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Abstract

This work develops new methodologies for analyzing accelerated testing data in the context of a

reliability growth program for a complex multi-component system. Each component has multiple

failure modes and the growth program consists of multiple test-fix stages with corrective actions

applied at the end of each stage. The first group of methods considers time-to-failure data and

test covariates for predicting the final reliability of the system. The time-to-failure of each failure

mode is assumed to follow a Weibull distribution with rate parameter proportional to an accelera-

tion factor. Acceleration factors are specific to each failure mode and test covariates. We develop a

Bayesianmethodology to analyze the data by assigning a prior distribution to eachmodel parameter,

developing a sequential Metropolis-Hastings procedure to sample the posterior distribution of the

model parameters, and deriving closed form expressions to aggregate component reliability infor-

mation to assess the reliability of the system. The second group of methods considers degradation

data for predicting the final reliability of a system. First, we provide a non-parametric methodology

for a single degradation process. The methodology utilizes functional data analysis to predict the

mean time-to-degradation function and Gaussian processes to capture unit-specific deviations from

the mean function. Second, we develop parametric model for a component with multiple dependent

monotone degradation processes. The model considers random effects on the degradation param-

eters and a parametric life-stress relationship. The assumptions are that degradation increments

follow an Inverse Gaussian process and a Copula function captures the dependency between them.

We develop a Bayesian and a maximum likelihood procedure for estimating the model parameters

using a two-stage process: (1) estimate the parameters of the degradation processes as if they were

independent and (2) estimate the parameters of the Copula function using the estimated cumulative

distribution function of the observed degradation increments as observed data. Simulation studies

show the efficacy of the proposed methodologies for analyzing multi-stage reliability growth data.
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1 Introduction

Reliability is the probability that a systemwill be capable of performing the task that it was designed

for after a period of time while working under its intended condition and maintenance operations. A

reliability growth program is the process of changing the system design based on test results in or-

der to improve the overall reliability of the system. Reliability growth programs are important tools

for the industry and the government to ensure that new systems will achieve minimum reliability

standards in the short period of time available for development. A common practice ot speed up the

data collection process is to test the system at harsher than normal use condition (i.e., accelerated

testing). Due to the increasing complexity of modern engineering systems, it is not economically

viable to test at system level and the reliability growth analysis must be done based on reliability

testing at subsystem and component level. There are three primary types of data available from

reliability testing: pass-fail, time-to-failure, and degradation of performance or physical character-

istics (Wilson & Fronczyk, 2017). In the reliability growth literature, models based on pass-fail

and time-to-failure data have received considerable attention (Martz & Waller, 1991; Crow, 2004;

Wayne & Modarres, 2015). However, such models only consider the reliability growth of single

component systems or series systems and often struggle to accurately incorporate accelerated test

data in the analysis. This dissertation considers the problem of analyzing accelerated test data to

predict the final reliability of a complex multi-component system undergoing a reliability growth

program. The general assumptions through this work are: (1) the reliability growth program con-

sists of multiple test-fix stages with corrective actions at the end of each stage, (2) the complex

system consists of multiple components each with multiple failure modes, (3) testing is done at

component level, (4) the system’s structure is known, and (5) interactions between components

do not introduce new failure modes. Under this framework, we develop new methodologies for

analyzing time-to-failure data for components with multiple failure modes and we propose the first

methodologies, to the best of our knowledge, for analyzing degradation data during a reliability

growth program.
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First, time-to-failure is the most common type of data used by reliability growth models. Those

models are typically utilized for planning, tracking, and projecting reliability based on testing time.

In particular, the Crow-AMSAAmodel is commonly used in industry and the government (Crow,

2004). One of the key assumptions of this model is that the system failure intensity is a linear

combination of the failure intensity of multiple failure modes. However, it does not account for the

different effect of accelerated testing on each failure mode. To address this research gap, Chapter 2

is dedicated to the case when test covariates information and time-to-failure data are available. The

main assumption is that the time-to-failure follows a Weibull distribution with rate parameter pro-

portional to an acceleration factor specific to each failure mode and test covariates. We propose

a Bayesian framework to incorporate prior information on the model parameters, develop a se-

quential Metropolis-Hasting algorithm to sample the posterior parameters, and discuss a procedure

to aggregate component results to predict the system’s reliability. The accuracy of the reliability

predictions of the proposed model and the Crow-AMSAA model are compared with a numerical

example using simulated data. Additionally, we present special cases of the model when some of

the parameters are known.

Second, degradation data has become increasingly available in the last decades due to tech-

nological advancements that have made possible monitoring the status of a system or component

through the usage of one or multiple degradation signals. Such information has the potential to im-

prove the precision and accuracy of reliability estimates (Hamada, 2005) since degradation is often

correlated with the underlying failure mechanism. This work considers components with multiple

degradation processes that are considered failed when at least one of its degradation signals sur-

passes a known threshold specific to each process. Chapter 3 is dedicated to use a non-parametric

methodology for analyzing degradation data. This methodology uses functional data analysis to

estimate the mean time-to-degradation function and uses unit-specif Gaussian process to model

deviations from the mean function. Corrections are incorporated as fix-value covariates on the

mean function. The main drawback of this model is that requires all units to be tested until failure.

In a similar direction, Chapter 4 is dedicated to develop a novel degradation-based reliability growth

2



model for a component with multiple dependent degradation processes. The main assumption of

this model is that degradation processes are monotonic and that their increments follow an Inverse-

Gaussian (IG) process. A copula function is used to model the dependencies between degradation

increments. We incorporate covariates information by assuming that the inverse-mean degradation

presents a log-linear relationship with normalized stress covariates. We develop multiple models

by considering random effects on different degradation parameters (i.e., none, only on the inverse-

mean parameter, or both the inverse-mean and diffusion parameter). We develop Bayesian and

maximum likelihood procedures to estimate the model parameters in a two-step process. First, the

parameters of the degradation processes are estimated by treating them as independent processes.

Second, the estimated cumulative distribution function of the degradation increments are used as

data to fit the parameters of the copula function. Numerical examples using simulated data are

presented to validate the accuracy of the proposed methodologies.

References

Crow, L. H. (2004). An extended reliability growth model for managing and assessing corrective

actions. In 2004 Proceedings Annual Reliability and Maintainability Symposium - RAMS, (pp.

73–80).

Hamada, M. (2005). Using degradation data to assess reliability. Quality Engineering, 17(4),

615–620.

Martz, H. &Waller, R. (1991). Bayesian reliability analysis (1 ed.). Krieger Publishing Company.

Wayne, M. &Modarres, M. (2015). ABayesian model for complex system reliability growth under

arbitrary corrective actions. IEEE Transactions on Reliability, 64(1), 206–220.

Wilson, A. G. & Fronczyk, K. M. (2017). Bayesian reliability: Combining information. Quality

Engineering, 29(1), 119–129.
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2 ABayesian Framework forAccelerated Reliability Growth Testing with Multiple Sources

of Uncertainty

Reliability growth tests are often used for achieving a target reliability for complex systems via

multiple test‐fix stages with limited testing resources. Such tests can be sped up via accelerated

life testing (ALT) where test units are exposed to harsher‐than‐normal conditions. In this paper, a

Bayesian framework is proposed to analyzeALT data in reliability growth. In particular, a complex

system with components that have multiple competing failure modes is considered, and the time to

failure of each failure mode is assumed to follow a Weibull distribution. We also assume that the

accelerated condition has a fixed time scaling effect on each of the failure modes. In addition, a

corrective action with fixed ineffectiveness can be performed at the end of each stage to reduce the

occurrence of each failure mode. Under the Bayesian framework, a general model is developed to

handle uncertainty on all model parameters, and several special cases with some parameters being

known are also studied. A simulation study is conducted to assess the performance of the proposed

models in estimating the final reliability of the system and to study the effects of unbiased and

biased prior knowledge on the system‐level reliability estimates.

2.1 Introduction

Increasingly fast technology advancements and competitive markets have forced decision makers

to develop products in a shorter time period and with less testing resources while meeting high

reliability expectations. Reliability growth is one of the most popular techniques used to achieve

these goals. This technique requires testing an early version of a product, identifying the most

important failuremodes, and performing corrections to reduce the chances of failure (Crow, 2004a).

To quickly surface the failure modes of interest, tests can be sped up by using accelerated life testing

(ALT) where test units are exposed to harsher-than-normal conditions (Elsayed, 2012). In addition,

Bayesian statistical models can be used to improve reliability estimation by incorporating experts’

opinions and experience with similar products (Martz &Waller, 1991). The technique reduces the
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required amount of testing in a reliability growth program.

Among the available reliability growth models, the Crow-AMSAA model is the most widely

used in industry and government for the analysis of reliability growth testing data (Crow, 2004a).

This model assumes that the occurrence of failures follows a non-homogeneous Poisson process

during testing with corrections being implemented after the first observation of each failure mode

or upon the completion of tests. Feinberg (1994) provided closed-form equations to incorporate

ALTwith the Crow-AMSAAmodel by using a constant time scaling factor that captures the equiv-

alence between the testing times under the normal and harsher-than-normal conditions. Feinberg’s

ALT-extended Crow-AMSAA model has been applied in industry for relatively simple electronic

components (Acevedo et al., 2006). Although constant time-scaling is mathematically convenient,

concerns about its practicality motivate the development of various parametric and non-parametric

acceleration models for determining equivalence between the results fromALT and the normal use

condition. A summary of these models can be found in Nelson (1990); Meeker & Escobar (1998);

Elsayed (2012). Furthermore, Freels et al. (2015) study the capacity of commonly used data anal-

ysis techniques to produce meaningful reliability estimates based on highly accelerated life test

results.

Although a classical statistical approach may be applied under a reliability growth program as

discussed previously, complications arise when few or no failures are observed during testing. This

issue has attracted much attention of both researchers and practitioners. For example, Jiang et al.

(2010) develop a modified maximum likelihood estimate for the Weibull distribution parameters

with zero failures. Moreover, the use of Bayesian statistics offers a useful alternative for solving

these problems by incorporating prior information into reliability estimation.Martz&Waller (1991)

present an overview of classical Bayesian models while Hamada et al. (2008) present a modern

perspective of Bayesian models for component and system reliability analysis. Moreover, ALT has

been considered in conjunction with Bayesian reliability models. As an example, Somerville et al.

(1997) model the conditional reliability of a component after a series of step-stress tests in a random

order using a Dirichlet prior distribution. Yuan et al. (2014) model reliability under use condition
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using a Dirichlet process with Weibull kernels to incorporate ALT data.

In the area of reliability growth, Bayesian reliability models have also been investigated. The

first of such models, to the best of our knowledge, is by Pollock (1968) which makes inferences on

reliability improvement by detecting if failure mechanisms have been completely eliminated or if

they are still present after a correction. More recently, Wayne & Modarres (2015) develop a model

to estimate the reliability of a multi-component system with a complex structure, such as motorized

vehicles, by assuming that the failure modes are independent, serial in nature, and have exponential

life-time distributions. Corrections are incorporated in this model as a fixed-effect reduction in

the failure rate of each failure mode. In this setting, it is possible to calculate the moments of

system reliability using themoments of component reliability via block decomposition for Bayesian

(Martz & Waller, 1990) and traditional (Jin & Coit, 2008) statistical approaches. Thompson &

Haynes (1980) provide a Beta distribution to approximate the system reliability distribution using

the method of moments. UsingALT data, Strunz &Herrmann (2012) develop a model for Bayesian

reliability growth analysis for a one-shot system such as a projectile weapon. Ruiz et al. (2018)

develop a model to estimate the reliability of a complex system using block decomposition on an

ALT-based reliability growth program implemented for the components.

In this paper, we develop a general Bayesian accelerated reliability growth (GBARG) frame-

work to incorporate all sources of information to draw inferences for the reliability of a complex

systemwhose components present multiple independent failure modes. The remainder of this paper

is organized as follows. Section 2.2 presents a previous work on the simplest case of Bayesian accel-

erated reliability growth (BARG). Section 2.3 develops a general framework for BARG by consid-

ering uncertainty in all model parameters. Section 2.4 illustrates the performance of the framework

using a numerical example. Lastly, Section 2.6 draws conclusions.

