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ABSTRACT

As the amount of textual data has been rapidly increasing over the past decade, efficient

similarity search methods have become a crucial component of large-scale information

retrieval systems. A popular strategy is to represent original data samples by compact

binary codes through hashing. A spectrum of machine learning methods have been

utilized, but they often lack expressiveness and flexibility in modeling to learn effective

representations. The recent advances of deep learning in a wide range of applications

has demonstrated its capability to learn robust and powerful feature representations for

complex data. Especially, deep generative models naturally combine the expressiveness

of probabilistic generative models with the high capacity of deep neural networks, which

is very suitable for text modeling. However, little work has leveraged the recent progress

in deep learning for text hashing.

Meanwhile, most state-of-the-art semantic hashing approaches require large amounts of

hand-labeled training data which are often expensive and time consuming to collect. The

cost of getting labeled data is the key bottleneck in deploying these hashing methods.

Furthermore, Most existing text hashing approaches treat each document separately



and only learn the hash codes from the content of the documents. However, in reality,

documents are related to each other either explicitly through an observed linkage such as

citations or implicitly through unobserved connections such as adjacency in the original

space. The document relationships are pervasive in the real world while they are largely

ignored in the prior semantic hashing work.

In this thesis, we propose a series of novel deep document generative models for text

hashing to address the aforementioned challenges. Based on the deep generative mod-

eling framework, our models employ deep neural networks to learn complex mappings

from the original space to the hash space. We first introduce an unsupervised models for

text hashing. Then we further introduce the supervised models that utilize document

labels/tags as well as consider document-specific factors that affect the generation of

words.

To address the lack of labeled data, we employ unsupervised ranking methods such as

BM25 to extract weak signals from training data. We propose two deep generative

semantic hashing models to leverage weak signals for text hashing. Finally, we propose

node2hash, an unsupervised deep generative model for semantic text hashing by utilizing

graph context. It is designed to incorporate both document content and connection

information through a probabilistic formulation. Based on the deep generative modeling

framework, node2hash employs deep neural networks to learn complex mappings from

the original space to the hash space.

The probabilistic generative formulation of the proposed models provides a principled



framework for model extension, uncertainty estimation, simulation, and interpretability.

Based on variational inference and reparameterization, the proposed models can be in-

terpreted as encoder-decoder deep neural networks and thus they are capable of learning

complex nonlinear distributed representations of the original documents. We conduct

a comprehensive set of experiments on various public testbeds. The experimental re-

sults have demonstrated the effectiveness of the proposed models over the competitive

baselines.
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Chapter 1

Introduction

1.1 Introduction

The task of similarity search, also known as nearest neighbor search, proximity search, or

close item search, is to find similar items given a query object [89]. It has many important

information retrieval applications, such as document clustering, content-based retrieval,

and collaborative filtering [92]. In recent decades, the rapid growth of the Internet has

resulted in massive textual data. This causes searching for relevant content in gigantic

databases using traditional text similarity methods is prohibitively expensive because

these methods are conducted in the original vector space and involved with a high cost

of numerical computation in the high-dimensional spaces.

Many research efforts have been devoted to approximate similarity search that is shown

to be useful for practical problems. For instance, in database management systems

15



Chapter 1: Introduction 16

(DBMS), tree-based data structures such as B+ tree [1] is employed for efficiently re-

trieving large files. Apache Lucene [37], which is considered as one of the industry-

standard search software libraries, uses an inverted index lookup and its variants for a

fast text document search. Furthermore, the recent similarity search libraries such as

Faiss [43] and Annoy 1 are deployed for similarity search on massive data. It is clear

that both academic research and industries have put tremendous efforts into tackling

this core search problem.

There are various approximate nearest neighbor search algorithms have been proposed

and implemented in the past. Some approaches rely on partitioning a search space [3]

or utilizing graphics processing units (GPUs) for data parallelism [43] which have been

proved to be effective and practical for many search problems. However, these algorithms

still operate in high-dimensional spaces, which could be suboptimal. This thesis explores

an alternative approach, called semantic hashing [27, 95, 78]. This approach performs

a similarity search in low-dimensional spaces by compressing data into binary vectors,

which could accelerate similarity search on massive data. Semantic hashing exploits

dimensional reduction techniques, which makes semantic hashing a unique and attractive

solution for approximate nearest neighbor search.

The semantic hashing approach typically designs compact binary codes in a low-dimensional

space so that semantically similar documents are mapped to similar codes. This ap-

proach is much more efficient in memory and computation. A binary representation

of each document often only needs 4 or 8 bytes to store, and thus a large number of
1
https://github.com/spotify/annoy

https://github.com/spotify/annoy
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encoded documents can be directly loaded into the main memory. Computing similarity

between two documents can be accomplished by using a bitwise XOR operation, which

takes only one CPU instruction. A spectrum of machine learning methods have been

utilized in hashing, but they often lack expressiveness and flexibility in modeling, which

prevents them from learning compact and useful representations of text documents.

However, there are some challenges in learning binary codes directly from the standard

text representation, such as a bag-of-words representation. Since text documents are

characterized by large bodies of text, bag-of-words models may face scalability challenges

as the size of vocabulary could grow into millions. In addition, since bag-of-words models

focus on word occurrences, the meaning or semantics of the documents are often ignored.

The models fail to recognize the semantic similarity between the documents that use

different words. Also, the sparsity of many words in a text corpus is also troublesome.

Many underrepresented words such as names of specific people or locations may often

be treated as irrelevant information by the models.

On the other hand, the latent factor models are effective statistical models that cap-

ture the semantics of the documents. The models including latent semantic indexing

(LSI)[19], probabilistic latent semantic analysis (PLSA) [39] and latent Dirichlet alloca-

tion (LDA) [5] represent semantically similar documents with similar document vectors.

Also, the models generate a document vector that has much fewer dimensions than a

bag-of-words vector. This makes the latent factor models are suitable for generating

document vectors of a large text corpus. However, training these models are compu-

tationally expensive. For instance, LSI [19] performs a singular value decomposition
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(SVD) [29] on a large matrix while PLSA and LDA rely on Expectation-Maximization

(EM) algorithm [21] for parameters estimation which is also not a scalable algorithm

for a million of text documents.

Inspired by the recent progress of deep learning in the past decade and its impressive

successes in a variety of domains including speech recognition, computer vision, and

natural language processing [55], deep learning can be utilized to learn robust and

powerful binary representations for text data as well as can be trained effectively on

a large number of documents via a gradient-based optimization such as a stochastic

gradient descent [7]. But a deep learning approach also poses some challenges in learning

binary representation. First, a deep learning model is a parametric model that requires

million or even billion parameters. The model without well-tuned hyperparameters

could easily overfit to the training corpus. Second, deep learning models are susceptible

to noisy data. The model could easily fit its parameters to the noisy data, which may

result in an inaccurate representation. The typical remedy to prevent the model from

overfitting is to add a regularizer, but this solution still requires parameter tuning.

Recently, deep generative models with variational inference [76, 46] have further boosted

the expressiveness and flexibility for representation learning by integrating deep neural

nets into the probabilistic generative framework. The generative framework has two ad-

vantages. Firstly, a probabilistic generative framework naturally incorporates domain

knowledge as part of representation learning. This model assumption acts as a regu-

larizer. Secondly, this framework is interpretable and easily extended, which is suitable

when dealing with various text data sources. The existing model can be integrated with
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additional data, which could be useful for many practical search tasks. Due to all these

key advantages, to the best of our knowledge, no prior work has leveraged deep gener-

ative models for text hashing tasks. The seamless combination of generative modeling

and deep learning is attractive and makes them suitable for text hashing.

1.2 Overview

In this thesis, we propose a series of novel deep document generative models for text

hashing, inspired by variational autoencoder (VAE) [76, 46]. The proposed models are

the marriage of deep learning and probabilistic generative models [5]. They enjoy the

good properties of both learning paradigms. First, with the deep neural networks, the

proposed models can learn flexible nonlinear distributed representations of the original

high-dimensional documents. This allows individual codes to be fairly general and con-

cise but their intersection to be much more precise. For example, nonlinear distributed

representations allow the topics/codes “government," “mafia," and “playboy" to combine

to give very high probability to the word “Berlusconi," which is not predicted nearly as

strongly by each topic/code alone.

Meanwhile, the proposed models are probabilistic generative models and thus there ex-

ists an underlying data generation process characterizing each model. The probabilistic

generative formulation provides a principled framework for model extensions such as

incorporating supervisory signals, utilizing implicit and explicit relationships between

documents, and adding private variables.
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Chapter 3 introduces the unsupervised and supervised models for text hashing [12].

These models can be interpreted as a variant of variational autoencoder for text docu-

ments. The proposed unsupervised model, Variational Deep Semantic Hashing (VDSH),

learns the hash codes from the content of the documents. This unsupervised model

serves as the base model and are extended by the more sophisticated models which

will be introduced in later chapters. For instance, the prior work in the literature [93]

has demonstrated that the supervisory signals are crucial to boost the performance of

semantic hashing for text documents. The first supervised model (VDSH-S) utilize the

document label/tag information while the second supervised model further adds a pri-

vate latent variable for documents to capture the information only concerned with the

documents but irrelevant to the labels, which may help remove noises from document

representations.

Chapter 4 proposes the unsupervised models that utilize noisy and low-quality data

without the need of labeled data and external data source [13]. This idea is motivated

by the fact that obtaining labeled data is not practical for a large corpus. Although the

supervised text hashing models could yield the state-of-the-arts performances, building

a large-scale semantic text hashing model also requires a lot of hand-labeled data which

can be expensive to obtain. Therefore, generating binary codes without hand-labeled

data is crucial because acquiring hand-labeled data is costly and time-consuming in

many real-world scenarios.

Chapter 5 introduces an unsupervised probabilistic model for text semantic hashing by
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utilizing graph context, called node2hash [14]. While considerable research has been de-

voted to semantic hashing, most existing approaches only learn the hash codes from the

content of the documents and treat each document separately and independently. We

now view a text corpus as a graph with nodes representing documents and edges captur-

ing relationships between documents. These explicit relationships between documents

are pervasive in the text corpora, but they are largely ignored in the prior semantic

hashing work. By assuming a generative process for the neighborhood of the document

of interest. text hashing model proposed in this chapter effectively incorporates graph

context into the hash modeling and yields a superior performance over the competitive

unsupervised semantic hashing models.

Finally, the thesis discusses both advantage and disadvantage of deep generative mod-

eling for text hashing as well as the future directions and some open research questions.

1.3 Contributions

The main contributions of the thesis can be summarized as follow:

• This thesis proposes a series of unsupervised and supervised deep document gen-

erative models to learn compact representations for text documents. To the best

of our knowledge, this is the first work that utilizes deep generative models with

variational inference for text hashing. We conducted a comprehensive set of exper-

iments on four public testbeds. The experimental results demonstrate significant
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improvements in our supervised models over several well-known semantic hashing

baselines.

• The lack of labeled data is mitigated by using unsupervised ranking to approximate

the true document space and design two deep generative models to leverage the

contents of the documents and the estimated neighborhood for learning a semantic

hash function. Experiments results on four large public text corpora demonstrate

that our models outperforms competitive unsupervised text hashing models.

• This thesis proposed a graph-aware deep text hashing model, called node2hash. To

the best of our knowledge, this is the first work that explicitly models documents

and their connections for semantic hashing. Different from much existing work,

it can generate binary codes in online mode for unseen documents that have no

connection to any training documents. Our comprehensive experimental results

on five datasets with explicit connections and two with implicit ones demonstrate

the effectiveness of node2hash over the competitive baselines.

• The proposed models enjoy both advantages of deep learning and probabilistic

generative models. They can learn complex nonlinear distributed representations

of the original high-dimensional documents while providing a principled framework

for probabilistic reasoning.

• Finally, tractable variational lowerbounds are derived for the proposed models and

reparameterize the models so that backpropagation can be applied for efficient

parameter estimation.
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1.4 Outline

This thesis is organized as follows: Chapter 2 reviews related work of semantic hashing,

both traditional and deep learning approaches.

Chapter 3 introduces the unsupervised and supervised semantic text hashing models

that directly learn the hash codes from the content of the documents. The unsupervised

model (VDSH) is served as the base model. The rest of the proposed models in this

thesis extend the unsupervised model by integrating or utilizing with different type of

signals and data sources.

Chapter 4 introduces two unsupervised text hashing models, NbrReg and NbrReg+Doc

that further improve the performance of VDSH by leveraging the contents of the k-

nearest documents using the unsupervised ranking method such as BM25 [77].

Chapter 5 introduces the unsupervised text hashing model, called node2hash, that learns

the hash codes by incorporating the relationships between the documents in the corpus.

Finally, some promising future directions and challenges on modeling a semantic hashing

for text documents using deep generative models are highlighted and discussed in 6.
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Related Work

In this section, we present four lines of related work. First, we discuss tradition semantic

hashing methods. Second, we review deep learning-based semantic hashing methods.

Third, we briefly mention the works that utilizes a weak supervision or noisy labeled

data. Finally, we review graph embedding methods and its application in semantic

hashing.

2.1 Hashing

Due to computational and storage efficiencies of compact binary codes, hashing methods

have been widely used for similarity search, which is an essential component in a variety

of large-scale information retrieval systems [92, 89]. Locality-Sensitive Hashing (LSH)

[18] is one of the most popular hashing methods with interesting asymptotic theoretical

24
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properties leading to performance guarantees. While LSH is a data-independent hash-

ing method, many hashing methods have been recently proposed to leverage machine

learning techniques with the goal of learning data-dependent hash functions, ranging

from unsupervised and supervised to semi-supervised settings. Unsupervised hashing

methods attempt to integrate the data properties, such as distributions and manifold

structures to design compact hash codes with improved accuracy. For instance, Spectral

Hashing (SpH) [95] explores the data distribution by preserving the similarity between

documents by forcing the balanced and uncorrelated constraints into the learned codes,

which can be viewed as an extension of spectral clustering [70].

The semantic hashing models based on the spectral method learns binary codes from

the affinity matrix. This matrix is a similarity matrix where each entry is a distance

between two documents. The choice of distance functions could lead to different hashing

models [95, 100, 59, 61, 42]. Notably, Spectral Hashing (SpH) [95] uses an RBF kernel

to construct a dense affinity matrix while Self-Taught hashing (STH) [100] uses a cosine

distance to create a sparse affinity matrix. This work decomposes the learning procedure

into two steps: generating binary code and learning hash function. Graph hashing [59]

utilizes the underlying manifold structure of data captured by a graph representation.

Supervised hashing methods attempt to leverage label/tag information for hash func-

tion learning. It has attracted more and more attention in recent years. For example,

Wang et al. [93] propose Semantic Hashing using Tags and Topic Modeling (SHTTM)

to incorporate tags to obtain more effective hashing codes via a matrix factorization for-

mulation. To utilize the pairwise supervision information in the hash function learning,
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Kernel-Based Supervised Hashing (KSH) proposed in [60] used a pairwise relationship

between samples to achieve high-quality hashing. Binary Reconstructive Embedding

(BRE) [51] was proposed to learn hash functions by minimizing the reconstructed error

between the metric space and Hamming space. Moreover, there are also several works

using the ranking order information to design hash functions. Ranking-based Super-

vised Hashing (RSH) [91] was proposed to leverage listwise supervision into the hash

function learning framework. Semi-supervised learning paradigm was also employed to

design hash functions by using both labeled and unlabeled data [90]. The hashing-code

learning problem is essentially a discrete optimization problem which is difficult to solve.

