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Abstract 

 

High rates of concussion in the NFL suggest that helmet technology is not satisfactory for the 

athletes, and soft foam padding has dominated the helmet industry since its inception. The team 

proposed that implementing a fluid-based hydrolastic suspension system in the helmet would 

reduce the risk of concussions at all levels of competition. After using COMSOL to successfully 

model fluid flow through the dampers and after physical testing on dampers filled with air and 

water lead to increased "time to stop" of an average of 240% when compared to traditional foam 

padding, the team concluded that the dampers showed promise and the potential to benefit the 

padding potential of football helmets and decrease the risk of concussion for football athletes. 
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1. Introduction 

1.1 Concussion Prevalence in Football 

Impacts to the head, which result in a concussion, can occur in a variety of different ways. Motor 

accidents, falls, and sports-related injuries are some of the most common causes of concussions. 

In the world of sports and athletics, football is one of the leading causes of concussions [1]. 

 

Head-to-head collisions in football are frequent, and one of football's most notable characteristics 

is its physicality. Teams are aware of the risks that concussions pose to the athletes and try to 

minimize the occurrence of injuries to the head through the use of football helmets and 

mouthguards. Though these methods are likely more effective than doing nothing at all, they 

have not prevented football from being in the spotlight for the highest rates of concussions in 

sports. 

 

Concussions related to football occur at all (high-school, collegiate, and professional) levels, but 

much of the attention is on the National Football League (NFL). Athletes frequently incur hard 

impacts to the head while participating or practicing for the NFL. NFL teams try to prevent 

concussions by using mouthguards and advanced helmets. Two studies, titled "The Role of 

Personal Equipment in Preventing Sport-Related Concussions" [2] and "Do mouthguards prevent 

concussions?" [3] showed that the protective factors for mouthguards were insignificant. The 

only other method to limit concussions is by improving the helmet. It is therefore imperative to 

focus on the design of the padding system within the helmet. The padding system within the 

helmet seeks to increase the duration of an impact and seeks to absorb as much energy as it can 

from the impact. These two objectives work together to limit the net acceleration of the head and 

the likelihood of a serious brain injury occurring. 

 

The performance of football helmets has improved consistently throughout the NFL, but even as 

helmets improve, the rates of concussion are still rising. This is because players are getting 

stronger faster than helmets are improving. As advances in workout and diet regimes are 
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discovered, players are getting bigger and stronger and the corresponding number of concussions 

are increasing [4]. This is clear when comparing the size of a lineman from the 1920s and one 

from today. For example, Wilbur Henry, who was dominant in the league as a lineman during 

the 1920s at 5’ 11”, 245 lbs, is smaller than the average lineman in 2019 who is now 6’ 3” 330 

lbs [5]. 

 

Over the years, it is also likely that the frequency of concussions has increased so much because 

so has the ability to diagnose them. This has allowed statisticians to gather important data 

regarding the nature of concussions in the NFL. The following are important statistics that 

highlight concussions in the NFL, and the nature of the injury allows the team to effectively 

address the issues described [6]: 

 

● More concussions are produced in head-to-full-body contact compared to helmet-to-

helmet contact (45% vs 35% respectively) 

● Defenders are more likely to get concussions (41% compared to 22% offensive members) 

● 19% of all concussions are caused by helmet to ground injury, and in 35% of those 

instances, the back of helmet hits the ground  

 

Technicians use a variety of methods to diagnose concussions, but it is not a clear science and 

field diagnosis varies largely based on the player and the situation. Below are some of the 

symptoms that medical technicians use to diagnose concussions in athletes: 

 

● Loss of consciousness 

● Slow recovery (getting back on feet) 

● Poor motor control (stumbles, trips/falls, slow/labored movement) 

● Blank or vacant expression 

● Disorientation (e.g., unsure of where he is on the field or location of the bench) 

● Clutching of the head after contact 

● Visible facial injury in combination with any of the above [7] 
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Medical technicians have greatly improved the quality of safety for the athletes and the treatment 

of concussions, but in an ideal world, concussions would not occur at all. The ideal helmet would 

be able to prevent them and thereby hold the top spot for “safest football helmet.” Though this 

has not occurred yet, there are helmet designs that rank higher than others when tested for 

multiple safety requirements and net head deceleration.  

1.2 Extensive Brain Research and Significance 

It is important to understand the systems of the brain and what each of these systems is 

responsible for in order to understand the severity of concussion related injuries. There are four 

main parts of the brain: the cerebrum, the cerebellum, the limbic system, and the brain stem. The 

cerebrum is the largest part of the brain, and it was the main focus of the team's study.  

  

The cerebrum is split into four sections, called “lobes”, which are associated with the higher 

brain function such as thoughts, reasoning, visual processing, memory, and speech. Each lobe is 

responsible for a different part of human brain function. During a concussion, these lobes are 

damaged and can lead to changes in not only our motor skills but even our behavior. Frontal 

impacts will affect the front lobe, and other impacts from different sides of the head will affect 

those areas of the brain respectively. If a patient is showing a lack of motor skills versus speech 

skills, this is a potential indicator to medical professionals where the impact could have occurred 

in the brain. 

 

The frontal lobe is associated with reasoning, planning, emotions, language, and problem-

solving. The parietal lobe controls sensory perception including the five senses and includes 

processing of the various inputs. The occipital lobe processes visual inputs. The temporal lobe is 

associated with perception and recognition of sound stimuli, memory, and speech. 

 

The cerebellum is associated with coordination of movement, posture, and balance. It receives 

information from the spinal cord and other areas of the brain and regulates movements. The 

limbic system deals with emotions, memories, and arousal and is located deep within the 

cerebrum. The brainstem is responsible for basic vital life functions such as breathing, heartbeat, 

swallowing, and blood pressure [8]. 
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Concussions can result in swelling of the brain. This swelling contained within a small space 

(skull) can result in permanent damage to brain cells, which can have untold effects depending 

on what lobe it is in.  

1.3 Motivation and Goal 

After extensive research, the primary motivation for the development of better padding was to 

increase the overall safety of players at all levels. Player safety should be a primary concern at all 

levels of play and should not only benefit professionals. The final goal of the project was to 

create and implement a system that improves and replaces current helmet paddings within a 

standard shell. Other factors that were also considered were pricing, manufacturing, and comfort.  

1.4 Current Helmet Designs on the Market 

Before attempting to create a completely new design, the team decided to do further research on 

both basic and high performing helmets that were available to athletes at the professional level to 

see if any improvements could be made. The ratings for these helmets were provided by the NFL 

and NFLPA (National Football League Players Association). However, no specific testing 

procedures were listed. The VICIS ZERO I ranked has the safest helmet in its class according to 

this study [9].  

1.4.1 Standard Helmet Configurations 

A standard helmet highlights the basic principles of foam padding behind football helmets. It 

utilizes a series of foams of different densities to soften impacts to the head. These foams 

collapse under impact and absorb energy while they deform. Foams in football helmets have 

varied thickness and density based on location of the head.  

1.4.2 VICIS Zero1 

The best helmet on the market according to the NFL 2019 study, was the VICIS Zero1 helmet. 

This helmet utilized a soft external shell to dampen initial impacts. After force was dissipated by 

the shell, a series of vertical columns were used to disperse the rest of the impact. These 
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unconventional, vertical columns were capable of buckling and deforming to reduce residual 

impact forces.  

1.4.3 Riddell Speedflex 

Another effective and popular helmet that was used at the high school, collegiate, and 

professional level was the Riddell Speedflex. This helmet resembled more of a traditional 

approach to helmet technology and used standard foam units used to dissipate impact. However, 

the Speedflex adds an extra layer of protection in the form of inflatable airbag-like units that help 

dampen impact to a further degree as well as provide users with a snugger fit.  

1.5 Background Information on Traditional Padding 

The problem with traditional helmets that use foam padding is the manner in which foam pads 

dissipate impact energy. Foam dampers are not ideal for helmet applications because of their 

inconsistent damping effects, which is demonstrated well in Figure 1, where the grey curves 

track foam damper performance. 

 

Figure 1. Force-Displacement plots of dampers at fast, medium and slow impacts, where foam 

dampers are shown in grey and ideal dampers are shown in purple.  

 

Force-Displacement plots measure how much force a damper can resist per unit displacement (at 

a given level of compression) and are a good measure of damper performance. Figure 1 shows 

that the foam dampers provide very small resistive forces for the first part of their displacement. 

Additionally, energy must be conserved, so the area under the Force-Displacement curves cannot 
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change. As a result, the foam dampers must spike their resistive forces at the very end to 

maintain conservation of energy and area. These peak forces or accelerations are what cause 

concussions [10]. 

 

The ideal damper (purple curve) would smooth the grey curve yet maintain the same integral. 

This is done by providing a resistive force that is constant across all displacements, thus 

removing any harmful concussion-causing peak accelerations. The team began researching other 

inspiring dampers that created this effect, as this became the damper design’s driving criteria. 

1.6 Proposed Alternative to Traditional Padding  

1.6.1 Hydrolastic Suspension and Damping 

When researching old damper designs, the team found the hydrolastic suspension most inspiring 

as it employed several novel and applicable damping techniques.  

 

Hydrolastic suspensions were built in cars like the Austin Maxis (1978) and Leyland Minis 

(1964-1971) and would vary depending on what fluid was used, but the defining characteristics 

remained the same [11]. Hydrolastic suspensions used a network of interconnected variable area, 

“fluid displacer,” units that were fitted to each wheel. Unlike traditional piston-dampers, the 

individual hydrolastic dampers acted much like a balloon that changes shape under compression. 

Front and rear displacers were linked via a hose that would route fluid between dampers. This 

can be seen in Figure 2 below. 
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Figure 2. Simple schematic of a hydrolastic system. The damper, in blue, is being compressed by 

the bump coming in contact with the tire. This damper then sends fluid down a hose, shown 

through arrows, which then expands the other damper.  

 

Suppose a car hits a road-bump and impacts the front wheels first. The compressed hydrolastic 

dampers send fluid to their rear-suspension twins, preparing them for the road-bump. It is 

important to note that during this process, both of the dampers are fixed at a specific height, 

housed within the vehicle. Also, the area of the damper varies upon impact to utilize hydraulic 

advantages. 

 

These dampers were slowly phased out of industry use in cars, most likely because it was 

expensive and there were better and cheaper alternatives available.  

1.6.2 Advantages of Fluid Over Foam 

The team focused on adopting three key design features of the hydrolastic suspension and 

transplanting them into the helmet damper design as they showed promise in satisfying the 

team’s criteria: 

 

● A damper whose contact area varies with compression and expansion 

● A network of interconnected dampers that work together 

● The freedom to choose from several different fluid types 
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1.6.3 Variable Area 

The variable area trait of the suspension's individual dampers seemed to answer the team’s goal 

of smoothing the Force-Displacement curve (Figure 3).  

 

The variable area trait of the suspension's individual dampers allowed it to utilize hydraulic 

advantage. Hydraulic advantage is most often explained by the example of an automobile jack: 

 

 

Figure 3. Sketch of a car-jack setup analogy. F2 is greater than F1 since A2 is greater than A1 

and the pressures are equal (P1 = P2) while the jack is in hydrostatic equilibrium. 

 

As in Figure 3, the inlet and outlet pressures must be equal for the system to be in hydrostatic 

equilibrium. Rearranging Equations (1) and (2) for the inlet or applied force, it is clear that the 

applied force is a function of the ratio of the contact areas, shown in Equation (3).  

𝑃1 = 𝑃2 (1) 

𝑃 =
𝐹

𝐴
 

(2) 

[ 
𝐹1

𝐴1
=

𝐹2

𝐴2
 ] →  [ 𝐹1 = 𝐹2

𝐴1

𝐴2
 ] 

(3) 
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While the suspension dampers are not in hydrostatic equilibrium, the fundamental idea remains 

and thus gives justification to a variable area damper. Consider the simplified trapezoidal damper 

in Figure 4 below. The geometry is such that the area of the red side increases as the overall 

length decreases and increases with compression.  

 

 

Figure 4. Image of a trapezoidal damper, demonstrating the increase in contact area with 

compression. 

 

Similar to the hydraulic car-jack in Figure 3, an expression for the resistive force (blue) is 

obtained. The side with the bigger surface area touches the football player’s head, while the side 

with the smaller surface area interfaces with the helmet shell. Therefore, the red arrow indicates 

the applied force from impact, and the blue arrow indicates the resistive or reactionary force. The 

final force on a person’s head can be derived from Equations (4) and (5) and shown in Equation 

(6). 
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𝑃ℎ𝑒𝑎𝑑 = 𝑃ℎ𝑒𝑙𝑚𝑒𝑡 (4) 

𝑃 =
𝐹

𝐴
 

(5) 

[ 𝐹ℎ𝑒𝑎𝑑 = 𝐹ℎ𝑒𝑙𝑚𝑒𝑡

𝐴ℎ𝑒𝑎𝑑

𝐴ℎ𝑒𝑙𝑚𝑒𝑡
 ] 

(6) 

 

The force felt by the football player’s head (red force) is proportional to the ratio of its area 

(Ahead) to the helmet-side area (Ahelmet), which, as proven above, is a function of damper geometry 

and compression distance. As a result, Fhead will always be reduced thanks to hydraulic 

advantage — the ratio, Ahead:Ahelmet, can only be less than or equal to one. Variable area is a 

greatly valuable trait as it allows the designer to fine-tune damper geometry to achieve constant 

force (Fhead) behavior. This avoids the harmful and concussion-causing peak forces to the 

player’s head (see Figure 6 for more). 

 

Figure 4 was a simplification that was meant to emphasize the increase in contact area with 

compression; matter can neither be created nor destroyed, so the damper would not simply 

shorten and change contact area without any other geometric consequences. In reality, the 

variable area, and therefore constant force, effect would still hold, but the damper would also 

deform and bulge in the y-axis (whichever axis is perpendicular to the axis of compression) due 

to Poisson’s ratio and pressure within the damper – unless the fluid outlet orifice is so large that 

fluid may freely exit the damper without creating a significant outwards radial pressure, the . 

Figure 5 below demonstrates the variable area and Poisson’s effects for two-time frames: one at 

the start of compression, and another moments later. 
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Figure 5. This image shows two time frames of how a deformable fluid damper might compress 

under impact. The smaller surface area (red) touches the head while the larger surface area 

(blue) touches the helmet.  

1.6.4 Interconnected Dampers 

There are three benefits to interconnected dampers. First, interconnected dampers ensure that no 

damper is working independently. Though only one damper is affected by the applied force at a 

time, when connected, another damper can help reduce overall impact. The proposed 

interconnected configuration uses the combined damping effects of dampers to minimize and 

maximize surface area of the impacted and connected damper respectively. Since space in the 

helmet is limited, it was crucial to create dampers that were as compact as possible.  

