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Abstract 

The role of tree roots as stressors that contribute to physical weathering processes and 

thus soil generation remains an open question in critical zone science. While evidence suggests 

roots may be able to damage rock by accessing pre-existing fractures, where they can expand 

due to water uptake or generate forces on rock in response to wind gusts, these processes 

have not been investigated in temperate karst regions until now. I monitored forces at the root-

rock interface for an American elm and Hackberry tree between September 2019 and May 

2020. I used piezoelectric force sensors to determine if differences in species, tree size, the 

distance of roots from the tree, wind or precipitation conditions affected the frequency or 

magnitude of forces exerted by tree roots onto bedrock. I analyzed meteorological conditions in 

addition to root forces to examine the environmental controls on diurnal cycles of forces exerted 

on the bedrock and to identify how roots responded to wind gusts and rainfall events. Roots of 

both species exerted higher daily forces between the hours of 10:30 and 23:00, reaching daily 

maximum forces between 15:00 and 18:00, and exerting forces for approximately an extra hour 

during the fall and spring compared to the winter. I determined that temperature’s impact on 

vapor pressure deficit, which controls the rate of transpiration, was the primary driver of the 

timing of daily forces. Precipitation led to periods of higher forces, as the roots expanded due to 

water-uptake as well as reduced tree transpiration from lower VPD and solar radiation during 

rainfall events. Roots of greater size exerted increasing fluctuations in forces onto the bedrock 

in response to wind gusts and rainfall. American elm roots exerted forces on the bedrock more 

frequently during windy periods compared to the Hackberry roots. Variations in the root 

response to wind and precipitation events are hypothesized to be linked to contrasting rooting 

strategies between species and the specific functional role of individual roots in supporting the 

tree. My findings suggest that in warmer conditions, with more intense rainfall events, roots will 

exert greater forces on bedrock due to 1) increased temperature-controlled vapor pressure 



deficit and, 2) heavy rainfall-induced forces due to water uptake. These projected increase in 

forces suggest that in the karst landscape of Northwest Arkansas, tree roots may accelerate the 

physical weathering of bedrock. 
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1. Introduction 

Soil is one of the most vital materials on Earth, supporting and providing nutrients for 

crops, wetlands, and forests which we depend on for food, fuel, and raw materials; storing, 

filtering, and transporting rainwater; offering habitats for wildlife, domestic livestock, and micro-

organisms; and supplies the foundation and building materials for man-made infrastructure 

(Harrison et al., 2011). As issues regarding climate change persist, soil will prove to be an 

important resource that mitigates the impacts of extreme weather events, helps regulate Earth’s 

temperature, and stores large amounts of CO2 and other greenhouse gasses (Harrison et al., 

2011). Understanding the interconnected processes on the Earth’s surface and subsurface and 

their role in generating soil, sculpting the landscape, and building the foundation for terrestrial 

ecosystems is the primary goal of research within the “critical zone” – the near-surface layer that 

spans from the vegetation canopy to the solid unweathered bedrock below, where water, rock, 

and life meet and interact (Riebe et al., 2017). This permeable layer of Earth’s surface contains 

weathered rock (regolith) that is weathered and eroded in the subsurface, allowing it to become 

broken up into mobile material that is transported across the landscape as sediment (Riebe et 

al., 2017; Anderson, 2019).  

The physical damaging or weathering of rock is the initial step in detaching rock so that it 

can be converted into soil. This is accomplished by increasing the available surface area for 

reactions to occur and creating smaller particles that can be moved more easily, which 

promotes both chemical weathering and erosion (Anderson, 2019). However, our understanding 

of chemical weathering is much more comprehensive than that of physical weathering 

processes, especially in temperate landscapes where most of our understanding is conceptual. 

Physical weathering is generated as a result of stresses that damage the rock such as thermal 

expansion (Eppes et al., 2016), frost cracking (Rempel et al., 2016), mineral volumetric 

expansion (Goodfellow et al., 2016), and root growth (Pawlik et al., 2016). Through these 

processes, the properties of the rock such as strength, porosity, and hydraulic conductivity are 
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altered which directly affect the rate of mobile sediment production and hence the potential of 

rock being able to be detached into soil (Anderson, 2019). 

Rock is most often observed on the surface of the Earth breaking critically through 

destructive failure events, such as tree-throw and landslides, yet these are rare and often 

episodic, and research suggests subcritical forces also damage rock in many environments 

(e.g. Eppes and Keanini, 2017). The physical breakdown of rock stems from the propagation of 

cracks within the rock. These cracks propagate or grow once the “critical’ stress is reached that 

exceeds the strength of the rock, which is controlled by material properties such as tensile 

strength or fracture toughness (Eppes and Keanini, 2017). However, cracks also grow slowly 

and steadily over time – subcritically – from stress much lower than the critical stress of the rock 

(Atkinson, 1984; Eppes and Keanini, 2017). These subcritical stress conditions are likely to 

occur in all surface and near-surface rocks over long-term periods (101 – 106 years), during 

which these small stresses decrease the force needed to break the rock as the crack length 

grows (Eppes et al., 2016; Eppes and Keanini, 2017). Furthermore, subcritical stresses are 

additive, meaning that all these stresses accumulate together adding to the total stress exerted 

on the rock (Eppes and Keanini, 2017). Thus, over geologic time scales exceeding 101 – 106 

years, small forces can exceed the strength of the rock, causing it to crack sub-critically and will 

damage the rock (Eppes and Keanini, 2017). 

Current research has begun to identify the role that tree roots play below ground in the 

critical zone, yet many limitations still exist. The roots of trees can anchor the plant to the 

underlying substrate providing support as well as transporting essential nutrients and water in 

addition to aiding in biochemical processes key to their survival (Anderson 2019). While most 

research has explored how trees play a role in soil transport, removal, and stabilization acting 

as a source of soil cohesion (Dietrich and Perron, 2006; Gabet and Mudd, 2010; Pawlik et al., 

2016; Brantley et al., 2017), it remains unknown if roots have the ability to actually break rocks 

as a result of limited data availability (Anderson, 2019). Studies on the role of roots within 
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bedrock have found that although roots cannot physically penetrate solid bedrock, in 

environments with thin to no soil, they can access pre-existing fractures to access the bedrock 

at depths ranging from centimeters to many meters below ground (Zwieniecki and Newton, 

1994; Matthes-Sears and Larson, 1995; Hasenmueller et al., 2017). While previous work has 

observed root density, growth, and depth of trees growing into rock (Matthes-Sears and Larson, 

1995; Schwinning, 2008, 2013; Estrada-Medina et al., 2013; Ni et al., 2015; Phillips, 2016), all of 

these investigations fail to address the role of roots in physically applying forces onto the rock 

and propagating cracks further (Anderson, 2019).  

While some studies suggest roots can exert radial pressures of 0.51 – 0.9 MPa from root 

growth (Misra et al., 1986) and thus infer the ability of roots to widen joints within the rock 

(Pawlik et al., 2016), current research measuring the forces that trees exert on rock suggests 

that root growth pressures likely do not play a significant if any role on the rate of forces acting 

on rocks (Marshall, 2018). Marshall (2018) has identified that root forces exerted on rock is 

likely caused by water-uptake induced root swelling and wind-driven root movement acting on 

the rock. While water-uptake driven root forces are likely not sufficient enough to exceed the 

tensile strength of the rock, they can exert smaller forces on the rock and as suggested by 

Atkinson (1987), stresses on the rock as low as one-tenth of the tensile strength can lead to 

subcritical cracking. Additionally, during rarer windstorms, root forces caused by wind-driven 

movement may be able to exceed the tensile strength of rocks (Marshall, 2018). These findings 

imply that over the lifetime of an individual tree, which can be decades to centuries, subcritical 

forces exerted by tree roots via environmental stresses can lead to rock damage or fracturing.  

Trees absorb water through their root tips within the soil or surrounding bedrock (Meyer 

et al., 1973). Water is then transported from these root tips upwards through the roots, up the 

stem, and ultimately to the leaves through xylem ducts, the principal water-conducting tissue of 

the plant (Meyer et al., 1973). Diurnal variations in tree root and stem diameter are of regular 

occurrence, reaching minimum diameter when the water columns are under maximum tension, 
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becoming stiff and decreasing in diameter (Meyer et al., 1973). As a result of strong adhesion 

between water and the xylem duct walls, slight contractions occur in their diameter (Meyer et al., 

1973). Thus, the diurnal variations in tree diameter are from the alternate contraction of the 

vessels or tracheid’s when water is under tension, followed by dilation when the tension is 

relaxed which is controlled by replenishment and dehydration of the trees water storage (Meyer 

et al., 1973; Turcotte et al., 2011). “As a general rule, stem and roots contract in the daytime, 

when the transpiration and photosynthesis processes are vigorous, and expand at night when 

water reserves are gradually replenished” (Turcotte et al., 2011). 

For tree roots growing into fractures or wedged against bedrock, these daily changes in 

pressure on the bounding rock wall have the potential to induce subcritical stresses on the 

enfolding rock over the lifetime of the tree (Marshall, 2018). Transpiration of trees is controlled 

primarily by solar radiation, humidity, and temperature (Meyer et al., 1973). Solar radiation is the 

primary driver as transpiration cannot occur without the presence of sunlight, while humidity 

controls the rate of transpiration with greater vapor pressures leading to slower transpiration 

rates (Meyer et al., 1973). Furthermore, rises in temperature lead to an increase in the 

steepness of the vapor gradient through the stomate of the leaves, hence increasing 

transpiration (Meyer et al., 1973). Throughout the day, while transpiration is occurring rapidly, 

the rate of absorption of water cannot keep pace with the rate of water vapor loss from the 

leaves (Meyer et al., 1973). This results in an overall reduction of the water content within the 

entire plant during mid-daylight, before peak transpiration (Meyer et al., 1973).  

