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ABSTRACT 
 

There is a demonstrated need in the biowearables industry for a benchtop model that can 
accurately emulate the perspiration mechanism and corresponding impedance vs. frequency 
spectra of skin. This model, or skin phantom, could increase the efficiency and accuracy of 
early-stage testing of biowearables, as well as minimize animal, human, and cadaver testing. 
 
The objective of this project is to develop a skin phantom that can emulate the perspiration 
mechanism and impedance spectrum behavior of human skin for the testing of biowearables in 
the 2,000 - 20,000 Hz range. We also endeavored to create computer-simulated models to aid in 
the optimization of our phantom. 
 
We designed a three-layered, PDMS-based physical model based off of the skin’s sweat duct and 
pore structure that closely matched skin’s impedance vs. frequency behavior. Our computer 
simulations validated our understanding of the material properties that made our phantom a good 
match for human skin. 
 
While we were unable to complete all desired experiments due to campus closure, we were 
successful in designing and building a skin phantom that accurately mimicked the desired skin 
properties, while also being reusable, non-toxic, and easily manufacturable. 
 
Further experiments should be done to validate and improve our computer simulations and 
mathematical models. Further manipulation of our skin phantom’s factors should be done to 
match the skin’s impedance vs. frequency behavior more closely.  
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1. Project Introduction 

1.1 Project Rationale 

Wearable medical devices are those that are attached to the body in order to diagnose or provide 

treatment for medical conditions and disease states. These wearable medical devices, hereafter 

referred to as biowearables, are becoming increasingly popular due to their ability to provide 

continuous, at-home monitoring and treatment [1]. As these wearable devices become more 

widespread, disease states can be identified and treated more efficiently than traditional methods 

as health care practitioners have larger and more accurate datasets to draw from than those 

obtained purely from office visits[1].  

 

One popular and significant biowearable is the Continuous Glucose Monitor (CGM), which 

continuously monitors a patient’s glucose levels throughout the day, allowing for more rapid 

detection of blood glucose irregularities and more efficient administration of medications to 

maintain safe glucose levels [2].  Another biowearable with the potential to change modern 

medicine is the Proteus Patch designed by Proteus Digital Health. The Proteus Patch is a 

biowearable sensor designed to monitor and record a patient’s medication intake. Designed to be 

worn on the abdomen, the Proteus Patch detects when a pill has been ingested by recording and 

time-stamping a signal generated from a transmitter embedded within the pill[3]. The 

information gained from this biowearable can aid in the optimization of patient treatment, as well 

as ensure patient compliance with prescribed medication[4]. 

 

The increase of effective biowearables on the market has the potential to improve the way we 

treat certain disease states. However, a limiting factor in the development of biowearables is the 

testing phase, which takes considerable time and investment[5]. All medical devices require 

extensive testing to ensure that they interact with the point of contact in predictable and 

acceptable ways. 

 

In the case of the Proteus Patch, the main interaction between the biowearable and the body is at 

the skin. Since the Proteus Patch is receiving a signal from within the body, the properties of 
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human skin affect the device’s function. To ensure patient safety, the effect of the device on the 

skin, as well as the effect of skin on the device’s system, must be known and quantified before 

the Proteus Patch and other biowearables that interface at the skin go to market [5]. Interactions 

between the Proteus Patch and human skin have caused problems maintaining electrical contact, 

and the perspiration of human skin can impede the patch’s ability to detect the transmitter. 

Proteus needs to test how the patch’s interaction with the skin interferes or impedes the 

collection of data from the transmitter in order to mitigate those effects. Improving testing of the 

biowearable-skin interface in terms of efficiency and accuracy will allow for a safe increase in 

the number of biowearables on the market. 

 

1.1.1 Problems with Current Methods of Testing the Biowearable-Skin Interface 

There are currently two types of methods to test the biowearable-skin interface: in vivo testing 

(on animals and human patients) and in vitro testing (using skin excised from cadavers) [6]. 

However, these methods are not ideal for several reasons. This section will analyze why current 

in vivo and in vitro methods of testing the biowearable-skin interface are problematic, as 

understood from both literature and from Proteus Digital Health’s experience. We will then 

propose the use of an alternative, synthetic test subject to address these concerns. While 

completely cutting out animal, human, and cadaver testing in favor of a synthetic testing 

platform is not likely to happen at this point in time, decreasing the dependency on in vivo and in 

vitro tests will spare time and resources, as well as decrease ethical concerns surrounding the 

medical device industry. 

 

Tests performed on animals, humans, and cadavers can be cost and time prohibitive due to 

difficulties in obtaining proper test subjects. Animals procured for testing need to be screened to 

meet certain eligibility criteria to ensure uniform testing on a standard population [7]. 

Additionally, costs for animal testing are rising;  in 2006, European medical device companies 

alone spent 9.5 billion euros on animal experimentation [8]. Human patients also need to be 

selected carefully for the same reasons as animal subjects, but there are additional criteria 

involving informed consent, patient history, and safety [9]. Cadavers are especially difficult to 
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acquire for testing as there is a limited number available, thus demand and cost are high, not to 

mention the extensive regulations involved [10].  

 

Testing early-stage medical devices on animals or humans can be highly inaccurate and 

misleading. Tests on animals can be inaccurate or skewed due to the effect of laboratory settings 

on animal psychology and skin physiology, differences in human and animal skin disease, and 

basic physiological and anatomical skin differences between different species [11]. Testing on 

humans during the early stages of medical device development can be misleading due to 

variations in the testing populations, especially when the skin is the area of interest; skin is 

inherently variable from individual to individual [6].  

 

Perhaps most importantly, there are complex ethical issues surrounding testing medical devices 

on living beings. Testing medical devices on humans and animals can result in pain, injury, and 

death.  From a utilitarian ethics standpoint, it is our ethical responsibility to minimize the amount 

of harm we do to other beings. While medical devices save innumerous lives, our team firmly 

believes that we are still responsible for minimizing the harm done in their creation. It is 

unlawful and unethical to test devices on humans until it can be demonstrated that there is not an 

undue risk of harm to the person [5]. Additionally, there are ethical concerns about using 

cadavers for medical research as sometimes the bodies are not obtained via body donation but 

because bodies go unclaimed [12]. 

 

Proteus Digital Health encountered some of these problems while performing in-vivo and in-vitro 

tests with their patch. First, Proteus tested the Proteus Patch on humans to understand the 

interactions between the skin and the patch. However, these tests proved to be cumbersome and 

time consuming. Since it is difficult to alter a person’s skin properties, this testing could not 

accurately characterize interactions in different situational cases, such as prolonged sweating. 

Proteus also tested their patch on pigskin; however, they did not find pigskin to be an accurate 

model for human skin as it did not behave the same way. Using a synthetic, easily alterable 
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platform to test the patch on instead of a person would allow Proteus to perform tests more 

efficiently and accurately over a wider range of test conditions. 

 

There is a current lack of synthetic testing methods to test the biowearable-skin interface. One 

emerging synthetic method of testing biowearables that would succeed in limiting in-vivo and 

in-vitro testing is the utilization of skin phantoms. Skin phantoms are synthetic models that 

emulate desired properties of skin. Such skin phantoms can be used to test specific interactions at 

the biowearable-skin interface.  

 

To reiterate, the function of the Proteus Patch and other biowearables that transmit and acquire 

signals passing through the skin is affected by the physiological and electrical properties of 

human skin. A skin phantom that could accurately mimic the perspiration mechanism of skin and 

the corresponding impedance characteristics would aid in understanding and mitigating the 

adverse effects of interactions at the biowearable-skin interface. However, there aren’t any 

existing skin phantoms that can accurately emulate these properties.  

 

1.2 Skin Phantoms 

As mentioned previously, skin phantoms, also known as ‘tissue phantoms’ and 

‘tissue-mimicking materials’, are synthesized structures intended to accurately mimic desired 

properties of skin for use in experimental testing of biowearables [13]. Desired properties 

include, but are not limited to, electrical properties such as impedance, mechanical properties 

such as elasticity, and biological properties such as perspiration [6]. 

 

Our project aims to develop a skin phantom that meets the medical device industry’s need for a 

synthetic platform that can accurately emulate the electrical and physiological properties of 

human skin. Such a skin phantom can be used in early-stage testing of wearable medical devices 

to minimize animal, human, and cadaver testing. 
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In this section, skin phantoms and their current successes and limitations will be defined in the 

context of testing biowearables. A market needs analysis will be discussed, and a more focused 

review of skin phantoms focused on those needs will follow.  

 

1.2.1 Existing Skin Phantoms 

There are currently six major classes of skin phantoms and each of these classes has specific 

properties that they can effectively mimic; these classes and their corresponding functions are 

shown in Figure 1 [6]. Although no skin phantoms that currently exist can mimic every property 

of skin, specific characteristics to test can  be identified to inform the design and development of 

the skin phantom. For example, a skin phantom meant to emulate the thermal properties of skin 

should be composed of an elastomer, a gelatinous substance, metals, or a textile. If a skin 

phantom is meant to emulate electrical and optical properties, an elastomer would be a good 

material choice to start. 

 

 

 

Figure 1.1: Materials Used to Simulate Skin Properties [6] 
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1.2.2 Market Needs Analysis 

Prior to the development of a skin phantom, one must select the properties of human skin to 

emulate; identifying desired skin characteristics will help limit materials and other important 

design choices. For example, if the desired properties are electrical in nature, literature shows 

that elastomers are the best material to start with [6]. A market needs analysis is required to 

determine which qualities a skin phantom should emulate.  

 

Through market needs analysis, we have found that there is a demonstrated need for skin 

phantoms in the biowearable sector; one local biowearable company that has expressed this need 

is Proteus Digital Health. As mentioned previously, Proteus needs to test how skin’s 

physiological properties and impedance affect the signal acquisition of the Proteus Patch. Proteus 

Digital Health has developed a skin phantom for use in testing their Proteus Patch. However, 

they have identified several problems with their model that impedes the efficacy and accuracy of 

their testing process. First, their skin phantom model consists of an ion exchange membrane and 

a salt solution soaked sponge. These two materials are not reusable and degrade over time, 

meaning the phantom can only last for one day of testing. This is especially inconvenient given 

the materials take approximately twenty-four hours to prepare and given the materials are not 

cost-effective. Additionally, the same phantom cannot be used to test multiple experimental 

setups as the phantom cannot be altered once it has been assembled.  