2.2 Basic Accelerated Reliability Growth Model

We consider a multi-component system with a known structure, where its function can be described

by a reliability block diagram. Each component i has ni identifiable independent failure modes of

6



interest, which are elicited from system experts using reliability engineering analysis techniques.

Similar to Crow (2004b), one failure mode can be defined to include all failure modes not relevant

to the reliability growth program as corrections will not be applied to them and such failure modes

may or may not be completely identifiable. The failure time of each failure mode j = 1, · · · , ni of

component i is assumed to follow a Weibull distribution with probability density function (pdf):

fij(t) = λijbijt
bij−1 exp

(
−λijt

bij
)

(2.1)

where λij is the rate parameter, and bij is the shape parameter. Note that this parametrization is used

for convenience in the Bayesian analysis of the data. The equivalence between this parameterization

and the commonly used one with shape bij and scale parameter ηij = λ−1/bij is shown in Table 2.1.

Table 2.1: Comparision of the parametrization of the Weibull distribution.

Parametrization Parameters pdf Reliability

Weibull-Rate (b, λ) λbtb−1 exp(−λtb) exp(−λtb)

Weibull-Scale (b, η)
b

η

[
t

η

]b−1

exp

(
−
[
t

η

]b)
exp

(
−
[
t

η

]b)

The reliability growth program consists of S testing stages with corrective actions at the end

of each stage. There are κ different testing environments including the use condition. In each

stage s, Ws identical copies of a component are tested each under a particular testing condition

that increases the rate parameter by a factor of aijws =
∑κ

k=1 ρkwsaijk for unit w and failure mode

j of component i, where ρkws equals 1 if unit w in stage s is tested using environment k (and 0

otherwise). Lastly, corrections decrease the rate parameter λij by an effectiveness factor of 1−dijs

such that the final rate parameter is λij

∏S
s=1 dijs. Note that parameter dijs is the ineffectiveness

of corrections in order to simplify the notation throughout the paper. This model has the following

sources of uncertainty for each component:

• Parameters of life-time distribution (λij, bij), for j = 1, · · · , ni.

• Acceleration factors (aijk), for k = 1, · · · , κ.
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• Ineffectiveness of each corrective action (dijs), for s = 1, · · · , S.

First, we calculate the final reliability of a component after a growth program has been carried

out under specific conditions. Second, we aggregate the results for all components to estimate the

final system reliability based on the system structure.

2.2.1 Bayesian Accelerated Reliability Growth at Component Level

We consider the Bayesian Reliability Growth Model (BARG) developed by Ruiz et al. (2018) to

estimate the final reliability of a component, where only the rate parameter is unknown, and use a

short notation to identify failure modes using only one index (i.e., j instead of ij). We assume that

all other parameters can be accurately estimated and typically will have ajk ≥ 1 and 0 < djs < 1.

Thus, the only source of uncertainty is on λj for which a Gamma prior distribution is assumed with

pdf:

π(λj) =
β
αj

j

Γ (αj)
λ
αj−1
j exp (−λjβj) . (2.2)

Using Bayes’ theorem, the posterior distribution π′ of λj given the observed information on failure

time, failure mode, and testing environment D = {t, δ,ρ} can be expressed as:

π′(λj) =
L(D,λj)π(λj)∫∞

0
L(D,λj)π(λj)dλj

.

Given the choice of prior, the hyperparameters of the posterior (also Gamma) after each test-fix

stage are:

αjs = αjs−1 +
Ws∑
w=1

δjws ∀ (j, s),

βjs =
βjs−1

djs
+

1

djs

Ws∑
w=1

tbjwsajws ∀ (j, s),
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where δjws equals 1 if failure mode j was observed in unit w in stage s (and 0 otherwise), and tsw

is the testing time for unit w in stage s. Because a failure of unit w ends its testing withing a given

stage, tsw provides either a censoring time (if unit w does not fail) or a failure time (if unit w fails).

Lastly, the moments of the reliability of a component after the sth stage for a fixed target life

time T can be expressed as:

E[Rm
s ] =

ni∏
j=1

(
βjs

βjs +mT bj

)αjs

. (2.3)

2.2.2 Information Aggregation at System Level

We use the block decomposition technique (Martz &Waller, 1990) to estimate the moments of the

reliability of a complex system using the moments of component reliability. Block decomposition

consists of grouping components in blocks such that an equivalent system in terms of its blocks is

formed with a pure series or parallel structure. This process is repeated using each block as a new

system until there is only one component in each block.

We identify each block by a vector (B, k) where k is the block level and B is the block number

at level k, where level 0 is the system, 1 is a collection of blocks that form the system and so on up

to the component level. DefineΩB,k as the set of blocks that form blockB at level k. The moments

of the reliability can be respectively evaluated for a series or parallel block (B, k) as (Ruiz et al.,

2018):

E[Rm
B,k] =

∏
B′∈ΩB,k

E
[
Rm

B′,k+1

]
, (Series) (2.4)

E[Rm
B,k] = 1 +

m∑
i=1

(−1)i
(
m

i

) ∏
B′∈ΩB,k

(
1 +

inB′∑
j=1

(−1)j
(
inB′

j

)
E[Rj

B′,k+1]

)
, (Parallel) (2.5)

where nB′ is the number of redundant identical copies of block B′ in block (B, k).
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2.3 Fully Bayesian Model

The BARG model given in the previous section provides the system reliability moments of the

simplest case where only λ is uncertain. In this section, we develop a general BARG (GBARG)

model to consider the uncertainty of all model parameters. Consistent with Section 2.2.1, we use

a short notation to refer to failure modes only by index j instead of ij. Define Θj as the set of

all model parameters related to failure mode j, i.e., Θj = {λj, bj,aj, dj}. It is worth pointing

out that Θj is independent of all other model parameters due to the assumption about independent

failure modes. Given the observed information D (as defined in Section 2) after S test-fix stages

the likelihood function can be expressed as:

L(Θj|D) =
S∏

s=1

Ws∏
w=1

[
ajws

(
s−1∏
s′=1

djs′

)
λjbjt

bj−1
ws

]δjws

exp

[
−ajws

(
s−1∏
s′=1

djs′

)
λjt

bj
ws

]
,

=
S∏

s=1

(λjbj

s−1∏
s′=1

djs′

)∑Ws
w=1 δjws Ws∏

w=1

a
δjws

jws t
δjws(bj−1)
ws

×

exp

[
−λj

S∑
s=1

W∑
w=1

ajws

(
s−1∏
s′=1

djs′

)
tbjws

]
, (2.6)

where δjws is defined in Section 2.2. Note that L(Θj|t) does not incorporate the information on djS

since the components are not tested after this corrective action has been applied. In addition, we

assume that P{djs = 1} = 1 for cases where corrections have no effect on failure mode j resulting

in no reduction in λj , and for s = 1,
∏s−1

s′=1 djs′ = 1.

Since no joint conjugate prior distribution is available for all the parameters inΘj , we develop a

Metropolis-Hasting (MH) procedure to sample the posterior distributions of the parameters. Specif-

ically, we develop a sequential MH procedure to sample from the conditional distribution of one

parameter at a time given the current sample of all other parameters. The conditional likelihoods of

parameters θj ∈ Θj given the fixed values of all other parameters (represented as a set difference
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Θj \ θj) up to a multiplicative constant required for the procedure are:

L(λj|Θj \ λj, D) ∝ λ
∑S

s=1

∑Ws
w=1 δjws

j exp

[
−λj

S∑
s=1

Ws∑
w=1

ajws

(
s−1∏
s′=1

djs′

)
tbjws

]
, (2.7a)

L(bj|Θj \ bj, D) ∝ b
∑S

s=1

∑Ws
w=1 δjws

j

[
S∏

s=1

Ws∏
w=1

tδjws(bj−1)
ws

]
exp

[
−

S∑
s=1

Ws∑
w=1

ajws

(
s−1∏
s′=1

djs′

)
λjt

bj
ws

]
,

(2.7b)

L(ajk|Θj \ ajk, D) ∝ a
∑S

s=1

∑Ws
w=1 δjwsρkws

jk exp

[
−ajkλj

S∑
s=1

Ws∑
w=1

ρkws

(
s−1∏
s′=1

djs′

)
tbjws

]
, (2.7c)

L(djs|Θj \ djs, D) ∝ d
∑S

s′>s

∑Ws
w=1 δjws′

js exp

[
−djsλj

S∑
s′>s

Ws∑
w=1

ajws′

(
s′−1∏

s”=1:s”6=s

djs′′

)
t
bj
ws′

]
, (2.7d)

From the conditional likelihoods, we identify that λj, ajk, and djs have Gamma distributions as

natural conjugate priors with the parametrization shown in Equation (2.2). Moreover, the posterior

Gamma distribution can be used to evaluate how beneficial the corrective actions are and which

testing environments accelerate the failure modes as intended. In contrast, bj does not possess

a natural conjugate prior distribution. Moreover, Singpurwalla (2011) identifies the difficulty in

assessing λ directly from experts’ knowledge and proposes to first elicit priors independently for b

and tB50 (i.e., median lifetime) then derive the implicit distribution of λ instead of assuming that

λj and bj are independent. Using this strategy yields the following:

tjB50 ∼ Inverse-Gamma(αjt, βjt)

ajk ∼ Gamma(αajk , βajk)

djs ∼ Gamma(αdjs , βdjs)

bj ∼ Three Parameter Gamma(γj, αbj , βbj)

where γj is a shift parameter such that bj − γj ∼ Gamma(αbj , βbj ).

The conditional prior distribution of λj induced by the prior on tjB50 given bj can be derived
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as:

tjB50 =

(
ln(2)

λj

)1/bj

(Definition),

J =
dtjB50

dλj

=
ln(2)1/bj

bjλ
1/bj+1
j

(Derivative),

π(λj|bj) = π(t−1
jB50

(λj)|bj)|J | (Change of variables),

=
β
αjt

jt

Γ(αjt)

(
λj

ln(2)

)αjt + 1

bj exp

(
−βjt

[
λj

ln(2)

]1/bj) ln(2)1/bj

bjλ
1/bj+1
j

,

=

(
βjt

ln(2)1/bj

)αjt

Γ (αjt)
−1 λ

αjt/bj−1
j exp

(
− βjt

ln(2)1/bj
λ
1/bj
j

)
b−1
j , (2.8)

where π(λj|bj) is not a known standard distribution. However, λ
bj
j follows a Gamma distribution

with parameters (αjt, βjt ln(2)
−1/bj).

Algorithm 1MH Sequential Sampling Procedure

Require: N,Ω
1: Initialize parameters vectors λj , bj ,ajk,djs of size N equal to 0.

2: Set λj1 = Eπ(tjB50
,bj)[λj], bj1 = 1 +

αbj

βbj

3: Set ajk1 =
αajk

βajk

∀k, djs1 =
αdjs

βdjs

∀s

4: Set c = 2
5: for c ≤ N do

6: Sample:

7: λjc =MHStep(λjc−1)

8: bjc =MHStep(bjc−1)

9: djsc ∼ Gamma(α′
djs

, β′
djs

) ∀s
10: ajkc ∼ Gamma(α′

ajk
, β′

ajk
) ∀k

11: c = c+ 1
return λj , bj ,ajk,djs.