Most existing supervised hashing methods try to solve a relaxed continuous optimiza-

tion problem and then threshold the continuous representation to obtain a binary code.

Abundant related work, especially on image hashing, exists in the literature. Two recent

surveys [92, 89] provide a comprehensive literature review.

2.2 Deep Learning

Deep learning has drawn increasing attention and research efforts in a variety of artificial

intelligence areas including speech recognition, computer vision, and natural language

processing. Since one main purpose of deep learning is to learn robust and powerful

feature representations for complex data, it is very natural to leverage deep learning for

exploring compact hash codes which can be regarded as binary representations of data.

Most of the related work has focused on image data [96, 52, 25, 58] rather than text
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documents probably due to the effectiveness of the convolution neural networks (CNNs)

to learn good low-dimensional representations of images. The typical deep learning ar-

chitectures for hash function learning consist of CNNs layers for representation learning

and hash function layers which then transform the representation to supervisory signals.

The loss functions could be pointwise [58, 11], pairwise [25, 57, 22, 17], or listwise [52].

Some recent works have applied deep learning for several IR tasks such as ad-hoc re-

trieval [34], web search [40], and ranking pairs of short texts [79]. However, very few

has investigated deep learning for text hashing. The representative work is semantic

hashing [78]. It builds a stack of restricted Boltzmann machines (RBMs) [38] to dis-

cover hidden binary units which can model input text data (i.e., word-count vectors).

After learning a multilayer RBM through pretraining and fine tuning on a collection

of documents, the hash code of any document is acquired by simply thresholding the

output of the deepest layer. A recent work [97] exploited convolutional neural network

for text hashing, which relies on external features such as the GloVe word embeddings

to construct text representations.

Recently, deep generative models have made impressive progress with the introduction

of the variational autoencoders (VAEs) [76, 46] and Generative Adversarial Networks

(GANs) [30]. VAEs are especially an appealing framework for generative modeling by

coupling the approach of variational inference [86] with deep learning. As a result,

they enjoy the advantages of both deep learning and probabilistic graphical models.

Deep generative models parameterized by neural networks have achieved state-of-the-

art performance in unsupervised and supervised learning [46, 47, 67]. To the best of
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our knowledge, our proposed models are the first work that utilizes variational inference

with deep learning for text hashing. It is worth pointing out that both semantic hashing

with stacked RBMs [78] and our models are deep generative models, but the former is

undirected graphical models, and the latter is directed models. The underlying genera-

tive process of directed probabilistic models makes them easy to interpret and extend.

The proposed models are very scalable since they are trained as deep neural networks

by efficient backpropagation, while the stacked RBMs are often much harder to train

[38].

2.3 Topic Models

The classical works that attempt to represent a text document as a low-dimensional vec-

tor such as Latent semantic indexing (LSI) [19], Probabilistic latent semantic analysis

(PLSA) [39] and Latent Dirichlet allocation (LDA) [5]. LSI resembles a matrix factoriza-

tion, in which it estimates document and word matrices from a term-frequency matrix.

PLSA is LSI’s probabilistic counterpart. It formulates a generative model whose docu-

ment vectors are latent random variables. It uses an expection-maximization algorithm

[21] for inferencing. LDA extends PLSA by adding a prior distribution and coupling

each observed word random variable with word-topic distribution and document-specific

topic distribution. There are many follow-up works that extend LDA such as Corre-

lated topic modeling [4], Supervised topic modeling [66], and Dynamic topic modeling

[6]. There are also many task-specific document modeling. For instance, Btm [16]
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models a short text such as tweets, dealing with sentiment analysis [56], learning from

multiple document labels [74], or learning from a document network [15]. Application

of topic models mentioned in [9].

2.4 Unsupervised Sentence Representation Learning

Several unsupervised learning approaches have been developed to learn a generic docu-

ment representation for a downstream task. Skip-thought [50] encodes a sentence and

reconstructs the previous and next sentences. The paragraph vector [54] adds a para-

graph token to represent the missing information from a document context, but requires

an additional inference when compute a paragraph vector of a new paragraph. The vari-

ational autoencoder language model [8] uses a single-layer LSTM as an encoder and an

additional LSTM as a decoder. The encoder generates a document latent vector.

2.5 Weak Supervision

The use of BM25 as a weak annotator is similar to [20] which uses the output from the

BM25 ranking model to train a ranking model based on feedforward neural networks.

However, the role of the weak signals is different from ours. We use the weak signals to

estimate the true document space while the work [20] uses the weak signals as relevance

scores. Another line of works that employs the k-nearest documents as weak signals is

the query language modeling. The k-nearest documents are used to solve the vocabulary
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gap between queries and documents. Some methods such as pseudo-relevance feedback

is commonly used and mentioned in the query expansion literature [62].

2.6 Graph Embedding

Learning hash codes from both content and connections is closely related to the task

of graph embedding [32]. There exists extensive research in learning a representation

that encodes structural information of the graphs. The first line of work aims to map

vertices in the graph to low-dimensional continuous representations based on the local

graph context. The context information is typically sampled according to the pre-defined

graph traversal methods such as a random walk [72], Breath-first search [83], Depth-first

search, or a combination of both [32]. Inspired by the Skip-gram model [68], vertices

that appear within the same local context have similar embedding. However, the key

difference from our model is that these models are transductive and cannot encode an

unseen vertex.

An inductive formulation aims to learn a representation of an unseen vertex. The

general approach to inductive learning is to learn an embedding function that maps

both input vertex and graph context to a low-dimensional space. In an autoencoder

approach, an encoder function is designed for compressing a node’s neighborhood into

a low-dimension vector, and a decoder function is designed for reconstructing the input

neighborhood. Various neighborhood representations are proposed; for example, Wang

et al. [88] represent the neighborhood as an adjacency matrix while Cao et al. [10]
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formulates a neighborhood context as point-wise mutual information (PMI) matrix.

However, these mentioned works do not utilize any content or attribute of a vertex.

The neighborhood aggregation approach generates an embedding for a vertex by it-

eratively gathering information from immediate vertices in the graph to improve the

vertex’s representation. The main idea is to train the model with many iterations so

that the vertex’s attributes from a faraway vertex is eventually collected. The choices

of the aggregation functions and how to merge the current vertex’s embedding with its

neighborhood information leads to different embedding models. For instance, Graph-

Sage [35] uses mean, max-pooling, and LSTM to aggregate neighborhood information

and concatenate the output with a vertex’s embedding. A graph convolutional networks

(GCNs) [48] uses a weighted-sum as an aggregator and performs an element-wise mean

to generate an embedding for each vertex. The recent unsupervised learning models

that extend GCNs employ a different variation of the reconstruction loss: firstly, VGAE

[49] calculates the reconstruction for a vertex’s attribution; Graphite [33] computes the

reconstruction for an adjacency matrix as a factorized Bernoulli distribution. However,

these models are unable to generate an embedding for an unseen vertex without knowing

its connections in advance. Yang et al. [98] propose a neural network architecture to a

vertex embedding by jointly training on a vertex classification and graph context pre-

diction tasks. We mentioned this work here because Planetoid-I [98] is the only vertex

embedding model that learns a vertex representation from the attribute directly without

the need for knowing a connection to the existing vertices. However, Planetoid-I is a

semi-supervised learning model which depends on labeled data, but node2hash is an
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unsupervised learning model.

2.7 Deep Semantic Text Hashing

After the publication of Variational Deep Semantic Hashing for Text Documents in 2017

[12], the follow-up works have proposed to improve various component of the VDSH

model. The main issue with VDSH is its two-stage training procedures. It learns a

continuous document vector before binarizes them, which could not generate an optimal

hash code. An end-to-end training by forcing the model to generate a hash code directly

has proved to be more superior. For instance, Neural Architecture for Genearative

Semantic Hashing (NASH) [80] replaces the Gaussian distribution prior with Bernoulli

distribution prior and uses Straight-Through (ST) estimator [2] to approximate the

Bernoulli stochastic layers. However, GMSH and BMSH models [24] replace the prior

distribution with a mixture of Gaussian and Bernoulli distributions. The complex prior

distribution further boosts the quality of hash codes. However, since the Straight-

Through (ST) estimator is a biased estimator, Doc2hash model [101] replaces Bernoulli

distribution prior with a categorical distribution. The model is trained end-to-end via

the use of Gumbel-softmax trick [41, 64]. The proposed model by [36] uses a two-step

embedding process to allow the model to learn word embedding independently from the

hash code length. The model first selects word vectors from the original word matrix of

higher dimensions, then transforms the vectors into the same space as the hash code.

This work also uses a ranking component to enforce similar documents have a small
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hash code distance. Generative Adversarial networks has been used for binary code

learning. [73] uses GANs to generate more negative samples so that the model can

learn a stronger hash codes. The discriminator component can also be used to guide

the generator to generate more realistic binary codes that are not drawn from a random

noise [87].
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Variational Deep Semantic Hashing

3.1 Introduction

The classical latent factor models such as latent semantic indexing (LSI) [19], proba-

bilistic latent semantic analysis (PLSA) [39] and latent Dirichlet allocation (LDA) [5]

are designed to discover a latent structure of text documents. The underlying assump-

tion is that each word in a document does not appear by a random chance; instead,

they are generated by an unobservable process. By imposing a correct assumption,

the models can effectively discover a topic/theme/semantic of an individual document

by employing a probabilistic formulation to estimate the underlying word generation

process. The major drawbacks of these classical models include their slow parameter

estimation (training) times as well as their inability to learn highly non-linear relation-

ships between text documents. Deep generative models have addressed these limitations

34
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by modeling a complex generative process using neural networks and uses an efficient

backpropagation [44] for parameter estimation.

This chapter presents three novel deep document generative models to learn low-dimensional

semantic representations of documents for text hashing. We first introduce the unsu-

pervised generative model for text hashing. In the next section, 3.2.2 extends the unsu-

pervised model by including label information to learn a more sensible representation.

Finally, the last section 3.2.3 further incorporates the document’s private variables to

model document-specific information. Based on the variational inference, all the three

models can be viewed as having an encoder-decoder neural network architecture where

the encoder compresses a high-dimensional document to a compact latent semantic vec-

tor, and the decoder reconstructs the document (or the labels). Section 3.2.4 discusses

two thresholding methods to convert the continuous latent vector to binary code for

text hashing.

3.2 Methodology

3.2.1 Unsupervised Learning (VDSH)

In this section, we present the basic variational deep semantic hashing (VDSH) model

for the unsupervised learning setting. VDSH is a probabilistic generative model of text

which aims to extract a continuous low-dimensional semantic representation s 2 RK

for each document. Let d 2 RV be the bag-of-words representation of a document and
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wi 2 {0, 1}V be the one-hot vector representation of the ith word of the document where

V is the vocabulary size. d could be represented by different term weighting schemes

such as binary, TF, and TFIDF [65]. The document generative process can be described

as follows:

• For each document d,

– Draw a latent semantic vector s ⇠ P (s) where P (s) = N (0, I) is the stan-

dard Gaussian distribution.

– For the i
th word in the document,

⇤ Draw wi ⇠ P (wi|f(s; ✓)).

The conditional probability over words wi is modelled by multinomial logistic regression

and shared across documents as below:

P (wi|f(s; ✓)) =
exp(wT

i f(s; ✓))PV
j=1 exp(w

T
j f(s; ✓))

(3.1)

While P (s) is a simple Gaussian distribution, any distribution can be generated by

mapping the simple Gaussian through a sufficiently complicated function [23]. Thus,

f(s; ✓)) is such a highly flexible function approximator usually a neural network. In

other words, we can learn a function which maps our independent, normally-distributed

s values to whatever latent semantic variables might be needed for the model, and then

generate the word wi. However, introducing a highly nonlinear mapping from s to
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wi results in intractable data likelihood
R
s P (d|s)P (s)ds and thus intractable posterior

distribution P (s|d) [46]. Similar to VAE, we use an approximation Q(s|d;�) for the

true posterior distribution. By applying the variational inference principle [86], we can

obtain the following tractable lowerbound of the document log likelihood (see [46] and

Appendix):

L1 =Q

⇥ NX

i=1

logP (wi|f(s; ✓))
⇤
�Q(s|d;�)P (s) (3.2)

where N is the number of words in the document and is the Kullback-Leibler (KL)

divergence between the approximate posterior distribution Q(s|d;�) and the prior P (s).

The variational distribution Q(s|d;�) acts as a proxy to the true posterior P (s|d). To

enable a high capacity, it is assumed to be a Gaussian N (µ, diag(�2)) whose mean µ

and variance �2 are the output of a highly nonlinear function of d denoted as g(d;�)

parameterized by �, once again typically a neural network.

In training, the variational lowerbound in Eqn.(3.2) is maximized with respect to the

model parameters. Since P (s) is a standard Gaussian prior, the KL Divergence Q(s|d;�)P (s)

in Eqn.(3.2) can be computed analytically. The first term Q can be viewed as an expected

negative reconstruction error of the words in the document and it can be computed based

on the Monte Carlo estimation [31].

Based on Eqn.(3.2), we can interpret VDSH as a variational autoencoder with discrete

output: a feedforward neural network encoder Q(s|d;�) compresses document represen-

tations into continuous hidden vectors, i.e., d ! s; a softmax decoder
PN

i=1 P (wi|f(s; ✓))
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Figure 3.1: Architectures of (a) VDSH, (b) VDSH-S, and (c) VDSH-SP. The dashed

line represents a stochastic layer.

reconstructs the documents by independently generating the words s ! {wi}Ni=1. Fig-

ure 3.1(a) illustrates the architecture of VDSH. In the experiments, we use the following

specific architecture for the encoder and decoder.

Encoder Q(s|g(d;�)) :

t1 = ReLU(W1d+ b1)

t2 = ReLU(W2t1 + b2)

µ = W3t2 + b3

log � = W4t2 + b4

s ⇠ N (µ(d), diag(�2(d)))

Decoder P (wi|f(s; ✓)) :

ci = exp(�s
T
Gwi + bwi)

P (wi|s) =
ciPV
k=1 ck

P (d|s) =
NY

i=1

P (wi|s)

This architecture is similar to the one presented in VAE [76] except that VDSH has

the softmax layer to model discrete words while VAE is proposed to model images

as continuous output. Here, the encoder has two Rectified Linear Unit (ReLU) [31]

layers. ReLU generally does not face gradient vanishing problem as with other activation
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functions. Also, it has been shown that deep neural networks can be trained efficiently

using ReLU even without pretraining [31].

In this architecture, there is a stochastic layer which is to sample s from a Gaussian

distribution N (µ(d), diag(�2(d))), as represented by the dashed lines in the middle of

the networks in Figure 3.1. Backpropagation cannot handle stochastic layer within

the network. In practice, we can leverage the “location-scale" property of Gaussian

distribution, and use the reparameterization trick [46] to turn the stochastic layer of

s to be deterministic. As a result, the encoder Q(s|d;�) and decoder P (wi|f(s; ✓))

form an end-to-end neural network and are then trained jointly by maximizing the

variational lowerbound in Eqn.(3.2) with respect to their parameters by the standard

backpropagation algorithm [31].