 

Second, in the case of the cars fitted with hydrolastic suspension, this had the benefit of 

providing a unique and level ride. The team sought to recreate this leveling effect to prevent the 

football player’s head from falling off-axis as the neck is bent.  

 

Players who experience a form of whiplash during impact have increased chances of concussion 

due to the rapid acceleration from the sudden change in direction of travel [12]. Whiplash is 

caused when the impact force vector is not collinear with the center of mass axis (Figure 6). The 

team therefore sought to counteract whiplash with the leveling effect: a damper on the opposite 

side of impact would “catch” the head, slowing its speed relative to the helmet. 
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Figure 6. Example of an off-center collision that would cause the whiplash effect — a moment is 

created about the center of mass, twisting the neck and increasing the chance of concussion. 

 

Third, the fluid line that connected each pair of suspension dampers provided an additional 

energy dissipation mode in the form of a pressure drop. Pressure drops include pressure losses, 

head losses, and frictional losses (Equation (7)),  

 

𝛥𝑝 = (𝑓𝐷

𝐿

𝐷𝐻
+  𝐾)

𝜌𝑉2

2
 

(7) 

 

where Δp is the pressure drop, 𝞺 is the fluid density in kg per cubic meter, L is the pipe length, 

DH is the pipe diameter, V is the mean flow velocity, and 𝑓𝐷is the Darcy Friction factor. ΣK is the 

sum of the minor loss coefficients, which are a result of local flow obstacles, including bends, 

elbows, and (most importantly) the orifice type and size. 

 

It is clear that the pressure-drop increases with pipe length and decreases with pipe diameter, 

demonstrating the strong influence of geometric and mechanical design on damping effects. This 
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was ideal because it grants higher variability. The team could easily scale damping effects by 

simply changing the damper’s mechanical design. 

 

This additional mode of energy dissipation would allow the damper geometry to become even 

more compact, which is another reason the team decided to adopt the interconnected feature into 

the helmet’s damper design. 

1.6.5 Several Fluid Choices 

It is clear that the team had several fluid choices at their disposal since these suspensions came in 

the form of hydrolastic and hydrogas suspensions. This is a major benefit of fluid dampers in 

general: one may vary flow characteristics and damper performance by simply varying the 

damping fluid and making no changes to the mechanical design. 

 

This ability to easily alter flow characteristics and scale damping effects up or down is another 

advantage fluid dampers have over foam dampers. 

1.7 Customer Needs and Systems Level Requirements 

1.7.1 Establishing Needs 

Before exploring different methods to improve padding, the team interviewed people of different 

backgrounds to better understand the areas of improvement for helmets. These people included 

two football players, one football coach, one EMT, and one neurologist. The data provided from 

these interviews allowed the team to gain knowledge about the many different factors that go 

into the sport and its head related injuries and impacts. The EMT and neurologist offered a 

scientific background to get a better understanding of how and why concussions occur. The 

football players provided the practical perspective of the problems of wearing a football helmet, 

both in protection and comfort. The coach provided a useful business perspective, largely 

because a product needs to satisfy both a practical and financial need, it cannot succeed if it fails 

to fulfill either one.  
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1.7.2 Customer Needs 

After interviews were conducted, the team charted the most important areas of concern and can 

be seen in Table 1 below.  

 

Table 1. Organized customer needs from interviews with primary and secondary needs marked 

then ranked by importance, with a higher number yielding a higher value of importance.  

Field of Expertise Quote Leading to 

Need 

Primary Need & [Secondary 

Need] 

Importance 

(#/10) 

Football Player, Brent 

Baculi 

"He had no 

information about the 

type of helmets 

because they were 

standardized by his 

high school" 

Personal Player Safety 

 

[Increased knowledge of safety 

and equipment] 

8 

Football Player, Brent 

Baculi 

"...Greatest head to 

head contact that he 

was involved in were 

head to head clashes 

at the line of 

scrimmage. These 

hits were quick, 

somewhat like a jab." 

Helmet Longevity 

 

[Repeated loading and 

resistance to fracture and 

leakage] 

8 

Football Player, Brent 

Baculi 

"...Greatest head to 

head contact that he 

was involved in were 

head to head clashes 

at the line of 

scrimmage. These 

Helmet Longevity and 

Durability 

 

[Resistance to quick, impactful 

contact that occurs for short 

periods of time] 

6 
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hits were quick, 

somewhat like a jab." 

Football Player, Brent 

Baculi 

"Many choose to 

fight through the 

pain, wanting to 

avoid meeting with 

the medical team" - 

Michael Simeon 

Player Safety 

 

[Increased knowledge in 

personal safety and equipment 

that indicates high hit levels] 

8 

Football Player, Brent 

Baculi 

"He found that a 

lighter helmet would 

be beneficial for his 

own position" 

Change in helmet design 

 

[Decrease in overall weight on 

head] 

10 

Football Player, Brent 

Baculi 

"These helmets 

tended to get really 

stuffy due to the 

nature of the game" 

Change in helmet design 

 

[Increase in ventilation] 

10 

Football 

Player/Coach 

“they are not that bad, 

measuring about 5 

lbs.” 

Retain helmet design 

 

[Keep weight somewhere near 

5 lbs] 

7 

Football 

Player/Coach 

Current helmets are 

so good that he could 

“take a nap in one.” 

Retain helmet design  

 

[Keep similar headspace 

within helmet] 

7 

Football 

Player/Coach 

Vince introduced 

Xenith’s fitment 

concept. 

Needs fitment adjustability 

 

3 
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[Helmet should be form fitting, 

not just size] 

Football Player, 

Kaleb Pattawi 

Issued a Riddell 

Speedflex helmet that 

was issued by the 

school. He had no 

choices when 

choosing a helmet, as 

the helmets that were 

provided only fit 

certain head types 

Needs fitment adjustability 

 

[Helmets should be easily 

adjustable to account for how 

much space that one needs 

within the helmet] 

7 

EMT, 

Kennedy Sundberg 

"a magnitude of G's 

would be helpful to 

set an index of 

suspicion following 

the impact" 

Accurate force magnitude 

readings 

 

[Accelerometers must provide 

accurate force magnitude 

readings] 

10 

EMT, 

Kennedy Sundberg 

"way easier to take 

the front off 

completely" 

Needs fitment adjustability 

 

[Helmet can be disassembled] 

7 

EMT, 

Kennedy Sundberg 

"the back part, where 

the brain stem meets 

the skull, is a super 

important area" 

Must protect the lower-back of 

the head 

 

[Requires fluid dampers at the 

lower back of the head] 

10 

EMT, 

Kennedy Sundberg 

 

"evenly spaced along 

the temples, and with 

special attention to 

Dampers must at least protect 

all surfaces of the skull 

 

9 
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the cracks in the skull 

that connect it 

together." 

[Damper location coincides 

with biomechanics of the 

skull] 

Neurologist, 

Dr. James Kelly 

countercoup and coup 

impacts are equally 

common and equally 

dangerous 

Helmet must protect against 

both types of impacts 

 

[Test helmet for satisfaction of 

both impact types] 

10 

 

See Appendix A1 For Raw Transcripts and Information for Interviews. 
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1.8 Scheduling and Planning for the Project 

1.8.1 Fall Quarter Schedule 

The fall quarter schedule, seen in Figure 7, was focused on project planning for the rest of the 

year and laying the foundations for testing in the future. This schedule predicted that the testing 

apparatus would be designed and parts for it would be purchased within the quarter. The 

schedule also predicted that testing of the linear impact would be completed and that the FEA 

(Finite Element Analysis) models for the impact would be completed.  
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Figure 7. Gantt chart of Fall Quarter Schedule. 
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1.8.2 Winter Quarter Schedule 

The winter quarter schedule focused on completing many of the tasks that were not completed 

during the fall quarter. These tasks included building the testing apparatus, finding suitable 

dampers and putting together a testable helmet. Also, the winter quarter further developed the 

FEA models that were developed during the previous quarter. This schedule can be seen in 

Figure 8 below. 

 
Figure 8. Gantt chart of Winter Quarter Schedule. 
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1.8.3 Spring Quarter Schedule 

For the spring quarter, the team made both a "best-case" and a "worst-case" schedule depending 

on the severity of the COVID-19 pandemic (see Figures 9 and 10 respectively for each scenario). 

COVID-19 would greatly affect the availability of the Machine Shop. The "best-case" schedule 

predicted that the Machine Shop would reopen during the third week of classes, and the "worst-

case" schedule predicted that the Machine Shop would not open throughout the remainder of the 

year. Unfortunately, the Machine Shop stayed closed throughout the rest of the year. 

 

The spring quarter "best-case" schedule focused on preparations for when the Machine Shop 

would open. If allowed, the team would have finalized the testing apparatus and finalized the 

assembly of the helmet and put them together in the Machine Shop to complete impact testing. 

Another main focus of this quarter was to prepare for the senior design conference. 

 

The “worst-case” schedule shifted focus away from the use of the Machine Shop. The team 

planned to focus more efforts into FEA modeling in Solidworks and COMSOL as well as 

exploring other impact simulations for the best possible results. This schedule also prepared the 

team for the senior design conference. 
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1.9 Teamwork and Task Management 

The team employed a democratic style of leadership throughout the entirety of the year, and this 

allowed members to break off into areas of expertise. In general, two members oversaw most of 

the design and building of the testing apparatus, one member focused mostly on COMSOL 

simulations to provide baseline numbers, and the last member focused on damper design and 

fabrication once the specific damper was chosen. Additionally, every member showed 

leadership, keeping others accountable for deadlines and other necessary requirements. 

Moreover, in terms of logistics, two members took more control of ensuring that every 

assignment and deadline was met well before the due date, but all four members worked on 

assignments when necessary. 

 

From the early stages of the project, one person was designated the primary contact between 

different faculty members and staff. This member was held responsible for contacting advisors, 

shop managers, and other faculty members. However, as the project began to expand and ramp 

up, other team members took control and contacted appropriate faculty when needed. 

 

In terms of team management, each team member held each other accountable to ensure that 

progress was being made on both the hardware and software side of the overall project. All 

members were responsible for different areas. 
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2. Product Development 

2.1 Product Goal and First Sketch 

To develop and test a novel football helmet padding system which utilized hydrolastic damping, 

the team would need to develop a testing apparatus for the helmet, design the helmet, and 

incorporate instrumentation devices to measure the helmet's performance compared to other 

helmets on the market. As this was an entirely new product, the team needed to create each of 

these three components in order to have a successful product. Below, in Figure 11 was one of the 

team's first ideas for a hydrolastic football helmet. 

 

 

Figure 11. This was one of the team's first design ideas for a novel padding system for the 

football helmet. It would use connected fluid dampers (as seen in blue) and it would be able to fit 

within the prescribed geometries of a traditional football helmet. 

2.2 Developing a Testing Apparatus 

2.2.1 Brainstorming 

Prior to refining a design for a testing apparatus, a number of different options were considered 

and scored accordingly. The first idea chosen was an air compressor driven system that would 

send a weighted mass down a secure track. This method was considered due to its repeatability 

and its overall likeness to realistic scenarios. A weighted mass being launched down a track 
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would allow for an instantaneous impact that was desired for this testing procedure. However, 

the team felt as if this method of testing would be deemed unsafe due to the necessity of 

pressurized air. This method of testing would require the design of an intricate safety shield and 

rail based system that would detract from the original goal of the project.  

 

A safer method of testing that was also considered was a standard drop test mechanism. This 

mechanism would allow for the team to hoist and drop an object to a specific height using a 

remote pulley system. Though this system was safer and just as repeatable as the compressed air 

idea, this system provided the team with only one testing form. It would only simulate head to 

ground impact, which was not enough to justify a creation of an entire testing apparatus. 

 

The third and most realistic testing idea was a simplified version of a Charpy testing apparatus. 

This pendulum based design theoretically provided the team with all of the strengths of both the 

compressed air and drop test ideas. It was just as safe as the drop test mechanism because all of 

the stored energy was accounted for from the height of the pendulum. Also, it was just as 

repeatable as both of the prior testing mechanisms because the pendulum arm could be raised to 

a specific height at relative ease. Moreover, this testing design would prove to be just as multi-

dimensional as the compressed air idea as this design could simulate both head to head and head 

to ground impacts. 

2.2.2 Final Selection Parameters  

2.2.2.1 Frame 

The pendulum design was created primarily of standard 10’ sections of 1½” ABS (which were 

cut to size) in order to reduce overall weight and cost of the testing frame. ABS was the preferred 

material of choice due to its high strength to weight ratio and its ease of assembly. The frame 

was assembled using stock ABS joining-pieces, such as 1½” elbows, wyes, and double wyes. 

Also, 1½” PVC table cap fittings were used as well. The assembly of the frame was completed 

quickly due to the usage of quick-drying ABS and PVC adhesives as well as the ease of cutting 

ABS pieces to length with a standard hand saw. The final height of the frame stood at 5’ tall.  
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2.2.2.2 Railing 

A 5’ x 1⅝” aluminum Unistrut railing and 1⅝” channel wheels allowed for testing to simulate 

both a free impact and impact against a hard surface, both of which are very common methods of 

impact within the sport of football. This railing was mounted onto the base of the apparatus using 

⅝” sheet screws at both ends of the rail. The Unistrut channel chosen was durable and 

compatible with the 1⅝” wheels used during testing.  

2.2.2.3 Base 

A ¾” thick 4’ x 8’ birch plywood board was chosen for the base. First, the standard 4’ x 8’ board 

could be resized to 2.5’ x 8’ in order to account for storage restraints. The overall dimensions of 

the base were very flexible, and a plywood board was the best available material due to its low 

cost as well as its ease of customization. Moreover, this material was selected because of its ease 

of assembly. The ABS frame could be easily mounted onto the base using ⅝” sheet screws and 

1½” pipe clamps. These pipe clamps held the ABS frame in place and were installed by hand 

using a screwdriver and the ⅝” sheet screws. 

2.2.2.4 Pendulum System 

The initial pendulum used acrylic bearings that were attached to the top of the frame and oak 

arms that extended to the acrylic-encased brick that was chosen as the impact mass. This 

encasing was created by laser cutting a ¼” thick sheet of acrylic (Figure 12). The mass encasing 

would also feature a foam pad on the face of impact to simulate a more realistic method of 

impact, as well as protecting the encasing from shattering. However, after careful consideration, 

this design was changed because the acrylic was too brittle and could have fractured during 

impact.  

 



28 

 

Figure 12. Image of the first impact mass (a brick encased in an acrylic enclosure). This design 

was deemed unsafe because it was too brittle and could have shattered during impact testing. 

