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ABSTRACT

Dialogue systems have recently become a widely used system across the world. Some of

the functionality offered includes application user interfacing, social conversation, data

interaction, and task completion. Most recently, dialogue systems have been developed to

autonomously and intelligently interact with users to complete complex tasks in diverse

operational spaces. This kind of dialogue system can interact with users to complete

tasks such as making a phone call, ordering items online, searching the internet for a

question, and more. These systems are typically created by training a machine learning

model with example conversational data. One of the existing problems with training

these systems is that they require large amounts of realistic user data, which can be

challenging to collect and label in large quantities. Our research focuses on modifications

to user simulators that "change their mind" mid-episode with the goal of training more

robust dialogue agents. We do this by taking an existing dialogue system, modifying its

user simulator, and observing quantitative and qualitative effects against a set of goals.

With these results we demonstrate benefits, drawbacks, and tangential effects of using

various rules and algorithms while recreating goal changing behavior.

iii

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dialogue System Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview and Common Issues . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 User Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Paper Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Early Dialogue Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Natural Language Understanding . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Machine Learning and Dialogue Systems . . . . . . . . . . . . . . . . . . 12

2.5 User Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Natural Language Understanding . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Introduction to Recurrent Neural Networks . . . . . . . . . . . . . 23

3.1.3 Types of Recurrent Neural Networks . . . . . . . . . . . . . . . . 24

3.1.4 Variations of Recurrent Neural Network . . . . . . . . . . . . . . 26

3.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Introduction to Reinforcement Learning . . . . . . . . . . . . . . 28

3.2.2 Q-Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 End-to-end Goal Oriented Dialogue System . . . . . . . . . . . . . . . . 35

iv

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Semantic Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 End-to-end Training . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Dialogue State Tracker . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.5 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.6 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Goal Shifting Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 When to Goal Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Respond to Request . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Respond to Inform . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Goal Changing Implementation . . . . . . . . . . . . . . . . . . . 53

4.1.2 Controlling Goal Change Events . . . . . . . . . . . . . . . . . . . 54

4.1.3 Quantitative Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Experiments with Goal Change by Inform . . . . . . . . . . . . . 60

4.2.3 Experiments with Goal Change by Request . . . . . . . . . . . . . 64

4.2.4 Experiments with Mixed Model Goal Change . . . . . . . . . . . 66

4.2.5 Testing Against Control Environment . . . . . . . . . . . . . . . . 68

5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



List of Figures

3.1 Semantic frame depicting user intent, inform restriction slots, and request
slots to be filled in later . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Framework architecture depicted with dialogue flow and relevant modules 38

3.3 Decision tree diagram for user simulator response to agent request . . . . 47

3.4 Decision tree diagram for user simulator response to agent inform . . . . 49

4.1 Blue: Episode success rate within epoch, Orange: Average turn count in
Epoch relative to maximum . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Blue: Average number of turns relative to maximum, Orange: Total event
count relative to maximum . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Sum breakdown of various potential goal switch dialogues in control
framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Success rate of various start epoch times with 1% probability of inform
goal change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Average turns and event 0 count relative to their respective maximums.
Left: Goal change at epoch 10, Right: No Goal-change . . . . . . . . . . 62

4.6 Success rate of various start epoch times with 1% probability of request
goal change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Left: Event0: 1%, Event1: 10%, Right: Event0: 2%, Event1: 10% . . . . 67

4.8 Success rate of three models on a 90% goal-change test environment . . . 68

vi

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



List of Tables

4.1 Success rate of goal change by inform . . . . . . . . . . . . . . . . . . . . 60

4.2 Success rate of goal change by request . . . . . . . . . . . . . . . . . . . 63

4.3 Success rate of goal change by inform / request . . . . . . . . . . . . . . 65

vii

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



Chapter 1

Introduction

1.1 Dialogue System Introduction

Dialogue systems have recently become widely used in a variety of contexts across the

world. While a great deal of dialogue system technology has been around since the

1960s, recent advancements in machine learning, cloud systems, mobile devices, and

information retrieval have made this field nearly universal. Nearly all smartphones have

some version of a voice assistant which can understand context and complete tasks

from complex audio or text messages. Furthermore, standalone voice platforms such

as Amazon’s Alexa have allowed us to interact with device ecosystems as well as vast

amounts of internet data to normalize a new era of human-computer interaction.

Another major factor that has led to the increased use of dialogue systems has been

improved robustness. Many historical systems worked with brittle over-the-phone speech

recognition to drive users through pre-defined system menus. Now, modern platforms are

1
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able to perform complex semantic understanding and context awareness to handle a wide

array of conversations. These improvements typically have come from advancements in

natural language processing modules that learn from large databases to derive complex

meaning from text. Furthermore, recent improvements in behavioral design have led to

a greater ability for a dialogue agent to perform actions in an optimal way.

1.2 Overview and Common Issues

Our research focuses on facilitating the creation of more expansive systems that stray

further from the early menu-based systems, and closer to natural human-to-human

interaction. Ideally, dialogue systems should be able to understand any phrase or sentence

in any conversational context. From the standard viewpoint of hard-coded dialogue

flows, this challenge seems almost impossible. This is due to our potential conversational

space which grows extremely quickly as we enable complex speech understanding and

fully dynamic conversational structures.

This issue has led to the widespread adoption of model based conversational agents

which seek to more deeply understand these continuous problem spaces. These models

accomplish this by learning a connection between speech signals, context, and given

2
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rewards. More specifically, reinforcement learning is often applied to teach a system to

learn far-sighted, optimal behavior through trial and error. Advancements in deep neural

networks have additionally allowed these types of systems to learn in spaces where states

and actions are not statically defined.

However, as these mathematical models expand to more complicated domains, the

demand for diverse, labelled data begins to expand as well. This data is needed to

train models to interact with varying speech contexts and errors as well as dynamic

conversational scenarios. Additionally, this data is very hard to collect and label, so

many training platforms have introduced user simulators to automatically interact with

models and generate training points to aid in this data scarcity problem.

1.3 User Simulators

User simulators can be an excellent approach when faced with a lack of data. This

has the added benefit of state space exploration, which leads to more robust models

with deeper understanding of tasks and possible user dialogues. However, the very first

problem with user simulators is that they are an imperfect representation of actual

human interaction. It is impossible to train a conversational model to perfectly handle

3
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human inputs, especially if it was never actually trained with human data. So when we

develop user simulators, our focus shifts towards creating a simulator that replicates the

essential human behavior needed to effectively train our model.

This is an active research area that, like dialogue agents, is split into rule-based systems

and model-based systems. Both systems attempt to generate fake user data by under-

standing the ways that users behave when interacting with dialogue systems. This can

be done by hand-crafting rules or automatically learning them from data. We will be

focusing on rule-based systems.

The specific user simulator behavior that we will be exploring is dynamic goal changing.

User simulators typically operate by randomly selecting a specific goal every episode,

which the model agent then tries to discover. User actions then attempt to discover

information that satisfies its goal, while agent actions attempt to learn more about

the user goal, in order to provide satisfactory results. Programming user simulators to

occasionally "change their mind" about their goal can have large effects on the training

of a deep reinforcement learning dialogue agent. There are many ways to simulate this

behavior, so we will be exploring the effects of these various methods under different

scenarios.

4
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1.4 Paper Overview

The remainder of this document will provide background, implementation details, ex-

perimentation, and results. First, we will extensively discuss the history of dialogue

systems, reinforcement learning, and the connection between the two. Then, we will

explain our research approach which includes implementation details and theory of the

major components of our platform. Next, we will go over the design of our experiments

and their results. Finally, we will finish with our conclusion and suggestions of future

work.

5
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Chapter 2

Related Work

Ever since programming and automation became a part of usable products, it has

been used as an attempt to make lives easier. Computers provide the ability to vastly

outperform humans in the areas of speed, memory, and consistency. Today we have built

so many layers on top of these general improvements that we are able to provide deep

understanding and optimization to problem spaces by means of conversation. In this

chapter, we will provide a review and history of dialogue system research that has led to

a wide range of dialogue programs from simplistic rule based systems to complex and

data-trained neural models.

The term "dialogue system" is a broad research field that encompasses multiple areas.

