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Abstract 
This project entails designing, prototyping, and testing a 3D scanner. The device that we 

are building uses LIDAR to take position data of a 3D object, then analyze and encode the sensor 
data as an STL file that can later be 3D printed out at the same resolution.  We aim to build an 
affordable, high-performance 3D scanner that takes advantage of the falling cost of LIDAR in 
order to bring 3D scanning capabilities to individuals, the maker community, and even small 
businesses. 

We begin this process by choosing a sensor, the YDLIDAR X4, as our primary method 
of taking position data of the object.  We take calibration data with this sensor to ensure that it is 
suitable to our needs.  In doing so, we find that we may need to incorporate certain statistical 
methods, like dithering, in order to increase the accuracy of the system.  We determine an 
effective layout for scanning all sides of an object, overcoming obstacles like scanning objects 
with concave surfaces.  The physical system is mocked up in Solidworks, enabling us to 3D 
print, laser cut, and buy all the necessary components of the system.  The system is constructed 
while an interactive user interface is created.  We develop an algorithm for turning individual 
data points from the raw data of the X4 sensor into 3D printable STL files, and interface it with a 
program that controls the motors to take consistent, comprehensive scans of any object on the 
platform. 

In the end, we find two limitations of LIDAR in 3D scanning systems - high-gloss black 
surfaces and certain steep angles cannot be scanned adequately by LIDAR.  However, once our 
system is constructed, we are able to take 3D scans of common objects, and even 3D print one of 
our scanned objects. The scan is compared to the original object, and the dimensional accuracy 
of our scanner is verified.  
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Chapter 1: Introduction 
1.1 3D Scanner Definition 

A 3D scanner is a device that creates digital, three-dimensional representations of 
real-world objects. These digital forms can then be edited, manipulated, and/or physically 
recreated by a 3D printer or CNC machine. Figure 1 below shows a representation of what a 3D 
scanner does: it starts with a real-world object like the cylinder on the left, it takes data that 
represents the object’s size and shape, and the data is used to create a digital representation of the 
object like the one on the right.  The cylinder pictured here is in an STL file format - one of the 
most commonly used formats on 3D printers today. 

 

 

STL files can be viewed and edited in programs like Blender, Meshlab, or Solidworks to 
make any changes to the object or otherwise improve upon it digitally.  3D scanners enable new, 
faster methods of rapid-iteration prototyping, since objects can be produced, tested, and 
re-scanned so that the model can be digitally altered and prepared for its next iteration. 

 

1.2 Background Information 

When we tell people that we’re building a 3D scanner, the first question we always hear 
is: “Don’t 3D scanners already exist?”  And the answer is “yes,”  but the 3D scanners on the 
market all have disadvantages, and we’re hoping to improve upon what’s already available.  For 
example, the scanner you see on the left in Figure 2 is a reasonably cheap one – you can buy it 
for about $150 to $200, but its scans are not particularly accurate.  The scanner pictured in the 
middle of Figure 2 will give much higher resolution scans, but it costs closer to $1,000.  In 
addition, most 3D scanners on the market today use cameras to get position data.  Nowadays, 
there’s new technology available.  With the advent of self-driving vehicles and their use of 
LIDAR, the cost of LIDAR sensors is starting to drop, and we wanted to see if we could take 
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Figure 1: Process of 30 Scanning a Cylinder 



 

advantage of this new technology in our project.  We sought to build a 3D scanner whose cost 
would be comparable to the current low-end desktop scanners, but give performance similar to a 
high-end desktop scanner. 
 

 

 

 
 

Chapter 2: Objectives 
2.1 Project Goals 

When we started this project in July 2019, we came up with the idea to design, prototype, 
and troubleshoot a low-cost, high performance 3D scanner by April 2020 for less than $2000. By 
the end of the project, our goal was to have a fully functioning prototype of our 3D scanner, a 
developed scanning algorithm, a complete user-interface, and at least one object scanned and 3D 
printed. 