During the nighttime, water continues to move upwards after transpiration has ceased 

due to the residual negative water potentials of the leaf cells (Meyer et al., 1973). Water can 

also move both laterally in roots and the stem as well as downward from the leaves to the trunk, 

from areas of positive to negative water potential (Meyer et al., 1973). The rate of water 

absorption within the tree typically lags the rate of transpiration during daylight hours, with peak 

absorption rates occurring later in the day than peak transpiration rates (Meyer et al., 1973). 
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During the night, the rate of absorption is continuously higher than transpiration, however, these 

absorption rates are lower than the normal daytime rate (Meyer et al., 1973). 

In response to wind gusts, tree roots can exert forces on the surrounding bedrock as the 

tree sways, which will be further referred to as wind-driven root movement (Marshall, 2018). 

Trees rooted in thin, stony soils can experience root movement as high as 60 mm during large 

wind gusts imposing forces on the rock at the root-bedrock interface (Rizzo and Harrington, 

1988). Preliminary work at Critical Zone Observatories in California, North Carolina, and 

Colorado, measuring root-bedrock forces has provided insights on how tree sizes, species, and 

properties control the magnitude and frequency of forces that roots exert on the enfolding rock 

(Marshall, 2018). Tree sway is primarily controlled by tree properties including mass, elasticity, 

wood density, and canopy structure (Moore and Maguire, 2004). Furthermore, tall, wide trees 

will respond differently than small, thin trees, and similarly, trees with differing crown 

architecture will respond differently to wind gusts (van Emmerik et al., 2017). Tree properties 

such as elasticity, stiffness, mass, and canopy structure influence each tree’s response to wind 

gusts, hence, dictating the frequency and magnitude of wind-driven tree movement which exerts 

forces on roots embedded in surrounding rock.  

Progress on characterizing the ability of tree roots to physically weather bedrock and 

quantifying soil production mechanisms is limited by a lack of direct measurements of the forces 

exerted by trees. Marshall (2018) used force-sensors to measure the forces exerted by tree 

roots on the underlying bedrock along with precipitation, solar radiation, wind speed, and tree 

sway movement from accelerometers to determine the mechanisms that influence tree-driven 

bedrock physical weathering. In the absence of tree-throw, forces generated by roots that result 

from the trees swaying in response to wind gusts and root swelling as the trees take up water in 

response to rainfall and daily transpiration cycles are the dominant mechanisms by which trees 

can damage bedrock over the lifetime of the tree (Marshall, 2018). Furthermore, many 

questions remain, such as how the timing and the amount of rainfall influence the forces that are 
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exerted on the bedrock in response to water-uptake, as well as how individual tree species may 

respond differently. These driving questions and missing links in our understanding of exactly 

how trees can physically weather bedrock has led to the motivation for this study in the 

temperate karst landscape in Northwest Arkansas (Fig. 1). 

1.1 Hypotheses 

H1) Tree-driven forces exerted on the bedrock will increase throughout the night as 

water-uptake exceeds transpiration, increasing the diameter of roots and applying pressure to 

the surrounding bedrock. During daylight hours, tree-driven forces on the bedrock will decrease 

as transpiration exceeds water-uptake, causing the tree roots to shrink in response to water 

stress.  

H2) Tree-driven forces exerted on the surrounding bedrock will increase and remain 

greater following rainfall events as the roots swell due to additional water-uptake. 

H3) Larger trees will respond less frequently to wind gusts, exerting forces at a lower 

frequency onto the surrounding bedrock. On the other hand, slender trees will respond more 

frequently to wind gusts, exerting forces more often, at a higher frequency on the bedrock. 

H4) Tree roots further away from the tree will require large, persistent wind events to 

exert forces on the bedrock in response to wind-driven tree movement, as only very large wind 

events are expected to impart enough energy to induce root forces at far distances from the tree 

trunk.  

2. Study Design 

In this study, two trees were continuously monitored at a site in a watershed of mixed-

species, temperate deciduous trees over eight months from September 2, 2019, through May 2, 

2020. To test the four hypothesizes above, I installed force sensors on roots of an Ulmus 

americana (American elm) and Celtis occidentalis (hackberry) tree that have varying heights, 
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diameters at breast height (DBH), estimated stem mass, root diameter, and distance from the 

tree (Table 1). In addition, I measured environmental conditions including precipitation, short-

wave radiation, wind speeds, and temperatures. 

Table 1. Measured roots of this study along with their root characteristics, tree species, 
measured sizes, and wood properties. 

Root 
ID 

Root 
Diameter 

(cm) 

Distance 
from tree 

(cm) 
Tree 

Species 

Tree 
Height 

(m) 

Tree 
DBH 
(cm) 

Stem 
Mass 
(kg) 

Wood 
Density 
(g/cm3) 

Modulus 
of 

elasticity  
CH-1 7 40 Hackberry 28.2 51.6 5774.5 0.49 0.95 
CH-7 6 400 Hackberry 28.2 51.6 5774.5 0.49 0.95 

CH-4 7 77 
American 

Elm  12.9 34.7 1122.6 0.46 1.11 

CH-5 10 120 
American 

Elm  12.9 34.7 1122.6 0.46 1.11 
 

2.1 Site Description 

The Savoy Experimental Watershed (SEW) in Savoy, Arkansas is located in the mantled 

karst of the Springfield Plateau in the southwestern Ozark Plateaus (Fig. 1). This region has a 

temperate climate, characterized by mean annual temperatures of ~ 14°C, with the monthly 

mean temperature being the highest in July (~ 26°C) and lowest in January (~ 2°C), mean 

annual precipitation of ~ 117 cm/year, with the wettest month being May (~ 13.6 cm) (PRISM 

Climate Group, 2020). SEW is divided into six sub-watersheds with Basin-1 being the focus of 

most of the past research, being well-characterized and well-instrumented and is the focus of 

the current investigation (Fig. 1). While Basin-1 is underdrained by Langle and Copperhead 

Springs which form an underflow/overflow system (Brahana et al., 1999; Pennington, 2010), 

Copperhead Spring is where the trees in this study were monitored (Fig. 1, 2, 3). Copperhead 

Spring is the overflow conduit in the system, which experiences lower discharge rates and 

drains a much smaller portion of the drainage area of the watershed during low-flow conditions 

(Brahana et al., 1999; Pennington, 2010). However, during high-flow conditions, Copperhead 

has a more rapid and larger flow reaching up to 0.75 m3/s (Brahana et al., 1999; Pennington, 

2010).  
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Figure 1. Copperhead Spring field site (bottom) with the two trees being studied (marked with 
yellow arrows). The location of Copperhead Spring within SEW (top left) and the location of 
SEW in Arkansas marked with a star (top right) (Photo by Author). 
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Figure 2. Hackberry tree at Copperhead Spring and the two roots that were instrumented 
(indicated with yellow arrows) with force sensors at the root-rock interface (Photo by Author). 
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Figure 3. American elm tree at Copperhead Spring and the two roots that were instrumented 
(indicated with yellow arrows) with force sensors at the root-rock interface (Photo by Author). 
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2.2 Methods 

To quantify root forces on bedrock, I instrumented roots growing into or wedged between 

bedrock fractures at Copperhead Spring (Fig. 2, 3) with FlexiForce piezoelectric force sensors 

(Fig. 4). I measured the average forces exerted by trees onto bedrock over ten-minute intervals 

from September 2 – November 24, 2019. I then increased the sampling frequency to collect the 

average force over one-minute intervals on November 24, 2019 – May 2, 2020. These sensors 

are small (25.4mm long by 14mm wide and only 0.203mm thick), permitting them to be inserted 

between the tree-bedrock interface (Fig. 4), to collect measurements of forces exerted from tree 

roots directly onto the enfolding rock. All the force sensors in this study are attached to multi-

channel Campbell CR1000X dataloggers. 

 

 

Figure 4. (Left) Example of a FlexiForce piezoelectric force sensor being installed at the root-
rock interface and (Right) sensor dimensions (Photo by Author). 
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The FlexiForce sensors output resistance values that I converted into a voltage which 

can then be output by the datalogger using a half-bridge with a 3000 ohms resistor. I collected 

electrical output measurements as the ratio of voltage in / voltage out from the datalogger and 

converted the values back into resistance values in ohms using the equation: 

𝑅𝑅𝑠𝑠 =  𝑅𝑅𝑓𝑓  
𝑋𝑋

1 − 𝑋𝑋
 

where 𝑅𝑅𝑠𝑠 is the resistance of the sensors (ohms), 𝑅𝑅𝑓𝑓 is the feedback resistance of the resistor 

(3000 ohms), and X is the sensor output (voltage out / voltage in). Prior to deployment in the field, 

I created a force-resistance calibration curve (Fig. 5) for each sensor by measuring the 

outputted resistance from the sensor as force. I applied loads in increments ranging from 0.013 

– 4.4 kN using a load cell attached to a Universal Testing Machine (UTM). This allowed for an 

estimate of the amount of force at the root-rock interface, using the resistance values outputted 

by the sensors. Since these sensors are not meant to handle both static and dynamic loads 

occurring over different time intervals, it was not possible to predict the combination of loads 

such that I cannot accurately predict the drift of the sensors and calibrate the sensors 

accordingly in the lab. As a result, I used changes in resistance values as a proxy for changes in 

forces over time, as the actual force values of the sensors under field conditions do not match 

the calibrated values developed using a single type of load over time intervals of a few seconds 

in the lab. However, the outputted resistance values over short time scales still provide 

qualitative information about the magnitude of forces experienced at the root-rock interface. 
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Figure 5. Example of an existing calibration curve for a force sensor installed on a root of an 
American Elm tree at Copperhead Spring. 