Algorithm 2MH Step

Require: Proposal distribution g(·), prior distribution π(·), and initial value θc
1: Sample θp from g(θ|θc) and u from Uniform(0, 1)

2: if u ≥ g(θc|θp)
g(θp|θc)

L(θp|Θ /∈ θ, t)π(θp|Ωθ)

L(θc|Θ /∈ θ, t)π(θc|Ωθ)
then

3: θp = θc
return θp
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Algorithm 1 presents the sequential MH procedure used to sample the posterior distributions

of the model parameters. The procedure requires the sample sizeN and the set of prior parameters

Ω. Line 1 initializes the vectors. Lines 2 − 3 set the initial sample to the expected value of their

respective prior distributions. As a special case, the induced initial estimate for λj given the prior

information on tjB50 and bj is:

E[λj] =

∫ ∞

1

∫ ∞

0

ln(2)τ−bj
β
αjt

jt

Γ(αjt)
τ−αjt−1 exp

(
−βjt

τ

)
β
αbj

bj

Γ(αbj)
(bj − γj)

αbj
−1 exp

[
−βbj(bj − γj)

]
dτdbj,

= ln(2)
β
αbj

bj

Γ(αbj)

∫ ∞

1

β
αjt

jt

Γ(αjt)

Γ(αjt + bj)

β
αjt+bj
jt

β
αbj

bj

Γ(αbj)
(bj − γj)

αbj
−1 exp

[
−βbj(bj − γj)

]
dbj,

= ln(2)
β
αbj

bj

Γ(αbj)Γ(αjt)

∫ ∞

1

Γ(αjt + bj)

β
bj
jt

β
αbj

bj

Γ(αbj)
(bj − γj)

αbj
−1 exp

[
−βbj(bj − γj)

]
dbj, (2.9)

where the last integral is evaluated numerically. Lines 7 − 8 sample the next value of each pa-

rameter, where the MH Step presented in Algorithm 2 is used to sample λj and bj . On the other

hand, ajk and djs can be sampled directly from a Gamma distribution with parameters of the form

(α′
θ = αθ+Aθ, β

′
θ = βθ+Bθ)where (αθ, βθ) are the respective prior hyperparameters and (Aθ, Bθ)

come from the likelihood function of the form θAθexp(−Bθθ) as in Equations (2.7c) and (2.7d), re-

spectively. Note that (Aθ, Bθ) are updated in each iteration of the algorithm depending on the

current sample of all other parameters. A common practice to avoid the correlation among consec-

utive MH samples is to trim the sample vectors by only keeping one sample after a fixed number

of them is drawn (i.e., thinning)(Van-Dorp & Mazzuchi, 2004).

Algorithm 2 presents the standard MH algorithm. It requires a proposal distribution g(·), prior

distribution π(·), and current values of all parameters Θ with θc being the current value of the

parameter of interest θ. Line 1 samples a proposed value θp from the proposal distribution given

θc and a random number u. Line 2 assesses whether u is greater than or equal to the ratio of the

proposal density θc given θp over the proposal density of θp given θc times the ratio of the posterior

density of θp over the posterior density of θc. Note that this ratio allows us to use the likelihood

up to a multiplicative constant to sample the posterior distribution. If u is greater than the ratio we
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reject θp and change its value to θc in Line 3.

2.4 Numerical Example

In this section, we conduct a simulation study to assess the performances of the GBARG model to

estimate the true reliability of a system based on the testing results of the components. We proceed

to describe the system under test, then present the simulation results for the component and system

levels.

2.4.1 System Description

Figure 2.1 shows the block diagram of the system used for this example. The overall system consists

of two identical parallel subsystems with two identical subsystems E and E’, each of which has a

series-parallel structure, where subsystem C is formed by the identical components A and A’, and

subsystem D is formed by component B. Each component has two failure modes. The growth

program is implemented by testing each component independently for an initial stage under the use

condition, then conducting an accelerated test with a corrective action at the end, and performing a

final accelerated test. Testing is performed such that identical copies of a component are tested one

at a time. If the current copy fails, testing is continued with a new identical copy of the component

until no more testing time is available. Details on the true parameters assumed for the growth

program are provided in Table 2.2. Note that a direct comparison with traditional models such as

the Crow-AMSAA is not possible under this reliability growth program since testing is done at a

component level. Thus, most of the assumptions for the Crow-AMSAA model are violated such

that it would perform poorly Wayne & Ellner (2010).

We simulate M = 100 replications of the growth program. After extensive numerical studies

not presented here due to lack of space, we determine that the sample size required for the chain to

converge is one million samples. We calculate the final system and component reliability values as

indicated inAlgorithm 1 by keeping one sample every one hundred observations (thinning) as done

by Van-Dorp & Mazzuchi (2004). The expected values of the model parameters and reliability are
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Figure 2.1: System tested during experiments

Table 2.2: Component characterisitcs

Component Mode λ(10−5) b d a

A
1 2.383 1.52 0.77 7.50
2 2.522 1.23 0.88 9.60

B
1 0.589 1.24 0.75 9.36
2 0.652 1.33 0.80 12.15

used as the point estimates. The variance and expected value of the parameters at the end of each

repetition are estimated as:

θ̂m =

∑N
s=1 θms

N
, R̂im =

∑N
s=1 R(Θims)

N
,

V̂ar(θm) =

∑N
s=1 θ

2
ms

N − 1
− θ̂2m,

̂Var(Rim) =

∑N
s=1 R(Θims)

2

N − 1
− R̂2

im, (2.10)

where θms is the s
th sample from the mth replication, Θi = Uni

j=1Θj , with Θj defined as in Sec-

tion 2.3, and Rijms(Θims) = exp(−
∑ni

j=1 λijmsdijmsT
bijms) for a fixed target life time T . More-

over, the expected percentage relative error (RE) and variance of the point estimate considering the
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simulation variance are calculated as:

RE(θ̂) = 100

∑M
m=1 θ̂m
Mθ

− 100, Var(θ̂) =

∑M
m=1Var(θm)

M
+

∑M
m=1(θ̂m − θ̂)2

M − 1
. (2.11)

Lastly, we conduct simulation experiments using multiple values of the parameters for the prior

distribution such that the expected value of the reliability of the part with respect to R may show

some bias compared to the true value of the parameter. Let c be a multiplier such that for the

parameter θ the expected value E[θ] of its prior is either cθ or θ/c such that if c > 1 the expected

value of the reliability of the part with respect to θ decreases. In this study, we set c < 1 for

optimistic priors, c = 1 for unbiased priors, and c > 1 for pessimistic priors. Using this definition,

we use the equations shown in Table 2.3 to calculate the hyperparameters of the prior where b >

1.01 with γ = 1 such that the components always age and d > 1 such that the corrections are

expected to have no effect in the worst case.

Table 2.3: Component characteristics

Parameter E[·] α β

b max(cb, 1.01) 2 α/(E[b]− 1)
tB50 c(ln 2/λ)1/E[b] 2 (α− 1)E[tB50 ]
d min(cd, 1) 2 α/E[d]
a a/c 2 1/E[a]

2.4.2 Results at Component Level

First, we investigate the effect of the proposal distribution on the convergence of the method. We

only consider those proposals with a positive support, such that it is not required to discard obser-

vations when a negative value is drawn. In particular, we compare an exponential distribution with

mean λjc−1 as a proposal for λj and a two-parameter exponential distribution with a shift of 1 and

mean of bjc−1 as proposal for bj with a log-normal distribution with the same mean as the expo-

nential and variance of 1. Figure 2.2 presents a box plot for the reliability estimates of component

A as testing time is increased for prior distributions of the parameters (pessimistic with c = 2 and
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optimistic with c = 0.5) and different proposal distributions for the MH algorithm, with each repli-

cation observing the same test results such that only the prior and proposal parameters induce any

observed difference in the reliability estimate. The columns are organized as pessimistic, unbiased,

and optimistic for the exponential and log-normal proposal distributions. The results show signifi-

cant discrepancies between the estimates produced using different proposals when bias (pessimistic

and optimistic) is introduced to the prior distributions. In particular, the log-normal proposal results

in more uncertain estimates due to the lack of convergence of theMH procedure (convergence plots

for both distributions are not shown here due to space limitation). This suggests that the exponen-

tial proposal is more robust for this problem since the variation and bias of the point estimate of

reliability is reduced as the testing time increases for all cases.

Pessimistic Unbiased Optimistic

Exponential

Log-normal

Figure 2.2: Relative error of reliability estimate under different proposal distributions and biased

priors for component A as the total testing time increases.

Figure 2.3 presents a box plot of the point estimate of different model parameters under an

unbiased prior and the Exponential proposal. One can see that λ is the hardest to estimate in terms

of having the highest relative error due to underestimating b in both failure modes which causes the

overestimation of λ. Furthermore, increasing the testing time effectively reduces the relative error

for all parameters, and no bias is observed for d and a. However, the uncertainty on a as well as λ

for the second failure mode increases as the testing time increases while the uncertainty on all other
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model parameters decreases because the lack of observations on failure mode two relative to failure

mode one, a being the last parameter to be sampled in Algorithm 1, and the relative high variance

that its prior has as compared to the variance of the prior of other parameters (due to the magnitude

of each parameter). This suggests that the shape and rate parameters are the most important sources

of uncertainty in the model.
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Mode 1 Mode 2

λj

bj

dj

aj

Figure 2.3: Relative error of the parameter estimates using Exponential proposal and unbiased prior

as the total testing time increases.
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Figure 2.4 shows the relative error and variance of the reliability estimate for componentAafter

100 replications of the growth program calculated using Equations in (2.11). For both, pessimistic

and optimistic priors the magnitude of estimation bias is reduced as more testing time is available.

A similar trend is observed for the variance of the estimate for all but the two extreme cases of

optimistic and pessimistic priors. In particular, the two most optimistic priors have variances with

an order of magnitude lower than all other cases due to not overcoming the prior information and

having the same reliability point estimate in most replications, while the cases with the most pes-

simistic priors are more sensitive to the test results when the testing time is less than 6 thousand

hours.

Relative Error (%) Variance

Optimistic Priors

Pessimistic Priors

Figure 2.4: Relative error and variance of the estimate of the reliability for component A with all

parameters unknown as the total testing time increases.

2.4.3 Results at System Level

Equations (2.4) and (2.5) are used to calculate the expected value and variance of each realization of

system reliability, and the following equation is used to calculate the kth moment of the reliability
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of each component:

R̂k
im =

∑N
s=1R(Θims)

k

N
(2.12)

Furthermore, the expected relative error and variance of the system reliability estimate are calcu-

lated in the same way as for the component.

Figure 2.5 shows the relative error and variance for the general case. The most optimistic priors

are harder to correct in terms of reducing the relative error with more testing time. In contrast, the

cases with pessimistic priors start with a large relative error that is significantly reduced with more

testing time, however, they still present larger errors than their optimistic counterparts after testing

for 75 thousand hours. This is due to the requirement that b is greater than one, which bounds the

prior assessment in terms of the shape parameter requiring no reduction in the hazard rate. The

variance also presents a similar behavior as in the component case. It shows reduction for all but

the two most optimistic priors after 6 thousand testing hours, while the three most pessimistic cases

present an increase in variance of the estimate when the testing time is less than 6 thousand hours.

Figure 2.6 shows the same results under testing environments with acceleration factors that

are five times higher than the ones used in the previous example. The results show a significant

reduction in the relative error for all cases with pessimistic priors as comparedwith their equivalents

in the previous experiments. However, the cases with unbiased and optimistic priors present higher

errors when the testing time is less than 15 thousand hours. In addition, the variance of the estimate

increases significantly for all but the two cases with the most optimistic priors.
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Relative Error (%) Variance

Optimistic Priors

Pessimistic Priors

Figure 2.5: Relative error and variance of the estimate of the reliability for the system with all

parameters unknown as the total testing time increases.

Relative Error (%) Variance

Optimistic Priors

Pessimistic Priors

Figure 2.6: Relative error and variance of the estimate of the reliability for the system with all

parameters unknown as the total testing time increases with greater acceleration factor.
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In the next subsections, we present two special cases of the GBARG model when bj is known

and when both bj and ajk are known (e.g., from a physical model)

2.4.4 Case with Known Shape Parameters

This case is a straightforward application of themodel presented in Section 2.3 by usingAlgorithm 1

while ignoring sampling from b and calculating E[λj] as:

E[λj] =

∫ ∞

0

ln(2)τ−bj
β
αjt

jt

Γ(αjt)
τ−αjt−1 exp

(
− βjt

τ

)
dτ

= ln(2)
Γ(αjt + bi)

Γ(αjt)β
bj
jt

(2.13)

Figure 2.7 shows the final reliability estimate of component A as in Section 2.4.2. Unlike

Figure 2.4, Figure 2.7 shows a reduction in relative error and variance for all cases compared to the

case with unknown b. In addition, the variance of the estimate is reduced with more testing time

for all priors. However, all cases show a convex section in the reliability estimate up to around

30 thousand testing hours. Moreover, the cases with optimistic priors show a reduction, the cases

with unbiased prior stays the same, and the cases with pessimistic priors show an increase after

around 75 thousand hours. Figure 2.8 presents a similar behavior for the system level results as

their component level counterparts with lower initial relative errors and faster error reduction than

the general model when the testing time is longer than 6 thousand hours. However, all the cases

underestimate the reliability of the system due to underestimated acceleration factors that introduce

a bias to overestimate the failure rates.
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Relative Error (%) Variance

Optimistic Priors

Pessimistic Priors

Figure 2.7: Relative error and variance of the estimate of the reliability for component A with

known shape parameter (b) as the total testing time increases.

