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ABSTRACT

This work employs tools and methods from computer science to study clusters com-

prising a small number N of interacting particles, which are of interest in science, engineer-

ing, and nanotechnology. Specifically, the thermodynamics of such clusters is studied using

techniques from spectral graph theory (SGT) and machine learning (ML). SGT is used to

define the structure of the clusters and ML is used on ensembles of cluster configurations

to detect state variables that can be used to model the thermodynamic properties of the

system. While the most fundamental description of a cluster is in 3N dimensions, i.e., the

Cartesian coordinates of the particles, the ML results demonstrate that sub-spaces of much

lower dimension can describe the observed structural motifs. Furthermore, these sub-spaces

correlate with meaningful physical variables such as radius of gyration rg and discrete con-

nectivity c, which can be used as state variables in thermodynamic property descriptions.

The overarching theme of this thesis is to develop the practice of utilizing data-driven com-

putational techniques to solve problems in natural sciences. Code for this project can be

found at https://github.com/AdityaDendukuri/DimReductionThermodynamics.
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1 Introduction and Background

Computational science is the practice of utilizing techniques from computer science

to study complex systems in engineering and sciences [1, 2, 3]. These complex systems tend

to be highly nonlinear with a large parameter space, which makes an analytical study of

these systems intractable. Hence, computers can be utilized to provide numerical solutions.

Examples of areas in science and engineering that benefit from computational science include

climate modeling [4, 5], bioinformatics [6], and molecular engineering [7, 8]. Until recently,

computational science has been primarily concerned with solving highly nonlinear differen-

tial equations like the Navier-Stokes equations for fluid flow. This field is called numerical

modeling and has a huge vibrant community [9, 10, 11]. The second face of computational

science, which is fairly new, focuses on data-driven analysis using tools from statistics and

data science. The dogma of this sub-field usually involves gathering data via computer simu-

lations (or experiment) and mining fundamental properties of the system from the data set.

Additionally, the recent surge in machine learning research strongly improved the prospect

of advancements in studying complex systems. For example, there have been strong ad-

vances in approximating the Koopman operator, which describes the dynamic behaviour of

a complex system, using machine learning [12, 13, 14]. Analysis of protein folding has also

been benefited from data driven computational science [15, 16, 17].

This study focuses on the problem of dimensionality reduction of molecular simula-

tion data. More specifically, a system of N interacting particles is simulated in a three-

dimensional periodic box at fixed temperature using a standard Monte Carlo algorithm for
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generating configurations [18, 19]. The conditions are such that configurations ranging from

solid-like clusters to gas-like expanded states are observed in a single trajectory. The goal is

to (1) use machine learning to identify a space of lower dimension (<< 3N) that captures

the most important elements of the structural changes of the system and (2) correlate these

lower dimensions with geometric variables that can serve as thermodynamic state variables

of for the system. The motivations and specifics of this problem are in section 1.2. Key

starting points of this study are the work of Bevan et. al [20], which demonstrates the utility

of the dimensionality reduction technique diffusion maps in studying colloidal systems, and

the work of Long and Ferguson [16], which provides a perspective of physical clusters as

mathematical graphs. This study expands on both works by (1) exploring different distance

metrics within the diffusion map framework, especially by utilizing spectral graph theory

(section 2.12) to counter the performance bottleneck caused by aligning particle indices us-

ing permutations, and (2) employing an alternate dimensionality reduction technique, neural

networks, to the same data sets. The rest of this section lays out the background for the

tools and techniques used in this study and problem statement.

1.1 Thermodynamics

Thermodynamics is a branch of physics that describes the relationship between heat

and work and provides a set of state variables, some directly observable and some abstract,

that can be used to model heat and work effects on a given system [21]. Classical thermo-

dynamics deals with bulk, i.e. essentially infinite, systems consisting of a large number, e.g.

1023, of fundamental particles, which are typically atoms or molecules [22]. For a system
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with a large, fixed number of particles, a fundamental equation of thermodynamics is

dA = −SdT − pdV, (1.1)

where A is the Helmholtz free energy of the system (a measure of its capacity to do work),

S is the entropy, T is the temperature, p is the pressure, and V is the volume. Note that if

the function A(T, V ) is known for a given material, other useful quantities may be computed

from it, for example the pressure may be computed as p = −
(
∂A
∂V

)
T

.

There are situations, such as a vapor bubble in a liquid or a liquid droplet in a vapor,

when a system may no longer be considered as infinite in extent. As long as the system

is still large enough to have a well-defined bulk region in its interior, the thermodynamic

description can be adjusted by adding a term to eq. 1.1 that accounts for effects at the

boundary [23, 24]. For example, for a gas bubble or liquid droplet, one may write

dA = −SdT − pdV + γdA, (1.2)

where A is the surface area of the object and γ is the conjugate surface tension. This

approach causes some mathematical ambiguity, because the variable A is not extensive

(first-order homogeneous) in the system size like the variable V , but it is still practically

useful in computing heat and work effects [24].

In this study, we are concerned with the situation where the system becomes so small

that the definition of variables like volume and surface area become ambiguous. Generally

speaking, this will happen when the number of particles N in the system is O(100) or less,
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which is relevant to some areas of nanotechnology. In such situations, one might say that the

problem should enter the realm of statistical thermodynamics [25] that invokes a model of

the system as a set of interacting particles rather than a continuum. The free energy could

then be computed as

A = −kBT lnQ, (1.3)

where

Q =
∑

i

e−Ui/kBT , (1.4)

with kB the Boltzmann constant, Ui the potential energy of microstate i, and the sum

running over all microstates. The details of the computation of the partition function Q

would vary depending on the nature of the model chosen. The basic elements of such a

computation would be (1) a model for the potential energy as a function of the particle

positions, U(r1, r2, ...rN), and (2) a method for enumerating and generating the microstates.

While this approach would certainly give an answer for a specific model system, it would

likely be very computationally expensive, and it would need to be repeated for each choice

of N and each different type of particle that might be of interest.

1.2 Problem statement

We propose a different approach in this thesis. Using a rather generic potential model

and two specific system sizes with N < 100, we generate a representative (but not complete)

set of microstates (particle configurations) using a standard Monte Carlo simulation method.

We then apply machine learning techniques to these sets to search for low-dimensional spaces

in the context of pattern recognition to identify state variables that might be generally
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appropriate for such systems. Such variables would replace V and A in an equation like

eq. 1.2. From the viewpoint of physical science, this is a study of the thermodynamics of

small clusters [20]. From the viewpoint of computer science and machine learning, this is an

application of dimensionality reduction. The fundamental set of microstate variables for the

model system is the set of Cartesian coordinates of its constituent particles, defined as

X : {r1, r2, . . . , rN } ∈ R3N . (1.5)

The dimensionality of this state space is 3N , and the primary goals of this project are to

(1) detect subspaces in X that capture the most important physical features of the systems

and (2) find a set of readily computable functions of X that correlate with these subspaces

and thus can be used as thermodynamic state variables, e.g. as ‘replacements’ for volume V

and surface area A in eq 1.2.

1.3 Literature Review

This section summarizes the existing literature regarding model reduction for molec-

ular simulation. Diffusion Maps (DMaps) [26], have been previously used to identify reduced

dimensions in small systems of various types [27, 17, 28, 29, 30, 31, 32, 33]. One common

model type that has benefited largely from these techniques is protein models [26, 8]. Protein

models usually have a unique label for every residue, making abstract low dimensional rep-

resentations of these systems somewhat less challenging. We focus on systems where all the

atoms are identical [20], which make existing state-space representations using coordinates

difficult as one must consider the structural symmetries caused by index permutations. Long
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and Ferguson [34], provided a robust technique for aligning structures that addressed the

expensive process of checking particle index permutations based on the idea of representing

clusters using graphs via adjacency matrices. However, this technique becomes quickly in-

tractable for clusters with larger sizes than handfuls of atoms due to a step which requires

the calculation of similarity between all possible index permutations. This issue motivated

us to look for representations which are permutation invariant and led us to rely on using

spectral based techniques [35, 36] discussed in sections 2.12 and 3.