3.2.2 Supervised Learning (VDSH-S)

In many real-world applications, documents are often associated with labels or tags

which may provide useful guidance in learning effective hashing codes. Document con-

tent similarity in the original bag-of-word space may not fully reflect the semantic re-

lationship between documents. For example, two documents in the same category may

have low document content similarity due to the vocabulary gap, while their semantic

similarity could be high. In this section, we extend VDSH to the supervised setting with

the new model denoted as VDSH-S. The probabilistic generative process of a document

with labels is as follows:
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• For each document d,

– Draw a latent semantic vector s ⇠ P (s) where P (s) = N (0, I) is the stan-

dard Gaussian distribution.

– For the i
th word in the document,

⇤ Draw wi ⇠ P (wi|f(s; ✓)).

– For the j
th label in the label set,

⇤ Draw yj ⇠ P (y|f(s; ⌧)).

where yj 2 {0, 1}L is the one-hot representation of the label j in the label set and L is

the total number of possible labels (the size of the label set). Let us use Y 2 {0, 1}L

represent the bag-of-labels of the document (i.e., if the document has label j, the j
th

dimension of Y is 1; otherwise, it is 0). VDSH-S assumes that both words and labels

are generated based on the same latent semantic vecotor.

We assume a general multi-label classification setting where each document could have

multiple labels/tags. P (yj|f(s; ⌧)) can be modeled by the logistic function as follows:

P (yj|f(s; ⌧)) =
1

1 + exp(�yT
j f(s; ⌧))

(3.3)

Similar to VDSH, f(s; ⌧) is parameterized by a neural network with the parameter ⌧

so that we can learn an effective mapping from the latent semantic vector to the labels.
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The lowerbound of the data log likelihood can be similarly derived and shown as follows:

L2 =Q

⇥ NX

i=1

logP (wi|f(s; ✓)) +
LX

j=1

logP (yj|f(s; ⌧))
⇤

�Q(s|d,Y ;�)P (s) (3.4)

Compared to Eqn.(3.2) in VDSH, this lowerbound has an extra term, Q

⇥PL
j=1 logP (yj|f(s; ⌧))

⇤
,

which can be computed in a similar way with Q

⇥PN
i=1 logP (wi|f(s; ✓))

⇤
in Eqn.(3.2),

by using the Monte Carlo estimation. In addition, we can drop the dependence on

variable Y in the variational distribution Q(s|d,Y ;�) since we may not have the label

information available for new documents.

The architecture of the VDSH-S model is shown in Figure 3.1(b). It consists of a

feedforward neural network encoder of a document d ! s and a decoder of the words

and labels of the document s ! {wi}Ni=1; {yj}Lj=1. It is worth pointing out that the

labels still affect the learning of latent semantic vector by their presence in the decoder

despite their absence in the encoder. By using the reparameterization trick, the model

becomes a deterministic deep neural network and the lowerbound in Eqn.(3.4) can be

maximized by backpropagation (see Appendix).

3.2.3 Document-specific Modeling (VDSH-SP)

VDSH-S assumes both document and labels are generated by the same latent semantic

vector s. In some cases, this assumption may be restrictive. For example, the original
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document may contain information that is irrelevant to the labels. It could be difficult

to find a common representation for both documents and labels. This observation

motivates us to introduce a document private variable v, which is not shared by the

labels Y . The generative process is described as follows:

• For each document d,

– Draw a latent semantic vector s ⇠ P (s) where P (s) = N (0, I) is the stan-

dard Gaussian distribution.

– Draw a latent private vector v ⇠ P (v) where P (v) = N (0, I) is the standard

Gaussian distribution.

– For the i
th word in the document,

⇤ Draw wi ⇠ P (wi|f(s+ v; ✓)).

– For the j
th label in the label set,

⇤ Draw yj ⇠ P (y|f(s; ⌧)).

As we can see, s models the shared information between document and labels while v

only contains the document-specific information. We can view adding private variables

as removing the noise from the original content that is irrelevant to the labels. With

the added private variable, we denote this model as VDSH-SP. The tractable variational

lowerbound of data likelihood can be derived as follows:
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L3 =Q

⇥ NX

i=1

logP (wi|f(s+ v; ✓)) +
LX

j=1

logP (yj|f(s; ⌧))
⇤

�Q(s|d;�)P (s)�Q(v|d;�)P (v) (3.5)

Similar to the other two models, VDSH-SP can be viewed as a deep neural network

by applying variational inference and reparametrization. The architecture is shown in

Figure 3.1(c). The Appendix contains the detailed derivations of the model.

3.2.4 Binary Hash Code

Once a VDSH model has been trained, we can generate a compact continuous represen-

tation for any new document dnew by the encoder function µnew = g(dnew;�), which is

the mean of the distribution Q(s|d;�). The binary hashing code can then be obtained

by thresholding µnew. The most common method of thresholding for binary code is to

take the median value of the latent semantic vector µ in the training data [93]. The

rationale is based on the maximum entropy principle for efficiency which yields balanced

partitioning of the whole dataset [95]. Thus, we set the threshold for binarizing the p
th

bit to be the median of the p
th dimension of s in the training data. If the p

th bit of

document latent semantic vector µnew is larger than the median, the p
th binary code is

set to 1; otherwise, it is set to -1. Another popular thresholding method is to use the

Sign function on µnew, i.e., if the p
th bit of µnew is nonnegative, the corresponding code
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is 1; otherwise, it is -1. Since the prior distribution of the latent semantic vector is zero

mean, the Sign function is also a reasonable choice. We use the median thresholding

as the default method in our experiments, while also investigate the Sign function in

Section 3.4.3.

3.2.5 Discussions

The computational complexity of VDSH for a training document is O(BD
2 + DSV ).

Here, O(BK
2) is the cost of the encoder, where B is the number of the layers in the

encoder network and D is the average dimension of these layers. O(DNV ) is the cost

of the decoder, where S is the average length of the documents and V is the vocabulary

size. The computational complexity of VDSH-S and VDSH-SP is O(BD
2+DS(V +L))

where L is the size of the label set. The computational cost of the proposed models

is at the same level as the deterministic autoencoder. Model learning could be quite

efficient since the computations of all the models can be parallelized in GPUs, and only

one sample is required during the training process.

The proposed deep generative model has a few desirable properties for text hashing.

First of all, it has the capacity of deep neural networks to learn sophisticated semantic

representations for text documents. Moreover, being generative models brings huge ad-

vantages over other deep learning models such as Convolutional Neural Network (CNN)
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RCV1 Reuters
Methods 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits
LSH [18] 0.4180 0.4352 0.4716 0.5214 0.5877 0.2802 0.3215 0.3862 0.4667 0.5194
SpH [95] 0.5093 0.7121 0.7475 0.7559 0.7423 0.6080 0.6340 0.6513 0.6290 0.6045

STHs [100] 0.3975 0.4898 0.5592 0.5945 0.5946 0.6616 0.7351 0.7554 0.7350 0.6986
Stacked RBMs [78] 0.5106 0.5743 0.6130 0.6463 0.6531 0.5113 0.5740 0.6154 0.6177 0.6452

KSH [60] 0.9126 0.9146 0.9221 0.9333 0.9350 0.7840 0.8376 0.8480 0.8537 0.8620
SHTTM [93] 0.8820 0.9038 0.9258 0.9459 0.9447 0.7992 0.8520 0.8323 0.8271 0.8150

VDSH 0.7976 0.7944 0.8481 0.8951 0.8444 0.6859 0.7165 0.7753 0.7456 0.7318
VDSH-S 0.9652† 0.9749† 0.9801† 0.9804† 0.9800† 0.9005† 0.9121† 0.9337† 0.9407† 0.9299†

VDSH-SP 0.9666† 0.9757† 0.9788† 0.9805† 0.9794† 0.8890† 0.9326† 0.9283† 0.9286† 0.9395†
20Newsgroups TMC

Methods 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits
LSH [18] 0.0578 0.0597 0.0666 0.0770 0.0949 0.4388 0.4393 0.4514 0.4553 0.4773
SpH [95] 0.2545 0.3200 0.3709 0.3196 0.2716 0.5807 0.6055 0.6281 0.6143 0.5891

STH [100] 0.3664 0.5237 0.5860 0.5806 0.5443 0.6459 0.7044 0.7279 0.7381 0.7379
Stacked RBMs [78] 0.0594 0.0604 0.0533 0.0623 0.0642 0.4846 0.5108 0.5166 0.5190 0.5137

KSH [60] 0.4257 0.5559 0.6103 0.6488 0.6638 0.6608 0.6842 0.7047 0.7175 0.7243
SHTTM [93] 0.2690 0.3235 0.2357 0.1411 0.1299 0.6299 0.6571 0.6485 0.6893 0.6474

VDSH 0.2841 0.3166 0.3389 0.3262 0.3943 0.4330 0.6853 0.7108 0.4410 0.5847
VDSH-S 0.6586† 0.6791† 0.7564† 0.6850† 0.6916† 0.7387† 0.7887† 0.7883† 0.7967† 0.8018†

VDSH-SP 0.6609† 0.6551† 0.7125† 0.7045† 0.7117† 0.7498† 0.7798† 0.7891† 0.7888† 0.7970†

Table 3.1: Precision of the top 100 retrieved documents on four datasets with dif-

ferent numbers of hashing bits. The bold font denotes the best result at that number

of bits. † denotes the improvement over the best result of the baselines is statistically

significant based on the paired t-test (p-value < 0.01).

because the underlying document generative process makes the model assumptions ex-

plicit. For example, as shown in [95], it is desirable to have independent feature di-

mensions in hash codes. To achieve this, our models just need to assume the latent

semantic vector is drawn from a prior distribution with independent dimensions (e.g.,

standard Gaussian). The probabilistic approach also provides a principled framework

for model extensions as evident in VDSH-S and VDSH-SP. Furthermore, instead of

learning a particular latent semantic vector, our models learn probability distributions

of the semantic vector. This can be viewed as finding a region instead of a fixed point

in the latent space for document representation, which leads to more robust models.

Compared with other deep generative models such as stacked RBMs and GANs, our

models are computationally tractable and stable and can be estimated by the efficient

backpropagation algorithm.
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3.3 Experimental Setup

3.3.1 Data Collections

We use the following four public document collections for evaluation. 1) Reuters Corpus

Volume I (RCV1). It is a large collection of manually labeled 800,000 newswire stories

provided by Reuters. There are totally 103 classes. We use the full-topics version

available at the LIBSVM website1. 2) Reuters21578 2. A widely used text corpus for

text classification. This collection has 10,788 documents with 90 categories and 7,164

unique words. 3) 20Newsgroups3. This dataset is a collection of 18,828 newsgroup posts,

partitioned (nearly) evenly across 20 different newsgroups/categories. It has become a

popular dataset for experiments in text applications of machine learning techniques. 4)

TMC 4. This dataset contains the air traffic reports provided by NASA and was used as

part of the SIAM text mining competition. It has 22 labels, 21,519 training documents,

3,498 test documents, and 3,498 documents for the validation set. All the datasets are

multi-label except 20Newsgroups.

Each dataset was split into three subsets with roughly 80% for training, 10% for valida-

tion, and 10% for test. The training data is used to learn the mapping from document

to hash code. Each document in the test set is used to retrieve similar documents based

on the mapping, and the results are evaluated. The validation set is used to choose the
1
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

2
http://www.nltk.org/book/ch02.html

3
http://ana.cachopo.org/datasets-for-single-label-text-categorization

4
https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
http://www.nltk.org/book/ch02.html
http://ana.cachopo.org/datasets-for-single-label-text-categorization
https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
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hyperparameters. We removed the stopwords using SMART’s list of 571 stopwords5.

No stemming was performed. We use TFIDF [65] as the default term weighting scheme

for the raw document representation (i.e., d). We experiment with other term weighting

schemes in Section 3.4.4.

3.3.2 Baselines and Settings

We compare the proposed models with the following six competitive baselines which

have been extensively used for text hashing in the prior work [93]: Locality Sensitive

Hashing (LSH)6 [18], Spectral Hashing (SpH)7 [95], Self-taught Hashing (STH)8 [100],

Stacked Restricted Boltzmann Machines (Stacked RBMs) [78], Supervised Hashing with

Kernels (KSH) [60], and Semantic Hashing using Tags and Topic Modeling (SHTTM)

[93]. We used the validation dataset to choose the hyperparameters for the baselines.

For our proposed models, we adopt the method in [28] for weight initialization. The

Adam optimizer [45] with the step size 0.001 is used due to its fast convergence. Fol-

lowing the practice in [94], we use the dropout technique [82] with the keep probability

of 0.8 in training to alleviate overfitting. The number of hidden nodes of the models

is 1,500 for RCV1 and 1,000 for the other three smaller datasets. All the experiments

were conducted on a server with 2 Intel E5-2630 CPUs and 4 GeForce GTX TITAN X

GPUs. The proposed deep models were implemented on the Tensorflow9 platform. For
5http://www.lextek.com/manuals/onix/stopwords2.html
6
http://pixelogik.github.io/NearPy/

7
http://www.cs.huji.ac.il/~yweiss/SpectralHashing/

8
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip

9https://www.tensorflow.org/

http://pixelogik.github.io/NearPy/
http://www.cs.huji.ac.il/~yweiss/SpectralHashing/
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip
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Figure 3.2: The Precision within the Hamming distance of 2 on four datasets with

different hashing bits.

the VDSH model on the Reuters21578, 20Newsgroups, and TMC datasets, each epoch

takes about 60 seconds, and each run takes 30 epochs to converge. For RCV1, it takes

about 3,600 seconds per epoch and needs fewer epochs (about 15) to get satisfactory

performance. Since RCV1 is much larger than the other three datasets, this shows that

the proposed models are quite scalable. VDSH-S and VDSH-SP take slightly more time

to train than VDSH does (about 40 minutes each on Reuters21578, 20Newsgroups, and

TMC, and 20 hours on RCV1).

3.3.3 Evaluation Metrics

To evaluate the effectiveness of hashing code in similarity search, each document in

the test set is used as a query document to search for similar documents based on the

Hamming distance (i.e., number of different bits) between their hashing codes. Following

the prior work in text hashing [93], the performance is measured by Precision, as the

ratio of the number of retrieved relevant documents to the number of all retrieved

documents. The results are averaged over all the test documents.
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There exist various ways to determine whether a retrieved document is relevant to the

given query document. In SpH [95], the K closest documents in the original feature

space are considered as the relevant documents. This metric is not desirable since

the similarity in the original feature space may not well reflect the document semantic

similarity. Also, it is hard to determine a suitable K for the cutoff threshold. Instead, we

adopt the methodology used in KSH [90], SHTTM [93] and other prior work [90], that

is a retrieved document that shares any common test label with the query document is

regarded as a relevant document.

3.4 Experimental Results

3.4.1 Baseline Comparison

Table 4.1 shows the results of different methods over various numbers of bits on the

four testbeds. We have several observations from the results. First of all, the best

results at different bits are all achieved by VDSH-S or VDSH-SP. They consistently

yield better results than all the baselines across all the different numbers of bits. All the

improvements over the baselines are statistically significant based on the paired t-test

(p-value < 0.01). VDSH-S and VDSH-SP produce comparable results between them.

