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Abstract 

A Python-based machine learning algorithm was designed for the function of the traffic 

signal controller. Traffic signal controllers are the decision-making component within a traffic 

control box. Signal controllers determine when and which traffic lights transition from one phase 

to the next. The deep Q-learning algorithm designed in this project looked to decrease average 

vehicle delay, the expected amount of stoppage the average vehicle should expect, by a 

minimum of 10%. This reduction in vehicle wait times will have a noticeable impact on vehicle 

emissions created by interrupted vehicle flow, making the signalized intersection system more 

environmentally friendly. On top of these performance-based metrics, the design provided by 

this project can be implemented theoretically in easily available and cost-reasonable hardware, 

allowing transportation authorities to save considerable amounts of taxpayer money on the 

designed product. 
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1. Introduction 

1.1 Project History: 

The initial concept of the Supreme Optimizer project began with a small research project 

between Professor Rachel He and Griffin Donnelly. The idea of optimizing signal phase lengths 

based on evolving traffic flows was put forward, and the project was addressed as 

interdisciplinary beginning in the Spring quarter of 2019. Michael Yue, representing the 

Computer and Electrical Engineering Departments, was invited to work on the project by Griffin. 

A third team member, Donovan Edwards, was brought onto the project from the Electrical 

Engineering Department. During the summer, design brainstorming simplified the project 

deliverable to the signal controller, the device in traffic control boxes that determines when to 

change the traffic lights from green, yellow, or red. These components of traffic engineering will 

be discussed in further detail in the design criteria section of the document.  

1.2 Project Objective: 

The purpose of this Senior Design Project was to redesign the traffic signal controller to 

reduce average vehicle delay from current conditions benchmark and decrease the physical size 

of the controller device itself. The device was expected to decrease average vehicle delays at all 

intersections in the study by a minimum of 10%. The final design deliverable was also to bring 

forward a level of adaptability and predictability using collected statistical data on vehicle 

volumes, to adjust and determine the phasing for green, yellow, and red signals in each direction.  

The original project objective was to implement the controller in both hardware and 

software. As the project evolved the team focused on the modeling, system design and software 

component of the project. The project software and simulation is portable across multiple 

intersections and various traffic conditions. Future work for this project could include applying 

the software to an embedded traffic system. This would likely include writing firmware and 

developing further hardware to sense cars and the traffic environment as a whole. An optimized 

version of the software algorithm can also be explored for future works. The software and 
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simulation based objectives were achieved by reviewing past traffic theory, applying modern 

computational advancements to their purpose, and using these advancements to reduce key 

traffic metrics such as mean vehicle wait time.  

1.3 General Site Description & Scope: 

The project was focused near Santa Clara University, but the final deliverable design is 

scalable and expected to adapt to all standard street intersections. With that said, initial data 

collection and field observations were done on three local intersections. These intersections, as 

shown in the Figure below, are from bottom to top: Alameda & Newhall, Alameda & El Camino 

Real, and El Camino Real & Campbell [Figure 1]. 

 

Figure 1: Map displaying local study intersections with crimson markers. 

The current traffic control systems near Santa Clara University use actuated signal 

controls, and in some cases, include coordination as well. Actuated-coordinated plans, those used 

on Alameda & El Camino Real and El Camino Real & Campbell, determine green light times 

based on the arrival of cars on the detector system. Coordinated signal controllers also align their 

green phases along the major arterial, in this case El Camino Real, in order to minimize stoppage 
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for large traffic platoons. Uncoordinated signal systems have the same actuation features as 

coordinated signals, but do not align their traffic platoons with other intersections in the corridor. 

Existing traffic operations for signal controllers are outlined in traffic signal control 

plans. These plans, seen in [Figure 2], state the lengths of time allocated for the different phases 

of movement at the intersection. These phases are directly connected to the available turning 

movements at an intersection. Similar to a Mealy finite state machine, the phases can be 

represented as states and the inductor loops can be represented as the inputs to the state machine. 

The state machine will only change states if certain predetermined conditions are met in the time 

domain and the traffic is in the necessary state.  

In the documentation in [Figure 2], each turning movement is given a number 

representing a phase. The documentation in [Figure 3] contains information regarding the 

lengths and different phase conditions. The phase timing sheet displays several time variables, all 

of which are in the time units of seconds. The following table displays the variables and their 

corresponding definitions: 

Table 1: Phase timing variables and definitions 

Extension Vehicle passes over a detector, time is added 

if it surpasses minimum green 

Maximum Gap Largest value of green time extension 

possible, due to several vehicle detections in 

rapid sequence 

Minimum Gap Lowest possible time extension allowable, 

maximum gap gradually decreases to this 

through “Reduce Gap By” 

Reduce Gap By Amount of time reduced from “Maximum 

Gap” for allowable extension 
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Reduce Every Amount of time that must pass before 

“Reduce Gap By” increments. 

