void2-3'], 

        mdb.models[modelName].rootAssembly.instances['Void2-4'], 

        ),originalInstances=SUPPRESS) 

instName = 'inst_2DVoidPlate' 

mdb.models[modelName].rootAssembly.features.changeKey(fromName= 

    'part_Plate-1', toName=instName) 

# -----------------------------------------------------------------------------------------------------------------------------  

# Create instances for 2 virtual points -------------------------------------------------------------------- 

mdb.models[modelName].rootAssembly.DatumCsysByDefault(CARTESIAN) 

# virtual point to constrain x direction 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='inst_VPx', 

part=mdb.models[modelName].parts['part_VPx']) 

# virtual point to constrain y motion 

mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='inst_VPy', 

part=mdb.models[modelName].parts['part_VPy']) 

# ----------------------------------------------------------------------------------------------------------- 

# Create mesh ----------------------------------------------------------------------------------------------  

# set the seed 

mdb.models[modelName].parts[partName].seedPart(size=seed_mesh) 

mdb.models[modelName].parts[partName].setMeshControls(elemShape=TRI, regions= 

    mdb.models[modelName].parts[partName].faces.findAt(((center_to_center/2.0, center_to_center/2.0, 

thickness/2.0), ))) 

#Edge refinement 

#Edge 1 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 
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(mdb.models[modelName].parts[partName].edges.findAt((interestPoint[0],interestPoint[1],thickness/2.0), 

), ), size=edge_seed_mesh) 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    

(mdb.models[modelName].parts[partName].edges.findAt((interestPoint2[0],interestPoint2[1],thickness/2.0)

, ), ), size=edge_seed_mesh) 

 

  

#Edge 2 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((2*center_to_center-

interestPoint[0],interestPoint[1],thickness/2.0), ), ), size=edge_seed_mesh) 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((2*center_to_center-

interestPoint2[0],interestPoint2[1],thickness/2.0), ), ), size=edge_seed_mesh) 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((2*center_to_center-

interestPoint3[0],interestPoint3[1],thickness/2.0), ), ), size=edge_seed_mesh) 

 

#Edge 3 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint2[0]-

width_plate/2.0,interestPoint2[1]-height_plate/2.0,thickness/2.0), ), ), size=edge_seed_mesh) 

  

#Edge 4 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint[0]-

width_plate/2.0,interestPoint[1]+height_plate/2.0,thickness/2.0), ), ), size=edge_seed_mesh) 

  

#Edge 5 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((2*center_to_center-

interestPoint3[0]+width_plate/2.0,interestPoint3[1]+height_plate/2,thickness/2.0), ), ), 

size=edge_seed_mesh) 

 

#Edge 6 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((2*center_to_center-

interestPoint[0]+width_plate/2,interestPoint[1]-height_plate/2,thickness/2.0), ), ), size=edge_seed_mesh) 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((2*center_to_center-

interestPoint2[0]+width_plate/2,interestPoint2[1]-height_plate/2,thickness/2.0), ), ), size=edge_seed_mesh) 
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#Edge 7 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint2[1]-

width_plate/2,2*center_to_center-interestPoint2[0],thickness/2.0), ), ), size=edge_seed_mesh) 

 

#Edge 8 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint2[1]-

width_plate/2,interestPoint2[0],thickness/2.0), ), ), size=edge_seed_mesh) 

  

#Edge 9 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    

(mdb.models[modelName].parts[partName].edges.findAt((interestPoint3[1]+width_plate/2,interestPoint3[0

],thickness/2.0), ), ), size=edge_seed_mesh) 

  

#Edge 10 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    

(mdb.models[modelName].parts[partName].edges.findAt((interestPoint3[1]+width_plate/2,2*center_to_ce

nter-interestPoint3[0],thickness/2.0), ), ), size=edge_seed_mesh) 

  

#Edge 11 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint[1],2*center_to_center-

interestPoint[0]+height_plate/2,thickness/2.0), ), ), size=edge_seed_mesh) 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint2[1],2*center_to_center-

interestPoint2[0]+height_plate/2,thickness/2.0), ), ), size=edge_seed_mesh) 

  

#Edge 12 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint[1],interestPoint[0]-

height_plate/2,thickness/2.0), ), ), size=edge_seed_mesh) 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint2[1],interestPoint2[0]-

height_plate/2,thickness/2.0), ), ), size=edge_seed_mesh) 

mdb.models['model_2DVoidPlate'].parts['part_Plate'].seedEdgeBySize(constraint= 

    FINER, edges= 

    (mdb.models[modelName].parts[partName].edges.findAt((interestPoint3[1],interestPoint3[0]-

height_plate/2,thickness/2.0), ), ), size=edge_seed_mesh) 

 

#ElemType 

mdb.models[modelName].parts[partName].setElementType(elemTypes=(ElemType(elemCode=CPS8R, 

elemLibrary=STANDARD), ElemType(elemCode=CPS6, 
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    elemLibrary=STANDARD)), 

regions=(mdb.models[modelName].parts[partName].faces.findAt(((center_to_center/2.0, 

center_to_center/2.0, thickness/2.0), )), )) 

  

mdb.models[modelName].parts[partName].generateMesh() 