 

Proteus has indicated a need for a skin phantom that mimics the impedance vs. frequency spectra 

of human skin while also demonstrating longevity, cost-effectiveness, and easy customizability. 

Additionally, the number of skin phantoms in development that are intended to mimic either the 

impedance or perspiration mechanism of skin suggest that there is a wider need for this kind of 

skin phantom in the biowerable industry beyond Proteus Digital Health. These developing skin 

phantoms and their shortcomings will be discussed in the following sections. 

 

Thus, we have decided to focus our project on developing a skin phantom that meets the needs of 

the biowerable industry. As noted previously, a skin phantom’s materials and method of 
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fabrication are determined by the characteristics one wishes to emulate. Since we have identified 

our desired characteristics as the impedance of skin, we can begin designing our phantom based 

on currently existing skin phantoms with those same properties.  

 

1.2.3 Skin Phantoms that Mimic Electrical Properties of Skin 

With a more narrowed scope,  a more focused literature search can be performed. There are 

several existing skin phantoms that seek to mimic the electrical properties of human skin, with 

limited success.  Exploring and analyzing the successes and failures of these phantoms will guide 

the development of a new skin phantom. 

 

One existing skin phantom that mimics impedance was developed by Pinto, Bertemes-Filho, and 

Paterno. Their phantom was made of gelatin, salt, and formaldehyde. By varying the amount of 

salt in their phantom, Pinto, Bertemes-Filho, and Paterno were able to mimic the impedance of 

skin on various parts of the body, such as the pectorals and wrist [14]. While this skin phantom 

was largely successful, there are a couple of drawbacks to this approach. First, the materials used 

in this model present some concerns. Formaldehyde is a very toxic substance and must be 

handled with care [15]. Gelatin degrades over time, though the process is slower if the gelatin is 

cross-linked with formaldehyde [16]. The degradation of the gelatin means that this skin 

phantom has a limited lifespan as the material properties will change over time. The second 

drawback to this type of phantom is the difficulty in changing the experimental setup. In order to 

mimic different parts of the body, an entirely new phantom needs to be created as the salt 

concentration can only be determined prior to the gelatin being crosslinked. This phantom has 

demonstrated the importance of material selection. 

 

As noted previously, many skin phantoms that emulate the electrical properties of skin are made 

of elastomers [6]. One elastomer that is commonly used for skin phantoms is 

polydimethylsiloxane (PDMS). PDMS makes a good base for a skin phantom because it is 

long-lasting, easy to shape, and nontoxic [6]. However, PDMS is not conductive; it has a very 

high impedance and needs to be altered in order to pass an electrical signal through it [17]. One 
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way that PDMS can be made conductive is by doping it with carbon black powder [18]. 

Additionally, PDMS is a desirable material for skin phantoms due to its longevity, 

manufacturability, biocompatibility, and alterability [19,20]. 

 

While there are several existing phantoms that are composed of PDMS and carbon black doped 

PDMS, there are none that have the same functionality we are looking to create with our skin 

phantom. Nonetheless, analysis of these phantoms will aid us in understanding the material we 

have chosen to use for our phantom, as well as help us anticipate and solve problems we may 

encounter.  

 

One existing PDMS skin phantom is one developed by Guraliuc, Zhadobov, and Sauleau that is 

intended for wave propagation studies in the 60 GHz range [21]. In order to make their phantom 

conductive, they doped PDMS with carbon black at various concentrations, finding that the 

higher the concentration of carbon black, the higher the conductivity of the phantom. However, 

adding too much carbon black began to cause unequal distributions and clumps of carbon black 

in the PDMS [21].  

 

The phantoms we have discussed thus far have replicated skin properties by relying mostly on 

material properties of chosen substrates rather than the actual mechanisms which produce those 

traits in human skin. As those phantoms have not completely succeeded in their goal, our group 

decided to base our mechanisms on the actual physiology of human skin; particularly those 

aspects of physiology that contribute to skin impedance. Thus, a review of human skin 

physiology is needed. 

 

1.2.4 Physiology of Human Skin Contributing to Impedance 

In order to create a skin phantom that mimics skin impedance, we must understand the aspects of 

skin physiology that determine its impedance. Skin impedance varies with respect to the 

frequency of the applied signal, so it is important to determine what frequency range we want 

our skin phantom to operate under [22]. The Proteus Patch and Transmitter operate in the 
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10,000-20,000 Hz range. Thus, we will design our phantom to mimic skin impedance in the 

2,000 -20,000 Hz range; this is wider than the range the Proteus Patch operates under as we want 

our phantom to be useful to other companies as well. 

 

Skin impedance is determined by water content and sweat; the more hydrated skin is, the lower 

the impedance [22, 23]. Skin hydration, sweat rates, and sweat ionic concentration vary from 

person to person, meaning that skin impedance is highly variable from person to person, so it 

will be necessary to have a skin phantom that is easily adaptable to account for this [24]. 

Additionally, sweating rates are different in different parts of the body; while we intend for our 

phantom to be variable in order to account for this, we are choosing to focus our initial studies on 

sweat rates of the abdomen, as that is where the Proteus Patch is worn [25]. The sweating rate of 

abdominal areas ranges from 1.2 - 11 g/m^2 per hour; this is a wide range as it accounts for 

variations between different people and ages [25, 26]. The average salt concentration of sweat 

falls in the range of 20-60 mmol/L [24]. 

 

Sweating and skin hydration are the main determinants of human skin impedance; therefore, we 

intend to create a skin phantom that mimics this physiological phenomenon in order to replicate 

human skin impedance. Creating a skin phantom more accurate to human physiology will allow 

us to easily mimic the inter- and intra-personal impedance vs. frequency seen in actual human 

skin.  

 

There are two sets of data for skin impedance vs. frequency; one is shown below in Figure 1.2 

and comes from a study published in 1988 by Pallas-Areny, Ramon, Riu, and Pere [27]. The 

second set is shown in Figure 1.3 and was generously given to us by Proteus Digital Health. Our 

project mentor at Proteus collected this data from his own skin with the same potentiostat loaned 

to us. 
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Figure 1.2: Skin impedance from 1 Hz to 1 MHz [26] 

 

 

a) b)  

Figure 1.3: In-Vivo Skin Impedance vs. Frequency from Jim Hutchison 

a) Logarithmic Scale  b) Linear Scale 

 

 

Figures 1.2 and 1.3 demonstrate that  while impedance vs. frequency may differ from person to 

person, it largely maintains the same behavior. Thus, our phantom should be designed to mimic 

skin’s impedance vs. frequency behavior, but not magnitude as that can vary from person to 

person. We will use Jim Hutchison’s data as our benchmark as it was collected using the same 

instrument we will use during testing.  
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1.3 Project Goal 

The biowearable device industry has demonstrated a need for a skin phantom that accurately 

mimics human skin perspiration and its corresponding impedance vs. frequency behavior. Our 

project aims to create a skin phantom that not only meets that need, but also demonstrates 

longevity, ease of manufacturability and customization, cost-effectiveness, and reusability. In 

order to meet these qualifications, our skin phantom will be a fluidic system composed of PDMS 

and carbon black that emulates the physiological phenomenon of sweating. We also aim to create 

a circuit model for skin and computer simulation of our physical skin phantom. As we want our 

phantom to be customizable, simulations will aid the end-user in determining the best parameters 

for their phantom to meet their desired behavior.   
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2. The Skin Phantom System 

2.1 System Overview 

As mentioned in the previous section, we are designing a skin phantom that can mimic the skin’s 

perspiration mechanism and corresponding impedance spectrum for the testing of biowearables. 

Our skin phantom system is composed of four subsystems: the Physical Model, Electrical 

Measurement System, the Circuit Model, and the Computer Simulated Model. A diagram of 

these four subsystems is summarized in Figure 2.1. 

 

 

Figure 2.1: Systems Level Diagram of Skin Phantom 

 

 

2.1.1 The Physical Model Subsystem 

The Physical Model Subsystem is the most unique subsystem of the skin phantom system. This 

subsystem is the part of the device that mimics the impedance spectra of skin and will be directly 

measured for impedance over a frequency range of 2,000-20,000 Hz. We decided to use an 

elastomer as the base of our phantom as our literature review demonstrated skin phantoms made 

of elastomers were the best suited for mimicking the electrical properties of the skin. 

Furthermore, in keeping with our goals of creating a long-lasting phantom, we chose PDMS to 

be the primary material. PDMS is desirable due to its longevity, manufacturability, 

biocompatibility, and alterability. In order to mimic the biological properties of sweat, a syringe 

pump was connected to pump a conductive salt solution through channels and pores in the 
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elastomer.  This subsystem will be further explored and explained in Chapter 3: The Physical 

Model. 

 

2.1.2 The Electrical Data Collection Subsystem 

The Electrical Data Collection Subsystem consists of a potentiostat and a computer with 

associated software to collect and analyze the data. Our potentiostat, an Ivium Vertex with 

Electrical Impedance Spectroscopy (EIS) capabilities, was generously loaned to us by Jim 

Hutchison at Proteus Digital Health. We used the associated IviumSoft software to collect and 

export the impedance data. This subsystem will be further explored in Chapter 4: Electrical Data 

Collection. 

 

2.1.3 The Circuit Model 

The Circuit Model was developed in order to model the skin’s behavior using circuit elements. 

While there are circuit models for skin that only use traditional circuit elements such as resistors 

and capacitors, they do not accurately represent the skin’s nonlinear behavior. Thus, a model 

consisting of memductors and memristors was created. This subsystem will be further explored 

in Chapter 5: The Circuit Model.  