 

The sum of all phase lengths is called a cycle, a value determined by the HCM and 

Webster’s equations in Appendix B. Phase signal documentation for El Camino Real and 

Campbell is located in Appendix A. 

 
Figure 2: Map displaying local study intersections with crimson markers. 
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Figure 3: Phase timing sheet for the Alameda and El Camino Real intersection 

 

2. Alternative Analysis 

2.1 Simulation Program: 

There are several computer programs that can simulate traffic networks, specifically 

those with signalized intersections. The two programs that will be compared in this document are 

Synchro’s traffic software and Simulation of Urban Mobility (SUMO) software packages. 

Synchro is an industry standard in determining the serviceability of traffic infrastructure given a 

known volume of vehicles. Professionally, traffic engineers use Synchro and its reports in Level 

of Service (LOS) and average vehicle delay as submittals in a variety of traffic engineering 

projects. Synchro can simulate pre-timed, actuated, and actuated-coordinated signal timing plans 

for signalized intersections. Synchro develops a significant amount of the simulation internally, 

where SUMO requires detailed input and programming from the user’s end. This means Synchro 
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is incredibly simple compared to SUMO, whereas SUMO allows for a higher level of control 

over the simulated environment. 

One of the biggest disadvantages of the Synchro traffic software is the inability to 

customize traffic flows. Synchro takes a large scale view, looking at average traffic flows on a 

per hour basis. The team was not able to figure out how traffic is simulated within this hour, 

however, the most reliable information the team could find showed a uniform distribution. This 

means Synchro uses the vehicles per hour number equally over a 60 minute period. This was not 

reflective of the traffic conditions, and for the purposes of this project was not sufficient. SUMO 

allows for the simulation of traffic on a minute by minute basis.  

Using SUMO to simulate traffic was done by taking real traffic data. Accurate traffic data 

is necessary for proper traffic analysis in the traffic engineering field and this project. However, 

the group used the traffic data to create probability distribution functions which can create many 

realistic traffic scenarios. Optimizing a traffic controller for a single day is not useful, since each 

day has different traffic conditions. However, the different conditions still follow the same 

probability distributions.  

Another key aspect to representing an intersection accurately was the incorporation of 

platoon data. Platoon data is a specific form of traffic observation that has the data collector 

group their vehicle counts in platoons, or clumps, of passing automobiles. This is done to 

increase the realism of the stochastic simulation, as traffic does not arrive singularly on major 

arterial roads. Each vehicle can be thought of having an inherent ‘stickiness’. This means that the 

less vehicles on the road, the more spread out they are. The more vehicles on the road, the more 

clumped up near each other they are. Platoons and how they are used in the simulation is further 

described in section 4.4. 
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In order to properly simulate the team’s machine learning algorithm in virtual space, 

SUMO was the chosen program. SUMO also allowed for more detailed control of vehicle flow 

simulation, allowing platoon data to be properly utilized. Due to previous signalized intersections 

along the corridor, traffic arrives in these waves, a defining factor for coordinating intersections. 

By simulating traffic platoons, the Q-Learning algorithm will be able to handle large traffic 

platoon situations similar to how a coordinated signal plan would operate.  

2.2 Evaluation Criteria: 

There are several considerations that had to be made for the traffic signal controller 

component of the traffic control box. Public safety is the first priority. Safety can be measured by 

a variety of factors, including but not limited to hardware reliability, durability, and consistency. 

Controllers with consistent quality in electrical signal output are preferable and easier to work 

with than more advanced and complex controller systems with a higher likelihood of electrical 

component error or total failure.  

From a public safety perspective, there are also considerations in selecting the controller 

model. The Highway Capacity Manual (HCM) model and Webster’s equation can be compared 

on a public safety as well. The HCM model includes consideration for pedestrians, inherently 

making the model safer than Webster’s equation. Webster’s equation does not consider 

pedestrians in the phase length calculations. Either equation can be used for determining cycle 

length for each intersection, however both have fixed timing values in the controller. This 

includes fixed values for green minimum and green maximum times. The software of the project 

improved upon both of these previously mentioned models due to the variable in green 

maximum times. The software of this project still maintained safety by using the same green 

minimum times in order to protect pedestrians. However, pedestrians were not used in the 

simulation, in order to simplify the process and comparisons.  