ElemNum=mdb.models[modelName].parts[partName].getMeshStats().numTriElems 

# --------------------------------------------------------------------------------------------------------------  

# Create material ---------------------------------------------------------------------------------------- 

mdb.models[modelName].Material(description='Linearly elastic material model', name='LinearElastic') 

mdb.models[modelName].materials['LinearElastic'].Elastic(table=((YoungsMod, PoissonRatio), )) 

# --------------------------------------------------------------------------------------------------------  

# Create section, assign to part --------------------------------------------------------------------------  

mdb.models[modelName].HomogeneousSolidSection(material='LinearElastic', 

name='section_2DVoidPlate', thickness=None) 

mdb.models[modelName].parts[partName].SectionAssignment(offset=0.0, offsetField='', 

offsetType=MIDDLE_SURFACE, region=Region( 

    faces=mdb.models[modelName].parts[partName].faces.findAt((( 

    center_to_center/2.0, center_to_center/2.0, thickness/2.0), (0.0, 0.0, 1.0)), )), 

sectionName='section_2DVoidPlate') 

# ---------------------------------------------------------------------------------------------------------  

# Define sets containing all nodes and elements ------------------------------------------------------------------- 

mdb.models[modelName].parts[partName].Set(name='set_AllElements', 

elements=mdb.models[modelName].parts[partName].elements) 

mdb.models[modelName].parts[partName].Set(name='set_AllNodes', 

nodes=mdb.models[modelName].parts[partName].nodes) 

# -----------------------------------------------------------------------------------------------------------------  

# Create arrays and Sets containing node numbers for all faces of plate ------------------------------------------- 

# initialize arrays for edges 

nodes_rightEdge = [] 

nodes_leftEdge = [] 

nodes_topEdge = [] 

nodes_bottomEdge = [] 

node_RBM = [] 

# define arbitrary tolerance for boolean comparison 

eps = edge_seed_mesh/20.0 

# loop over all nodes and sort out nodes on the edges 

for N in mdb.models[modelName].parts[partName].nodes: 

    nodeCoord = N.coordinates 

    if (fabs(nodeCoord[0]-major_axis) < 100.0*eps) and (fabs(nodeCoord[1]-major_axis) < 100.0*eps): 

 node_RBM.append(N.label) 

    elif (fabs(nodeCoord[0]) < eps): 

 nodes_leftEdge.append(N.label) 

    elif (fabs(nodeCoord[0]-width_plate) < eps): 

 nodes_rightEdge.append(N.label) 

    elif (fabs(nodeCoord[1]) < eps): 

 nodes_bottomEdge.append(N.label) 

    elif (fabs(nodeCoord[1]-height_plate) < eps): 

 nodes_topEdge.append(N.label) 

mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesRightEdge', 

nodeLabels=nodes_rightEdge) 

mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesLeftEdge', 

nodeLabels=nodes_leftEdge) 
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mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesTopEdge', 

nodeLabels=nodes_topEdge) 

mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesBottomEdge', 

nodeLabels=nodes_bottomEdge) 

mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodeRBM', 

nodeLabels=(node_RBM[0],)) 

# create sets for virtual points 

mdb.models[modelName].parts['part_VPx'].Set(name='set_VPx', 

referencePoints=(mdb.models[modelName].parts['part_VPx'].referencePoints[1], )) 

mdb.models[modelName].parts['part_VPy'].Set(name='set_VPy', 

referencePoints=(mdb.models[modelName].parts['part_VPy'].referencePoints[1], )) 

# ----------------------------------------------------------------------------------------------------------------- 

# Create sets of periodic node pairs ------------------------------------------------------------------------------ 

# Look at left and right sides 

for i in range (0, len(nodes_leftEdge)): 

 leftCoords = 

mdb.models[modelName].parts[partName].sets['set_NodesLeftEdge'].nodes[i].coordinates 

 mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesLPair_' + str(i), 

nodeLabels=(nodes_leftEdge[i],)) 

 for j in range (0, len(nodes_rightEdge)): 

  rightCoords = 

mdb.models[modelName].parts[partName].sets['set_NodesRightEdge'].nodes[j].coordinates 

  if (fabs(leftCoords[1] - rightCoords[1]) < eps/10): 

  

 mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesRPair_' + str(i), 

nodeLabels=(nodes_rightEdge[j],)) 

# Look at top and bottom sides 

for i in range (0, len(nodes_topEdge)): 

 topCoords = 

mdb.models[modelName].parts[partName].sets['set_NodesTopEdge'].nodes[i].coordinates 

 mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesTPair_' + str(i), 

nodeLabels=(nodes_topEdge[i],)) 

 for j in range (0, len(nodes_bottomEdge)): 

  bottomCoords = 

mdb.models[modelName].parts[partName].sets['set_NodesBottomEdge'].nodes[j].coordinates 

  if (fabs(topCoords[0] - bottomCoords[0]) < eps/10): 

  

 mdb.models[modelName].parts[partName].SetFromNodeLabels(name='set_NodesBPair_' + str(i), 

nodeLabels=(nodes_bottomEdge[j],)) 