2.2.2.5 Changing Materials 

The acrylic bearings and the acrylic impact mass encasing were changed due to safety concerns. 

Though acrylic was highly customizable, cheap to purchase, and easy to handle, it suffered from 

immediate and catastrophic failure when broken. 

 

To replace the acrylic bearings, the team laser cut 3-layer ¼" plywood in the same shape that was 

used for the acrylic. For the swinging mass, the brick encased in acrylic was replaced with an 

aluminum block. Wood and aluminum do not chip and fracture as easily as acrylic, and the brick 

was essential for testing, so a solid aluminum impact mass would be sufficient for testing. The 

team then set out for custom machining of an aluminum block to be used as the impact mass. 

2.2.2.6 Modifying the Frame 

The frame also raised some safety concerns when considering tensile stresses and beam bending. 

Before constructing the testing apparatus, the team needed to ensure that the horizontal beam 

would not fracture under load. The tensile strength of ABS was approximately 3210 psi, and 

after using a Solidworks FEA model for both a 30” beam and a 16” beam, as seen in Figures 13 

(30” beam) and 14 (16” beam) below, the estimated max stress that the beam would feel while 

carrying a load of roughly 16 pounds would be approximately 196 psi and 98 psi for the 30” and 



29 

16” beams respectively. Both of these values provided reassurance and the common 

understanding that the beam would not fracture. 

 

Figure 13. Simple FEA of the 30” horizontal beam supported at its ends and holding the weight 

of the impact mass via two bearings. The stress concentration can be visibly seen toward the 

ends of the beam, noted in red. 
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Figure 14. Simple FEA of the 16” horizontal beam supported at its ends and holding the weight 

of the impact mass via two bearings. The stress concentration can be visibly seen toward the 

ends of the beam, noted in red. 

 

After ensuring the beam would not suddenly fracture, it was important to address beam bending 

and overall deflection. The deflection equation that the team used can be highlighted in Equation 

(8) below. 

 

𝛿 =
𝑃𝐿3

48𝐸𝐼
 

(8) 

 

Where the load (P) was 16 lbs, the Modulus of Elasticity (E) was 145,000 psi, the Moment of 

Inertia (I) was 37.766 in4, and the length of the beam (L) was 30". The moment of inertia was 

calculated with the assumption of using a 4” inner diameter piece of ABS and a 0.14” thickness. 

 

After inputting values in Equation (8), the calculated deflection for the 30” beam was predicted 

to be 0.0016 in. Though this value seemed realistic and no cause for initial concern, the 
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horizontal beam of the testing apparatus deflected visibly when applied to the final design. As a 

result, the team decided to decrease the length of this beam to 16” to reduce deflection. 

Moreover, cutting the horizontal beam did not impact the testing area because the helmet would 

have still had more than enough space on the railing system on the plywood floor.  

2.2.2.7 Final Features and Interlocks 

To finalize the testing apparatus, the team needed to implement a safety interlock and a safety 

shield. The safety interlock would ensure that the release of the pendulum arm could be done 

remotely, and the safety shield would protect team members in case of sudden fracture of any 

material. The safety shield was to be added to the end of the plywood base, on the side that the 

pendulum mass was to be swung from, as seen in Figure 15 below.  

 

 

Figure 15. Solidworks model of the completed testing apparatus as well as a safety interlock and 

a safety shield. The height of the rig of is 5' tall. 
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The safety shield was to be supported by screws placed at the bottom of the plywood base as 

well as supported by a standard stepping stool. Ideally, this would have kept the safety shield in 

place throughout the duration of the testing process. 

 

The safety interlock would allow the pendulum arm to be cranked and fed through a latch, and 

the interlock latch would then have another piece of rope attached to it. Finally, the second piece 

of rope could then be pulled from a safe distance away from the apparatus to release the primary 

rope of the pendulum arm. The safety interlock is highlighted in Figure 16. 

 

Figure 16. Closer view of the two clamp system that allows the release mechanism to be 

completely remote.  
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2.2.2.8 Current State 

At its current state, the testing apparatus was not fully completed due to COVID-19 restrictions. 

The team created manuals explaining how to finish the construction of the testing apparatus, 

including safety interlocks and mechanisms.  

 

Manuals for finishing safety apparatus can be found in Appendix A2. 

2.3 Developing a Fluid Damper 

2.3.1 Brainstorming 

To begin the process of selecting a damper, the team created a scoring matrix that predicted the 

effectiveness of different damper solutions based on set parameters in terms of functionality, 

convenience, comfort, and manufacturing constraints. The best score was 10, and the worst score 

was 1. All values were properly scored in Table 2.  
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Table 2. This table shows the different damper designs graded based on different factors that the 

team was considering, such as functionality, convenience, comfort, and manufacturing 

restraints.  

 

 

More detailed description on each preliminary damper design is included in Appendix A3. 
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From this matrix, the team decided to further develop the “Reverse U,” Dog squeakers, and IV 

bag designs due to their successes in all aspects of the scoring matrix.  

2.3.2 Primary Sketches 

The Reverse U design was highlighted because of its ease of construction. It was a simplistic 

design that would be easily implemented and tested. Similar to the IV bag design, the reverse U 

will have large dampers which are connected through a series of fluid lines. The main advantage 

of the reverse U is that it can be wrapped around the entirety of the helmet and helps disperse the 

energy of the impact across a greater area. Preliminary designs can be seen in Figure 17 below.  

 

 

 

Figure 17. The image on the left shows a side view sketch of the “Reverse U” damping system. 

The image on the left shows the Solidworks model of the "Reverse U" damping system.  

 

The dog squeaker design was chosen for its ease of construction and pairing abilities. Dog 

squeakers had an air outlet that was perfect for tube fittings and were small enough to implement 

multiple units in one area. Initial designs can be seen in Figure 18 below.  
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Figure 18. The image on the left represents the front view sketch of the “Dog Squeaker” 

damping system. The image on the right represents the Solidworks model of the "Dog Squeaker" 

damping system.  

 

IV bags were chosen to test for an overall proof of concept. They provided the team with enough 

volume to prove the positive impacts of fluid damping. Moreover, IV bags were already 

configured to be attached, so linking the bags together was relatively easy. The system utilizes 

two large dampers located on the sides to absorb impacts then transfer fluid expanding the bags 

on the opposing side of the helmet. In Figure 19 below, the primary sketches of IV bag dampers 

can be seen.  

 

 

Figure 19. The image on the left represents the front view sketch of “IV Bags” damping system. 

The image on the right represents the Solidworks model of the "IV Bags" damping system. 

2.3.3 Store Bought Dampers 

Because IV bags and dog squeakers were relatively cheap and theoretically effective, both of 

these options were pursued. However, the team discovered a reusable water balloon, a silicone-



37 

based membrane, that could be a sufficient damping material. Because of its predicted 

effectiveness, this solution was also purchased.  

 

When conducting primary testing on the team’s three damper solutions, noticeable issues were 

discovered. First, the rigidity of the IV bags proved to be disadvantageous. When an 

instantaneous impact struck the water filled bag, no water was displaced. Moreover, when testing 

the water wubble, the membrane displaced too greatly in all directions. The water wubble 

disbursed the impact and flattened completely. The dog squeakers did not store enough volume 

to be tested further. 

 

To combat issues of rigidity and flexibility, the team decided to use an IV bag to encase the 

water wubble, so that the rigid shell would force water into the fluid tube and into the other water 

wubble. This configuration can be seen in Figure 20 below.  

 

 

Figure 20. The two water wubbles were connected together with a ¼" inner diameter plastic tube 

and the tubes and water wubbles were connected with zip ties. 

 

Though this worked to a certain extent, this solution was not optimal because this configuration 

did not take advantage of the benefits of hydrolastics. One of the main functions of hydrolastics 
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involved a damper with a varying area in order to smoothen the impulsive forces into more 

constant forces spread over a longer impact duration. This design featured a uniform surface area 

membrane that could be improved greatly. 

2.3.4 Custom Solutions to Store Bought Dampers 

To implement a variable area system, the team first looked to create a 3-D printed model to 

encase the water wubble. This encasing included a bulge toward the bottom of the structure to 

allow for water to be forced up from the water wubble into the tube, and into the other damper. It 

would have expanded both vertically and horizontally within the casing to allow for max 

coverage. The issue with this design was trying to find a material that was rigid enough to encase 

the free-forming water wubble but also malleable enough to not take away from the mechanical 

advantages of hydrolastics. This initial design can be seen in Figure 21 below. 

 

 

Figure 21. Encasing of the water wubble to provide rigidity and a varying area. The piece on the 

left would slide upward, reducing the overall area of the enclosure, forcing fluid from one 

damper to the other. 

 



39 

2.3.5 Designing a Custom Damper 

Because of challenges with store bought dampers and encasings, the team looked into custom 

dampers, of which 3D-printed TPU (thermoplastic polyurethane) was the best solution. TPU has 

similar properties to rubber but can be 3D printed or injection molded, making it ideal for rapid 

prototyping and mass production. 3D printing gives the flexibility to rapidly and cheaply 

prototype designs to get instant feedback.  

 

The difficulty with 3D printing lies in the variability that results from which specific material, 

print settings, and printer is being used. The primary printer being used was a Prusa MK3 with 

the default configuration of a AA 0.4mm brass nozzle and single extruder. The three 1.75mm 

TPUs used were manufactured by Sainsmart (blue), NinjaTek (black), and Ultimaker (black). 

Each of the three manufacturers only had one type of TPU available for purchase.  

 

Using these materials, a number of different print settings were tested to identify the one that 

worked best for the materials being used. The final print settings were a variation of the native 

TPU print settings in the 2020 PrusaSlicr software, the native software provided by Prusa 

printers to convert 3D files into a printable format. The infill was changed to 90% to prevent 

ghosting of the damper wall - where an inner layer and outer wall would form with some degree 

of space in between the two - and to limit the likelihood of leaking (print failure). An infill 

pattern of gyroid was used since it maximized the strength and flexibility profile of the print in 

all 3 directions (X, Y, and Z). Cubic was also used with success. Print bed temperature was 

originally set at room temperature (non-heated), but it resulted in a high print failure rate as the 

print in its early stages would get caught on the extruder. The resulting print bed temperature of 

100 C with a layer of glue (from an off-the-shelf glue stick) led to more reliable prints without 

getting stuck to the print bed. Each damper was also printed one-by-one, since multiple damper 

prints resulted in stringiness and gaps in the layers as the extruder rapidly changed direction to 

move from one damper to another. Other print settings such as print speed, layer thickness, and 

extruder temperature were unchanged from the native settings in PrusaSlicr.  

 

The initial damper design had a conical shape which provided a variable damping effect where 

the farther the damper is compressed, the larger the contact area is. It also utilized a side-facing 
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connection port to allow the dampers to be interconnected while minimizing the size. However, 

the pointed end of the conical damper resulted in instability so that the damper wouldn’t 

compress vertically but lean to one side or another.  

 

2.3.6 Final Design 

Figure 22 below shows the cross-sectional view of the final design. The pointed top was changed 

for a flat one to ensure vertical stability. The wall thickness also increased from an original 1mm 

all around to 1mm at the top and 1.5mm at the bottom. The increasing thickness added more 

structural stability the further the damper was compressed to reduce the risk of blow-out. 

 

Figure 22. Cross section of final design. The final damper had a base with a diameter of 2” and 

a height of 1.75”. A fillet of .25” was internally to decrease the stress concentration.  

 

FEA was also conducted on the final design to determine the areas of greatest elongation or 

stress. FEA was conducted using SolidWorks Education 2020 for static modeling. Each of the 

following models was conducted using the 3D design in CAD (Computer-Aided Design) with 

the bottom of the damper fixed and a total load of 50N being exerted on the top surface of the 

damper. The mesh created for the analysis was extremely fine and the analysis replicated to 

ensure accurate results. The elongation FEA (denoted in blue of Figure 23) showed that the 

critical area was a band around the lower midsection, roughly .45” from the bottom of the 

damper. This was a positive result since that section was also where the thickness of the damper 
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was the greatest and therefore the strongest. The stress concentration showed bending around the 

same area as well pictured as a green band in Figure 2.13. The finished dampers and some of the 

variations can be seen in Figure 24. The black dampers were printed with Ninjatek TPU and the 

blue dampers were printed with Sainsmart 95A TPU. 

 

 

Figure 23. FEA of the damper. Elongation FEA on the left and stress FEA on the right. Both 

FEAs proved to be positive responses as the areas that showed increased risk were also 

reinforced.  

 

 

Figure 24. 3D samples of the initial design in the background with the pointed tip and final 

design with the flat top. The black TPU was made using Ninjatek but proved to be too flexible 

whereas the blue TPU was made using Sainsmart 95A TPU which proved to have the best 

balance of flexibility and strength.  
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2.3.7 Fluid Choices 

Many different fluid options were considered for this project because the team wanted to 

consider viscosity as a beneficial or disadvantageous factor within the damper as well. However, 

because the fluid of choice was designed to come in close contact with people, it was important 

for the fluid of choice to be nontoxic. Syrup, water, and air were chosen as fluids of choice due 

to their wide range of viscosities, seen in Table 3 below, as well as their accessibility and overall 

safety.  

 

Table 3. The dynamic viscosities of water and air were found at 20 °C, while the dynamic 

viscosity of syrup was found at 21 °C due to the lack of charted data at a consistent interval. 

Fluid Type Dynamic Viscosity [Pa*s] 

Water [13] 1.002 * 10-3 

Air [14] 18.13 * 10-6 

Syrup [15] 15 * 10-2 

 

2.4 Developing a Model Head 

To test the dampers, the team needed a head to put them on as well as a body to attach 

instrumentation devices, such as accelerometers, too. It was important the head could survive 

multiple impacts from the testing apparatus, and it was important that the head would be rigid 

enough as to not take away potential force damping results from the dampers. 

2.4.1 Brainstorming 

The team decided between a traditional round head and a block head. A round head, as pictured 

on the left in the Figure 25 below, would have been effective, but its high price point led the 

team to search for other options for testing. When looking for other ways to mount and test the 

dampers, the team considered using a block head. A block head would provide customizable 
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geometry and have flat surfaces which would make the attachment of dampers to the sides of the 

head easier. 

 

 

 

 

Figure 25. (Pictured Left) A round head would be more similar to a human head, but its high 

price point was a limited factor for the team. (Pictured Right) The block head was simpler to 

design and more customizable for the team, and ultimately was the final choice testing. 

 

Each helmet design had pros and cons. For the round head, it's geometry would be most similar 

to that of a football athlete, but it was too expensive. The block head on the other hand was a 

cheaper alternative and was easier for the team to use during testing because of its flat surfaces. 

The team ultimately decided to use a block head instead of a round head. The block head would 

simplify the fabrication of the head, and it would provide the team with flat surfaces to attach 

dampers and instrumentation devices to. 