 

To test the hypothesis (H3) that trees of different species, size, and tree properties will 

respond differently to wind gusts, I used a HOBO Wind Speed Smart Sensor (S-WSB-M003) to 

measure average wind speed and highest three-second gust speed over five minutes intervals 

from September 2 – November 24, 2019. I then increased the recording period to one-minute 

intervals after November 24, 2019, for better resolution, at the weather station located upstream 

of Copperhead Spring. I measured diameter at breast height (DBH) using a standard measuring 

tape and tree height (h) using a laser range finder. Wood properties of density (ρw) and the 

modulus of elasticity were taken from Green et al. (1999) and Chave et al. (2009). Wood density 

is often negatively related to the ability of wood to store and release water under tension (Chave 

et al., 2009). This suggests that trees with higher densities may take up less water, possibly 

exerting less force on the rock associated with mass changes from water uptake. The mass of 

the tree stem for each tree was estimated using a standard equation of a cylinder. Although 

these calculations do not include the tree crown, they can be used as indicative measurements 

to compare and explain the results from different trees. I used each of these tree properties to 
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help explain variations in wind-driven tree-forces that are measured with the force sensors at 

the root-bedrock interface. 

In addition, I recorded precipitation, solar radiation, humidity, and temperature 

measurements at five minutes intervals from September 2 – November 24, 2019, and one-

minute intervals after November 24, 2019, at the weather station. Measurements of solar (short-

wave) radiation were used to correlate with resistance values at the root-rock interface to 

discern daily variations in root forces associated with root-water uptake from changes in tree 

transpiration. Precipitation measurements were also correlated with resistance values at the 

root-rock interface to link fluctuations in root forces that result from increased water uptake 

during rainfall events ( Marshall, 2018). Vapor pressure deficit (VPD) was calculated using the 

temperature and relative humidity data. VPD is the difference between the air-water content and 

the maximum amount of water the air can carry at a given temperature. 

To determine if discharge at the nearby Copperhead spring was influencing the forces 

exerted by the roots onto the bedrock, primarily in terms of water uptake, discharge 

measurements were collected at the spring using weirs and submersible pressure transducers 

(Fig. 6) by Abby Rhodes, a researcher at the University of Arkansas. Discharge from the spring 

was used as a proxy for subsurface water flowing to each site throughout the investigation. 

Discharge measurements from the spring were used to identify flow patterns, rather than 

precise values, to determine how much water may be available from the subsurface or nearby 

stream for roots to uptake.  
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Figure 6. Weir installed at Copperhead Spring at SEW that was used to measure spring flow 
discharge along with Abby Rhodes who collected the measurements (Photo by Author).  

 

2.3 Sensor Temperature Sensitivity and Drift 

The output of the FlexiForce sensors, used to measure forces at the root-rock interface, 

can vary up to approximately 0.36% per change in degree Celsius (Appendix 1.2) from the initial 

temperature at which the sensor was calibrated in the lab (~ 21°C). This temperature sensitivity 

causes the output force readings to be higher (lower resistance) as temperature increase above 

21°C and output lower forces (higher resistance) the more temperatures decrease below 21°C 

(Fig. 7). To account for the effect of temperature sensitivity (± 0.36% per °C) I took the most 

conservative assumption (that temperature sensitivity was at its maximum) and corrected my 

resistance data using the equation: 
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𝑅𝑅𝑇𝑇 =  𝑅𝑅𝑆𝑆 + (𝑅𝑅𝑆𝑆 × �0.36% × (𝑇𝑇𝐼𝐼 − 𝑇𝑇𝐹𝐹)�) 

where 𝑅𝑅𝑇𝑇 is the corrected resistance for temperature sensitivity, 𝑅𝑅𝑆𝑆 is the output resistance of 

the sensor, 𝑇𝑇𝐹𝐹 is the average temperature in the field, and 𝑇𝑇𝐼𝐼 is the initial temperature when the 

sensor was calibrated. 

 

Figure 7. Adjusted resistance values (orange) compared to the original output resistance values 
(black), as temperature (blue) varies above and below the temperature at which the sensor was 
calibrated (light blue). In this example, the derived force value variation is very low as the 
resistance values recorded here are an order of magnitude higher than the lowest calibrated 
resistance for this sensor. 

 

The FlexiForce sensors, like all piezoelectric sensors drift, or change sensor output over 

a period of time, when a constant force is applied. The sensor drift causes the output resistance 

of the sensor to continually decrease (forces appear to increase) at a rate of < 5% per 

logarithmic time – with ‘time’ being determined by the expected time period over which a static 

load is applied (Appendix 1.2). Sensors are normally calibrated to account for this drift by 

applying loads at the known time scale at which loads will be applied in the field. However, in 

this study, the sensors are subject to static loads over multiple timescales that were previously 
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unknown before the completion of this study. For example, forces due to root swelling may 

increase over one-hour time periods (a dynamic load), but are generally steady over ten-minute 

time periods, while root forces may remain fixed over daytime or nighttime intervals due to cyclic 

water uptake and transpiration. However, these values are not easily segmented, given multiple 

drivers such as solar radiation, VPD, and temperature. Similarly, wind-driven root forces 

increase or decrease over the time scale of seconds. To correct for this, I have created an 

uncertainty bound of a 5% drift per several logarithmic time to determine the range of possible 

resistance values that could be possible, using the equation: 

𝑅𝑅𝐷𝐷 =  𝑅𝑅𝑇𝑇 + (𝑅𝑅𝑇𝑇 × �5% × (𝑙𝑙𝑙𝑙𝑙𝑙10(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)�)) 

where 𝑅𝑅𝐷𝐷 is the maximum boundary for possible resistance values when corrected for drift, 𝑅𝑅𝑇𝑇 

is the corrected resistance for temperature sensitivity, and the time since deployment is in both 

minutes and seconds. The uncertainty boundary of resistance values accounting for drift was 

calculated in both minutes and seconds (time since deployment). Calculating drift using seconds 

time scale would plot the greatest possible drift as time increases every second, while the 

minutes time scale is the same as the sampling interval and is a more likely case for the 

experienced drift. 

2.4 Data Analysis 

I used Python (version 3.7.4), a programming language, for all analyses described 

below. I calculated the first derivative of all data points for each force sensor in the time-series 

to observe the change in forces over time in response to wind gusts. The derivative of forces in 

this study is defined as: 

Δ𝑦𝑦
Δ𝑥𝑥

=  
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1
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where y is resistance (ohms) and x is time (minutes) between each adjoining data point in the 

time-series. Then I normalized the derivative values of force to obtain values between 0 and 1.  

The normalized derivatives of each force sensor were filtered for when wind gusts 

exceed 4 m/s, to identify how the forces were changing during periods of higher wind gust 

speeds. The value of 4 m/s was selected as the cutoff value for wind gusts as significant 

fluctuations tended to occur during winds of this speed. To qualitatively determine if the trees 

were responding to the wind gusts, I plotted the masked derivate values along with the full data 

set of derivate values along with the wind speeds, rainfall events, and temperature. This 

provides the opportunity to both compare the amount and time of changes in forces during 

higher wind speeds to times when no wind speeds were occurring as well as being able to 

determine if rainfall or temperature changes were occurring during these periods.  

 I resampled rainfall to a one-hour total rainfall to identify large rainfall events. This 

displays if many rainfall events occurred within the hour (i.e. high rainfall intensity) or just a 

single rainfall event (i.e. low rainfall intensity). To determine if there was any correlation between 

root forces and rainfall events, I masked the entire dataset for when any rainfall occurred. This 

created a separate dataset with only the force values when rainfall occurred, which was plotted 

on top of the original force values, showing the exact moment when rainfall happened.  

 To separate daytime and nighttime rainfall events, I masked the dataset when shortwave 

radiation was less than 1 W/m2 (no solar radiation) and when shortwave radiation was greater 

than 1 W/m2 (solar radiation). This separation of values, easily identified how values were 

changing during the day and at night and discerned how the diurnal variation of forces is shifting 

as solar radiation increases and decreases throughout each 24-hour cycle. By combining all 

three of these methods above, I determined visually how many times it rained throughout any 

given period, the times when rainfall was more intense, and whether it was occurring during the 

day or night.  
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To determine the timing of diurnal variations in root forces on the bedrock as well as 

environmental conditions including shortwave radiation, temperature, humidity, and vapor 

pressure deficit, I separated the entire dataset for every minute of the day and parsed into a 

single dataset for each minute of every day of the time-series. I then calculated the mean and 

standard deviation for each group of values occurring at each minute of the day, forming a 

1440-minute daily trend. For each month of this study, the daily trend was observed for the 

whole time-series of that month. Then to identify seasonal changes, I grouped months based on 

average Normalized Difference Vegetation Index value groups with fall containing September, 

October, and November; winter containing December, January, February; and spring consisting 

of March and April. This allows for the analysis of how the forces changed throughout a typical 

day of the month compared to environmental variables that tend to exhibit daily fluctuations as 

well. By analyzing from month to month and by season, seasonal changes in forces can be 

observed that occur from the fall before the leaves drop, in the winter when there are no leaves 

on the trees and the trees are overall less active, and in the spring as the trees begin to bloom 

and become more active.  

All correlations between weather variables and root forces were conducted using the 

PAST statistical software (Hammer et al. 2010). To determine the general correlation between 

all the variables in the dataset and the changes throughout the study period, I calculated 

Pearson’s r using all variables (excluding rainfall) for each month of the study (Appendix 3.1). 

Furthermore, I computed multivariate linear regressions using the force values as the 

dependent variables and the weather values as the independent variables. The multivariate 

linear regression identifies more directly (using all the variables) which weather variables are 

best correlated with each root force. 
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3. Results 

3.1 Environmental Variables and Root Forces 

 

Figure 8. Time-series of root forces represented as resistance (ohms) for all four roots in the 
study and meteorological data collected from September 2, 2019 – May 2, 2020. Root CH-5 
(dark green) is plotted on the right y-axis as the resistance values vary an order of magnitude 
from the other sensors on the rest of the roots in this study. Wind speed is plotted as average 
wind speed (light blue) and gust speed (dark blue). Gaps in the plot are due to periods with no 
data due to memory errors in the equipment. 