# ------------------------------------------------------------------------------------------------- ----------------- 

# Create analysis step -------------------------------------------------------------------------------------  

mdb.models[modelName].StaticStep(description= 

    'Step for uniaxial compression in 2-2 direction', name='step_Compression', 

    previous='Initial') 

mdb.models[modelName].steps['step_Compression'].setValues( 

    adaptiveDampingRatio=None, 

    continueDampingFactors=False, matrixSolver=DIRECT, 

    solutionTechnique=FULL_NEWTON, stabilizationMethod=NONE) 

# ------------------------------------------------------------------------------------------------------------  

# Set up BCs ---------------------------------------------------------------------------------------------------------------- 

# fix point to prevent rigid body motion 

mdb.models[modelName].DisplacementBC(amplitude=UNSET, createStepName= 

    'step_Compression', distributionType=UNIFORM, fieldName='', fixed=OFF, 
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    localCsys=None, name='bc_preventRBM', region= 

    mdb.models[modelName].rootAssembly.instances[instName].sets['set_NodeRBM'] 

    , u1=0.0, u2=0.0, ur3=UNSET) 

# externally applied strain through the virtual points (x-dir) 

#------------------------------------------------------------ 

mdb.models[modelName].DisplacementBC(amplitude=UNSET, createStepName= 

    'step_Compression', distributionType=UNIFORM, fieldName='', fixed=OFF, 

    localCsys=None, name='bc_VPx', region= 

    mdb.models[modelName].rootAssembly.instances['inst_VPx'].sets['set_VPx'] 

    , u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

# externally applied strain through the virtual points (y-dir) 

#------------------------------------------------------------ 

mdb.models[modelName].DisplacementBC(amplitude=UNSET, createStepName= 

    'step_Compression', distributionType=UNIFORM, fieldName='', fixed=OFF, 

    localCsys=None, name='bc_VPy', region= 

    mdb.models[modelName].rootAssembly.instances['inst_VPy'].sets['set_VPy'] 

    , u1=UNSET, u2=-0.005, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

# ---------------------------------------------------------------------------------------------------------------------------  

# Set up periodic constraint equations ------------------------------------------------------------------------------------

-- 

# right and left edges 

for i in range(0,len(nodes_leftEdge)): 

    # preparation of Coefficients 

    leftCoord=mdb.models[modelName].parts[partName].sets['set_NodesLPair_' + 

str(i)].nodes[0].coordinates 

    rightCoord=mdb.models[modelName].parts[partName].sets['set_NodesRPair_' + 

str(i)].nodes[0].coordinates 

    coeff1 = -(rightCoord[0]-leftCoord[0]) 

    # x-coordinate (Ux_Vpx, H11) 

    mdb.models[modelName].Equation(name='constraint_xLR_' + str(i), terms=( 

        ( 1.0, 'inst_2DVoidPlate.set_NodesRPair_' + str(i), 1), 

        (-1.0, 'inst_2DVoidPlate.set_NodesLPair_' + str(i), 1), 

        (coeff1, 'inst_VPx.set_VPx', 1))) 

    # y-coordinate (Uy_Vpx, H21) 

    mdb.models[modelName].Equation(name='constraint_yLR_' + str(i), terms=( 

        ( 1.0, 'inst_2DVoidPlate.set_NodesRPair_' + str(i), 2), 

        (-1.0, 'inst_2DVoidPlate.set_NodesLPair_' + str(i), 2), 

        (coeff1, 'inst_VPx.set_VPx', 2))) 

# top and bottom edges 

for i in range(0,len(nodes_bottomEdge)): 

    # preparation of Coefficients 

    bottomCoord=mdb.models[modelName].parts[partName].sets['set_NodesBPair_' + 

str(i)].nodes[0].coordinates 

    topCoord=mdb.models[modelName].parts[partName].sets['set_NodesTPair_' + 

str(i)].nodes[0].coordinates 

    coeff2 = -(topCoord[1]-bottomCoord[1]) 

    # x-coordinate (Ux_Vpy, H12) 

    mdb.models[modelName].Equation(name='constraint_xTB_' + str(i), terms=( 

        ( 1.0, 'inst_2DVoidPlate.set_NodesTPair_' + str(i), 1), 

        (-1.0, 'inst_2DVoidPlate.set_NodesBPair_' + str(i), 1), 

        (coeff2, 'inst_VPy.set_VPy', 1))) 

    # y-coordinate (Uy_Vpy, H22) 

    mdb.models[modelName].Equation(name='constraint_yTB_' + str(i), terms=( 
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        ( 1.0, 'inst_2DVoidPlate.set_NodesTPair_' + str(i), 2), 

        (-1.0, 'inst_2DVoidPlate.set_NodesBPair_' + str(i), 2), 

        (coeff2, 'inst_VPy.set_VPy', 2))) 

# ---------------------------------------------------------------------------------------------------------------------------  

# Field Output ------------------------------------------------------------------------------------------------------------  

# Force/Displacement at the Virtual Points 

mdb.models[modelName].FieldOutputRequest(createStepName= 

    'step_Compression', name='output_VPx', rebar=EXCLUDE, region= 

    mdb.models[modelName].rootAssembly.instances['inst_VPx'].sets['set_VPx'] 