Responsiveness and processing speed are the second most important aspects of the 

component design, with relevance in both the hardware and software aspect of this project. In 

terms of hardware, responsiveness is relatively straightforward, as there are clear metrics in 

processing speed that are provided by the supplier. The software end becomes more tricky, as 

code, once complete, will have to be tested for optimal efficiency. The software side could not be 
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tested for this project and was out of project scope, so this analysis only looked at the given 

hardware speeds. 

Memory is important for storing and manipulating the data collected from the detector 

components connected to the controller. Capacity and durability play a factor in the hardware 

side of the component, ensuring enough data can be stored for weeks and possibly even months 

at a time in unusual conditions. Ease of access was also considered in this criteria, and if any 

hardware component was known to be difficult to integrate with Python, it scored lower in this 

category. 

Cost was an obvious and important part of choosing the hardware. Although this is 

placed below most performance metrics, it should be noted that cost does put a ceiling on many 

of the options that were able to be pursued in this project. Given that the senior design project 

needed implementation at every traffic control box, its cost had to be less than that of current 

devices given the objective of improvement. Power usage can also be included in this aspect, as 

the most important effect of power usage will lie on the overhead cost that comes with supplying 

electricity to the system. 

Numerically, the alternative solutions were ranked relative to each other. The criteria 

were weighed from zero to three with three being the highest level of importance and zero 

representing a category that did not apply to the given alternatives. The alternatives were 

evaluated based on the criteria from zero to five where five was the best demonstration of 

criteria, one was the minimal allowable for the criteria, and zero expressed that the alternative 

could not be judged by the criteria. Based on the total score calculated from these criteria for the 

alternatives, an alternative solution was chosen for this project. 

2.2.1 Software Architecture: 

There were several software implementation options for this optimization algorithm. 

Tensorflow is a machine learning Python library that can be used to predict traffic patterns and 

conditions on local roads. Tensorflow is a tool to predict the traffic pattern rather than optimize 

the pattern. Prediction is inherently riskier than optimization, but makes the program more 

responsive. Reinforcement learning is an optimization algorithm that sets rewards and 
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punishments for certain situations. Reinforcement learning focuses on minimizing wait time of 

cars at an intersection. Based on formulas, delay time is calculated for each situation, and a 

rewarded situation will occur more often than a punished situation. Gradient descent is an 

optimization technique to find a local minimum using approximation integrals. Gradient descent 

will generate a signal plan and the live traffic data will make the system dynamic. Gradient 

descent can also optimize for multiple traffic variables at an intersection. Dynamic programming 

uses a state machine and decision tree to test the best results from a list and optimize the best 

stages for a signal plan. Q-learning is a heuristic approach that follows a mathematical formula to 

find the best timings based on risks, rewards, and consequences. From the analysis, the team 

implemented Q-learning into the software.  

The project team wanted to ensure that their traffic-light algorithm and its software 

implementation would not cause a traffic accident. This is important both conceptually and in 

testing because bad performance affects the metrics of evaluation for the team’s tests. 

Responsiveness is also important in software because the optimization algorithm needed to be 

efficient and effective. Memory is not as important because the methods to handle memory were 

similar across all alternatives. Finally, cost is not important because the team used all free and 

open source programs to develop and test the system. All of the criteria is listed in the alternative 

analysis matrix below [Table 2]. 

 

Table 2: Analysis Matrix for software alternatives.  

Dynamic Programming and Q-learning chosen as most preferred alternatives. 

 Tensorflo

w 

Reinforcement 

Learning 

Gradient 

Descent 

Dynamic 

Programming 

Q-learning 

Safety (3) 2 2 3 4 3 

Responsiveness 

(2) 

3 3 1 3 3 

Memory (1) 3 3 3 2 4 
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Cost (0) 0 0 0 0 0 

Total 15 15 14 20 19 

 

 

2.2.2 Cycle Length Modeling: 

The two equations, Webster’s and HCM cycle equations, are fundamental for traffic 

signalization and are tasked with achieving the same result, setting green time for a standard 

signal cycle length. See Appendix B for elaboration of Webster’s and HCM cycle equations. 

The main consideration to have when comparing these two equations is their ability to be 

reliably implemented in a software based simulation. This means that a concise, fluid equation 

with fewer additional factors and variables makes simulation easier. In this scenario, Webster’s 

equation was clearly simpler and preferable to the HCM model. Webster’s equation does not 

require the conversion of traffic volumes to critical units. Critical units are a term used in the 

Highway Capacity Manual to describe a baseline “through” unit. Left-turn traffic and right-turn 

traffic need to be converted to through traffic in HCM, which is not the case in Webster’s 

equation. Webster’s equation considers the difference between left, through, and right when 

finding the ratio used to tabulate the actual vehicle volume over the saturation flow rate. 