High Forces High Forces 
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 Throughout the study period of September 2, 2019, through May 2, 2020, the highest 

amount of precipitation and days of heavy rainfall occurred during the fall season, specifically 

during October where 58 rainfall events were recorded (equivalent to 11.6 mm of rainfall) over 

nine days (Fig. 8). May was the second wettest month with 37 rainfall events (7.4 mm of 

rainfall), with most of the rainfall occurring within five heavy rainfall days. January was the driest 

month, experiencing only 7 rainfall events (1.4 mm of rainfall) on five separate days. Wind and 

gust speeds were typically between 1 m/s and 2 m/s respectively, with gust speeds reaching as 

high as 23.7 m/s in the fall and 17.6 m/s in the spring. However, wind gusts throughout the 

study tended to only reach speeds of 10 – 12 m/s during windy days. The dominant wind 

direction was S/SSW for all months except for April where wind directions shifted to be 

dominantly WNW. Temperature and relative humidity tended to occur in an inverse fashion, 

where temperature increased while relative humidity decreased during the day and flipped 

during the nighttime (Fig. 9). Similarly, when large drops in temperature occurred, large 

increases in relative humidity occurred at the same time, which tended to occur before rainfall 

events (Fig. 9). Temperature was most strongly correlated with the far Hackberry root (CH-7) 

and the large American elm root (CH-5) and showed slightly weaker correlations with the 

smaller American elm root (CH-4), but no correlation was observed with the close Hackberry 

root (CH-1) (Appendix 3). 
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Figure 9. Temperature (orange), relative humidity (grey), and rainfall (pink bars) occurring from 
January 30 – February 8, 2020. Temperature increases as relative humidity decreases and 
during rainfall event a large increase in relative humidity occurs as temperature sharply 
decreases. 
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3.2 Timing of Root Forces 

 

Figure 10. Monthly mean diurnal cycle for shortwave radiation, temperature, vapor pressure 
deficit, and root forces for all four roots during each month of the study period. Daily variations in 
root forces are plotted to only show the change in average values, the change in amplitude is 
not shown. 

 

Peak forces for all roots typically occurred between the hours of 15:00 – 19:00. Peak 

shortwave radiation occurred between 12:00 – 13:00, while both peak temperature and VPD 

occurred between 14:00 – 16:00. The peak minimum forces (Tmin) tended to vary more between 

roots, tending to take place between 7:00 – 10:00. However, peak minimum daily temperature 

and VPD occurred between 5:30 – 7:30 (Fig. 10).  
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Table 2. Descriptive statistics of the monthly mean diurnal cycles presented in Fig. 9. The hour 
of the day that the average daily maximum (Tmax) and minimum (Tmin) force occurred for each 
root with their respective range in resistance values (amplitude) and associated standard 
deviation. 

Month Root ID 
Tmax (hour of 

day) 
Tmin (hour of 

day) Amplitude (ohms)  ± STDV 
September CH-1 19 9 509 521 

  CH-7 19 9 825 758 
  CH-4 16 24 1246 544 
  CH-5 0 16 79 20 

October CH-1 18 10 239 829 
  CH-7 16 9 1048 175 
  CH-4 16 8 1417 482 
  CH-5 19 9 80 6 

November CH-1 18 9 745 1665 
  CH-7 15 8 3061 128 
  CH-4 15 9 3131 111 
  CH-5 19 10 75 4 

December CH-1 15 8 1152 514 
  CH-7 15 7 2559 126 
  CH-4 15 10 3502 276 
  CH-5 18 8 67 10 

January CH-1 16 6 987 717 
  CH-7 16 9 1819 70 
  CH-4 16 10 3058 618 
  CH-5 18 9 55 2 

February CH-1 15 2 1656 987 
  CH-7 16 7 2237 176 
  CH-4 15 6 2296 100 
  CH-5 17 10 58 11 

March CH-1 15 6 2495 1717 
  CH-7 15 8 2089 7 
  CH-4 16 7 2994 374 
  CH-5 17 8 82 8 

April CH-1 19 7 1549 1190 
  CH-7 14 8 1300 191 
  CH-4 16 7 3790 502 
  CH-5 16 8 52 2 
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Table 3. The hour of the day that the average daily maximum (Tmax) and minimum (Tmin) 
shortwave radiation, temperature, and vapor pressure deficit occurred and with their respective 
values and standard deviation. 

Month Variable 

Tmax 
(hour of 

day) 

Tmin 
(hour of 

day) 
Max 
value ± STDV 

Min 
value ± STDV 

September 
SW Radiation 

(W/m2) 12 n/a 700 295 - -  
  Temperature (C°)  15 6 31 4 19 2 
  VPD (Pa) 16 6 1927 907 94 94 

October 
SW Radiation 

(W/m2) 12 n/a 540 265 - -  
  Temperature (C°)  15 7 20 7 9 6 
  VPD (Pa) 15 7 1014 650 72 64 

November 
SW Radiation 

(W/m2) 12 n/a 510 236 - -  
  Temperature (C°)  14 6 13 7 1 7 
  VPD (Pa) 15 7 744 461 52 44 

December 
SW Radiation 

(W/m2) 13 n/a 400 207 - -  
  Temperature (C°)  15 7 12 6 2 6 
  VPD (Pa) 16 6 640 420 96 79 

January 
SW Radiation 

(W/m2) 12 n/a 360 230 -  - 
  Temperature (C°)  15 6 10 6 2 6 
  VPD (Pa) 15 6 470 375 71 75 

February 
SW Radiation 

(W/m2) 13 n/a 450 286 - -  
  Temperature (C°)  15 7 10 6 1 6 
  VPD (Pa) 15 7 571 489 129 167 

March 
SW Radiation 

(W/m2) 13 n/a 570 290 -  - 
  Temperature (C°)  15 7 17 6 8 7 
  VPD (Pa) 15 7 571 620 129 135 

April 
SW Radiation 

(W/m2) 12 n/a 720 388 - -  
  Temperature (C°)  16 6 19 6 9 5 
  VPD (Pa) 16 6 1090 698 130 142 

 



26 

 

Figure 11. The length of time that the root forces exerted onto the bedrock was higher than the 
average throughout the daily cycle for each season and the length of time that solar radiation is 
active during each season (yellow). The bars represent the beginning and end of the time during 
the day (in hours on the x-axis) that the roots exert forces onto the bedrock during each season. 
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The roots of the Hackberry tree (CH-1 and CH-7) showed similar trends in their timing of 

forces on the bedrock. Both roots exhibited higher than average forces typically between 10:30 - 

23:00 throughout the study period. Furthermore, there was a shift in the amount of time the 

roots exerted higher forces on the bedrock as the seasons change. Forces were exerted for a 

longer period throughout the day in the fall (11 hours) and spring (11.5 hours) compared to the 

winter (10.5 hours) for each root (Fig. 11). The Hackberry roots also exerted higher daily forces 

on the bedrock later into the night during the fall and spring months compared to the winter (Fig. 

11).  

 The roots of the American Elm tree (CH-4 and CH-5) exhibited slightly different timing of 

forces throughout the day. The larger root (CH-5) exhibited higher than average forces for 

approximately 11 hours during the fall and winter, and the longest amount of time in the spring 

(12 hours), similar to the Hackberry roots (Fig. 11). The small root (CH-4) exerted forces on the 

bedrock for the shortest amount of time during the fall (8.5 hours), increasing into the winter (9 

hours) and spring (10 hours). The American Elm roots shifted their timing of higher forces 

throughout the study, beginning earlier in the day as the seasons' transition from fall to winter 

into spring (Fig. 11). Also, the large root exerted the longest period of higher forces on the 

bedrock during the day (11 – 12 hours) compared to any other root in the study, while the small 

root exhibited the shortest period of increased forces on the bedrock during the day (8.5 – 10 

hours).  

Daily averages of solar radiation also changed throughout the study period as the 

seasons changed. During the fall months, there was a relatively long period of solar radiation 

(6:00 – 18:00) and higher amounts (>800 W/m2). In the winter months, solar radiation is both 

the shortest (7:00 – 18:00) and the lowest (~600 W/m2). Similarly, to the forces, we see the 

longest period of shortwave radiation during the spring months (5:30 – 19:00) as well as the 

highest average daily values (~1000 W/m2). 
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3.3 Wind-induced Root Forces on Rock 

The root of the Hackberry tree that was monitored closest to the trunk (CH-1) rarely 

responded to wind gusts, displaying fluctuations in forces typically only when wind gusts 

exceeded 6 m/s, and with forces increasing as the gust speeds increased. This root also 

displayed occasional large increasing fluctuations in force when gust speeds exceed 8 m/s (Fig. 

12). Also, larger wind gusts tended to occur during rainfall events, which led to large increases 

in forces and even wind gusts as low as 5 m/s led to minor fluctuations in forces during the 

rainfall events even though the general trend of the forces was constant and high. The smaller 

Hackberry root monitored ~4 meters from the tree (CH-7), responded differently with the highest 

fluctuations in forces occurring during the day when wind gusts between 4 – 6 m/s were 

sustained for many hours (Fig. 12). Fluctuations in forces were the highest during constant wind 

gusts, where forces fluctuated more frequently and at a higher rate of change than CH-1 (Fig. 

12).   
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Figure 12. Hackberry tree roots (CH-1 and CH-7) forces and normalized change in forces 
(grey/red) during low, high, and sustained wind gust speeds. Force derivates in root forces are 
in grey when wind gusts are less than 4 m/s and when wind gusts exceeded 4 m/s are indicated 
in red. The yellow line indicates forces when solar radiation is active and black when it is 
absent. The grey region indicates the uncertainties in the possible range of calibrated force-
resistance curve values due to sensor drift under static loads over one-second (light grey) and 
one-minute (dark grey) log intervals. 