    , sectionPoints=DEFAULT, variables=('RF', 'U', 'S')) 

mdb.models[modelName].FieldOutputRequest(createStepName= 

    'step_Compression', name='output_VPy', rebar=EXCLUDE, region= 

    mdb.models[modelName].rootAssembly.instances['inst_VPy'].sets['set_VPy'] 

    , sectionPoints=DEFAULT, variables=('RF', 'U', 'S')) 

#-------------------------------------------------------------------------------------------------------------- ------------- 

#Create and submit the job for processing -------------------------------------------------------------------------------

--- 

mdb.Job(contactPrint=OFF, description='', echoPrint=OFF, explicitPrecision= 

    DOUBLE, historyPrint=OFF, memory=16000, memoryUnits=MEGA_BYTES, model= 

    modelName, modelPrint=OFF, multiprocessingMode=DEFAULT, name='job_2DVoidPlate', 

    nodalOutputPrecision=SINGLE, numCpus=1, numDomains=1, 

    parallelizationMethodExplicit=DOMAIN, scratch='', type=ANALYSIS, 

    userSubroutine='') 

mdb.jobs['job_2DVoidPlate'].submit(consistencyChecking=ON) 

mdb.jobs['job_2DVoidPlate'].waitForCompletion() 

mdb.saveAs(pathName=subPath + 'job_2DVoidPlate.cae') 

#--------------------------------------------------------------------------------------------------------------------------- 

#Postprocessing ------------------------------------------------------------------------------------------------------------  

o1 = session.openOdb(name= subPath + 'job_2DVoidPlate.odb') 

session.viewports['Viewport: 1'].setValues(displayedObject=o1) 

odb = session.odbs[subPath +'job_2DVoidPlate.odb'] 

 

##View-------------------------------- 

 

 

myViewport = session.Viewport(name='myViewport', origin=(10, 10), width=180, height=180) 

myOdb = visualization.openOdb(path=subPath +'job_2DVoidPlate.odb') 

myViewport.setValues(displayedObject=myOdb) 

 

# set viewport settings 

v = 'Front' 

myViewport.view.setValues(session.views[v]) 

myViewport.maximize() 

myViewport.view.fitView() 

myViewport.odbDisplay.basicOptions.setValues(coordSystemDisplay=ON, translucencySort=ON) 

myViewport.odbDisplay.commonOptions.setValues(visibleEdges=FEATURE, uniformScaleFactor=1.0)  # 

NONE 

myViewport.odbDisplay.contourOptions.setValues(contourStyle=CONTINUOUS) # DISCRETE 

CONTINUOUS 

#myViewport.odbDisplay.contourOptions.setValues(showMinLocation=ON,showMaxLocation=ON) 

#myViewport.odbDisplay.contourOptions.setValues(numIntervals=6) 

myViewport.viewportAnnotationOptions.setValues(triad=OFF, title=OFF, state=OFF,  compass=OFF, 

                                              legend=OFF, legendPosition=(75, 95), legendBox=OFF, 
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                                              legendFont='-*-verdana-medium-r-normal-*-*-120-*-*-p-*-*-*', 

                                              statePosition=(1, 15), 

                                              titleFont='-*-verdana-medium-r-normal-*-*-120-*-*-p-*-*-*', 

                                              stateFont='-*-verdana-medium-r-normal-*-*-120-*-*-p-*-*-*') 

 

 

# saving undeformed image 

myViewport.odbDisplay.display.setValues(plotState=(UNDEFORMED, )) 

path_filename = subPath +'job_2DVoidPlate_UNDEFORMED' 

try: 

    session.printToFile(path_filename, PNG, (myViewport,)) 

except: 

    pass 

 

# save stress plots 

o = 'S' ; c = 'S22' ; s = 0 ; f = -1 

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF, )) 

myViewport.odbDisplay.setFrame(step=s, frame=f) 

myViewport.odbDisplay.setPrimaryVariable(variableLabel=o,outputPosition=INTEGRATION_POINT,ref

inement=(COMPONENT, c), ) 

myViewport.odbDisplay.commonOptions.setValues(deformationScaling=UNIFORM, 

uniformScaleFactor=1.0) 

myViewport.odbDisplay.contourOptions.setValues(contourStyle=CONTINUOUS, 

maxAutoCompute=OFF, maxValue=-2443, minAutoCompute=OFF, minValue=-5500, 

outsideLimitsMode=SPECIFY, outsideLimitsBelowColor='DeepPink') 

path_filename = subPath +'job_2DVoidPlate_S11' 

try: 

    myViewport.view.fitView() 

    session.printToFile(path_filename+'.png', PNG, (myViewport,)) 

except: 

    pass 

# save stress plots zoom 

o = 'S' ; c = 'S22' ; s = 0 ; f = -1 

myViewport.view.fitView() 

myViewport.view.zoomRectangle(point1=(0.25-0.05, 0.5+0.1), point2=(0.25+0.1, 0.5-0.1) ) 