2.4.2 Developing a Block Head 

The final design of the block head included dampers on both sides, an accelerometer, Unistrut 

wheels, and a hard, outer shell. The blue dampers (as seen in the Figure 26 below) were 

connected by a blue fluid line. The accelerometer was placed on the side of the helmet and out of 

the way of the dampers.  
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Figure 26. Shows the block head and its instrumentation attachments. The dimensions of the 

block head were 8" x 4" x 5".  

 

The main features of the block head were the dampers and the connective fluid line, the 

accelerometer, the Unistrut wheels, and the rigid helmet. The dampers were mounted on either 

side of the helmet at a distance of 8" to replicate the average width of a football helmet (as was 

measured with a Riddell helmet which was donated to the team by St. Ignatius College 

Preparatory). The fluid line was to be attached to each of the dampers and mounted to the top of 

the block head. The inner diameter of the fluid line was not set at the time of design for the block 

head, and it was to be varied throughout the testing process.  

 

Another important feature of the block head was the accelerometer location. The accelerometer 

was placed on the side of the helmet so that it was out of the way of the damper fluid lines and so 

it could capture any rotational accelerations that could have occurred during the impact on top of 

the expected axial accelerations. Next, Unistrut wheels were attached to the bottom of the helmet 

to allow the helmet to roll away after impact. This movement would give the helmet dynamic 

movement and be more similar to the movement that a player may exhibit after a large contact to 

the head.  

 

Finally, a polycarbonate shell was to be attached to the outside of the block head which could 

encase the dampers and block head. This would replicate the hard shell of conventional helmets, 
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and it was important to the team that this shell was as rigid as possible to ensure that the shell did 

not absorb energy from the impact that otherwise would have gone to the dampers. 

2.4.3 FEA 

The purpose of this study was to learn whether or not the original square helmet design would 

deflect enough to render the rigid body assumption invalid. It was important to measure the 

square helmet’s rigidity for the purpose of future data validation. If the square helmet was too 

flexible, the rigid body assumption could not be made, and the accelerometer data would account 

for the combined damping effects of the dampers and square helmet. Such a result was 

undesirable as the team needed to measure the damping performance of only the dampers. 

 

Solidworks was used to create a CAD model and time-dependent FEA study of the block head 

and square helmet (Figure 27). The bottom face (Unistrut track side) of the block head was given 

a fixed boundary condition, and the left face of the square helmet was given an impact force. 
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Figure 27. Snapshot of the dynamic FEA study at the time-frame when square helmet 

deformation is greatest. Color gradient is representative of the displacement gradient. 

 

Unfortunately, the team found that the deformation was not negligible at a maximum 

displacement of 10.5 mm, as in Figure 27. As a result, the team redesigned the square helmet’s 

geometry to be completely covered except for the bottom face where the block head would fit 

through (Figure 28).  
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Figure 28. Image of second square helmet design iteration (left). The same part is on the right, 

but with hidden geometries shown to indicate the inner cavity. 

 

This iteration to the mechanical and geometric design of the square helmet increased its rigidity, 

thus reducing the maximum at the edge displacement to 3.2 mm (Figure 29) from 10.5 mm 

(Figure 27). 

 

 

Figure 29. Snapshot of the dynamic FEA study at the time-frame when square helmet 

deformation is greatest. Color gradient is representative of the displacement gradient. 

2.4.4 Instrumentation 

The most important instrumentation device for this project was the accelerometer. The 

accelerometer would measure the peak acceleration of the block head following the impact and 

give the team a better understanding of the forces felt by the block head during impact. The 

results from instrumentation tests are shown below in Figure 30. 
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Figure 30. The triple-axis accelerometer was calibrated through an Arduino and the plot on the 

right shows the output of the accelerometer after it was shaken by hand in the x, y, and z 

directions. The accelerometer functioned properly and showed peaks in the x, y, and z directions. 

 

A Sparkfun 3-axis Accelerometer ADXL377 breakout (part number: SEN-12803) was used in 

this experiment. The accelerometer had an operating voltage of 1.8V - 3.6V with a typical 

current of 300 μA. It had a range of ±200g with 3-axis sensing, and it was compatible with an 

Arduino UNO R3 [A000066]. Because of the success of the accelerometer during hand testing, 

both in terms of magnitude capture and precision, the team was confident with attaching the 

accelerometer to the side of the block head and trusted that it would record reliable data during 

the experiments. 
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3. Budget 

Over the course of the calendar year, the majority of the costs that accumulated can be traced 

back to the raw materials needed for the testing apparatus. Though some funding was required 

for testing and creating different dampers and other costs were allotted toward instrumentation, 

the testing apparatus required the most funding. Below in Table 4 is a small summary of the 

team's costs.  

 

A more detailed list of purchases can be found in Appendix A4.  

 

Table 4. Summary of the team's costs sorted by subsystem category and primary vendor. 

Subsystem Primary Vendor Combined Costs 

Testing Rig Home Depot $371.61 

Testing Rig/Dampers Amazon/Ebay $264.32 

Instrumentation/ 3D 

Print Filament Quartzy $107.23 

Block Head Maker Lab $14.00 

 Total $757.16 

 

As a whole, the project was geared toward optimizing spending. For example, the team chose 

ABS over other materials for the testing frame because it was cheaper than metal alternatives but 

still fulfilled the design requirements. Figures 31 and 32 below show physical representations of 

most of the cost involved with this project. 

 

To make this project cheaper, the team could have replaced the metal Unistrut wheels and track 

components for cheaper alternatives because those two items together were $190. Plastic wheels 

and a plastic track could have been used as an alternative to the metal parts.  
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Figure 31. The completed testing apparatus ($600).  

 

 

Figure 32. The completed dampers ($40). 

 

The team's project totaled to be $757.16, and this total was greatly under the $2,000 allotment 

that the team was awarded at the beginning of the year. The most expensive component of the 

project, the testing apparatus, totaled around $600. The damper filaments to 3D print the 
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dampers were $40 and other components that were bought for this project, but were never used, 

totaled to be around $120.   
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4. Effects of COVID-19 

The COVID-19 pandemic restricted the team's access to school facilities and it changed the 

team's plans for physical testing. As the impact of the virus unfolded, it was realized by the team 

that the combination of the testing apparatus and the testing head would not be able to be 

combined together and tested to achieve results. COVID-19 limited access to the machine shop 

and limited the team's interactions with each other. However, the situation did not stop the team 

from performing some forms of physical testing. Instead, it inspired the team to think of new 

ways to test the dampers.  

4.1 Designing a New Testing Apparatus  

The team's new testing apparatus was a simplified form of the drop test apparatus. This apparatus 

was designed to drop a 10-pound weight from a distance of 0.9” away from the top of the 

damper. The team felt as if this height was sufficient enough to provide adequate data as well as 

maintain a level of safety. The weight was held up by bricks, and these bricks could be pulled 

away quickly to allow the weight to fall on top of the damper consistently. To capture the 

behavior of the damper, an iPhone was used to videotape the behavior on slow motion capture. 

The two constants in this experiment were to be the weight of the impact mass (which was held 

constant at 10 pounds) and the distance from the bottom of the weight to the top of the damper 

(which was held constant at 0.9”). When the padding was to be tested, these parameters would 

not change. The Figure 33 below represents the basic design of the apparatus. 
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Figure 33. Schematic of the second testing apparatus. 

 

This apparatus cost $0 to make by using easy-to-access parts that could be found around a home 

and backyard. Though this apparatus was not exactly similar to a traditional drop test, the team 

was confident that the consistency of the weight and the consistency of the distance between the 

weight and the damper would provide reliable results for the team to analyze later.  

4.2 Completed New Testing Apparatus 

Below, in Figure 34, is the completed testing apparatus. This apparatus took approximately one 

hour to assemble, and as expected, the cost of this apparatus was $0. Lighting was provided 

behind the iPhone to give better visual results to the videos. As well, a ruler was added behind 

the damper to see how far the damper would compress before the weight would come to a 

complete stop. Towels were added under each of the bricks to limit scratches on the table as well 

as make the bricks slide away more easily and quickly. 
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Figure 34. Image of the completed second iteration of the testing rig. 
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5. Experimental Procedures 

5.1 COMSOL Setup Procedure and Boundary Conditions 

The CFD (Computational Fluid Dynamics) studies in COMSOL served as a prototyping ground 

for fundamentals, which helped the team to better understand which input parameters would 

change the output and how. The team chose to model in COMSOL because of its FSI (Fluid-

Structure Interaction) option, which provided a two-way coupled simulation study. This type of 

study was necessary since the damper subsystem exhibits flow acting on the damper structure as 

well as the damper structure acting on the flow.  

5.1.1 Model Setup 

The team created a simulation in which the flow would interact with a body (the damper) by 

pushing on and bending the damper (Figure 35). 

 

Figure 35. Screenshot of the COMSOL model setup, with key parameters shown, such as 

geometric properties, and inlet and outlet conditions. For this scenario, the lengths of different 

sections were defined and compared to one another using diameter “d,” which was 30 cm. The 

model’s large scale (d=30cm) was chosen to avoid computational difficulties – the scale was 

increased to 30 cm to mitigate the effects of unwanted flexibility within the walls of the proposed 

damper, which would otherwise prevent convergence of the solution. 
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However, the model was not simply composed of a structural damper region that would be 

impacted by a fluid region. Multiple regions were needed to help lessen the computational load, 

as well as enable COMSOL to more easily satisfy the user-defined boundary conditions. By trial 

and error, the team found that a total of six regions were necessary — one solid region and five 

fluid regions. 

5.1.1.1 Boundary Conditions 

The first fluid region served as the fluid inlet. This region needed to be wide enough to provide 

user-variability in the model, and long enough to allow the flow to fully develop.  

 

Similarly, the two outlet or relief regions needed to be long enough to have a fully developed 

flow and wide enough to be able constrain a uniform pressure outlet boundary condition. Were 

the outlet regions too short or too narrow, the flow would still be influenced by structural 

deformations, and thus local pressure gradients would be enough to make such a boundary 

condition impossible to satisfy. For example, if the uniform pressure boundary condition was 

constrained too close (Figure 36), the eddies caused by fluid exiting the smaller pipe diameter 

region would cause a non-uniform pressure gradient, causing the boundary conditions to be 

unsatisfied and the simulation to fail. Thus, the outlet boundary conditions were placed much 

further away to avoid this issue. 
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Figure 36. Screenshot of the simulation, zoomed-in to display the eddies between the inner-pipe 

region and outlet region. The redline indicates an outlet-pressure boundary condition that would 

cause the simulation to fail as it is too close to a varying pressure gradient. 

 

There will always be some variability of pressure of inner-pipe flows due to the no-slip boundary 

condition, but the model can more easily force this uniform outlet pressure when the flow has 

more time to naturally approach that condition anyway. This method became standard practice in 

creating models in order to ensure all boundary conditions were at the same time satisfied and 

did not force the simulation to quit due to an error. Additionally, these outlet regions allowed the 

model to accept an incompressible flow. While this is not exactly the geometry of the actual 

model, these relief valves would not allow the team to study damper compression under a 

simplified model that assumes a familiar incompressible flow. 

5.1.1.2 Domain Definitions 

The damper domain (green and angled shape in the center of the model) was assigned to be the 

structural domain and was given acrylic plastic material properties. All domains but the central 

green and angled one were defined as fluid domains, and given the material properties of water 

(Figure 37) 
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Figure 37. Image indicating the domain definitions (structural and fluid). 

 

Additionally, because the fluid is pushing on the structural domain, the mesh of the structural 

domain and the fluid domain around the structure must be able to deform as the structure 

deforms. For example, if the damper were to stretch because of a high internal pressure, the 

internal fluid cavity naturally grows in real-life. The function of the “deforming domain” setting 

is to mimic fluid’s ability to naturally adapt to its container’s geometry as its container deforms. 

5.1.1.3 Evaluating Pressure Drop  

Damping effects were measured by considering the pressure drop between measurement nodes in 

the CFD model. These points were defined in the model and then evaluated for each test. For 

example, Figure 38 below graphs the Pressure-Time plots from data at the measurement nodes. 

 

Outlets 

Inlet 
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Figure 38. Pressure-Time plots for the three measurement nodes. The Legend indicates the 

location, in Cartesian coordinates, of each measurement node. 

 

Pressure-Time data was then exported into an Excel spreadsheet for post-processing. This 

procedure was repeated for each test, and results were recorded in the following section. 

 

While pressure drop itself is not a metric for damping effects, a greater pressure drop  

indicates a greater loss of energy or force dissipation, since the rate of energy dissipation is equal 

to the pressure drop times the volumetric flow rate. The pressure drop equation for flow through 

a pipe points to this (Equation 7). Pressure drop is directly proportional the frictional losses 

(Darcy Friction Factor) and kinetic energy change — kinetic energy is, which lies within the 

density and velocity terms 
𝜌𝑉2

2
. This assumed relationship between pressure drop and energy loss 

is being made for two reasons. First, the damper model was a simplified one that intentionally 
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bears much resemblance to inner-pipe flow to enable such fundamental connections and 

assumptions. Moreover, the results were intended to be judged loosely, rather than scrutinized by 

their precise values. For example, the team was interested in whether or not increasing the pipe 

diameter increases or decreases the pressure drop and by what order of magnitude rather than a 

precise value. 

 

5.2 Physical Testing Procedure for Testing Apparatus 2.0 

The team's experimental procedure needed to change to fit the new testing apparatus, and the 

team would measure how long it would take for the damper to come to a complete stop. Multiple 

tests were performed on the dampers with different fluids of different viscosities to see the effect 

of each of them compared to traditional padding.  

 

As shown in Equation (9) below, the acceleration of the mass would be directly related to length 

of time for the velocity of the weight to come to zero. Increasing that time would theoretically 

lower the acceleration felt by the user, so the team wanted to know the length of time for the 

damper to come to a complete stop. Testing the time for the weight to come to a complete stop, 

where velocity of the weight equaled zero, for each of the dampers with different fluids in them 

would consist of the first phase of testing.  

𝐹 =  𝑚𝑎 =  𝑚 (
𝛥𝑣

𝛥𝑡
) 

(9) 

The second phase of testing would explore the performance of the dampers when they were 

connected to each other through a metal straw. The goal of this test was to determine if the 

pressure force from the first damper would be enough to affect the shape of the second damper. 

The initial conditions for the second round of testing can be seen in Figure 39 below.  
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Figure 39. Both of these dampers were to be filled with water or syrup (depending on the test) 

and one of the dampers would start as partially compressed whereas the other damper would be 

full. In this image, the closer damper is partially compressed and the farther one is full, and both 

of these dampers are filled with water. 