 

2.1.4 The Computer Simulated Model 

The Computer Simulated Model consists of simulations all designed and completed on Computer 

Simulation Technology Studio Suite®. The initial purpose of the simulations was to determine 

which factors and materials produced the best phantom that accurately mimicked our expected 

impedance vs. frequency curve. This subsystem also provided data that confirmed the expected 

impedance versus frequency behavior of human skin, a simplified model of the human body 

(skin, muscle, fat), carbon black mixed into polydimethylsiloxane (PDMS), PDMS alone, and a 

simplified model of our skin phantom. This subsystem will be further explored and explained in 

Chapter 6: The Computer Simulated Model.  
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2.2 Integration of Subsystems 

The four subsystems will be integrated in such a way that they aid the performance of the other 

subsystems. The electrical measurement system will be used to collect and analyze data from the 

physical model. The computer simulations will initially validate our choices of materials for the 

physical model, based both on the literature research of the electrical properties of skin, as well 

as the developed circuit model for skin. Then, once the electrical measurement system is 

integrated with the physical model, computer simulations will be made to simulate our actual 

model and it’s measured behavior. This will inform further iterations of the physical model by 

helping to optimize different parameters.  
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3. Subsystem 1: The Physical Model 

3.1 Overview of Subsystem 

The Skin Phantom subsystem is the most critical part of the overall system as it is the component 

that mimics the physiological and electrical properties of the skin. As mentioned in Chapter 1, 

the impedance characteristics of the skin are primarily determined by water content in the skin. 

As such, we designed this subsystem to mimic the sweat duct and pore physiology of the skin, as 

seen in Figure 3.1. This biomimicry approach was taken to increase the accuracy of our phantom, 

as function follows form. 

 

 

Figure 3.1: Simplified Perspiration model 

 

From this simplified perspiration model, we developed a three-layered structure, shown in Figure 

3.2, that would allow for a conductive salt solution (mimicking sweat) to flow through the 

structure and up through pores.  
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Figure 3.2: Cross Section of Skin Phantom 

 

The electrical properties of our phantom are dictated by the conductive solution in the channels 

and the composition of the bottom layer. While these features individually are not unique to our 

phantom, our approach of mimicking skin physiology to influence electrical properties is novel.  

The advantage of using this novel approach is the ability to change the electrical properties of 

our phantom without needing to fabricate a new phantom. We chose to make our phantom in 

layers for ease of fabrication, simplicity, and cost-efficiency.  

 

3.2 Material Choice 

Our project goal includes making our phantom durable, inexpensive, non-toxic, and easy to 

fabricate in order to fulfill needs that are not all met in many contemporary phantoms. 

Additionally, our design is made to mimic biological skin and the act of sweating, which split the 

skin phantom into two parts: a solid part which is flexible and nonconductive and a liquid part 

that provides electrical properties.  

 

These design constraints made elastomeric materials favorable for the solid portion of our 

phantom. We decided to use polydimethylsiloxane (PDMS) for the solid portion of our phantom. 

PDMS is a silicon-based organic polymer often used in soft medical devices. PDMS is inert, 

non-toxic, and non-flammable, so it was an optimal material for the solid portion of our skin 
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phantom. Additionally, two pieces of PDMS can be bonded together easily, which allowed us to 

use a layered approach to our design. Carbon black is a carbon allotype, usually sold in the form 

of a powder, which can be used as a dopant for polymers to change electrical properties. We 

used carbon black as a dopant for the bottom layer of our phantom, which gave our PDMS 

conductive properties.  

 

Due to the novel approach that we adopted for our phantom design, we were unsure of how 

different factors would influence our measurements. As such, we decided to use simple salt 

solutions and phosphate-buffered saline as the liquids for our phantom. The exact concentration 

of these liquids will be explained in Chapter 7.  

 

3.3 Fabrication 

As shown in Figure 3.2, our phantom consists of three layers. Each layer is fabricated 

individually and assembled together into the completed phantom. All of the layers were 

fabricated in a clean environment to prevent contamination due to dust. This is especially 

important during assembly. An overview of our fabrication process is shown in Figure 3.3. 

 

 

Figure 3.3: Overview of Fabrication Process 
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3.3.1  Flat PDMS Layers 

Our fabrication process begins with the production of flat PDMS discs for each layer. The 

fabrication method for flat PDMS discs is as follows. We mixed 8 grams of PDMS (Dow 

Corning, Sylgard 184) in a 10:1 ratio of part a to part b for 15 minutes. After mixing, the PDMS 

was poured into a petri dish of dimensions 90 mm diameter and 15 mm height. The petri dish 

and PDMS were inserted into a vacuum desiccator for 30 minutes to remove any air bubbles 

trapped in the PDMS. Afterward, the PDMS was cured at 80℃ for 2 hours on a level surface in 

an oven.  After curing, the PDMS was removed from the petri dish, and a  ring 1 mm from the 

edge of the resulting PDMS layer was cut to remove the uneven edge that formed on each layer. 

This ensures a PDMS layer of consistent thickness. Two of these layers are required for each 

skin phantom.  

 

3.3.2 Carbon Black  Doped Base Layer 

Due to the much higher viscosity of PDMS with carbon black, a different procedure was needed 

to fabricate the carbon black PDMS layers. An overview of the process is outlined in Figure 3.4. 

Using the same method in section 3.3.1, we generated a PDMS layer using 5 grams of PDMS. 

Rectangular pieces with dimensions of approximately 4mm x 3mm were cut from the PDMS to 

be used as spacers.  

 

Figure 3.4: Carbon Black Layer Fabrication 
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We mixed 8 grams of part a with 2 grams of carbon black for 30 minutes. We then mixed part b 

into the mixture for 15 minutes. The mixture was then poured onto the underside of the lid of a 

petri dish along with the spacers as shown in Figure 3.4a. The carbon black PDMS was spread 

slightly manually until it resembled the final picture in Figure 3.4a, then the lid was placed in a 

desiccator for 30 minutes. The carbon black PDMS was flattened using the bottom of the petri 

dish as shown in Figure 3.4b and left alone for 1 hour. This step helps remove bubbles from the 

final layer. Afterward, the carbon black PDMS was cured and cut using the same method 

explained in the previous section. 

 

3.3.3 Skin Phantom Cutting and Assembly 

The middle layer of our phantom consists of liquid channels for our conductive solutions. We 

started by taking a flat PDMS layer from section 3.3.1. We cut trident shape channels shown in 

Figure 3.2 from a flat PDMS layer using Cricut Explore Air 2, a commercial cutting machine. 

After cutting, we carefully transferred the cut layer from the Cricut machine to a flat surface. We 

then treated the exposed portion of the layer and the second flat layer using air plasma as shown 

in Figure 3.5. 

 

Figure 3.5: Bonding and Hole Punching Process 

 

After bonding, we punch holes on the top layer using a syringe and a 20 ga dispensing needle. To 

complete the phantom, the carbon black layer is bonded to the middle layer using air plasma.  
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3.4 Syringe Pump 

As mentioned previously, our skin phantom is designed to mimic the perspiration mechanism of 

the skin. Thus, a crucial part of our skin phantom is the fluidic system. A syringe pump was used 

to pump a conductive salt solution into the inlet of the phantom and out through pores. The 

syringe pump was connected to the skin phantom via Tygon tubing, as seen in Figure 3.6. 

 

 

Figure 3.6: Syringe Pump Connected to the Inlet of Phantom Via Tygon Tubing 

 

3.4.1 Flow Rate of Salt Solution 

One parameter that needed to be set for our system was the flow rate of salt solution. As we are 

mimicking the perspiration mechanism of human skin, we decided to start with flow rates 

comparable to human perspiration rates on the abdomen. As mentioned in Chapter 1, average 

human torso perspiration rates are in the range of 1.2 - 11 g.hr-1m2, which, when converted to 

units appropriate for the syringe pump, is  9.18 - 14.2 μg/min [25,26]. 
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4. Subsystem 2: Electrical Data Collection 

4.1 Overview of Subsystem 

The electrical data collection subsystem is used to collect and analyze the impedance vs. 

frequency data from our phantom. It consists of a Potentiostat, which utilized a five probe 

system, and the associated software, which collected the impedance vs. frequency data.  

 

4.2 Potentiostat 

A potentiostat is an instrument that keeps a constant voltage between the working and reference 

electrode by controlling the current going through the counter/auxiliary electrode. A simple 

schematic for a potentiostat is shown below in Figure 4.1 [28]. 

 

 

Figure 4.1: Potentiostat Schematic [28] 

 

The potentiostat we used for our measurements was an Ivium Vertex with Electrochemical 

Impedance Spectroscopy (EIS) capabilities. This instrument was generously loaned to us by Jim 

Hutchison of Proteus Digital Health for the duration of our project. We needed a potentiostat 
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with EIS capabilities as we were interested in impedance vs. frequency behavior, and 

potentiostats without this function cannot perform frequency sweeps as we needed. 

 

The Ivium Vertex also had galvanostatic capabilities, which means it could instead keep the 

current constant between the working and reference electrodes by altering the voltage using the 

counter electrode. We chose to use this setting as we wanted to ensure the current running 

through our phantom would always be at a safe level for humans. While we ensured no one 

touched the potentiostat during use, we wanted to make sure our phantom reflected accurate data 

at the same current levels you would use on a biowearable. 

 

4.2.1 Probe System 

The Ivium Potentiostat comes with four probes. Originally, we believed that the four probe 

system would be the best for our project. With four probes, current and voltage are supplied and 

connected to ground on their own separate connections and do not interfere with the other. When 

receiving the manual and block diagram for the potentiostat, we got the actual functions of each 

of the probes for the Ivium Potentiostat. From our contact at Proteus Digital Health, Jim 

Hutchinson, we were informed that the potentiostat would give us our desired results by 

connecting the working and counter probes for connection to one electrode and connecting the 

sense and reference probes for connection to the second electrode.  

 

4.2.2 Software 

The associated software for the Ivium Vertex potentiostat is IviumSoft. We used this software to 

set test conditions and to collect and export the impedance vs. frequency data. As mentioned 

previously, we chose to use the potentiostat’s galvanostat capabilities and set the constant current 

level to be 1mA. This is a low enough level so that it is safe for human skin while being high 

enough that we can still get accurate readings with little noise interference. The specific test on 

the software we chose to use the “Impedance: Controlled I” test, which is a galvanostatic 

frequency scan at a fixed DC current. 
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While we are looking specifically at the 2,000 - 20,000 Hz range, we decided to run all tests 

from 10-100,000 Hz to get a better understanding of our phantom’s impedance vs. frequency 

behavior. We chose to have 14 frequencies per decade, for a total of 57 frequencies tested. The 

input to the software is shown below in Figure 4.2.  