Relative Error (%) Variance

Optimistic Priors

Pessimistic Priors

Figure 2.8: Relative error and variance of the estimate of the reliability for the system with known

shape parameter (b) as the total testing time increases.
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Lastly, once we know b it is easier to assess λ directly and assign a natural Gamma prior distri-

bution to it. As a result, the sampling procedure can be simplified to a Gibbs sampler (i.e., an MH

sampler with all conditional posterior distributions having closed-form expressions). However, λ

still lacks a clear physical meaning which can introduce a significant bias to the elicitation process.

2.4.5 Case with KnownAcceleration Factors and Shape Parameters

This case is a straightforward application of Algorithm 1 where we do not need to sample b and

a. Compared to Figure 2.7, Figure 2.9 shows further improvement in the reliability estimate at the

component level in terms of reduced error and variance when the acceleration factor is known. It

also suggests that less testing time is required to converge to the true reliability at the system level

compared to the previous models. After 15 thousand hours of testing, the difference in the point

estimate of the reliability is the same for all pessimistic priors such that only the new data seems

to matter, and the variance of the reliability estimate is similar across all cases. After seventy five

thousand hours, the reliability estimate generated for each prior is withing 5% relative error from

the true reliability.

Figure 2.10 shows results for the system level reliability estimate. The general behavior is

similar to the one at the component level with a lower relative error and variance as compared to

Figures 2.5 and 2.8. In addition, the relative errors of the final estimates are less than 5% for all

testing times. Finally, the reliability estimate tends to improve faster for the cases with optimistic

priors while it starts with a low error for the cases unbiased and pessimistic priors.

2.5 Alternative Approaches

In this section, we present an alternative approach to incorporate prior information on the param-

eters of the life-time distribution, and alternative models for estimating each ajk. We assume that

the models treat only components and omit the i index in our notation.
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Relative Error (%) Variance

Optimistic Priors

Pessimistic Priors

Figure 2.9: Relative error and variance of the estimate of the reliability for component A with

known shape parameter and acceleration factors as the total testing time increases.

2.5.1 Alternative Approach for Prior Information on the Lifetime Distribution

Soland (1969) developed a conjugate prior distribution when both of the Weibull parameters are

unknown by restricting bj to take fixed values bjv, for v = 1, · · · , Vj , and assigning a prior proba-

bility mass function (pmf) for each bjv. In other words, the range of bj is reduced to a finite number

of fixed points and a probability is assigned to each point. The prior distribution is of the form:

π(λj, bj) = π(λj|bj)π(bj), (2.14)

where π(bj) = P{bj = biv} and π(λj|bj) follows a Gamma distribution. We use pjvs as shorthand

notation for P{bj = biv} after s stages.

This prior distribution implies that for each failure mode j we need to calculate Vj posterior

distributions for (λj|bj) using the results from Section 2.2 with bj = bjv. The posterior pmf is
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Optimistic Priors
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Figure 2.10: Relative error and variance of the estimate of the reliability for the system with known

shape parameter and acceleration factors as the total testing time increases.

calculated as:

pjvs =
pjvs−1(ajbjv)

∑
w δjwsβ

αjvs−1

jvs−1

(∏
w t

δjwsbjv
w

)
Γ(αjvs)/βαjvs

ivs Γ(αjvs−1)∑
v pjvs−1(ajbjv)

∑
w δjwsβ

αjvs−1

jvs−1

(∏
w t

δjws
w

)bjvs−1
Γ(αjvs)/βαjvs

jvs Γ(αjvs−1)

. (2.15)

Lastly, the moments of the reliability of a component for a target life T can be calculated by:

E[Rm] =

ni∏
j=1

E
[
rmj
]
=

ni∏
j=1

 Vj∑
v=1

E
[
rmj |bj

]
pjvs

 =

ni∏
j=1

 Vj∑
v=1

(
βjvs

βjvs +mT bjv

)αjvs

pjvs

 . (2.16)

We simulated 1000 replications of a reliability growth program for component A as in Sec-

tion 2.4 with known a and d, and λjv|bjv having a Gamma(αjv, βjv) prior distribution whereαjv = 2

for all failure modes and βjv =
√
rjT

bjv/(1−√
rj). We consider 10 equally spaced values between

1.20 and 1.60 for bjv on both failure modes with equal initial probability of 0.10. Table 2.4 shows

the probabilities associated with each bjv which tend to converge around the true bi (i.e., 1.52 and
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1.23, respectively), as the testing time increases. Moreover, Figure 2.11 presents a box plot with

the expected value of the final reliability as the testing time increases. The results show that the

relative error and variance of the final estimate decrease as the testing time increases. However,

this is not the case for 75 thousand hours due to observing numerical errors in calculating the pmf

for b1 on 951 out of 1000 replications with this testing time. Such numerical errors are produced

by the overflow of our computer when β and α are too large. Noting the computational difficulty

in applying this method for only uncertainty on the life-time parameters, we anticipate that there

would be significant challenges in incorporating additional uncertainty in other parameter into this

approach.

Table 2.4: Pmf for the shape parameter bj .

Failure Shape Testing Time (Thousands of hours)

Mode j Parameter (b) 1.5 3 6 15 30 75

1

1.22 0.053 0.027 0.012 0.004 0.001 0.000
1.26 0.064 0.042 0.025 0.012 0.005 0.000
1.30 0.077 0.062 0.046 0.030 0.017 0.003
1.34 0.091 0.084 0.075 0.060 0.043 0.015
1.38 0.104 0.108 0.107 0.099 0.083 0.047
1.42 0.116 0.127 0.135 0.137 0.130 0.107
1.46 0.124 0.140 0.154 0.165 0.169 0.177
1.50 0.127 0.144 0.159 0.175 0.191 0.224
1.54 0.125 0.139 0.152 0.169 0.190 0.229
1.58 0.118 0.127 0.136 0.150 0.171 0.198

2

1.22 0.156 0.176 0.193 0.212 0.232 0.270
1.26 0.147 0.163 0.178 0.193 0.207 0.230
1.30 0.135 0.147 0.156 0.165 0.170 0.177
1.34 0.123 0.128 0.131 0.132 0.131 0.125
1.38 0.109 0.108 0.105 0.101 0.095 0.083
1.42 0.094 0.088 0.081 0.073 0.065 0.051
1.46 0.079 0.069 0.060 0.051 0.044 0.031
1.50 0.065 0.053 0.043 0.035 0.028 0.017
1.54 0.052 0.039 0.030 0.023 0.018 0.010
1.58 0.041 0.028 0.021 0.015 0.011 0.005
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Figure 2.11: Relative error of the reliability estimate for component A under discretized shape

parameter as the total testing time increases.

2.5.2 Estimation of Acceleration Factors

For a fixed bj , the transformation τ = tbj follows an exponential distribution. If we assume the

acceleration factor aj(z) depends on covariates z of a testing environment and the specific failure

mode, it can be shown that a time contraction τj/aj is equivalent to an increased rate parameter

γj = ajλj . Under this condition, by assuming that aj is a fixed value given z, it can be estimated

by deriving the distribution of γj/λj. Thus, using the posterior distribution of λj and γj , aj follows

a Beta Prime distribution with pdf:

f(aj) =
1

B(αγj , αλj
)

βγj

βλj

(
1 +

βγjaj

βλj

)−(αγj+αλj
)(βγjaj

βλj

)αγj−1

.

Furthermore, the expected value and variance of aj are:

E [aj] =
βλj

βγj

αγj

αλj
− 1

, (2.17)

Var(aj) =
β2
λj

β2
γj

αγj(αγj + αλj
− 1)

(αλj
− 2)(αλj

− 1)2
. (2.18)

This shows that αλj
> 2 and αγj > 0 in order to guarantee meaningful posterior point estimates

when no failures are observed in any or both testing conditions. Moreover, this method can be
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easily modified to handle a joint prior distribution for (λ, b) using the ideas in Section 2.5.1.

2.6 Conclusions

A new Bayesian framework for analyzing the results from accelerated reliability growth tests with

multiple uncertainties is developed in this paper. A general MH procedure is developed to ana-

lyze the test results under a constant-stress ALT model, in which no explicit life-stress relationship

is assumed. Moreover, a block-decomposition approach is utilized to aggregate the component-

level reliability estimates for obtaining the point estimate of the reliability of the system when no

new failure modes arise from interactions between components. Numerical studies illustrate the

effectiveness of the Bayesian framework in the estimation of the system reliability with multiple

test-correction stages as the testing time increases. In particular, the impact of various bias lev-

els of informative prior distributions of the model parameters is investigated. As expected, the

framework requires more testing data to correct the bias of overly optimistic prior information.

Furthermore, use of testing environments with higher acceleration factors does not guarantee sig-

nificant improvements on the reliability estimates when a short amount of testing time is applied,

specially if the prior assessments of the reliability are too cautious.

In addition, special cases are considered when the shape parameter of the lifetime distribution

and/or acceleration factors are known. In practice, these parameters can be obtained from physical

models. Numerical experiments illustrate significant reductions in both bias and variance of reli-

ability estimates, and faster convergence to the true reliability with more testing time when such

parameters are known, especially the shape parameter. Moreover, the posterior sample of the model

parameters can be used to evaluate the effectiveness of using a predetermined stress environment

for ALT and corrections in reducing the rate parameter.

In practice, the proposed framework can be extended to incorporate failure modes presented

only at the system level by using pseudo components that represent interactions among the com-

ponents. Moreover, it can be used to perform resource allocation and develop decision rules for

determining when to stop testing for applying corrections or declaring the reliability objective as
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achieved. Such rules can be used to test if the prior information is overly optimistic or pessimistic

by noting that little or no testing may be required to make a decision. Another interesting line of

research is the development of an MH algorithm that incorporates an explicit life-stress relation-

ship, such as a power rule, and study the impact of such a change in the performance of different

frameworks when multiple stresses are used.
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3 ANon-parametric Degradation-based Method for Modeling Reliability Growth

The competitiveness of the modern business environment creates a need for shortening the develop-

ment time while assuring high product reliability. In addition, recent technological advancements

in sensor technology and data acquisition have made it possible to continuously monitor the health

status or performance of a product during testing. Using such condition monitoring data, the de-

signer can model the degradation process of this product and provides an informative and accurate

tool for failure analysis and reliability estimation. Recently, much attention has been focused on

developing new reliability growth methods in hopes of speeding up product development in a cost-

effectiveway. To this end, accelerated testing can be conducted in a reliability growth program. One

way to take advantage of both accelerated testing and degradation analysis for reliability growth is

to conduct accelerated degradation testing (ADT).

3.1 Introduction

Today’s highly competitive business environment, driven by continuous technological advance-

ments and consumers’ increasing expectations on product reliability, creates a need for shortening

the development time while continuing to assure high product reliability. To meet the require-

ments, a variety of techniques and data analysis methods have been developed. In particular, re-

cent technological advancements in sensor technology and data acquisition have made it possible

to continuously monitor the health status or performance of a product during testing and operation.

Using such condition monitoring techniques, the product developer can create a degradation in-

dex to model the degradation of the product over time. As an important alternative to failure time

data analysis, failure analysis and reliability estimation based on degradation data would be more

informative and accurate (Hamada, 2005).

Recently, special interests have been focused on the development of new reliability growth

methods in hopes of speeding up product development in a cost-effective way. A reliability growth

program consists of multiple stages of testing a product and incorporating corrective actions to re-
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duce the frequency of failures (Crow, 2004), and accelerated testing can be conducted to reduce the

testing time required for a reliability growth program by using statistical or physics based methods

to analyze the test results (Krasich, 2014). One way to take advantage of both accelerated testing

and degradation analysis for quick reliability growth is to conduct accelerated degradation test-

ing (ADT). ADT data analysis has been extensively studied using parametric and nonparametric

models since the 1960’s (Nelson, 1990). However, to the best of our knowledge, no research has

been conducted on reliability growth via ADT. It would be invaluable for practitioners to use a

new method that efficiently incorporates ADT and data analysis into a reliability growth program.

Among various possible approaches, to assist practitioners in modeling complex degradation pro-

cesses, an attractive feature of such a method would be to use a non-parametric degradation model

that can avoid model misspecification in the reliability growth program.