 

2.2 Project Requirements 

We wanted this scanner to have a price and performance comparable to that of 
hobby-level 3D printers.  The Prusa i3-MK3 is priced around $750, and has a nominal accuracy 
of 0.2 mm.  Ideally, this 3D scanner could even be sold as a kit, similar to the Prusa printers.  In 
addition, the user interface would have to be constructed in a way that is user-friendly, so that 
anybody would have the ability to take scans with our scanner. 
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Chapter 3: Project Plan 
3.1 Subsystems Overview 

The work we did in this project falls into three main categories. First is the physical build. 
This  includes the scanning tower, rotating platform, and LIDAR sensor that come together to get 
scans of an entire object. The second is the software, which controls the motors and sensors 
using low-level C++ code on a Raspberry Pi.  This starts the scans and reads out the LIDAR 
data. Third, the data is transferred to our data processing algorithms, which function as 
high-level Python code running on a PC.  These algorithms analyze the data and turn it into an 
STL file. The scanner’s user interface is incorporated into the algorithm subsystem and is also 
run on the PC. 

Figure 3 below shows how these subsystems are incorporated and work together to create 
3D scans. 

 

 

 

3.2 Functional Block Diagram 

Figure 4 below shows a view of the physical system. The object being scanned rests on 
the rotating platform. For one 360 degree layer of the object, the LIDAR spins and takes a 
certain number of data points as a stepper motor, inside the highlighted yellow piece, rotates the 
platform with micrometer accuracy. During this process the dithering stepper, seen in green, 
moves the LIDAR sensor back and forth to create a distribution of points to be averaged. The 
purpose of this movement will be explained later. Then, the next layer is scanned after the tower 
stepper, in the highlighted blue piece, moves the LIDAR vertically upwards. This process is 
continued for the entire height of the object. The motors are controlled by a microcontroller 
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which communicates with a Raspberry Pi controlling the LIDAR. All scanning data is passed 
back to the host computer wirelessly through an SSH connection to be processed by the scanning 
program. 

 

 
 

Chapter 4: Sensor and Calibration 
4.1 YDLIDAR X4 Sensor 

In the early stages of the project, we researched multiple LIDAR sensors to see if we 
could find one that was suitable for our needs.  Ultimately, we chose a sensor from the company 
YDLIDAR, called the “X4”. The X4, pictured in Figure 5, is a 360 degree LIDAR scanner used 
primarily for adding computer vision to autonomous robots. It has a scanning rate of 5 kHz, 
operates at a wavelength of 785 nm (in the near-infrared spectrum) and a low price point at under 
$80.  In addition, its datasheet (from ydlidar.com/download) claims that its laser is “Class 1”, 
which, according to lasersafetyfacts.org, is “safe, even for long-term intentional viewing.” 
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4.2 Calibration 

YDLIDAR claimed that the X4 had the accuracy we needed, but to be sure, we created a 
testbench for calibrating the sensor and understanding it’s impressive high speed data capture. 
The testbench, shown in Figure 6, is simply the X4 sensor, a stepper motor, and a wall attached 
to a screw drive powered by the motor.  The testbench was designed in Solidworks, and 
implemented primarily using 3D printed components.  This testbench allowed us to take a 
variety of scans to understand the sensor’s performance, including testing for the scanner’s 
linearity, monotonicity, absolute accuracy, differential accuracy, angular accuracy, and more. 

 

 

We took a scan across the flat surface of the test bench, which, when we normalize the 
data to the angle associated with each distance value, yielded the graph shown in Figure 7. This 
graph is meant to be a reconstruction of a flat surface. 
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Figure 6: A Solidworks model of our test bench is picrured on the le~ 
with the actual implementation pictured on the right. 
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The graph’s x-axis is the range of data we chose to use from the sensor - spanning from 
-5 degrees to 5 degrees, where each data point represents a spot on the flat surface. The y-axis is 
the distance measurement from the scanner to the flat surface, normalized to the angle of each 
point. The resulting graph should have been a flat line, but instead, the data has an undesirable 
distribution of values varying by as much as +-1.5mm (which is in stark contrast to the claimed 
accuracy of the X4 sensor). For this reason, we chose to implement dithering in our routine. 