 
Figure 4.2: Test Conditions on IviumSoft 

 

After running the test, the software would plot the magnitude (in Ohms vs. Hz) and the phase (in 

degrees). While this was a useful visual that aided us in ensuring our experimental set up was 

working properly, we chose to export the numerical data to Matlab for more in-depth analysis 

capability.  

 

4.3 Initial Testing of Potentiostat 

Prior to integrating the electrical measurement system with our physical model, we tested it on 

known quantities. First, we tested a 10 kOhm resistor. The resulting impedance vs. frequency 

plot is shown below in Figure 4.3, against the expected impedance vs. frequency plot.  

23 



 

 

Figure 4.3: Impedance vs. Frequency for 10kOhm resistor 

 

The impedance of a resistor should remain constant with changes in frequency. The values from 

the potentiostat are as expected for the most part; there are irregularities after 30,000 Hz. 

However, we are most concerned with the 2,000-20,000 Hz range, so this should not affect our 

testing.  
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5. Subsystem 3: Circuit Model for Skin 

5.1 Overview of Subsystem 

The purpose of the circuit model for skin is to simulate skin’s capacitive and non-linear behavior, 

which can be modeled by a memristor in parallel to a capacitor. To simulate a memristor, we 

used a program called Advanced Design Systems, ADS, which is an electronic design 

automation software system developed by Keysight. 

 

5.2 Data Provided by Proteus Digital Health 

Jim Hutchison of Proteus Digital Health generously gave us the analytics depicted in Figure 5.1. 

This plot, which he gathered by collecting data from his own skin, is on a linear scale. From the 

plot we can see that the actual values change from individual to individual. Thus, we decided our 

skin phantom should match the impedance vs. frequency behavior of skin, not the actual values. 

Specifically, our skin phantom aims to mimic the skin’s capacitive and non-linear behavior. For 

our analysis, we will use Jim Hutchison’s data as the benchmark, as it was obtained using the 

same potentiostat we used to collect data.  

 

 
Figure 5.1: In-Vivo Skin Impedance vs. Frequency Data from Proteus Digital Health 
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5.3 Early Circuit Model for Skin 

The circuit shown in Figure 5.2 is the first electric circuit model for skin published in 1998. The 

design includes RS, which represents the resistance of the deep tissue of skin, in series with the 

parallel placement of Cp and RP, which models skin’s impedance. Finally, Cpol and Rpol, meaning 

a polarized capacitor and resistor, in series model an electrode. 

 

 

Figure 5.2: First Circuit Model for Skin 

 

Proteus Digital Health gave us a circuit similar to this circuit model for skin, shown in Figure 

5.3. Using the potentiostat, we obtained impedance vs. frequency data for this circuit and 

compared it to the data obtained from a simulation in Matlab, as seen in Figure 5.4. 

 

 

Figure 5.3: Simple Skin Equivalent Circuit Model from Proteus Digital Health 
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Figure 5.4: Impedance vs. Frequency for Simple Skin Equivalent Model 

 

5.4 Updated Circuit Model 

An updated 2018 paper models the electrical circuit of skin, shown by Figure 5.5, with a sweat 

duct memristor in parallel with a capacitor, which characterizes the capacitive properties of the 

stratum corneum, in parallel with a memductor, which represents skin’s ability to conduct 

current.  

 

An electrical measurement is considered non-linear when the applied stimulus itself affects the 

electrical properties of the underlying tissue. The skin exhibits such non-linear properties under 

voltage stimulus due to its sweat ducts and surrounding tissue, such as its upper layer – the 

stratum corneum.  

 

For example, if you apply a constant, low-frequency sinusoidal voltage of high amplitude to 

human skin, the shape of the current differs from the sinusoidal pattern. This observation implies 

that the measurement is non-linear, and electro-osmosis, the directed motion of liquid caused by 

an electric field, within the sweat ducts is believed to be the underlying cause. So we can use a 
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memristor to model skin because voltage-current plots of non-linear systems exhibit hysteresis 

loops, which is the fingerprint of the memristor.  

 

 

 

Figure 5.5: Updated Circuit Model for Skin 

 

5.5 Skin & Memristor Properties 

Table 5.1 below shows how skin’s properties, which relate to memristor properties, are reflected 

in the I-V curve of a memristor. Skin’s response to a dynamic load reflects a memristor’s 

behavior to switch between on and off states, which forms the hysteresis loop seen in its I-V 

graph. Skin’s sweat ducts relate to an important state variable of the memristor – the galvanic 

contact – which is the amount of ionic charges passing through the skin. The equation to the right 

depicts this system. The non-linear behavior of skin connects to the non-volatility of a 

memristor, giving it the ability to remember past signals flowing through it. Lastly, the skin’s 

ability to alter ionic movement correlates to memristors’ behavior towards frequency, where its 

hysteresis loop flattens as frequency increases. 
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Skin’s Property Memristor Property Memristor I-V Curve 

Skin’s response to 

dynamic load 

Dynamic Response Forms hysteresis loop 

Sweat ducts  Galvanic Contact 
 

Non-linear behavior Non-volatility Resistor with memory 

Alters ionic movement Frequency Flattens hysteresis loop 

 

Table 5.1: Skin & Memristor Properties 

 

 

5.6 ADS Model & Simulation 

The electrical circuit for a memristor constructed in ADS is depicted in Figure 5.6. The first 

op-amp acts as a summing amplifier, which adds the input voltage and the output of the voltage 

multiplier, VZ. The second op-amp, along with R4 and C1, acts as an integrator. The frequency 

band of operation, which is up to 16 kHz, is determined by R4 and C1. Lastly, you see the 

outputs of the summing and integrating op-amps being fed into the voltage multiplier to produce 

VZ. Figures 5.7, 5.8, and 5.9 display the voltage node equations for VSUM, VINT, and VZ. 
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Figure 5.6: ADS Memristor Circuit 

 

Figure 5.7: VSUM Node Equation 

 

 

Figure 5.8: VINT Node Equation 

 

 

Figure 5.9: VZ Node Equation 

 

And Figure 5.10 shows the hysteresis loop generated by the previous memristor circuit, which 

models the non-linear behavior we’ve replicated with our skin phantom.  
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Figure 5.10: Memristor Hysteresis Loop  
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6. Computer Simulations of the Skin Phantom 

6.1 Overview of the Subsystem  

This subsystem was all completed on Computer Simulation Technology Studio Suite® 

simulation software, which will now further be referred to as CST. CST is a high-performance 

3D Electromagnetic analysis software.  

 

The original purpose of the CST simulation of our phantom was to do factor variation of our 

phantom and determine which factors actually influenced the data and closely produced the 

results that we expected to see. We were planning on testing different materials, different 

geometries, as well as the various factors we chose to implement in our physical experiments. It 

was also desired that the CST simulations showed an irrefutable correlation and confirmation of 

our physical experiment. However, there was a steep learning curve for the software. The 

software is typically used to analyze the performance and efficiency of antennas and filters, 

electromagnetic compatibility and interference (EMC/EMI), exposure of the human body to EM 

fields, electro-mechanical effects in motors and generators, and thermal effects in high-power 

devices [29]. While it could produce the impedance vs. frequency graph we needed it to produce, 

there were no previous projects we found in our discovery phase that could mimic a potentiostat 

measuring a certain material. Shown in the next subsections, we did a baseline simulation to 

determine which exciting port would be the best to continue our experiments. 

 

For the purpose of our project, S-Parameters, or Scattering Parameters, were evaluated, which 

describes the input-output relationships between ports in an electrical system. The software, in 

addition to the S-Parameter graphs, was also able to produce the Z-matrix graph, which gives us 

our desired plot of impedance vs frequency. Since impedance for skin is a combination of 

resistance and capacitance, CST also made it possible to view the characteristics of those 

individually by producing capacitance and resistance graphs. In our simulations, we used both 

waveguide ports and discreet ports in our simulations. A waveguide port simulates an infinitely 

long waveguide connected to the structure, enabling the stimulation as well as the absorption of 

energy. A discrete port consisting of a current source with an inner impedance that excites and 
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absorbs power, connected to two flat sheets of PEC on the top and bottom.  

6.2 Baseline - “Hello World” Test 

To confirm that the software was producing the correct data for the material being evaluated in 

the software, we did a baseline test, our CST version of a “Hello World” test, to confirm the 

results of the software. We decided to make a capacitor, using two waveguide ports and silicon 

dioxide as the dielectric as shown in figure 6.1. Making a capacitor with known material 

properties ensured that we were able to calculate and confirm the results produced by CST. The 

red surface with the ‘2’ is the negatively charged waveguide port, and the positively charged 

waveguide port is not shown in the photo but is on the bottom side of the cube. The blue-green 

cube between the silicon dioxide.  

 

  

Figure 6.1: Silicon Dioxide Capacitor Simulation  

 

To ensure that we were seeing the correct capacitance shown in Figure 6.2 We calculated the 

capacitance by using the formula: 

                                                                                                                          equation 6.1C = D
εA  

                                                                    C = (1x10 )m−3
3.7×(8.85×10 )×(1x10 )m−12 −6 2

  

                                                                    .256C = 3 × 10−14    
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This calculation confirmed the results shown in Figure 6.2. The graph is the capacitance of the 

capacitor.  

 

 

Figure 6.2: Capacitance of Silicon Capacitor  

 

Next, we looked at the Z-Matrix or impedance vs frequency graph produced when making the 

silicon dioxide capacitor. We noticed that when put into a log scale, it produced a linear line that 

reflected the correct values for the equation: 

                                                                  Impedance:                                            equation 6.21
jwc  

 

To prove this, we used decades 1kHz  and 10 kHz to see if the values were accurate: 

 

       Impedance at 1 kHz: 1
j(2π1,000)3.25×10−14

  

Impedance at 1 kHz: .8824 × 109  

 

and 

       Impedance at 10 kHz: 1
j(2π10,000)3.25×10−14

  

Impedance at 10 kHz: .8824 × 108  
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Figure 6.3 : Graph of 1
jwc  

 

6.3 Material Simulations  

CST has an extensive material library in which each material is preloaded with the respective 

properties. The properties that are important are shown in a material property box. The figures 

shown in the box mean the following: Type: Can be defined as normal, PEC, or lossy metal. 