Cycle Length Modeling also has no cost comparison, as neither method is more 

expensive than the other. Accuracy and safety are the only measurable differences. Accuracy in 

this scenario also related to average vehicle delay and how well the model accommodates traffic 

flow patterns. Given that the HCM model is newer and a product of more in-depth data and 

empirical observation, it is generally more accurate than Webster’s equation. For this reason, 

HCM was determined to be safer and the better choice for modeling the appropriate cycle length 

for signalized intersections, see [Table 3] for analysis matrix. 

 

Table 3: Analysis Matrix for cycle length model alternatives. HCM Model chosen as most preferred alternative. 

 Webster’s Model HCM Model 

Safety (3) 4 5 
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Responsiveness (2) 3 3 

Memory (0) 0 0 

Cost (0) 0 0 

Total 18 21 

 

This project chose to focus on Q-learning for the software architecture component of the project. 

The main reason for this is because the Q-learning algorithm doesn’t need to know the model of the 

environment. Q-learning also serves as a basis for deep Q-learning where the number of states action 

combinations can be approximated using a neural network. With dynamic programming, the number of 

states would be too large to process. The HCM Model was chosen as the method of establishing current 

conditions because this is the method currently used in the field. The project was provided with up-to-date 

signal timing plans, all of which are adjusted from original calculations using the HCM Model. The HCM 

Model also considers pedestrian traffic, which means it is inherently safer than Webster’s equation. 

 

3. Design Criteria and Performance Requirements 

3.1 Level of Service: 

The standard metric for determining the performance of a signalized intersection is level 

of service (LOS). This metric is an abbreviated version of average vehicle delay. Average 

vehicle delay is determined by summing the total delay experienced by all vehicles, in seconds, 

due to a traffic signal and dividing it by the total vehicle count that passes through the 

intersection. 

 

D = C [1−(g/C)]* 2

2 [1−(g/C) X]* *
[Equation 1][1] 

 

D = Delay (seconds/vehicle) 

C = Cycle Length (seconds) 

g = Effective green time (seconds) 
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X = volume/capacity ratio (same as “v/c” in HCM Model equation of Appendix B, usually 0.95) 

 

  

The LOS metric simplifies this value into a letter grade form. Equivalent to the grading 

scale for academic work, LOS letter grades are done in descending order of serviceability from 

‘A’ to ‘F’, skipping ‘E’. Table 4, below shows the average vehicle delay range for each letter. 

 

Table of LOS Letter Grades and their corresponding Average Vehicle Delay time intervals 

[https://safety.fhwa.dot.gov/intersection/conventional/signalized/fhwasa13027/ch7.cfm] 

Table 4: LOS table showing delay and letter grades 

 

 

3.2 Average Vehicle Emissions: 

Reducing vehicle emissions was a primary concern in regards to the sustainability aspect 

of the project. Although it has been shown that reduced vehicle delay decreases emissions, an 

important aspect of using the SUMO software program is the access to a variety of open-source 

tools that can measure different aspects of the simulation. The key metric of this project was 

reducing average vehicle wait time.  SUMO has some vehicle emission measurement functions, 

but it was unclear how those functions calculated emissions.  For this reason, the decision was 

made to focus on reducing vehicle wait times.  The calculation for average wait time was reliable 

and apparent how the calculation was being accomplished.  The results of the project assume that 

vehicle emissions will be reduced by lower wait times.  It is currently unclear by how much a 

10% reduction in vehicle wait times will realistically reduce emissions.  
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4. Software Design 
4.1 Overview: 

The Supreme Optimizer project had three key components.  The first component of the 

project was gathering traffic data from around the university.  The second component of the 

project involved modeling the traffic appropriately to represent the intersections discussed 

accurately.  The third component involved comparing a machine learning based traffic controller 

to the current method Caltrans uses to control intersections.  This resulted in an estimated 10% 

increase in efficiency.  

4.2 Q-Learning: 

The team decided to implement a deep Q-learning algorithm in the traffic controller. 

Deep Q-learning is based on the traditional Q-learning algorithm with an additional deep neural 

network. The team decided to use deep Q-learning because of the effectiveness of the algorithm 

for a traffic environment. This method will give accurate and meaningful results while saving 

time on the simulation.  