 

4.3 Dithering 

Dithering is a data sampling technique that aids in a more accurate recreation of captured 
data, especially in an application where quantization noise exists.  To implement dithering, a 
controlled amount of noise must be introduced into the system such that the level of noise is 
equal to the range of results for a given known value.  When the spread of data for a single point 
is averaged, the mean will more accurately represent the actual value.  Figure 8 shows three 
graphs from a study titled “An Optimum Condition of the Dithering Signal against the 
Quantization Noise in ADC”, by Liu et al, showing how they were able to more accurately 
recreate signals using dithering to eliminate quantization noise. 
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In our system, we chose to implement dithering by moving the X4 sensor closer to and further 
away from the object that we were scanning.  Theoretically, this would allow us to obtain more 
accurate measurements for each data point. 

 

Chapter 5: Subsystems 
5.1 Physical Build 

At the beginning of the project, we decided that we wanted to have a scanning tower that 
housed the LIDAR sensor and enabled it to move vertically, and a separate rotating platform 
where we could place the objects to be scanned.  By rotating the objects and moving the LIDAR 
vertically, we could capture data of the full exterior of any object.  We created some initial 
designs for the scanning tower and rotating platform in Solidworks, which are shown in Figure 9. 

 
 

 
 
 
 
 
 

 

This layout left us with one problem that we referred to as the “C-clamp problem”.  The 
issue is that if we tried to scan a C-clamp (or any object with multiple contours on a single layer) 
using a single datapoint from the LIDAR, we wouldn’t be able to capture data on the “inside” 
surfaces of it.  Figure 10 shows this problem - the three pictures represent the C-clamp being 
rotated, and the red circle represents a single point where a LIDAR sensor would take data. 
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Figure 9: Original designs for the scanning tower (left) and rotating platform (right) 

Figure 10: The C-olamp Problem: as the C-clamp rotates, a single data point 
would not capture the entire surface of the object 



 

Fortunately, our chosen sensor (YDLIDAR’s X4) takes full rotational scans with data 
points at 0.5 degree increments.  By using multiple data points on every scan, we were able to 
stitch together a set of points from each viewing angle on the object, and capture the inside 
surface of the C-clamp and other object concavities.  This feature enabled us to keep a similar 
design for our final version of the scanning tower. 

After going through five iterations of both the scanning tower and rotating platform, we 
arrived at our final design.  Figure 11 shows the final Solidworks render on the left, and the 
actual physical system on the right. 

 

 

One feature that we consider to be particularly important is that all of the colored parts 
can be 3D printed on hobby-level 3D printers, and in fact, were printed on a Prusa i3-MK3 in our 
final build.  Most of the other pieces in the system – the motors, fans, lead screws, shaft collars, 
etc – are commercially available parts.  Almost none of it had to be customized.  That means that 
if we were to turn this project into a commercially available system for customers, it could be 
sold as a kit, with a similar cost and difficulty of assembly as a hobby-level 3D printer (like a 
Prusa).  Ultimately, it could be marketed towards the DIY and maker communities for those 
reasons, enabling small businesses and even individuals to have 3D scanning capabilities aiding 
them in rapid-iteration design processes. 

In Figure 12, the render on the left shows the base of the scanning tower, which houses 
two NEMA-17 stepper motors.  These motors drive lead screws that enable the raising and 
lowering of the middle platform.  Two limit switches above the motors provide a homing 
position for the platform, and two fans provide active cooling for the motors.  In the center of the 
base, we have a mount for our motor controller board.  The render on the right of Figure 12 
shows the moving platform and the dithering mount for the X4 sensor.  The green platform has 
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Figure 11: Final Solidworks render of the full system (left) and physical system (right) 



 

four linear bearings mounted in it so that it can slide up and down along linear guide rods, which 
give smooth, repeatable motion and prevent racking.  The dithering platform itself, the orange 
piece, is driven by another NEMA-17 stepper motor, with two more linear bearings that travel 
horizontally on shorter guide rods.  The dithering platform also has two limit switches to give the 
sensor a “home” position. 