Epsilon/Dispersive Epsilon: This is the permittivity. Permittivity plays an important role in 

determining the capacitance of a capacitor. The Nth order model means the inputs of epsilon 

changing over frequency were not given for the frequency range under evaluation, and the 

program has to extrapolate for the values. Mu is a measure of the amount of resistance 

encountered when forming a magnetic field in a classical vacuum. Electrical Conductivity 

simply means the electrical current a material can carry or its ability to carry a current. Rho is the 

density.  

6.3.1 CST Skin 

To simulate the impedance vs freq behavior of skin, we used CST’s Bio Tissue: Skin material for 

this simulation. The material properties for this biomaterial are shown in Table 6.1.  
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Material Type Epsilon/Dispersive 
Epsilon 

Mu Rho 
(kg/m3) 

Electric 
Conductivity (S/A) 

Bio Tissue/Skin Normal Nth order, N=3 1 1100 N/A 

Carbon_Black+
PDMS 

Normal 7.7 1 2000 0.045 

PDMS Normal  2.5 1 N/A 2.5x10-15 

Table 6.1: Material Properties of Materials used in CST Simulations 

We made a 1mmx1mm cube and placed two oppositely excited waveguide ports on the top and 

the bottom. This is shown in Figure 6.4. The graph produced by the simulation, shown in Figure 

6.5,  shows that skin actually does produce the trend we expect to see. For these simulations, we 

are looking for the trend and ignoring the magnitude, since the sizes of the simulated material are 

not the same as in real life.  

 

Figure 6.4: Bio/Tissue Skin 1mmx1mm Cube  
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Figure 6.5: Impedance Vs. Frequency of Bio/Tissue Skin 

 

6.3.2 Simplified Model of Skin - Wet Vs. Dry 

Next, we made simplified skin models of three layers: Skin, Fat, and Muscle. The main 

difference between the models is the top layers: one being dry skin, the other being wet skin. 

Figure 6.6 is the model with dry skin and Figure 6.8 is the model with wet skin. The purpose was 

to confirm that the presence of liquid would produce a more conductive model that would more 

closely match the expected trend of impedance vs frequency for the skin.  

We had to make the materials in CST because dry skin, wet skin, muscle, and fat were not in the 

database. To this, we used the website “Calculation of the Dielectric Properties of Body Tissues - 

in the frequency range 10 Hz-100 GHz” by the Italian National Research Council. The important 

material properties for the purpose of the simulations were epsilon and tangent delta. In 10 Hz 

increments, from 10 Hz to 100 kHz, the website gave the values for each of those variables. We 

then imported them into an excel sheet and uploaded the values into CST for each material.  
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Figure 6.6: Dry Skin 1mmx1mm, Fat 1mmx3mm, Muscle 1mmx5mm  

 

 

Figure 6.7: Impedance Vs. Frequency of Simplified Skin Model - Dry 

38 



 

 

Figure 6.8: Wet Skin 1mmx1mm, Fat 1mmx3mm, Muscle 1mmx5mm  

 

 

 

Figure 6.9: Impedance Vs. Frequency of Simplified Skin Model - Wet 

 

When comparing Figure 6.7 and 6.9, it is clear that the slope associated with the wet skin is more 

closely shaped to our expected impedance vs. frequency of skin. Verifying that wet skin is a 

better conductor did multiple things for the development of our skin phantom. It confirmed that 

the saline or PBS solution we were going to use for our phantom was going to make it perform 

more accurately in terms of the electrical properties of the skin. It also confirmed that a good 

variable to change in our physical experiments was the content of the water solution and the flow 
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rate (mimicking our perspiration levels).  

 

6.3.3 Carbon Black + PDMS 

The next step was to simulate the individual materials of the phantom. The purpose was to 

confirm that our chosen materials were functioning how we thought they would. Skin acts as a 

low pass filter. Since the design for the phantom is to have the phantom conductive throughout 

by having the carbon black + PDMS layer on the bottom with conductive liquid connecting the 

top two PDMS layers, it is assumed that the carbon black would act as a resistor due to its 

conductivity.  

 

Carbon black mixed into PDMS is not a unique application, however, the way we created the 

layer was unique for each sample. The conditions and material measurements were the same 

samples, however, the samples were hand-mixed, so there was no guarantee that the PDMS was 

exactly equally distributed throughout the PDMS. This means that there was a possibility that 

our actual carbon black + PDMS sample could have a slight capacitive effect and lower electrical 

conductivity because of slight gaps and unequal distribution between the carbon black particles 

in the PDMS. After research, we determined that there were no electrical properties of carbon 

black mixed into PDMS documented. In the Santa Clara University Lab, we were going to use 

the N1501A Dielectric Probe Kit to find our samples’ exact dielectric properties. This would 

have made the simulations the most accurate. However, due to COVID-19, this plan had to be 

revised because we were not allowed in the labs for testing. In order to get the property values 

we needed, we used an educated guess of what the epsilon and electric conductivity would be 

from academic papers that found these properties of carbon black in other purposes and in other 

mixtures. The material properties are shown in Table 1. It should be noted that while carbon 

black is an extremely conductive material, it is mixed into a highly non-conductive material, so 

the electrical conductivity of our sample is expected to be much lower but still actively 

conductive. 
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For the simulation of the carbon black sample, we switched to circular cylinders to more 

accurately mimic the shape of our Skin Phantom. For the simulation excitation, after a lot of 

experimentation, we found that the waveguide ports worked best with squares. We then switched 

to a discrete port. As explained above, a discrete port consists of a current source with an inner 

impedance that excites and absorbs power, connected to two flat sheets of PEC on the top and 

bottom. The requirement of the discrete port is that it has to be connected (on both the top and 

bottom) with conductive metals. We chose PEC to simplify our simulations and ensure that the 

electrode was not affecting the results. Figure 6.10 shows the carbon black + PDMS simulation 

setup.  

 

 

Figure 6.10: Carbon Black + PDMS Sample With Discrete Port and PEC sheets 

 

The results are what we expected. The Carbon Black, theoretically, should act as a resistor with 

high impedance, as shown in Figure 6.11. There was a slight discrepancy with our real sample, 

but we determined that is from the hand mixing process that could have resulted in the carbon 

black particles not being evenly distributed in the PDMS. 
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Figure 6.11: Impedance VS. Frequency Graph of Carbon Black + PDMS 

 

6.3.4 PDMS 

 

We assumed that PDMS was going to act like a capacitor because of its extremely low electrical 

conductivity. Unlike carbon black, we were able to find the electrical properties of PDMS online 

and was successfully able to simulate with accurate values. Table 1 shows the PDMS simulation 

set up.  

 

Figure 6.12: PDMS Sample With Discrete Port and PEC sheets 
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The results are what we expected. PDMS, theoretically, should act as a capacitor that changes 

impedance value over a change of frequency, as shown in Figure 6.13. The impedance value was 

incredibly high, which matched our actual measurements of the PDMS sample.  

 

 

Figure 6.13: Impedance VS. Frequency Graph of PDMS 

 

6.3.5 Simplified Model of Skin Phantom 

Lastly, due to difficulty in the simulation of the model of the actual skin phantom design in CST, 

we made a simplified model to show the effect of the materials when stacked on each other, 

shown in Figure 6.14. 
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Figure 6.14: Simplified Model of PDMS on Top of Carbon Black 

The graph shown in Figure 6.15 shows what we expected. This graph, instead of showing simply 

the Impedance vs. Frequency of the materials, show the real and imaginary components of the 

simplified phantom. It has a very high resistance value (the real value), and has a slight 

capacitive effect (the imaginary value).  

 

 

Figure 6.15: Real and Imaginary Components of the Impedance Vs. Frequency of 

Simplified Circuit 
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6.4 Future Work  

The next team will be picking up and doing the following with CST: because of the complex 

geometry,  as shown in Figure 6.16. The way we were simulating with both waveguide ports and 

a discrete port was taking a very long time and often wouldn’t complete the calculations. They 

will be determining how to correctly simulate a complex geometry such as this. They also will be 

able to test other materials and do factor variation through simulation.  

 

 

 

Figure 6.16: CST Model of Actual Skin Phantom 
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7. System Integration, Testing, and Analysis 

7.1 Integrating the Physical Model and Electrical Measurement System 

The physical model and the electrical measurement system were integrated as seen below in 

Figure 3.1. To establish electrical contact between the potentiostat and the physical model, we 

used stainless steel probes connected to steel shim electrodes. Electrodes were placed on the top 

and bottom of the physical model, and a weight was placed on top to ensure good contact.  

 

Figure 7.1: Integration of Physical Model and Electrical Measurement System 

 

7.1.1 Preliminary Results 

Initial tests were performed only on the base carbon black doped PDMS layer. Our initial layer 

was approximately 3mm thick; as seen below in Figure 7.2, the impedance vs. frequency curve 

for this thick carbon black layer was inconsistent, highly irregular, and not a good match for 

human skin. This was likely because the layer was too thick and not conductive enough for the 

electrical signal to pass through. To test this hypothesis, we created a carbon black doped layer 

with 1.5 mm thickness. The resulting impedance vs. frequency curve for that thin carbon black 

layer is also plotted below in Figure 7.2.  
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Figure 7.2: Impedance vs. Frequency for Thick and Thin Carbon Black Layers and Skin 

 

The thin carbon black layer resulted in an impedance vs. frequency curve that was more uniform 

and gave behavior similar to what we were expecting: a capacitor in parallel with a resistor. The 

thin carbon black layer was a better match for the skin’s impedance vs. frequency behavior; thus 

we decided to change our base carbon black layer to a thickness of 1.5 mm. As we mentioned 

previously, skin impedance vs. frequency behaves similarly to a resistor in series with a resistor 

and capacitor in parallel. The carbon black matches the behavior of the second part of that 

simplified circuit; the remaining resistance will be mimicked by the salt solution.  