Q-learning is based on a reinforcement learning model to make the best decision based on 

a number of parameters.[2] Those parameters have to be defined appropriately for a traffic 

intersection. The team followed the equation in [Figure 4] for a traffic intersection. The Q-value 

is a function of state and action values that get stored and updated in a Q-table. Based on old 

Q-values, a new one is generated to represent the best action to take from a given state. This 

value determines which traffic light phase is the best to switch to for a given action. For a traffic 

intersection, the state refers to the number of cars at an intersection.[3] A snapshot of the 

intersection can be thought of as the state. Position, speed, velocity, and direction of each vehicle 

contributes to the state environment of the intersection. All of this information gets translated 

into a matrix value for the algorithm. In [Figure 5] an example of the state is shown to represent 

the intersection. The number of cars in each lane at an intersection can result in thousands of 

state combinations. From any state, one of five actions can be taken. The action refers to the 

traffic phase that is activated to turn green. Five unique actions are defined in [Figure 5]. Each 

action is a combination of traffic light phases activated for an intersection. The Q-table is a 

matrix that holds a specific value for any state action pair. An example of a basic Q-table setup is 
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shown in [Figure 6]. When the Q-learning algorithm is executed, the Q-values in that Q-table 

get updated appropriately. Based on the learning process in the algorithm, a best action can be 

selected for a given state.  

Figure 4: State Representation(left), Action Definition(right) 

 

The next parameter is reward. Reward is defined as the parameter that the system uses to 

judge consequences of actions taken. In the project, the reward is cumulative wait time of 

vehicles at an intersection. The wait time determines if an action was good or bad. Reward can 

also be thought of as an indicator to how well the algorithm performs. The discount factor is the 

parameter between 0 and 1 that determines the importance of future rewards compared to the 

immediate reward. The learning rate determines how much old information is replaced with the 

new information at every iteration. The learning rate is set to 0.002 in order to use most of the 

old information and thus learning slowly. All of these parameters are used in the Q-learning 

algorithm which is the basis of the project design. 
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Figure 5: Q-learning algorithm 

 

4.3 Deep Q-learning: 

In regular Q-learning, there needs to be a value for every state action pair. For a traffic 

intersection, this number is too large to manage in a controller. Instead, the Q-value is 

approximated from a given state using a deep neural network(DNN).[4] This method has the 

advantage of accurately predicting the Q-value from any state while decreasing the overhead 

needed with a Q-table. The team followed a framework to implement a basic neural network for 

deep Q-learning.[5] The states of the intersection are the input to the neural network. The DNN is 

based on the Q-learning equation and uses all the parameters to determine Q-values from every 

possible action. [Figure 6] shows the basic structure of the neural network and how the 

approximation of Q-values can be determined from a given state.[4] Based on the position, 

velocity, and speed of the vehicles at the intersection, the neural network can collapse this 

information into one Q-value. The difference between normal Q-learning and deep Q-learning is 

also shown in [Figure 6]. In normal Q-learning, the Q-table determines the Q-value based on 

state and action pairs. In deep Q-learning, the neural network itself can determine the Q-value 

based on the state and approximate the Q-learning equation. 

 
Figure 6: Q-learning vs Deep Q-learning 
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4.4 Implementing Traffic Data: 

The team gathered traffic data at three intersections, El Camino Real (ECR) and Newhall, 

ECR and Alameda, and ECR and Campbell. This data was broken into tables as follows per each 

day of data collection. NT means north through, NL means north left, NR means north right, ST 

means south through and so on until ER for east right.  

Table 5: Traffic volume table 

Time NT NL NR ST SL SR WT WL WR ET EL ER 

7:30 

AM 

            

7:31 

AM 

            

(7:32

... … 

8:58) 

            

8:59 

AM 

            

9:00 

AM 

            

 

The blank boxes represent the number of cars observed in each minute block of time. 

This number can vary significantly, and a link to the drive will be included in the appendix to the 

data for reference.  

The traffic flow per minute data can be used to generate probabilities of how often that 

amount of cars will go through the intersection in a given minute. NT of all three intersections 
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consistently had a vast majority of the traffic flow of each intersection (for reference this is 

coming out of the I-880 and going north on ECR towards 101-N). The percentage of traffic of 

NT compared against all traffic flow is not relevant, but it was just an apparent observation 

throughout the course of the project.  

The lack of traffic flow in each of the other 11 directions could be modeled with a simple 

probability distribution (PDF). For the project’s purpose, a simple PDF refers to the fact that the 

11 minor distributions were normalized over the entire time period (7:30 AM to 9:00 AM). The 

last direction, NT, needed to be broken up into multiple different PDFs in order to accurately 

represent the intersections. The following is a graph of the Alameda and ECR intersection’s NT 

traffic data on October 29, 2019.  