Adding private variables does not always help because it increases the model flexibility
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which may lead to overfitting to the training data. This probably explains why VDSH-

SP generally yield better performance when the number of bits is 8 which corresponds

to a simpler model.

Secondly, the supervised hashing techniques (i.e., VDSH-S, VDSH-SP, KSH) outperform

the unsupervised methods on the four datasets across all the different bits. These results

demonstrate the importance of utilizing supervisory signals for text hashing. However,

the unsupervised model, STHs, outperforms SHTTM on the original 20 categories News-

groups. One possible explanation is that SHTTM depends on LDA to learn an initial

representation. But many categories in Newsgroup are correlated, LDA could assign

similar topics to documents from related categories (i.e. Christian, Religion). Hence

SHTTM may not effectively distinguish two related categories. Evidently, SHTTM and

KSH deliver comparable results except on the 20Newsgroups testbed. It is worth noting

that there exist substantial gaps between the supervised and unsupervised proposed

models (VDSH-S and VDSH-SP vs VDSH) across all the datasets and configurations.

The label information seems remarkably useful for guiding the deep generative models

to learn effective representations. This is probably due to the high capacity of the neu-

ral network component which can learn subtle patterns from supervisory signals when

available.

Thirdly, the performance does not always improve when the number of bits increases.

This pattern seems quite consistent across all the compared methods and it is likely the

result of model overfitting, which suggests that using a long hash code is not always

helpful especially when training data is limited. Last but not least, the testbeds may
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affect the model performance. All the best results are obtained on the RCV1 dataset

whose size is much larger than the other testbeds. These results illustrate the importance

of using a large amount of data to train text hashing models.

It is worth noting that some of the baseline results are different from what were reported

in the prior work. This is due to the data preprocessing. For example, [93] combined

some categories in 20Newsgroup to form 6 broader categories in their experiments while

we use all the original 20 categories for evaluation. [100] focused on single-label docu-

ments by discarding the documents appearing in more than one category while we use

all the documents in the corpus.

3.4.2 Retrieval with Fixed Hamming Distance

In practice, IR systems may retrieve similar documents in a large corpus within a fixed

Hamming distance radius to the query document. In this section, we evaluate the

precision for the Hamming radius of 2. Figure 3.2 shows the results on four datasets

with different numbers of hashing bits. We can see that the overall best performance

among all nine hashing methods on each dataset is achieved by either VDSH-S or VDSH-

SP at the 16-bit. In general, the precision of most of the methods decreases when the

number of hashing bits increases from 32 to 128. This may be due to the fact that

when using longer hashing bits, the Hamming space becomes increasingly sparse and

very few documents fall within the Hamming distance of 2, resulting in more queries

with precision 0. Similar behavior is also observed in the prior work such as KSH [60]
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RCV1 Reuters
Median Sign Median Sign

VDSH 0.8481 0.8514 0.7753 0.7851
VDSH-S 0.9801 0.9804 0.9337 0.9284

VDSH-SP 0.9788 0.9794 0.9283 0.9346
20Newsgroups TMC

Median Sign Median Sign
VDSH 0.4354 0.4267 0.7108 0.7162

VDSH-S 0.7564 0.7563 0.7883 0.7879
VDSH-SP 0.6913 0.6574 0.7891 0.7761

Table 3.2: Precision@100 of using different thresholding functions (Median vs Sign)

for the proposed models on four testbeds with the 32-bit hash code

and SHTTM [93]. A notable exception is Stacked RBMs whose performance is quite

stable across different numbers of bits while lags behind the best performers.

3.4.3 Effect of Thresholding

Thresholding is an important step in hashing to transform a continuous document repre-

sentation to a binary code. We investigate two popular thresholding functions: Median

and Sign, which are introduced in Section 3.2.4. Table 3.2 contains the precision results

of the proposed models with the 32-bit hash code on the four datasets. As we can

see, the two thresholding functions generate quite similar results and their differences

are not statistically significant, which indicates all the proposed models, whether being

unsupervised or supervised, are not sensitive to the thresholding methods.
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3.4.4 Effect of Term Weighting Schemes

In this section, we investigate the effect of term weighting schemes on the performance

of the proposed models. Different term weights result in different bag-of-word represen-

tations of d as the input to the neural network. Specifically, we experiment with three

term weighting representations for documents: Binary, Term Frequency (TF), Term

Frequency and Inverse Document Frequency (TFIDF) [65]. Figure 3.3 illustrates the

results of the proposed models with the 32-bit hash code on the four datasets. As we

can see, the proposed models generally are not very sensitive to the underlying term

weighting schemes. The TFIDF weighting always gives the best performance on all the

four datasets. The improvement is more noticeable with VDSH-S and VDSH-SP on

20Newsgroups. The results indicate more sophisticated weighting schemes may capture

more information about the original documents and thus lead to better hashing results.

One the other hand, all the three models yield quite stable results on RCV1, which sug-

gests that a large-scale dataset may help alleviate the shortcomings of the basic term

weighting schemes.

3.4.5 Qualitative Analysis

In this section, we visualize the low-dimensional representations of the documents and

see whether they can preserve the semantics of the original documents. Specifically, we

use t-SNE10 [63] to generate the scatter plots for the document latent semantic vectors in
10
https://lvdmaaten.github.io/tsne/

https://lvdmaaten.github.io/tsne/
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Figure 3.3: Precision@100 for different term weighting schemes on the proposed

models with the 32-bit hash code.

DocId Category Title/Subject

Doc5780 Hockey Trade rumor: Montreal/Ottawa/Phillie
Doc5773 Hockey NHL team leaders in +/-
Doc3420 ForSale Books For Sale [Ann Arbor, MI]
Doc3412 ForSale *** NeXTstation 8/105 For Sale ***

Table 3.3: The titles of the four sample documents in Figure 5.7

32-dimensional space obtained by SHTTM and VDSH-S on the 20Newsgroup dataset.

Figure 5.7 shows the results. Here, each data point represents a document which is

associated with one of the 20 categories. Different colors represent different categories

based on the ground truth.

As we can see in Figure (5.7)(b), VDSH-S generates well separated clusters with each

corresponding to a true category (each number in the plot represents a category ID).

On the other hand, the clustering structure from SHTTM shown in Figure (5.7)(a) is

much less evident and recognizable. Some closeby clusters in Figure (5.7)(b) are also se-

mantically related, e.g., Category 7 (Religion) and Category 11 (Atheism); Category 20
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Figure 3.4: Visualization of the 32-dimensional document latent semantic vectors by

SHTTM and VDSH-S on the 20Newsgroup dataset using t-SNE. Each point represents

a document and different colors denote different categories based on the ground truth.

In (b)VDSH-S, each number is a category ID and the corresponding categories are

shown below the plot.

(Middle East) and Category 10 (Guns); Category 8 (WinX) and Category 5 (Graphics).

We further sampled some documents from the dataset and see where they are repre-

sented in the plots. Table 3.3 contains the DocIDs, categories, and subjects of the

sample documents. Doc5780 discusses some trade rumor in NHL and Doc5773 is about

NHL team leaders. Both documents belong to the category of Hockey and should be

close to each other, which can be clearly observed in Figure (5.7)(b) by VDSH-S. How-

ever, these two documents are projected far away from each other by SHTTM as shown

in Figure (5.7)(a). For another random pair of documents Doc3420 and Doc3412 in the

plots, VDSH-S also puts them much closer to each other than SHTTM does. These

results demonstrate the great effectiveness of VDSH-S in learning low-dimensional rep-

resentations for text documents.
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3.5 Conclusions and Future Work

Text hashing has become an important component in many large-scale information re-

trieval systems. It attempts to map documents in a high-dimensional space into a

low-dimensional compact representation, while preserving the semantic relationship of

the documents as much as possible. Deep learning is a powerful representation learning

approach and has demonstrated its effectiveness of learning effective representations in

a wide range of applications, but there is very little prior work on utilizing it for text

hashing tasks. In this paper, we exploit the recent advances in variational autoencoder

and propose a series of deep generative models for text hashing. The models enjoy the

advantages of both deep learning and probabilistic generative models. They can learn

subtle nonlinear semantic representation in a principled probabilistic framework, espe-

cially when supervisory signals are available. The experimental results on four public

testbeds demonstrate that the proposed supervised models significantly outperform the

competitive baselines.

This work is an initial step towards a promising research direction. The probabilistic

formulation and deep learning architecture provide a flexible framework for model ex-

tensions. In future work, we will explore deeper and more sophisticated architectures

such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) [55],

autoregressive neural network (NADE, MADE) [53, 26] for encoder and decoder. These

more sophisticated models may be able to capture the local relations (by CNN) or se-

quential information (by RNN, NADE, MADE) in text. Moreover, we will utilize the
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probabilistic generative process to sample and simulate new text, which may facilitate

the task of Natural Language Generation [75]. Last but not least, we will adapt the

proposed models to hash other types of data such as images and videos.



Chapter 4

Deep Semantic Text Hashing with

Weak Supervision

4.1 Introduction

Due to the ease of modeling and the excellent performance of supervised hashing models,

most deep hashing models are designed to leverage human-labeled data such as tags and

categories. When we evaluate the performance of the similarity search using labels as

relevant judgments, the supervised learning model can directly map the input documents

with the same labels to the similar binary codes. Since the unsupervised hashing models

cannot directly observe the ground truth, the models need to exploit the structure of

the data to infer the true labels of the documents. In spite of the difficulty in modeling

under the unsupervised setting, generating binary codes without hand-labeled data is

58
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very practical because acquiring hand-labeled data is costly and time-consuming in

many real-world scenarios.

To improve the performance of unsupervised hashing models is quite challenging due

to the lack of labels. In this chapter, we attempt to utilize the relationships between

documents to gather more information from training data. Specifically, we use unsuper-

vised ranking methods such as BM25 [77] to identify the k-nearest documents for every

query document. The additional documents serve as a weak signal that may reveal the

structure of the document space which can be used to generate a better binary code.

Although some works define a weak supervision as a less precise label, we refer a weak

supervision as using noisy and low-quality data without the need of an external data

source. However, since the weak signals are often noisy, the learning model must be

able to handle the noise introduced by BM25. Due to the success of deep generative

models [46] for learning a low-dimensional space from high-dimensional data, we pro-

posed two deep generative models to learn a compact binary code from text documents

together with their supplementary neighborhood information. We summarize our main

contribution as follows:

• We mitigate the lack of labeled data by using unsupervised ranking to approximate

the true document space.

• We design two deep generative models to leverage the contents of the documents

and the estimated neighborhood for learning a semantic hash function.
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• Experiments results on four large public text corpora demonstrate that our models

outperforms competitive unsupervised text hashing models.

4.2 Methodology

4.2.1 Document Space Estimation

If we have the label information, we can estimate the true document space where all

documents with the same labels are nearby. Without the labels, we attempt to use a

vector space model to estimate the document space. In the vector space, a document is

a fixed-length vector, and the cosine similarity measures the distance between document

vectors. Due to the competitive performance of BM25 [77], we represent each document

as a bag-of-words vector using the BM25 weighting scheme. For every document d which

acts as a pivot document, the BM25 will retrieve the k-nearest documents, denoted as a

set of neighbor documents NN(d). We assume that a majority of documents in NN(d)

share the same label as its pivot document d, hence a binary code of any document

within the same proximity in the vector space model should be more similar.

4.2.2 Neighborhood Recognition Model (NbrReg)

Instead of learning a binary code directly, we will learn a continuous distribution to

generate semantic vector s. We use the following generative story for documents:
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• Draw a semantic vector s from a standard normal, N (0, 1).

• For a unique word wi in a pivot d:

– Draw wi from PA(wi|s).

• For each unique word w̃j in the neighborhood set NN(d):

– Draw w̃j from PB(w̃j|s)

NN(d) is a set of the k-nearest documents of the pivot document d. We set document

likelihood P (d) =
Q

i PA(wi|s) and neighborhood likelihood P (NN(d)) =
Q

j PB(w̃j|s)

as a product of word probabilities.

The objective function is obtained by maximizing the variational lowerbound of the log

data likelihood of P (d,NN(d)) = P (d)P (NN(d):

logP (d,NN(d)) = log

Z

s

P (d|s)P (NN(d)|s)P (s)ds

�Q(s|·)
⇥
logP (d|s)

⇤
+Q(s|·)

⇥
logP (NN(d)|s)

⇤

�Q(s|·)P (s) (4.1)

where Q(s|·) is an approximate posterior distribution that will be learned from the

data. The dot · notation is a placeholder for the input random variables. There are

many ways to define Q(s|·); we will define Q in Section 4.2.4. P (d|s) measures how
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well s represents the global meaning of d. Similarly, P (NN(d)|s) determines how well s

represents the global meaning of the neighborhood of d. The Kullback-Leibler divergence

(DKL) measures the deviation of Q(s|·) from P (s) = N (0, 1).

4.2.3 Decoder Function

P (d|s) and P (NN(d)|s) are viewed as decoder functions and defined as a product of

word probabilities1:

P (d|s) =
Y

i

PA(wi|s) =
Y

i

exp{sTAei}
exp{

P
j s

TAej}
(4.2)

where ei is the one-hot encoded vector of the i
th unique word wi in d. Matrix A maps

semantic vector s to a word embedding space. P (NN(d)|s) has a similar definition as

Eq.4.2 while we use a different matrix B as the mapping matrix. The reason to maximize

only unique words found in the set of neighbor documents is because we do not want

to overcount some bad signals which are words observed in any document that does not

have the same label as the pivot document. As a result, we also undercount good words

which serve as good signals.
1We omit the definition of neighborhood likelihood function due to the space limitation.
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4.2.4 Encoder Function

We define Q(s|·) as a normal distribution parameterized by the pivot documents d:

Q(s|·) = N (s; f(d)). Function f maps d to mean µ and standard deviation �. Since

there are two distribution parameters, we need to define mapping function for each

parameter: f = hfµ, f�i. We use feedforward neural networks as a functional form of fµ

and f�:

fµ(d) = Wµ · h(d) + bµ f�(d) = W� · h(d) + b� (4.3)

h(d) = relu
�
W2 · relu

�
W1 · d+ b1

�
+ b2

�
(4.4)

where W· and b· are weight and bias of a single-layer feedforward neural network. fµ

and f� transform d to µ and � so that semantic vector s can be sampled from Q:

s ⇠ Q(s|d) = N (s; µ = fµ(d), � = f�(d)) (4.5)

Computing the gradient of Eq.4.1 requires estimation. We use Monte Carlo to esti-

mate Q(s|d)
⇥
logP (d|s)

⇤
⇡ 1

|S|
P|S|

i=1 logP (d|s(i)) where s
(i) ⇠ Q(s|d). But the gradient

estimated by Monte Carlo has a high variance and will be difficult for the models to
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learn. [46] uses the reparameterization trick to turn distribution Q(s|d) to a low-variance

gradient estimator2:

s ⇠ g(fµ(d), f�(d), ✏) = ✏ · f�(d) + fµ(d), ✏ ⇠ N (0, I) (4.6)

Similar to Variational Autoencoder [46], this step introduces another random variable ✏

as a source of randomness and applies scale and shift on ✏ to derive s which resulted in

a deterministic objective function.