 

 

Finally from the hardware side is the rotating platform, shown in Figure 13.  The yellow 
piece of this platform is fixed at a set distance away from the scanning tower.  The object to be 
scanned will be placed on top of this platform.  The white piece on the very top is an acrylic disk 
that is press-fitted into the 3D printed blue mount.  We wanted the top to be as flat as possible, 
which meant having no screw heads sticking up from the surface that could block parts of the 
object from being scanned, and no counterbores to sink screw heads into the surface, because 
that the object to be scanned could tip into those holes.  That’s why we chose to have a 
press-fitted acrylic disk.  The surface is rotated by another actively cooled NEMA-17 stepper 
motor, which is connected to the blue rotating platform through a motor hub.  The blue piece is 
also supported from below by a turntable bearing concentric to the motor shaft to provide extra 
stability. 
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Figure 12: Solidworks render of the tower base (left) and moving platform (right) 

Figure 13: Solidworks render of the rotating platform 



 

5.2 Software: General Overview 

The scanning process involves many interconnected algorithms run on three different 
platforms: a host PC running Windows, a Raspberry Pi, and an Arduino-style microcontroller 
(Figure 14). The main program begins with a menu UI window on the host PC, where the user 
picks scan parameters and starts the scan. The scan parameters are sent through an SSH 
connection to the Raspberry Pi. In order to begin the scan, the main Python algorithm creates an 
STL file where the digital model will be built, while a C++ algorithm on the Raspberry Pi starts a 
calibration and prescan routine. Once this is finished, the system enters the main scan routine. In 
this process, the LIDAR is swept, taking a certain number of datapoints; then the platform is 
rotated, and the LIDAR is swept again. This continues until the platform finishes a full rotation. 
At this point, the scanning tower moves up and takes the next layer of data. At the same time, the 
current layer’s scan data is file-transferred to the Windows machine. There, a set of Python 
algorithms process the raw data, generate a contour for the layer, connect that contour to the 
contours above and below, and update the STL file. The scan process ends when the top of the 
object is reached; at that point, the top surface is filled in and the STL file is closed. 

 

 

 

5.3 Motor and Sensor Software 

In order to achieve an accurate and efficient scan, it is necessary to conduct two 
preliminary tests before taking a full scan of the entire object. For simplicity, the state machine 
for a full scan routine (detailed in Figure 15) is modified to accommodate three different types of 
scans as described in the following sections. Before explaining the nuances of each scan type, it 
is necessary to understand how communication is established between the Raspberry Pi and the 
Arduino, and how the motors undergo homing calibration. 
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5.3.1 State Encoder 

Three digital pins are set aside from both intelligent systems to write or read state 
changes. In this instance the Raspberry Pi assumes the role of master and is therefore in charge 
of writing to these fully encoded digital pins. The Arduino, as the slave, will react to the state 
published by the Raspberry Pi. The following actions in bullet form are what is described by the 
yellow newState functions in Figure 15. 

● Changes in state begin when the Raspberry Pi raises a separate new state pin and waits 
for the Arduino to raise a response pin. 

● The Arduino raises the response pin once it finishes its procedure for the previous state 
and detects a new state request from the Raspberry Pi 

● When the Raspberry Pi sees a raised response pin, the new state will be published, and 
the Raspberry Pi will lower the new state pin. A time delay is additionally added to allow 
the Arduino to enter the next state and receive additional commands.  

● A lowering of the new state pin will prompt the Arduino to read the encoded state and 
lower its response pin. 

Overall this simple method has worked quickly and reliably and is well suited for the system 
given the abundance of digital pins available. 
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5.3.2 Motor Homing 

During State 2, the vertical motors and dithering motors are driven to find their home 
using endstops as precise position indicators. When an endstop is found, the motors are driven 
very slowly in the opposite direction until the endstop is released. A preset distance from the 
negative edge of the endstop is used as a precise home for the motors. This calibration is 
invaluable for ensuring reliable motor positions across all three scan types that will be described 
in the following sections.  