For some, conversational agents are the focus, and for others it is a tangential application.

Since we are focusing on a system that yields a self-training cycle, several of these

fields will be at least somewhat relevant. Some of these areas include natural language

understanding and generation, deep learning, reinforcement learning, expert systems,

6
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and information retrieval. The primary backdrop for our research is model robustness

and error for deep reinforcement learning algorithms, so this will be the focus of the rest

of this chapter.

2.1 Early Dialogue Systems

One of the first dialogue systems was developed at MIT in 1966. This program was

titled ELIZA and claimed to make human-computer interaction possible, demonstrating

one of the first "chat bots". This research focused on phrase building through keyword

extraction, context understanding, and heuristic dialogue flows [1]. Another one of the

first examples of early dialogue systems was developed by the DARPA Project in 1977

[2]. This program was primarily meant to provide spoken word interfacing through

telephone systems to interact with basic menus and information systems. The speech

system focused on recognizing parts of audio inputs and converting partially completed

sentences into meaningful interpretations. This research was also significant as it included

an early dialogue manager to handle dialogue processing and network interfacing in

parallel to speech recognition.

Around 1999, AT&T Labs produced meaningful research in the field of conversation

7
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tracking and decision making. Specifically, they integrated data-driven reinforcement

learning into dialogue systems at a time where generic Markov decision processes were

facing challenges in state representation and rewards in data. They were able to produce

policies and discover optimal behavior given a corpus of dialogue information [3]. Another

significant dialogue system created during this time was ALICE, developed in 1995 to

produce realistic dialogues, which also attempted to pass the Turing Test. ALICE

made used a complicated heuristic systems in addition to pattern mining, and used

large conversational trees to encode contextual understanding for a given conversation.

These early systems were marked by differing views of human vs machine conversation

initiative, scalability issues in conversation trees, error-prone speech understanding, as

well as processing and memory challenges [4].

2.2 Natural Language Understanding

Recurrent Neural Networks (RNNs) are one of the most important technologies developed

in the scope of dialogue systems. While this technology has primarily been used for

Natural Language Understanding (NLU), it has also been used in a variety of other

applications, including some user simulators. RNNs operate on sequential data and

8
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learn the relationships between items in a stream of information. This can be incredibly

useful for tagging words in a sentence, or even learning behavior from sequences of

dialogue actions. RNNs have the ability to encode sequential information into hidden

states which represent contextual information. These states can then be applied to RNN

weights, whose outputs correspond to various subsequences of information. This method

of training can make an RNN an incredibly useful tool for dealing with dialogue systems

in many contexts.

Some of the first Recurrent Neural Networks were developed at University of California,

San Diego and Carnegie Mellon University in 1993 alongside general research for back

propagation in neural networks. This team explored different gradient methods, gradient

descent optimization, and applied these methods to neural networks containing explicit

or implicit hidden layers. This is relevant to the difference today between typical

neural networks that use predefined structures, and recurrent networks that rely on self

propagation of hidden states. This was one of the first papers demonstrating the use

of hidden node information in a neural network and how it could be optimized using

gradients that were applied to a large set of data types [5].

In 2010, Tomas Mikolov and a team from the Brno University of Technology as well

9
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as Johns Hopkins University applied Recurrent Neural Networks to language models

to receive a large improvement in accuracy as well as reduction in error rate. They

specifically used RNNs for sequential information prediction which is now especially

relevant to language models and conversational data. This model is built upon previous

research which used typical neural networks to understand dialogue using fixed length

contexts [6]. However, with RNNs, Mikolov et al. were able to more realistically represent

context lengths, and train models that ultimately improved upon typical n-gram models

[7].

In 2016, Maluuba Research labs expanded on the use of sequence-to-sequence RNNs

in order to improve user simulators’ flexibility in general context understanding. This

work introduced a data-driven model which used the encoder-decoder network to take

as input dialogue contexts and output a sequence of dialogue acts in relation to the user

goal. This method also allowed the current goal fulfillment to be internally represented,

allowing the system to generate sequences of user responses in relation to conversational

progress rather than just an end state. This research is a modern example of RNNs

being applied to sequential dialogue information rather than just NLU [8].

10
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2.3 Deep Reinforcement Learning

Reinforcement learning is one of the oldest and most relevant research areas in our

work. In this section we will be discussing deep reinforcement learning research to better

understand how it has been applied to dialogue systems, and how it is one of the most

prevalent approaches to goal oriented dialogue systems. This section will start with early,

non-specific, examples of deep reinforcement learning, and cover common issues with

deep reinforcement learning. This will provide an introduction into section 3.2 where we

discuss the eventual use of deep reinforcement learning in dialogue systems.

In 2013, Mnih et al. proposed a convolutional neural network model which was able

to discover Q-learning policies which mapped raw input to actions in a non-modified

environment. This was significant as it demonstrated the ability to train a reinforcement

learning policy with a high dimensional input rather than the typical lower-dimensional,

hand crafted signals. This application of deep neural networks to reinforcement learning

also demonstrated the ability of such a system to learn behavior through trial and error,

partially relieving the need for labelled data [9]. These two features of Mnih et al.’s

research provides the basic ability to train an optimal task-oriented dialog agent with

continuous, unlabeled datasets, such as the outputs generated by our user simulator.

11
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Google DeepMind introduced double Q-learning to a Deep Q Network (DQN) in 2016 in

order to provide a solution to overestimation of action values. Double Q-learning in this

context includes a secondary Q function that exclusively is used for value estimation,

while the other Q function is used for action selection. Then, one Q value can be used

in the other’s update step to balance iteration and fight over-estimation. This paper is

an example of constant improvements being made to DQNs in order to address several

issues involved with imperfect training [10]. A similar multi-network implementation was

introduced by DeepMind in 2016 which drastically improved performance and reduced

training time for continuous state reward problems. Since various training models are

executed on different versions of the environment, they are able to modify the same

Q-learning policy one step at a time with more bandwidth from various algorithms [11].

2.4 Machine Learning and Dialogue Systems

As mentioned in section 2.1, dialogue systems were first implemented with rule-based

algorithms that provided value through heuristics. Eventually, statistical models and

reinforcement learning were applied to these systems to learn optimal policies through

modelling rather than expert rules. As deep reinforcement learning became more

12
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prevalent, dialogue systems became an obvious application as it worked with difficult to

define features, rewards, and actions. In this section we will go over the joint history of

machine learning and dialogue systems, and how they have become deeply intertwined.

In the year 2000, AT&T laboratories created a system that applied Q-learning and a new

evaluation framework to learn performance functions based on conversation experience

and dialogue history. This system was demonstrated with a spoken dialogue system that

accessed email through speech. This early research demonstrated a dialogue system’s

ability to learn an optimal policy for agent initiative, and other conversational actions

to satisfy a goal [12].

One of the most important areas of research for dialogue systems was the idea of training

dialogue policies through fixed datasets. In 2005, the University of Edinburgh developed

a hybrid supervised learning and reinforcement learning approach. They built their

system with large representations of states and policies and introduced reinforcement

learning since their original policy too narrowly explored their large state space. With

this combined approach, the team was able to use reinforcement learning to optimize

dialogue reward, while supervised learning was used to apply the learned policy to the

data with relevant scope. This resulted in an optimized system that could learn policy

13
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efficiently through experience within a labelled data space [13].

In 2016, a research team from University of Montreal explored data-based generative

models using Recurrent Neural Networks. This research primarily focused on the goal of

creating realistic dialogues with improved performance over the typically used n-gram

models. Movie script data was primarily used to train a hierarchical encoder-decoder

RNN. Bootstrapping with word embeddings was also explored, as well as bi-directional

RNNs to mitigate training bias towards the edges of utterances. Hidden states were

summarized by taking representations of both directional chains and feeding them into

the context RNN, which kept track of past utterances to summarize a dialogue. This

research ultimately demonstrated the many diverse uses of RNNs in the context of

generating and understanding speech details and context, and laid groundwork for future

research that explores using these types of models to more deeply understand, generate,

and tag words that can be used to train more robust and complex dialogue agents [14].