Deep learning [37], provides us with a relatively modern set of tools which can, in

a sense, automate the process of pattern recognition by defining parametrized models to

represent a system, and tuning the parameters based on an optimization rule. The promise

of deep learning is the ability to define models which do not need to be posed in an ad-

hoc fashion. Simplified potentials have been derived using deep learning based physical

approximations whenever the direct application of energy landscapes has been too demand-

ing [38, 39, 40, 41, 42]. Ballard et. al [43], introduced deep potential, which is a molecular

dynamics scheme which demonstrates the usage of potential energy models defined via care-

fully crafted deep neural networks. Carrasquilla and Melko [44], used convolutional neural

networks to scan the spin configurations of semi conductors. The results of this work were

especially promising as the network learned the properties behind phase changes, without

any previous knowledge about the Hamiltonian of the system. Although the approaches

proposed by Ballard et. al (2017) [43] and Carrasquilla and Melko [44] are based on a clas-

sification problem, this study employs a regression model. The experimental motivation for

tackling this problem is the ability to control direced assembly of small clusters of colloidal

particles into crystalline states [45, 46, 47, 20, 48, 49]. The reduced model parameters de-
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duced via techniques above can be used to direct the assembly process [20] in an experimental

environment.
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2 Model Systems and Computational Methods

This chapter describes the two main model systems, namely clusters of 3 and 13

particles interacting via the Lennard-Jones potential, and the simulation methods used to

generate representative configurations that comprise the dataset. Following the model sys-

tems, the mathematical and compuational techniques used in this study are laid out. The

primary contribution of this study is the introduction of a spectral distance metric (see

section 2.13.3) to define a Markov process over molecular simulation data of LJ clusters or

diffusion maps (unsupervised learning) and the usage of a regression based neural network

optimization problem for learning low dimensional representations for the potential energy

distributions (supervised learning).

2.1 Lennard-Jones (LJ) interaction potential

Figure 2.1: LJ potential. Potential energy as a function of distance between atoms.

The Lennard-Jones (LJ) potential (fig 2.1) is a commonly used [25] model that cap-

tures the energetic interaction between a pair of atoms due to the London dispersion forces
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arising from instantaneous dipole fluctuations. As such, it is a very good model for the

interaction between neutral, nonpolar, spherical atoms like noble gases (e.g., argon). As can

be seen in the figure, the model includes an attraction (negative potential energy) at moder-

ate distances that gradually approaches zero at infinite separation and a repulsion (positive

potential energy) at short distances that rapidly approaches infinity at zero separation. The

potential has two parameters; ε characterizes the attraction and sets the depth of the poten-

tial well, and σ characterizes the particle size and sets the location of the transition from net

repulsion to net attraction. Beyond the specific application to noble gases, the LJ potential

is a useful general model in statistical thermodynamics because it is a continuous function

that contains both short-range repulsion and moderate-range attraction.

The mathematical model for the LJ potential between atom i and atom j is

uij = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.1)

rij = ||ri − rj||. (2.2)

The LJ model is a pairwise interaction model. If we have a system with N atoms, we

can compute the total potential energy U of a configuration by summing all the pairwise

contributions uij as

U =
N−1∑

i=1

N∑

j=i+1

uij. (2.3)

The pairwise potential uij is minimized when the pair of atoms is at a separation rmin = 21/6σ,

but finding the minimum total potential energy U for N atoms is more complicated, and

in fact the minimization objective of equation 2.3 is a popular test case for optimization
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algorithms [50]. Various low-energy LJ structures for given N have been computed and

tabulated [50].

2.2 Structural Variables of LJ Clusters

A useful concept to add for our study is the definition of a physical bond between

two LJ atoms. We somewhat arbitrarily define a bond cutoff distance as η = 1.2σ, which is

the point where uij = −0.891ε is too weak to be considered as a connection. With this in

mind, we define a pairwise function

fij(rij; η) =





1, if rij < η

0, else

(2.4)

to describe whether a bond exists between atoms i and j in a particular configuration. We

define the number of bonds (nb) of a cluster as

nb =
∑

i∼j

f(rij; η) =
1

2

N∑

i=1

N∑

j=1

f(rij; η). (2.5)

Connectivity (c), is the mean of the number of bonds each particle defined as

c =
1

2N

N∑

i=1

N∑

j=1

f(rij; η).

Radius of gyration (rg), is a continuous variable that fundamentally is the mean over the

distance of each particle from the center of mass of collected particles. For molecular systems,
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rg can be formulated as a function of pairwise euclidean distances as

rg =
1

2N

√√√√
N∑

i=1

N∑

j=1

rij. (2.6)

2.3 Monte Carlo simulation methods

With N particles and three dimensions, this is a 3N dimensional system. The dataset

was generated using canonical Monte Carlo simulations [18], in which particles are moved

based on a probability distribution following e−β∆U , where ∆U is the change in potential

energy and β = 1
kBT

, where kB is the Boltzmann constant [51]. We study LJ clusters in

canonical ensembles in a three-dimensional periodic boundary box [18]. The temperature in

dimensionless form is

T ∗ =
kBT

ε
,

where ε is the LJ energy parameter characterizing the well depth or ‘bond strength’. The

box dimensions are 10σ on all sides, where σ is the LJ particle diameter. The potential

energy in dimensionless form is u∗ = U
3ε

, where U is the total potential energy arising from

the sum of the N pairwise contributions (equation 2.3). The simulation ran for 107 steps

and 5000 configurations were sampled for analysis. Before going forward with the analysis,

it is helpful to process the dataset by centering around the origin and aligning to a single

axis of rotation. This process is done by first calculating the center of mass of each cluster

and translating all the atoms by moving the center of mass to the origin and aligning the

clusters to a single axis of rotation. This step is not necessary for graphical methods as

only pairwise distances are used. However, neural net optimization benefits greatly from
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this step as it removes the ambiguities caused by the transnational and rotational degrees

of freedom of the clusters. In addition to that, this also proves handy to visualize the high

dimensional state space before doing any analysis as shown in figures 2.3 and 2.4. The idea

is that when centered, as closely packed clusters have lower energy, we can observe a loose

pattern where points closer to the origin tend to have lower energy and the energy spectrum

can be observed as we move away from the origin.

2.4 Model LJ3: the 3-particle LJ cluster

The first system we employ has N = 3. This is perhaps the simplest model system

that has some basic features of changing shape and connectivity of a cluster of atoms. With

three particles and three dimensions, this is a nine-dimensional system. The dataset was

generating using the canonical Monte Carlo simulations, as described above, with T ∗ =

kBT
ε

= 0.18. The simulation ran for 107 steps and 5000 configurations were sampled for

analysis. In the results below, the potential energy is reported in dimensionless form as

u∗ = U
3ε

, where U is the total potential energy arising from the sum of the three pairwise

contributions (equation 2.3).

Fig. 2.2a shows examples of the different configurational states this system sampled,

varying from tightly clustered to completely broken. Fig. 2.2b is a histogram of the potential

energies of the states in the dataset. The system sampled the range of possible values, since

a tightly clustered state will have three pairwise bonds, each contributing -ε, for a value of

u∗ = −1, while a completely dissociated state will have no bonds for a value of u∗ = 0.

T ∗ = 0.18 was a good choice of temperature in this respect, as all structural motifs and

potential energies were observed in a single trajectory. It is tempting to think of the peaks
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Figure 2.2: Results from the Monte Carlo simulation. (a) Representative snapshots showing
the four major observed structural motifs: (i) tightly clustered, (ii) linear, (iii) partially
dissociated, and (iv) completely dissociated. (b) Histogram of dimensionless potential energy
u*.

in the histogram as corresponding to specific structural motifs, but such assignment is not

straightforward, as can be seen from the ML results below.

Fig. 2.3a shows the raw data for the 5000 configurations [52]. Each configuration

was mean-centered and aligned by its principal axes of rotation before analysis to remove

collective rotational and translational degrees of freedom (Fig. 2.3b). The pattern where

tightly packed clusters demonstrated a lower energy can be observed clearly after center-

aligning the clusters.

2.5 Model LJ13: the 13-particle LJ cluster

LJ13 is a complicated system with many possible states (see section 2.6) and large

dimensionality (13 particles× 3 coordinates = 39 dimensions). Since, there is no temperature
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Figure 2.3: LJ3 state space at T ∗ = 0.18. (a) pre-processing (b) post-processing.

that can capture all the three phases (solid, liquid and gas), we used two set of datasets

(T ∗ = 0.28 and 0.4). T ∗ = 0.28 mostly consists of solid and liquid phases while 0.4 captures

liquid and gaseous phases. The collective state space and visualization are visualized in

figure 2.4 and graphical snapshots of individual configurations are visualized in figure 2.6.