This paper proposes a non-parametric degradation-basedmethod formodeling reliability growth.

To the best of our knowledge, this is the first attempt in modeling reliability growth via degradation

analysis in a non-parametric way. The newmethod avoids possible misspecifications of underlying

failure time distribution and parametric degradation model. We show how to utilize degradation

data with functional data analysis and Gaussian processes to predict the MTTF and reliability of a

product given a degradation level. The model can incorporate all types of stress profiles, such as

ramp stress and step stress.

The remainder of this paper is organized as follows. In Section 3.2, we describe a multi-stage

reliability growth program and the degradation data that we expect to observe. In Section 3.3 we

present a degradation-based method to model reliability growth. In Section 3.4, we assess the

efficacy of the proposed method to estimate reliability of a product after corrective actions have

been applied under monotone and non-monotone degradation process assumptions. We summarize

our results and present conclusions in Section 3.5.
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3.2 Degradation-based Reliability Growth

Assume a product’s performance can be tracked through a signal Y and that it is considered failed

if its performance surpasses a known threshold yf , for this paper we assume that y is positive

and that yf is equal to 100. We consider a reliability growth program consisting of S stages of

testing of identical copies of a product with corrective actions at the end of each stage such that

the degradation of the product slows down after corrections if they are effective. Moreover, ADT

speeds up the degradation of a part and multiple testing environments can be used during each

testing stage. As an example, Figure 3.1 shows the degradation paths of units during the first

two stages of testing. Starting from the left, we observe 5 units under ADT which shows a faster

degradation rate than the next 5 units tested under use condition; the last 5 units are tested under

use condition after corrections have been applied and show a slower rate of degradation.

Figure 3.1: Observed degradation for units tested during a reliability growth program.

However, such data introduces complications for constructing a non-parametric degradation

model in the form of truncated observations due to reduction in the number of units tested at higher

test times. In order to construct a good non-parametric model, we need to divide the time scale in

intervals to model the degradation changes and this creates an imbalanced estimate since each unit

has its own failure time which means that as the time increases we less signals to work with and

it becomes difficult for the model to predict the life-time of units that last more than the observed

failure times. One alternative to tackle this problem is to scale the observations such that each
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signal goes through a common time frame, but such procedure fundamentally changes the data and

may introduce some biases. Alternatively, another approach, suggested in (Zhou et al., 2012), is

to shift the signal axis such that time is predicted based on degradation signal. Figure 3.2 presents

the same data as in Figure 3.1 with the axis changed such that now the data is not censored and

the non-parametric model can be estimated for any life-time results as long as all units are tested

to failure or to some upper degradation level. Thus, the second approach eliminates the need to

transform the data and it can be used to predict the time-to-signal of any unit and for a defined

degradation threshold it can predict the mean time to failure (MTTF) of the part.

Figure 3.2: Time to observe a degradation level.

3.3 Non-parametric Degradation Modeling

In this section, we present the non-parametric statistical model to estimate the reliability of a com-

ponent after multiple testing stages based on degradation measurements. We assume a component

has a known degradation process with signal Y such that it fails if the degradation signal surpasses a

known threshold yf . We treat the degradation path of each tested unit as a realization of a stochas-

tic process and estimate the mean function for the time-to-signal using functional data analysis

(FDA). Moreover, the variation between the signal of each individual unit and the mean function

is captured by a Gaussian process (GP). This joint framework is known as Gaussian process func-

tional regression (GPFR) [4]. The general model describing the behavior of the time zi to achieve
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a degradation level yj for unit i is:

zi(yj) = µi(yj, ui) + τi(xi) + εi(yj) (3.1)

where yj is the j
th element of a p−demensional vector y of degradation levels chosen to characterize

the process, µi is the mean function that depends on the degradation level and n scalar covariates ui

(under constant-stress levels and corrective actions done before testing), xi is a functional regressor

that includes the degradation points yj and the level of time-varying stressors applied during testing

at the time of each measurement, τi(xi) defines the covariance structure of zi(yj) and is modeled by

a Gaussian Process (GP) with mean 0 and covariance defined by a kernel ki(·)|xi with parameter

θi, and εi is the measurement error that is assumed to follow a normal distribution with mean 0

and variance σ2
ε . Following the results on (Shi & Choi, 2011), the model parameters are computed

using a two-stage process. First, a linear functional model is used to estimate the mean function

with:

zi(yj) ≈ z̃i(yj) = AT
i Ωj (3.2)

µi(yj, ui) = uT
i B

TΩj (3.3)

where Ωj is a vector of h basis functions evaluated at yj , Ai is an h−dimensional vector of coeffi-

cients, and BT is an h× n matrix of basis coefficients.

For the second stage, let τi(xi) be approximated by τi(xi) = zi(yj) − uT
i B

TΦ(yj) such that if

we have p observations for unitm, then

τ̃i(xi) = (τ̃i1, . . . , τ̃ip) ∼ N(0,Ψi) (3.4)

where Ψijl = ki(xij, xil; θi) + σ2
ε .

The estimation process requires an initial estimate of θi in order to compute Ψ̂i. Then, the mean
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parameters can be estimated as:

Âi =
(
ΩT

j Ψ̂iΩj + λiR
)−1

ΩT
j Ψ̂izi (3.5)

v(B̂T
i ) =

(
J ⊗ UTU + λ2R⊗ I

)−1
v
(
UTAJ

)
(3.6)

where zi is the vector of observed times for unit i, λ is a regularization parameter chosen by cross-

validation, v(·) denotes the vector of length p× h formed by stacking the columns of a matrix, ⊗

is the Kronecker product of two matrices, J =
∫
Φ(y)Φ(y)Tdy, and U is the matrix of observed

scalar covariates for theM units tested. Then, we can estimate θi given the current τi(xi) and repeat

the estimation process until a convergence criteria is satisfied.

The population reliability after observing M units for a target time zf , covariates under use

condition u0 and x0 can be estimated by first computing the unit mean and variance functions as

z∗i = µT
0 B̂

TΥ(yf ) +HT
(
yi − µT

i B̂
TΥ(yf )

)
(3.7)

σ̂∗2
i = σ̂∗2

GP

(
1 + uT

0 (U
TU)−1u0

)
(3.8)

where σ̂∗2
GP is computed as Ψi(x

f , xf )−HTΨi(x0, x0)H , H is the matrix resulting from

Ψi(x
f , xm)Ψi(x

f , xf )−1, and xf is the vector of variable covariates at use condition. Thus, we can

calculate the reliability of a population as:

P{z(yf ) < zf} = Φ

(
zf − ẑ∗

σ̂∗

)
(3.9)

where ẑ∗ =
∑M

i=1
z∗i/M, σ̂∗2 =

∑M
i=1

σ̂∗2
i /M+(

∑M
i=1

ẑ∗2i /M− ẑ∗2),Φ(·) is the cumulative distribution

function (cdf) of the standard normal distribution. Note that σ̂∗2 depends on an empirical estimate

of the variance structure which is captured in σ̂∗2
GP based on the parameters fitted for each unit

tested and the expected conditions for the unit populations. In addition, those estimates can be

used to predict the RUL of a unit by including the already observed covariates and degradation

measurements in the prediction.
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3.4 Numerical Example

In this section, we conduct a simulation study to assess the performance of the proposed methodol-

ogy to estimate the reliability of a population after corrections. We simulate two types of degrada-

tion paths; monotone increments generated from an Inverse Gaussian process (IGP) (Ye & Chen,

2014) with parametrization as in Equation 3.10, and, non-monotone increments generated from a

Wiener process (WP) (Wang, 2010) with parametrization as in Equation 3.11.

f(∆yij) =

√
λ∆h2

ij

2π∆y3ij
exp

(
−λ

2∆yij − µ2
(∆yij − µ∆hij)

2

)
(3.10)

f(∆yij) = φ

(
∆yij − µ∆hij

σ∆hij

)
(3.11)

where ∆yij = yij − yij−1, ∆hij = h(zij) − h(zij−1), h is a monotone time transformation, for

this example h(z) = zη, and φ(·) is the probability density function (pdf) of the standard normal

distribution.

3.4.1 Degradation Characteristics and Data Generation Process

All simulation experiments are done using two stages of testing, i.e. S = 2, with one correction at

the end of the first stage. During each stage, 5 units are tested under use condition and 5 under fixed

stress ADT, i.e. the stressors are set at the highest stress possible for the duration of the test such

that we only have scalar covariates and all units are tested until failure. Table 3.1 shows two sets of

parameters used for our experiments, the first set is for presentation convenience of the confidence

intervals for the mean time-to-signal function, and the second set is for estimating the reliability of

a highly reliable products. The only parameter affected by ADT or corrective actions is the mean

degradation µs
i where the subscript i equals 1 if ADT is applied, 0, otherwise, and the superscript s

is the testing stage.

We simulate the results by setting the observed increments to be ∆yj = yf/n where n is the

desired number of observations on each degradation path and yf is the failure threshold. In each
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Table 3.1: Parameters used on the experiments

Parameter
Plots Reliability

IGP WP IGP WP

µ1
0 0.2 0.2 0.02 0.02

λ, σ 0.5 1.41 0.05 4.47

η 1.2 1.2 1.2 1.2

µ1
1 0.37 0.37 0.037 0.037

µ2
0 0.167 0.167 0.016 0.016

µ2
1 0.254 0.254 0.025 0.025

testing stage, we sample the first passage time zij by first generating n replications of the time

transformation increments ∆hij required to observe a degradation increment of ∆yj by numeri-

cally computing the inverse cdf for the IGP given a randomly generate uniform number. Then,

we compute hij =
∑j

k=1∆hij and zij = η
√
hij. For generating data from an WP, we sample an

IGP with parameters (µ, σ−1) since and IG distribution is the well-known first passage time of a

Brownian motion process with drift. The generated data is then analyzed using the methodology

presented in the previous section.

3.4.2 Results

In order to train the model, covariates ui are incorporated in the form as a four dimensional vector

with elements δic for c = 1, . . . , 4; and δi1 = 1, for all units in order to capture the baseline mean

function of the time-to-signal process; δi2 = 1, if ADT before corrections is used for unit i, 0,

otherwise; δi3 = 1, if corrections are applied before testing unit i, 0, otherwise; δi4 = 1, if ADT

after corrections is used for unit i, 0, otherwise.

We begin by exploring the effects the number of measurements n on the estimation of the mean

function when the degradation process is monotone. First, Figure 3.3 shows the 95% confidence

interval for the mean time-to-signal using 50 measurements per unit tested, it is clear that the model

estimates the mean function satisfactorily. On the other hand, Figure 3.4 presents the results of an-

alyzing the same degradation path with only 25 measurements per unit tested, the results show an

almost identical performance to training the model with 50 observations per unit. Those results
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suggest that the performance of the model is not significantly affected by down sampling the orig-

inal data set during the training process such that if computational time is an issue it is possible to

safely reduce the size of the data set in order to reduce computations.

Figure 3.3: Mean time to degradation function with 50 measurements.

Figure 3.4: Mean time to degradation function with 25 measurements.

Second, we generate data from a WP and train the model using 50 measurements. Figure 3.5

presents the results using the same amount of units as in the IGP case, it is evident that more

units are needed to get a good estimate of the mean time-to-signal function since such a process

is non-monotone. In experiments not presented here, we required at least 20 units for each testing

environment in each testing stage to get a satisfactory performance, which is four times the amount

of data required for the monotone degradation case.

Lastly, we compare the reliability functions from the non-parametric method with that of a
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Figure 3.5: Mean time to degradation function with 50 measurements.

parametric model. As parametric model, we fit a Weibull distribution with the following pdf:

f(t) =
β

αdη

(
t

αdη

)β−1

exp

([
t

αdη

]β)
(3.12)

where β is the shape parameter, η the scale parameter under use condition, α and d are the

effects of ADT and corrections over η respectively. Note that we can use this simple model since

there is only one ADT environment and one correction. We estimate the model parameters using

numerical maximization of the log-likelihood of the failure times observed.

The reliability of the non-parametricmodel is calculated using Equation 5 and for the parametric

model we use Equation 3.13.