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF, )) 

myViewport.odbDisplay.setFrame(step=s, frame=f) 

myViewport.odbDisplay.setPrimaryVariable(variableLabel=o,outputPosition=INTEGRATION_POINT,ref

inement=(COMPONENT, c), ) 

myViewport.odbDisplay.commonOptions.setValues(deformationScaling=UNIFORM, 

uniformScaleFactor=1.0) 

myViewport.odbDisplay.contourOptions.setValues(contourStyle=CONTINUOUS, 

maxAutoCompute=OFF, maxValue=-2443, minAutoCompute=OFF, minValue=-5500, 

outsideLimitsMode=SPECIFY, outsideLimitsBelowColor='DeepPink') 

path_filename = subPath +'_S22_zoom' 

try: 

 myViewport.view.fitView() 

 myViewport.view.zoomRectangle(point1=(0.25-0.1, 0.5+0.1), point2=(0.25+0.1, 0.5-0.1) ) 

 session.printToFile(path_filename+'.png', PNG, (myViewport,)) 

except: 

    pass 

  

myViewport.view.fitView() 
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# save displacement plots 

o = 'U' ; c = 'U1' 

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF, )) 

myViewport.odbDisplay.setFrame(step=s, frame=f) 

myViewport.odbDisplay.setPrimaryVariable(variableLabel=o,outputPosition=NODAL,refinement=(COM

PONENT, c), ) 

myViewport.odbDisplay.commonOptions.setValues(deformationScaling=UNIFORM,uniformScaleFactor=

1.0) 

myViewport.odbDisplay.contourOptions.setValues(contourStyle=CONTINUOUS, 

maxAutoCompute=OFF, maxValue=0.038, minAutoCompute=OFF, minValue=-0.068) 

path_filename = subPath +'job_2DVoidPlate_U1' 

try: 

    myViewport.view.fitView() 

    session.printToFile(path_filename+'.png', PNG, (myViewport,)) 

except: 

    pass 

  

 

o = 'U' ; c = 'U2' 

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF, )) 

myViewport.odbDisplay.setFrame(step=s, frame=f) 

myViewport.odbDisplay.setPrimaryVariable(variableLabel=o,outputPosition=NODAL,refinement=(COM

PONENT, c), ) 

myViewport.odbDisplay.commonOptions.setValues(deformationScaling=UNIFORM, 

uniformScaleFactor=1) 

myViewport.odbDisplay.contourOptions.setValues(contourStyle=CONTINUOUS, 

maxAutoCompute=OFF, maxValue=0.028, minAutoCompute=OFF, minValue=-0.089) 

path_filename = subPath +'job_2DVoidPlate_U2' 

try: 

    myViewport.view.fitView() 

    session.printToFile(path_filename+'.png', PNG, (myViewport,)) 

except: 

    pass 

 

 

 

 

##----------- 

 

 

session.fieldReportOptions.setValues(printTotal=OFF, printMinMax=OFF, 

reportFormat=COMMA_SEPARATED_VALUES) 

session.writeFieldReport(fileName='job_2DVoidPlate_stress.csv', append=ON,  

 sortItem='Element Label', odb=odb, step=0, frame=1, outputPosition=INTEGRATION_POINT, 

 variable=(('S', INTEGRATION_POINT, ((COMPONENT, 'S11'), (COMPONENT, 'S22'),)), )) 

session.writeFieldReport(fileName='job_2DVoidPlate.csv', append=ON, 

    sortItem='Node Label', odb=odb, step=0, frame=1, outputPosition=NODAL, 

    variable=(('RF', NODAL, ((COMPONENT, 'RF1'), (COMPONENT, 'RF2'), )), ('U', 

    NODAL, ((COMPONENT, 'U1'), (COMPONENT, 'U2'), )), ('S', NODAL, ((COMPONENT, 'S11'), 

(COMPONENT, 'S22'),)), )) 

import csv 

csv_name='Interest_Point.csv' 
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area_plate = width_plate*height_plate; 

with open(csv_name, 'wb') as myfile: 

    wr = csv.writer(myfile, quoting=csv.QUOTE_NONE) 

    wr.writerow(interestPoint) 

A=mdb.models[modelName].parts[partName].faces[0].getSize() 

Area=[A, ] 

por=(1-(A/area_plate))*100 

Poros=[por, ] 

import csv 

csv_name='Interest_Point.csv' 

with open(csv_name, 'wb') as myfile: 

    wr = csv.writer(myfile, quoting=csv.QUOTE_NONE) 

    wr.writerow(interestPoint) 

csv_name='Area.csv' 

with open(csv_name, 'wb') as myfile: 

    wr = csv.writer(myfile, quoting=csv.QUOTE_NONE) 

    wr.writerow(Area) 

csv_name='Porosity.csv' 

with open(csv_name, 'wb') as myfile: 

    wr = csv.writer(myfile, quoting=csv.QUOTE_NONE) 

    wr.writerow(Poros) 

ElemNum=(ElemNum, ) 

csv_name='ElemNum.csv' 

with open(csv_name, 'wb') as myfile: 

    wr = csv.writer(myfile, quoting=csv.QUOTE_NONE) 

    wr.writerow(ElemNum) 

 

# ---------------------------------------------------------------------------------------------------------------------- ----- 

Appendix C  MATLAB-python-ABAQUS interaction script 

function 

[Por,nu,I_point,S11_max,S22_max,S11_min,S22_min,ElemNum]=funct(n1,n2,n3,mM,a,b,B,seed_mesh,ed

ge_seed_mesh,i)  

%This MATLAB Script comunicates with ABAQUS by editing a python script 

%using cmd commands and powershell commands, then using cmd comands to run 

%the python script on ABAQUS 

 

%This first line sets a character line with the general setup of lines to 

%be changed in the python script by a powershell command in the windows cmd 

%the # characters represent blank spaces to be filled 

 

%Will require a base txt file containg the base python code and the blank 

%spaces in this location  

\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\Auxetic_with_super_formula_stopholes_csv_2_d

c.txt  

    command=char(['powershell -command "(Get-Content \\samba1\mbarilla\dcengr\Downloads\'... 