Although the behaviour of these systems is similar to LJ3, the potential energy values seem

to have a unimodal distribution instead of having a bimodal distribution.

2.6 Graphical Representation of Lennard Jones Molecules

Consider a Lennard Jones (LJ) cluster consisting of N particles and potential energy

u∗. Since the coordinate space for the constituent atoms X ∈ R3N is not invariant under

translation, rotation and index permutation, a graphical representation is very effective to

represent the particle clusters [34]. The LJ cluster can be represented as an undirected

graph G defined via an adjacency matrix Aij that encodes local bond structure within the

atoms. We define two adjacency matrices, one being the Eucledian distance Rij = ||xi−xj||2

representation and a binary distance Gij = f(Rij; η), where f(Rij; η) = 1 if Rij ≥ η. Both
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Figure 2.4: LJ13 at T ∗ = 0.4 and T ∗ = 0.28 model systems. The 39d space is collapsed
into 3d space colored by potential energy by plotting 3d location of each particle in each
cluster and coloring by the potential energy u∗. (a) T ∗ = 0.28 state space (pre-processed) (b)
T ∗ = 0.28 state space (post-processed) (c) T ∗ = 0.4 state space (pre-processed) (d) T ∗ = 0.4
state space (post-processed) (e) T ∗ = 0.28 potential energy histogram (f) T ∗ = 0.28 potential
energy histogram.

of these matrices are symmetric as the graph is undirected. These matrices can be used to

compute some important quantities describing the atomic cluster. The primary variable is

the degree vector d ∈ RN , which holds the degree or number of connections for each node
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and is computed by summing over the rows of G as

d
(G)
i =

N∑

j=1

Gij. (2.7)

We can use this degree vector notification to calculate the physical variables introduced in

section 2.2. We can compute connectivity from d as

c =
1

2N

N∑

i=1

di =
N∑

j=1

f(rij; η). (2.8)

Radius of gyration (rg) can be also calculated from the continuous adjacency matrix R and

degree d
(R)
i =

∑N
j=1 rij in the squared form,

r2
g =

1

2N

∑

i

d
(R)
i . (2.9)

For larger clusters, nb would not be a good metric to distinguish clusters in a macro scale.

Hence we used number of clusters nc, which is tricky to determine purely from looking at

coordinate space X . Therefore, one must calculate it from the graph adjacency representation

with binary distance G. We use a recursive algorithm to determine the number of clusters.

The backbone algorithm is graph traversing using depth first search. The algorithm starts

by starting a depth first search walk from a random node, adding all of the visited nodes in a

list keeping track of this specific cluster. Once all the particles in this cluster are visited, we

pick another random node which is not visited and repeat the same process until all nodes

are visited. The number of clusters (nc) would be the number of times we had to restart the

depth first search.
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Figure 2.5: LJ3 graphical snapshots. These snapshots are not in scale and are only meant
to visualize the structure.

We can visualize how these variables represent the structure of the LJ clusters in

figure 2.5 for LJ3 and 2.6 for LJ13. These representations are different from purely plotting

them in 3d space as this representation is purely connectivity information in a simpler 2d

space. We can get a loose sense of how these structures look like in a macro level. For

LJ3 we used nb to distinguish the clusters in macro scale and for LJ13, we used number of

clusters nc. These figures have a label attached to them showing their respective structural

variables.

2.7 Spectral Graph Theory

Spectral graph theory [53] is the study of spectral information of computational graph

G and its properties. The spectral information of a graph corresponds to the eigenvalues

and eigenvectors of the graph’s Laplacian matrix L, which is computed from the adjacency
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Figure 2.6: LJ13 configurations. These snapshots are two-dimensional representations of
three-dimensional structures and are not to scale. Lines represent the existence of pairwise
bonds. Each snapshot is labeled with the value of u∗, c, and rg as defined in the text. (a)
Configuration with global minimum of u∗; (b) Snapshot with lowest u∗ value observed in the
T ∗ = 0.28 data set; (c) Snapshot with median u∗ value observed in the T ∗ = 0.28 data set;
(d) Snapshot with highest u∗ value observed in the T ∗ = 0.28 data set; (e)-(f) is the same
as (b)-(d) but for the T ∗ = 0.4 data set.
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matrix A. The adjacency matrix A is a symmetric matrix that maps vertices to each other

based on a function. For a physical cluster (a set of N particles with known locations in

Cartesian space), a corresponding graph can be built with N vertices and a single edge

joining each pair of vertices. The elements of the corresponding adjacency matrix would

logically be some function of the Eucledian distance between the particle pairs, which would

have a larger value when the distance was shorter and vice versa. That function might be

continuous or it might be discrete, i.e. based on the definition of a bond between the two

particles as discussed in section 2.1, in which case the adjacency representation would be

binary as Gb ∈ {0, 1}.

There are several advantages to an approach that employs mathematical graphs to

model physical clusters. The graph representation is translation- and rotation-invariant, as

the space consists only of pairwise distances between the particles. Spectral graph theory

allows us to compute representations that are invariant under index permutation, which

relaxes the NP-complete problem of aligning indices [54, 55]. The established theory has a

variety of connections between the properties of a graph and its Laplacian eigenvalues/vec-

tors. For example, in the context of random walks on graphs, a Gaussian process over the

spectral space of the graph Laplacian is shown to be related to the cover times. Laplacian

embedding is used to encode the graphical structure in an Eucledian space. Diffusion maps

[55] utilize Laplacian embedding to encode the random walk on a lower dimensional Eucle-

dian space.The purpose for the rest of this chapter is to lay out the theory behind spectral

graph representations.

19



2.7.1 The Graph Laplacian

For a continuous function f , the Laplace operator (∆) computes the divergence of its

gradient as

∆f = ∇ · ∇f. (2.10)

Physically, the operator describes the local density of the flux of the gradient in f ; a large

positive value implies that the location is acting like a source, with a large outward flux of the

gradient vector. This idea can be extended to discrete systems like graphs using matrices.

For a graph G(V,E) with vertices V and edges E, the flux of the gradient of a function

f at vertex u can be estimated by a properly weighted sum over the differences in f at all

connected vertices, as

∆f(u) =
∑

v∼u

wij(f(u)− f(v)), (2.11)

where the sum is over all vertices v that are connected to u, and wuv is the value associated

with the edge connecting u and v. Here ∆ is the discrete Laplace operator corresponding to

the continuous version defined in eq. 2.10. Equation 2.11 can be expressed in matrix-vector

notation as

∆f → Lf , (2.12)

where f is a vector containing the values of f at the vertices, and L is a square matrix with

elements defined by

Lij = di − wij. (2.13)

with di being the degree of veretx i, defined as the sum of the values of the edges connected
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to that vertex, di =
∑

j wij.

If we identify the elements wij as defining an adjacency matrix W, then the discrete

Laplacian in quadratic form for a vector input (x) can be written as

xtLx =
∑

i∼j

wij(xi − xj)
2 (2.14)

=
∑

i∼j

wijx
2
i +

∑

i∼j

wijx
2
j −

∑

i∼j

2wijxixj (2.15)

=
∑

i∼j

djx
2
i +

∑

i∼j

dix
2
j − 2

∑

i∼j

wijxixj (2.16)

=
1

2
(xtDx + xtDx− 2xtWx) (2.17)

= xt(D−W)x. (2.18)

Where D is the degree diagonal matrix and W is a matrix encoding wij values. The expres-

sion is divided by half in the thrid step as
∑

i∼j = 1
2

∑
i

∑
j, so we do not count repeated

maps in the permutation sum (∵ Dij = Dji). The previous derivation implies the following

well-known relationship for the Laplacian matrix

L = D−W, (2.19)

where D is the diagonal degree matrix [53]. The graph Laplacian L has many useful math-

ematical and descriptive properties. It is a symmetric matrix, which means the eigenvectors

and eigenvalues are real numbers according to the spectral theorem.