 

 

 

 
Figure 6: Traffic volume distribution 

The NT traffic goes through either a middle process or a peak-valley process. A middle 

process refers to when the number of cars in a given minute is a middle amount (for this graph is 

17 



 

approximately between 18-40) for two minutes back to back. Observations of this process occur 

around 7:40 AM and 8:04 AM. A peak-valley process refers to when the number of cars in two 

consecutive minutes has a spike (40< cars in a minute) followed by a decline (<18 cars in a 

minute). Peak-valley processes occur at 7:43 AM and 8:01 AM for reference.  

Now that these processes have been defined, the probability of each occurring can be 

found. However, the traffic data needs to be broken up further. The probabilities of middle 

versus peak-valley changes significantly over the course of an hour and a half so multiple PDFs 

need to be created for different time periods. Note: each PDF was created using the best fit out of 

an exponential, gaussian, or poisson distributions.  

For the project, traffic was divided into three separate PDFs in the following time 

periods: 7:30 AM -8:00 AM, 8:00AM-8:30AM, and 8:30AM-9:00AM. In each time period the 

following probabilities and PDFs were created: 

 

P[peak-valley occurs] = 1 - P[middle occurs]; determines which PDF will be called 

PDF of middle, PDF of valley, PDF of peak 

Either middle will be called twice, or peak and then valley will be called. The reason for this 

order (peak then valley) is that over a long sequence it doesn’t matter which is called first, as 

long as two peaks and two valleys are not next to each other. Picking an order up front ensures 

the two peaks or two valleys case cannot occur.  

 

Now the problem arises of how to call those cars into existence within a given minute. 

This is where the team had to innovate a solution called platoon data. Platoon refers to the fact 

that as more cars show up together within a given minute the more likely the vehicles are to 

clump together. This means that another unique PDF needs to be created, however, this does not 

need to be broken into 3 time sections. Platoon distributions apply across time, since cars have an 

inherent “stickiness” quality, which means that cars tend to attract other cars at consistent rates. 

 

Here is an example of a platoon PDF for ECR and Alameda.  
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Figure 7: Platoon data 

 

Platoons were measured by counting cars continuously flowing until a break was met. 

Then the platoon distribution is normalized in comparison to the total amount of cars flowing in 

a given minute, determined by the peak-valley and middle PDFs.  

 

 All of the PDFs were accessed by creating a random number, and assigning regions from 

0-1 to determine vehicle calls and platoon size. All PDFs were stored in csv files, and all scripts 

were written in python. Vehicles are called into SUMO using XML files.  

 

Here is a decision making process of the process of calling cars into a simulation in a 

descriptive method at a high level for clarity: 

 

Traffic distribution creates a total number of cars in a 1 minute period. 

The platoon distribution determines how large the clumps of cars are within the 1 minute period.  

The platoons are then assigned times to appear at the intersection within the 1 minute period.  

Repeat for the next minute long period. 
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5. Summary Description of Designed Facilities 

5.1 Collecting Field Data: 

The primary information the device will use for determining when to change signal 

phases was directional vehicle volumes. Directional vehicle volumes are traffic counts for each 

cardinal direction, broken down into their turning movement in either the left, through, or right 

turns. [Figure 8] displays the exact device used to collect traffic data in the field. 

Observationally, lanes are not distinguished outside of these turning movements. Data collected 

for a two-lane through volume is split equally, meaning that the volume for a direction is divided 

by the number of lanes supporting it. This is an assumption made for this project. Directional 

volume data acted as one of two major inputs for the signal phase equations, and behaved as the 

primary factor in ensuring the team’s software was predictable, using known time data from 

previous but similar contexts to understand how long a green light should remain green. 

Additionally, field observations included vehicle platooning, where groups of cars were counted 

together as platoons in order to increase the accuracy of the simulated environment. By recording 

platoon counts, the team was able to generate vehicles in the SUMO environment that closely 

resemble actual traffic flows on the road. 

 

Figure 8: Jamar Technologies traffic counter. 
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5.2 Constructing the SUMO Simulation Environment: 

To simulate the Q-learning and signal phase plans, the team used an open source software 

called Simulation of Urban Mobility (SUMO). SUMO can simulate any traffic environment 

through its programmable interface and native Python support. The Traci library in SUMO 

allows for unique traffic light situations such as a deep Q-learning model. The team used the 

various functions in Traci to determine the state, action, and reward values from the traffic 

environment. The deep Q-learning method written in Python was also integrated to interact with 

the SUMO simulation to generate results. The team also used SUMO to simulate the static phase 

plan. For this method, the team programmed the traffic lights to cycle through the signal plan to 

represent how the intersection currently operates.  