5.3.3 Calibration Scan 

The STL generation process requires a reference for how far the scanner sits from the 
object platform. By scanning the outside edge of the rotating platform, an accurate reference 
point can be achieved by selecting the shortest distance value between the X4 and the rotating 
platform.  This datapoint also contains an angle to normalize all of our data to, in case the X4’s 
intrinsic 0º angle is off-axis. To negate the impact of any small physical changes to the system, a 
calibration scan is run at the start of each scan routine. In terms of the procedure, the system will 
follow the state diagram in Figure 15 but only conduct one loop through the blue highlighted 
states for a single layer of data taken at the platform edge. The resulting data is fed back to the 
python program in a CSV file. The python will process the calibration data so it is ready to be 
fed to the full scan.  

5.3.4 Pre-Scan 

To reduce the number of empty layers being sent to the STL generator, a pre-scan is used 
to find the maximum height of the object. This will set an upper bound for the number of layers 
in the full scan to reduce the total scan time and prevent any phantom data that may occur in a 
non-existent layer. This process also gives us the ability to display a progress bar to the user (as 
detailed in section 5.5.2). 

The procedure for finding height is much more complex than either the calibration scan 
or full scan. The most efficient solution, given the nature of the system, involves repurposing the 
state encoder (section 5.3.1) as a means to inform the Arduino of where the highest point of the 
object lies. The method starts by dividing up the entire vertical range of the scanner into eight 
even sections. A single scan at each increment will allow the Raspberry Pi to determine which 
section contains the object’s peak by finding the highest layer with valid data and choosing the 
section above. The chosen section is relayed to the Arduino via the three state bits and promptly 
moves the motors to the bottom of this section. The process is continued with the new section 
divided into eight smaller sub-sections until an accurate height is determined with sub-millimeter 
accuracy.  
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As in the case of the calibration scan, the final height (calculated in millimeters) is fed to 
the python program in an CSV file.  

5.3.5 Full Scan 

With both calibration data and object height information from the preliminary tests, the 
python program is able to pass this data to the Raspberry Pi in conjunction with desired vertical 
and angular resolutions from the user interface (as described in section 5.5.1). The most difficult 
design aspect of the full scan was relaying resolution information from the Raspberry Pi to the 
Arduino. The key to this communication was reusing the state encoder (section 5.3.1), similar to 
the pre-scan routine, to select preset resolutions available to the user; essentially leaving a 
maximum of 8 possible settings for both vertical and angular resolution. Relaying this 
information occurs in State 1 of Figure 15.  

The remainder of the scan follows the flow of the state diagram with an appropriate 
amount of layers determined by the height multiplied by the vertical resolution; both in 
millimeters. 

 
5.4 Communication Between Systems 

Over the course of the scan, we have to transfer data between the Windows PC, where 
scan parameters are set and scan data is analyzed, and the Raspberry Pi, where the scan is run. 
To accomplish this task, we used an SSH connection between the main Python program and the 
command line of the Raspberry Pi. This connection was implemented programmatically through 
the paramiko Python module. To start the scan, the following command was executed remotely 
on the Pi command line: 

roslaunch ydlidar lidar.launch scanArgs:=”-flag -levels -vertRes -angRes” & 

To transfer data, the program used the ls command to search for a created CSV file in a 
certain directory. Once each layer’s CSV file was found, it was transferred through SFTP (the 
SSH File Transfer Protocol) to a local directory on the Windows computer. The algorithms in 
section 5.5 accessed the data for each layer through this local directory. 
 
5.5 Data Processing and STL Generation 

The following algorithms are run on the Windows PC. They are all coded in Python, and 
dependent on the numpy library. 

5.5.1 Preprocessing 

When raw data from the LIDAR sensor comes in, the first step in incorporating that data 
into the STL file is to transform it into a consistent set of coordinates. Each raw datapoint 
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contains three values: the radial distance to the point r , the angle to the point θ, and the rotation 
angle of the platform α. We also know, from measurements of the full system and the calibration 
scan (detailed in section 5.3.3), the distance from the LIDAR sensor to the center of the rotating 
platform, denoted by A. Our goal is a set of coordinates x and y in the object’s proper frame. For 
a full diagram, see Figure 16. 