21



2.7.2 Laplacian Embedding

The generalized notion of embedding the structural information of an input on an

Eucledian space through the Laplacian operator is termed as Laplacian embedding. Consider

a graph G = (V,E) with the adjacency matrix A and Laplacian matrix L, the objective is to

embed G on a real number space X ∈ Rk for some dimension k, such that the transformed

coordinates of the connected nodes (xi ∈ X ) are close to each other and disconnected nodes

placed further. For nodes, this objective can be set up as a minimization problem as in

equation 2.20 shown below

arg min
x∈X
|x|=1

∑

i∼j

Aij(xi − xj)2 = arg min
x∈X
|x|=1

xtLx. (2.20)

The left hand side of equation 2.20 is the Dirchlet Sum of the L. If nodes i and j are

connected, the distance between xi and xj should be minimized. There is a normalization

constraint to account for any arbitrary scaling [56]. This function can be rewritten as the

right hand side of the equation 2.20 in terms of the Laplacian L. We can solve this optimiza-

tion problem in a number of ways but a simple way is to use Lagrange multipliers [56]. If we

consider a multiplier φ, we can formulate equation 2.20 as a lagrangian with normalization

constraint for input xtx = 1 as

G(x;φ) = xtLx− φ(xtx− 1) (2.21)
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If we minimize this expression with respect to x we get

∂G(x;φ)

∂x
= 2Lx− 2φx = 0 =⇒ Lx = φx. (2.22)

Hence, if we expand out the Laplacian form of the Dirichlet sum 2.20 with input as an

eigenvector ψ with eigenvalue λ, we see the form xtLx = xtλx = λxtx = λ. As the

eigenvalues of the discrete Laplacian L are always positive with the smallest eigenvalue

being 0 [53], we pick the lowest eigenvalue which is not zero. Since, this eigenvalue minimizes

equation 2.20, this eigenvector embeds the graph G in these eigen-vectors of the Laplacian L,

hence the term Laplacian embedding. For example, the points in a graph could be ’ordered’

in one dimension using the projected value of each point into the second eigenvector.

2.8 Diffusion Maps

Diffusion maps, developed by Coifman and Lafon [27], is a dimensionality reduction

technique based on Laplacian embedding discussed in previous sections. Consider a high

dimensional dataset X representing a complex system. In this study, H ∈ R3N , is a set of

n coordinate points defined in equation 1.5. The goal is to detect a subspace L ∈ R that

correlates with perturbations in H and dim(L) << dim(H). The starting point of diffusion

maps is the diffusion equation (or the heat equation) defined as,

∂f

∂t
= α∆f, (2.23)
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where α is the diffusion constant and ∆ is the Laplace operator. The key idea is to treat

all of the data points as a computational graph and use tools from spectral graph theory to

model a random walk using the diffusion equation. If f is a distribution over all points in the

dataset holding the stationary probability of each state, ∂f
∂t

would define the walk with the

topology of the data described by the Laplace operator ∆. This Laplace operator is the key

connection to the spectral graph theory techniques we will be utilizing for dimensionality

reduction.

2.8.1 Stochastic process over dataset

Consider a stochastic process over the points in H, defined as a random walk prob-

lem on a graph. The random walk is based on transition probabilities, encoded in a right

stochastic matrix M. The specifics of the random walk operation are discussed in section

2.8.3. The idea is that transitioning to points that are closer, imply a higher transition

probability. First, we define a matrix D ∈ RN×N mapping N samples of points in H based

on a distance metric which is meant to capture differences in properties that are inherent

to H. For the model system of Lennard Jones clusters which is the focus of this study, the

distance should capture the states in X caused by the statistical mechanics of these clusters.

The distance metrics used for this study are discussed in the following sections. For now,

we denote an arbitrary distance matrix D, mapping points in a set H based on a distance

function d as

Dij = d(Hi,Hj). (2.24)
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To convert this distance matrix into a stochastic process, first we convert D into a gaussian

kernel K, with bandwidth ε as

Kij = e
−D2

ij

2ε2 . (2.25)

This kernel matrix is normalized to make a Markov matrix M. Consider a diagonal matrix

K̃ = diag
(∑

jKij

)
, which holds the sum of each row in the corresponding diagonal element.

The kernel matrix K is row normalized as

M = K̃−1K (2.26)

This matrix is positive, symmetric and normalized, which can be interpreted as a stochastic

operator encoding transition probabilities. In a sense, this is also in the form of a graph

adjacency matrix, allowing us to interpret the dataset as a graphical structure and by using

ideas from spectral graph theory, we can extract geometrical properties of the dataset and

project them on a lower dimensional Eucledian space.

2.8.2 Spectral analysis of stochastic operator

The Markov matrix M defined in the previous section is positive and symmetric,

which mean this matrix is positive semi definite. This means that the eigenvalues of this

matrix are real and positive and the eigenvectors assosiated with these eigenvalues are also

in real number space. Since, we are interpreting this Markov matrix as an adjacency matrix

of a graph embedding transition probabilities, we can use Laplacian embedding from section

2.7.1 to embed the information in M in an Eucledian space such that closer nodes with

higher transition probability are placed closer. One important thing to note is that the
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degree vector of M is the 1 vector as the Markov matrix is normalized. This means that we

can expand the eigenvalue problem of Laplacian L of M as

Lψ = λψ

(D−M)ψ = λψ

1ψ −Mψ = λψ

Mψ = (1− λ)ψ.

M is a positive semi-definite matrix with positive eigenvalues. Based on the derivation

above, we know that the maximum eigenvalue of M is 1 as the smallest value of λ is 0,

making (1− λ = 1). Hence, the eigenvalues of M are in the range {0, 1}. This property can

be exploited for reducing dimensions for the stochastic system represented by the Markov

matrix M as shown in the following section.

2.8.3 Dimensionality Reduction using Diffusion Maps

This section lays out the dimensionality reduction process by using diffusion maps.

Consider ρ to be the stationary distribution over a high dimensional inputH, the distribution

can be updated for next step according to diffusion equation as

ρt+1 = Mρt.

Notice that if the distribution was the first eigenvector, we would have the trivial eigenvalue

of M as 1. We can see that the physical meaning of this eigenvalue can be seen here
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as ψt+1 = Mψt = ψt, which is implying transitioning to the same state and is virtually

meaningless to define a walk. This is why we discard the first trivial eigenvector. We can

look at M as a linear transformation with a basis eigenspace Ψ. Hence, the stationary

distribution can be represented as a linear combination of the eigenvectors as

ρ =
∑

i

αiψ
(i).

If we plug this in the random walk, we get

Mρt = M
∑

i

λiψ
(i).

Since, the eigenvalues are in the range of 0 ≤ λ ≤ 1, we can approximate the original

distribution ρ, by considering enough eigenvectors in the sum that converge to ρ. This

speaks to the dimensionality reduction step where we need to only sample a few eigenvectors

which converge to the original distribution of the data. Once a Markov transition matrix

is defined for H, the reduced coordinates can be detected by observing the spectral decay

{λ1 = 1 > λ2 > λ3 . . . λn} and picking the top k eigenvectors corresponding with the non

trivial eigenvalues with the least gap. These eigenvectors are also referred to as the diffusion

coordinates of H. The distance metrics implemented in this study are best described in

section 2.12 that best describe the transition probabilities among the states in H.
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2.9 Hausdorff Distance

To compute Hausdorff distance, the Euclidean distance from each individual particle

in one configuration to all the particles in the other configuration is computed, and the

shortest of these distances is determined. The greatest of these distances gives the Hausdorff

distance between the two configurations. Mathematically, this can be represented as ([27])

dH = max{ max
1≤i≤N

min
1≤j≤N

||X i
1 −X j

2 ||, max
1≤i≤N

min
1≤j≤N

||X j
2 −X i

1||} (2.27)

where, Si1 and Sj2 are the positions of ith and jth particles in the configurations S1 and S2,

respectively.

2.10 Mayer f -Bond Distance

The second distance metric is difference in the Mayer f -bond from statistical me-

chanics [57]. The mayer f -bond distance is defined as

F = 1− exp(−u∗), (2.28)

and the distance between two configurations was defined as the absolute difference between

their respective F values as

dM = |F1 − F2|. (2.29)
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2.11 IsoRank Distance

IsoRank [55] is an algorithm to detect the best alignment between two protein net-

works. IsoRank was first used as a distance metric for DMap calculations for molecular

clusters by Long and Ferguson [34], to counter the lack of an invariant basis in the dataset

when the particles are indistinguishable. This distance metric uses two adjacency matrices.