4.2.5 Utilize Neighbor Documents (NbrReg+Doc)

The NBrReg model generates a semantic vector from the distribution that depends only

on the pivot document. However, the neighbor documents also provide useful signals to

enhance representation learning. For instance, a set of words used by neighbor docu-

ments could indicate a theme of all documents in that region. However, the additional

words from neighbor documents are noisy and may confuse the models. To alleviate the

influence of bad signals, we use the feedforward neural networks to learn a hidden vector

for every document in the neighbor document set and apply a mean pooling layer to

compute the centroid of the neighborhood. We modified Eq.4.33 to accommodate the

neighbor documents:
2
https://ermongroup.github.io/cs228-notes/extras/vae/

3f� is similarly defined.

https://ermongroup.github.io/cs228-notes/extras/vae/
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Z
NN = relu

�
W

NN
2 · relu

�
W

NN
1 · NN(d) + b

NN
1

�
+ b

NN
2

�
(4.7)

hNN(NN(d)) = mean(ZNN) (4.8)

fµ(d,NN(d)) = Wµ · (h(d) + hNN(NN(d)) + bµ (4.9)

Eq.4.9 is an encoder function that adds a hidden vector of the pivot document (From

Eq.4.4) with a centroid of its neighborhood. The decoder remains the same as NbrReg

model. Consequently, the model takes both pivot and neighbor documents as well as

reconstructs the input back. The objective function is the same as Eq.4.1.

4.2.6 Binarization

We use the encoder function Q(s|·) to generate a continuous semantic vector for a new

document d. We take the mean of the encoder function as the output semantic vector,

s̄ =
⇥
Q(s|·)

⇤
. We use the median method [95] to generate binary code b from s̄. That

is we set the k
th bit of b to 1 if the k

th dimension of s̄ is larger than the threshold;

otherwise, we set the k
th bit to 0. We determine the threshold value by computing the

median value of the semantic vector in the training set.
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4.3 Experimental Setup

We use four public text collections for evaluations. 1) Yahoo! Answers
4 We select

the ten largest categories and use question title, content, and the best answer. The final

dataset has 207,261 documents . 2) AG’s news
5 We select the four largest categories

and use the title and description. The resulting data set contains 132,912 news articles.

3) DBPedia
6 We select 14 largest classes and sample 107,559 Wikipedia articles. 4)

20Newsgroups
7 A text collection for text classification comprised of 18K forum posts

on 20 topics. For each dataset we split into three subsets with 80% for training, 10%

for validation, and 10% for testing.

We compare the performance of the proposed models with the following unsupervised

semantic hashing models: VDSH8 [12], STH9 [100], Laplacian co-hashing (LCH) [99],

Spectral Hashing (SpH) [95], and Locally Sensitive Hashing (LSH)10 [18]. We used cross-

validation to select the hyperparameters for the baselines. The size of the neighborhood

for SpH, STH, LCH, and our models is set to 20. Since our goal is to demonstrate the

effectiveness of the proposed models without using supervisory signals, we do not include

supervised text hashing models. We also include the BM25 model as the additional

baseline.
4
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l

5
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

6
http://wiki.dbpedia.org/Datasets

7
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html

8
https://github.com/unsuthee/VariationalDeepSemanticHashing

9STH, LCH, SpH: http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/

sth_v1.zip

10
http://pixelogik.github.io/NearPy/

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://wiki.dbpedia.org/Datasets
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
https://github.com/unsuthee/VariationalDeepSemanticHashing
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip
http://pixelogik.github.io/NearPy/
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DBPedia YahooAnswers (Yahoo)

Method 8-bits 16-bits 32-bits 64-bits 128-bits 8-bits 16-bits 32-bits 64-bits 128-bits

LSH [18] 0.0904 0.1040 0.1385 0.1815 0.2506 0.1037 0.1066 0.1107 0.1215 0.1406

SpH [95] 0.4246 0.6083 0.6877 0.6879 0.6787 0.1430 0.1710 0.2204 0.2416 0.2195

LCH [99] 0.2484 0.4556 0.6663 0.7527 0.7907 0.2149 0.3593 0.4559 0.5158 0.5323

STH [100] 0.2381 0.3734 0.5589 0.6903 0.7812 0.2991 0.3808 0.4627 0.5138 0.5304

VDSH [12] 0.6289 0.6951 0.7783 0.8068 0.8588 0.3636 0.4291 0.4611 0.5094 0.5212

NbrReg 0.6775N 0.7540N 0.8250N 0.8489N 0.8683 0.4179 0.4682N 0.5087N 0.5298 0.5396
NbrReg+Doc 0.6144 0.7437N 0.7996N 0.8238 0.8373O 0.4078 0.4565N 0.4964N 0.5163 0.5255

20Newsgroups (20NG) AgNews
LSH [18] 0.0533 0.0558 0.0587 0.0635 0.0720 0.2557 0.2620 0.2713 0.2948 0.3271

SpH [95] 0.0548 0.0567 0.0896 0.1286 0.1218 0.3687 0.4082 0.4359 0.4671 0.5011

LCH [99] 0.1804 0.3075 0.4255 0.4801 0.4688 0.7363 0.7689 0.7789 0.7913 0.7913

STH [100] 0.2337 0.3415 0.4132 0.4340 0.4142 0.6922 0.7541 0.7977 0.8181 0.8243

VDSH [12] 0.2905 0.3125 0.3346 0.3364 0.3874 0.7078 0.7173 0.7471 0.7868 0.8071

NbrReg 0.3463N 0.4120N 0.4644N 0.4768 0.4893N 0.7446 0.7831N 0.8114 0.8299 0.8320
NbrReg+Doc 0.3910N 0.4470N 0.4898N 0.5118N 0.5265N 0.7315 0.7984N 0.8149 0.8233 0.8316

Table 4.1: Precision of the top 100 retrieved documents on four datasets with dif-

ferent numbers of hashing bits. The bold font denotes the best result at that number

of bits. N or O denote the improvement or degradation over the best result of the

baselines is statistically significant based on the paired t-test (p-value < 0.05).

We train the models using training samples and use the encoder function to generate

binary codes. We use the Hamming distance to retrieve 100 closest training documents

for each test query. Similar to prior works [99, 12, 60, 93], a training document that

shares the same label with the test document is considered relevant. We employ average

Precision at 100 (Prec@100) which is the ratio of relevant documents over the number

of retrieved documents. We report the average Prec@100 over all test documents.

4.4 Experimental Results

Table 4.1 presents the performance of all models from 8 to 128 bits. On the large dataset

(DBPedia, Yahoo, AgNews), the NbrReg model outperforms the baselines while the

NbrReg+Doc model yields the best results on the small dataset (20NG). These results
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demonstrate that the weak signals generated by BM25 are helpful in learning binary

codes.

We observe that NbrReg excels in the large datasets, which indicates that as long as we

have enough data encouraging a semantic vector to recognize its neighborhood is more

effective than using the neighborhood as the input. Interestingly, the NbrReg+Doc

model performs extremely well on 20NG. We believe that when the training set is

small, NbrReg+Doc uses more data than NbrReg by taking neighbor documents as an

additional input. This allows NbrReg+Doc learns a better representation.

The performance is correlated with the number of bits. As the number of bits increases,

the models can pack more relevant information into a semantic vector. When the number

of bits is 8 or 16 bits, our models generally perform better than the models that do

not use the document’s contents such as STH and LCH. This shows that utilizing the

contents is useful under a very low-dimensional constraint. Our models also outperform

VDSH model on most configurations. It shows that the neighbor documents as side

information are useful signals for the learning models.

Figure 4.1 shows the performance of our models as we vary the size of the neighborhood.

When we train the models with more neighbor documents, the models generate better

binary codes. One explanation is that as we increase the size of neighborhood, we

explicitly preserve more information in the document space. However, the performance

does not improve after we reach the neighborhood size of 50. We also compare the

performance of our models with BM25 model. It shows that our models outperform
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Figure 4.1: Precision@100 for various neighborhood sizes on the proposed models

with the 32-bit hash code.

BM25 on the document similarity retrieval task because both NbrReg and NbrReg+Doc

keep only important information via the dimensional reduction while BM25 model keeps

all words and contains more noise.

4.5 Conclusions and Future Work

In this paper, we proposed two deep generative models for text hashing by utilizing

weak signals generated by the unsupervised ranking model BM25. Based on the ex-

perimental results, we found that explicitly preserving the content of documents and

neighborhood is an effective strategy for learning binary codes. In the future, we would

like to investigate different kinds of signals from other inexpensive external data sources
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such as click-through data. Another promising direction is to extend our models for the

semi-supervised learning setting.



Chapter 5

Node2Hash: Graph Aware Deep

Semantic Text Hashing

5.1 Introduction

A spectrum of machine learning methods have been proposed in text semantic hash-

ing [92]. Recent research has shown that leveraging supervised information can lead

to high-quality hashing, but the cost of annotating data is often too prohibitive to

apply supervised hashing. Deep learning based approaches have also been explored

and demonstrated promising results [12, 73]. While considerable research has been de-

voted to semantic hashing, most existing approaches only learn the hash codes from

the content of the documents and treat each document separately and independently.

However, in many applications, documents are often related to each other. For example,

71
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a research paper may cite another publication as a reference; a webpage may have a

hyperlink pointing to another page; two documents may have the same author or be

originated from the same source, or the authors may come from the same community.

These explicit relationships between documents are pervasive in the text corpora, but

they are largely ignored in the prior semantic hashing work. Even in the absence of

such explicit connections, implicit relationships can be inferred such as the adjacency

and proximity of documents in the original space. Therefore, we can view a text cor-

pus as a graph with nodes representing documents and edges capturing relationships

between documents. With the graph, we can go beyond “one hop" information about

directed linked entities and utilize more global information, such as multiple-step paths

and K-degree neighbors of a given vertex. We call this different structural information

as graph context inspired by textual context utilized in learning a word representation

[68].

In this chapter, we propose a novel unsupervised probabilistic model for text semantic

hashing by utilizing graph context, called node2hash. The proposed model is based

on the deep generative modeling framework (DGM) [76, 46] which is the marriage of

deep learning and probabilistic generative models. Consequently, node2hash enjoys the

useful properties of both learning paradigms and provides three key advantages for our

task in particular. First of all, the probabilistic formulation of node2hash provides a

natural principle to incorporate graph context into the hash modeling by assuming a

generative process for the neighborhood of the document of interest. Secondly, many

existing hashing techniques need to learn hash codes in batch mode, which requires
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observing all the documents during training. The generative modeling formulation of

node2hash allows a principled way to generate hash codes for unseen documents that

have no connection to any training document. Thirdly, node2hash employs deep neural

networks to be able to learn complex and subtle mappings from the original documents to

their compact hash codes. This allows individual codes to be fairly general and concise

but their intersection to be much more precise. For example, nonlinear distributed

representations allow the topics/codes “government”, “real estate” and “entertainment”

to combine to give very high probability to the word “Trump”, which is not predicted

nearly as strongly by each topic/code alone. The contributions of our work can be

summarized as follows.

1. We propose a graph-aware deep text hashing model, called node2hash1. To the

best of our knowledge, this is the first work that explicitly models documents and

their connections for semantic hashing.

2. node2hash is an unsupervised hashing method that combines the advantages of

generative modeling and deep learning. Different from much existing work, it

can generate binary codes in online mode for unseen documents that have no

connection to any training documents.

3. node2hash is applicable to a wide range of applications and datasets where explicit

connections are observed or implicit ones can be inferred. Moreover, it goes beyond

one-hop connections and utilizes more global graph information.
1The datasets and our source code publicly available at https://github.com/unsuthee/node2hash

https://github.com/unsuthee/node2hash
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4. Our comprehensive experimental results on five datasets with explicit connections

and two with implicit ones demonstrate the effectiveness of node2hash over the

competitive baselines.

5.2 Methodology

5.2.1 Problem Description

This section describes a document similarity search problem. We use graph terminology

to describe a text corpus and the relationship between documents. The corpus is defined

as an undirected graph G = (Dtrain, E) where Dtrain is a set of documents in the training

set, node d is a document represented as a bag-of-words vector (we use the TFIDF

weighting scheme [65] in the experiments). and E is a set of edges which stands for a

relationship between two documents. Nbr(d) is a neighbor of d which is a set of visited

nodes traversed by a traversal function T
(m) starting at node d and visits up to m unique

nodes.

We are interested in learning a hash function h(d;⇥) from G. The hash function pa-

rameterized by ⇥ that maps a bag-of-word vector d to a compact binary vector b.

Specifically, h : RV ! 0,1L where V is the vocabulary size and L is the dimensionality

of the semantic space. A user has query document dq and would like to retrieve the K

most similar documents from Dtrain. Since query document dq could be an unseen doc-

ument whose connection with the training documents is not observed, only the content
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Notation Description
Dtrain a set of training documents
d a bag-of-words document vector

Nbr(d) a set of neighbors of d
h(d;⇥) a hash function h : RV ! RL

b a binary vector generated by h(d;⇥)
⇥ parameters of function h
dq a query document
bq a query document as a binary vector
V vocabulary size
L dimension of the semantic space
s semantic vector of d
wi one-hot vector of ith word
aj one-hot vector of jth neighbor document

Table 5.1: Notations in node2hash model

of dq is used. The hash function h(d;⇥) generates a binary code bq for the train and

query documents. Finally, we use the hamming distance which is the number of bit dif-

ference between two binary codes to retrieve the K
th nearest documents. All notations

are summarized in Table 5.1.

5.2.2 node2hash

In this section, we present node2hash, a deep generative model that leverages both doc-

ument content and graph connectivity. Inspired by textual context utilized in learning

a word representation such as word2vec where surrounding words define each word,

we utilize graph context where its neighbors in the graph can define each document.

Specifically, we assume there exists a low-dimensional semantic representation s 2 RL

underlying each document that selects its neighbors. Meanwhile, this semantic repre-

sentation may also determine the choice of the words observed in the given document.
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In other words, each word wi in the document and the ID of its neighbor document aj

are assumed to be governed by the shared semantic vector s. Here wi 2 {0, 1}V is the

one-hot vector representation of the ith word of the document where V is the vocabulary

size. Similarly, aj 2 {0, 1}N is the one-hot vector representation of the j
th neighbor of

the document where N is the total number of documents in the training corpus. The

generative process of the document and its neighborhood can be described as follows:

• For each document in the corpus, draw a latent semantic vector s from the stan-

dard Gaussian distribution P (s) = N (0, diag(1))

– For each word in the document,

⇤ Draw the i
th word wi from P (wi|s)

– For each neighbor of the document,

⇤ Draw the ID of the jth neighbor document, aj, from neighbor distribution

P (aj|s)

The generative process couples document content and neighborhood through a shared

semantic vector s which can be viewed as capturing the topics of the documents (unlike

traditional topic models, the semantic vector is not normalized). In the existing litera-

ture, the topics are typically learned from co-occurrence of the words in the document.

Here we also attempt to learn them from the co-occurrence of the documents (i.e., neigh-

bors) in the graph context. The document content and neighborhood information can

reinforce each other to learn a better semantic vector/topics jointly. We set the prior
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distribution to be the standard Gaussian distribution, which essentially assumes that

all dimensions of a semantic vector are uncorrelated, centered at zero with a standard

deviation of one. This prior distribution would simplify the derivation of the posterior

distribution. Moreover, it encourages the bits in the hash code are uncorrelated so that

the next bit cannot be predicted based on the previous bits, which is a desirable property

in semantic hashing [95].