 

Another preliminary test we performed was testing the impedance vs. frequency for several 

different salt solutions: 40 mmol NaCl, 65 mmol NaCl, 154 mmol NaCl, and 1x Phosphate 

Buffered Saline. We placed 30 mL of solution in a plastic petri dish, then stuck the stainless steel 

alligator clip probes in the petri dish, on opposite sides. We were expecting the salt solutions to 

have impedance vs. frequency curves similar to a resistor; that is, constant with respect to 

frequency. The impedance vs. frequency curves of those liquids are shown below in Figure 7.3.  
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Figure 7.3: Impedance vs. Frequency for Different Salt Solutions 

Figure 7.3 shows that the impedance vs. frequency behavior for the different salt solutions does 

not change significantly, only the magnitude differs greatly. As we are exclusively looking at the 

impedance vs. shape behavior, magnitude is not a significant consideration for the choice of salt 

solution. Thus, we chose to work with 154 mmol NaCl and 1x PBS as they are slightly closer to 

the behavior of a resistor, as we expected.  

 

7.2 Full Factorial Experiment 

As our phantom was designed to be easily customizable, a full factorial experiment was designed 

to analyze the effects of different variable factors on our skin phantom’s impedance vs. 

frequency behavior. A full factorial experiment is one where every possible combination of 

factor levels are tested in order to understand their individual and combined effects on our 

phantom’s impedance vs. frequency behavior.  

 

Four factors that we predicted would make a difference to our phantom’s behavior were pore 

density, salt solution concentration, flow rate, and the presence of a membrane. We predicted 

that increasing pore density, salt solution concentration, and flow rate would decrease the 

48 



 

phantom’s resistance, while the addition of a membrane would increase the phantom’s 

capacitance. We chose high and low levels for each factor, as shown in Figure 7.4. The pore 

densities were chosen based on what we could feasibly fit into the phantom. Salt solution 

concentrations were based on the aforementioned preliminary test of different salt 

concentrations. Flow rates were based on the average human torso perspiration rate. A wax paper 

membrane was chosen due to its impermeability causing it to act as a dielectric.  

 

Factor High Level Low Level 

Pore Density 1 pore / 3 mm 1 pore / 5 mm 

Salt Solution NaCl Stock solution (154 mmol NaCl) 1x PBS (137 mmol NaCl) 

Flow Rate 14.2 μg / min 9.18 μg/ min 

Membrane Nonpermeable wax paper membrane No membrane 

Figure 7.4: Levels for Each Factor in Full Factorial Experiment 

 

Four factors with two levels each necessitated sixteen tests for a full factorial design. We ran two 

replicates for a total of thirty-two datasets. We ran tests in random order to ensure statistical 

validity. Additionally, we flushed the phantom out with DI water in between tests to ensure there 

was no salt build-up within the channels. This experiment was performed over the course of one 

afternoon to ensure little variation in external testing conditions. As our phantom is easily 

customizable, we were able to change salt solutions, flow rates, and membranes on the same 

phantom. Pores are punched directly into the top PDMS layer, so pore density is not changeable 

on a phantom once it is made. Thus, we used two phantoms, one with high pore density and one 

with low pore density, for this experiment.  

 

7.2.1 Experimental Procedure 

We randomized the two sets of sixteen tests prior to the experiment and referred to this order 

while setting up each test. First, we would check to see which pore density was being tested, high 
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or low. This would determine which phantom we would be using. We would then flush out that 

phantom with DI water to ensure there was no residual salt in the channels. 

 

Next, we would check to see which salt solution we were testing, the higher concentration (our 

NaCl salt solution), or the lower concentration (1xPBS). We would then prefill the phantom with 

the appropriate solution using a Luer lock syringe, dispensing tip, and Tygon tubing connected to 

the inlet of the phantom. We ensured all channels were filled with the solution, but none was 

coming through the pores. The phantom was then set in a plastic tub to catch any spillage during 

the experiment.  

 

Third, we would check which flow rate the test called for, high or low. We would set the 

appropriate flow rate on the syringe pump.  

 

Finally, we would see whether or not the test called for a wax paper membrane. If so, we would 

place it on the top of the phantom. Then, we would place electrodes on the top and bottom of the 

phantom and clipped on the probes leading to the potentiostat. To ensure proper and consistent 

electrical contact, we would place a weight on top of the upper electrode. Finally, we would start 

the syringe pump, and wait thirty seconds to allow flow to begin. Using the associated software 

(explained previously in Chapter 4), we would then run the impedance vs. frequency sweep, 

ensuring that no one was touching any part of the test setup. After the test was finished, we 

would save the collected data and move on to the next test, following the order set prior to the 

experiment.  

 

7.2.2 Experimental Results 

As mentioned previously, our experiment resulted in thirty-two impedance vs. frequency datasets 

or our skin phantom, with 2 datasets for each test condition. Those thirty-two datasets are plotted 

below in Figure 7.5 against our in-vivo skin benchmark data.  
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Figure 7.5: Impedance vs. Frequency for In-Vivo Skin and 32 Skin Phantom Datasets 

 

In order to more closely understand the impedance vs. frequency behavior of skin, and how our 

phantom’s data compared, there is a zoomed-in plot of our experimental data shown in Figure 

7.6. Note that no datasets were discarded as outliers from analysis despite not being shown in 

Figure 7.6; this plot was simply to demonstrate the behavior trends more clearly. All thirty-two 

datasets were used in our analysis of results. Figure 7.6 demonstrates that our skin phantom has 

several test cases that visually appear to be close to the impedance vs. frequency behavior of 

human skin. Our skin phantom’s impedance vs. frequency behavior will be analyzed more 

in-depth in the proceeding sections. 
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Figure 7.6: Zoomed in Impedance vs. Frequency Curves for Full Factorial Experiment 

 

We noticed during our experimentation that our phantom was not always uniformly wetted on 

the surface, which perhaps contributed to the higher than average impedance of certain curves 

seen in Figure 7.5. To test this, we would have liked to rerun the experiment while ensuring that 

the surface of the phantom was uniformly wetted prior to taking measurements. Unfortunately, 

due to COVID-19 campus closures, we were unable to complete further physical 

experimentation. However, this experiment provided a copious amount of data for our analysis.  

 

7.3 Analysis 
To reiterate, a full factorial experimental design allows one to understand the effects of each 

factor on the desired behavior. In this section, we analyzed the effects of each of the four factors 

on our skin phantom’s resistance, capacitance, and overall impedance vs. frequency behavior. 

We also used the data obtained from the full factorial experiment to create a mathematical model 

that can predict how close our skin phantom will match the impedance vs. frequency behavior of 

human skin with inputs of factor levels.  
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7.3.1 Effects of Factors on Resistance 

In order to understand how the four different factors affected resistance, we calculated the 

average resistance for each of the thirty-two datasets. This was plotted below in Figure 7.7. Each 

circle represents one dataset.  

 

 

Figure 7.7: Effect of Each Factor on Overall Resistance 

 

Figure 7.7 demonstrates how each factor affected the overall resistance. The plot for the pore 

density effect shows that the high pore density cases have a slightly lower resistance than the low 

pore density cases. This suggests that increasing the pore density will slightly decrease the 

overall resistance of the phantom, as expected.  

 

The plot for the salt solution effect shows that the high salt concentration cases (NaCl stock 

solution) are clustered at a lower resistance than the low salt solution cases. This suggests that 

increasing salt concentration decreases the resistance, as we predicted.  
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The plot for the flow rate effect shows that the high flow rate cases have lower resistance values 

than the low flow rate cases. This suggests that as we increase the flow rate, our phantom’s 

resistance will decrease, as we predicted.  

 

The plot for the membrane effect shows that cases with a nonpermeable, wax paper membrane 

have very varied resistance values; the cases without a membrane have very uniform resistance 

values clustered together at a lower value. This suggests that adding a membrane increases 

resistance, and also increases variability in our results. This is undesired behavior as increased 

variability means low repeatability of experiments.  

 

7.3.2 Effects of Factors on Capacitance 

In order to understand how each factor affects the capacitance of our skin phantom, we 

calculated the change in absolute impedance over the change in frequency. Higher capacitances 

would show a greater decrease in resistance as frequency increases, and lower capacitances 

would show a smaller decrease in resistance as frequency increases.  

 

Figure 7.8: Effect of Each Factor on Overall Capacitance 
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Figure 7.8 demonstrates how each factor affected our skin phantom’s capacitance. The plot for 

the pore density effect shows that cases with a high pore density have a slightly larger decrease 

in impedance over a ten times change in frequency. This suggests that increasing pore density 

increases the capacitance of our skin phantom. 

 

The plot for the salt solution effect shows that the cases with a high salt concentration are 

comparable to cases with a low salt concentration. This suggests that changing salt solution 

concentration has little effect on our skin phantom’s capacitance, which agrees with the fact that 

our salt solutions acted like a resistor.  

 

The plot for the flow rate effect shows that the cases with a high flow rate show a smaller 

decrease in impedance over a tine times change in frequency, while cases with a lower flow rate 

demonstrate a larger change in impedance. This suggests that increasing the flow rate decreases 

capacitance. This is perhaps due to the fact that when there is a higher flow rate, the salt solution 

more uniformly covers the surface of the phantom.  

 

The plot for the membrane effect shows that the test cases that included a nonpermeable, wax 

paper membrane were much more variable than cases without a membrane. The wax paper 

membrane cases overall had a larger decrease in impedance with respect to frequency than the no 

membrane cases, suggesting that the use of a nonpermeable membrane increases the capacitance 

of our skin phantom.  