The next paper is the primary source that we will be using for our testbed. The research

put out by the Microsoft research team in 2018 starts with the goal of end-to-end training

for the purpose of task oriented dialogue systems. This attempts to address the issue

where individually trained models propagate error to other modules in the secondary

14
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training or testing cycles. Additionally, this research introduces modules into the training

cycle such as: dialogue managers which interact with databases, error controllers which

introduce specific kinds of errors, user simulators, and finally the DRL agent. The

framework proposes features which address common problems with other DRL training

systems such as inflexible question types, and simplistic user goals. The experimentation

also explores learning curves based on frame-level and natural-language-level errors,

as well as general accuracy and effectiveness based on the entire end-to-end training

pipeline. This research introduces a framework for controlling and co-training various

modules that ultimately affect the accuracy of the DRL agent based on cross-module

interaction, module error and interaction data robustness [15].

2.5 User Simulators

User simulators have been seldom researched relative to the rest of dialogue systems

as they are often a secondary piece of larger training pipeline. User simulators also

typically fall into the category of agenda-based heuristic simulators or data-driven model

simulators. Both of these approaches have advantages and disadvantages, which we will

try to talk about in this section. User simulators offer a potentially infinite amount

15
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of training data which is especially useful for the kinds of DRL models that we are

experimenting on. However, these user simulators often struggle to match the realistic

nature and robustness of real user dialogue datasets, so we will discuss research that

explores solutions as well as alternative methods.

In 2005 a team from University of Edinburgh researched what they called "learning user

simulations" for information state update dialogue systems. These information state

update systems represent the dialogue process as states with each turn of dialogue. In

this way, the user simulator created here would be represented in the information state,

and its effectiveness could be reflected during evaluation. The specific user simulators

explored were stochastic processes, generated from the current conversational state, as

well as n-gram generation methods. With these methods, effectiveness was measured with

relation to the number of filled slots, confirmed slots, and number of actions performed

by the system. This showed an early hybrid between data and rule based approaches,

using supervised learning processes with a dialogue corpus [16].

In 2006 a team from University of Edinburgh researched advanced n-gram models for

user simulators. The advanced n-gram models sought to build upon previous n-gram

models in order to provide functionality for goal-based user simulators. Typically n-gram
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user simulators make actions based on given speech and current tasks. With advanced

n-grams, actions are made by the user based on the current progress of the goal. This

is very relevant to our research, as it is one of the earlier user simulators that make

goal-oriented decisions, and attempts to evaluate the performance accordingly [17].

Jost Schatzmann et al. researched quantitative evaluation of general user simulators

in 2005, as a potential solution to the inability to evaluate stochastic models. The

team introduces a method to evaluate domain-independent dialogues using the DARPA

communicator corpus, showing that they were able to discern between user simulators and

actual human users. The research measured probabilistic models as well as deterministic

models. Multiple methods of evaluation were used including precision and recall to

measure which models produced the most relevant results with respect to different agent

models. These models include the Bigram, Levin and Pietquin models. Ultimately,

the evaluation looked at types of actions and used these statistical distributions to

differentiate human and machine behavior. This simple approach can be a powerful

method of user simulator effectiveness as a user simulator non-differentiable from a real

human can provide more sensible and robust responses, which may train a more effective

agent [18].
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In 2017, Xiujun LI et al. introduced a user simulator framework to be applied to

goal-oriented DRL dialogue systems, as well as online training. This user simulator is

built to interact within the movie-booking space and is connected to a user goal list as

well as a movie database. The agent attempts to find a movie that fits user restrictions

such as time, location, etc., from which the user will respond by either informing this

question or asking its own question. The entire training system [15] benefits from a

warmup process which allows the agent to be pre-trained based on random actions before

applying its own policy. This type of user simulator is then able to encode important

behavior that can pre-prompt a DRL dialogue agent to be further trained with real

user input. This type of user simulator makes a case for rule-based systems as starting

points over data-based models as they are able to define important behavior that may

be absent, mislabelled, or under-represented in real data [19].

A team of industry and academic researchers published a paper in 2018 describing end-to-

end training of a model-based user simulator in task oriented settings. In this paper, Gur

et al. designed a hierarchical sequence-to-sequence RNN to generate user dialogue from a

starting user goal, as well as represent dialogue history and current conversational state.

This model avoids the need for a state tracker or error model controller by introducing
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model regularization techniques to balance the trained user simulator. The model is

then evaluated on the movie booking space and trained against various model-based

agents. The user model is first 0trained using a dataset of potential user goals, which

is fed to an agenda based model that generates a full example dialogue at the start of

each episode. This research demonstrates an effective use of a sequence-to-sequence

RNN which is trained in a self-sustaining way. This type of model introduces realistic

robustness while implementing novel regularization techniques to keep the model from

over-optimizing [20].
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Chapter 3

Approach

In this section, we will be describing implementation details relevant to the general

research field of task-oriented dialogue systems. This will build a foundation for discussing

the specifics of a training pipeline such as the one used for our research. After forming an

understanding of this current dialogue system, we will discuss some of the implications

and challenges with module errors and training side effects. We will conclude this section

by proposing our theory for a potential goal shifting user simulator and the predicted

effects.

3.1 Natural Language Understanding

We believe it is important to discuss Natural Language Understanding first as it is one

of the first things that a user sees (or hears) when interacting with a dialogue system.

NLU has gone through its own research arc, and is fairly decoupled from the specific

dialog agent research that we are working on. However, NLU research is very important
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to dialog agent research, not only because its accuracy directly informs actions, but

because the most recently researched Recurrent Neural Network (RNN) models provide

insight into developing action-to-state and state-to-action systems that can be used

in complicated neural networks and algorithms. In this section, we will discuss this

underlying technology, starting from the foundation of NLU, and relate it to hypothetical

future systems that may benefit from our research.

3.1.1 Probabilistic Models

When discussing Natural Language Understanding, a good place to start is probabilistic

dialogue models. These models are used to predict the probability of a word occurring

given the sequence of words that have occurred before it. This can be used for auto-

completion in sentences, as well measuring the probability of observing an entire sequence.

Typically formula is expressed as:

TY

t=1

p(x(t) | x(t�1), ..., x(1)) (3.1)

where xt is the word at position t in a sequence. Through the chain rule, this formula
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expands out to:

p(x(T )...x(1)) = p(x(T ) | x(T�1), ..., x(1)) ⇤ ... ⇤ p(x(2) | x(1)) ⇤ p(x(1)) (3.2)

where each probability represents a conditional probability of smaller and smaller

subsequences. This formula can then be computed with fairly straightforward probability

estimations. A common way to estimate these conditional probabilities is to simply

count word co-occurrence given a corpus.

Once you have a way of computing the probability of a word given a sequence, you can

begin to build up a more complete formula that is used to predict labels of words given

a sequence of words:

p(y0 | x0) = (
nY

i

p(si | w1, ..., wi)) ⇤ p(im | y0) (3.3)

In this formula, wi is ith word in a given utterence x0. The semantic frame being

predicted, y0 contains slots i through n represented as si. Now instead of predicting the

next word given a sequence of words, we predict the slot type at word i given the sequence

from word x1 to xi. Computing all slot probabilities as in formula 3.1, then multiplying
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this by the conditional probability p(im|y0) which computes the intent type given our

predicted semantic frame. Combining all probability estimations to create formula 3.3

will allow us to label all slots in a sentence as well as predict the conversational intent of

the sentence itself.

3.1.2 Introduction to Recurrent Neural Networks

Recurrent Neural Networks (RNN)s allow us to leverage the essential math used in

neural networks to learn and represent continuous information with states, as well as

digest and produce intermediate information given these states. However, when dealing

with sequences of information (which is especially relevant to dialogue systems) we often

have trouble training with and representing information over a continuous set of inputs

or outputs. RNNs seek to use recurrence within neural network nodes to represent

history, and create an applied chain of information that may represent some sequence of

information.

This self referencing idea allows us to "unwrap" a history of inputs from a single node

into a metaphorical chain of nodes where each sequential state is fed into the next. This

way, when a node’s previous hidden state is fed back into itself during the next sequential
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input, there is some hidden representation of the input sequence which persists each

time a new input is entered. This is very relevant to formula 2 since each previous input

creates an output which is then fed into the next sequential probability computation.