R(t) = exp

([
t

d̂η̂

]β̂)
(3.13)

Figure 3.6 presents the true and estimates of the reliability of the part for different life-times

using both methods with the parameters listed in Table 3.1. One can see that the non-parametric

model provides more accurate reliability estimates for almost every target life time, except for a

small area near the intersection point of the two estimated reliability functions (roughly around

1400 hours). This result suggests that the choice of target lifetime performs a key role in which

method performs better. Figure 3.7 illustrates this effect by presenting the percent relative error of
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the reliability estimate at 1390 and 1400 for 100 replications of the growth program. Note that the

non-parametric method presents a higher variance and lower bias than the parametric method due

to the flexibility of the mean function estimate which may indicate overfitting to the small sample

size.

Figure 3.6: Reliability function with relatively low variance.

Figure 3.7: Reliability function with relatively high variance.

Lastly, Figure 3.8 presents the results of repeating the estimation process with data generated

with more uncertainty such that it is harder to identify the effect of corrective actions on the degra-

dation process. This is achieved by changing the value of λ to 0.0005 such that the variance of

the IGP increases by 100 times. Both methods present a large bias for the reliability estimate,

and similar results are observed even when more test units are used for each testing environment

in each testing stage. This suggests that both models have trouble distinguishing the randomness
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from structural changes in the underlying degradation process. In our future research, further in-

vestigation is needed to solve such problems.

Figure 3.8: Box plot of the error on the final reliability estimate at 1390 and 1400 hours for 100

replications of the growth program.

3.5 Conclusions

In this paper, we proposed the first non-parametric methodology to model the reliability growth of

a product based on its performance degradation. The product is considered failed if its performance

passes a known threshold. The proposed mathematical framework estimates the reliability of the

product by predicting the mean time-to-signal using FDA and capturing the unit-to-unit variation

using a GP. The statistical inference procedure is capable of estimating the reliability of the prod-

uct’s population for any point in time, at any intermediate degradation levels, and under working

conditions similar to the ones applied in the reliability growth tests.

The proposed methodology can handle monotone and non-monotone degradation processes;

however, it is more efficient when the degradation process is monotone. The model can be used to

predict the reliability of a product after corrective actions or the remaining useful life of a specific

unit after observing the initial degradation signal of the unit. A numerical example shows that for

monotone degradation processes, the non-parametric method outperforms the parametric alterna-

tives in estimating the reliability of a unit after corrective actions have been applied. However, if the

underlying noise in the degradation signal is too high, both non-parametric and parametric meth-
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ods are incapable of satisfactorily identifying the changes in the degradation process introduced by

corrective actions.
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4 Analysis of Correlated Multivariate Degradation Data in Accelerated Reliability Growth

Modern engineering systems have become increasingly complex and at the same time are expected

to be developed faster. To shorten the product development time, organizations commonly conduct

accelerated testing on a small number of units to help identify failure modes and assess reliability.

Many times design changes are made to mitigate or reduce the likelihood of such failure modes.

Since failure-time data is often scarce in reliability growth programs, existing statistical approaches

used for predicting the reliability of a system about to enter the field are faced with significant chal-

lenges. In this work, a statistical model is proposed to utilize degradation data for system reliability

prediction in an accelerated reliability growth program. The model allows the components in the

system to havemultiple failure modes, each associated with a monotone stochastic degradation pro-

cess. To take into account unit-to-unit variation, the random effects of degradation parameters are

explicitly modeled. Moreover, a mean-degradation-stress relationship is introduced to quantify the

effects of different accelerating variables on the degradation processes, and a copula function is uti-

lized to model the dependency among different degradation processes. Both a maximum likelihood

(ML) procedure and a Bayesian alternative are developed for parameter estimation in a two-stage

process. A numerical study illustrates the use of the proposed model and identifies the cases where

the Bayesian method is preferred and where it is better to use the ML alternative.

4.1 Introduction

The competitive global business environment, fast-paced technological advancements, and increas-

ing costumer expectations have the increased pressure to shorten product development cycles while

ensuring high product reliability. In such a context, reliability growth programs and accelerated life

testing (ALT) have been widely used as critical tools for meeting the business’ requirements. More-

over, using prior knowledge can help speed up a reliability growth program in two ways. First, the

reliability estimates may be more accurate than using maximum likelihood (ML) methods for small

samples. Second, the resources for testing different subsystems of a complex system can be allo-
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cated more efficiently based on the current beliefs about the system. Bayesian analysis offers a

theoretical framework to incorporate previous experience with similar products and expert’s judg-

ments in product reliability prediction.

Reliability growth programs typically consists of multiple stages in which the product is tested

and its design is changed to improve reliability based on the test results. This paper focuses on ana-

lyzing reliability testing data. In general, three primary types of data are collected during reliability

testing: pass-fail, time-to-failure, and degradation of product performance or physical characteris-

tics (Wilson & Fronczyk, 2017). An overview of classical Bayesian reliability models using pass-

fail and time-to-failure data can be found in (Martz &Waller, 1991). In the last decades, researchers

have extensively studied new models for incorporatingALT data in the Bayesian reliability growth

analysis. Using pass-fail data, Strunz & Herrmann (2012) considered a Dirichlet distribution for

analyzing system reliability for a rocket engine tested at extreme conditions. Using time-to-failure

data, Wayne & Modarres (2015) modeled the reliability of a system with multiple failure modes

subject to multiple corrections during development. Similar to Crow (2004), Wayne & Modarres

(2015) modeled reliability growth was as a reduction in the failure rates of specific failure modes.

Ruiz et al. (2019) considered a complex system with multiple components each having multiple

failure modes and applied a simplified version of this model for reliability growth planning (Ruiz

et al., 2020).

The increased availability of degradation data and improvement of computing capabilities has

increased the interest on degradation-based reliability modeling in the last two decades. Failure

time due to degradation is typically defined as first time that a degradation signal crosses a user

defined threshold. Figure 4.1 presents an example of a monotone and a non-monotone degradation

process with failure threshold of 90 and 75, respectively. Hamada (2005) showed that a Bayesian

reliability model that uses degradation data may have considerably less uncertainty than its counter-

part that uses time-to-failure data. This result may be explained by the extra information provided

by each test unit in the form of degradation measurements and by the direct connection between

the degradation process and the underlying failure mechanism. Therefore, it could be beneficial
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to develop Bayesian reliability growth models based on degradation data. A comprehensive re-

view of classical degradation models and their applications can be found in (Nelson, 1990). In

the reliability literature, degradation is typically modeled as the interaction of a mean degradation

function µ(t, x) of time t and covariates x, and a stochastic component. Degradation models can

be classified as general path models that are based on the mean function plus measurement error ε

or stochastic process models that are based on cumulative damage of the components. This work

concentrates on the latter.

(a) Monotone (b) Non-monotone

Figure 4.1: Example of degradation signals with different failure thresholds.

The most popular stochastic degradation process models are the Wiener, Gamma, and Inverse-

Gaussian (IG) processes due to their mathematical tractability and physical meaning as a random

accumulation of damage (Ye & Chen, 2014). The Wiener process can be understood as adding an

extra stochastic term, i.e., BrownianmotionB(·), to the General path model, and it can be expressed

as W (t) = µΛ(t) + σB(Λ(t)) + ε, where µ is the mean parameter, σ is the diffusion parameter,

and Λ(t) is a time transformation. Typically, the log-degradation signals are analyzed under this

model. As an example, Liao & Elsayed (2006) used the model to predict the field reliability of

a product under uncertain use conditions based on accelerated degradation testing (ADT) data.

Gabraeel et al. (2005) developed a Bayesian model to predict the residual life distribution of a part

under condition monitoring. In addition, Wang (2010) derived an expectation-maximization (EM)

algorithm for estimating the parameters of a Wiener process with random effects.
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On the other hand, the Gamma process is suitable for modeling monotone degradation pro-

cesses. The key assumptions of this model is that degradation increments are independent and their

magnitudes follows a Gamma distribution. Lawless & Crowder (2004) derived the closed-form

expression for the probability density function (PDF) of the Gamma process when considering co-

variates and random effects. Ye et al. (2014) developed a semi-parametric model that incorporates a

non-parametric time transformation function. However, the Gamma process is not mathematically

tractable when there are measurement errors. To deal with this, Lu et al. (2013) used a mathematical

transformation and quasi-Monte Carlo method for estimating the model parameters. Park & Kim

(2017) used the Gamma process to analyze accelerated test data of a photo-voltaic module. They

found that the Gamma process performs about the same as the linear degradation model and the

Weibull life-time model in predicting the mean-time-to-failure (MTTF), but the Gamma process

outperforms in the analysis of warranty data.

In the last decade, the IG process has gained popularity as an alternative to the Gamma process

for modeling monotone degradation processes. Ye & Chen (2014) proved that the IG process is a

limiting Poisson process and can be interpreted as a shock arrival process and used to model degra-

dation processes with a clear physical meaning like the Gamma process. Ye & Chen (2014) also

developed a maximum likelihood estimation method for cases with random effects. Peng (2015)

extended this idea by developing maximum likelihood estimators with their respective confidence

intervals and by incorporating explanatory variables to handle ADT data.

To the best of our knowledge, only Ruiz et al. (2019) have considered degradation for relia-

bility growth analysis. The authors applied a non-parametric model that combines functional data

analysis (FDA) and Gaussian processes (GP) for predicting the first passage time of a stochastic

degradation process. However, the non-parametric method depends on testing all units to failure,

and it cannot extrapolate the probability distribution of the first-passage time if a failure is redefined

after changing the failure threshold. In addition, this model only considers a single failure mode

in the form of a degradation process while in practice multiple degradation processes might be

observed. The literature on multivariate degradation modeling is limited due to the computational
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complexity of modeling correlation among processes. One approach to model such correlation is

the use of multivariate Brownian motion (Sun et al., 2019), i.e., multivariate Wiener process. This

approach is not suitable for monotone degradation processes. The second approach is to use copula

functions to model the dependence between degradation processes (Peng et al., 2016; Wang et al.,

2015; Hong et al., 2018). The drawbacks of the copula approach are that it is computationally chal-

lenging in high dimensions (Huard et al., 2006) and it is hard to incorporate physical knowledge of

the correlation structure (Sun et al., 2019).

Due to the limitations of existing approaches, we propose a new parametric method to analyze

accelerated reliability growth data for a component with multiple dependent degradation processes.

Specially, the dependency between the increments of degradation processes is modeled using a

copula function, and a parametric mean-degradation-stress relationship is introduced to quantify

the effects of different accelerating variables on the degradation processes. The model parameters

are estimated using either a Bayesian procedure or an ML alternative in a two-stage process. In the

first stage, we estimate the parameters of multiple IG processes and the effectiveness of corrective

actions throughout the reliability growth program by assuming that the degradation processes are

independent. In the second stage, we fit the parameters of a copula using the estimated cumulative

distribution function (CDF) of the observed degradation increments. Finally, we use the full set of

parameters to predict the product’s reliability for a target life under specified use conditions. This

work is among the first attempts at developing a model for analyzing accelerated reliability growth

data based on multiple correlated degradation processes.

The remainder of this paper is organized as follows. Section 4.2 introduces the model for the

analysis of ADT data in the presence of multiple dependent degradation processes. Section 4.3

develops statistical inference methods to estimate the model parameters. Section 4.4 presents two

numerical examples to illustrate the use of proposed Bayesian and ML methods. Finally, conclu-

sions and a discussion on the contributions of this work are provided in Section 4.5.
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4.2 Dependent Degradation Processes Model

This section introduces the multivariate degradation modeling approach based on copula functions,

considers explanatory covariates and their effect on the degradation parameters, and discusses unit-

to-unit variability of the parameters of the degradation processes.

4.2.1 Degradation Modeling

Consider a component that hasN failure modes, each related to a monotonically increasing degra-

dation process. Let Yi(t) be the degradation process i, i = 1, ..., N . All the degradation processes

are measured at the same and multiple times tj , and we define the degradation increment between

two consecutive measurement times, tj−1 and tj , as ∆yij = yi(tj) − yi(tj−1). We assume that

each degradation process can be described by an IG process, such that the PDF of degradation

increments can be expressed as:

f(∆yij) =

√
λi∆h2

ij

2π∆y3ij
exp

(
−λi [∆yij − µi∆hij]

2

2∆yijµ2
i

)
, (4.1)

where µi and λi are the mean and diffusion parameters, hi(t) is a monotonic time transformation

parameterized by ηi, and ∆hij = hi(tj)− hi(tj−1).