High Forces 

High Forces 
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The large root of the American elm tree (CH-5), showed the greatest response to wind 

events throughout the study period. This larger root exhibited minor fluctuations in forces in 

response to all wind gusts that exceeded 4 m/s and continued fluctuating at a much higher rate 

as wind gusts remained sustained for many hours or days. Larger fluctuations in forces arose 

when wind gusts exceeded 6 m/s or when hours of consistent wind gusts exceeding 6 m/s 

occurred, which caused much higher fluctuations (Fig. 13). Following rain events, although the 

forces decreased in general, many fluctuations of forces in response to wind gusts even at 4 

m/s occurred more often and larger than the typical fluctuations during non-rain days.  

The smaller American elm root (CH-4) below the tree required higher sustained gust 

speeds (typically exceeding 6 m/s) for the root to induce larger fluctuations in forces on the 

bedrock (Fig. 13). The fluctuations in forces on the bedrock became bigger when sustained 

wind gusts exceeded 10 m/s during the night or when sustained wind gusts exceeded 6 m/s for 

many hours after rain events ensued. However, CH-4 responded similarly to the Hackberry 

roots, with much lower changes in forces during windy days compared to CH-5 (Fig. 13). The 

co-occurrence of larger fluctuations in forces during no wind or rain days during the day time 

when roots normally exerted higher forces on the bedrock and the occurrence of intermediate 

winds made it difficult to determine the direct cause of these fluctuations (Fig. 13).  
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Figure 13. American elm roots (CH-4 and CH-5) forces and normalized change in forces 
(grey/red) during low, high, and sustained wind gust speeds. Force derivates in root forces are 
in grey when wind gusts are less than 4 m/s and when wind gusts exceeded 4 m/s are indicated 
in red. The yellow line indicates forces when solar radiation is active and black when it is 
absent. The grey region indicates the uncertainties in the possible range of calibrated force-
resistance curve values due to sensor drift under static loads over one-second (light grey) and 
one-minute (dark grey) log intervals. 

  

High Forces 

High Forces 
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3.4 Root-water Uptake 

 The root of the Hackberry tree that was monitored 0.3 m from the trunk (CH-1), 

responded much differently than the other three roots. Following any rainfall event, forces 

increased and remained much higher than normal, remaining higher anywhere from 12 hours to 

a full day (Fig. 14). This trend of continued higher forces was amplified when multiple rainfall 

events occurred in the following hours or days, remaining much higher until at least half a day 

transpired, then forces began to drop as it transitioned into the afternoon. The root of the 

American elm tree that was monitored 0.5 m below the tree (CH-4) responded similarly to the 

root of the Hackberry tree that was monitored 4 m from the tree (CH-7) during rainfall events. 

Both roots displayed increases in force following each rainfall event both during the day or at 

night. Yet these roots were much less affected and increases in forces were either much smaller 

or did not occur in response to rainfall events that followed the initial rainfall event. These roots 

showed their largest increase in forces when individual rainfall events were more than an hour 

apart, rather than continuous rainfall events. On the other hand, the American elm tree root that 

was the largest of the study (~ 13 cm in diameter) (CH-5) showed a much different response. 

This root displayed slight increases following heavy rainfalls or continuous rainfall events. 

However, the overall daily trend of forces exerted by this root was not greatly affected by 

rainfall, specifically individual rainfall events. Surprisingly, this root occasionally exhibited 

decreases in forces in response to rain events (Fig. 15). 
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Figure 14. Changes in root forces on the bedrock for the Hackberry roots (CH-1 and CH-7) over 
three days that experienced heavy rainfall followed by a large increase in discharge. The yellow 
line indicates forces when solar radiation is active and black when it is absent. The grey region 
indicates the uncertainties in the possible range of calibrated force-resistance curve values due 
to sensor drift under static loads over one-second (light grey) and one-minute (dark grey) log 
intervals. 

 

 

High Forces 
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During September and October, both CH-1 and CH-4 showed large increases in forces 

during rainfall events. The more rainfall that occurred during the rainfall event, the larger the 

increase in forces, then forces dropped back down afterward. CH-7 also displayed a generally 

similar trend but smaller increases in response to rain events, while CH-5 shows initial slight 

increases in forces when it rained, then a larger decrease in forces immediately after rainfall 

events.  

During January, CH-1 showed a much different response with forces being higher during 

rainfall events and remaining constantly higher as it continued to rain, even when there were 

multiple hours separating rainfall events, with forces decreasing many hours after the last 

rainfall (Fig. 14). Forces additionally remain much higher and only increase very slightly when 

there was a full day of no rainfall in between rainfall events. Forces tended to increase largely 

before the rainfall occurred, which coincided with both large temperature changes and large 

wind gusts, then show an increasing trend as it continued to rain but then stayed constant. 

Forces began to rise again and remain constant after it rained the next day. As it transitioned 

towards the spring months, longer times were required for the forces to return to the normal 

daily trend and typically stayed higher for multiple days following the rainfall events. If it rained 

every one to two days, the forces remained higher overall and there was not much change from 

day to night, staying relatively constant compared to the normal daily trend. Forces continued to 

overall increase as more intense rainfall occurred, yet forces tended to only increase very 

slightly by individual rainfall events during this time unless they occurred on separate days (i.e. 

we see an increase when it rained again a day later after the previous rainfall event) (Fig. 14).  

CH-7 exhibited a different response to rainfall than CH-1, with the daily variation in 

forces being diminished when it rained, and forces remained relatively constant. Forces began 

to drop a few hours after the last rainfall and the diurnal trend resumed the next day. Even when 

it rained two days later, the diurnal variation in forces still was lessened, returning to normal a 
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few hours after the last rain event. Forces tended to increase after it rained and the nighttime 

drop in forces became either much less than normal or stayed relatively constant throughout the 

night. Forces increased in response to rainfall events, even if the overall trend was still 

decreasing, both during the day and night (Fig. 14). When it rained during the day, an increase 

in forces occurred followed by a decrease, while rainfall into the night typically caused increases 

but not always. However, when it only rained at night, forces remained constant following the 

rainfall (Fig. 14). 
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Figure 15. Changes in root forces on the bedrock for American elm roots (CH-4 and CH-5) over 
three days that experienced heavy rainfall followed by a large increase in discharge. Yellow line 
indicates forces when solar radiation is active and black when it is absent. The grey region 
indicates the uncertainties in the possible range of calibrated force-resistance curve values due 
to sensor drift under static loads over one-second (light grey) and one-minute (dark grey) log 
intervals. 
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After January, the diurnal variation in forces for the small American elm root (CH-4) was 

lessened and responded similarly to CH-7. Few direct increases in force related to individual 

rainfall events occurred, but forces increased throughout the night and remained more constant 

rather than experiencing the normal nighttime decrease when rainfall occurred at night. Forces 

remained much more constant when it rained compared to CH-7 then began to decrease a few 

hours later (Fig. 15). During January, CH-4 diurnal variation in forces was diminished, then 

returned to normal a few hours after rainfall. When rainfall occurred at least two days after the 

first heavy rainfall day, forces remained relatively constant and the diurnal variation was still 

gone, until a few hours after the last rainfall. The large American elm root (CH-5) responded 

much less to rainfall than the other roots. The diurnal variation in forces was lessened in 

response to rainfall during the fall and winter, and transitioning into February, diurnal variations 

were less impacted, however, forces at night tended to stay constant instead of decreasing (Fig. 

15). Slight increases in forces during the day were observed when it rained and the typical 

nighttime decrease in forces was stopped when it rained during the night, yet no large increases 

in forces resulted from rainfall events (Fig. 15). 

Following heavy rainfall events, discharge at the nearby Copperhead spring increased 

greatly depending on the amount of precipitation and hence, the amount of water draining to the 

spring (Fig. 14, 15). Forces exerted by all roots, similarly, responded to heavy rainfall events 

typically by increasing forces and/or a weakening in the daily cycle (Fig. 14, 15). Roots CH-4, -5, 

and -7, all exhibit an increase in forces approximately 2 -3 hours following rainfall events that 

coincided with a secondary increase in the discharge (Fig. 14, 15). Yet, no other significant 

trends emerged between root forces and discharge variations. Furthermore, the forces exerted 

by the large American elm root and the far Hackberry root showed the strongest correlation 

between each other amongst roots in the study, while the small American elm root was slightly 
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less correlated with both roots. The close Hackberry root did not correlate well with any of the 

other roots or environmental variables (Appendix 3.1).  

4. Discussion 

In this section, I first discuss the daily and seasonal patterns of root forces, specifically 

looking into the role of temperature and solar radiation on tree transpiration, the potential 

freezing of sap within the tree, and differences between species. Next, I discuss how rooting 

strategies between species and the roles of individual roots dictate wind-induced fluctuations in 

root forces exerted on the bedrock. The third section examines rainfall-induced variations in root 

forces, exploring how precipitation causes root forces exerted on the bedrock, as well as 

differences between individual root function and species. Finally, I investigate projected climate 

change in Northwest Arkansas and its implications on root-generated damage to bedrock via 

subcritical and critical cracking.   

4.1 Daily and Seasonal Patterns of Root Forces 

Throughout the study (which does not include the summer months), longer periods of 

solar radiation and stronger solar radiation, as well as longer periods of higher than average 

daily forces in the fall and spring occurred. This suggests that during warmer periods of more 

available sunlight for transpiration and water-uptake lead to lengthier periods of increased 

forces on the bedrock. Additionally, the trees leafing out and being more active in the fall and 

towards the end of the spring, supports that the roots are becoming more active on a daily basis 

and exerting more forces on the bedrock in response to diurnal variations in water uptake. 