Each intersection has a specific geometry that determines the signal phasing and 

directional movements of the incoming vehicles. These geometries include: lane count, left turn 

pockets, and lane directions. Once the geometry was established, signal phases had to be 

established for each group of non-conflicting vehicle movements. Directional movements like 

North-through and North-left can have coinciding green signals, as their vehicle patterns do not 

overlap. The same can be said for North-through and South-through, North-left and South-left, 

etc. These pairings can be seen in an example in the right image of [Figure 4]. These phasings 

were an important aspect of both the existing and project-designed signal control, as they 

represented the “choices” that the controllers will have to choose from in order to service the 

intersection. In the case of the existing signal controller, when using an actuated-coordinated 

phase plan, the phases must be serviced in a certain order. In the machine-learning based 

algorithm designed in this project, the phases were serviced in any order deemed necessary. It 

was expected that the same coordinating effect will take place between intersections because 

every controller down the road will eventually learn to recognize the ‘choices’ of the previous 

controller based on incoming traffic data. 
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5.3 Generating Traffic Flow in Simulated Environment: 

After the geometry of each intersection was constructed virtually, vehicles had to be 

generated in real-time to test the signal controller’s quality of service. As mentioned in Section 

4.1, field data collected both vehicle per hour per lane counts, as well as probability distributions 

for platoon size based on observation. Using this information, vehicles can be generated on a per 

lane, per direction basis. The traffic flow model was stochastic, meaning that the vehicles enter 

the system in a seemingly random manner, but are constrained to the set parameter of platoon 

size and total vehicle flow for the peak hour. This can be seen in Appendix C. 

4.4 Deliverables: 

Once the simulated environment was complete, the neural network was trained on 2000 

episodes. The training results can be seen in [Figure 9]. Due to time, only the first 220 episodes 

are displayed in the results. The results show that initially, the data may suggest a high average 

wait time, but the average is expected to decrease as the episode lengths increase. On longer 

simulation episodes, a strong accuracy and better results can be expected to improve wait time. 

However, on the first 220 episodes, the average wait time is starting to decrease and is expected 

to stabilize under 20 seconds. After training the neural network, the system is tested by inputting 

any state to the system and generating a Q-value from the network. This is also done in 

simulation to control the lights at an intersection. To compare against the current static signal 

phase plan, a distribution of around 3000 cars was generated to run through the intersection. The 

team compared the wait time using the neural network and the static phase plan and calculated 

the average vehicle wait time. The team measured average vehicle wait time because it is the 

reward value for the Q-learning algorithm, and because it is the metric to directly determine level 

of service. From the deep Q-learning method, the level of service calculated was a B and the 

level of service using the signal phase plan was a C. Overall, from the initial results, this is about 

a 10% improvement in average vehicle wait time.  
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Figure 9: Deep Q-learning simulation results 
 

6. Cost Estimate 

The estimated cost of this project was difficult to set as confidently as most other Civil 

Engineering-related projects as this product was almost entirely within the bounds of 

open-source software. This project required no funds for the SUMO aspect of the project, but 

simulation was done for validity in Synchro and SimTraffic. The license for one copy of this 

program is $3,599, which scales down based on licenses purchased, see [Table 6]. 

 

Table 6: Prices per license from https://www.trafficware.com/synchro-store.html 

 

 

Cost can also be estimated through the physical controller itself. Traffic signal controllers 

cost approximately $10,000 to upgrade to current standards, based on estimates from the U.S 

Department of Transportation.[6] A microcontroller that can profficiently run the project’s 

machine learning algorithm for signal control would cost no more than $900, combined with 

$2,500 estimated for casing and wiring costs leaves the final price of a custom-built hardware 

system at roughly $3,400. This cost is significantly less than the current pricing for 

industry-standard signal controllers, which would save transportation departments thousands of 
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dollars per replacement, not including the thousands of dollars saved in a self-correcting machine 

learning algorithm. 

The cost of labor still had to be factored into account for the design, given that the high 

cost of signal controller systems is determined by the cost of research and development for the 

product’s software and hardware setup. Working for an estimated 25 weeks, at an average of 15 

hours per week per person, calculates to 1125 hours of work put towards this software design. 

Between the hourly wage of a traffic engineer and software engineer in the Bay Area, the hourly 

cost of work comes to approximately $45 dollars per hour, which means that the total cost of 

labor is $50,625. If the cost of the controller were equal to that of its industry-standard, only 

about eight would need to be sold to compensate for labor. This number would already put the 

project in the positive in terms of income, with the number of units being sold as incredibly small 

in comparison to the volume demand for traffic controller systems. For example, the City of San 

Jose alone has “over 900 signailzed intersections” in its jurisdiction.[7] Far more than eight of 

these units could be sold, further bringing down the cost to cover the initial investment. 