This allows us to create a conditional probability chain very similar to what we see in

formula 2. Since each sequential state is represented by a node’s input, hidden state, and

output, we can also apply a version of back-propagation to automatically learn optimal

weights and compute conditional probabilities.

RNNs use a process called back-propagation through time (BPTT), which is similar to

typical back propagation where an end node’s error is propagated backwards through

the network and applied to gradients along the way. The major difference in this case is

that "backwards" is relative to our sequence (which often implies time).

3.1.3 Types of Recurrent Neural Networks

One of the major benefits of RNNs is the flexibility of using inputs and outputs. When

we "unroll" a node we can essentially match each sequential input to its respective

sequential output. These outputs are functions of that given input, as well as the hidden

state which represents the history of all the inputs before it. So given that we potentially
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have a sequence of inputs and a respective sequence of outputs, we can be selective

about which to use when our RNN approximates a function.

Seq-to-seq RNNs are networks where the input is a sequence and the output is also a

sequence. An example of a seq-to-seq application would be a system that takes weather

data as inputs and outputs temperature as an output. The inputs are contextually based

on sequence, and each output should correspond to a given day. If we modified our model

slightly to predict only a single day’s temperature given a month’s worth of weather data,

this would be called a seq-to-vector model. This is because we are predicting only a

single value given a sequence of information. In this case, our output’s hidden state and

corresponding output would embed the entire sequence history of weights, biases, and

inputs. Depending on which inputs and outputs we find relevant, we can also implement

vector-to-seq and vector-to-vector RNNs. The last type of RNN we should mention is

the encoder-decoder network. This network is composed of nodes trained on separate

datasets, where the final hidden state of one node embeds latent information which is

then transferred into the other node. The most famous example of this is language

translation, where a sequence of words is processed into a vector (seq-to-vector), then

passed as input into a separate node which generates another sequence of words from
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the hidden state (vector-seq).

3.1.4 Variations of Recurrent Neural Network

One of the first problems with RNNs is that the propagation of information through

hidden states is inherently lossy. This can be especially problematic if we are representing

information in a seq-to-vector manner. If we are using the final result as the output of

our network, this may be biased towards information that appears later in the sequence.

A solution proposed for this problem is called Long Short-Term Memory (LSTM) [21].

LSTM layers are composed of LSTM cells which include a short-term state and a long-

term state. The inner-workings of an LSTM cell include a forget gate, which drops

memories to make room for new ones, an input gate which selects new memories to be

added, and an output gate. The input gate selects memories from both the current input

and previous short-term state, adds it to the result of the forget gate, which then passes

its result to the output gate. The output gate takes the results from the forget gate,

input gate, as well as the previous short-term state, and produces the next short-term

state. This new short term state is also the output of the cell at that time, and is fed into

the next LSTM along with the new long-term state. All of this functionality ultimately
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gives RNNs the ability to learn which latent information to store long term, forget, or

pass onto future node iterations. This ability drastically improves the ability for RNNs

to recognize patterns in complex continuous information such as audio, video, and text.

3.2 Deep Reinforcement Learning

While this research is based on the user simulator module of this framework, we are

really trying to improve the dialogue agent at its core. The dialogue agent that is used in

our framework is a Deep Reinforcement Learning (DRL) algorithm which utilizes deep

learning networks to optimize the goal function that is used for reinforcement learning.

As our agent tries new behavior, it will learn its own policy based on a reward function,

then learn to interact with state data which can be flexibly defined.

By the end of the training process, our agent will be able to take complicated state

representations as input into a policy function, produce meaningful actions, and retrain

itself based on the received rewards. Our research goal is to improve our dialogue agent’s

ability to handle situations where a user changes its goal. We do this by making small

changes to the user simulator and allowing the agent to learn from these newly introduced

experiences. However, in order to best do this, we must first understand the DRL model
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that we are seeking to improve.

3.2.1 Introduction to Reinforcement Learning

At its core, reinforcement learning is based on states, actions, and rewards. If we view

our environment as a Markov decision process (MDP) where we map all state, action

pairs to a reward, and consider the probability that an agent will take any given action,

we can begin to model behavior. This allows us to develop a policy where we seek to

maximize our long term reward by optimizing some distribution of actions upon arriving

at a given state.

If we introduce a value function into our framework which models the average long-term

reward of being at a given state, we can optimize our model through traditional dynamic

programming. This essentially means processing the long term value of all states through

recursive evaluations, then taking actions based on these evaluations. This value iteration

formula is defined as:

Vi+1(s) = maxa[
X

s0

Pa(s, s
0)(Ra(s, s

0) + �Vi(s
0))] (3.4)

In this formula, we use the probability Pa(s, s0) to give a probability weight to any
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action a followed from state s. Given this probability and the reward observed if such

an action is taken, we can compute the immediate weighted reward of taking an action

from a given state s. Since we are optimizing for the long term reward, we add the value

function of the resultant state s0 to our immediate reward. In this formula, � represents

the learning rate, which affects how fast our model will converge.

The sum of all of the weighted rewards will give us an estimation for the "value" of a

given state. If we continue to compute value functions and use them recursively, we

can understand a value space by continuing this process until the difference between a

previous value and the next value converges to a small enough error in order complete

training.

Once we have a way of representing the given state values, state rewards, and action

probability distributions, we can start to learn an optimal policy. The policy equation

⇡(s) = a simply returns an action to take given a current state. If replace the action

a with policy ⇡(s) in equation 3.4, we can now evaluate a value based on a specific

policy rather than the computed maximum valued action. Next, we can fix a given value

function, then introduce the concept of policy iteration where we recursively re-compute

which action to take at a given state using the value function and previous policy. These
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concepts give us the following equations:

Vi+1(s) =
X

s0

P⇡i(s)(s, s
0)(R⇡i(s)(s, s

0) + �Vi(s
0)) (3.5)

⇡i+1(s) = maxa[
X

s0

Pa(s, s
0)(Ra(s, s

0) + �Vi+1(s
0))] (3.6)

Similarly to value iteration, we can continue this recursive process until convergence.

However, in the policy iteration case, convergence occurs when ⇡i+1(s) == ⇡i(s) for all

s.

3.2.2 Q-Value Iteration

Now that we’ve developed our environment in a way that allows us to learn the long-term

value and optimal action policies given a state, we can begin to explore model-free

learning. Model-free learning now assumes that we no longer have a predefined model

of transition probabilities or rewards. This is useful for modeling an agent that learns

through trial and error, which is what reinforcement learning is based off of.

To learn in this less explicitly defined environment, we can use Q-value iteration which
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seeks to estimate the value of a state-action pair to aid in situations where we do not

know the immediate reward of taking a given action at a state s. This modified vision of

our environment forces us to learn based on the distant potential actions that may occur

after taking an initial action rather than learning based on immediate actions before

we’ve taken them. We can model this new situation with the following equation:

Qi+1(s, a) =
X

s0

P (s, a, s0)(R(s, a, s0) + � ⇤maxa0Qi(s
0, a0)) (3.7)

The main difference between this equation and equation 3.4 is that now we now consider

the maximum secondary action a0 after we arrive at the next state s0 which we were

brought to from taking the given initial action a. Similar to typical value iteration,

Q-value iteration is recursive as it factors in many Qi(s0, a0) values when computing

Qi+1(s, a). Once our Q-value estimation converges, learning a policy is even more

straightforward than before. All we need to do is find a maximum Q(s, a) value given

a state s over all possible actions a. In conclusion, our modified value function finds

an optimal policy using only a given state and potential actions, without knowing the

subsequent rewards or state transition probabilities of taking said action. With this,

we can create a model that learns through trial and error, without any pre-existing
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understanding of the space around it.

3.2.3 Q-Learning

Q-value iteration is a useful model of thinking and can bring us very close to creating an

agent that can autonomously learn an action policy in a loosely defined environment.

However, Q-value iteration operates on the basis of expected values where state transition

probabilities serve as weights for observed rewards. Often it is the case where these

probabilities are hard to estimate. When this happens, temporal difference (TD) learning

can be used. TD learning essentially updates the estimate of the value function by

adding the difference between an estimation and the previous value, then multiplying

this error by a learning rate.