The first matrix (R) holds the Euclidean distance Rij = ||xi − xj||2 between particles i and

j while the second matrix (G) is a binary connectivity matrix representing the existence of

a bond between the two particles which can be defined based on a cutoff distance. IsoRank

realizes the best alignment by re-arranging the particle indices to address the index permu-

tation symmetries. For snapshots i and j, let R∗i , G∗i ,R
∗
j , G∗j be the best alignment detected

by IsoRank. Then, the distance kernel for building the diffusion mapping is calculated by

the sum of the absolute differences between the inter-particle distances as

dI(ij) =
N∑

p=1

N∑

q=p+1

|R∗i (p, q) ◦G∗i (p, q)−Rj(p, q) ◦Gj(p, q)| (2.30)

With ◦ being the element-wise (hadamard) product. The algorithm clips away par-

ticles that are far away by multiplying the distance with the binary bond value. This also

tends to generate a discrete subspace due to the sparse nature of G.

2.12 Spectral Distance

This section lays out a distance metric for quantifying structural similarity of atomic

clusters. The distance should capture the structural similarity between two clusters and

remain invariant to translation, rotation and index permutation. The distance is then com-
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puted as the absolute difference between the eigenvalue matrices as defined in Eq. (2.31).

Since the result will be a diagonal matrix, the trace would be the summation of all the

elements. The graphical representation is already translational and rotational invariant but

not index-permutation invariant. We propose the use of spectral distance for the diffusion

map algorithm. For an adjacency matrix A, the node indices can be swapped using permu-

tation operator (P) as P{A} −→ PAP−1, where P is a permutation matrix that switches

graph indices. For an adjacency matrix A, the eigenvalues are the solution of the equation

det(λI − A) = 0. If we subject A to a transformation which swaps particle indexes using

permutation matrices, it can be seen that the eigenvalues are invariant to the permutation

transformation.

det(λI− P{A}) = det(λI−PAP−1)

= det(P(λI−A)P−1)

= det(P) det(λI−A) det(P−1)

= det(λI−A).

In addition to the structural implications of the eigenvalues {λ1 > λ2 > λ3 . . . λn} and

eigenvectors, this invariant nature makes them a good variable for graph similarity measure.

Consider two clusters with adjacency matrices A1 and A2. The eigen decomposition of the

two vectors yield Ψ1Λ1Ψt
1 and Ψ2Λ2Ψt

2, where Λ is a diagonal matrix holding the eigen-

values and Ψ is the orthogonal matrix holding the respective eigen-vectors. We define the
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eigenvector distance as

dΛ =
1

N

n∑

i=1

|Λ1 − Λ2|. (2.31)

Although the eigenvalues are invariant, the eigenvectors can change their sign. Let A =

Ψ1ΛΨ−1
1 and B = P{A} = Ψ2ΛΨ−1

2 be two isomorphic graphs. This can be expanded as,

B = Ψ2ΛΨ−1
2 = (PΨ1)Λ(Ψ−1

1 P−1). (2.32)

For any eigenvectors ψ and φ = P{ψ},

ψλψ−1 = (Pφ)λ(φ−1P−1) =⇒ ψ = ±Pφ.

This indicates that the Laplacian eigenvectors of co-spectral graphs can have a different sign.

Hence, we take the absolute value before computing the distance. We use the eigenvector

distance in L2 norm form.

dΨ =
1

2N

n∑

i=1

(|Ψi| − |Φi|)(|Ψi| − |Φi|)t (2.33)

For this study, we employ eigenvalue and eigenvector distance for both R and G represen-

tations of the graph to get both discrete and continuous representations of the structure in

the data.
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Figure 2.7: The structure of the neural network. X holds the coordinates of the three
particles. H1 and H2 are hidden layers for pattern recognition. L is the layer that represents
the reduced dimension which is used to predict the total potential energy (u∗) of the state.
Since this is a case of supervised learning, the dimensionality reduction mapping (X →
H1 → H2 → L) mapping should steer towards a space representing the coordinates and
preserving mapping to potential energy at the same time.

2.13 Deep Learning

Deep Learning [37] refers to a set of techniques that involve defining parametrized

composite functions, and subjecting them to an optimization objective to learn a distribution

over the dataset. The composite functions act as layers of this model and the large number

of these functions give meaning to the term deep, as each function is composed of many other

parametrized functions. These functions are called multi layerd perceptrons or deep neural

networks.

2.13.1 Classical neural networks

Classical neural networks [58] are defined as k-partite graphs which represent non-

linear transformations. The nodes of the graph may or may not be fully connected. The

first layer is the input to the network. To propagate through the network, we transform

the input based on the bond strength between the nodes (weights). Let the input to the
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network be represented as ~x, and the transformation matrix Ŵ hold the weights between

the connections. The transformation for a layer L can be modelled as:

LŴ (~x) = fσ(Ŵ~x+~b) (2.34)

The bias vector (~b) acts as the intercept of the linear model. The model’s output is

passed into a logistic function,

fσ(x) =
1

1 + e−x
, (2.35)

for non-linearity. If there are multiple layers, this output will be the input to the next

transformation and hence, a neural network can be represented as:

N(~x) = Ln ◦ Ln−1 ◦ ......L2 ◦ L1(~x) (2.36)

This function can be used to model a variety of regression and classification problems.

The weights and the biases act as tunable parameters which can be adjusted to compute the

desired result. This fine-tuning process is termed as training the network and is set up as an

optimization problem. The training is carried out by an algorithm called backpropogation.

The backpropogation algorithm minimizes the divergence (also called loss) between the

predicted and original values. The loss function can be thought of a measure of accuracy of

the model. Mean-squared error, defined as follows, is a common choice for loss function.

L = ||NW,b(~x)− y(~x)||2 (2.37)
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This loss is subjected to an optimization problem as

arg min
W,b

L(NW,b(~x), y(~x)) −→ arg min
W,b

||NW,b(~x)− y(~x)||2 (2.38)

and the training is carried out by updating the weights and biases such that Eq. (2.37) is

minimized according to

Ŵ = Ŵ − η ∂L
∂Ŵ

; ~b = ~b− η∂L
∂~b

(2.39)

The derivatives are calculated via the chain rule as it is a sequence of composite functions

or layers.

2.13.2 Convolutional Neural Networks (CNNs)

Convolution Feature	map Fully	Connected	Network	with	Energy	as	Output

Figure 2.8: Visualizing the Convolutional Neural Network architecture. The input adja-
cency matrix is subject to a convolution operation using 16 filters resulting in 16 feature
maps which are then flattened and passed trough a fully connected neural network.

Convolutional Neural Networks (CNN’s) [37] are primarily used for feature extraction

in images and signals. The idea is to scan the input locally using convolution filters and
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generating a new feature map that can be used for pattern recognition. This technique has

been very successful in extracting local features in images such as facial recognition, image

segmenting and speech recognition in audio signals. The feature extraction approach using

convolution operation can be also applied on the adjacency matrices representing atomic

clusters. Carrasquilla and Melko, [44] used a similar idea for scanning spin configurations

of atoms and classifying the input to two phases of matter. For this case, the scanning is

done on the connectivity matrix and the output is the potential energy which makes this a

regression problem. Since the adjacency matrices explicitly encode the graphical structure

of the cluster, the convolution operation should recognise local connectivity patterns within

the cluster. For an N particle cluster, the input to the CNN would be the N ×N adjacency

matrix and the convolution operation would scan the input with stride (step size) as 1. After

the feature map is built, the output can be flattened to a 1D vector and then passed through

classic fully connected layers (section 2.13.1) outputting the predicted energy. Considering

the input A, the first pass of the CNN would be the convolution operation using a weight

kernel wk, which is a square matrix of size nw. For non-linearity, the output is subject to a

logistic sigmoid function (σ(x) = 1
1+e−x

). Collectively the first step is shown as below.

A −→ σ(A ∗ wk) = σ

(
h∑

k=1

nk∑

l=1

(Ai+k−1,j+l−1 ·wk,l)

)
(2.40)

The output of the convolution pass is a matrix (also called a feature map). If the input is

of size N × N , kernel size being K, size of stride (scanning step size) being S and padding

magnitude being p, then the size of an output tensor is
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Nout =

⌊
N −K + 2P

S

⌋
+ 1. (2.41)

For this work 16 convolution filters were used and hence the output is a set of 16

feature maps. After the convolution step, a max-pooling operation is applied where a filter

is applied to reduce the dimensionality of the feature map. The max pooling step scans the

input with a pooling kernel (say size k×k), with the output being the maximum input value

within the respective feature space the kernel is acting on. The output is then collectively

flattened to a 1D vector and the successive layers are simply fully connected.