 

If the force of the water rushing out from the compressed damper was enough to affect the shape 

of the other damper, causing it to expand, then the team would conclude that the dampers were 

capable of communicating with each other. 

 

The new physical testing procedure for testing apparatus 2.0 was summarized below in Tables 5 

and 6. 
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Table 5. Experimental procedure for Experiment 1. The purpose of Experiment 1 was to evaluate 

the performance of the individual dampers.  

Experiment 1 

Evaluating the Performance of Individual Dampers 

Damper Filling Trials 

Drop Weight 

[lbs] Drop Height [in] 

Air 10 

10 0.9 

Water 5 

Syrup 2 

Padding 10 

 

Table 6. Experimental procedure for Experiment 2. The purpose of Experiment 2 was to evaluate 

the performance of the connected dampers.  

Experiment 2 

Evaluating the Performance of Connected Dampers 

Damper Filling Trials 

Drop Weight 

[lbs] Drop Height [in] Impact Duration 

Water 1 

10 0.9 

1 < second 

Water 1 Sustained 

Maple Syrup 1 1 < second 

Maple Syrup 1 Sustained 

 

Because these tests were repeated for a small number of trials (<30), the team acknowledged that 

these tests were not statistically significant. However, the team was confident that the small 

number of trials would give at least a general idea of if the dampers could perform better than 

traditional foam padding. 
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To accurately collect data for these experiments, the team used a slow-motion camera on an 

iPhone 7, which uses 240fps (1:8 time), to capture the total compression of the damper. To more 

precisely gather results, the team then used a computer to slow down the slow-motion video to a 

1:4 speed to better estimate the total time of compression. Once the slow-motion video was 

slowed down on the computer, the team again took another slow-motion video of the computer 

to slow down the video again by 1:8 again. The team was able to slow the motion of the 

experiment by a factor of 1:256. This meant that something that took 1 second in the real world 

would take 256 seconds on the team's data, and that something that would take 10 seconds as 

data would take 0.04 seconds in real time. Below in the Figure 40 is a visual aid for the data 

acquisition process and ratio achieved. 

 

 

Figure 40. Process of achieving a slow-motion factor of 1:256. 

 

The team slowed down the impact so the team would have more accurate measurements of the 

time it would take for the impact to occur. The team hoped to limit the error by a factor of 256.  
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6. Results and Discussion 

6.1 Simulation Results and Discussion Through COMSOL 

Aside from the variable input parameters, all other model definitions remained constant 

throughout tests and were thus the controlled variables. The variable input parameters, labeled in 

Figure 41, were the pipe diameter, the damper angle of attack, and the damper elasticity. 

 

 

Figure 41. Zoomed-in section of the three parameters that were varied in the COMSOL model, 

with labels. 

6.1.1 Experiment 1: Varying Damper Elasticity 

6.1.1.1 Raw Data 

As stated in Evaluating Pressure Drop (Section 5.1.1.3), the change in pressure drop was 

measured by exporting Pressure-Time data from each pair of comparable tests, and comparing 

their pressure drops. For example, Table 7 shows the raw Pressure-Time data for three tests of 

different damper elastic moduli.  
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Table 7. Raw Pressure-Time data for three tests of different damper elastic moduli (Pa). Each 

test records Pressure-Time data at three different x-locations inside the pipe flow model: 1. One 

before the damping region (x=0.8), 2. One after the damming region (x=1.9) and 3. One further 

still past the damping region (x=2.3). 

 

 

The data of Table 7 was plotted in Figures 42 and 43 to show the pressure drop between the 

points of interest (before and after the damping region).  
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Figure 42. Pressure-Time data at the x-locations, x=0.8 and x=1.9, for the test where the 

damper’s elastic modulus was 3.2e8 Pa. 

 

 

Figure 43. Pressure-Time data at the x-locations, x=0.8 and x=1.9, for the test where the 

damper’s elastic modulus was 3.2e15 Pa. 

 

Again, the data from Table 7 was post-processed to evaluate the pressure drop between two 

points of interest (x=0.8 and x=1.9), and then compare the pressure drop from each test of 

different elastic moduli (EDamper = 3.2e8 Pa and EDamper = 3.2e15 Pa). The comparison, plotted in 

Figure 44, is expressed by the following Equation (10). 

 

𝛥𝑝 =  𝛥𝑝𝐸1
− 𝛥𝑝𝐸2

 =  𝑝𝑥=1.9𝐸1
− 𝑝𝑥=0.8𝐸1

 +  𝑝𝑥=1.9𝐸2
− 𝑝𝑥=0.8𝐸2

 (10) 
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Figure 44. Change in pressure drop from two tests or different elastic moduli (EDamper = 3.2e8 

Pa and EDamper = 3.2e15 Pa). 

 

6.1.2.2 Discussion 

The Pressure-Time plots for both the variable elasticity tests (Figures 42 and 43) and variable 

geometric obstructions tests shared the same overall behavior. The pressure drop had an initial 

peak and trough of high magnitude, before resolving to a steady state region.  

 

The relative maxima of both test pairs indicate the initial flexing of the damper that is large 

compared to the rest of the test. The damper acts much like a spring in oscillation: it is first 

pushed by the flow and bent in the positive x-direction, then, since the damper is a material with 

some stiffness, it pushes back on the fluid. In the Pressure-Time data, this manifests as a peak 

(damper bent by the fluid) and a trough (damper pushed back on the fluid). This makes sense 

given that the flow must lose energy in order to cause structural deformation.  

 

This is crucial to understanding the result of using a more flexible damper. Because a more 

flexible damper was used, only the first section of the curve (the transient peak and trough 

region) showed a change in pressure drop. In other words, the more flexible damper had a greater 

pressure drop peak because more energy was lost to more deformation.   
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Once deformation was complete, the damper found a new equilibrium at steady state, and thus 

generated no change in pressure drop compared to the more rigid damper (see Figure 44). 

Therefore, changing elasticity only changes the pressure drop peak, not the steady-state pressure 

drop. It is therefore dangerous to decrease the damper’s stiffness too much because it creates 

peaks in energy dissipation, yet has no effect on the steady-state region. This peaking behavior is 

dangerously close to the undesirable plot behavior in Figure 6. 

6.1.2 Experiment 2: Varying Geometric Obstructions - Angle of Attack and Outlet 

Diameter 

6.1.2.1 Raw Data 

The same method of measuring, acquiring, and post-processing Pressure-Time data was used to 

compare the pressure drops between models of different damper geometries. In this test, the 

geometric obstructions to the flow were increased: the damper’s angle of attack, Θ, increased and 

the outlet pipe diameter, DOutlet, decreased. Figure 45 is the final Pressure-Time plot that 

compares the two tests (1. Small angle of attack and large pipe diameter and 2. Large angle of 

attack and small pipe diameter.) 

 

 

Figure 45. Change in pressure drop from two tests (1. Θ = 28° and DOutlet = 15cm, and 2. Θ= 

18° and DOutlet = 30cm). 
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6.1.2.2 Discussion 

Unlike the elasticity test pair, the geometric obstruction test pair showed a change in pressure 

drop in both the transient and steady state regions (see Figure 45). The change in pressure drop 

was steady at about 20 Pa more for the more obstructive test (when the angle of attack and pipe 

diameter decreased). This makes sense because the overall model geometry was much more 

obstructive. 

 

Decreasing the outlet diameter increased the pressure drop because it is a type of flow 

obstruction. Flow obstructions will dissipate flow energy much like how discontinuities in 

structural design that cause stress concentrations. They can be thought of as taking away the 

flow’s momentum. The team was also confident with this result as it is consistent with the flow 

through a venturi: as the flow enters the venturi’s tighter geometry domain, it speeds up and 

pressure decreases. 

6.1.3 Application Conclusions and Simulation Limitations 

Both tests were able to increase the pressure drop and therefore damping effects of the simplified 

damper. Decreasing outlet diameter and increasing the angle of attack are flow obstructions that 

dissipated flow energy by decreasing the flow’s momentum. Decreasing the damper’s elastic 

modulus also increased dissipation effects as it ensured additional flow energy was spent on 

deforming the damper structure.  

 

However, it was important to know the limitations of one’s model. These simulations were not 

meant to be a conclusive test for all dampers. These tests were simplified in order to achieve a 

working COMSOL model. Therefore, these results should not be extrapolated by their precise 

nominal values, but rather by their overall trend. Nonetheless, the team still learned of these 

modes of energy dissipation, and thus intended to apply them to the final damper design. 
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6.2 Physical Testing Results and Discussion 

6.2.1 Experiment 1: Performance of Individual Dampers 

6.2.1.1 Raw Data 

Within Figure 46 below, results from the physical testing using the drop test 2.0 were shown. 

 

 

Figure 46. Results from physical testing using the drop test 2.0. Air is the blue line; water is the 

red line; maple syrup is the yellow line; and padding is the green line. 

 

Air had the highest times for "time to stop" whereas traditional helmet padding had the lowest 

times for "time to stop". Water stood in the middle of the air and padding. Because syrup had 

only two data entries, it was difficult to reach conclusions from syrup testing. Figure 47 below 

shows the summarized results from the physical testing using the drop test 2.0. 
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Figure 47. Average “time to stop” times of the fluid dampers tested and the foam padding which 

was tested.  

 

Air had the highest average "time to stop" at 13.40 seconds, followed by water with an average 

time of 10.31 seconds, then syrup with 7.87 seconds, and lastly padding with an average "time to 

stop" at 5.57 seconds. With a slowest time to stop, air took 240% longer than the baseline 

(padding).  

 

6.2.1.2 Discussion 

The results from the performance of the individual dampers suggest that the air-filled damper 

was the best material for lowering the peak acceleration of the weight during the test. Also, the 

higher number of tests performed on this type of damper gave the team confidence that the 

damper would behave similarly if future tests were to be done.  

 

The results also suggest that the foam padding from the traditional football helmet was the worst 

material for lowering the peak acceleration of the weight during the test. This test also had nine 

trials and gave the team confidence in the testing process.  

 

The team expected the water-filled damper to be the best performing damper. However, it was 

discovered that the water-filled damper performed worse than the air-filled damper in terms of 
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increasing the "time to stop." It was difficult for the team to come to concrete conclusions about 

the syrup-filled damper because only two tests were completed. 

 

The downward trend of the "time to stop" related to the viscosity of the damper, as seen in 

Figure 47, (air having the lowest viscosity, followed by water, then syrup, and lastly the football 

helmet padding with an assumed highest viscosity because it is solid), shows that less viscous the 

working fluid, the longer it would take for the damper to compress. 

 

This trend suggests that there exists an ideal damping constant (which can be achieved by 

modifying the stiffness of the damper combined with the viscosity properties of the working 

fluid) that would allow the weight to come to a complete stop in the longest amount of time 

without hitting the base of the table.  

 

It was also important to note that though trends in data showed that air would be the best fluid 

for an individual damper, air still may not be the desired fluid when connected to another 

damper. The team's testing called for the stoppage of time as soon as the weight came to its first 

full stop without accounting for the recoiling force of the fluid contained. This phenomenon can 

be explained to a further degree in Figure 48 below. Unlike air, the viscosities of both water and 

syrup forced the fluid to experience a recoiling effect when a weight was dropped onto the 

damper, which negatively impacted the weight's time to stop.  

 

When the damper filled with air was impacted, it compressed in a single motion. However, 

Figure 48 below shows how the damper filled with water compressed once before pausing and 

compressing even further. This results in two stopping times, the initial stopping time was used 

as the official result. However, the presence of these two stopping times might need to be further 

researched to determine its impact on the practical damping effect. 
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Figure 48. Proposed behavior of the fluid recoil effect on the measured “time to stop.” 

6.2.1.3 Error Analysis 

There were a few sources of error that could have affected the results of the physical testing. 

First, the weight could have contacted the damper in different areas of the damper and slid off to 

the sides of the damper. Inconsistent impact locations would have led to inconsistent damper 

deformation behaviors. To minimize this error however the team attempted to have the weight 

strike the top of the damper consistently. 

 

Also, the method of recording the length of time for the weight to come to a full stop by hand 

and eye introduced human error into the results. This error however was minimized by slowing 

down the videos multiple times and having the same group member analyze all of the videos. 

Having one person analyze all of the videos limited other biases of what the definition of "time 

to stop" could have been.  

6.3 Experiment 2: Performance of Connected Dampers 

6.3.1 Raw Data 

Due to COVID-19 restrictions and limitations on budgeting, a standard metal straw (.315” 

diameter and 8.5” long) was used to connect dampers together. When connected, both the water 

and syrup-filled dampers did not immediately refill the other damper after impact. "Immediately" 

was defined as "within the duration of the impact."  
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However, during a sustained force of 10 pounds, during which the weight was held steady on top 

of the damper, the syrup damper filled its counterpart damper in 5.1 seconds real-time. The 

water-filled damper still did not fill its counterpart damper with the sustained force of the 10-

pound weight. Below in Figure 49 are the testing results of the sustained force of 10 pounds. 

 

Figure 49. These are sequential photos from the sustained impact testing. The top row shows the 

water-filled damper results. It can be seen in the second image that there was a stream of water 

(a leak) from the water-filled damper. This leak likely led to pressure losses and inefficient 

communication between the two dampers. In the second row are the results from the syrup-filled 

damper sustained impact testing. At 5.1 seconds the syrup-filled damper fully expands to its 

original shape. 

6.3.2 Discussion 

During the interconnected test for the water-filled damper, it was noticed that water was spraying 

out of the inlet where the straw connected to the other damper. It was likely that these leaks were 

causing the pressure differential between the two dampers to be less than what it could have been 

had the dampers been sealed properly. If the leaks were patched, this would allow for a greater 

pressure differential and hopefully allow the water-filled damper to fill its damper counterpart. It 

was important to note that due to time and resource restraints, a properly sealed connection could 

not be tested. 
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The syrup on the other hand, because it was more viscous than the water did not leak as much as 

water and was able to have a pressure differential high enough to fully expand the other damper. 

This proved that for this test, the dampers were able to communicate with each other through the 

metal straw. 

6.3.3 Error Analysis 

The leaks in the rubber seals between the dampers and the metal straw introduced error into 

measuring the effect of pressure differential on the deformation of the dampers. Because of 

leaking, pressure could not be effectively used and even led to the experiments with water-filled 

dampers to fail completely. Because of these errors, the team could not say for certain whether 

the water-filled damper could not fill its counterpart damper because the leaks were too 

detrimental to the test or if the damper would have failed to inflate each other even with water-

tight sealing. It is also likely that some leaking increased the amount of time for the syrup 

damper to fill. The team would have liked to refine the attachments between the two dampers to 

stop leaking completely. 