Qi+1(s, a) = (1� ↵)Qi(s, a) + ↵(r + � ⇤maxa0Qi(s
0, a0)) (3.8)

Q(s, a) ↵ r + � ⇤maxa0Q(s0, a0) (3.9)
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As we saw in equation 3.7, our Q-value iteration function essentially uses an expected

value estimation with a previous version of the function to find the best next value

estimate. In this sense, the estimated value is a summation of all possible values

weighted by the probability of occurrence. Since we do not know the probability of an

s0 state occurring, we are only left with the individual reward value of that next state

r+� ⇤maxa0Qi(s0, a0). Although we can no longer use this estimation for expected value,

we can compute the error between this estimation of our function, and the previously

trained function, hence the error r + � ⇤maxa0Qi(s0, a0)�Qi(s, a). With this new error,

we can employ a TD learning method in order to iteratively adjust our Q-value estimation

over periods of training, which is represented more clearly in equation 3.9. Using this

error, we are able to essentially execute gradient descent to learn the Q-value of an

environment without knowing anything in advance besides a set of discrete state-action

pairs.

3.2.4 Deep Q-Learning

While Q-learning can be very effective in autonomously estimating Q-values of an

environment without any prior model, it is restrained to a discrete representation of
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possible states and actions. This serves as a huge barrier when considering domains

with near-continuous states and actions such as computer vision and natural language.

Typically hand-crafted features provided to a DRL model to work with, but these

representations often lose information and can be biased. Additionally, even if features

can be hand-crafted, the size of the entire state space often explodes exponentially

making it very hard for a DRL model to train with.

Neural networks can help us a great deal in this situation as they allow us to automatically

learn weights that represent the relationship between inputs and outputs over time, both

of which can be represented flexibly. Additionally, neural networks already use error

gradients to perform back-propagation, which we are able to provide to the method

introduced in equation 3.9. With all of these concepts, we are now able to combine

Q-value theory, TD learning, and deep neural networks to teach an agent to automatically

learn an optimal policy through trial and error with nothing but continuous variables

representing states, actions, and rewards (often a continuous function).

Learning optimal behavior in a dialogue system setting has often been challenging. The

seemingly infinite number of possible state-action representations can make feature

engineering challenging for simple data-based models and stochastic rule-based mod-
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els consequently more attractive. Once Deep Q-Networks (DQN) began to be used,

reinforcement learning was able to be applied to images and text input.

3.3 End-to-end Goal Oriented Dialogue System

In this section, we will be describing the high level structure of our development platform,

and how all modules of our system play a part in training our DRL agent. The dialogue

system used in our research is based off of the end-to-end task-completion neural dialogue

system developed by a Microsoft research team in 2017 [15]. At a glance, this framework

includes four major modules: a dialogue manager (DM), error model controller (EMC),

natural language understanding (NLU) unit, natural language generation (NLG) unit,

and user simulator. The DM is composed of the dialogue state tracker (DST) and DRL

agent.

3.3.1 Overview

This framework was specifically introduced with the goal of creating an end-to-end

training pipeline which trains all modules simultaneously while training episodes run.

This mainly has the purpose of avoiding downstream error propagation which typically
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Fig. 3.1: Semantic frame depicting user intent, inform restriction slots, and request slots
to be filled in later

occurs when modules are trained individually and used to train subsequent modules.

This tightly coupled framework also allows for modules to benefit in certain ways from

training off of one another. This is partially thanks to tangential system behaviors

such as user initiated dialogues, which allow dynamic feedback to the DRL agent to

be conveyed in a near real-time manner during training. Additionally, modules such as

the DST provide the ability to track conversation history as well as prepare states with

internal and external information.
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3.3.2 Semantic Frames

In Fig.3.1 we can see an example semantic frame which represents a dialogue action with

an intent, inform slots, and request slots. The intent represents whether this message is

meant to request information, or inform information. Both the user and agent are able

to request, inform, or do both. The inform slots represent what restrictive information

the module is attempting to convey to the other module. The request slots represent

the unknown information which the requesting module hopes to learn. This semantic

frame format is what the natural language modules either generate text from, or convert

text into. The user goal is composed of a set of request slots that the user hasn’t given

a value to yet, as well as known inform slots that the user wishes to tell the agent over

the course of the conversation.

3.3.3 End-to-end Training

Fig.3.2 illustrates the training process as well as the flow of information in our end-to-end

framework. An episode is initialized by sampling a user goal from a database. This

user goal is given to the rule-based user simulator which can then initiate a dialogue

with the agent. In the full system, semantic frames containing information restraints
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Fig. 3.2: Framework architecture depicted with dialogue flow and relevant modules

and requests are sent forward into the rest of this system. These semantic frames can

be encoded by the natural language generator, then decoded by the natural language

understanding module, which ideally represents human error in understanding intents

and details in language. Once the sentence has been decoded back into a semantic frame,

it is given to the dialogue manager which begins to unpack information which can be

added to the DST’s understanding of the conversation history. The dialogue manager

then generates a matrix representation of the recent conversation history, round number,

as well as some potential database matches. The DRL agent can now take this matrix

representation, and generate a response agent action. This semi-completed agent action
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is filled in with further information by the DM to be sent to the user simulator. The user

simulator finally processes the incoming semantic frame, and generates its own response

based on the user agenda, which finally completes the framework cycle.

Conversational error can be simulated by using intermediate natural language represen-

tations, or explicitly modifying either the semantic frame information using the EMC

module. When the EMC module modifies semantic frame information, it can explicitly

change the message intent or information slots. We can train the DQN as often as we

like by taking the difference between a given Q-value target estimation and a prediction

from the current DQN. This particular framework uses batch training by amassing data

from a number of observed episodes and performing multiple training steps at once. Part

of what makes this an end-to-end system is that the rewards that are used for generating

our target Q-value are given by the user-simulator based on a simple metric that can be

modified.

3.3.4 Dialogue State Tracker

The DST performs several functions that are necessary for understanding the context

of a conversation, but unreasonable for the DRL agent to handle on its own. The first
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function is to query the database for any potential movie matches that can be served

to the user. The DST does this by continuously building an internal understanding of

the dialogue and using restraints that it has noted over the course of the conversation

to perform a query that satisfies these restraints. Next, the DST can reflect its own

representation of the conversation based on the database query and the resulting user

response. Finally, the DST can prepare state representations to the user. This is

specifically done by taking the request and inform slots from the most recent user and

agent actions, the current round number, as well as a list of the most recent DB matches.

Once all of this information is collected, it is combined into a matrix and given as input

into the DRL agent. Once the DRL produces an action frame, the DST can then fill in

appropriate request and inform slot values based on its internal representation of the

user goal and database query results.

3.3.5 Agent

As described in section 3.2, our goal-oriented dialogue agent is implemented with a DQN

and is able to use near-continuous input and output spaces to learn an optimal Q-value

representation of the given dialogue environment. With DRL, this agent is able to learn

40

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



an optimal policy by choosing the action from a given state that maximizes the Q-value

as it is currently trained.

Much of the work in our own research is based on the surrounding framework that

supports DRL and not the network itself. The network is actually a relatively compact

DQN with only one hidden layer and a standard RELU activation function. This

framework includes a large number of hyper-parameters such as batch training size,

experience replay size, optional natural language modules, maximum episode length, and

more. These parameters are all meant to be a part of the end-to-end training framework

and are all directly or indirectly affecting the training effectiveness of the DRL model.

3.3.6 User

The user simulator is a relatively simple module with significant effects on the training

of our agent. There is a great deal of room for research on user simulators, as there is no

real standard for how to design a user simulator. Some of the major ways to implement

a user simulator are through rule-based systems, reinforcement learning, RNNs, and

other supervised learning methods. Ultimately user simulators serve the purpose of

providing a realistic representation of a human user so that dialogue agents (especially
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reinforcement learning agents) have an entity to train against. It is the job of the user

simulator designer to represent behavior that isn’t just realistic but useful to the training

and success of the dialogue agent.

Our user simulator is an agenda based module that responds to agent actions based

on a set of defined rules and stochastic behavior. There has recently been research,

as discussed in section 2.5, exploring data-based models that are more generalizable,

realistic, and robust than rule-based agenda models. However, rule-based user-simulators

are still considered to be useful in domain-specific contexts (as in our framework) and as

a method for bootstrapping data-based models.