        'Auxetic_Stopholes\Auxetic_with_super_formula_stopholes_csv_2_dc.txt )'... 

        '.Replace(''seed_mesh =#      # seed-mesh (in mm)'',''seed_mesh =0.15      # seed-mesh (in mm)'')'... 

        '.Replace(''B=#  #scale in y'',''B=0.07  #scale in y'')'... 

        '.Replace(''edge_seed_mesh =#           # edge-seed-mesh (in mm)'',''edge_seed_mesh =0.05           # edge-

seed-mesh (in mm)'')'... 

        '.Replace(''n1=#  #exponent'',''n1=1.0  #exponent'')'... 
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        '.Replace(''n2=#  #exponent'',''n2=4.0  #exponent'')'... 

        '.Replace(''n3=#  #exponent'',''n3=8.0  #exponent'')'... 

        '.Replace(''m=#   #frequency'',''m=2.0   #frequency'')'... 

        '.Replace(''a=#   #symmetry'',''a=1.0   #symmetry'')'... 

        '.Replace(''b=#   #symmetry'',''b=1.0   #symmetry'')'... 

        '| Set-Content -Path 

\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\Auxetic_with_super_formula_stopholes_csv_2_d

c']... 

        +string(i)+'.txt"'); 

    %Each of the following sets one of the previous blank spaces found in 

    %the above character line 

    B=round(B,6); 

    B=fix(B*100000)/100000; 

    command=replace(command,'B=0.07 ','B=' + string(num2str(B,6)) + ' '); 

    command=replace(command,'edge_seed_mesh =0.05 ','edge_seed_mesh  =' + string(edge_seed_mesh) + ' 

'); 

    command=replace(command,'b=1.0','b=' + string(b) + ' '); 

    command=replace(command,'a=1.0','a=' + string(a) + ' '); 

    command=replace(command,'m=2.0','m=' + string(mM) + ' '); 

    command=replace(command,'n3=8.0','n3=' + string(n3) + ' '); 

    command=replace(command,'n2=4.0','n2=' + string(n2) + ' '); 

    command=replace(command,'n1=1.0','n1=' + string(n1) + ' '); 

    command=replace(command,'seed_mesh =0.15','seed_mesh =' + string(seed_mesh) + ' '); 

    %Display point to review results 

    disp(command) 

    %Run on Windows cmd 

    [b1,b2]=dos(command); 

    %Display control variables (0 or 1) for the command runned correctly 

    %and any resulting lines recieved by the cmd 

    disp(b1) 

    disp(b2) 

     

    %renaming as python script 

    a1=dos(char('rename 

\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\Auxetic_with_super_formula_stopholes_csv_2_d

c'... 

        +string(i)+'.txt Auxetic_with_super_formula_stopholes_csv_2_dc'+string(i)+'.py')); 

    disp(a1) 

     

    %Setting path to ABAQUS files to run the abaqus cae command properly 

    %(the path may vary depending on the actual computer path) 

    dos(char('path ;')); 

    com1=char(['cd C:\Temp\SIMULIA\Commands && abaqus cae 

noGUI=\\samba1\mbarilla\dcengr\Downloads\'... 

        'Auxetic_Stopholes\Auxetic_with_super_formula_stopholes_csv_2_dc']+string(i)+'.py'); 

    disp(com1) 

    a2=system(com1); 

    disp(a2) 

    %-------------------------Data acquisition---------------------- 

     

    %Depending on the python script several reports can be exported by 

    %ABAQUS in different formats. Now the main format used is CSV. Also 

    %some variables generated in the python SCRIPT can be exported directly 
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    %by python in the same format 

     

    %The file location is also defined in the python script, the path is 

    %automatically defined by the parameters inserted, therefore it is 

    %computed as a combinations of string versions of the variables 

    %inserted 

     

    %Important note: since the axis ratio and minor axis are not input 

    %variables for this script, if they get changed in the source python 

    %(.txt) script they have to be changed manually in the following 

    %commands. 

     

    %readtable command to read the file job_2DVoidPlate.csv 

     

   

     

    data=readtable(char("\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\" 

+"_mA0.45_AR11.0_sS"+string(seed_mesh*100)... 

        + "B" + string((B*1000000)) + "n1" + string(n1*100) + "n2" + string(n2*100) + "n3" + string(n3*100) 

+ "m" + string(mM*100)... 