Higher than average root forces begin to occur between the hours of 10:30 – 13:00, while solar 

radiation began between 5:30 – 7:00 throughout the study (Fig. 10). This suggests that the trees 

studied do not begin to exert higher forces on the bedrock until 4 – 5 hours following sunrise 

and associated photosynthetically active radiation. As detailed below, I propose that significant 

water stress due to transpiration and higher solar radiation is required for roots to begin exerting 
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forces on surrounding rock in response to daily water uptake and that they continue to exert 

forces on the bedrock for anywhere from 2 - 4 hours following sunset, as the tree is still taking 

up water in response to the water loss that occurred during the day.  

4.1.1 Transpiration 

  Tree water transport research has documented that there is a lag in the rate of water 

absorption with the rate of transpiration during daylight hours (Meyer et al. 1973). Peak 

absorption rates of water from roots occur later in the day than peak transpiration rates and the 

rate of absorption is continuously higher than transpiration at night, although typically lower than 

the normal daytime rate of water absorption (Meyer et al. 1973). Water continues to move 

upwards in the tree during the night hours after transpiration has ceased due to the residual 

negative water potentials of the leaf cells from the previous day (Meyer et al. 1973). This 

suggests that as the tree roots absorb water from the soil or rock, lagging a few hours behind 

solar radiation, they exert higher than average daily forces on the bedrock from midday hours 

through the night. Furthermore, as the seasons' transition from fall to winter, when solar 

radiation and temperature, the two most influential controls on transpiration, are the lowest, we 

see a decreased period of root forces being exerted on the surrounding bedrock. During the 

spring months, solar radiation becomes stronger and occurs for longer periods of time, while 

temperatures become higher, and the trees begin to bloom again, which results in longer 

periods of higher root forces being exerted on the bedrock. These months of longer periods of 

forces being exerted correspond with the typical blooming times of both trees, where American 

elm trees begin to bloom between March and April while Hackberry trees bloom between April 

and May (Missouri Botanical Garden, 2020). While the American elm blooms before the 

Hackberry in general, visits to the field site indicated that both trees did not begin to grow leaves 

until approximately the same time in April. 
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Throughout the study, the strongest correlation occurred between temperature and all 

root forces except for the root instrumented close to the Hackberry tree (CH-1) (Appendix 3.1). 

For all roots during nearly every month, the timing of daily minimum and maximum daily peaks 

in force occurred anywhere from a few minutes to an hour before peaks in temperature (Fig. 10, 

Table 3, 4). This suggests that temperature via transpiration is the dominant environmental 

control on diurnal variations in forces during the fall through spring months, which constitute the 

period of this study. Also, rises in temperature lead to an increase in the vapor gradient through 

the stomate of the leaf, resulting in an increasing transpiration rate (Meyer et al. 1973). While 

many studies on the daily cycles of tree stem diameter variations in response to tree 

transpiration have found that trunks and roots expand during the night and shrink during the 

day, as transpiration demands exceed the water storage of the tree and refill during the night 

causing an expansion (Zweifel et al., 2001; Steppe et al., 2006), our results suggest an inverse 

trend that is heavily temperature-dependent. Similarly, studies including King et al. (2013), 

Turcotte et al. (2009), and Wang et al. (2012) have demonstrated in their findings that during 

fall, winter, and early spring months, diurnal stem and root diameter variations for both 

deciduous and evergreen trees experience an inverse diurnal cycle that was heavily dependent 

on changes in temperature.  

During the winter, there is a phase shift in the daily cycles of the maximum stem and root 

size to the late afternoon, suggesting that transpiration is no longer the primary driver of diurnal 

cycles in the winter and that temperature becomes the main factor in stem and root size 

fluctuations (Sevanto et al., 2006; King et al., 2013). While they observed this shift in diurnal 

variations from November through March (Turcotte et al., 2009; King et al., 2013), the roots in 

this study displayed this pattern primarily from October through April (Fig. 8). Seasonal changes 

in root diameter growth cycles are typically divided into three periods throughout the year that 

consist of winter shrinkage, spring rehydration, and summer transpiration (Turcotte et al., 2009). 
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The winter shrinkage cycle, typically beginning around November corresponds to a decrease in 

root radius and is associated with the onset of cold temperatures (Turcotte et al., 2009). During 

this time, as air and soil temperatures decrease, the normal diurnal cycle of root expansion at 

night and shrinking during the day is replaced by an inverted cycle. This is associated with 

nighttime shrinkage and daytime swelling of plant tissues, that are primarily controlled by 

temperature (Zweifel and Häsler, 2000; Tardif et al., 2001). Large increases and decreases of 

root forces (Fig. 16) associated with large temperature changes, were also found by Turcotte et 

al. (2009) in stem variations, yet they did not identify them in root diameter variations as their 

study location had snowfall which insolated the roots from these large fluctuations. The lack of 

snowfall during our study suggests that in regions that experience cold temperatures with an 

absence of snowfall, diameter variations in roots will be dramatically affected by fluctuations of 

air temperatures as there is no snow cover insolating the roots from the effect of temperature. 

This is further supported as Turcotte et al. (2009) found that even during the summer 

transpiration phase, the occurrence of cold temperatures caused a shift from normal daily 

diameter cycles back to an inverse cycle primarily in roots rather than in the stem after the snow 

cover was melted. 
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Figure 16. Root forces for both Hackberry (CH-7) and American elm (CH-4) with temperature 
(blue line) from January 15 – February 7, 2020, during periods of both high and low 
temperatures.  

4.1.2 Sap-freezing   

Changes in diurnal stem and root diameter examined in the winter have often been 

attributed to osmotic water movement caused by temperature changes around the freezing 

point of sap (Mayr et al., 2006). It is suggested that as the temperature reaches below 

approximately -5 °C, the extra-cellular water begins to freeze which initiates osmotic withdrawal 

of inter-cellular water that causes the stem and roots to shrink (King et al., 2013; Turcotte et al., 

2009). As temperatures rise during the day, this process is reversed and water starts to flow 

back into the cells, inducing stem and root expansion which dictates the daily maximum peak in 

the stem or root diameter (King et al., 2013; Turcotte et al., 2009). At this study’s location, 

temperatures did reach the sap freezing temperature, but not often and not during many of the 

months where this shifted diurnal cycle was experienced. King et al. (2013) found that at the site 

where temperatures rarely reached this sap-freezing temperature, the phase shift was relatively 

absent, suggesting that other factors may be causing this daily cycle at our site besides the 

freezing and thawing of sap within the tree.  

High Forces 
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4.1.3 Species Differences 

 Qualitatively analyzing diurnal changes in root forces throughout the study, during 

periods of higher temperature and solar radiation, root forces have a greater amplitude (Fig. 16). 

As temperatures and solar radiation decreased and remained lower as well as a reduction in 

plant growth during the winter, daily amplitudes in root forces become much smaller (Fig. 16). 

King et al. (2013) attributed this observation to increased canopy transpiration rates and water 

demands of the trees. The lack of correlation between the close Hackberry root (CH-1) and 

temperature (Appendix 3.1) and the generally smaller daily amplitudes in root forces suggests 

that roots located closer to the stem of this species may not be exploiting their internal water 

reserves as quickly. In contrast, the American elm root monitored closer to the tree experienced 

large daily amplitudes and was highly temperature-dependent suggesting this species may be 

able to access it’s internal water reserves. King et al. (2013) hypothesized that differences 

between the amplitude of stem diameter variations of species may be related to their root 

systems, where trees with deeper root systems can access additional soil water resources and 

rely less on their internal water reserves, resulting in smaller daily amplitudes in stem diameter 

fluctuations. Hackberry trees are considered more drought-resistant, having relatively deep root 

systems (Sprackling and Read, 1979), which suggest that this tree has deeper roots available to 

access soil or rock moisture and may explain that lack of large diurnal variation in root forces 

and lack of correlation with temperature. Conversely, American elm is a bottomland species that 

is not drought-resistant, with below-average depth/height ratios (Sprackling and Read, 1979). 

American elm trees have comparatively shallow and narrow root systems (Sprackling and Read, 

1979), positing that they may access their internal water reserves more quickly which could 

explain why both roots (CH-4 and CH-5) correlated strongly with temperature and experienced 

greater daily amplitudes in forces as temperatures increased. Although these species are 

known to exhibit different rooting strategies in soils, the extent of each species rooting depth in 
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this bedrock dominated environment is speculative without knowing how rooting depth may vary 

between soil or bedrock landscapes. Differences among species’ hydraulic strategies promote 

varying rates and patterns of transpiration, and it is not uncommon for trees of different species 

within the same ecosystem to employ opposing hydraulic strategies which have been largely 

linked variations in the rooting depth of co-occurring species, enabling drought-resistant species 

to access pools of water underground that may be unavailable to other nearby species 

(Canadell et al., 2007; Matheny et al., 2017). These findings suggest that in less drought-

tolerant species with shallow root systems, as large temperature-driven transpiration demands 

cause the roots to contract and expand more during the day, the larger variations in diurnal 

forces associated with temperature and transpiration may induce larger forces on the bedrock 

(Canadell et al., 2007; Matheny et al., 2017). 