5.2.2.1 Word Generation Distribution P (wi|s)

Inspired by the Skip-gram model in word2vec [68], we model the word generation prob-

ability P (wi|s) as follows

P (wi|s) =
exp(uT

i s+ bi)PV
j=1 exp(u

T
j s+ bj)

(5.1)

where ui is the word embedding of the i
th word wi and bj is a bias term that represents

the word importance. In word2vec, similar word vectors are assigned to those words

that are more likely to appear in the same context. The probability of word wi given its

context is proportional to the similarity between the word embedding ui and its context

vector. In our case, the semantic vector s can be viewed as the context. Eqn.(5.1)

defines a discrete probability distribution that couples the semantic vector s with the

word embedding by encouraging s to stay closer to the observed words in the document.

The Softmax function would force the distribution to be sparse [31]. This choice of

normalization is appropriate for document modeling because there is only a small portion
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of words in the vocabulary that are seen in a given document. The probability mass

should concentrate more on these observed words. It is worth noting that more complex

function can be used to model P (wi|s) in node2hash, while we choose Eqn.(5.1) in the

experiments for its simplicity and effectiveness demonstrated in word2vec. By assuming

the words in a document being independent with each other, the conditional probability

of the document given its semantic vector can be factored as:

P (d|s) =
MY

i=1

P (wi|s) (5.2)

where M is the number of words in the document d.

5.2.2.2 Neighborhood Generation Distribution P (aj|s)

A relationship between documents can help infer the semantics of the documents. For

example, a research paper that cites another publication may imply the semantic re-

latedness between these two documents. It is reasonable to assume that the semantic

vectors of the related documents should be closer than those of unrelated ones. It has

been shown that the node co-occurrence sampled by random walk behaves similarly

with the word co-occurrence [72]. Hence, similar to the word generation probability

in Eqn.(5.1), the conditional probability of a neighbor document ai given the semantic

vector s of the target document can be defined as:

P (ai|s) =
exp(qT

i s+ ci)PN
j=1 exp(q

T
j s+ cj)

(5.3)
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where qi can be viewed as the neighbor embedding vector of ai. N is the total number

of documents in the training data. Again, the Softmax function forces P (aj|s) to be

sparse, which is desirable since the number of neighbors is often much smaller than the

total number of nodes in the graph. It is worth nothing that calculating Eqn.5.1 and 5.3

could be computational expensive. There are some works that employ noise-contrastive

estimation to sample negative instances [85] or approximate the softmax function [69]

that we will explore this direction in the future work.

Based on the conditional independence assumption of neighbors, the probability of all

the neighbor documents Nbr(d) given the semantic vector s of the target document can

be factorized as:

P (Nbr(d)|s) =
KY

i=1

P (ai|s) (5.4)

where Nbr(d) = {a1,a2, · · · ,aK} is a set of one-hot encoded vectors for K neighbors.

The proposed model requires neighbor documents for learning a useful binary code.

Given the fact that a set of documents can be viewed as a graph, each node is a docu-

ment, and each edge is a relationship. Given a pivot document d, any node that directly

connects to d is an intermediate neighbor which is one hop away from d. In addition,

a neighbor document could be a node that is multiple hops away from d. Hence, we

define a set of neighbor documents as any document that is only a few hops away d.

However, this set could be large for a dense graph.
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Therefore, we need a good neighborhood sampling method to sample nearby documents

so that the model can capture both local and global structures of the network. The

local structure refers to the interconnection between documents. It assumes that the

documents that belong to the same community should have similar embeddings. The

global structure concerns the structural role of the document in the network [32]. For

example, a highly cited research paper has many connections which could be viewed

as a hub. An interdisciplinary research paper bridges two groups of research papers.

These roles of documents such as a hub or bridge should be considered when learning

a document vector. In particular, the documents that are far apart but have similar

roles in the network usually have similar embeddings. Without this knowledge, these

documents could have different embeddings.

There are three common sampling methods used in graph embedding: Depth-first Sam-

pling (DFS) [32], Breadth-first Sampling (BFS) [32, 83], and Random walk [10]. BFS

explores its intermediate documents first as it captures a global structure of the graph

while DFS tends to aggressively explore faraway documents to capture a local struc-

ture of the graph [32]. The Random walk sampling attempts to balance between DFS

and BFS samplings. Section 5.4.4 investigates different types of sampling methods in

detail. Due to the neighbor sampling, node2hash can go beyond the immediate neigh-

bors and one-hop connections about directed linked entities. It can utilize more global

information, such as multiple-step paths and K-degree neighbors of a given vertex.
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5.2.3 Parameter Estimation and Inference

In this section, we present the parameter estimation and inference of node2hash. We

perform the maximum likelihood estimation on the following joint likelihood of docu-

ment d and its neighbors Nbr(d).

logP (d,Nbr(d)) = log

Z

s

P (d|s)P (Nbr(d)|s)P (s)ds (5.5)

However, computing Eqn.(5.5) is intractable due to the integration over all possible

semantic vectors. Based on the variational principle [46, 76], we introduce a proxy

distribution Q(s|d) and apply the Jensen’s inequality [31] to obtain the variational

lowerbound of Eqn.(5.5):

logP (d,Nbr(d)) �
Z

s

Q(s|d) log
✓
P (d|s)P (Nbr(d)|s)P (s)

Q(s|d)

◆
ds

=

Z

s

Q(s|d) logP (d|s)ds+

Z

s

Q(s|d) logP (Nbr(d)|s)ds (5.6)

�
Z

s

Q(s|d) log Q(s|d)
P (s)

ds (5.7)

= EQ(s|d)
⇥
logP (d|s)

⇤
+ EQ(s|d)

⇥
logP (Nbr(d)|s)

⇤

�DKL(Q(s|d)||P (s)) (5.8)
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Eqn.(5.8) is the objective function that has three competitive terms: 1) the expectation

of negative document reconstruction error; 2) the expectation of negative neighborhood

reconstruction error; 3) the Kullback-Leibler (KL) divergence [31] from proxy distri-

bution Q to prior distribution P . The first two terms measure how well the model

reconstructs the input document and neighborhood respectively from the learned se-

mantic vector s. The last term can be seen as a regularizer that penalizes the model

when the proxy distribution deviates too far away from the prior distribution.

Similar to variational autoencoder [46], we further define the proxy distribution Q(s|d)

as the multivariate normal distribution with a diagonal covariance matrix as below:

Q(s|d) = N (s; fµ(d), f�(d)) (5.9)

where fµ(d) and f�(d) are nonlinear functions that compute distribution parameters

µ and � from the input document d. They are deep neural networks in node2hash

and hence highly flexible function approximators. They are capable of learning complex

nonlinear distributed representations of the original documents. Because both Q and P

are Gaussian distributions, we can obtain the closed form of the KL term in Eqn.(5.8).

To avoid a clutter of notations, firstly we define µ and � as the mean and standard

deviation of Q computed by fµ(d) and f�(d) respectively. The subscript l denotes the

l
th dimension of the vector. The analytic form for the KL divergence is given by:
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DKL(Q(s|d)||P (s)) = EQ(s|d)
⇥
log

Q(s|d)
P (s)

⇤

= EQ(s|d)
⇥
logN (µ, diag(�2))� logN (0, diag(1))

⇤

= EQ(s|d)
⇥ LX

l=1

�
logN (µl, �

2
l )� logN (0, 1)

�⇤

= �1

2

LX

l=1

�
1 + log �2

l � µ
2
l � �

2
l

�
(5.10)

For the first expectation term in Eqn. (5.8), we cannot derive an analytic form. Similar

to VAE [46], we can use the Monte Carlo sampling method [31] as follows:

EQ(s|d)
⇥
logP (d|s)

⇤
⇡ 1

T

TX

i=1

logP (d|s(i)) (5.11)

where s(i) ⇠ Q(s|d) and T is the total number of samples. This approximation requires

us to draw s from Q(s|d) which makes it difficult to apply the backpropagation due

to a stochastic or sampling layers in Eqn.(5.11). The effective strategy for removing a

stochastic layer is to use a reparameterization trick [46, 76], which converts Eqn.(5.11)

into a deterministic function. Thus, s(i) can be computed as follows:

s(i) = e(i) � f�(d) + fµ(d) = fenc(d, e
(i)) (5.12)



Chapter 5: Node2Hash: Graph Aware Deep Semantic Text Hashing 84

where � is an element-wise multiplication. e(i) is the i
th sample from the standard

normal distribution: e(i) ⇠ N (0, diag(1)). This method scales and shifts e(i) by f�(d)

and fµ(d) so that it can deterministically create sample s(i) from e(i). Hence, this is a

deterministic function that generates a sample of semantic vector s from d and e(i).

With s from Eqn.(5.12), the objective function becomes:

L(d,Nbr(d), {e1
, e2

, · · · , eM};⇥)

=
1

T

TX

i=1

✓
logP (d|fenc(d, e

(i))) + logP (Nbr(d)|fenc(d, e
(i)))

�DKL(Q(fenc(d, e
(i))|d)||P (fenc(d, e

(i)))

◆
(5.13)

=
1

T

TX

i=1

✓
logP (d|fenc(d, e

(i))) + logP (Nbr(d)|fenc(d, e
(i)))

+
1

2

LX

l=1

�
1 + log �2

l � µ
2
l � �

2
l

�◆
(5.14)

This objective function can be optimized via backpropagation [31]. Typically, one sam-

ple (T = 1) is sufficient to learn a good representation [46].

Based on Eqn.(5.8), we can interpret node2hash as an encoder-decoder architecture with

two types of discrete outputs. A feedforward neural network encoder Q(s|d) compresses

document representation into a continuous semantic vector, i.e., d ! s; a softmax

decoder P (wi|s) reconstructs the document by independently generating the words
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x

+

Encoder Decoder

Decoder

Reparameterization

Document

Figure 5.1: Architecture of node2hash. The encoder Q(s|d) maps document d to the

distribution parameters µ,� of Q(s|d). The reparameterization trick applies scaling

and shifting transformation on Gaussian noise e to obtain semantic vector s. There

are 2 decoders: the top decoder generates word distribution while the bottom decoder

generates neighborhood distribution of the input document d.

s ! {wi}Mi=1; another decoder P (aj|s) independently generates the IDs of the neighbors

of the given document s ! {aj}Kj=1. Figure 5.1 illustrates the architecture of node2hash.

Encoder

Q(s|fµ(d), f�(d)) :

t1 = ReLU(W 1d+ b1)

t2 = ReLU(W 2t1 + b2)

µ = W 3t2 + b3

log� = W 4t2 + b4

s ⇠ N (µ, diag(�2))

Decoder

P (wi|s) :

gi = exp(uT
i s+ bi)

P (wi|s) =
giPV
j=1 gj

P (d|s) =
MY

i=1

P (wi|s)

Decoder

P (ai|s) :

ri = exp(qT
i s+ ci)

P (ai|s) =
riPN
j=1 rj

P (Nbr(d)|s) =
KY

i=1

P (ai|s)
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5.2.4 Binarization

A non-deterministic encoder fenc is useful for learning the model’s parameters because

it injects noise that prevents the model from overfitting. However, during a deployment,

it is more appropriate to have a fixed representation for each document. Thus, instead

of sampling semantic vector s from fenc, we take the mean of the encoder which is

E
⇥
fenc

⇤
= fµ(d) as the document representation.

The next step is to convert semantic vector s to binary code b. We follow the same

binarization method from [95, 93]. First, we compute semantic vectors for all train

documents. We denote matrix S 2 RN⇥L as semantic matrix where the i
th row is

semantic vector si of di. We compute a threshold vector t by computing the median for

each column (dimension) of S. Finally, the i
th bit of b is set to one if the i

th dimension

of s is greater than ti else zero. This thresholding method follows the maximum entropy

principle which yields a balanced partition of the dataset [95].

5.2.5 Discussions

In addition, we could model Eqn.5.4 by adding a weight (importance) for each neigh-

bor document. First, we assume that a set of neighbor documents Nbr(d) is gener-

ated by both semantic vector s and input document d. Then, we define the condi-

tional probability, P (Nbr(d)|s,d) =
QK

i=1 P (ai|s)P (ai|d). The log-likelihood becomes

logP (Nbr(d)|s,d) =
PK

i=1 P (ai|d) · logP (ai|s). The term P (ai|d) is a weight or im-

portance of neighbor document ai to document d. We could estimate this probability
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Dataset #Train #Test #Validation #Features #Classes #Edges Avg.Degree Connection
Cora 1,559 420 419 1,433 7 4,578 2.94 citations

Citeseer 1,983 335 335 3,703 6 4,560 2.30 citations

Pubmed 17,260 970 970 500 3 75,301 4.13 citations

Reddit 151,741 26,868 26,867 602 41 43,159,206 284.43 user community

DBLP 316,002 21,802 21,801 10,000 12 1,877,008 5.94 citations

NG20 9,551 3,151 3,150 13,300 20 191,020 20.0 implicit

AgNews 118,002 3,728 3,727 23,411 4 2,360,040 20.0 implicit

Table 5.2: Statistics of the datasets.

distribution by using a standard document distance such as a TFIDF vector with a co-

sine distance. By modeling the importance of neighbor documents, the model could be

more robust on the dataset with implicit connections. We plan to explore this approach

in the future work.

5.3 Experimental Settings

5.3.1 Experiment Design

To evaluate the generated binary codes, manually evaluating a large number of retrieval

results is time-consuming and expensive. We opt for using the datasets whose document

labels indicate the main theme of the document and evaluate the semantic similarity

between a query document and the K-nearest documents by comparing their labels. Fol-

lowing the same evaluation protocol from [60, 93], for a single-label dataset, a retrieved

document is relevant when it has the same label as its query document. For a multi-

label dataset, we measure the number of similar labels between a query document and

retrieved documents as a relevant score. We use precision and normalized discounted
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accumulate gain (NDCG) at 100 [65] as evaluation metrics which are commonly used in

the prior work on semantic hashing [93].

5.3.2 Data Collections

We conduct the experiments on four citation networks and one user community network

with explicit connections. The datasets are a directed graph because each publication

only has a list of cited papers (references). We convert the datasets to an undirected

graph by adding a reverse edge from the cited paper to the citing one. For the datasets

without explicit connections, we artificially construct the connections for each node by

using the cosine distance between the two documents represented by a TFIDF vector

and take the nearest 20 nodes as an adjacent node. We tried to set a threshold value of

cosine distance to obtain adjacent nodes, but the performance difference was negligible.

One can also try to dynamically construct connections according to the current model,

similar to the idea in [71], but it is not within the scope of this work.

Table 5.2 summarizes the statistics of all the data collections. The details of the datasets

are as follows. 1) Cora2: this citation network contains machine learning research papers

classified into one of seven machine learning topics. 2) Citeseer: a citation network

provided by the Citeseer database and pre-processed by LINQS3. 3) Pubmed4: a large-

scale citation network consists of research papers from the Pubmed database classified
2
https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz

3
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz

4
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz

https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
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into one of three Diabetes types. 4) Reddit5: the online discussion forum collected and

pre-processed by Stanford Network Analysis Project (SNAP) which contains Reddit

posts made in September 2014. This large-scale network dataset represents a user

community whose node’s label is subreddit [35]. 5) DBLP[84]: a large-scale citation

network extracted from the DBLP database 6. There are 12 conference categories which

are categorized by the Guide2Research database7. Each publication is described by

a TFIDF vector of its abstract. All the papers published before the year 2015 were

used as the training set. 6) 20Newsgroups (NG20): a popular text classification dataset

consisting of 18K forum posts on 20 topics. We use the BYDATE version that splits

training and test sets according to the posted dates 8. 7) AgNews: a collection of news

articles 9 gathered from more than 2,000 news sources by ComeToMyHead, an academic

news search engine. We used the pre-processed version10 which selected the four largest

categories and used a TFIDF vector to represent title and descriptions. We split the

original test set equally into the validation and test tests.