The component is considered failed if any of the degradation processes surpasses its specific

threshold Di. The reliability function of failure mode i at time t is given by P{Yi(t) < Di}. For a

new part with initial degradation signal equals 0 and the target life-time equals T , the reliability of

process i is given by the IG cumulative CDF (Banerjee & Bhattacharyya, 1979):

Ri (Di, T |λi, µi)= P{Yi(t) < Di} =Φ

(√
λi

Di

[
Di

µi

− hi (T )

])
+

exp

(
2
λihi(T )

µi

)
Φ

(
−
√

λi

Di

[
Di

µi

+ hi (T )

])
.

(4.2)
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The stochastic dependence between the degradation increments of the multiple processes is

modeled using a copula function (Peng et al., 2016; Hong et al., 2018; Wang et al., 2015). A

copula is a multivariate function defined over a [0, 1] hypercube of any dimensionality. In addition,

any continuous multivariate distribution can be expressed in terms of a copula function C(·) and

the marginal CDFs of its dimensions (dos Santos Silva & Lopes, 2008). Thus, the component’s

reliability at the target life-time T given a vector of degradation threshold D = [D1, . . . ,DN ] is:

R(T |Df ) = P {Y1(T ) < D1 · · · , YN(T ) < DN} = C (R1 (D1, T ) , · · · , RN (DN , T )) . (4.3)

The use of copula models introduces the difficulty of selecting an appropriate copula function

C(·) to capture the correlation among processes. Common choices of C(·) are the Archimedean

and Gaussian copulas (Huard et al., 2006; dos Santos Silva & Lopes, 2008) due to their numerical

tractability in low dimensions. Another approach is the use of non-parametric functions based on

kernel basis (Chen & Huang, 2007). We discuss how to select the copula function in Section 4.3.3.

4.2.2 Explanatory Variables

The effects of stresses (i.e., accelerating variables) on different degradation processes are captured

by the stress-dependent inverse-mean parameters. We assume that there areL accelerating variables

such that the mean degradation parameter of degradation process i can be expressed as:

µi(x) = µ0i exp

(
L∑

`=1

θ`ix`

)
, (4.4)

where µ0i is the baseline mean degradation parameter (i.e., under use condition), and x` is the nor-

malized stress level for the `th stressor. The normalization used is of the form x = (z − z−)/(z+ − z−)

where z− and z+ are the minimum and maximum levels of the stressor that does not change

the underlying failure mechanism of the degradation process. This parameterization implies that

0 ≤ x` ≤ 1, and θ`i ≥ 0 in order to observe a higher degradation rate during accelerated testing.

Note that this is a common choice of parameterization (Ye & Chen, 2014) and it is equivalent to
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the Arrhenius model by transforming the stress level as z = ζ−1 and to the power law model by

transforming the stress level to z = ln(ζ), where ζ is the original stress value. Lastly, the reliability

of the component can still be calculated using Equation (4.2) by replacing µi with µi(x).

4.2.3 Random Effects

The base model is the one with no random effects (NRE) as discussed in Section 4.2.1. We propose

two approaches for modeling unit-to-unit variation on the parameters of the degradation processes.

First, random effects on the inverse-mean (REM) are incorporated by assuming that m0i = µ−1
0i

follows a Truncated Normal distribution with mean νi and dispersion τi = σ−2 with the minimum

value of 0. This implies that the PDF of the inverse-mean has a regularizing constant Φ′(·) =

1−Φ(·) where Φ(·) is the CDF of the standard Normal distribution. After integrating outm0i, the

PDF of the vector of degradation increments ∆yik = (∆yi1k,∆yi2k, . . . ,∆yinkk) for unit k is:

f (∆yik) =
1

Φ′(−νi
√
τi)

nk∏
j=1

√
λi∆h2

ijk

2π∆y3ijk

√
τi

λiYikµ2
xik + τi

exp

(
−γ

2

)
Φ′

(
−λiµxikHik − νiτi√

λiYikµ2
xik + τi

)
,

(4.5)

where

µxik = exp

(
−

L∑
`=1

θ`ix`

)
, Yik =

nk∑
j=1

∆yijk,

Hik =

nk∑
j=1

∆hijk, HYik =

nk∑
j=1

∆h2
ijk

∆yijk
,

γ =

[
λiHYik + τiν

2
i −

(λiµxikHik + νiτi)
2

λiYikµ2
xik + τi

]
.

It is worth pointing out that there is no closed-form expression for the reliability function of failure

mode i under this model, thus a numerical method is needed for evaluating the following integral:
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Ri(T |x) =
∫ Di

0

1

Φ′(−νi
√
τi)

√
λih(T )

2

2π∆y3

√
τi

λiyµ2
xi + τi

exp

(
−γi
2

)
Φ′

(
−λih(T )µxi − νiτi√

λiyµ2
xi + τi

)
dy,

(4.6)

where

γi = τiν
2
i + λi

h(T )2

y
− (λih(T )µxi + νiτi)

2

λiyµ2
xi + τi

.

The second model incorporates random effects for both degradation parameters (REB). The

joint distribution of (m0i, λi) is assumed to be a Truncated Normal-Gamma with PDF:

g(λi,mi) =
βαi
i

Γ(αi)
λαi−1
i exp(−βiλi)

√
λiτi
2π

exp

(
−λiτi(mi − νi)

2

2

)
1

Υ′
2αi

(−νi
√

τiαi/βi)
, (4.7)

where Υ′
q = 1−Υq, and Υq is the standard Student’s t-distribution with q degrees of freedom.

Similar to the first model, the PDF of degradation increments under the REB model can be

expressed as:

f(∆yik) =

nk∏
j=1

[√
∆h2

ijk

2π∆y3ijk

]
1

Υ′
2αi

(−νi
√
τiαi/βi)

βαi
i

Γ(αi)

√
τi

Yikµ2
xik + τi

Γ(αi + nk/2)

ω
αi+nk/2
ik

×Υ′
2αi+nk

(
− [µxikHik + νiτi]

√
2αi + nk

2(Yikµ2
xik + τi)ωik

)
, (4.8)

where

ωik = βi +
1

2

[
HYik + τiν

2
i −

(µxikHik + νiτi)
2

Yikµ2
xik + τi

]
.

Moreover, the reliability function of each failure mode under this model can be calculated by
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evaluating the following integral:

Ri(T |x) =
∫ Di

0

√
hi(T )

2

2π∆y3
1

Υ′
2αi

(−νi
√

τiαi/βi)

βαi
i

Γ(αi)

√
τi

yµ2
xik + τi

Γ(αi + 1/2)

ω
αi+1/2
i

×Υ′
2αi+1

(
− [µxikhi(T ) + νiτi]

√
2αi + 1

2(yµ2
xik + τi)ωi

)
dy, (4.9)

where

ωi = βi +
1

2

[
τiν

2
i +

hi(T )
2

y
− (hi(T )µxik + νiτi)

2

yµ2
xik + τi

]
.

4.2.4 Reliability Growth Program

The reliability growth program consists of S test-fix stages with corrective actions (i.e., design

changes) at the end of each stage. Corrections may reduce the mean degradation, the dispersion

parameter, or both for a degradation process. The effects of corrective actions are modeled as

changes in the parameters such that during stage s, we have:

νis = νi

s−1∏
s′=1

dνis′ τis = τi

s−1∏
s′=1

dτis′ θ`is = θ`i

s−1∏
s′=1

dθ`is′ βis = βi

s−1∏
s′=1

dβis′ ,

where dνis is the effectiveness of correction s over ν, dτis is the one over τ , dθ`is is the one over θ`,

and dβis is the one over β. Corrective actions improve the reliability if:

• dνis > 1, such that νi increases as the mean degradation ν−1
i decreases.

• dτi,s > 1, such that units become more consistent and the product has better quality. Note

that this implies a change in the shape of the reliability function such that more units fail

around their MTTF. In other words, the reliability calculated at time before the MTTF will

increase while it will decrease at time after the MTTF.

• For the NRE model, µi is fixed and the improvement would mean a reduction on the mean

parameter. Therefore, we consider µis = µi

∏s−1
s′=1 d

−1
νis′

.
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• dθ`is < 1, such that the mean degradation is less sensitive to the environmental factors.

• dβis < 1, such that the variation of degradation increments is reduced. The component has a

better quality and lower population reliability by the same logic as for the changes on τi. Note

that corrective actions on λi are only captured on βi which reflects the effect of multiplying

the distribution of λi by a constant, whereas, changing αi does not have a clear meaning.

Therefore, λis = λi

∏s−1
s′=1 d

−1
βis′

for the NRE and REM models.

Lastly, parameters βi and αi tend to∞ when there are no significant random effects on λ. Sim-

ilarly, τ tends to∞ whenm0i is the same for all units. Therefore, if the MLEs of these parameters

are significantly large, this shows a strong indication that the random effects are not significant

enough to be considered in the model. Ye & Chen (2014) presented a hypothesis test procedure

based on this idea for testing the significance of random effects when the degradation process is

well described by a Gamma process. However, there is no obvious counterpart for the IG process

under reliability growth, since the random effects may be significant in the early designs or may be

introduced in later design changes.

4.3 Parameter Estimation

It is assumed that during each test-fix stage s of the reliability growth program, Ps testing envi-

ronments are used, κps units are tested under environment p at stage s, and nkps degradation mea-

surements are taken for unit k. Without loss of generality, we assume that the reliability growth

program must be completed before time T , and measurements are taken on all degradation pro-

cesses simultaneously (i.e., there is no missing information).

LetΛ be the data composed of stage s, stress environment xps, unit number k, degradation mea-

surement yijkps, and measurement time tjkps. The full likelihood function of all model parameters
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Θ can be expressed as:

L(Θ|Λ) =
S∏

s=1

Ps∏
p=1

κps∏
k=1

nkps∏
j=1

C (R1(y1jksp, tjkps), . . . , RN(y1jksp, tjkps)|Θ) . (4.10)

It is worth pointing out that Equation (4.10) or its natural logarithm (i.e., log-likelihood) are far

too complex to solve analytically for any common choice of copula function. To fit the model

parameters, a common approach is to use a two-stage process (Wang et al., 2015; Peng et al., 2016).

The first stage consists of fitting the parameters of the degradation processes as if these degradation

processes were independent. The second stage is focused on fitting the parameters of the copula

function based on the estimated CDFs of the observed degradation increments.

Next, both an ML procedure and a Bayesian alternative for the first stage are provided, and

the selection of copula function in the second stage based on these two estimation methods is also

examined.

4.3.1 MLE Procedure

In the context of MLEs, the first step can be done by maximizing the log-likelihood function of

each degradation process as if they were independent using a numerical maximization algorithm.

In order to get the log-likelihood function of the data under the different models, we first define:

Yikps =

nkps∑
j=1

∆yijkps, Hikps =

nkps∑
j=1

∆hijkps, HYikps =

nkps∑
j=1

∆h2
ijkps

∆yijkps
.

In addition, let Θi be the set of parameters for degradation process i and Λi be the data related to

this process observed during the reliability growth program. Then, the log-likelihood of the NRE

model can be expressed as:

ln (L (Θi|Λi)) ∝
S∑

s=1

Ps∑
p=1

κps∑
k=1

nkps∑
j=1

ln(λis)

2
+ ln (∆hijkps)
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−
λisµ

2
xips

2µ2
is∆y2ijkps

(
∆yijkps −

µis

µxips

∆hijkps

)2

. (4.11)

The log-likelihood function of the parameters of REM model can be expressed as:

ln (L (Θi|Λi)) ∝
S∑

s=1

Ps∑
p=1

κps∑
k=1

[
nkps

2
ln (λis) +

ln(τis)

2
− 1

2
ln
(
λisYikpsµ

2
xips + τis

)
+

nkps∑
j=1

ln (∆hijkps)−
1

2

[
λisHYikps + τisν

2
is −

(λisµxipsHikps + νisτis)
2

λisYikpsµ2
xips + τis

]

+ ln

Φ′

−λisµxipsHikps − νisτis√
λisYikpsµ2

xips + τis

− ln(Φ′(−νis
√
τis))

]
. (4.12)

Similarly, the log-likelihood function of the REB model is:

ln (L(Θi|Λi)) ∝
S∑

s=1

Ps∑
p=1

κps∑
k=1

[
αi ln (βis)− ln (Γ(αi))− ln

(
Υ′

2αi
(−νis

√
τisαis/βis)

)
+

nkps∑
j=1

ln(∆hijkps)

− 1

2
ln(Yikpsµ

2
xips + τis) + ln

[
Γ
(
αi +

nkps

2

)]
−
(
αi +

nk

2

)
ln(ωikps) +

ln(τis)

2

+ ln

{
Υ′

2αi+nk

(
− [µxipsHikps + νisτis]

√
2αi + nkps

2(Yikpsµ2
xips + τis)ωikps

)}]
, (4.13)

where

ωikps = βis +
1

2

[
HYikps + τisν

2
is −

(µxipsHikps + νisτis)
2

Yikpsµ2
xips + τis

]
.