4.2 Wind-induced Fluctuations in Root Forces 

 Although there was not an extremely strong response between wind events and any of 

the roots in the study, there is an evident difference in response between species and roots for 

each tree. The roots of the American elm tree demonstrate a relatively elastic response to wind 

gusts with more frequent fluctuations in forces while the roots of the Hackberry tree display a 

stiffer response to wind gusts exhibiting larger response to individual wind events. (Table 1) The 

American elm tree has a smaller DBH, and its wood is less dense, having a higher modulus of 

elasticity (Table 1). The Hackberry tree is much taller, with a larger DBH, and denser wood 

(Table 1). Furthermore, the Hackberry tree with an estimated truck mass nearly five times 

greater than the American elm and thus likely have a greater root system, presumably more 

structurally stable, with the roots only occasionally being affected by wind gusts. Additionally, 

given that the location of the roots I monitored on the American elm tree was closer to the truck 

of the smaller tree than those I monitored on the American elm, I speculate that proximal roots 

would likely record an increased response to wind. 
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 The large American elm root (CH-5) exhibited the largest fluctuations of forces in 

response to wind gusts in this study with forces fluctuating as wind gusts exceed 6 m/s, 

becoming larger as wind gusts increased. While the smaller, closer root (CH-4) below the tree 

exhibited smaller fluctuations in forces when wind gusts exceed 10 m/s during the day and 

when gusts exceed 6 m/s at night. The difference in responses between these roots can likely 

be attributed to their role and location relative to the dominant wind direction. The larger root 

was the only northeast-facing root of the study, hence being the only windward root for any of 

the trees in the study, as the dominant wind direction at this location is south/southwest 

throughout the whole study period. Given that large lateral roots coming directly off the trunk of 

the tree tend to provide much of the stability for trees, with windward facing roots providing 

much more stability than the other roots of the tree (Coder, 2010). My data suggests this may 

be the primary function of the large American elm root. 

 The root of the Hackberry tree monitored closer to the trunk (CH-1) showing smaller 

fluctuations in forces on the bedrock when wind gusts exceed 8 m/s and the root monitored 

nearly 4 m away from the trunk (CH-7) showing slightly larger fluctuations only during sustained 

wind gusts of 4 – 6 m/s, present an interesting find within my study. While it would be expected 

that the root instrumented at a closer location would respond more often, both roots show an 

overall very weak response to wind events. While wind-driven fluctuations in forces on the 

bedrock were very small, subcritical cracking is additive and the supplement of temperature and 

moisture-driven stresses on the rock (Eppes et al., 2016) as well could lead to significant 

damage to the surrounding bedrock over the lifetime of the tree (> 100 years). I further suggest 

that for species similar to American elm that exhibit a more elastic response to wind gusts, 

exerting constant fluctuations in root-forces on the bedrock for many hours may exert a greater 

degree of subcritical stresses on the rock, contributing to even greater rock damage over the 

lifetime of the tree.  
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 These differences in responses between the roots of different species may be a result of 

each species’ rooting system (McElrone et al., 2004). The higher response of the large lateral 

American Elm root is likely attributed to the shallow lateral root system of American Elm trees, 

especially in regions which high water-tables (Sprackling & Read, 1979) such as the Savoy 

Experimental Watershed, where the water table is near the surface. With most of the root 

system being shallow and spread laterally, these surface lateral roots, specifically the American 

elm roots in this study that were both instrumented within 1.5m of the tree base, likely 

experience much more movement in response to wind gusts (Coder, 2010). However, without 

direct measurements of the rooting system belowground, this can only be a hypothesized 

finding.  

4.3 Rainfall-induced Variations in Root Forces 

For all roots, rainfall events caused smaller amplitudes in daily forces, yet each 

responded slightly differently at the hourly scale. The large American elm root (CH-5) displays 

sharp decreases with each rainfall event followed by a relatively constant trend in forces on the 

bedrock, which indicates that the amplitude of the diurnal cycle of forces is being subdued. This 

suggests two hypotheses: 1) this large lateral root is primarily used for stability as it is growing 

upslope of the tree, further from the water table; or 2) while precipitation increases soil water 

availability, the branches, smaller roots, and leaves are directly intercepting and absorbing rain, 

reducing the need for the tree to need to access soil or rock water uptake at this location. The 

data from the smaller American elm root (CH-4) does show increases in forces exerted on the 

bedrock directly following rainfall, with gradual increases in forces that follow, which could be 

attributed to the root replenishing the water reserves in the tree as the soil moisture increases 

following the rainfall event (King et al., 2013). Thus, the large root function for stability rather 

than water-uptake is the more likely scenario to explain the difference in response between 

these roots (Coder, 2010).  
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 The weakened diurnal cycle of forces in response to greater amounts of precipitation 

was also observed by Turcotte et al. (2011), where contraction of the root is paused, and the 

root diameter begins to expand in size. While these studies monitored roots growing into soils, 

where roots are growing into bedrock (i.e. this study), this expansion of root diameters would 

lead to increased pressures on the bedrock. During rainy periods, clouds can reduce radiation 

and VPD which decreases the transpiration of the tree and hence, the demand for water from 

the leaves (Turcotte et al., 2011). These long cycles that form in response to precipitation are 

observed in most studies on tree stem diameter changes as well as with root diameter changes 

(i.e. Turcotte et al., 2011). While we hypothesized that rainfall would cause the roots to swell 

and exert higher forces on the bedrock, our results suggest there a variation in responses for 

roots, where the Hackberry root instrumented closer to the trunk exhibits high forces during 

these long cycles, while the Hackberry root instrumented further away and the small American 

elm root exhibited relatively higher forces, and the large American elm root exerts longer 

periods of lower forces.  

 The differing responses experienced between species, with generally higher magnitude 

forces occurring with the Hackberry tree following rainfall events could again be due to the 

species rooting strategies. Bottomland species such as American elm which are less drought-

resistant with relatively shallow root systems while Hackberry trees develop an extensive strong 

lateral root system as the tree becomes more mature, having developed most of its deep roots 

during the first ten years of growth (Sprackling & Read, 1979). Tree water supplies are 

replenished by root water-uptake from the upper layers of the soil/bedrock profile and the more 

extensive rooting system of the Hackberry tree may allow this tree to access more water from 

the subsurface soil-filled cavities and in the porous limestone as the soil is very shallow here 

and there is likely not much storage for water within this layer of epikarst (Jackson et al., 1999; 

Querejeta et al., 2007; Schwinning, 2010). Furthermore, with the American elm tree being 
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located above the Copperhead Spring cave and at a slightly higher elevation above the water 

table, the shallow root system may prevent some of the roots, specifically structural roots from 

access water within the soil following the rainfall.  

 Discharge of the nearby Copperhead Spring does increase in response to heavy rainfall 

events, yet there were no indications that the discharge influenced the root forces exerted on 

the bedrock (Fig. 14, 15). The increase in forces that occurred with roots CH-4, -5, and -7 that 

correspond to secondary increases in discharge approximately 2 -3 hours following rainfall 

events indicate there may be an influence on root forces associated with the lag of water 

transported from the head of the basin to the spring. However, it is ambiguous based on the 

data if the post rainfall increase in forces is a result of the timing of discharge to the spring or the 

lag in water-uptake from the roots in response to water being infiltrated to the subsurface. 

Studies have found that tree roots in karst regions take up water from caves beneath them 

(McElrone et al., 2004), however, I was not able to monitor roots that were accessing portions of 

the cave or spring. The small sample size of roots (n=4) and their surficial location and distance 

from the spring likely provides a bias in the attempt to link root forces to variations in spring 

discharge.  

4.3.1 Climate Change and Subcritical Cracking 

 All of the roots (except the large American elm root hypothesized to function primarily as 

the structural support of the tree), exhibit much higher forces being exerted on the bedrock 

overall in response to intense rainfall and when multiple rainfall events occur for consecutive 

days. Precipitation indices for this location (Zhang and Yang, 2004) including maximum 5-day 

precipitation amount (Rx5day), simple daily intensity index (SDII), and extremely wet days 

(R99p) all show strong increasing trends since 1980 (Fig. 17, 18, 19), indicating that more 

intense precipitation has been occurring over the past 40 years (Appendix 2). Trends of 

increased intense precipitation and higher forces exerted by roots on bedrock in response to 
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intense rainfall events imply that as the climate continues to change towards conditions of more 

intense rainfall events, we should expect an increased frequency of rainfall-driven forces on the 

bedrock. Subcritical forces work over long periods of time, relying on frequent small forces on 

the bedrock, as more rainfall-induced- high force events increase with intense rainfall the rate of 

rock damage may be increased in this region. However, although more intense rainfalls are 

expected to occur, there is no evidence that overall precipitation amounts throughout the year 

will increase. This has considerable implications towards the mechanical weathering processes 

on the rock as warmer and wetter conditions can increase the rate of subcritical stresses on the 

rock (Eppes and Keanini, 2017).  

4.4 Sensor Uncertainty and Drift 

 Many complexities arise from the use of novel approaches to answer unknown geologic 

questions, such as using piezoelectric force sensors to measure forces exerted by roots onto 

bedrock. I recognize that using low-cost sensors are not ideal for accurate measurements and 

not designed to provide long-term precision, however, they offer many benefits such as not 

disturbing the tree or rock being monitored and allow for measurements to be collected from 

multiple roots. While the measurements are not precise and the magnitude of forces cannot be 

accurately determined, the sensors provide a good temporal signal of the forces experienced at 

the root-rock interface. Accounting for the temperature sensitivity also demonstrates that the 

signal is not due to sensor response to temperature but rather tree response to variables such 

as VPD, solar radiation, water-uptake, and wind.  

Although I could not account for all the types of static forces and the time periods over 

which they occur during the calibration process to accurately determine the drift time scale of 

the sensors, this study reveals many insights into the timing over which tree-driven forces occur 

in a temperate, humid environment. This will enable future work to better account for the timing 

of loads experienced in the field so that accurate calibration of sensors can be conducted to 
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determine more accurate forces on the rock exerted by tree roots. The multitude of forces 

including those generated by wind gusts, rainfall-induced water uptake, and daily cycles of 

forces from tree transpiration and nighttime water uptake provide may different timescales at 

which static forces can occur on the rock. This encourages interdisciplinary work between 

researchers such as foresters, biologists, and eco-hydrologists who study tree responses to 

wind and water-uptake by roots so that known time periods of these forces can be accurately 

determined prior to deployment of sensors in the field and minimize the uncertainty of the drift 

values measured.  