  



76 

7. Business Plan 

7.1 Introduction  

One of the problems athletes today face are concussions. Especially in younger athletes who 

have a developing brain, that damage can be more harmful in ways we are still understanding. 

Football is a sport that’s both very popular but also well known for its high rate of concussions. 

Unlike other sports, football relies heavily on protective gear, but the rate of injury shows that 

there is still a large degree of improvement that can be made.  

 

The way a football helmet works can largely be broken down into a few systems. A hard-exterior 

shell helps disperse the energy from impact over a larger area. This allows the padding to 

cushion the blow and decrease the rapid movement of the head. Other peripheries are designed to 

ensure the helmet is secured to the player and provides a comfortable fit. Focusing on the 

padding, a number of modern helmets use foam. Foam is a cheap and good way to cushion 

impacts, however they also suffer from something called a densification zone. What that means 

is that foam can cushion movement up to a point where the foam is too dense to compress easily. 

In this densification zone, the amount of energy absorbed decreases significantly.  

 

The product designed by the team was a damper system replacing foam padding in helmets 

which would utilize hydrolastic damping to eliminate the densification zone and reduce the rate 

of concussion in football players.  

 

Since the damper system would effectively increase the effectiveness of helmets but at a fraction 

of the cost of newer or extremely advanced helmets, the primary market of the product would be 

football programs at the high school and younger categories since they generally have 

constrained budgets. The secondary market would be for collegiate and professional players who 

want to supplement their personal safety in addition to the professional grade equipment their 

programs can generally afford.  
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The organization necessary to make this product succeed would include a customer service team, 

mechanical design team, a quality team, and a manufacturing team. This organizational structure 

would help ensure that a quality product is being delivered efficiently across large markets.  

The competition currently on the market uses OEM products or generic foam replacement pads. 

In general, the competition focuses on improved helmets in their entirety rather than focusing 

specifically on the padding. 

7.2 Goals and Objectives 

The goal of the company would be to create a functional product which can be tested at scale and 

prove that better protection doesn’t have to come at a high cost. Some level of certification or use 

by some football league or athletic body would give the product and idea the recognition to 

achieve national reach and give the company brand recognition within the industry. 

7.3 Description of Product 

The product is an advanced damping system which utilizes interconnected dampers and 

hydrolastic damping technology to decrease the acceleration felt by the player during impacts. 

This decrease in acceleration would reduce the risk of concussions or decrease their severity 

when they occur.  

Since the product would replace the normal foam padding in helmets, it would utilize a plug-and-

play type model so the player can easily and quickly remove the old padding to install the new 

system. In order to do this, the damper system would have OEM support across the brands and 

models common in the primary or secondary market. This would allow each player to install a 

damper system that is optimized for their helmet, both in protection and comfortability. 

7.4 Potential Markets  

The product fills a niche in the football helmet market as a cheap upgrade, which can make a 

cheaper helmet perform like a better helmet but at a cheaper price. The North American sports 

industry is worth more than $83 million today [16]. In 2018 alone, there were over 5.5 million 

touch football players estimated across the United States [17]. When the number of players is 

compared to the average cost of a football helmet ($200-$300) which is recommended to be 
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replaced every 5-10 years, then the touch football market alone is worth approximately $220 

million a year.  

 

If the proposed damper is designed to be replaced every 2 years, at 3% market penetration, and 

the selling price of $25, the target market is approximately $2 million annually. In order to 

achieve this market, the product would have a focused release beginning in the West Coast 

moving eastward. This would simplify distribution while hitting one of the largest markets, since 

California generally experiences weather conducive to outdoor sports almost year-round. 

7.5 Competition 

The primary competition are OEM products that are specifically and originally engineered for 

specific helmets. Since they are OEM products, they are tailor-made to each existing product and 

the cost of manufacturing is lower since they’re designed and produced in bulk. However, OEM 

products from the two main helmet manufactures - Riddell and VICIS - are expensive.  

 

Generic foam pads are cheaper, easier to access, but don’t have the level of protection or ease of 

replacement as OEM products. Other products such as D3O through Schutt Sports, an 

experimental padding technology, has relatively weak market penetration and leans towards the 

upper end of the market due to its cost. 

7.6 Sales Strategy  

The primary sales strategy for the product is hitting the middle market, balancing between cost 

and protection. By taking the middle market, the product would appeal to a wider range of 

programs since it would be attainable for programs that struggle financially and still be attractive 

for programs who can afford to pay more for better products.  

 

The marketing strategy in order to hit that market would include targeted advertisements to gain 

the support of key schools - such as De La Salle - which are well known and have a following in 

order to reach the upper end of the market. Student athlete sponsorships and give-back programs 
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would help improve brand recognition amongst lower income schools and programs towards the 

lower end of the market.  

 

By initially focusing on middle and high school sports, the product would have time to earn the 

brand recognition which would allow it to be more successful in reaching the high end of the 

market such as collegiate and professional programs. Additional marketing strategies such as 

wider OEM support, detailed installation videos, and selling through Amazon could help the 

brand be easier to access and utilize. 

7.7 Manufacturing Plans 

The damper system can be broken down into the dampers themselves, interconnected tubing, and 

a damping fluid. The dampers themselves could be made from injection molded TPU which 

allows for scalable production at cheaper cost after the initial tooling. Since injection molded 

factories are common, the dampers could be produced cheaply abroad and then assembled within 

the United States for packaging and distribution. The interconnected tubing could be made from 

off-the-shelf parts with little to no modifications. This would allow the damper system to be 

constructed cheaply and easily from alternative suppliers if necessary. The damping fluid could 

also be an off-the-shelf part or made in bulk in a factory.  

 

The price of the damper system will likely be within $20-30 in order to reach the middle market. 

The exact cost however will depend on the vendor - Amazon for examples takes significantly 

more as a fee compared to other online vendors - and how cheap tooling and production costs 

can be. 

7.8 Service and Warranties  

Since the designed lifespan of the product is about 2 years, then it would be reasonable for each 

system to have a warranty for six months after purchase for manufacturing defects, subject to 

review by the company. A service line could also be established by chat or email to help players 

who are having trouble installing their product or otherwise unsatisfied with their purchase. 
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7.9 Financial Plan  

The financial plan for the first phase of company development would focus on product design 

and operational expenses. Roughly $15k could be allotted for research and finalizing the design. 

Initial tooling could run between $10-20k, assuming that only the damper would need to be 

injection molded. Other costs such as advertisements and customer support are allotted $75k to 

focus on positive brand recognition. Operational expenses relating to storage, inventory, and 

office space would have a budget of $250k a year. Salary for a small design and office team 

could collectively run about $750k a year. Altogether, the annual expenses before product cost is 

roughly $1.1 million per year for the first phase. With $2 million projected in annual sales after a 

2-year ramp time, the ROI after 5 years would net $500k. However, ROI after five years 

significantly drops since market share should be increasing and both operational and design costs 

should drop after focused cost-down efforts.  

 

The key markets would be high school and below football programs. Since these programs are 

generally more cash-strapped than collegiate and protection is especially important, then these 

programs are more likely to be early adopters. The business plan would focus on two key selling 

points: a product that offers a competitive level of protection (a significant improvement over 

existing foam padding) and at a low cost. This would help the product gain the recognition 

needed as a proven product to penetrate the collegiate and professional markets. A summary of 

key financial planning flow is described in Figure 50 below. 

 

Figure 50. The team’s business plan outline.   



81 

8. Impact of Solution 

8.1 Economic and Ethical Advantages 

8.1.1 Background Information 

In terms of the economics of designing a novel football helmet, the team expected that the 

product would be received well. The current market of football helmets was widely expanding, 

and industry competition has led companies to constantly push to have the best performing 

helmets on the market [18]. There were helmets on the market that ranged anywhere from $200-

$1500, and this was due to varying degrees of complexity within the helmets. Most helmets were 

made and designed to look similarly aesthetically, but differences came from changes within the 

padding, inner-lining, and other components of the helmet.  

 

This product would also fill the niche of a maintainable and therefore durable football helmet. As 

helmets wear, their foam padding becomes less compressible and therefore less effective, and 

replacing the padding on traditional helmets can be difficult, often needing to be sent back to the 

manufacturer [19]. Also, the team did not see helmets on the market which boast replaceable 

parts. Opposite to what was currently on the market, the damper system could be replaced 

whenever needed without the need to purchase a new outer shell and other parts of the helmet. 

This would dramatically lower costs over the life of the football helmet and provide much 

needed relief to low-budget programs. The need to buy new helmets and equipment for a team 

could range anywhere from yearly to every 10 years depending on the program: assuming that 

richer professional programs bought new gear more frequently whereas lower-tier high school 

teams went years without buying new equipment. Many professional athletes preferred to use the 

more expensive helmets because they were generally safer and more reliable [20].  

 

The team proposed that, with the proper development and testing, a new damping system could 

be used to replace the traditional inner padding of helmets and provide the same force 

dampening effects for just a fraction of the price of other helmets on the market. Most collegiate 

and high school athletes usually did not have access to such funding, especially for the 



82 

abundance of players around the nation. Therefore, a more affordable, but just as effective, 

solution would be beneficial for athletes below the professional level [21].  

 

Also, because of budgeting concerns, many athletes at the high school level were not being 

protected as well as they should be. Athletic directors needed to make an ethical choice based on 

budgeting, choosing whether or not to provide better protection or paying a higher premium.  

 

Designing and implementing a novel football helmet padding system also posed ethical 

improvements. As noted above, professional athletes preferred to use the higher end helmets 

because they were safer and more reliable, but for the average player, this was not a luxury he or 

she had. Leveling the cost of helmets would open doors for everyone, not only those who could 

afford it. 

8.1.2 Potential Impact 

In terms of an economic impact, this helmet's lower base price would allow many athletes who 

do not have the means to afford the best product on the market to have the safest gear. The Vicis 

Zero I helmet, for example, had a higher end retail price of $950 [22]. When one considered 

football programs under the collegiate and professional level, budgets were usually constrained, 

and not only can the initial cost of good helmets be high, but they also required maintenance and 

replacement as they are used over time. For programs where funding is scarce, players are forced 

to choose between cheaper helmets or reusing older ones.  

 

According to the CDC, the lifespan of a helmet should be up to 10 years after the manufacturing 

date [23]. One high school in Texas for example, faced an annual budget of $7500 [24], which 

would only cover the cost of 7 fully-priced VICIS helmets (which provide the best level of 

protection on the market [25]). The reality was that when it came down to football as a sport, 

economics was a significant factor in terms of what players and teams could afford.  

 

This had an unintentional social consequence as well as those in areas unable to afford proper 

equipment were left with higher likelihoods of permanent brain injury, which was significantly 

worse if they were incurred at a younger age.  
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8.2 Environmental and Sustainability 

8.2.1 Background Information 

In terms of sustainability, traditional pads were made of foam. These foams, usually EVA, take 

an estimated "hundreds of years" to degrade and can compound problems with trash collecting in 

landfills. Despite this, these helmets were still produced since foam is a relatively cheap and 

effective damper. Though the helmet's lifespan could range for up to 10 years [24], their 

environmental impact and time to degrade was significantly longer. Specifically, an EVA 

midsole, which was made of the same EVA used for football helmets, showed very low amounts 

of degradation after 12 years [26]. In comparison, the TPU dampers that were developed for this 

project could decompose in 3-5 years in soil [27].  

8.2.2 Potential Impact 

In terms of long-lasting impacts on the environment, it was no secret that plastics and similar 

materials take hundreds of years to decompose. As they do break down, they can result in 

microplastics which can be hard to detect and easy to contaminate water systems. While foam is 

not like traditional hard plastics, it’s still possible for them to cause damage to marine life if the 

waste can get into the ocean.  

 

The TPU material of choice, that made up the material for the 3-D printed damper, was a step in 

the direction toward sustainability and reducing overall waste since it has shown signs of 

decomposing faster than traditional foams, and companies were trying to improve this even 

more. The ability to decompose and breakdown easily also reduces the risk of microplastics. 

 

Specifically, the company API has been developing a more sustainable TPU material that is bio-

based. Moreover, it required less energy to develop this type of TPU when compared to EVA 

(60%) [28]. Less energy required would also mean less pollution involved and a smaller carbon 

footprint in the production of TPU compared for EVA foam. Therefore, with more development 
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and breakthroughs, TPU dampers would realistically reshape into a better alternative not only 

just for users, but for the environment, too.  

 

Developing a solution which was both economically-friendly and safe would positively impact 

programs across the board. The damping system that the team manufactured was far more cost 

efficient, even if multiple systems were to be utilized within a helmet. Moreover, this economic 

impact would result in an ethical reaction as parents, athletic directors, and others who were 

purchasing helmets can do so without having to sacrifice safety for cost.  

8.3 Health and Safety 

8.3.1 Background Information 

Due to numerous safety concerns and controversies on the professional level, for example the 

targeting scandals as well as high number of head-to-head collisions throughout the league, the 

number of athletes participating in tackle football has been on a steady decline over the years 

[29]. As evidenced in the team's personal interviews and statistical data, some parents did not 

feel comfortable allowing their children, who represented the majority of football athletes across 

the nation, to participate in such activities like football. Moreover, high school athletes who did 

participate frequently do not know what type of helmet they are receiving. This was both due to 

there being many different types of helmets that look similar externally and poor information 

from the high school level [30]. Some players’ helmets may be less safe than others due to 

differences within the helmet that are not immediately noticeable from the outside such as 

padding wear-and-tear or different inner paddings all together. A liquid-damping helmet would 

eliminate this mystery and ensure that people know what they were using from the start. On top 

of that, the liquids within the helmet and its other components could be swapped out cheaply 

year by year to ensure that wear and tear was not an issue for coaches and players.  

8.3.2 Potential Impact 

A better damping system would invariably improve the safety of football helmets. Since TPU 

dampers did not experience the same densification zone, it limited the jarring effect. The linked 

dampers allowed the helmet to keep a better fit on the player’s head, reducing the likelihood of 
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the helmet coming off during an impact. This enabled players to be safer during the sport, 

reducing the likelihood of permanent brain damage. This improvement in personal safety was 

even more important for players that are still young since their brains were still developing.  

 

A statistical survey comparing high school football player reactions to being slapped on the head 

with a helmet on were somewhat alarming. Over 30% of the participants of the survey stated that 

they felt some sort of pain just from being slapped on the head with a helmet, with another 8% 

saying that they felt a headache afterwards. This level of protection was inadequate when 

considering the high levels of energy that occurs in a sport like football. Safety of players should 

not be jeopardized from a simple slap to the helmet. This study from 2017 in Hawaii showed that 

football athletes were sacrificing safety for cost at levels under the professional scale [31].  