The user simulator in our framework has a very specific behavior and holds the primary

responsibility of responding to the agent’s database query suggestions in a realistic

manner, while initiating conversation to continue an episode’s dialogue. Through these

rule-based actions, the user simulator seeks to teach the DRL agent to optimize basic

behaviors such as timely requests and informs, non-repetitiveness, improved context

awareness, among other behaviors that the user simulator can explicitly or implicitly

encourage.

The user simulator operates through the step method, which takes an agent action as
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input, and returns a user action and reward. Once the agent action has been received,

the user simulator will extract the intent from the semantic frame and either respond to

a request, respond to an inform, or respond to a "match found" message. Within these

subroutines, the user simulator will either populate its own request slots, inform slots,

or both.

When responding to a request message, the user action is fairly simple. Since the user

has a list of inform slots in its goal, all it needs to do is respond with the correct slot

value if it possesses it. Otherwise, the user should continue the dialogue with its own

question if this is a user goal request slot that it plans to populate in the future. If this

is not an important piece of information, the user can simply respond with an "I do not

care" message. When responding to an agent inform, the user simulator must check the

inform slots of the movie suggestion by checking compatibility with its goal. Since the

agent is making suggestions based on incomplete information, certain details of a movie

suggestion may be incompatible with the user goal. The user can then respond with

corrections to these slot values with its own inform message, continuing the dialogue.

The reward function used in our platform is fairly simple and essentially focuses on

providing a negative reward for a failed dialogue, and a positive reward for a successful
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dialogue. The function linearly scales with the number of rounds, where positive rewards

are scaled by double the factor as negative rewards. This reward, however, is only

delivered upon completion of the episode, while a reward of �1 is accumulated at each

intermediate step to eventually punish longer conversation length. These rewards are

embedded in all state transition data points and cached in the experience replay buffer

to be used for training at the appropriate time. This represents a sequence of small

negative rewards that will lead to either a large penalty or large reward, which the DRL

agent can use for performing deep Q-learning.

Dialogues officially end when the agent finds that there are no possible matches, the user

picks a match, or the maximum round number has been reached. Maximum number of

rounds is an important hyper-parameter as it protects against infinitely looping behavior

and encourages the agent to find a match as quickly as possible. This number is an area

of study, however, since it effectively determines how much time an agent has to find a

match, where this variable urgency can produce different behavior.
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3.4 Goal Shifting Theory

Our research here is ultimately focused on improving DRL agent performance. However,

instead of modifying the agent itself, we are modifying the end-to-end training framework

used by a Microsoft research team in 2017 [15]. There are many modules included in

the framework that track conversation history, access database information, and even

simulate users. Our research seeks to improve this entire system by adding small, specific

changes to the user simulator with the goal of representing goal-changing behavior during

training episodes. Since many areas of the framework are interlinked, this requires a

deep understanding of how information is stored and transmitted module to module. In

this section, we will discuss the theory behind a few potential implementations of goal

shifting behavior in a minimally invasive, but impactful way.

3.4.1 When to Goal Shift

While changing a user goal is functionally quite simple, there are a few major challenges

involved in actually implementing user goal shifting. First, we need to execute goal

shifting in a manner that realistically reflects human user behavior. Additionally, we

need to execute goal shifting in a way that works with our current framework and doesn’t

45

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



cause catastrophic contradictions or assertion failures that break our system. Changing

the goal is as simple as choosing a slot in the user goal, and changing the corresponding

value to something else in our dataset of potential slot values. However this often requires

more nuanced work to reflect a realistic goal change in context.

It is important to note that this type of slot value change already occurs in the error model

controller. However, this change is only temporary and represents a communication

error which does not actually persist to the user goal. The other major difference is

that the EMC module’s value change method can occur with any outgoing user message

regardless of context, while user goal shifting should only happen in certain cases that

accurately reflect a human user "changing their mind".

Before talking about specific dialogue scenarios where it may be appropriate for a goal

change to happen, it is important to commit to a working definition of what a goal

change is in the context of our framework.

A goal change is when the user simulator has previously initiated and responded to an

action, then permanently changes a detail in its goal that may contradict information it

has previously conveyed.

This definition helps us find and simplify situations where a goal change may be
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Fig. 3.3: Decision tree diagram for user simulator response to agent request

appropriate. It is important to only change information that has been previously

conveyed, because changing goal information that was previously unknown to the agent

does not introduce any new user behavior and will lead to the agent most likely training

in a fashion similar to before. It is also important to notify the agent of this change in

some way, since hiding a goal change event would only result in more difficult to satisfy

user goals, without providing any meaningful information for the agent to learn from.

3.4.2 Respond to Request

Fig. 3.3 depicts a breakdown of actions made by the user simulator when presented with

an agent request action. The purpose of agent requests are primarily to probe a singular

47

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



slot from the user to help reveal some information about the user goal. For example the

agent may say "how many tickets do you need", which is a request from the agent to

the user for the value of the ticket slot. While this is a simple request, the context the

user simulator may be in makes the implication a little bit more complicated. The first

filter that is applied to an incoming request is whether or not the slot is in the user’s

goal. If it is not, the agent can respond with the "anything" keyword, since that is a

condition that the user does not care about. If it is in the user goal, the user simulator

then identifies if it is a goal inform or request slot.

If the goal is in the user’s goal inform list and it has been informed before, we know that

the agent has been told this value in the past. If the user now modifies its goal slot value

and informs this slot in response with the new value, we can trigger a contradiction on

the agent side, representing a goal-changing event. On the other hand, if the goal is in

the user’s list of goal requests, we can assess if the slot has been requested by the user

before and trigger a potential goal change event in either case. In the first case where

the user has requested this slot in the past, we can check if there is a corresponding

value, change its value in the user goal, then inform the agent with the new value. If the

user has not requested this slot in the past itself, there is no previous value to contradict.

48

DocuSign Envelope ID: B42117EB-F447-4716-BE0D-BAB96FB7CEEF



Fig. 3.4: Decision tree diagram for user simulator response to agent inform

However, we can still trigger a goal change event here by identifying a random goal

inform value that is in the conversation history, and respond back to the agent with the

relevant goal request slot and modified goal inform. This simulates a scenario where the

user signals a goal change in a request, but for a slot not relevant to the agent’s initial

request.
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3.4.3 Respond to Inform

Responding to an agent inform also presents potential cases for triggering goal change

events. Fig. 3.4 shows a breakdown of responses to an agent inform message, in which

the user is receiving information from the agent and has a few options regarding how to

respond. The first check is to see if the inform slot is present in the user’s goal informs.

If it is not present, we know that the inform is not relevant to the user, so we can simply

initiate a goal change by responding with a random slot request in relation to a modified

historical slot value inform slot. Otherwise, if the agent’s inform slot is present in the

user goal and that user goal has been informed previously, we can trigger another goal

change event by responding to the agent inform with a user correction of the same inform

slot. In the case that the agent’s inform slot is not present in the user’s history, we

should respond with either a correction or confirmation without a goal change, since

there is no prior information to contradict.

3.4.4 Implementation

This theoretical exploration of goal-change events in conversational contexts helps us

better understand the nature of goal-changing and how it may be applied in our system.
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Through this framework, goal-change events are broken down into two main types:

informs that explicitly notify the agent of inform slot value changes, and information

requests that implicitly contradict inform slot values. These events can occur in different

conversational contexts, and at different periods of the conversation, but in all situations

seek to permanently change personal goal information. This is all meant to be done

while conveying this change to the agent in a realistic manner.