 

5. Future Research 

This section identifies the limitations of our study and offers suggestions on how to better 

identify the processes that contribute to tree-driven stresses that could damage bedrock.  

1) This study primarily relies on assuming the timing of tree-water uptake in response to 

radiation –signaling diurnal water-uptake and rain events, yet the timing and influence of water 

availability for the trees at Savoy Experimental Watershed cannot be precisely determined. 

Future work should utilize multiple sap-flow meters and dendrometers located on the roots and 

on the tree stem to more precisely identify the diurnal fluid fluxes in the trees as well as the 

contribution of rainfall fluid to the roots which lead to swelling induced forces on the bedrock.  

2) Acoustic emission (AE) sensors have been previously used by Eppes et al. (2016) on 

boulders to identify cracking events within the rock due to environmental stresses. Marshall and 

Eppes (2019) used AE sensors installed on the bedrock in conjunction with force sensors 

installed at the root-rock interface to identify cracking events that result both from tree 

processes, environmental stresses, and the combination of both (Marshall et al., 2019). By 

incorporating this method, it would be easier to identify cracking events in the rock caused by 
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tree-driven stresses, differentiate environmental stress-induced cracking from tree-induced 

cracking, and finally, determine how the combination of both tree-driven stresses and 

environmental stresses (i.e. temperature and moisture) contribute to cracking bedrock.  

3) Ground-penetrating radar (GPR) has been shown to be an effective method to image 

the extent of tree root systems in soil and shallow bedrock, as the moisture and density of roots 

show a strong contrast with the surrounding soil and rock (e.g. Roering et al., 2010). Roering et 

al. (2010) utilized this method to determine large roots at depths as great as 3 m in thin soils (~ 

40 cm), proving that tree roots can occupy bedrock beneath the trees for many meters. Future 

work conducting GPR imaging at Savoy Experimental Watershed (e.g. Roering et al., 2010) 

would allow for the determination of the extent of the rooting systems for each of these trees 

within the bedrock, proving a proxy for the amount of bedrock that has the ability to be disturbed 

by tree-driven stresses that can damage or break-up bedrock.  

4) Accelerometers located at the base of the tree stem can be used to detect tree sway 

movement caused by wind gusts (James et al., 2006; Selker et al., 2011; van Emmerik et al., 

2017; Gougherty et al., 2018). Future work using accelerometers would offer the ability to more 

precisely observe if the tree is experiencing movement at the base during wind events. Tree 

sway measurements at the base of the tree would allow for more accurate determination if the 

tree is experiencing movement at the near-surface during periods of higher forces measured by 

the forces sensors on the roots. This would allow for the determination of tree sway in response 

to wind gusts is the driver of higher frequency forces that the roots are exerting during wind 

gusts, as well as determine how the trees are individually responding to wind gusts. Tree 

acceleration at the base of the trunk needs to be evaluated with the tree trunk and root forces to 

discern how much tree trunk movement from wind gusts translates into below-ground root 

movement, exerting forces on the surrounding bedrock.  
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5) After tree forces on to the bedrock and tree sway frequencies are quantified, trail-

cameras can be set up near each tree, with a camera facing the base and another facing the 

stem of the tree. Trail cameras offer the ability for long-term continuous monitoring of each tree. 

Trail cameras could prove essential to capture tree-sway movement on the video to compare 

with sway frequencies recorded by the accelerometers and the magnitude of root forces with the 

FlexiForce sensors to establish relationships between varying tree responses to wind and their 

resulting below-ground forces. Capturing video and extracting the spectral signature of 

frequency or magnitude of tree-sway will allow for studies such as this one to be upscaled to 

large forest swaths in the future without having to install sensors at each tree individually. 

 

6. Conclusions 

Tree roots for both American elm and Hackberry species in this study exerted higher 

daily forces on the bedrock for longer periods during the fall and spring compared to the winter. 

American elm roots and the Hackberry root instrumented 4 m away from the tree correlated 

strongly with temperature and maximum and minimum daily peaks coincide with the maximum 

and minimum daily peaks in temperature. Daily cycles of root forces exerted on the bedrock 

were primarily controlled by vapor pressure gradients caused by daily cycles of temperature 

during fall, winter, and early spring months. Hackberry tree roots with deeper root systems and 

being more drought-resistant correspond less to temperature and vapor pressure demands. 

Hackberry roots exhibited a stiff response to the wind as the tree is larger, has denser 

wood, and is known to have a more extensive root system to support the tree. American elm 

roots displayed an elastic response to wind gusts, fluctuating more often as the tree is smaller, 

less dense, and has a shallower root system as well as the roots being in closer proximity to the 

trunk. The stiff response of the Hackberry tree with discrete fluctuations in forces may not lead 
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to as much bedrock damage as compared to the elastic response of the American elm roots 

which can exert fluctuations in forces for many hours. 

Spring discharge and root forces both displayed an increase in response to heavy 

rainfall events, yet these processes do not appear to be linked to each other and are both a 

result of precipitation. The amplitude of the diurnal cycle of forces exerted on the bedrock is 

diminished for all roots in response to heavy rainfall or rainfall occurring for multiple days. This 

can be attributed to a combination of factors including the swelling of roots due to water uptake, 

but primarily to cloud formation that reduces solar radiation and VPD which decreases the 

transpiration of trees. Intense rainfall events are forecasted to occur in this area in the future, 

suggesting that trees such as Hackberry will exert more of these higher root force events in 

response to intense precipitation.  

The findings of this study suggest that both American elm and Hackberry roots have the 

ability to exert subcritical forces on the surrounding bedrock on a variety of timescales in 

response to environmental conditions. The contribution of small fluctuations in forces on a sub-

hourly scale to wind gusts, increases in forces in response to rainfall events as roots swell, as 

well as daily increases in forces from midday through night hours, have the ability to significant 

subcritical stresses on the bedrock. The additive combination from daily temperature stresses, 

rock moisture stresses, as well as warmer and wetter conditions resulting from climate change, 

suggests that tree roots growing into bedrock may significantly increase the rate of subcritical 

cracking, which drives the mechanical weathering of rocks and proves to be a great contribution 

towards soil production over the lifetime of a tree in bedrock-dominated environments.  
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8. Appendices 

Appendix 1.1 Weather Station Sensor Error and Limitations 

Sensor Error 
Measurement Accuracy Resolution 
Temperature ± 0.21°C 0.02°C 

Relative Humidity ± 2.5% 0.10% 
Wind Speeds ± 1.1 m/s 0.5 m/s 

Wind Direction ± 5 degrees 1.4 degrees 
Solar Radiation ± 10 W/m² 1.25 W/m² 

Rainfall   0.2 mm 
 

Appendix 1.2 Force Sensor Error and Limitations 

FlexiForce Sensor Performance 
Error < ± 3% 

Repeatability < ± 2.5% 
Hysteresis < 4.5% 

Drift < 5% 
Response Time < 5 µsec 

Temp. 
Sensitivity 0.36% / °C 

 

Appendix 2.1 Rainfall Indices Calculated in RClimDex 

“ClimDex is a Microsoft Excel based program that provides an easy-to-use software 

package for the calculation of indices of climate extremes for monitoring and detecting climate 

change. It was developed by Byron Gleason at the National Climate Data Centre (NCDC) of 

NOAA, and has been used in CCl/CLIVAR workshops on climate indices from in 2001.” (Zhang 

and Yang, 2004) 
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Appendix 2.2 List of Climate Indices 

ID Indicator name Definitions UNITS 

Rx5day Max 5-day 
precipitation amount 

Monthly maximum consecutive 5-day 
precipitation Mm 

SDII 
Simple daily intensity 

index 
Annual total precipitation divided by the number 
of wet days (defined as PRCP>=1.0mm) in the 

year 
Mm/day 

R99p Extremely wet days Annual total PRCP when RR>99th percentile mm 
 

Appendix 2.3 Indices Definitions 

1. Rx5day 
 
Let kjRR be the precipitation amount for the 5-day interval ending k , period j . Then maximum 5-

day values for period j  are: 

 
5 max( )j kjRx day RR=  

 
2. SDII 
 
Let wjRR be the daily precipitation amount on wet days, ( 1 )w RR mm≥ in period j . If W

represents number of wet days in j , then: 

 

1

W

w
wj

j

RR
SDII

W
=

=

∑

 

3. R99p 
 
Let wjRR  be the daily precipitation amount on a wet day ( 1.0 )w RR mm≥ in period j and let

99wnRR be the 99th percentile of precipitation on wet days in the 1961-1990 period. If W

represents number of wet days in the period, then: 

 
W

w=1
99  where 99j wj wj wnR p RR RR RR= >∑  
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Appendix 2.4 Rainfall Indices Plots 

 
Figure 17. Maximum five-day precipitation amount (RX5day) for each year at Savoy, Arkansas 
from 1981 – 2019. The y-axis is the total precipitation that occurred during the five wettest days 
of each month for the corresponding year (mm). 
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Figure 18. Simple daily intensity index (SD11) calculated for each year at Savoy, Arkansas from 
1981 – 2019. The y-axis is the annual precipitation divided by the number of days when 
precipitation was > 1 mm for each year (mm/day). 

 
Figure 19. Extremely wet days (R99p) that occurred during each year at Savoy, Arkansas from 
1981 – 2019. The y-axis is the amount of precipitation (mm) that occurred during the extremely 
wet days during each year. 
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Appendix 3.1 Monthly Correlation Tables Between Variables 

September Pearson’s r correlations and p-values. 

 

October Pearson’s r correlations and p-values. 

 

November Pearson’s r correlations and p-values. 
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December Pearson’s r correlations and p-values. 

 

January Pearson’s r correlations and p-values. 

 

February Pearson’s r correlations and p-values. 

 

March Pearson’s r correlations and p-values. 
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April Pearson’s r correlations and p-values. 
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