  

7.3.3 Effects of Factors on Overall Impedance vs. Frequency Behavior 

To reiterate, our goal was to create a skin phantom that had the same impedance vs. frequency 

behavior of human skin. While we can visually see that different test cases appeared to match the 

skin well in Figure 7.9, we needed to quantify how close our phantom actually matched the 

desired behavior in order to understand each factor’s effect.  
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Figure 7.9: Zoomed in Experimental Data with Highlighted Test Cases 

 

We quantified matching impedance vs. frequency behavior by determining a value we call 

ΔBehavior. ΔBehavior was calculated by subtracting the in-vivo skin data from an experimental 

dataset, then taking the derivative with respect to frequency. The mathematical formula is shown 

below in Figure 7.10. Values of ΔBehavior close to 0 indicate that our skin phantom was a good 

match for human skin’s impedance vs. frequency behavior. 

 

 

Figure 7.10: Formula for ΔBehavior 

 

We calculated ΔBehavior values for all thirty-two data sets; they are plotted below in Figure 

7.11; each dataset’s ΔBehavior value is represented by a circle. 
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Figure 7.11: Effect of Each Factor on ΔBehavior 

 

Figure 7.11 demonstrates the effect of each factor on our skin phantom’s impedance vs. 

frequency behavior. The plot for the pore density effect shows that cases with high pore density 

are similar to cases with low pore density. Low pore density cases have slightly lower ΔBehavior 

values overall, however, the difference is minimal. This suggests that pore density has little 

overall effect on our phantom’s impedance vs. frequency behavior.  

 

The plot for the salt solution concentration-effect shows that cases with a higher salt solution are 

extremely similar to cases with a low salt solution. This suggests that the salt solution 

concentration has virtually no effect on our phantom’s impedance vs. frequency behavior.  

 

The plot for the flow rate effect shows that cases with a high flow rate have much smaller 

ΔBehavior values than the cases with a low flow rate. This suggests that increasing the flow rate 

improves our skin phantom’s impedance vs. frequency behavior, making it a better match for 

human skin. 
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The plot for the membrane effect shows that cases with a nonpermeable wax paper membrane 

are, again, highly variable in ΔBehavior values. Cases with a membrane have higher ΔBehavior 

values overall compared to cases without a membrane. This suggests that adding a membrane is 

detrimental to our skin phantom’s impedance vs. frequency behavior.  

 

7.3.4 Mathematical Model for ΔBehavior 

Using the thirty-two datasets for our skin phantom, we were able to create a mathematical model 

through linear regression that would predict a ΔBehavior value given an input of the factor 

levels. The model’s equation and associated variables are shown in Appendix A. 

 

We plugged the sixteen test conditions that we used for our experiment into this mathematical 

model to test it; the resulting predictions for ΔBehavior are plotted below in Figure 7.13 against 

the actual ΔBehavior values obtained from our experiment.  

 

 

Figure 7.13: Model Predictions for ΔBehavior Against Actual ΔBehavior Values 
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The model successfully predicts most of the ΔBehavior values within its error range but fails 

with cases demonstrating low repeatability. The low repeatability in our experimental data for 

those three cases where the model fails could have been due to inconsistent wetting on the 

surface of the phantom or other experimental errors. Repeating the experiment and obtaining 

more replicates would aid the mathematical model, decreasing its standard error and increasing 

the accuracy of predictions.  

 

We used the mathematical model to predict for a test case that would give us a ΔBehavior value 

of 0 +/- .11198. The model output the factor levels that are shown in Figure 7.14.  

 

 

Factor: Level: 

Pore Density 1 pore / 5 mm 

Salt Solution Concentration 154 mmol 

Flow Rate 46.9  µg/min 

Membrane None 

Figure 7.14: Mathematical Model Prediction for  ΔBehavior = 0 +/- .11198 

 

It is important to note that the flow rate level predicted in Figure 7.14 is an extrapolation, as it is 

outside the range of flow rates that we tested. Thus, this prediction is a place to start further 

testing rather than a concrete solution. It would be beneficial to run the experiment again using a 

wider range of flow rates.  
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8. Professional Engineering Standards and Realistic Constraints  
As engineers, there are several standards that always need to be considered when innovating, 

including ethical, health and safety, sustainability, environmental, regulatory, and manufacturing 

standards. These standards are known as professional engineering standards. Additionally, there 

are other constraints, such as budget and time, that are known as realistic constraints. Over the 

course of this project, we kept all of these standards and constraints in mind. 

 

8.1 The Ethical Justification of Skin Phantoms 

Ethical concerns were a primary consideration of this project that influenced many of our 

decisions. This section of the report will analyze the ethical justification of our project. As 

mentioned in the Introduction chapter of this thesis, current methods of medical device testing 

include testing on animal, human, and cadaver subjects. There are many aspects of this kind of 

testing that raise the question, is this type of testing ethical? One lens with which to analyze this 

question is through the lens of utilitarianism; utilitarianism is an ethical framework that asserts 

that the ethical action to take is the one that causes the most happiness and reduces the most 

harm possible.  To apply this lens in the case of skin phantoms, we will compare the harms and 

happiness caused by using skin phantoms to the harms and happiness caused by alternative 

options.  

 

As mentioned previously, early-stage medical device tests are typically performed on animals to 

examine the interactions between the device and the animal; oftentimes, this process is harmful 

to the animal, causing pain, injury, illness, or death. Once a device has completed animal testing, 

it goes into clinical testing, where it is then tested on humans. Since there is variation between 

human and animal physiology, there is still the possibility of harm to human test subjects even if 

the device was not harmful to animal subjects by the end of preclinical studies. These tests are 

significant factors of harm and need to be considered when analyzing the medical device 

industry. However, the medical devices developed from these processes help treat and cure 

disease states, overall reducing the amount of human pain and suffering. These medical devices 

are a significant reducer of harms, so it would not be an ethical decision to stop producing them. 
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Producing medical devices without sufficient testing would also be unethical, as marketing 

untested, unregulated, and dangerous devices would also cause significant harm.  

 

At the moment, the current medical device testing process is the most ethical; however, that does 

not mean it cannot be improved. Our team firmly believes that if we can reduce the harms caused 

by medical device testing while still ensuring the safety of patients using those devices, it is our 

ethical obligation to do so. While eliminating testing on live subjects is not feasible, the use of 

skin phantoms would decrease the amount of in-vivo testing required, reducing the amount of 

harm that the medical device industry causes. Thus, the development and utilization of accurate 

skin phantoms are both ethical actions. 

 

8.2 Health and Safety Implications 

There were three health and safety aspects that we kept in mind throughout the duration of this 

project. We had to ensure that our team was safe during testing, that the end-user would be safe 

when using our skin phantom, and that any patients using a device that was tested on a 

completed skin phantom would be safe.  

 

To ensure our own safety, we developed certain protocols during fabrication and testing. To 

begin with, we chose materials to work with that were not dangerous to us: PDMS, carbon black, 

and NaCl solutions. During fabrication, we wore gloves, safety glasses, and lab coats, and 

worked in the hood when desiccating. During testing, the primary hazard was electrocution from 

the potentiostat. To minimize that danger, we kept the current at 1 mA, a level not dangerous to 

us. We also ensured that no one actually touched the potentiostat while it was running.  

Our material choices also ensured that the end-user would also be safe. Cured PDMS and carbon 

black are non-toxic and non-hazardous. NaCl solution is also incredibly safe, and can actually be 

disposed of down the drain. The end-user would not be using a potentiostat; instead, they’d be 

placing their biowearable onto our phantom. Thus, there would be no danger from our phantom 

to the end-user.  
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Our final concern was for any patient or test subject that would use a biowearable tested on our 

phantom. While the patient or test subject would have no interaction with our phantom, if our 

phantom malfunctioned in any way during the testing, it could mean the biowearable isn’t 

actually safe for use. Hence, we would be very strict on when our phantom could actually be 

used; our phantom should only be used to test for signal acquisition or emittance and is not a 

suitable test for other properties. Additionally, our phantom is not yet ready for testing 

biowearables. We would want our phantom to be much more accurate and undergo many more 

tests before it could possibly be used for testing a biowearable. 

 

8.3 Sustainability as a Constraint 

Sustainability, or the ability to maintain the use of resources in a way that avoids depletion, is an 

important constraint for modern innovators. We wanted to design a phantom that produced as 

little waste as possible and that could withstand many tests in order to decrease the number of 

resources needed for production. We chose to use PDMS for its stability and low degree of 

degradation over time [17, 18]. While we were unable to complete fatigue testing on our 

completed phantoms, each phantom remained in perfect shape after more than sixteen tests. We 

estimate that our phantoms would remain in usable shape for at least fifty tests, though an 

experiment would need to be done to validate that. Thus, we successfully created a skin phantom 

that was reusable.  

 

8.4 Civic Engagement and Compliance with Regulations 

As the medical device industry is heavily regulated, it is important that any innovations 

pertaining to the medical device field also be compliant with those regulations. While we 

designed our skin phantom to be an alternative early-stage testing method for biowearables, we 

do not advocate for our phantom to completely supplant current testing methods. Biowearable 

companies should still comply with federal regulations regarding the necessary testing of 

medical devices. Our device is only intended to be used to replace or supplement early testing so 

that when biowearables are eventually tested on a live subject, it is more likely to be successful. 

In the future, it would be ideal to replace certain animal and human trials with skin phantom 
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trials, but we acknowledge that the technology is not there yet. All biowearable testing should be 

compliant with the appropriate federal regulations.  

 

8.5 Manufacturability 

Manufacturability is a concern for any kind of innovation. We broke down our manufacturability 

goals into short- and long-term goals. Our short term manufacturability goals pertained to how 

easy it was for us to fabricate the phantoms in our lab. We took steps to use easily acquirable 

materials and disposables. We decided to use the Cricut machine to cut channels as opposed to 

using photolithography as we wanted to be able to iterate our design efficiently. Photomasks are 

costly and take time to produce and ship. We also mixed the PDMS by hand in disposable plastic 

cups. Thus, the most complicated part of manufacturing our phantoms was the plasma bonding 

step.  

 

For a long term manufacturing process, however, we would change the process to be more easily 

scaled up. We would recommend the use of more commercialized PDMS fabrication techniques. 

Photolithography could be used to pattern multiple PDMS layers at once, speeding up the 

process. Additionally, using a centrifugal mixer would allow for larger quantities of PDMS and 

carbon black-doped PDMS to be made at once. Our design was made in such a way that it would 

be possible to scale up production in this way. Even if a biowearables company did not have 

access to a plasma oven or photolithography equipment, the production of the phantoms could be 

outsourced to a lab. Some labs even rent out their microfluidic and photolithography lab spaces 

for commercial use.  