        + "a" + string(a*100) + "b" + string(b*100) + "eSs" + string(round(edge_seed_mesh*100,0)) + "\" + 

"job_2DVoidPlate.csv")); 

    [m,~]=size(data); 

    data=table2array(data(1:m,14:15)); 

     

    %obtaining displacements of the vitual points as strain (may be 

    %subject to a different tranformation to represent actual strain) 

    Strain=data([m-1,m],[1,2]); 

    Strain=str2double(string(Strain)); 

    %Poison's ratio computation 

    nu=-(Strain(1,1)/Strain(2,2)); 

     

    %Reading the variable generated by python Interest_Point.csv, this 

    %variable correspond to the tip of the stophole geometry 

    I_point=csvread(char("\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\" 

+"_mA0.45_AR11.0_sS"+string(seed_mesh*100)... 

        + "B" + string((B*1000000)) + "n1" + string(n1*100) + "n2" + string(n2*100) + "n3" + string(n3*100) 

+ "m" + string(mM*100)... 

        + "a" + string(a*100) + "b" + string(b*100) + "eSs" + string(round(edge_seed_mesh*100,0)) + "\" + 

"Interest_Point.csv")); 

     

    %Reading the variable generated by python ElemNum.csv, this 

    ElemNum=csvread(char("\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\" 

+"_mA0.45_AR11.0_sS"+string(seed_mesh*100)... 

        + "B" + string((B*1000000)) + "n1" + string(n1*100) + "n2" + string(n2*100) + "n3" + string(n3*100) 

+ "m" + string(mM*100)... 

        + "a" + string(a*100) + "b" + string(b*100) + "eSs" + string(round(edge_seed_mesh*100,0)) + "\" + 

"ElemNum.csv")); 

     

     

    %Reading the variable generated by python Porosity.csv,  

    Por=csvread(char("\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\" 

+"_mA0.45_AR11.0_sS"+string(seed_mesh*100)... 
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        + "B" + string((B*1000000)) + "n1" + string(n1*100) + "n2" + string(n2*100) + "n3" + string(n3*100) 

+ "m" + string(mM*100)... 

        + "a" + string(a*100) + "b" + string(b*100) + "eSs" + string(round(edge_seed_mesh*100,0)) + "\" + 

"Porosity.csv")); 

    %reading the Stress report for all the integration points generated by 

    %ABAQUS as job_2DVoidPlate_stress.csv 

    data=readtable(char("\\samba1\mbarilla\dcengr\Downloads\Auxetic_Stopholes\" 

+"_mA0.45_AR11.0_sS"+string(seed_mesh*100)... 

        + "B" + string((B*1000000)) + "n1" + string(n1*100) + "n2" + string(n2*100) + "n3" + string(n3*100) 

+ "m" + string(mM*100)... 

        + "a" + string(a*100) + "b" + string(b*100) + "eSs" + string(round(edge_seed_mesh*100,0)) + "\" + 

"job_2DVoidPlate_stress.csv")); 

    [m,~]=size(data); 

    data1=table2array(data(1:m,5:8)); 

    data2=table2array(data(1:m,13:14)); 

    data=[data1,data2]; 

    data=str2double(string(data)); 

     

    %reducing the stress points acquired from all the integration ponts to 

    %integration points in a region around the interest point 

    j=1; 

    k=0; 

    l=0; 

    for i=2:m 

        if (data(i,3)-I_point(1,1))<2.5 %size of the region considered 

             if ((data(i,4)-I_point(1,2))<2.5) %size of the region considered 

                 k=[k,data(i,5)]; 

                 l=[l,data(i,6)] ; 

                 j=j+1; 

             end 

         end 

          

    end 

     %The minimum stress (applied compression strain in the 22 direction) 

     %on the region is stored as the stress at the 

     %interest point, given that it should be the point of maximum stress 

     %concentration. Maximums are also computed for the region but may be 

     %not representative of the stress at the interest point 

     S11_max=max(k); 

     S22_max=max(l); 

     S11_min=min(k); 

     S22_min=min(l); 

end 

Appendix D  MATLAB script: mesh study  

%requires update to the generalize script that allows to define all the 

%parameters of the superformula and to the new data acquisition for the 

%S11_min and S22_min 

n1=15; 

n2=25; 

n3=60; 

mM=2; 
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a=10; 

b=5; 

B=0.00187; 

seed_mesh=0.25; 

Range0=0.01; 

Range1=0.14; 

x=Range0:0.01:Range1; 

[~,n]=size(x); 

nu_mat=zeros(n,1); 

S11_max_mat=zeros(n,1); 

S22_max_mat=zeros(n,1); 

S11_min_mat=zeros(n,1); 

S22_min_mat=zeros(n,1); 

Porosity=zeros(n,1); 

ElemNumMat=zeros(n,1); 

time=zeros(n,1); 

j=1; 

for x=Range0:0.01:Range1 

    xreverse=Range1+Range0-x; 

    tic 

    

[Por,nu,I_point,S11_max,S22_max,S11_min,S22_min,ElemNum]=funct(n1,n2,n3,mM,a,b,B,seed_mesh,xr

everse,j) ; 

    nu_mat(j)=nu; 

    S11_max_mat(j)=S11_max; 

    S22_max_mat(j)=S22_max; 

    S11_min_mat(j)=S11_min; 

    S22_min_mat(j)=S22_min; 

    Porosity(j)=Por; 