2.13.3 Dimensionality Reduction Using Deep Learning

We define the input to the network as our higher dimensional space H. We define

the predecessor layer of the final layer to be the reduced space R. The mappling between R

and Upred is linear as follows

Upred = θ1r1 + θ2r2 + θ3r3. (2.42)

Where {r1, r2, r3} ∈ R are the reduced coordinates with {θ1, θ2, θ3} being the respective

parameters. The training objective is set up as minimizing the divergence between the

distributions between predicted energies and ground-truth energies. This study employs the

L2 norm as the loss objective

L = ||Upred(~x)− Utrue||2. (2.43)
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Where Utrue are the true energy values taken from the dataset. This loss is subjected to an

optimization problem as

arg min
W,b

L(Upred(~x), Utrue) −→ arg min
W,b

||Upred(~x)− Utrue||2 (2.44)

This network has a deep architecture with hidden layers. If the network converges,

R will embedd the following mapping

∀x ∈ X ,∃r ∈ R such that u∗(x) = u∗(r)

Hence, the variables in R can be defined as a lower dimensional embedding of X .
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3 Experiments, Results and Discussion

This chapter presents and discusses results for the methods for model reduction in-

troduced in Chapter 2. First, we briefly review the nature of the experimental data and

summarize the diffusion map (DMap) and neural net (NN) algorithms, and then present

the results with discussion. The results are organized based on the two model systems, LJ3

and LJ13, with the latter system studied at two different temperatures. For LJ3 we use

data generated at only one temperature, T ∗ = 0.18, as all structural motifs of this model

are captured in a single Monte Carlo trajectory at this temperature, as discussed in section

2.4. For LJ13 we study data sets from two independent Monte Carlo trajectories. One set,

generated at temperature T ∗ = 0.28 (Fig. 2.4a), contains structures that are primarily sin-

gle solid- and liquid-like clusters, with relatively few broken configurations. The other set,

generated at T = 0.4 (Fig. 2.4b) contains more broken clusters and even some vapor-like

configurations. For both models, the embedding of the data in the subspaces generated by

DMaps and NNs are presented. To define the markov matrix for diffusion maps, we use

4 distance metrics described in sections 2.12. For spectral distance, we use two adjacency

matrix representations (based on matrix R or G), and for each of these, two distance metrics

(dΛ, dψ) are used and are denoted as (d
(G)
Λ , d

(R)
Λ , d

(G)
ψ and d

(R)
ψ ), as described in section 2.12.

We finally examine the distance kernels to see how the information encoded in the kernels

translates to the information in the reduced subspaces to provide a better insight towards

how these subspaces are generated.
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3.1 Algorithm Summary

This section lays out the algorithms used to implement the main ideas presented in

chapter 2. The two main dimensionality techniques used in this study are diffusion maps

and neural network optimization. Since we are using three kinds of input (coordinate space

X , G and R), we arbitrarily denote these high dimensional inputs H unless specified.

3.1.1 DMap Workflow

The diffusion maps algorithm is shown in Algorithm 1 with the theory backing it

presented in section 2.8. Consider n samples of points in H, which is derived from the

coordinate space for clusters in X ∈ R3N with N being the number of particles in the

cluster.
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Algorithm 1: Diffusion Maps Algorithm

Input: Set of n points in the model space H.

Result: Subspace L ∈ Rk where k << 3N .

• Calculate distance matrix d ∈ Rn×n mapping pairs of points in X .

• Choose kernel bandwidth δ from a (ln(δ), ln(
∑
K)) plot (see Fig. 3.1).

• Subject d to a kernel K such that Kij = e
−d2ij
2δ .

• Row normalize K to generate a stochastic markov matrix M.

• Eigen-decompse M = ΨtΛΨ, {λ1 = 1 ≥ λ2 . . . λn ∈ Λ}.

• Identify k principal eigenvalues excluding λ1.

• Return L = Ψ2:k, where Ψ2:k refers to collecting 2nd to kth eigenvectors.

Before defining the Markov matrix, a value must be chosen for the kernel bandwidth

parameter δ. Fig. 3.1 shows the log-log plot of the sum of the all the elements of the

Gaussian kernel as a function of δ for the LJ3 data using the IsoRank distance metric. (All

DMap analyses in this work, regardless of data set and distance metric employed, yielded

plots qualitatively similar to this figure, so this is the only example shown.) The plot shows a

sigmoidal behaviour that can be interpreted as follows. For low δ values, the scaled distances

between pairs of data points are relatively large; therefore no points are well-connected and

the kernel sum is small. Conversely, for high δ values, the scaled distances are relatively

short and all points are well-connected in a pairwise sense, resulting in a large kernel sum.

The linear region that bridges those two extremes is the region of interest, as it captures the
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Figure 3.1: Identification of the kernel bandwidth for the IsoRank-based distance metric.
The selected value of δ is highlighted.

natural connectivity of the data at intermediate scales, and the value of δ is selected from this

region. After generating the subpsaces, we investigate what order parameters these spaces

encode by coloring the subspace eigenvectors with structural variables (order parameters)

discussed in Chapter 2. If these spaces exist, we should see a strong correlation between the

diffusion spaces and the physical variables.

3.1.2 Neural Network Workflow

If we denote the input to a neural network as H, the penultimate layer defined as

the reduced layer L, the potential energy prediction step is the output of the neural network

model (N ) as shown in algorithm 2
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Algorithm 2: Potential Energy prediction using NN models.

Input: Coordinate space X .

Result: L and Upred.

Initialize y = X ;

Initialize L;

foreach layer l in N do

y = l(y);

if l is penultimate then

L = y;

end

end

Upred = y;

return {L, Upred}

Where l(·) can be any type of layer model function with corresponding set of parame-

ters listed in section 2.13. Algorithm 2 assumes variables to be mutable i.e be able to take up

any shape or form of the assignment for simplicity. The following algorithm 3, describes the

steps to train N and learn the lower representation L based on a cost function C. Assume

the parameters for each layer are stored in Θ.
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Algorithm 3: ADAM algorithm [59] for training neural networks.

Input: Coordinate space X ∈ R3N and potential energies U ∈ R. β1 and

β2 ∈ [0, 1) are exponential decay rates for momentum estimates.

Initialize Upred = X ;

Initialize L;

foreach point x in X do

L, Upred = N (x);

∇C =
[
∂C(Upred,Ux)

∂θ

]
θ∈Θ

;

m = β1 ·m+ (1− β1) · ∇C ;

v = β2 · v + (1− β2) · ∇C2 ;

m̂ = m/ (1− β1);

v̂ = v/ (1− β2);

Θ = Θ− η · m̂/(
√
v̂ + ε);

end

return L;

Algorithm 3, is the Adam optimizer [59], which has a controlled approach for up-

dating weights by assigning momentum values for the learning rate η. Adam optimization

systematically adjusts η in the training process based on the the gradients, which greatly

stabilizes optimization [59]. Details behind calculating gradients for layers are shown in

section 2.44. Once, the network learns a representation (i.e the model converges and stops

updating weights with zero gradients), the parameters Θ would be adjusted to calculate L

from X based on the constraint in statement 2.13.3.

43



3.2 Results for LJ3

This section presents subspaces generated by DMap and NN analysis for the three-

particle LJ system at dimensionless temperature 0.18.

3.2.1 Diffusion Maps

(a) (b)

(d)(c)

Figure 3.2: Eigenvalue spectra for the four distance metrics considered: (a) dH , (b) dM ,

(c) dI , and (d) d
(R)
Λ .

The eigenvalue spectra for the four distance metrics used in this study are presented in

Fig. 3.2. One way to determine the existence of a low-dimensional manifold and identify the

number of dimensions in that manifold is to look for a break in the eigenvalue spectrum and

count the number of eignevalues above the gap, ignoring the first eigenvalue. Following this

approach, we see that the low-dimensional space for our system has at most two dimensions.

Ferguson et. al [17] reported an alternative method by which the dimensionality is estimated

by computing the slope of the linear region of the plot in Fig. 3.1 and doubling its value.

Following this approach, we found that the dimensionality of our system should be at most
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2.6. In summary, then, all results and interpretations indicate that no more than three

dimensions should be required to adequately describe our system.

(a) (b)

(d)(c)

Figure 3.3: Subspaces generated by Diffusion Maps in three diffusion coordinates with
distance metrics as (a) dH (b) dM (c) dI (d) d

(R)
Λ . Data are colored by the potential energy

for LJ3.
.

Subspaces generated by diffusion maps for LJ3 are shown in Fig. 3.3 in three dimen-

sions. Fig. 3.3a, is the subspace generated with dH , showing that first nontrivial eigenvector,

ψ2, segregates the configurations that have lower potential energy values (blue) from the ones

with moderate (green) and high (yellow) values. The 2d surface is plotted in Fig. 3.4a. Fig.