In order to properly implement these changes in the given framework, we simply need

to identify places in our code where our conceptual goal-change contexts occur. Once

we’ve identified these contexts, we need to first change the user’s goal, as well as latent

representations of the goal that may cause contradictions later in the code. For example,

the user has a historical representation of slot values, as well as a queue of planned

slots that the simulator may request or inform. In order to fully change a goal, the

historical slot values must often be changed, as well as the future slots to avoid confusing

behavior and inconsistent information from the user. Once the user-goal implementation

is completed, the user should be able to inform and request new information in a

consistent way, which the agent can ideally identify and learn from in order to optimize

behavior in this new environment.
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Chapter 4

Experimentation

In this section, we explore the effects of user simulator goal shifting on end-to-end goal

oriented dialogue systems. We specifically seek to observe how goal shifting affects

training and testing DRL agents with quantitative and qualitative measures. In section

4.1 we will discuss our testbed setup which we use to automate goal shifting within

our training framework for purposes of testing and diversity. In section 4.2, we will

discuss some quantitative measures primarily relating to how and when goal shifting is

introduced in the training process. We hope this will show some of the impact in training

time and total accuracy when introducing this new user behavior in our end-to-end

training framework. Next, we will discuss qualitative effects of training DRL agents

against users that shift their goal mid episode. We hope to gather some insights on how

agents react to goal changing, and some of the learned techniques that they employ.
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4.1 Experiment Design

4.1.1 Goal Changing Implementation

In this section, we explore the effects of user simulator goal shifting on end-to-end goal

oriented dialogue systems. We specifically seek to observe how goal shifting affects

training and testing DRL agents with quantitative and qualitative measures. In section

4.1 we will discuss our testbed setup which we use to automate goal shifting within our

training framework for purposes of testing and diversity. In section 4.2, we will discuss

some quantitative effects relating to how and when goal shifting is introduced during

the training process. We hope this will show some of the impact in training time and

total accuracy when introducing this new user behavior into the end-to-end training

framework. Next, we will discuss qualitative effects of training DRL agents against users

that shift goals mid episode. We hope to gather some insights on how agents react to

goal changing, and some of the learned techniques that they employ.
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4.1.2 Controlling Goal Change Events

In order to test multiple different goal shifting events, we identify locations where an

event should occur and call a function which will occur with a given probability. If a

goal random value is selected relative to the probability currently selected, then a goal

shift event specific to that dialogue context will occur. While we are able to set the

probability of this goal shift event happening during a certain dialogue event, we cannot

set the probability of the dialogue context itself taking place. While user actions are

deterministic given a specific agent action and state, these variables are hard to control

and are based upon latent information such as the weights of our DRL agent as well

other random events that may have occurred to change the trajectory of training. Fixing

agent actions would be self-defeating since these actions are meant to train a model

policy through diverse experience.

In order to attempt to control how often goal shifting events occur, we count how often

a dialogue context event occurs and tweak our event-specific goal shift probability to

reach an effective total frequency of goal shifting. However, as our agent trains and the

distribution of its actions shift, the likelihood of an event occuring that might trigger a

goal shift changes as well. This would hopefully cause convergent dialogue agent behavior,
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but can also lead to undesirable behavior as agents may simply avoid actions which lead

to goal shifting, or unrealistically exploit this behavior in a way that maximizes training

reward.

4.1.3 Quantitative Metrics

At a high level the primary quantitative measure we are observing is ticket booking

success rate. This is because goal-shifting is meant to introduce a major complication

into a given episode that provides a realistic challenge to a dialogue agent. This should

allow the newly trained agent to handle goal shifting situations more robustly. However,

even as we consider how human agents should handle these situations, we see that it is

not so straightforward.

The dialogue agent in this framework is connected to a dialogue manager that handles

the history of the conversation, intended responses, as well as access to a database. Since

the dialogue agent doesn’t encode state information on its own, it relies on these external

modules to prepare state representations that it can use to generate actions. Due to

this interwoven framework design, we think another important quantitative metric to

understand is simply how often certain goal shift events occur in relation to a given goal
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shift probability and training stage. This tells us quantitative, fine-grained information

about how goal-shifting user behavior affects agent actions, which may shed light onto

the sorts of behavior that agents are capable of learning from interacting with our new

user simulator.

4.2 Experiments

4.2.1 Control System

The first quantitative experiments we conducted were on the control system with no

goal changes. This was done to identify general trends and behaviors in the system in

order to appropriately compare behavior of the modified system.

Fig. 4.1 illustrates the existing inverse relationship between success rate and average

number of turns. This relationship appears in the unmodified system as well as modified

system, and holds true for most if not all configurations. This is primarily due to the

fact that the reward function provided by the user is fully based on episode length,

where an episode success yields a positive factor relative to the number of turns, and

a failure yields a punishment also relative to the number of turns. Additionally each
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Fig. 4.1: Blue: Episode success rate within epoch, Orange: Average turn count in Epoch
relative to maximum

step is discounted by a constant negative value punishment. If a DRL model were to

be trained based on this requirement, it is likely that the final model is able to finish

dialogues in fewer steps. Since success rate is a metric for what percentage of episodes

completed the task of booking a movie, we can hypothesize that optimal behavior might

be whichever behavior results in shorter conversations.

Fig. 4.2 illustrates a correlation between the average number of turns in an episode and

the occurrence of potential goal-change events. It is important to note that total event

count is not actually a count of goal change events but of events such as those described

in section 3.4 where a goal change could potentially occur. What Fig. 4.2 suggests is

that the count of these types of events follows the same pattern as the average number of
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Fig. 4.2: Blue: Average number of turns relative to maximum, Orange: Total event
count relative to maximum

turns, and thus is also inversely related to success rate, as shown in Fig. 4.1. This makes

intuitive sense as these kinds of events take up a certain percentage of the action space,

and as the number of available turns shrinks, so should the count of these potential

goal-change events. However, as our model trains, we can see that there are instances

where the number of events drastically grows or shrinks at a much larger scale relative

to the average number of turns. This indicates that the relationship in Fig. 4.2 is not as

tight and that this event count can also be affected by different policies the agent learns

when exploring the action space. With this frame of thinking, we can identify moments

where the agent learns a more successful policy based on goal changing by observing

an increase in event count as well as an increase in success rate, or even a decrease in
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Fig. 4.3: Sum breakdown of various potential goal switch dialogues in control framework

average number of turns.

Fig.4.3 depicts the breakdown of the total events shown in Fig. 4.2 broken down by type

of event. Event 0 corresponds to when the agent’s request semantic frame includes a slot

that the user can inform from its goal informs. Event 1 corresponds to when the agent’s

request semantic frame includes a slot that is in the user’s goal request list as well as

history list. Event 2 corresponds to events where the agent’s request slot is in the user’s

goal request slot list and slot list of future actionable slots. In Fig. 4.3, we can see that

as a sum, these event counts are inversely proportional to success rate, but we can also

see that these event counts are diverse in proportion of the total as well as relationship

to each other. For instance, event 2 appears to be inversely proportional with event 0,
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Event 0
1% Chance 2% Chance

Epoch 0 0.09 0.25
Epoch 10 0.52 0.03
Epoch 30 0.61 0.49
Epoch 50 0.87 0.83

Table 4.1: Success rate of goal change by inform

while event 1 is small and makes up a relatively small proportion of events occurring.

This graphic is important because it may help identify which events contribute to longer

average episode lengths and give us a reference point for which goal-changing episodes

have the most effect on success rate among other factors.

4.2.2 Experiments with Goal Change by Inform

Table 4.1 represents the dual effects of goal change event probability and start epoch of

goal-changing activity, specifically on goal-changes occurring in the inform context. The

first immediate result to see from this is that as goal changing is introduced to a model

that has already been trained on a large amount of non goal changing epochs, it is more

likely to sustain its accuracy. This at least shows that the addition of goal-changing

behavior is not catastrophic to the training of the model, but may hinder future training.

Fig. 4.4 more clearly demonstrates this behavior where introducing the goal-change

too early can result in unstable behavior which actually causes the model to decline
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Fig. 4.4: Success rate of various start epoch times with 1% probability of inform goal
change

in accuracy. In other cases, introduction of behavior to a more mature DRL agent

typically results in the accuracy being held constant without significantly dropping. This

suggests firstly that goal-change behavior poses a challenge that the model is not able to

adequately overcome, which also blocks future optimal behavior. However, Fig. 4.4 also

illustrates that it is possible to introduce this behavior without causing the model to

degenerate if presented late enough in training.