8.3.3 Notable assumptions 

Several assumptions were made for the project. The primary assumption was that implementing 

a liquid damping system instead of traditional EVA foam would still satisfy the design 

requirements for a football helmet (size, weight, and comfort constraints). The team designed a 

3-D printed damper with volume restrictions within a 2x2x2” cube, which was the same space 

that traditional padding requires. However, because the system was never actually tested, it was 

difficult to confirm the accuracy of this sizing. Other assumptions, such as assuming a reduction 

of peak acceleration of the damper would result in less concussions and that the model used in 

FEA and CFD were accurate enough that the results of the simulations would be applicable to 

the physical dampers. Similarly, due to the limits placed upon the team due to COVID-19, this 

theory was never fully confirmed because no testing took place. Lastly, the scope of the project 

assumed that testing would be sufficient for a proof-of-concept build, which could then be used 

to narrow down the functional design for a real football helmet.  
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9. Conclusion 

Though the results of this project could not be fully explored, preliminary research and testing 

were important building blocks that provided a baseline for future research. Initial damper testing 

was a key factor in experimentally discovering the relationship between dampers and fluids 

within the constraints of a standard helmet. 

9.1 Key Findings 

The foam padded helmet’s shortcomings motivated the team to design a fluid-damper to 

smoothen these resistive force peaks. Although time and resources were limited, the team still 

performed physical testing (Chapter 6) that showed the team’s hydrolastic fluid-damper took 

longer to compress than foam dampers given the same impact forcing.  

 

While this finding cannot be assumed universal due the less than ideal testing conditions, the 

team’s new hydrolastic damper design showed promise in being competitive with foam padding. 

 

Again, referencing the physical testing results in Chapter 6, another key finding was the 

seemingly inverse relationship between damping effects and fluid viscosity. This makes very 

little intuitive sense; fluids with higher viscosities should and have historically demonstrated 

higher damping effects.  

 

However, this is still a key finding because it brings further attention to the damper design and 

testing method. Perhaps the testing method did not perfectly simulate a football tackle collision, 

and thus the data is not an accurate representation of how the flow would dissipate energy. 

Perhaps there is some key feature at play in the current design that forces this unintuitive 

behavior, and perhaps researching this feature further would lead to further understanding and a 

potential breakthrough. 
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9.2 Further Research 

In terms of immediate research, the team felt as if more testing on different fluid types would be 

beneficial to solidify results that were gathered. Due to the nature of the situation, the team did 

not extensively conduct research on the dampers themselves. If more time was permitted, the 

team would have attempted to better develop the relationship between compression times and 

dampening acceleration. One example to strengthen the validity of the results would be to also 

time different parameters of the tests already conducted on the dampers. More time results 

measuring time taken to fully compress and time between oscillations of the fluid within the 

damper would help finalize a fluid of choice for the damper. This testing method could then be 

accompanied by the team’s original plans for testing to discover and confirm the damper shape 

and fluid. 

 

After adding the required safety measures to the original testing apparatus, the team would then 

conduct more experimental tests that could simulate more realistic impacts. The primary testing 

apparatus allowed for the team to simulate head-to-ground and head-to-head-to-ground type of 

impacts, providing more conclusive evidence. 

 

Moreover, from this extensive testing, the team could then begin to optimize pipe diameters 

based on an optimal fluid and configuration. This would then lead the team to its original goal of 

reconfiguring a helmet with a hydrolastic system to replace traditional foam padding within 

standard parameters.  
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Appendix 

A1 Customer Needs Raw Interview Data 

Below are transcript interviews with professionals in the fields of expertise: 

A1.1 Interview with Brent Baculi (Football Player) 

Personal Input from Michael in Italics 

Brent played high school varsity football with Milpitas High School. He started at nose tackle 

and the conversation started with basic questions about the sport itself and head to head impacts 

that he has seen and been involved in. Being a nose tackle, he said that the greatest head to head 

contact that he was involved in were head to head clashes at the line of scrimmage. These hits 

were quick, somewhat like a jab. They did not have that much force behind them, as both players 

started in their three-point stands (and there was not enough time for the players to gain speed as 

both of their helmets were inches apart). He also said that he never really saw any big concussion 

hits, with little to no need for going into concussion protocol. However, he did say that he did 

feel some concussion-like symptoms after a play. Brent said that after a play, he got up from the 

ground and said he felt uneasy. He said that he felt a little disoriented and confused. However, he 

said that he somewhat just brushed this off and kept on playing. This kind of mentality is that of 

many football players. Many choose to fight through the pain, wanting to avoid meeting with the 

medical team, which prevents them from playing a few snaps. Therefore, concussion data 

recorded may not actually represent the actual number of concussions in a given season because 

some players decide to forgo any type of medical check while on the field.  

 

Additionally, when asked about helmets, Brent said that he was issued a standard, hard foam 

helmet every single year that he was on the team. These helmets were team issued, standard 

amongst all high school players, and returned at the end of the year. He had no information about 

the type of helmets because they were standardized by his high school. From a fairly general 

search, Milpitas High School uses Riddell branded helmets. However, when asked about 

comfort, he said these helmets tended to get really stuffy due to the nature of the game. Further, 

when asked about the weight of his helmet (and about adding or losing a few pounds on the 
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helmet) he said that “it was something that you just got used to.” He had no control over what 

helmet he was using in game. The school gave him a helmet and he wore it. He also stated that 

sometimes the helmets that he was issued were too tight on his head. This shows that player 

safety at lower levels may also be overlooked. Players at any level should be able to explain to 

their coaches and team managers about any issues with their equipment. Sometimes, kids may be 

too shy to tell their coaches about some of their issues with gear. To combat this, players and 

coaches should be more vocal and open to equipment checks because player safety should 

always be a top priority in any given scenario.  

 

When asked about his preference regarding the size of his helmet, he felt as if it would be better 

if his helmet was somewhat lighter and more streamlined. He found that a lighter helmet would 

be beneficial for his own position (and generally beneficial for all positions). When designing the 

helmet, we should attempt to find lighter weight materials that reduce the overall weight of the 

helmet, giving players a more natural fit. However, at the same time, player safety and 

concussion reduction should still be the same goal. 

A1.2 Interview with Kaleb Pattawi  (Football Player) 

Personal Input from Michael in Italics 

Kaleb Pattawi played cornerback for his varsity football team and sustained a substantial head 

injury. He said that he was in pursuit of a runner (as a defensive player) when his head hit a 

receiver’s shoulder pads. Kaleb said he hit the ground, got up, and said he felt dazed. He then 

looked to his coach, who asked him if he was alright, and Kaleb had trouble answering his 

question. He said he could not really answer his coach, so he was taken out immediately. 

However, Kaleb did not leave the game, did not go into any kind of concussion protocol, and just 

waited a few snaps before re-entering the game. This is a common trend amongst high school 

athletics. There is no real concussion protocol or safety measures for those who do sustain real 

injuries. Concussions as a whole could also be reduced from proper concussion recognition. 

Kaleb also did not have his concussion-like symptoms diagnosed, but was pretty certain that he 

sustained some type of concussion or head injury. 
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Additionally, when asked about specifications about his helmet, he said he was issued a Riddell 

Speedflex helmet that was issued by the school. He had no choices when choosing a helmet, as 

the helmets that were provided only fit certain head types. He said his school had multiple 

helmets solely based on how big someone’s head was. Some helmets and brands were geared 

toward specific players.  It is important to create a helmet that can be easily adjusted to fit 

different head shapes.  

 

When asked upon the parameters of a helmet, Kaleb preferred one that had a little more weight, 

as an extra measure of security. He felt as if he got used to his helmet anyways, and a little more 

durability and stability on someone’s head would be beneficial.  

A1.3 Interview with Vince Zipser (Turlock High School Football Coach) 

Vince Zipser is a Turlock High School Football Coach, and specifically handles the Offense. 

Vince is also a THS 2003 graduate and played for football for THS at that time. This gives 

provides us with insight into Vince’s unique perspective. Not only does he understand 

concussions and how the game is played now, but he also played within the last 20 years, enough 

time to recognize the differences and improvements of football gear. 

 

When I asked Vince about the weight of current helmets, he said, compared to helmets during his 

playing years, “they’re not that bad, measuring about 5 lbs.”, and are not too much of a nuisance 

to players (Vince was coaching practice during the  phone call, and asked a player on the spot, 

who agreed with his lightweight statement). Vince (and his player) likes the current helmet 

weight, and even said anything lighter might make the player feel less safe. 

 

When I asked about helmet fitment (how well it forms around the player’s head), he said current 

helmets are so good that he could “take a nap in one.” Again, he compared current helmets to 

those from the early 2000s, saying the current are much better. Additionally, Vince introduced a 

“Xenith” helmet variant that used a type of damper (air filled) to achieve better fitment and thus 

player comfort. 
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Overall, Vince’s interview shows there is good customer satisfaction from current helmet 

ergonomics. It is safe to treat the current football helmet as a base for certain parameters in the  

design that affect ergonomics and comfort — we should not stray too far certain fundamental 

design aspects of the current helmet (e.g. weight and basic helmet geometry). 

A1.4 Interview with Kennedy Sundberg (Santa Clara University EMT) 

Kennedy is an Emergency Medical Technician at Santa Clara University. Her responsibilities 

include responding to emergency calls on campus and providing proficient and immediate care 

to critically ill and injured. In her line of work, she has dealt with sports impacts and is well 

versed in the care that needs to be given to someone who has sustained head trauma. Below are 

notes from her interview taken on 10/11/19.  

 

When asked what were the guaranteed ways to diagnose a concussion, Kennedy responded that 

medical technicians "can't really tell if a person has a concussion unless you get a CT scan … 

but, on scene, more immediate methods such as questioning geared towards diagnosing head 

trauma, such as "remember hitting their head" and "blacked out" and "nauseous at all" and 

various physical tests, including palpating down the person's head and down the person's spine, 

are all ways to get a sense of whether or not a person may have a concussion." She continued on 

to say that "peripheral, motor, and sensory tests are next such as "Can you tell me what finger I 

am touching?" What toe?" and checking the pulse on wrists and feet" are other ways to continue 

diagnosing a potential concussion injury.   

 

As it's important for the helmet to help medical technicians, I asked Kennedy what a helmet 

could do for her? I focused on the magnitude of the impact through the use of sensors and their 

locations as potential ways to help Kennedy assess a patient's injury severity.  

 

She responded that "a magnitude of G's would be helpful to set an index of suspicion following 

the impact" and sensors "could act as an indicator of where to focus our palpitations." She told 

me that the EMTs definitely want to take off the helmet. She noted that "the hardest part is 

always the back of the helmet, which always proves to be difficult" and that an "way easier to 

take the front off completely" would help her. She concluded that "time of impact, and vitals are 
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always crucial." As a final thought, she remarked that "it would be cool if the helmet could detect 

motion inside the head internally." She meant this as a way for the helmet to tell from the outside 

if the brain hit the inside of the skull. Hopefully this force would be small.  

 

In placing dampers, I wanted to know what parts of the brain are most susceptible to 

concussions, so I asked her where the most susceptible part of the skull was, and she responded 

that "the back part, where the brain stem meets the skull, is a super important area, and this part 

is most susceptible when hitting the ground." I continued with whether she found that normally it 

is the initial hit or hitting the ground that causes the most injury. She responded that "it depends 

on what you hit, … but it's probably the initial hit." Continuing on damper placement, I asked her 

if she would put a damper where the brainstem connects. And she answered, "yes, that would be 

really important, because speaking in terms of whiplash, that would be really good to protect it 

from springing back to fast." The brain stem connects to the spine right at the base of the skull, 

and its location be approximated by below the hairline.  

 

The team researched that multiple impacts do not correlate to a more susceptible person in the 

future. Kennedy was taught that multiple impacts makes someone more susceptible to 

concussions, and when asked about this, she responded that she was "happy" to hear that this 

study suggested otherwise, though it was just one study. When asked if she thought one large 

impact was worse than two or three big ones, she responded that "3 big hits vs. 5 small ones 

would be more concerning."  

 

The interview ended with the placement of dampers once again. She suggested that dampers 

could be placed "evenly spaced along the temples, and with special attention to the cracks in the 

skull that connect it together." She ended with "how hard the impact was would be really 

interesting to know, and time would be good too, and any effects from the impact such as 

whether the impact came from the left or right. Finally, she said that a helmet that was "easy to 

take off and maybe vitals, too, heart rate being the best" would be great to see to monitor vitals 

before and after the impact.  
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A1.5 Interview with James Kelly (MA, MD, FAAN, Neurologist) 

Dr. James Kelly talks about different areas of the brain affected by concussions in an online 

interview. Dr. Kelly says that parts of the brain most commonly affected in brain injuries are the 

frontal and temporal lobes because they are up against bone, and when the head rotates, and the 

neck is positioned that the front of the head moves more than the back of the head, the frontal 

and temporal lobes move greater distances than the core of the brain ie: torqueing causes more 

damage to those areas. 

 

He explains that a contrecoup injury ("opposite the blow") is when you hit an immovable object, 

like the floor. This would happen when you fall, or when whiplash happens. The fluid mechanics 

during these impacts is really interesting, the injury occurs on the opposite side of the brain that 

hits the object due to pressure vacuum created by the blow. This would be a decompression 

injury on the opposite side of the impact This also happens when hitting the back of the head to 

the floor, and it happens less when the face hits the floor because unfortunately the face acts as 

an airbag to dampen the blow 

 

He also explains that a coup injury is when you get hit by a projectile or mass object at speed, 

like a baseball bat. He says during the online interview that, "I hear from patients all the time that 

they are different, that they know they are not the same person they were before. The people that 

know them best, spouses and family members, will say the same thing."..."And the change is 

really the person's ability to do the high level interaction, the ability to engage in a fluid sense the 

core part of that person that allowed for the relationship to develop that they're in, if that's 

damaged then the relationship is damaged, that the family is damaged under the circumstances."  
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A2 Proposed Completion of Subsystems 

A2.1 Block Head Construction 

A2.1.1 Summary 

These instructions show how to assemble the block head. See Figure A1 below. 

 

Figure A1. Completed block head.   

A2.1.2 Required Parts 

1. Two Dampers 

2. 4' of ⅛" diameter clear tubing 

3. 4' of ¼" diameter clear tubing 

4. 4' of ½" diameter clear tubing 

5. Wooden Block 

6. Water Source (sink) 

7. 200G accelerometer 

8. Zip Ties 

9. Super Glue 

10. Masking Tape 

A2.1.3 Instructions 

1. Attach dampers to the sides of the wooden block using super glue, ensuring that the wider 

base of the conical shape is attached to the surface of the wood.  

2. Ensure that fluid outlets are configured in the same fashion, with the inlet holes 

remaining completely upright. 