3.3b, which is the space generated by using dM distance metric, indicates that only one

dimension is needed to describe the data and that ψ2 is strongly correlated with potential

energy, which is perhaps not surprising since the distance metric is based directly on the

potential energy function. This can be seen better in 2 dimensions as shown in Fig. 3.4b.

Although this distance metric creates a compact and smooth subspace for the four different

45



Figure 3.4: 2d Diffusion coordinates for LJ3 (T ∗ = 0.18) generated by (a) dH (b) dM (c)

d
(G)
Λ (d) d

(R)
Λ (e) d

(G)
ψ (f) d

(R)
ψ . Data colored by potential energy u∗.

structural motifs, the requirement of computing the potential energy is a major weakness,

since the underlying potential energy function may not generally be known for a given em-

pirical data set. Fig. 3.3c shows that employing dI yields a result in which the data are

separated into four distinct clusters, which correspond to to the four structural motifs (three,

two, one, or no pairwise bonds) as shown in Fig. 3.6b. Interestingly, the correlation of these
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structures with the potential energy values is much weaker than we originally anticipated

as seen in Fig. 3.6a. Another fact to note is that diffusion coordinates with dI reduced the

fully disconnected configurations to one point as unbonded particles are clipped away by

multiplication with zero, resulting in fully broken clusters being indistinguishable. Figure

3.3d is the three dimensional subspace generated by d
(R)
Λ , which shows the potential energy

encoded in a manifold. The energy speration in higher energy values can be seen much better

in two diffusion coordinates as shown in figure 3.5d.

Now we turn our attention to discuss specifically the effect of the family of spectral

distance metrics introduced in this study. Fig. 3.5c and d are subspaces generated from

the eigenvalue distances d
(G)
Λ and d

(R)
Λ respectively. The diffusion space generated by d

(G)
Λ

encoded number of bonds (nb) very well in ψ2 as seen in Fig. 3.5c but does not capture any

variations in one of the four motiffs as it reduces all the variations to a single point. However,

using d
(R)
Λ , yielded a continuous space which encoded r2

g very well as seen in Fig. 3.5d. Since

u∗ is not equivalent to r2
g or nb, the energy encoded is not as clean in these coordinates as

seen in figures 3.4c and d.

Figures 3.5e and f are subspaces generated from the eigenvector distances d
(G)
ψ and

d
(R)
ψ respectively. The diffusion space generated by d

(G)
ψ collapsed into three points correlating

with the number of clusters as seen in Fig. 3.5e. One thing to note is that fully connected

clusters and clusters with one broken bond are still singular clusters and it is interesting that

d
(G)
ψ segregated the data based on nc instead of nb. Although, d

(R)
ψ embedded the data into a

smooth one-dimensional curve, none of the physical variables correlated very well with psi2,

so the data here are shown colored by nc.
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Figure 3.5: 2d Diffusion coordinates for LJ3 (T ∗ = 0.18) generated by (a) dH (b) dM (c)

d
(G)
Λ (d) d

(R)
Λ (e) d

(G)
ψ (f) d

(R)
ψ . Data colored by physical variable that seem to correlate best

with the respective space.

3.2.2 Neural Networks

The dataset is split 60% for training, 30% for testing and 10% for validation. The

network converged in about 10,000 epochs and encoded H in a two-dimensional linear space

L to represent u∗, as seen in Fig. 3.7. The first variable, L1, captures most of the changes
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Figure 3.6: 2d Diffusion Coordinates generated using IsoRank based distance metric dI
introduced by Long and Ferguson [34].This space is colored by (a) u∗ (b) nb. We can see
that the four point groups correspond to the four possible motifs.

Figure 3.7: Reduced subspace space (L1,L2) generated by the neural network colored by
(a) u∗ (b) rg

in the low-energy structures with the second variable, L2, becoming important only for the

higher-energy, broken configurations. The strong weakness of this technique is that this

requires a key variable representing each point in the input for the network to learn. For

our case, we use u∗ as a constraint to control the dimensionality reduction step, but many

data-sets may not have such information available.
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3.3 Results for LJ13

This section presents subspaces generated by DMap and CNNs for the 13-particle

LJ system sampled from two dimensionless temperatures, T ∗ = 0.40 and 0.28. For larger

clusters, instead of nb we use an equivalent variable connectivity c to avoid scaling to large

numbers.

3.3.1 Diffusion Maps

The initial analysis (not shown) on this data set suggested a dimensionality of two

or less for each distance metric, therefore we will focus on two-dimensional representations

of the data. The energy distribution in the diffusion coordinates is visualized in Fig. 3.8 for

T ∗ = 0.4 and 3.10 for T ∗ = 0.28. Fig. 3.8a is the subspace generated by mapping points

with dH which resulted in the same space as LJ3 with the first principle axis correlating best

with r2
g as seen in 3.9a. Figure 3.8b, generated by dM correlated with potential energy as

seen in Fig. 3.9b which, as mentioned before is expected because mayer f -bond is an explicit

function of u∗.

Figures 3.8c and d are the diffusion coordinate spaces generated by the eigenvalue

distance (equation 2.31), correlating with connectivity and radius of gyration respectively

similar to LJ3 as seen in figures 3.9 c and d respectively. Since connectivity is a discrete

value, we can see gaps in the space similar to LJ3. Since the metric dLambda
(G) is still based

on discrete values, the results for that metric again show some discrete character, although

not to the extent seen for LJ3 where the results collapsed to only four branches.. Although

the subspace generated by d
(R)
Λ for LJ13 as seen in Fig. 3.9d showed a similar space as LJ3,
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Figure 3.8: 2d Diffusion Coordinates generated using (a) dH (b) dM (c) d
(G)
Λ (d) d

(R)
Λ (e)

d
(G)
ψ (f) d

(R)
ψ . Colored by potential energy u∗ with trajectories sampled from T ∗ = 0.4.

the third eigenvector ψ3 did not show any symmetry. However, if we look at Fig. 3.9d, we

can see that within the manifold itself, ψ3 encodes the spread of u∗ which is interesting as

according to these results for d
(G)
Λ , ψ2 encodes the physical variable with ψ3 encoding the

energy distribution at a specific value of rg. These results are consistent with T ∗ = 0.28 as
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Figure 3.9: 2d Diffusion Coordinates generated using (a) dH (b) dM (c) d
(G)
Λ (d) d

(R)
Λ (e) d

(G)
ψ

(f) d
(R)
ψ . Colored by potential energy u∗. Colored with best correlated structural variable for

trajectories sampled from T ∗ = 0.4.

seen in Fig. 3.11 but the shape of the spaces are significantly different. This is due to the

fact that T ∗ = 0.28 primarily consisted of tightly packed clusters and very few cases of loose

and broken clusters. One can infer that the probability of states at more dense regions of

these diffusion coordinates is very high in given temperature. This makes sense as clusters

52



Figure 3.10: 2d Diffusion Coordinates generated using (a) dH (b) dM (c) d
(G)
Λ (d) d

(R)
Λ (e)

d
(G)
ψ (f) d

(R)
ψ . Colored by potential energy u∗ with trajectories sampled from T ∗ = 0.28.

at lesser temperatures tend to be more stable with less fluctuations and that is why we see

a more concentrated region for tightly packed (low rg) clusters instead of a more spread out

space as T ∗ = 0.4. This is most likely why Fig. 3.10a looks so sparse as compared to Fig.

3.8a. We can also infer from d
(G)
Λ that even though states are tightly packed, there can exist
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Figure 3.11: 2d Diffusion Coordinates generated using (a) dH (b) dM (c) d
(G)
Λ (d) d

(R)
Λ (e)

d
(G)
ψ (f) d

(R)
ψ . Colored by potential energy u∗ with trajectories sampled from T ∗ = 0.28.

a variation of connectivity c values in these states. This might not be obvious as intuitively,

one might expect that in a tighly packed cluster, all points are connected to each other but

it is not the case for specific crystalline shapes like an icosahedron, which is the minimum

potential energy structure.
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Although the diffusion space generated by d
(G)
ψ correlated best with nc for the LJ3

(Fig. 3.5e), this correlation was not as seamless for LJ13. However, nc was the best encoded

variable as shown in (Fig. 3.9e) with ψ3. For T ∗ = 0.28, the space was mostly filled with

nc = 1, which is understandable as T ∗ = 0.28 primarily holds solid/liquid phases with nc = 1.