Fig. 4.5 primarily shows the relationship between the model success rate, average number

of turns and the goal-change context occurring. It is important to note that the dialogue

context occurring does not necessarily mean the actual goal-change will occur, since this

is based on a random probability. More specifically, this figure helps show how often
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Fig. 4.5: Average turns and event 0 count relative to their respective maximums. Left:
Goal change at epoch 10, Right: No Goal-change
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Event 1
1% Chance 2% Chance

Epoch 0 0.68 0.77
Epoch 10 0.73 0.77
Epoch 30 0.75 0.81
Epoch 50 0.73 0.71

Table 4.2: Success rate of goal change by request

a model may initiate behavior which can lead to a goal-change event. What we see

is that under a control scenario, the context we chose for goal-changing occurs nearly

directly proportional to the average number of turns. However, when we introduced

the goal-changing behavior with a 1% chance, we saw that the dialogue context itself

of a goal-change event dropped further in frequency relative to its maximum. In this

specific scenario, we also see that this is observed at a stage of training where the control

DRL model and goal-change model are performing with similar success rates. This

suggests that the DRL model may be learning to avoid conversational dialogues which

may potentially lead to goal-change events. This is significant because, depending on how

important the conversational context is to general dialogue completion, goal-changing

can negatively impact success rate by preventing the agent from learning fundamental

behavior.
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4.2.3 Experiments with Goal Change by Request

Table 4.2 demonstrates the effects of goal change event probability and starting epoch

of goal-changing activity, in relation to goal-changes occurring in the request context.

In these experiments we use notably higher goal-change probabilities than in Table 4.1.

This is because, as we saw in Fig. 4.3, request events which repeat historical information

occur at a much lower frequency. Using a probability that it is too low in this situation

could result in the model never actually experiencing a goal-change event and presenting

a misleadingly high accuracy value. In Table 4.2 we see that although the training

accuracies are lower than the baseline control final accuracy (roughly 0.84), this seems to

not be due to the epoch time of goal-change event introduction, or percentage likelihood

of goal-change event activation. This is likely because the model sees these contexts so

infrequently that it has enough room to train on normal behavior outside of goal change

events. This result is contrary to the other goal-change contexts which may happen so

frequently that it takes over normal behavior that would normally allow the model to

continue training.

Fig. 4.6 depicts the relationship suggested by Table 4.2 where low frequency goal-

changing events have little impact on success rate over time, allowing the DRL model
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Fig. 4.6: Success rate of various start epoch times with 1% probability of request goal
change

Event 2
1%,10% Chance 2%,10% Chance

Epoch 0 0.12 0.25
Epoch 10 0.56 0.04
Epoch 30 0.51 0.54
Epoch 50 0.84 0.57

Table 4.3: Success rate of goal change by inform / request

to continue learning on normal behavior. It is possible to see however, that the early

introduction of goal-changing events at epochs 0, 10 and 30 cause a slower rate of

learning, where training sequences that introduce goal-changing at epoch 50 are able to

discover more successful long term policies.
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4.2.4 Experiments with Mixed Model Goal Change

Table 4.3 depicts data from the method of using both types of goal-changing events in an

episode. This can be beneficial as the total amount of goal-change events increases while

minimizing impact on normal behavior in each conversational context. This essentially

introduces more goal-change events by expanding into more areas of the conversational

space, rather than increasing the amount of goal change events in a single conversational

context. This can potentially make a user simulator more realistic in a way where

consistent conditions in different dialogue contexts cause a reasonable amount of goal

change events. This is likely an improvement over having a specific context cause most

of the events, while another similar context causes very few.

Fig. 4.7 shows a comparison between various goal-change start epochs, compared between

a 1% probability of goal-changing and a 2% probability of goal changing. We first see

some obvious trends that we’ve noted earlier such higher overall success due to late

goal-change start epoch, and lower instantaneous goal-change chance resulting in higher

long term success. We can also see that with a 2% chance of goal-changing events, the

start epoch of 50 begins to drastically drop in success rate once goal change events

begin, while the 1% chance on the left is able to maintain success rate without dropping.
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Fig. 4.7: Left: Event0: 1%, Event1: 10%, Right: Event0: 2%, Event1: 10%
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Fig. 4.8: Success rate of three models on a 90% goal-change test environment

However, Fig. 4.7 does also depict a few exceptions that indicate complications in our

model. First, on the right side of the figure we see that starting epoch of 10 becomes

unstable and converges to nearly 0% success once goal change events begin, while starting

epoch of 0 manages to learn and plateau without falling. These general observations

suggest that there are stages of training at which various policies are being explored

where introduction of goal-change events can be either catastrophic or nearly unnoticed.

4.2.5 Testing Against Control Environment

Fig. 4.8 shows a depiction of a test setup where a selected model trained with a small

percentage of goal-changing events is compared against a model trained with a high
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number of goal-change events, as well as the control. These DRL agents are tested by

further training them over a small number of epochs against an aggressive goal-changing

user-simulator that changes its goal 90% of the time when in a goal-changing context.

The first 10 epochs establish a baseline where the model does not initiate any goal-

change events, and the last 10 epochs show the performance of the model against the

new aggressive goal-changing. The model which was trained with a small number of goal

change events was able to perform comparably to the control model with a high success

rate in the beginning, but once goal-changing began, both of these models severely and

consistently plummeted in success rate. By contrast, the model trained with a high

percentage of goal change events, while initially under performing the other two models,

was able to remain consistent and even slowly improve over the rest of the training

epochs while the other models dropped significantly in success rate.
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Chapter 5

Conclusion and Future Work

To summarize our work, we modified the user simulator of an existing end-to-end goal-

oriented DRL training framework so that it may change its goal with different frequencies

and in different scenarios. We identified places in the existing rule-simulator where

goal change events may occur, and discussed the rationality and realism of these goal

changes. With these goal change events identified, we created a testbed which allowed

us to control the frequency at which various goal change events occured, and at which

training episode.

With this testbed, we conducted various experiments by sampling combinations of goal-

change type, start epoch, and frequency. We also observed information such as success

rate, average episode length, and conversational event distribution. Since our testing

variable space is very large, we tried to make educated guesses as to which combinations

to use, and arrived at a few significant observations.

Before conducting experiments on different methods of goal-changing, we analyzed the
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control model using our testbed. We found that the inverse relationship between success

rate and average number of turns in goal-oriented dialogue systems is very strong. In

addition to this, we also found that the number of conversational contexts that may lead

to goal-change events is also related to the average episode length. Furthermore, we saw

that the most frequently occurring type of potential goal-change dialogues were agent

requests on goal slots followed by user informs. We found this behavior to be common

in the agent’s standard policy of rapid information collection.

The experiments we conducted on goal change events were on two types of dialogues:

actions where the user would respond to an agent request with information from its

recently modified goal, and actions where the user would respond to a request with its

own request alongside information from a recently modified goal. We first saw that goal-

change behavior had the potential to be very intrusive on basic goal-oriented training.

We then noted that early introduction of goal-change behavior in our framework often

led to trained models with low overall success rates. Ultimately the timing and frequency

of the same goal change would affect if a model’s success rate would deteriorate, remain

constant, or improve (which was rare). We also found that a larger amount of potential

goal change scenarios with smaller likelihood of individual event triggers was a more
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realistic way to provide a significant amount of goal-change training events. We finally

found that with this type of goal change, the model would sometimes avoid dialogue

contexts that could potentially lead to goal shifting. We were not able to confirm an

improvement in overall success rate by training with these methods.

Finally, we tested various models against a more aggressive user simulator which changed

its goal nearly every chance it had. We saw that the model trained with some goal-change

events which performed well on its own training data, did not outperform the control

model in this more challenging environment. However, we saw that the model trained

in a high goal-change frequency environment was able to see nearly the same success

rate in an environment with no goal-change events as compared to an environment with

nearly all goal-change events.

In future work, we will explore further potential segmented training methods, as well as

mixed models to provide more diverse model responses in what are effectively contra-

dictory training environments. Additionally, we will try experimenting with different

potential episode lengths, since many episode failures in our training resulted from max

episode length being reached. This is additionally important as we have confirmed

that goal-change events lead to longer average episode lengths. Furthermore, we will
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investigate modified data-oriented additions to user simulators that make more natural

and realistic decisions based on goal slot importance. Additionally, we will seek to use

this model to bootstrap RNN conversational models that have been recently used for

data-based user simulators.
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