 

 

In order to get x and y, we start by getting x0 and y0, which are the coordinates 
uncorrected for rotational angle: 

 
Then we use a rotation matrix to compensate for the rotation angle: 

 
These are our final coordinates. They will be used for the rest of the algorithm. 

5.5.2 Averaging 

We then slice the entire grid of points into uniform squares. The size of the squares is 
determined by the “Planar resolution” parameter, which is set by the user in the menu UI (see 
subsection 5.5.1 for details). All points within a certain square are averaged, and the squares that 
have only one point are ignored. This process helps filter out outliers, average out random noise, 
and reduce the number of points inputted to the contour generation algorithm. 
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Figure 16: Conceptual diagram of the raw data used to generate an STL. 
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5.5.3 Contour Generation 

The purpose of contour generation is to take a set of points in two-dimensional space and 
create one or more closed shapes. The end goal is a list of connections -- the sequence of points 
that make up the outer ring of those closed shapes. Generating contours is one of the central 
problems of the field of computational geometry, and we were able to use a computational 
geometry Python package called alphashape to do most of the work for us. 

The alphashape module takes a set of points and generates a shape object, which can be 
further manipulated, using the shapely module, to find a list of connections. Unfortunately, the 
output shape depends heavily on a parameter called alpha -- in fact, if we sweep alpha, we get a 
diverse range of possible shapes. These range from dozens of fractured triangles (alpha = 1) to a 
big blob covering all points (alpha = 0). There is no way to know, a priori, which alpha results 
in the optimal shape; therefore, we had to build another algorithm to do this. 

Our algorithm was based on two central principles: (1) the final shape should be as 
convex as possible; and (2) the final shape should include as many points as possible. For a 
consistent measure of property (1), we use the isoperimetric ratio, defined as the area of the 
shape divided by the perimeter squared. If we have N separate shapes, the area increases N  times, 
while the perimeter squared increases by N2, so the isoperimetric ratio is multiplied by N  to 
compensate.  

 
According to the isoperimetric inequality, ξ reaches its maximum value of 1 when the 

shape is a perfect circle, or a set of perfect circles. 
The algorithm sweeps through alpha values from 1 to 0 in increments of 0.01. For each 

value, it finds the shape and calculates the number of points included and the value of ξ. All 
shapes with too few points or too many regions are ignored. When a big jump in ξ is detected -- 
pushing it above a certain threshold, defined as 0.8 -- the algorithm ends and returns the 
associated value of alpha. If no clear transitions are detected, the algorithm takes all shapes with 
ξ > 0.8, and picks the shape that includes the most points.  

After these three steps, noisy raw data from a single layer has been averaged and turned 
into a set of contours (Figure 17). 
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5.5.4 Connecting Layers 

Once a contour is generated, it must be connected to the layer below it. Due to the 
stipulations of STL files, these connections must be in the form of triangles (Figure 18), with two 
points on the bottom layer and one point on the top (or vice versa).  

 

 

The connections occur in two steps: first, all line segments from the lower level are 
connected to the closest point on the higher level. Second, the line segments from the top are 
connected to the bottom. If there is a natural connection, bounded on both sides by 
already-created triangles, that connection is made. Otherwise, the algorithm runs through a loop 
to find the most likely point to connect to, making sure that the final triangle does not leave holes 
in the contour or overlap with existing triangles. Once a connection is made, the resulting 
triangle is printed out to the STL file. 

The STL file is closed off on the top and bottom by a full triangulation of the top and 
bottom layers. This is achieved by using the triangulate function in the Python shapely 
module. 
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Figure 17: Evolution of a point cloud through three algorithm stages. Left: points after the 
preprocessing step; middle: points after the averaging step; right: final oootour generated. 

Figure 18: Triangles generated when connecting two layers. Only the triangles 
originating from the bottom layer are shown. 