3. Place the accelerometer on the side of the helmet using standard masking tape 
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4. Connect the accelerometer to the Arduino and to the DAQ 

5. Ensure that an adequate amount of wiring is used to ensure that no people or equipment 

can be harmed or damaged. 

A2.2 Attaching Testing Apparatus Safety Measures 

A2.2.1 Summary  

These instructions show how to attach the safety shield and safety interlock. Below is a photo of 

what we think the final testing apparatus should look like when it is completed, and we urge you 

to please do everything safely. More detailed images are attached at the end of the document. See 

Figure A2 below. 

 

 

Figure A2. Completed testing rig. 

A2.2.2 Required Parts 

1. Completed Testing apparatus Frame 

2. Step Stool Ladder 

3. Safety Interlock 

4. Latch  

5. Clamps 

6. Rope 

7. 36”x72”x.093” plexiglass  

8. 1” Screws 

9. 1 ½” corner braces 
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A2.2.3 Instructions 

1. Before attaching plexiglass, ensure that enough space is allotted for the pendulum arm to 

freely swing. 

2. Attach plexiglass to bottom of the wooden base using 1” screws and 1 ½” corner braces 

at 4 locations at the base of the board, on both sides of the glass. 

3. Attach safety interlock to top of the plexiglass sheet to allow for a rope to be threaded 

through. 

4. Clamp a piece of excess plywood onto step stool.  

5. Attach the latch to step stool using screws.  

6. Thread rope from latch to safety interlock to pendulum arm. 

A2.2.4 Assessment 

Step stool should be propped against the safety shield to provide stability within the sheet. 

Additionally, if the glass is still unstable, diagonal members can be attached from the other side 

of the frame, using excess wood pieces and screws that are still in the shop.  

A3 Preliminary Damper Designs 

A3.1 Cylindrical Accordion 

This damper is designed to be 2” in diameter by 1” in height with three compressible accordion 

folds. This damper can be printed using a flexible polymer such as TPU (thermoplastic 

polyurethane). Since it utilizes maximum overhang angles of 45 degrees, it can be made without 

needing support. The design would have a connection port to allow fluid to enter and exit via 

standard tubing (not pictured) and the placement of that port is flexible along the top or sides of 

the device. This would also enable the dampers to be connected in series of 2 or more depending 

on specifications desired. Changing the size of the port and ensuing diameter of the tubing would 

allow for better control of damping effect as well. See Figure A3 below. 
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Figure A3. ½” of cylindrical accordion damper. 

 

A3.2 Square Accordion 

This damper is designed to be 2” x 2” x 1” unfolded with 3 compressible accordion folds. This 

damper can be printed using a flexible polymer such as TPU (thermoplastic polyurethane). Since 

it utilizes maximum overhang angles of 45 degrees, it can be made without needing support. The 

design would have a connection port to allow fluid to enter and exit via standard tubing (not 

pictured) and the placement is flexible along the top or sides of the device. This would also 

enable the dampers to be connected in a series of 2 or more depending on specifications desired. 

See Figure A4 below.  

 

 

Figure A4. ½” of a rectangular based connected damper system 
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A3.3 Syringe  

This system utilizes large-diameter Luer-lock syringes that would be connected in series or 

parallel using tubing. In order to get them to fit inside the helmet, the ends of large-diameter 

syringes where the plunger extends would have to be cut to short lengths then padded. The 

padding would prevent the stress concentration from the x-shaped style of the plunger from 

posing a safety hazard. With this design, multiple iterations would likely need to be tested to find 

the ideal amount of syringe to be cut so that the damping effect and size of the helmet is 

optimized. There is also the risk that the force would cause the syringe to fail. Since Luer-lock 

syringes are also at a preset outlet diameter, the amount of fluid that could be transferred via 

tubing is limited. See Figure A5 below. 

 

 

Figure A5. Syringe-based damper system 
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A3.4 Flexible Shells 

This design uses 3D-printed hemispheres which would collapse under axial loading which would 

then force fluid out through an exchange port. These hemisphere shells use overhangs of less 

than 45% which would allow them to be 3D printed using a flexible polymer such as TPU 

without the need for support. The benefit of a spherical design is that as the force causes 

compression, the contact surface area increases as the rounded section becomes flat, therefore 

causing the amount of fluid transferred to be exponential rather than linear. As a result, the effect 

is likely similar to that of a progressive spring system. In order to function properly, the shells 

would have to be mounted with the least contact area natively facing the outer shell with the 

largest contact area sitting against the comfort liner of the inner helmet. See Figure A6 below. 

 

 

 

Figure A6. Flexible 3D printable balloons 

A3.5 IV Bag 

An IV bag lined through the proper opposing sides of the helmet (2 in front, 2 towards the back, 

and cross-connected) would give an effective damping solution. The bags can be filled with 

various fluids and transferred efficiently from bag to bag since the bags are already designed for 
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quick and seamless fluid transfer. The bags themselves could be mounted to the helmet using a 

silicone or similar based adhesive to account for the flex when being worn. The benefits of such 

a system is that the parts are readily available. However, there is also the chance that the force 

from the impact would cause the fluid to transfer to the sides of the same IV bag or cause the IV 

bag to reform rather than transfer the fluid from one bag to another which is necessary for the 

damping effect desired. See Figure A7 below. 

 

 

Figure A7. IV bag-based damping system 

A3.6 Diner Ketchup Bottle 

The damping system uses the bottles’ preexisting nozzle as connection points for tubing to 

transfer fluid. As a force hits the helmet, the bottle is compressed forcing fluid to the other bottle 

while also creating a damping effect. The upside of this design is that it is both cheap and readily 

available. However, this design might be too large to act as an efficient damper inside of a 

helmet due to size and weight constraints (internal volume of a ketchup bottle is large (at least 

12oz). Other sized bottles (not ketchup) could be substituted in to help counteract the size and 

weight limitations. See Figure A8 below. 



105 

 

 

Figure A8. Sketch of a Diner Ketchup Bottle damping system.  

A3.7 Water Balloon 

This damping system does not use communicating hoses and instead picks one large body to act 

as the damper. As a result, this is both easier to mount and produce since it does not require a 

network of tubing. The bags could be filled with liquid or gases to produce the damping effect 

desired. The potential downside of such a system is that during impact, the energy of the impact 

could go into expanding the bag rather than resulting in the fluid providing the damping effect 

desired. See Figure A9 below. 

 

 

Figure A9. Sketch of Airbag/Air-Suspension bag damping system. Inner Tube 

 

The damping system is inspired by the ring safety technique used in automotive safety 

engineering. The damping system does not use communicating hoses and instead picks one large 
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body to act as the damper. In addition, by using inflatable rings, it’s possible to use pre-existing 

heavy-duty hoses (ex. Inner tire tubes) that would limit the likely-hood of damage during 

repeated usage. By using several tubes layered on top of each other, the damping effect would be 

contained to only a select number of tubes which constrains the damping effect to only acting 

upon the proper plane of the force, likely resulting in more efficient damping compared to the 

Water Balloon design). See Figure A10 below. 

 

 

Figure A10. Top-down sketch of the Inner Tube damping system.  

A3.8 Spinal Connection 

Rather than being limited to just the helmet, this system uses a fluid-filled membrane running the 

length or part of the length of the spine. The damping system within the helmet is just a series of 

small fluid-filled bags or pockets connected with tubing to each other and the membrane in series 

parallel then in series. During the case of a front or back-facing impact, the membrane would 

compress causing fluid to flow to the helmet, causing a greater level of damping. At the same 

time, during side impacts, the fluid sacs connected in parallel would cause a damping effect 

within each other. Testing would have to be conducted to fully understand the degree of damping 

in a variety of impacts since there are so many degrees of freedom in this design. See Figure A11 

below. 
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Figure A11. Front and side views of “Spinal Connection” damping system concept sketch. 

A3.9 Helping Hand 

This system uses a series of “hands” connected in parallel with three “fingers”. Each of the hands 

is a fluid filled sac placed at key positions in the helmet (top, sides, and back) connected in 

parallel with each other by tubing “fingers”. During impact, the “hands” would absorb the brunt 

of the force and the “fingers” would transfer the fluid to help generate the damping effect 

desired. In addition, by using thick tubing, each set of “fingers” could provide its own damping 

effect depending on the location of the impact. See Figure A12 below. 
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Figure A12. Front, Side, Back, and Isotropic views of “Helping Hand” damping system concept 

sketch. 
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A3.10 Bubble Boy 

This design effectively adds either gas-filled or liquid-filled bubble wrap around and throughout 

the lining of the helmet, connected in series to each other in rows. During the initial impact, the 

fluid would have to travel from cavity to cavity, causing a degree of resistance that could be 

modulated by the design to create the damping effect desired. This design is cheap and readily 

available. The downside of such a design is that since the bubble wrap is connected in series, a 

single leak could pose a significant safety risk. In addition, since bubble wrap is only intended to 

be used in shipping, durability for use in such high-force impacts repeatedly is questionable. See 

Figure A13 below. 

 

 

Figure A13. Side-view of “Bubble Boy” damping system concept sketch. 
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A3.11 VICIS 2.0 

The VICIS helmet uses columns that are connected to each other by a rigid inner shell and a 

partly rigid outer shell which allows the columns to work together well. These columns and shell 

could be 3D printed with a harder material (PLA or ABS) while the columns could be printed 

with flexible polymer (TPU). The 3D print should be able to hold liquid as well which when 

connected in series or parallel, could provide the damping effect desired. The downside of such a 

design is that the weight of the liquid could go over design constraints and the size of the 3D 

printer needed to print all the columns effectively. Due to the curvature as well, the print might 

need internal or external support which would decrease the ease of production and installation. 

See Figure A14 below. 

  

 

Figure A14. Concept sketch of “Vicis 2.0” damping system 
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A4 Budget Breakdown 

 

Figure A15. The grand total of these two receipts was $288.20.  
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Figure A16. The grand total of this receipt was $83.41.  
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Figure A16. The grand total of this receipt was $264.32.  
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Figure A18. The grand total of this receipt was $107.23.  

 

 

Figure A17. The grand total of this receipt was $14.00.  
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A5 Raw Data from Experimental Testing 

 

Drop 

Distance 

0.92 

in        

Drop 

Weight 

10 

lbs        

         

         

Flat No 

Water         

File # Trial 

Distance 

Start 

[cm] 

Distance 

End 

[cm] 

Distance 

Traveled 

[cm] 1 2 3 

Time to 

Stop 

5522 1 26  -26 13.03 13.96 12.85 13.28 

5521 2 26  -26 14.79 15.49 14.2 14.83 

5520 3 26  -26 14.18 13.32 14.91 14.14 

5519 4 26  -26 13.93 14.3 13.91 14.05 

5518 5 26  -26 12.89 12.78 12.83 12.83 

5517 6 26  -26 n/a n/a n/a 

*video not 

working 

5516 7 26  -26 8.25 8.22 8.57 8.35 

5515 8 26  -26 12.5 12.94 12.75 12.73 

5514 9 26  -26 15.38 15.31 15 15.23 

5513 10 26  -26 15.32 15.22 15 15.18 
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Pointed 

No Water         

File # Trial 

Distance 

Start [cm] 

Distance 

End [cm] 

Distance 

Traveled 

[cm] 1 2 3 

Time to 

Stop 

5526 1 26  -26 13.53 13.96 13.54 13.68 

5534 2 26  -26 7.05 8.56 8.43 8.01 

5533 3 26  -26 12.89 13.05 12.67 12.87 

5532 4 26  -26 14.95 14.8 12.77 14.17 

5530 5 26  -26 8.74 8.46 8.41 8.54 

5529 6 26  -26 13.98 14.02 14.03 14.01 

5528 7 26  -26 13.81 13.67 13.76 13.75 

5525 8 26  -26 12.91 13.84 13.61 13.45 

5524 9 26  -26 13.89 14.03 14.17 14.03 

5523 10 26  -26 14.07 14.92 14.13 14.37 

         

Flat With 

Water         

File # Trial 

Distance 

Start 

[cm] 

Distance 

End 

[cm] 

Distance 

Traveled 

[cm] 1 2 3 

Time to 

Stop 

5537 1 26  -26 11.03 11.09 13.89 12.00 

5536 2 26  -26 7.17 6.94 7.19 7.10 

5540 3 26  -26 6.73 6.91 7.17 6.94 

5539 4 26  -26 14.17 13.37 15.27 14.27 

5538 5 26  -26 11.55 11.25 10.95 11.25 
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Flat With 

Syrup         

File # Trial 

Distance 

Start 

[cm] 

Distance 

End 

[cm] 

Distance 

Traveled 

[cm] 1 2 3 

Time to 

Stop 

5552 1 26  -26 10.71 11.27 10.76 10.91 

5551 2 26  -26 10.6 10.57 11.01 10.73 

         

Padding         

Video 

Time 

Stop Trial 

Distance 

Start 

[cm] 

Distance 

End 

[cm] 

Distance 

Traveled 

[cm] 1 2 3 

Time to 

Stop 

5574 1   0 5.58 6.13 5.49 5.73 

5566 2   0 n/a n/a n/a 

*not a 

valid test, 

wrong 

base 

material 

0:10 3   0 1.73 1.92 1.66 1.77 

1:28 4   0 7.17 7.14 7.41 7.24 

3:34 5   0 5.85 6.33 5.94 6.04 

6:10 6   0 6.41 6.12 6.26 6.26 

7:52 7   0 6.28 5.56 5.38 5.74 

9:43 8   0 5.51 5.4 5.43 5.45 

11:30 9   0 6.05 6.46 6.56 6.36 
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CONNEC

TION 

TESTS         

Water 

Connect   Results      

Did an impact fill the other 

damper? No      

Time to take to fill damper 

with sustained impact: DNF      

         

Syrup 

Connect         

Did an impact fill the other 

damper? No      

Time to take to fill damper 

with sustained impact: 40.82 

*just 

seconds off 

the video, 

not double 

slowed     

   5.1025 

*seconds 

real time    
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A6 Detailed CAD models  

 

 

Figure A20. Final CAD drawing of the entire testing apparatus.  
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Figure A21. Final CAD drawing of the entire testing apparatus, broken up into pieces. 
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Figure A22. Final CAD drawing of the pendulum assembly. 
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Figure A23. Final CAD drawing of the track assembly. 
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Figure A24. Final CAD drawing of the baseplate. 
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Figure A25. Final CAD drawing of the wooden bearings to support the pendulum mass. 
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Figure A26. Final CAD drawing of the machined pendulum arm. 
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Figure A27. Final CAD drawing of the aluminum impact mass.  
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Figure A28. Final CAD drawing of the machined Unistrut channel. 
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Figure A29. Final CAD drawing of the helmet baseplate. 
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Figure A30. Final CAD drawing of the 3D printed damper. 
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