    ElemNumMat(j)=ElemNum; 

    time(j)=toc; 

    j=j+1; 

end 

 

figure 

ax1 = subplot(1,3,1); 

ax2 = subplot(1,3,2); 

ax3 = subplot(1,3,3); 

plot(ax1,ElemNumMat,nu_mat) 

title(ax1,'nu') 

plot(ax2,ElemNumMat,S22_min_mat) 

title(ax2,'S22_min') 

plot(ax3,ElemNumMat,time) 

title(ax3,'time') 

Appendix E  MATLAB script: Batch simulation 

function Porosity_array(shapes) 

A=shapes(1,:); 

ll=length(A); 

B=shapes(2,:); 

M=shapes(3,:); 

N1=shapes(4,:); 
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N2=shapes(5,:); 

N3=shapes(6,:); 

S=shapes(7:9,:); 

[ii,~]=size(S); 

Porosity=zeros(ii,ll); 

seed_mesh=0.25; 

edge_seed_mesh=[0.05,0.1,0.15]; 

for l=1:ll 

    for i=2:2 

        tic 

        [Por,~,~,~,~,~,~]=funct(N1(l),N2(l),N3(l),M(l),A(l),B(l),S(i,l),seed_mesh,edge_seed_mesh(i),(ii*l-

ii)+i) ; 

        Porosity(i,l)=Por; 

        hhh=toc 

    end 

end 

end 

Appendix F  MATLAB script: Total search of scale for a batch of geometries 

function [nu_f,S22_min_f,Porosity_f,Scale_f]=Scale_total_search_array(shapes) 

A=shapes(1,:); 

ll=length(A); 

B=shapes(2,:); 

M=shapes(3,:); 

N1=shapes(4,:); 

N2=shapes(5,:); 

N3=shapes(6,:); 

S0=shapes(7,:); 

S1=shapes(8,:); 

for l=1:ll 

        n1=N1(l); 

        n2=N2(l); 

        n3=N3(l); 

        mM=M(l); 

        a=A(l); 

        b=B(l); 

        seed_mesh=0.25; 

        Range0=S0(l); 

        Range1=S1(l); 

        Step=(Range1-Range0)/4; 

        x=Range0:Step:Range1; 

        [~,n]=size(x); 

        edge_seed_mesh=linspace(0.15,0.2,n); 

        nu_mat=zeros(n,1); 

        S11_max_mat=zeros(n,1); 

        S22_max_mat=zeros(n,1); 

        S11_min_mat=zeros(n,1); 

        S22_min_mat=zeros(n,1); 

        Porosity=zeros(n,1); 

        q=1; 

        for x=Range0:Step:Range1 
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[Por,nu,~,S11_max,S22_max,S11_min,S22_min]=funct(n1,n2,n3,mM,a,b,x,seed_mesh,edge_seed_mesh(q

),(16*l-16)+q) ; 

            nu_mat(q)=nu; 

            S11_max_mat(q)=S11_max; 

            S22_max_mat(q)=S22_max; 

            S11_min_mat(q)=S11_min; 

            S22_min_mat(q)=S22_min; 

            Porosity(q)=Por; 

            q=q+1; 

        end 

        x=Range0:Step:Range1; 

        % figure 

        % ax1 = subplot(4,1,1); 

        % ax2 = subplot(4,1,2); 

        % ax3 = subplot(4,1,3); 

        % ax4 = subplot(4,1,4); 

        % plot(ax1,x,nu_mat) 

        % title(ax1,'nu') 

        % plot(ax2,x,S11_mat) 

        % title(ax2,'S11_min') 

        % plot(ax3,x,S22_mat) 

        % title(ax3,'S22_min') 

        % plot(ax4,x,Por_mat) 

        % title(ax4,'Por') 

        title_f= 'a-'+string(a)+'-b-'+string(b)+'-m-'+string(mM)+'-n1-'+string(n1)... 

            +'-n2-'+string(n2)+'-n3-'+string(n3)+'-S0-'+string(S0(l))+'-S1-'+string(S1(l)); 

        save(char(title_f + '.mat')) 

        title_g= 'a:'+string(a)+'-b:'+string(b)+'-m:'+string(mM)+'-n1:'+string(n1)... 

            +'-n2:'+string(n2)+'-n3:'+string(n3)+'-S0:'+string(S0(l))+'-S1:'+string(S1(l)); 

        figure('Name',title_g,'NumberTitle','off'); 

        ax1 = subplot(2,2,1); 

        ax2 = subplot(2,2,2); 

        ax3 = subplot(2,2,3); 

        ax4 = subplot(2,2,4); 

        plot(ax1,x,nu_mat) 

        title(ax1,'nu') 

        plot(ax2,x,S11_max_mat) 

        title(ax2,'S11_max') 

        plot(ax3,x,S22_min_mat) 

        title(ax3,'S22_min') 

        plot(ax4,x,Porosity) 

        title(ax4,'Porosity') 

         

        saveas(gcf,char(title_f +'.png')) 

        nu_f(:,l)=nu_mat; 

        S22_min_f(:,l)=S22_min_mat; 

        Porosity_f(:,l)=Porosity; 

        Scale_f(:,l)=x'; 

         

end 

title_comp='nu vs porosity'; 

figure('Name',title_comp,'NumberTitle','off'); 
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ax1 = subplot(1,1,1); 

for l=1:ll 

        plot(ax1,x,nu_mat) 

end 

end 
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