 

 

Table 7: Summary of calculations 

Avg 
hours per 
week 

Avg 
weeks 
per year 

Total 
hours per 
year 

Hourly 
rate 

Total 
project 
cost 

Avg 
controller 
cost 

Cost of 
Goods 
Sold 

Profit per 
controller 

8*Profit Project 
income 
after 8 
sales 

15 hours 25 weeks 1125 
hours 

$45 $50,625 $10000 $3400 $6600 $52800 $52800-
$50625 
= $2175 
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7. Conclusion 

Throughout this project, the team was able to develop a simulation model for deep 

Q-learning based implementation of a traffic light controller. The team used this implementation 

on a simulated environment representing various intersections around Santa Clara University. 

The team also determined the distribution of traffic at these specific intersections by conducting 

a live traffic study at these sites. After running those distributions through simulations, the deep 

Q- learning model gave us optimized average wait times of 14-16 seconds per vehicle. This was 

accomplished with a traffic light controller that adapted to the traffic environment and 

conditions. The team compared these results to the average wait times from a simulation that 

represented the current method of controlling traffic. These signal phase plans were run in 

simulation with the same traffic distributions at each intersection. The static simulation resulted 

in an average wait time of 20-25 seconds per vehicle. This results in about a 10% improvement 

in wait time by using the deep Q-learning model. Overall, the project group was able to develop 

a better solution to traffic light management at intersections around Santa Clara. 
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Appendix A 
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Intersection Layout and Signal Design for El Camino Real & Campbell 
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Appendix B 
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Webster’s Cycle Model 

 

 
Equation provided by Federal Highway Administration[1] 

 

 

 

 

 

Highway Capacity Manual (HCM) Cycle Model 
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class DQNAgent: #DNN to approximate Q learning state action algorithm 

def __init__(self): 

 self.gamma = 0.95  # discount rate 

 self.epsilon = 0.1 # exploration rate 

 self.learning_rate = 0.0002 #0.0002 

 self.memory = deque(maxlen=250) 

 self.model = self._build_model() 

 self.action_size = 5 

 

def _build_model(self): 

 # Neural Net for Deep-Q learning Model 

 input_1 = Input(shape=(12, 12, 1)) 

 x1 = Conv2D(16, (4, 4), strides=(2, 2), activation='relu')(input_1) 

 x1 = Conv2D(32, (2, 2), strides=(1, 1), activation='relu')(x1) 

 x1 = Flatten()(x1) 

 

 input_2 = Input(shape=(12, 12, 1)) 

 x2 = Conv2D(16, (4, 4), strides=(2, 2), activation='relu')(input_2) 

 x2 = Conv2D(32, (2, 2), strides=(1, 1), activation='relu')(x2) 

 x2 = Flatten()(x2) 

 

 input_3 = Input(shape=(5, 1)) 

 x3 = Flatten()(input_3) 

 

 x = keras.layers.concatenate([x1, x2, x3]) 

 x = Dense(128, activation='relu')(x) 

 x = Dense(64, activation='relu')(x) 

 x = Dense(5, activation='linear')(x)  

  

 model = Model(inputs=[input_1, input_2, input_3], outputs=[x]) 

 model.compile(optimizer=keras.optimizers.RMSprop( 

 lr=self.learning_rate), loss='mse') 

 

 return model 
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#example of state action selection algorithm 

if(action == 3 and light[0][0][0] == 1): #transition from state 0-1-2-3 

# Transition Phase 

 for i in range(ty): 

 stepz += 1 

 traci.trafficlight.setPhase('0', 1) 

 wait_time() 

 traci.simulationStep() 

 for i in range(tg): 

 stepz += 1 

 traci.trafficlight.setPhase('0', 2) 

 wait_time() 

 traci.simulationStep() 

 # Action Execution 

 reward1 = traci.edge.getLastStepVehicleNumber('2si') 

 reward2 = traci.edge.getLastStepHaltingNumber('3si') + traci.edge.getLastStepHaltingNumber('4si') + 

traci.edge.getLastStepHaltingNumber('1si') 

 for i in range(tg): 

 stepz += 1 

 traci.trafficlight.setPhase('0', 3) 

 reward1 = traci.edge.getLastStepVehicleNumber('2si') 

 reward2 = traci.edge.getLastStepHaltingNumber('3si') + traci.edge.getLastStepHaltingNumber('4si') + 

traci.edge.getLastStepHaltingNumber('1si') 

 wait_time() 

 traci.simulationStep() 
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