 

5.5.5 Verification 

In order to verify the set of algorithms discussed here, simulated data was generated, then 
run through the entire suite of programs. The simulated layers were circles with uniform random 
noise added in; they were manipulated and arranged to form cones, cylinders, and rounded 
rectangles. All of the shapes tested were recreated faithfully by the algorithm (Figure 19). All 
models shown are sliceable in the PrusaSlicer software, which means that they can be 
successfully printed by a Prusa 3D printer. 

 

 

 
5.6 User Interface 

The following user interface (UI) windows are run on the Windows PC. The color and 
font choices shown here were picked to emulate the UI of the Prusa family of 3D printers. They 
are synchronized throughout the system, including in the project logo. 

5.6.1 Menu Window UI 

The menu UI is the starting point of the scan process. In this GUI window, the user 
selects their scan parameters and begins the scan (Figure 20). These parameters are: the planar 
resolution, which determines the size of the averaging grid (section 5.5.2); the vertical resolution, 
which determines the z-step of the scanning tower; and the number of rotations of the platform 
on each layer. The menuWindow class allows defaults to be set for all of these parameters; it also 
allows for easy customization of the options provided. Once the scan is started, the parameters 
are converted to the appropriate units and sent to the Raspberry Pi through a shell command 
(section 5.4). 

The menu UI is built in Tkinter, the Python GUI library for Windows and Unix 
machines. It is accessed as a class called menuWindow. 
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Figure 19: Examples of 30 models created when noisy simulated data is passed 
through all stages of the STL generation algorithm. 



 

 

 

 

5.6.2 Progress Bar UI 

The progress bar UI window tracks the progress of the scan (Figure 21). The 
denominator, or the number of total layers, is determined by the prescan routine (section 5.3.4). 
An interrupt routine increments the numerator every time a layer is finished processing. It is built 
using the ProgressBar widget in Tkinter, and accessed as a class called progressBar. 
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Figure 20: Sample screens from the menu UI. Top left: the main page; top right: 
the scan settings page; bottom: setting an individual scan parameter. 

Figure 21: Example screen for the progress bar UI. 



 

Chapter 6: Schedule and Division of Labor 
6.1 Project Schedule 

Figure 22 shows the actual Gantt chart that we worked from to ensure that we were on 
track through the whole process. 

 

 

 
To highlight the most important parts of the schedule: 

● Sensor Research and Choice…………………………………..July 2019 
● Creation and Control of Test Bench……………..Aug. 2019 - Oct. 2019 
● Sensor Calibration………………………………..Nov. 2019 - Jan. 2020 
● Physical System Design/Construction……………Nov. 2019 - Feb. 2020 
● Scanning Algorithm Creation/Refinement……….Dec. 2019 - April 2020 
● User Interface Development……………………...Dec. 2019 - April 2020 
● Final Debugging………………………………………………..April 2020 

 
 
6.2 Division of Labor 

General tasks and responsibilities for this project were divided up among our members 
based on our respective backgrounds.  Our division of labor is as follows: 
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Identify components for test 100 % -· Build test bed 100 % 

Obtain Rpi 100 % -· Code test program 100 % -Obtain Motor Driver 100 % I 
Verify sensor 100 % 

Calibration Oh 100 % 

Distance accuracy 0 100 % 

Radial accuracy 100 % 

Differential accuracy 100 % -Data Alignment 100 % -■ 
Construction Oh 100 % 

Design Scanning Tower 0 100 % 

Obtain tower parts 100 % -Build Scanning Tower 100 % -Design Object Platform 100% 

Obtain platform parts 100 % -Build Object Platform 100 % •• 
Algorithm Oh .. ,. 