 

8.6 Budget Constraints 

The budget is a constraint that needs to be considered for any project. Our project was funded by 

the Santa Clara University School of Engineering. We were given $2000 to purchase equipment 

and materials. While our anticipated cost was $2,000, we ended up only spending $658.35. A 

detailed funding request and an actual spending list are located in Appendix B. Had we needed to 
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purchase or rent a potentiostat, that would have been a significant cost. However, Proteus Digital 

Health generously allowed us the use of his potentiostat.  

 

8.7 Time Constraints 

As this was a year-long thesis project, we had to plan ahead to ensure we would complete the 

project in three quarters. Our original plan can be seen in Appendix C.1. However, we had 

significant purchasing delays at the beginning of the second quarter, which pushed our 

prototyping and testing out by four weeks. Additionally, the campus closure due to COVID-19 

during week 10 of the second quarter cut off our physical testing and prototyping early. 

However, even with the unexpected loss of experimentation time, we were able to perform 

significant analyses on data we already collected. Our actual timeline can be seen in Appendix 

C.2. 
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9. Summary and Conclusion 

9.1: Summary of the Project 

In order to meet the biowearable industry’s need for a new testing method, we developed a skin 

phantom that emulated human skin’s perspiration mechanism and corresponding impedance vs. 

frequency spectrum. Our skin phantom met our desired goals of matching the impedance vs. 

frequency behavior of skin from 2,000 - 20,000 Hz, while also being sustainable, safe, and easily 

manufacturable. We also succeeded in creating models and simulations that characterized our 

materials and aided in our understanding of our skin phantom. 

 

9.2: Future Work 

While we successfully met our goals for our project this year, there are further improvements 

that need to be made to our phantom. In the future, movement capabilities need to be added to 

our skin phantom. The movement of skin has been known to affect a biowearable’s function due 

to changes in electrical contact. As our phantom is made of an elastomer, variations in the 

amount of crosslinker used can alter its stretchability. Usage of motors or an inflatable bladder 

can simulate movements due to breathing and stretching.  

 

Future teams should also build the memristor circuit model we developed to ensure it works the 

way as designed and accurately mimics the nonlinear electrical behavior of skin. Future teams 

carrying on this project should work to simulate more complex geometry in CST. Being able to 

completely simulate our phantom would allow for factor testing through simulation, which will 

make benchtop testing more efficient. Accurately characterizing the electrical properties of our 

specific materials will aid in creating an accurate CST model, and should be done by the 

incoming team.  

 

Finally, before our phantom can be used to test biowearables, many more replicates of the full 

factorial test need to be run. This will ensure that our phantom gives repeatable data, and will 

also improve our mathematical model to be more accurate. Further testing should also increase 

the range of flow rates and salt solution concentrations tested to get a broader view of how those 
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factors affect our phantom’s behavior. Other testing that needs to be done includes testing 

durability, the effect of different kinds and sizes of electrodes, and the effect of environmental 

changes (such as temperature and humidity). 

  

9.3: Lessons Learned 

There were two critical lessons we learned during this project. The first was the importance of 

experimental design; had we not planned out our experiment in an efficient way, we would not 

have had enough data to analyze after the campus closed down. Using Design of Experiments 

methods allowed us to design a full factorial experiment that provided us many different kinds of 

information on our phantom. Even with the campus closure and the end of physical experiments, 

the Design of Experiments methods ensured that we had enough data to finish our project.  

 

This leads to our second lesson learned: being able to pivot when there are unexpected setbacks. 

Due to an unexpected purchasing setback and the COVID-19 campus closures, our prototyping 

and testing periods were limited to only five weeks.  By quickly shifting our focus to planning, 

statistical analysis, and simulations, we were still able to meet our initial goals.  
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Appendix B: Budget and Actual Spending 

B.1 Proposed Budget: 

Material Cost per unit ($) Units desired Total Cost ($) 

Synthetic Skin Layer    

Hydrogel 200 1 200 

Cosmetic Puff (x10) 2 10 20 

Photoresist 150 1 150 

PDMS (Sylgard-184)  128.39 2 256.78 

Fumasep FAS-30 16 10 160 

    

Fabrication & Safe Handling    

Masks 200 1 200 

    

Ionic/Conductive Solutions    

Artificial Sweat 164.84 1 164.84 

NaCl Solution 24.95 2 49.9 

    

Electrical Components    

Memristor (Discovery Kit) 489 1 489 

Memristor (SDC Carbon) 89 1 89 

Resistors Kit 50 1 50 

Solder Spool 25 1 25 

30 Gauge Wire Kit 15.95 1 15.95 
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Snap Electrodes 12.99 6 77.94 

Cables 60 4 180 

    

Measurement of Electrical 

Characteristics    

Circuit components to build a 

potentiostat – (2 op amps, 1 

resistor, 3 electrodes) 1 1 45 

Breadboard 5 5.5 27.5 

Printed Circuit Board Fabrication 1 1 100 

    

Tools to Change and Measure 

Changeable Physical 

Characteristics of Phantom    

Thermometer (humidity) 6 1 6 

Chamber to control humidity 25.25 1 25.24 

    

Conductive Materials    

Carbon black 25 2 50 

    

Miscellaneous    

Petri Dishes 12.3 2 24.6 

Copper tape 6 2 12 

Electrical Tape 1 1 10 
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junction box 1 1 25.5 

Silicon Wafers x4 15 4 60 

    

Total                                                                                                                  2514.25 

 

B.2 Purchase Record: 

Item 

Unit 

Size Quantity Cost Link 

Plastic Bin 1 1 16.99 

https://www.amazon.com/Anbers-Quart-Plastic-Latching-Handles/

dp/B07T2Q2PRQ/ref=sr_1_7?keywords=plastic+bin+with+lid&qi

d=1578517416&sr=8-7 

10mL Luer 

Lock Syringe 100 1 13.49 

https://www.amazon.com/10ml-Syringe-Sterile-BH-SUPPLIES/dp/

B07KW4KLG2/ref=sr_1_3?keywords=luer+lock+syringe+10ml&q

id=1578518073&sr=8-3 

Petri Dish w/ 

Pipettes 20 1 12.35 

https://www.amazon.com/Sterile-Transfer-Pipettes-10Pcs3ml-10Pc

s2ml/dp/B07MZ8CXHY/ref=sr_1_3?keywords=sterile+petri+dishe

s&qid=1578690313&sr=8-3 

Tygon 

Microbore 

tubing 1 1 60.73 

https://www.coleparmer.com/i/tygon-microbore-tubing-0-020-x-0-

060-od-100-ft-roll/0641901 

20gax0.5" 

Dispensing Tip 50 1 9.50 

https://www.cmlsupply.com/dispensing-needle-20ga-0-5-tip-yellow

/ 

21gax0.5" 

Dispensing 

Tips 50 1 9.50 https://www.cmlsupply.com/dispensing-needle-21ga-0-5-tip-green/ 

Metal 

Electrode: Set 

of 11 11 1 29.00 

https://sciencekitstore.com/metal-electrodes-set-of-11/?gclid=CjwK

CAiAu9vwBRAEEiwAzvjq-8VLs2uhAjc_ZbzCoojQfGPhZudcpQt

1e1iHRfqdy73DVJW91iXRphoC1jYQAvD_BwE 
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Sylgard 184 

(PDMS) 1 2 266.00 

https://www.amazon.com/Sylgard-Solar-Encapsulation-Making-Pa

nels/dp/B004IJENBG/ref=sr_1_1?gclid=EAIaIQobChMIoIOhq673

5gIVhcJkCh2TiguNEAAYAiAAEgIFffD_BwE&hvadid=1763664

37624&hvdev=c&hvlocphy=9032151&hvnetw=g&hvpos=1t2&hv

qmt=e&hvrand=3334184446896095109&hvtargid=kwd-19326695

247&hydadcr=25238_9775703&keywords=sylgard+184&qid=157

8601932&sr=8-1&th=1 

Carbon Black - 

Vulcan XC 72 1 1 50.00 https://www.fuelcellstore.com/vulcan-xc72 

Carbon Black - 

Vulcan XC 

72R 1 1 50.00 https://www.fuelcellstore.com/vulcan-xc-72r?search=72r 

Fumasep 

FAS-30 1 5 80.00 https://www.fuelcellstore.com/fumasep-fas-30 

Sodium 

Chloride, 0.9% 

w/v, Standards 

and Solutions, 

Bottle, 500mL 1 1 14.66 

https://www.grainger.com/product/LABCHEM-Sodium-Chloride-8

GE79 

Cricut 

Replacement 

Cutting Blades 

for Cutting 

Machines 2 1 7.38 

https://www.amazon.com/Cricut-Replacement-Cutting-Blades-Mac

hines/dp/B000XANNVA/ref=asc_df_B000XANNVA/?hvadid=194

970149026&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=903215

1&hvnetw=g&hvpone=&hvpos=1o1&hvptwo=&hvqmt=&hvrand=

1123901514633206814&hvtargid=pla-311427768403&linkCode=

df0&tag=hyprod-20&th=1 
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Deep Cut 

Blades for 

Cricut Explore 

Air 2,10 Pieces 

60 Degree 

Cutting 

Replacement 

Blades for 

Cricut Explore 

Air Air 2 

Maker with 

Anti Lost Bag 

and Storage 

Container 10 1 8.99 

https://www.amazon.com/Blades-Explore-Cutting-Machines-Repla

cement/dp/B07FZXWN2F/ref=sr_1_10?crid=3BCGY63CSQKCZ

&keywords=cricut+explore+deep+cut+blade&qid=1581546587&s

=arts-crafts&sprefix=cricut+explore+deep%252Carts-crafts%252C

207&sr=1-10 

Coil Shim 

Stock – 316 

Stainless Steel 1 1 29.76 

https://www.maudlinproducts.com/shim-products/coil-shim-stock/c

oil-shim-stock-316-stainless-steel/ 

     

  Total: 658.35  
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