5.3.3 Baselines

We compared node2hash against the following five competitive baseline methods which

have been extensively used for text hashing in the prior work.
5
http://snap.stanford.edu/graphsage/#datasets

6“DBLP-Citation-Network V10" can be downloaded at https://aminer.org/citation
7
http://www.guide2research.com/topconf/

8
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html

9
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

10
https://drive.google.com/open?id=0Bz8a_Dbh9QhbQ2Vic1kxMmZZQ1k

http://snap.stanford.edu/graphsage/#datasets
https://aminer.org/citation
http://www.guide2research.com/topconf/
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://drive.google.com/open?id=0Bz8a_Dbh9QhbQ2Vic1kxMmZZQ1k
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• Locality Sensitive Hashing (LSH) [18] is a standard hashing baseline based on a

random projection. We used the implementation from NearPy11.

• Spectral Hashing (SpH) [95] is a competitive hashing method based on graph

partition. The implementation12 provided by the author was used. Since the

original code did not work on large-scale datasets, we used the Python version of

SpH13 on the Reddit and DBLP datasets.

• Self-taught Hashing (STH) [100] is based on spectral graph. The original imple-

mentation14 used the distance between documents as a document relationship.

We used a grid search to find the best number of neighbors ranging from 5 to 50

documents with a step size of 5.

• STH+Graph is the variant of the above STH model by considering explicit con-

nections between documents. Specifically, we use an explicit relationship such as

citations instead of the nearest documents to construct the affinity matrix where

each entry is the cosine distance. We used the same grid search strategy described

in the STH model to select the best number of neighbors.

• Variational Deep Semantic Hashing (VDSH) [12] is the state-of-the-art deep text

hashing model based on variational autoencoder. We use the implementation15

provided by the authors. The KL annealing rate is 1/5000 per mini-batch which

contains 100 document samples.
11
http://pixelogik.github.io/NearPy

12
http://www.cs.huji.ac.il/~yweiss/SpectralHashing/sh.zip

13
https://github.com/wanji/sh

14
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip

15
https://github.com/unsuthee/VariationalDeepSemanticHashing

http://pixelogik.github.io/NearPy
http://www.cs.huji.ac.il/~yweiss/SpectralHashing/sh.zip
https://github.com/wanji/sh
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip
https://github.com/unsuthee/VariationalDeepSemanticHashing


Chapter 5: Node2Hash: Graph Aware Deep Semantic Text Hashing 91

• node2hash is our proposed model. We use Adam Optimizer with a learning rate of

0.001 and the default momentum. We use the KL annealing technique [8, 81] with

the annealing rating of 1/5000 per mini-batch to prevent a component collapsing.

The mini-batch size is 100 samples. We choose the optimal neighborhood sampling

strategy for different datasets.

5.4 Experimental Results

5.4.1 Datasets with Explicit Connections

In this experiment, we evaluate our model on the five datasets with explicit connections.

Table 5.3 reports the experimental results. In general, node2hash achieves the best

performance across all the datasets and numbers of bits. This shows that incorporating

both document content and connections are useful for learning an effective binary code.

On the other hand, content information is also useful to learn the semantic meaning of

the documents. This is evidenced by the performance of VDSH, which is slightly better

than STH+Graph. It means combining both contents and connections is not trivial and

the careless combination may degrade the over performance. This shows that our model

can effectively leverage this information, resulting in superior performance.

The performance of node2hash is more significant when the number of bits is less than

128, and the gap becomes smaller on 128 bits. One possible reason is that node2hash

may experience the so-called “component collapsing problem" [81] that is also present
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Prec@100 NDCG@100

8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

Cora
LSH [18] 0.1909 0.1973 0.2122 0.2232 0.2500 0.5278 0.5357 0.5635 0.5872 0.6217

SpH [95] 0.2964 0.2846 0.2617 0.2459 0.2363 0.6371 0.6545 0.6430 0.6293 0.6278

STH [100] 0.3945 0.3724 0.3351 0.3001 0.2719 0.6775 0.6998 0.7037 0.6946 0.6825

STH+Graph 0.3219 0.3382 0.3461 0.3986 0.4015 0.6039 0.6361 0.6485 0.7034 0.7101

VDSH [12] 0.3329 0.3203 0.3144 0.3229 0.3864 0.6686 0.6824 0.6837 0.6950 0.7325

node2hash 0.4203† 0.4704† 0.4990† 0.5005† 0.5247† 0.6794 0.7502† 0.7728† 0.7763† 0.7895†
Citeseer

LSH [18] 0.1949 0.1977 0.2011 0.2215 0.2467 0.5400 0.5505 0.5601 0.5912 0.6322

SpH [95] 0.3640 0.3219 0.2987 0.2776 0.2677 0.6923 0.6835 0.6756 0.6707 0.6751

STH [100] 0.4441 0.4200 0.3710 0.3355 0.3026 0.7281 0.7329 0.7293 0.7309 0.7296

STH+Graph 0.3050 0.3244 0.3583 0.3730 0.3940 0.6190 0.6420 0.6743 0.7030 0.7290

VDSH [12] 0.4123 0.3673 0.3529 0.4150 0.4868 0.7285 0.7194 0.7136 0.7516 0.7729

node2hash 0.4481 0.4322 0.4570† 0.5020† 0.5420† 0.7414 0.7503† 0.7730† 0.7930† 0.8080†
Pubmed

LSH [18] 0.3973 0.4124 0.4874 0.5149 0.5870 0.7171 0.7330 0.7844 0.8089 0.8435

SpH [95] 0.4734 0.4978 0.5164 0.5289 0.5192 0.7555 0.7776 0.8008 0.8125 0.8166

STH [100] 0.5736 0.6132 0.6205 0.6274 0.6274 0.8061 0.8246 0.8346 0.8377 0.8380

STH+Graph 0.5514 0.6686 0.6863 0.7090 0.7043 0.7696 0.8427 0.8511 0.8595 0.8529

VDSH [12] 0.6335 0.6520 0.6893 0.7073 0.7182 0.8381 0.8553 0.8724 0.8838 0.8874

node2hash 0.7057† 0.7362† 0.7484† 0.7676† 0.7650† 0.8600† 0.8810† 0.8892 0.8978 0.8992
Reddit

LSH [18] 0.0600 0.0620 0.0740 0.0860 0.1090 0.2800 0.2780 0.3040 0.3190 0.3570

SpH [95] 0.0388 0.0429 0.0437 0.0479 0.0543 0.2253 0.2402 0.2420 0.2486 0.3134

STH [100] 0.0663 0.0761 0.0990 0.1286 0.1435 0.2708 0.2855 0.3107 0.3513 0.3671

STH+Graph 0.1956 0.3376 0.4045 0.4449 0.4634 0.3821 0.4622 0.5030 0.5215 0.5337

VDSH [12] 0.1550 0.1887 0.2080 0.2228 0.2344 0.4006 0.4475 0.4705 0.4832 0.5001

node2hash 0.3284† 0.4177† 0.4559† 0.4744† 0.4779 0.5475† 0.6257† 0.6594† 0.6704† 0.6740†
DBLP

LSH [18] 0.2990 0.2970 0.3000 0.3190 0.3440 0.5810 0.5830 0.5890 0.6080 0.6370

SpH [95] 0.5139 0.5660 0.5856 0.5903 0.5752 0.6991 0.7531 0.7681 0.7773 0.7764

STH [100] 0.5396 0.6015 0.6486 0.6698 0.6701 0.7259 0.7676 0.7940 0.8052 0.8060

STH+Graph 0.4747 0.5957 0.6504 0.6626 0.6767 0.6820 0.7597 0.7815 0.7904 0.7982

VDSH [12] 0.5687 0.6100 0.6322 0.6693 0.6867 0.7453 0.7798 0.7963 0.8153 0.8243

node2hash 0.6432† 0.6834† 0.7118† 0.7222† 0.7269† 0.7859† 0.8137† 0.8307† 0.8366† 0.8408

Table 5.3: Precision and NDCG of the top 100 retrieved documents with different

numbers of hashing bits on datasets with explicit connections. The bold font denotes

the best result at that number of bits. The superscript † denotes the improvement

over the best result of the baselines is statistically significant based on the paired t-test

(p-value < 0.05).

in variational autoencoder when the number of latent dimensions is small. The KL

term starts to incur more loss which often forces the model to stop learning or “turn

off" some of the latent dimensions to minimize the total loss. We notice that for most

datasets, node2hash’s performance peaks around 32 or 64 bits and there is no further
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Prec@100 NDCG@100
8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

20Newsgroups

LSH [18] 0.0535 0.0554 0.0581 0.0643 0.0738 0.3072 0.3156 0.3246 0.3462 0.3766
SpH [95] 0.0548 0.0567 0.0896 0.1286 0.1218 0.3066 0.3149 0.3667 0.4435 0.4512

STH [100] 0.2531 0.3360 0.3885 0.4070 0.3743 0.5238 0.6044 0.6511 0.6782 0.6868
VDSH [12] 0.2841 0.3166 0.3389 0.3262 0.3943 0.5868 0.6341 0.6581 0.6461 0.6800
node2hash 0.3335† 0.4422† 0.4804† 0.4884† 0.5003† 0.6051† 0.6858† 0.7145† 0.7215† 0.7225†

AgNews

LSH [18] 0.2579 0.2611 0.2725 0.2940 0.3315 0.6133 0.6197 0.6376 0.6680 0.7181
SpH [95] 0.3687 0.4082 0.4359 0.4671 0.5011 0.6772 0.6909 0.7200 0.7658 0.7983

STH [100] 0.5065 0.6515 0.7197 0.7769 0.8039 0.7400 0.8233 0.8648 0.8948 0.9080
VDSH [12] 0.6637 0.7209 0.7633 0.7869 0.8083 0.8347 0.8759 0.9010 0.9121 0.9212
node2hash 0.7177† 0.7941† 0.8210† 0.8335† 0.8371† 0.8618† 0.9008† 0.9166 0.9216 0.9236

Table 5.4: Precision and NDCG of the top 100 retrieved documents with different

numbers of hashing bits on the datasets whose connections are constructed by the

cosine similarity on the TFIDF vectors. The bold font denotes the best result at that

number of bits. The superscript † denotes the improvement over the best result of the

baselines is statistically significant based on the paired t-test (p-value < 0.05).

Figure 5.2: Precision at 100 for different distance functions on 20Newsgroups and

AgNews evaluated on node2hash. For a fair comparison, we use all immediate nodes

as a neighbor document.

improvement when increasing the number of bits. This implies that node2hash might

not use all the dimensions for the large binary codes.
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5.4.2 Datasets with Implicit Connections

The experiment in this section investigates if node2hash can leverage artificially con-

structed relationships. We compare our model against four unsupervised semantic hash-

ing models. We note that STH and STH+Graph are equivalent when the cosine distance

constructs document relationships.

Table 5.4 shows that node2hash has the best performance on both implicit connection

datasets in both evaluations metrics. Overall, the results suggest that node2hash can

leverage distance information as an additional data source. The performance is more

prominent when the number of bits is low. It is possible that when the embedding space

is limited, the model needs to be very careful to encode only relevant information. By

adding the distance information as the relationship signals, the model can focus more on

the common words among the documents within the same proximity in the bag-of-words

vector space.

We found that even the distance relationship is beneficial for a small dataset such as

20Newsgroups. The performance of VDSH on this dataset is not as good as STH. One

explanation is that STH model learns a binary code from the similarity matrix generated

by the cosine distance. Thus, STH effectively utilizes the implicit connections while

VDSH does not. However, we notice that the distance information seems to be less

relevant as the dataset is larger such as the Ag News corpus.
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5.4.3 Effect of Distance Functions on Implicit Connections

In this section, we examine the effect of the distance functions used for constructing

document relationships for the datasets with implicit connections. In particular, we

would like to know if our model is sensitive to particular distance functions. We use

the well-known distance functions such as the cosine similarity on TFIDF and BM25

vectors, and Language model (LM) with Dirichlet smoothing [65] to generate the edges

between the documents on 20Newsgroups and AgNews datasets. For BM25, we set

k = 1.2 and b = 0.75. For LM, we set µ to 2000. We use a standard TFIDF16 with

a sublinear TF scaling [65]. We limit the number of edges per documents to 20. The

results in Figure 5.2 show that all three distance functions have similar performances on

both small and large datasets. The results demonstrate that node2hash is not sensitive

to the choice of distance functions.

5.4.4 Effect of Neighborhood Sampling Methods

In this experiment, we study how neighborhood sampling methods affect the perfor-

mance of node2hash. Specifically, we evaluate node2hash on four datasets including

Cora, Citeseer, Pubmed, and 20Newsgroups and employ Depth-first Sampling (DFS),

Breadth-first Sampling (BFS), and Random walk to generate the neighborhood of the

training documents. We vary the neighborhood size from 1 to 100 and report the average

precision at 100 in Figure 5.3.
16
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfTransformer.html

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
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Figure 5.3: Precision at 100 for different neighborhood sampling methods on

Cora, Citeseer, Pubmed, and 20Newsgroups with the 32-bit hash code generated by

node2hash.

When the number of the neighborhood is small, DFS performs slightly better than BFS

and Random Walk on the datasets with explicit connections. The reason might lie in

the fact that DFS can reach more nodes that are multiple hops away from the source

node. As a result, it can capture the more global structure of the network than BFS

and Random Walk especially when the neighborhood size is small. However, DFS’s

performance degrades quickly when it moves too far away from the source node. The

results in Figure 5.3 consistently show that the DFS method is not effective when the

neighborhood size is too large.

On the other hand, BFS gives a higher priority to the nearby nodes. When the neigh-

borhood size is small, it cannot capture the global structure because it has to sample

the next nodes first. However, when the neighborhood size is large enough, BFS can

effectively approximate both local and global structures of the graph. Although BFS

performs exceptionally well on 20Newsgroups, its main drawback is that it requires more
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Figure 5.4: Precision at 100 for different sampling sizes used by Monte Carlo Sam-

pling Method in Eqn.(5.11) on Cora, Citeseer, Pubmed, and Dblp, 20Newsgroups, and

Agnews with the hash code generated by node2hash.

neighbor documents to be effective which may cause more memory consumption during

training.

The Random Walk method is a compromise between DFS and BFS. Its performance

is more stable than DFS when the neighborhood size is large while it has a similar

performance to BFS in the small neighborhood. The main advantage of this method is

its efficiency. There is no need to maintain additional data structures such as queues in

BFS or stacks in DFS during the training.

5.4.5 Effect of Monte Carlo Sampling Size

In this experiment, we investigate the effect of Monte Carlo sampling method on the

performance of node2hash. In particular, we vary the number of samples T from 1, 5, 10,
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Figure 5.5: Precision at 100 of binary and semantic vectors generated by node2hash

and evaluated on Cora, Citeseer, Pubmed, and Dblp, 20Newsgroups, and Agnews for

a various number of dimensions (hashing bits).