Motor communication 0 100% 

Reading and movement coordination 90 % 

Data Processing 90 % 

Debugging 75 % 

User Interface Oh 85 % 

layout 0 100 % -■-11 
Make Interactive 100 % -Communication with system 75 % - :i 
Debugging 50 % ~ 

Final Iteration Oh 47 % 

Debugging 75 % • Ill Complete Video 50 % 

Finish Final Report 25 % 

Figure 22: Full project Gantt chart 



 

● Thomas Heckman was in charge of the low-level software, microprocessors, and motor 
control 

● Robert Kalb was in charge of designing and constructing the physical system as well as 
general project support, troubleshooting, and management 

● Shreyes Nallan was in charge of the high-level software, data processing, STL 
generation, creation of visuals, and user interface 

 

Chapter 7: Findings and Results 
7.1 Findings 

Once the scanner was finished and ready to take scans, we focused on scanning objects to 
create printable STL files. Through this process, we found out that lidar has two main 
limitations. 

The first limitation is that glossy black surfaces don’t reflect infrared light very well - the 
beam gets absorbed or deflected, and doesn't get back to the sensor.  We tried scanning the 
computer mouse shown in the first two pictures of Figure 23, and the third picture in the figure 
shows the resulting STL.  Notice that it mainly captured the matte black and blue surfaces, and it 
only captured a little bit of data where it scanned the gloss black head on. 

 

 

 
The second limitation is shown in Figure 24 - a low angle of incidence is important for 

getting good data.  When we scanned across the surface of the blocks in the picture on the left, 
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Figure 23: Scanning a computer mouse (top) and the resulting STL (bottom) 



 

we got no data because the angle of incidence was so large.  In most cases, we can adjust the 
shape using the rotating platform to get those points, as shown in the second picture where we 
did see distance data along the surface of the block.  However, for some shapes (like the steep 
curvature at the top of the computer mouse in Figure 23), this is impossible because the object 
doesn’t rotate on any other axis during a scan, so these shapes are not particularly conducive to 
being scanned by LIDAR. 

 

 

These limitations were confirmed in a study presented by Christopher M. Seubert of the 
Ford Motor Company.  Ford is experimenting with using LIDAR as a primary sensor for 
self-driving vehicles, so they tested and came to similar conclusions about the limitations of 
LIDAR.  Figure 25 is a slide from the report confirming the poor reflectivity of near-infrared 
light on glossy black surfaces, and Figure 26 is a slide that confirms the dramatic effects that the 
angle of incidence has on the data captured by a LIDAR sensor. 
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Figure 24: Scanning the blocks at originally (left) yielded no data because of 
the angle of incidence, but rotating them (right) gave the data we expected 
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7.2 Results 

With everything said and done, our scanner is able to scan most objects!  Figure 27 
shows a can of Ice Cubes gum, whose shape works well with our scanner’s capabilities and was 
the first object that we completed a full 3D scan of.  The image in the middle of Figure 27 shows 
the STL output from our scanner, and the photo on the right shows the physical 3D print of that 
STL!  As can be seen from the figures, the scan is a good representation of the object. 

Unfortunately, our motor controller broke as soon as we got down to the last few steps, 
and one motor port wouldn’t output any signal.  As a result, this scan is not using dithering to 
smooth the surface. Since the scanner still retains full functionality and only loses performance 
by not dithering, we decided to temporarily sacrifice dithering for the sake of getting a scan to 
work. If, in a future iteration, we get dithering online, the scans we take can only increase in 
accuracy. 

 

 

 
7.3 Conclusion 

Through this project, we discovered a couple of important limitations of LIDAR in 
general, and we created a working 3D scanner.  While dithering in our scanner can still be fixed 
to improve dimensional accuracy, our STL output and 3D print are clearly recognizable as the 
original object that was scanned.  Any individual or small business can now use our scanner as is 
for precise and affordable scans to aid in rapid-iteration prototyping. This project is now 
complete; however, future senior design teams can extend our work to achieve even higher 
accuracies and scans of objects with glossy black or geometrically challenging surfaces. 

Ultimately, we managed to fulfill all of our original project objectives. We bought an $80 
LIDAR sensor off the shelf and built an easy-to-use, interconnected system around it that is able 

30 

Figure 27: A can of Ice Cubes gum that was scanned (left), the ST output from our 3D 
scanner (middle), and the 30 print of the STL (right) 



 

to create three-dimensional digital representations of real-world objects using nothing but the 
position data obtained from the sensor.  

And that, we think, is pretty special. 
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