Similar to previous cases, d
(R)
ψ did not yield any much meaningful results, but we can see a

loose pattern in ψ2.

3.3.2 Convolutional Neural Networks

We split our dataset 60% for training, 30% for testing and 10% for validation. Using

the gradient descent optimizer, the model converged within 1000 steps and was able to

predict the potential energy of any graphical snapshot purely by scanning the adjacency

matrix. The subspace generated {L1,L2,L3} shown in Fig. 3.12, explicitly indicated a one

dimensional variable, where L correlates with connectivity. This variable correlated best with

connectivity with some noise. For our case, we interpret this variable as purely structural

which is a function of the underlying energy landscape of the molecular system without the

knowledge about any of the thermodynamic constants such as the Lennard Jones bandwidth.

One disadvantage of this technique is that it not naturally permutation invariant unlike the

spectral distance metrics we used for diffusion maps. However, existence of more than one

kernel starting out as random variables can naturally discover patterns under permutation.

The network performed poorly on T = 0.28 as the dataset has low variance due to the

stability of low energy clusters.
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Figure 3.12: Subspaces of neural network for (a) T ∗ = 0.4 colored by u∗ (b) T ∗ = 0.4
colored by rg (c) T ∗ = 0.28 colored by u∗ (d) T ∗ = 0.28 colored by rg

.

3.4 Analytic study of distance metrics

We employ an analytic study of the distance metric to gain insight towards why

the distance metrics captured the variables the way they did. We need to establish the

relationship between the eigenvalues and the structural variables to determine what variables

these subspaces represent. We relate the eigenvalue distance to the difference in connectivity
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using the reverse triangle inequality of absolute values,

dΛ :
1

N

N∑

i=0

|Λ1i − Λ2i| ≤
∣∣∣∣∣

1

N

n∑

i=0

Λ1i −
1

N

n∑

i=0

Λ2i

∣∣∣∣∣ . (3.1)

We ignore the modulus operator on individual eigenvalues because the laplacian matrix is

positive semidefinite (all eigenvalues are positive). We know that the trace of a matrix is

equal to the sum of its eigenvalues. Therefore for a binary laplacian matrix LG with a degree

vector d,

1

N

N∑

i=0

Λi =
1

N
Tr(LG) =

1

N

n∑

i=0

di = c. (3.2)

Hence plugging (3.2) in (3.1), we get

dΛ :
1

N

n∑

i=0

|Λ1i − Λ2i| ≥ |c1 − c2|. (3.3)

If we color the diffusion space with connectivity, we can observe perfect correlation

with diffusion coordinate Ψ2 in fig 3.9a. For a weighted graph representation with eucledian

distance adjacency R, the eigenvalue sum is related to the squared radius of gyration r2
g as

shown

1

N

n∑

i=0

|Λi| =
1

N
Tr(LR) =

1

N

n∑

j=0

n∑

i=0

rij =
1

2N
r2
g . (3.4)

If we plug this in (3.1), we get ,

dΛ :
1

N

n∑

i=0

|Λ1i − Λ2i| ≥
1

2N
|r2
g1 − r2

g2|. (3.5)
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The diffusion coordinate Ψ2 for the eucledian distance representation indeed correlates

strongly with radius of gyration as shown in Fig. 3.9 b. Fig. 3.13 visualizes the distance

kernels when the data is sorted based on a variable. This way, we can see how these distances

generate the subspaces correlating with corresponding variables. We look at the simple case

of LJ3 with distances d
(G)
Λ and d

(R)
Λ . We have already established that the detected variable

for d
(G)
Λ is connectivity and radius of gyration r2

g for d
(R)
Λ . Fig. 3.13a is the distance kernels

when configurations are sorted based on energy. We can see a loose pattern in distances but

when we arrange based on connectivity c, we can see four distance values which correspond

to the four classes as seen in Fig. 3.5c. One interesting observation is that it does not matter

what way these configurations are arranged as the permutation invariant property of spec-

tral decomposition will capture these patterns regardless. We can see the similar pattern for

dΛ over R. Although, the spread is less gradual for tightly packed clusters. Fig. 3.13c is

distance kernel for dΛ when configurations are sorted based on energy and Fig. 3.13d is the

kernel when energies are arranged based on radius of gyration.

3.5 Order Parameters

Results discussed in previous sections suggest a combination of r2
g and nb as a sufficient

set of order parameters, or small-system thermodynamic variables. For LJ13, r2
g and c were

identified as good variables with c correlating with the principal diffusion coordinate ψ2

generated with distance d
(G)
Λ and rg correlating with ψ2 generated from d

(R)
Λ . The number

of clusters nc correlated with ψ2 generated from d
(G)
ψ very well for LJ3, but it was not as

strong for LJ13 as an extra principle eigenvector ψ3 was needed to get a loose correlation.

The number of clusters might be useful for larger clusters, but for small clusters like LJ3 this
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(a) (b)

(c) (d)

Figure 3.13: Distance kernels displayed as images. (a) d
(G)
Λ when configurations arranged

based on energy. (b) d
(G)
Λ when configurations arranged based on connectivity. (c) d

(R)
Λ when

configurations arranged based on energy. (d) Ed
(R)
Λ when configurations arranged based on

radius of gyration.

Figure 3.14: Comparing energy distributions in macrostates of LJ3 with respect to the
variable (a) nb (b) nc.
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measure of structure similarity might be too coarse. For example, clusters with two bonds

and three bonds are indistinguishable using nc. Fig. 3.14 visualizes energy distributions in

all the possible values for nb and nc. There is a significant amount of merging for energies

in case of nc, making it a poor descriptor of energy. However if we look at distributions in

nb, we can clearly see a decent seperation in higher energy clusters but there is a merge in

lower energies. Hence, we can see that nb is a better discrete variable to represent the LJ

cluster with rg being the continuous variable.

Fig. 3.15 shows the potential energy landscape of configurations plotted in reduced

parameter space for LJ3 and Fig. 3.16 for LJ13. Fig 3.17 shows how these landscapes look

when looked at from a perspective of a specific physical variable. nb separates the data

into the four structural motifs exhibited by the model and r2
g catches the modes of motion

(shape changes) within a given different motif. Note that the nb = 3 state is the stiffest,

with large changes in u∗ resulting from small changes in r2
g , while nb = 0 is the least stiff.

With the exception of some broadening in the nb = 1 state, which may have to do with

modes of motion that cannot be captured purely by r2
g , this representation does an excellent

job of collapsing the data. Fig 3.16, is the potential energy landscape for LJ13 in reduced

space. The variables detected are the same as LJ3 but as explained before in section 2.1,

we use connectivity c instead of number of bonds nb to avoid scaling for large values of nb.

These variables can be used to describe the state of a cluster instead of individual particle

coordinates and can be used for applications such as controlling colloidal particle assembly

[20].
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Figure 3.15: Energy Landscape for LJ3 with reduced parameters.
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Figure 3.16: Energy Landscape for LJ13 with reduced parameters.
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Figure 3.17: Energy landscape in reduced space with different perspectives. (a) LJ3 space
in perspective of nb (b) LJ3 space in perspective of rg (c) LJ13 space in perspective of c (d)
LJ3 space in perspective of rg.

63



4 Conclusion

This study demonstrates the utility of spectral graph theory and machine learning in

studying complex systems. These techniques recognised patterns in a noisy, high dimensional

system of Lennard Jones clusters and detected variables to behave as thermodynamics state

variables on which an energy landscape can be constructed. The variables detected were

connectivity c and radius of gyration rg (see section 3). This study also introduced the use

of spectral distance metrics to capture structural differences between atomic clusters. These

distance metrics are permutation invariant, which relaxes the expensive step of handling

index symmetries. Finally, an explicit relation between these distance metrics and structural

differences was also derived (see section 3.4). Diffusion Maps proved to be a very powerful

technique by detecting variables in noisy simulation data. The second main method used for

this study is to set up a neural network optimization problem and mining reduced variables

from the latent spaces. The neural net approach resulted in the same variables as diffusion

maps. These reduced representations can be used to simplify experimental control of colloidal

molecules using a simplified set of parameters. Due to the abstract nature of these techniques,

these ideas can easily be implemented for various other complex systems. Overall, this was

a very fruitful project which brought together multiple fields like graph theory, machine

learning and statistical thermodynamics.
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