15, and 20 when computing the reconstruction error terms as described in Eqn. (5.11).

We report the precision at 100 in Fig. 5.4. Overall, there are no performance differences

among different sampling sizes. However, we observe a performance instability for the

8-bit hash code on Pubmed and Cora datasets. One possible explanation is that the

number of bits and the size of the test set of Cora and Pubmed datasets is small. Hence,

the evaluation result on these small test set may have a high variance.

5.4.6 Effect of Binarization

In this experiment, we investigate the effect of binarization on the performance of

node2hash. We perform a nearest neighbor search on semantic and binary vectors.

We use a cosine distance as a distance metric in a continuous semantic space and use

a hamming distance in a binary vector. Fig. 5.5 shows the precision at 100 with a
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Figure 5.6: Precision at 100 of all components in node2hash on Cora, Citeseer,

Pubmed, and Dblp, 20Newsgroups, and Agnews for various the hash code.

different number of hashing bits on various datasets. From these experimental results,

we have the following observations. First, there is an information loss in binarizing a

semantic vector to a binary vector. We have found that a semantic vector has a higher

precision at 100 than a binary vector. The simple binarization method used in our work

is unable to preserve all semantic information in a semantic vector. We may need to

employ a better binarization method to improve precision. Second, the performance gap

between binary and semantic vectors decreases as we increase the number of hashing

bits. One explanation for this result is that as the number of bits increases, a binary

vector can preserve more information from a semantic vector. Finally, the number of

dimensions of the semantic vector does not significantly affect the performance of the

model. One reason is that each dimension of the semantic vector can preserve more

information than a single bit.
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5.4.7 Effect of Text and Connection Information

This experiment studies the effect of text and connection information. We compare

the performance of 3 variants of node2hash: (1) text-only (2) connection only, and (3)

node2hash. Specifically, the text-only model has only the document decoder, while the

connection-only model has only the neighborhood decoder. Fig. 5.6 shows the precision

at 100 for all models. We found that for the datasets with explicit connections such as

Cora, Citeseer, Pubmed, and Dblp, the connection-only model has better precision at

100 than the text-only model. On the other hand, the connection-only model has less

precision than the text-only model on the datasets with implicit connections.

An explicit connection such as a citation has less noise than an implicit connection be-

cause each connection is manually annotated. Since the connection-only model learns a

document representation from more reliable information (explicit connection), it should

have a better performance than the text-only model. However, an artificially created

connection used in ng20 and agnews datasets introduces noise to the model. As a re-

sult, the connection-only model could learn from wrong information because it strongly

assumes that all nearby documents based on an implicit connection have the same se-

mantic meaning.

We found that text information is more reliable when the input dataset has no explicit

connections. For agnews dataset, the text-only model has much better performance

than the connection-only model. However, for ng20 dataset, the text-only model has

better performance on 32, 64, and 128 bits hash code. Since agnews is a much larger
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dataset, its text information is more reliable than ng20 dataset. The text-only model

produces a consistent performance across on hashing bits. Finally, node2hash has the

best performances because it couples both text and connections via a generative model.

These empirical results demonstrate that text and connection information complement

each other.

5.4.8 Qualitative Analysis

In this experiment, we visualize the binary codes to see if the semantics of the documents

are preserved. In particular, we use t-SNE [63] to project the 32-bit binary codes to

a two-dimensional space. We assign a unique color to each category and color each

point according to the ground truth labeling. Figure 5.7 illustrates the visualization of

the binary codes generated by STH+Graph, VDSH, and node2hash respectively on the

Pubmed dataset.

We can see from the results that node2hash and STH+Graph generally generate more

well-separated clusters than VDSH. The embedding space generated by VDSH has more

green regions mix with the red regions compared to the other two models. This is because

VDSH tends to generate binary codes that sitting insides a Gaussian sphere due to its

prior distribution [12]. This shows that the connectivity information guides the two

graph-aware models to map the related documents to the nearby location.

Figure 5.7(a) shows that STH+Graph generates many small clusters and its binary codes

are not as spread out as the binary codes generated by VDSH and node2hash. This result
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(a) STH+Graph (b) VDSH (c) node2hash

Figure 5.7: Visualization of the 32-bit binary codes by STH+Graph, VDSH, and

node2hash on the Pubmed dataset using t-SNE. Each point represents a document

and different colors denote different categories based on the ground truth.

Doc ID Connections Doc ID Connections
D800 D4798, D2766 D5064 D9333, D16550, D16756

Table 5.5: The document IDs of two sample documents and their neighbors in the

Pubmed dataset

shows that STH+Graph does not effectively utilize the embedding space because the

binary codes tend to concentrate in a small cluster. This may cause problems in practice

because multiple documents may be mapped to the same hash code. However, both

VDSH and node2hash can interpolate between multiple observed data points because

their binary codes are more stretched.

We sampled two documents and their immediate neighbors from Pubmed dataset to

see where these documents are mapped in the semantic space. Table 5.5 contains the

IDs of the sampled documents and their neighbors. Figure 5.7(c) shows that node2hash

maps sampled documents and their neighbors to the nearby locations while VDSH

and STH+Graph are unable to map the neighbor documents to the same location.

STH+Graph has a slightly better mapping than VDSH because it utilizes connectivity

information. VDSH only relies on the content information which may not be sufficient
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to learn a useful embedding space.

5.5 Conclusions and Future Work

In this paper, we proposed node2hash, a deep semantic text hashing model by seamlessly

integrating both document content and connections, which allows these two sources of

information to reinforce each other. node2hash enjoys both advantages of deep learning

and probabilistic models. There exists an underlying generative process in node2hash,

which yields a natural way to encode unseen documents that have no connection with

any existing training documents. The deep neural networks are embedded in the model

so that nonlinear complex hash functions can be learned. The significant performance

improvements over the competitive baselines suggest that incorporating both docu-

ment content and graph context is an effective strategy to learn binary codes. We also

demonstrate that node2hash is applicable to various datasets with the connections either

explicitly observed or artificially constructed.

This work is the first step towards a promising research direction. In the future work,

we plan to explore different deep learning architectures such as Generative Adversarial

Networks [31] for utilizing the graph context. We will extend the proposed model to

the supervised setting where labeled data may be available. Last but not the least,

we would like to develop deep generative models that can directly learn hash functions

without the need of binarization.



Chapter 6

Conclusion

6.1 Summary

In this thesis, we propose a series of deep generative models for semantic text hashing

that combine the advantages of both deep learning and probabilistic generative models.

The flexibility of the neural networks allows the encoder to learn a complex distribution

of text documents while the probabilistic generative models provide a principled frame-

work for a model extension, uncertainty estimation, and interpretability. We summarize

the proposed models below.

In Chapter 3, we propose the unsupervised learning model for text hashing, called Vari-

ational Deep Semantic Hashing (VDSH). VDSH learns a non-linear function (encoder)

to maps a text document into a low-dimensional vector while uses another non-linear

function (decoder) to preserve the semantic similarity between the documents.

104



Chapter 6: Conclusion 105

Although VDSH yields competitive results compared with many well-known unsuper-

vised semantic hashing models, it still cannot reach the same performance as the well-

known supervised models. With this observation, we propose two supervised text hash-

ing models: VDSH-S and VDSH-SP. VDSH-S adds a decoder that guides the encoder

generates a vector representation that preserves the document labels while VDSH-SP

extends VDSH-S by adding another encoder to separate the document-specific informa-

tion from a document vector. The evaluation results show that our proposed supervised

learning models outperform the state-of-the-art models.

In Chapter 4, we concern with the lack of hand-labeled data. Training the supervised

models on a larger corpus could be impractical because these models require a significant

number of labeled data. Instead of relying on a strong signal such as a hand-labeled

data, we utilize a weak signal, such as a distance score between two documents. Since

the weak signal can be easily obtained by training an unsupervised ranking model such

as BM25, we can improve our unsupervised learning models significantly. We propose

two unsupervised models to incorporate the weak signal. The first model, NbrReg,

extends VDSH by forcing the encoder to generate the common words found in the

nearby documents. NbrReg+Doc uses neighbor documents as an additional input to

the encoder. The evaluation results demonstrate our models effectively exploit the weak

signal and outperform many competitive unsupervised learning baselines.

In Chapter 5, we observe that in many applications, documents are usually related to

each other. These relationships between documents are pervasive in the text corpora.

Therefore, we improve our unsupervised learning model by integrating these document
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relationships. Our proposed model, node2hash, attempts to reconstruct the connections

among the related documents to influence the encoder to generate similar vectors for

those related documents. node2hash has outperformed many well-known state-of-the-

arts baselines on the many public graph datasets such as the citation networks and

community graph.

We describe a few key takeaways from this thesis. First, we assume that text documents

have similar semantic meaning if they share the same set of words. This assumption is

valid because many text documents usually contain the main idea to convey the readers.

Each word contains meaning, and a group of these similar words represents a theme of

the document. We exploit this fact by designing an encoder to capture these semantic

meaning of the document.

Secondly, we found that many K-nearest documents based on the unsupervised ranking

model, such as BM25, are semantically related. By observing these nearest documents,

we could be able to infer a theme of these documents. Hence, it is sensible to have

text documents within the same vicinity (according to the BM25) to have similar vector

representations.

Thirdly, the document relationships found in the citation networks or community graphs

are hand-labeled data. These data are more reliable and have less noise than the doc-

ument distance produced by unsupervised ranking models. Therefore, we can easily

leverage extra text information from the related documents based on the observed doc-

ument relationship.
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Finally, the use of neural networks to learn a complex distribution is a compelling idea.

This approach has been exploited heavily in many deep generative models, such as

GANs [30] or VAE [46].

6.2 Future Work

In this section, we discuss some future directions and challenges in semantic text hashing.

The main drawback of our proposed models is that the models embed a text document

into continuous latent space. The results from experiment 5.4.6 shows the performance

gaps between binary and continuous semantic vectors. This result suggests that bina-

rization potentially discards useful information from the continuous latent space. The

recent work by Shen [80] solves this problem by embedding a text document directly

into binary latent space and demonstrates the improved performances. Hence, we be-

lieve that training the model by including binarization as part of the model could be an

effective strategy for learning a binary representation for a text document.

The recent works in semantic hashing only focus on learning a semantic similarity among

text documents from the same corpus. The query document always shares many vocab-

ularies with the candidate documents. It is interesting to investigate the effectiveness of

the semantic text hashing in an ad-hoc retrieval task. The vocabulary gap could be the

main challenge because an input query can be arbitrary and may not share the same

semantic with the text corpus. Also, the application of ad-hoc retrieval is abundant in
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many e-commerce businesses. It is crucial to develop a semantic text hashing algorithm

in this domain.

Another main issue with this line of works is the evaluation protocol. Currently, we

use a document label as the ground truth. Specifically, we assume that a retrieved

document is relevant to its query when both documents share the same labels. In the

document ranking task, some documents that share the same label may not be relevant.

For example, in the news corpus, the label could be a topic such as politics or sports.

The news about the local football team is not always relevant to the news about the

local basketball team. Hence, the quality of the top-k retrieved documents could be

unacceptable. It is essential to carefully inspect the retrieved documents generated by

the semantic text hashing models. Furthermore, we need to push more efforts in creating

an evaluation datasets whose labels indicate whether the given pair of documents are

relevant or irrelevant.



Chapter 7

Appendix

7.1 ELBO

In this section, we show the derivations of the VDSH-SP model, the most sophisticated

one among the three models. The other two models can be similarly derived.

The likelihood of document d and labels Y is:

logP (d,Y ) = log

Z

s,v

P (d,Y , s,v)dsdv

= log

Z

s,v

Q(s,v|d,Y )
P (d,Y , s,v)

Q(s,v|d,Y )
dsdv
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Based on the Jensen’s Inequality [31],

logP (d,Y ) �Q(s,v) [logP (d,Y , s,v)� logQ(s,v|d,Y )]

= Q(s,v)[logP (d|s, v)P (Y |s)] +Q(s,v) [logP (s)

+ logP (v)� logQ(s, v|d, Y )] (7.1)

= Q(s,v)[logP (d|s, v)P (Y |s)] +Q(s,v) [logP (s)� logQ(s|d)]

+ Q(s,v)[logP (v)� logQ(v|d)] (7.2)

= Q(s,v)[logP (d|s, v)P (Y |s)]�Q(s|d)P (s)

� Q(v|d)P (v) (7.3)

= Q(s,v)[logP (d|s, v)] +Q(s,v) [logP (Y |s)]

� Q(s|d)P (s)�Q(v|d)P (v) (7.4)

= Q(s,v)

⇥ NX

i=1

logP (wi|f(s+ v; ✓)) +
LX

j=1

logP (yj|f(s; ⌧))
⇤

� Q(s|d;�)P (s)�Q(v|d;�)P (v) (7.5)

In Eqn.(7.1), we factorize the joint probability based on the generative process. Thus,

P (d, Y, s, v) = P (d|s, v)P (Y |s)P (s)P (v). In Eqn.(7.2), the variational distribution,

Q(s, v|d, Y ) is equal to the product of Q(s|d) and Q(v|d) by assuming the conditional

independence ofs, v, Y given d. Eqn.(7.3) and Eqn.(7.4) are the results of rearranging

and simplifying terms in Eqn.(7.2). Plugging the individual words and labels, we obtain

the final lowerbound objective function in Eqn.(7.5) (also in Eqn.(3.5)).

Because of the Gaussian assumptions on latent semantic vector s and latent private
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variable v, the two KL divergences in Eqn.(7.5) have analytic forms. We let µs and �s

are mean and standard deviation of s. µv and �v are similar defined. We use subscript

k to denote the k
th element of the vector. The following derivation is an analytical form

for a single KL divergence term:

Q(s|d;�)P (s) =Q(s) [logP (s)]�Q(s) [logQ(s|d;�)]

=
1

2

KX

k=1

(1 + log�2
s,k � µ2

s,k � �2
s,k) (7.6)

Q(v|d;�)P (v) can be derived in the same way. The expectation terms in Eqn.(7.5)

do not have a closed form solution, but we can approximate them by the Monte Carlo

simulation as follows:

Q(s,v)[logP (d|f(s+ v; ✓))] +Q(s,v) [logP (Y |s)]

=
1

M

MX

m=1

✓
logP (d|f(s(m) + v

(m); ✓)) + logP (Y |s(m))

◆
(7.7)

The superscript m denotes the m
th sample. By shift and scale transformation, we have

s(m) = ✏(m)
s � �s + µs. We denote ✏s as a sample drawn from a standard multivariate

normal and � is an element-wise multiplication. Also, v(m) is obtained in the same

way, v(m) = ✏(m)
v � �v + µv. By using this trick, we can obtain multiple samples of ✏

and feed them as the deterministic input to the neural network. The model becomes an

end-to-end deterministic deep neural network with the following objective function:
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L =
1

M

MX

m=1

✓
logP (d|f(s(m) + v

(m); ✓)) + logP (Y |s(m))

◆

+
1

2

KX

k=1

(2 + log�2
s,k � µ2

s,k � �2
s,k + log�2

v,k � µ2
v,k � �2

v,k) (7.8)
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