For the second step, the CDF of the observed degradation increments is calculated using Equa-

tion 4.2 and the MLEs of the parameters of the degradation process for each unit, which are calcu-

lated as follows:

m̂ikps = m̂0ikpsµxips =
Ĥikps

Yikps

(4.14)

λ̂ikps = nikps

[
ĤY ikps −

Ĥ2
ikps

Yikps

]
(4.15)
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where Ĥ and ĤY are calculated based on the estimated parameter of h(·), µ̂ik is calculated when

assuming either the REM or REB model and λ̂ik is calculated when assuming the REB model,

Note that for the NRE model we already have the MLEs of all parameters. Lastly, the parameters

of any given copula function can be estimated via maximum likelihood using specialized software

packages available in R such as VineCopula (Schepsmeier et al., 2018).

4.3.2 Bayesian Procedure

For the first stage under the Bayesian framework, the posterior distribution of the parameters of the

degradation process is sampled using a sequential Metropolis-Hasting (MH) algorithm (Hamada

et al., 2008). The idea is to sample the posterior distribution of each parameter one at a time using

a one dimensional MH algorithm given the current sample of all the other parameters. Algorithm 3

describes the sampling process for each parameter. Note that the posterior of the parameters can be

sampled in any order, use any proposal distribution, and any posterior distribution without changing

the inference of the model parameters once the sample has converged to its posterior distribution.

However, the speed of convergence of the sampled parameters to their posterior distribution de-

pends on the choice of parameters for theMH algorithm. The log-likelihood functions for the NRE,

REM, and REB models are Equations (4.11), (4.12), and (4.13), respectively.

Algorithm 3MH algorithm

Require: Proposal distribution q(·), prior distribution π(·), and initial value θc
1: Sample proposed value θp from q(θ|θc) and u from Uniform(0, 1)

2: if
q(θc|θp)
q(θp|θc)

L(θp|Θ /∈ θ, t)π(θp|Ωθ)

L(θc|Θ /∈ θ, t)π(θc|Ωθ)
≤ u then

3: Accept θp and return it
4: else

5: Reject θp and return θc

In the second stage, the mean values (medians are another option) of the posterior samples are

used as the hyperparameters of the prior distribution of the parameters of the degradation process

for each unit, and the mean value of the parameters of h(·) is used as its point estimate. The priors

are the Normal and Normal-Gamma distribution for the REM and REB model, respectively. Then,
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we obtain the posterior parameters for each unit under the REB model by using the following

equations:

τikps = τ̄is + Yikps,

µikps =
τ̄isµ̄isῡips + Ĥikps

τikps
,

βikps = β̄is +
τ̄isµ̄

2
isῡ

2
ips

2
+

ĤY ikps

2
−

τikpsµ
2
ikps

2
,

αikps = ᾱis +
nk

2
.

For the REM model, τikps is calculated the same way, and

µikps =
τ̄isµ̄isῡips + λ̄isĤikps

τikps
.

For both models, we use the expected value of the posterior distribution as point estimates of the

parameters of the degradation process for each unit to estimate the CDFs of the observed degrada-

tion increments. Lastly, the posterior distribution of the parameters of the copula function can be

sampled using a standard Metropolis-Hasting algorithm, and the log-likelihood functions for the

most commonly used copula functions can be found in (Huard et al., 2006).

4.3.3 Copula Selection

The copula function is selected using the Bayesian information criteria (BIC) for the ML procedure

and the Expected BIC (EBIC) for the Bayesian procedure (dos Santos Silva & Lopes, 2008). The

respective criteria are:

BIC(Θ̂c|C,Λ) = −2 ln
(
L(Θ̂c, C|Λ)

)
+ ln(n)Kc, (4.16)

EBIC(Θc|C,Λ) = − 2

M

M∑
i=1

ln (L(Θci, C|Λ)) + ln(n)Kc, (4.17)
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where C is the copula function,Θc consists of the parameters of C,Kc is the number of parameters

for C, Θ̂c is the MLE of the parameters, n is the total number of degradation measurements, M is

the number of posterior samples, and Θci is the i
th posterior sample of the parameters. The proper-

ties of commonly used copula functions and the domains of their parameters based on Kendall’s τ

(measure of the rank correlation between random variables) can be found in (Huard et al., 2006).

We consider the Clayton, Gaussian, and Gumbel copulas for model selection as they can capture

different correlation structures. As shown in Figure 4.2, the Clayton copulas have stronger correla-

tion in the lower quantiles, the Gaussian copulas present the same correlation across all quantiles,

and the Gumbel copulas have stronger correlation at higher quantiles.

Figure 4.2: Pairs of random variables under different copula functions.

4.4 Numerical Example

In this section, two numerical examples are provided to illustrate the effectiveness of the proposed

methodology. The first example explores the reliability prediction capabilities of the proposed

methods when the true degradation processes present random effects on both the inverse-mean and

diffusion parameters, only the mean parameter, or neither parameter. The second example studies

the properties of both ML and Bayesian methods for cases with multiple replications of a reliability

growth program.
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4.4.1 System Description

The example simulates a two-stage reliability growth program for a system with two failure modes.

The system is sensitive to one stress factor of interest, and the highest stress level is x = 1. In

the each stage, 3 units are tested at the use condition and 3 more at the highest stress level (i.e.,

x = 0 and x = 1, respectively). The total testing time for all units is 100 hours, and degradation

measurements are taken every four hours such that a total of 25measurements are taken from each

unit if it does not fail. One correction is applied at the end of the first text-fix stage, and its effect

is estimated based on the testing results at the end of the second stage. We use a power-law time

transformation for h(t) = tη.

Table 4.1: Parameters of each degradation process when there are radom effects on (m0i, λi).

Failure Mode D νi τi θi αi βi ηi dνis dτis dθis dβis

1 100 10 1.0 0.51 2 10 1.10 1.20 1.5 0.70 0.77

2 100 12 0.8 0.54 2 12 1.11 1.18 2.0 0.71 0.91

The parameters of the degradation processes are shown in Table 4.1. Note that under these

parameters, units rarely fail when tested at the use condition for less than 200 hours. The Clayton

copula function with Kendall’s τ = 0.5 is used to generate the degradation increments. For the im-

plementation of the Bayesian method, all the numerical examples use chains with 100, 000 samples.

In addition, neither burn-in nor thinning is applied to the chains because we are only interested in

calculating the point estimates of model parameters of each degradation process. Otherwise, the

length of the chains must be increased drastically due to the high auto correlation between consecu-

tive sample draws of the posterior distribution. Table 4.2 presents the order in which the parameters

are sampled for the REB model. The same order is followed for the REM model with the differ-

ence that λi is sampled instead of αi and βi. Table 4.2 also shows the prior distribution used for

the model parameters. Since all model parameters must be non negative, the priors used are the

Truncated Normal T N and Gamma G distributions. The hyperparameters of the priors are set such

that the prior has the expected value equal to the true value of the parameter and the variances equal
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to 1. The proposal distribution for all the parameters is the Truncated Normal with the mean being

the current sample of the parameter and the standard deviation being fixed at 0.25. In addition,

the prior distribution of the copula parameters is induced through Kendall’s τ . We started with a

uniform distribution between the minimum and maximum values of Kendall’s τ for each copula

function and then made a change of variables to obtain the prior distribution of its parameters. The

equations for this relationship can be found in (Huard et al., 2006).

Table 4.2: Characteristics of the sequential MH procedure.

Parameter νi dνis θi dθis τi dτis αi βi dβis ηi
Order 1 2 3 4 5 6 7 8 9 10

Prior T N T N T N T N G G G G G T N

4.4.2 Reliability Prediction

In this section, reliability functions are presented for both parameter estimation methodologies

assuming no random effects (maximum likelihood estimate-MLE and Bayesian estimate-BE), ran-

dom effects on the inverse-mean (MLEM and BEM), and random effects on both the inverse-mean

and diffusion parameters (MLEB and BEB), In addition, the Bayesian methods use informative

priors (i.e. variance equals 1).

Figure 4.3 shows the reliability functions estimated when the true model is REB. The estimated

functions intercept roughly around 700 hours since all methods result in biased estimates of the

location (νi) of the inverse-mean parameters. On the other hand, the shapes of the BEB and MLEB

are similar to that of the true reliability function while the reliability functions obtained from the

other methods drop much faster. This result is expected due to the small number of units tested

which do not provide enough information on the degradation rate whereas η, α, and β are estimated

more accurately with 300 observed degradation increments.

Figure 4.4 presents the same study when the true model is either REM or NRE. The data for

REMwas generated by using the shape parameter as the expected value of the distribution used for

REB (i.e., λi = αi/βi), and for NRE we also defined the inverse-mean as the expected value of this
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Figure 4.3: Estimated reliability curves when 3 units are tested for 100 hours in each condition and

the true model presents random effects on both parameters.

parameter in REB (i.e.,m0i = νi). Figure 4.4b shows that when no random effects are present, the

estimated reliability function is very close to the true value even with only 3 units tested. This is

due to the reduction on the uncertainties in the true system and the flexibility of the REM and REB

methodologies to increase the estimated τi to account for the low variability in the inverse-mean

parameter, and increase αi and βi in a similar proportion to maintain a stable expected value of λi

while reducing its uncertainty. On the other hand, Figure 4.4a shows that the models still show a

significant bias on the inverse-mean estimate when the true model is REM. This is expected since

more units are needed to estimate the inverse-mean parameter under REM than under NRE.

(a) True model: REM (b) True model: NRE

Figure 4.4: Estimated reliability functions with different true models.

Figure 4.5 presents the effect of either duplicating the number of measurements (by increasing

64



the inspection frequency) or the number of units tested. Figure 4.5a shows that increasing the

number of measurements improves the shape of the reliability funtion while reducing the bias on

the inverse-mean parameter. This effect is not observed for BE and MLE since not much new

information is gained by increasing the number of measurements when there are no random effects.

On the other hand, Figure 4.5b shows that increasing the number of units significantly improves

the final estimate. Note that this should be the case since not only more units are observed, but the

effective number of degradation measurements also doubles.

(a) 50 Measurements (b) 6 Units

Figure 4.5: Estimated reliability curves when either the number of measurements or the number of

units increases.

4.4.3 Performance with Multiple Replications

We compare the performance of the Bayesian and MLmethodologies based on 100 replications of

the reliability growth program when the true model is REB. The Bayesian method use informative

priors with variance equals 1 (Bay) or relatively uninformative (flat) priors with variance equals

100 (BayF). The program has three test settings with different numbers of measurements and units

tested in each condition. The base case has 25 measurements and 3 units: (25,3), the second has 50

measurements and 3 units: (50,3), and the last one tests 6 units with 25 measurements: (25,6). In

addition, we also fit both the REB and NRE models. The results are compared in terms of relative
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error of the parameter estimate θ̂ against the true parameter θ̃ as:

re =
θ̂ − θ̃

θ̃
. (4.18)

Figure 4.6: Relative error of the mean inverse-degradation (ν) estimate.

Figure 4.6 shows the relative error of the estimate of the inverse-mean parameter νi. Note that

the reliability function and MTTF of the system are sensitive to this parameter. The ML methods

present higher variances on their point estimates than the Bayesian methods and a slight bias to a

lower estimate (i.e., higher mean degradation). Increasing the number of measurements reduces

the variability of the estimates without reducing the bias. As expected, increasing the number of

units decreases both the bias and variance of the estimates using both Bayesian and MLmethods.

Figure 4.7 compares the NRE and REB models on their estimates of the MTTF of the system

after corrections. For both Bayesian and ML methods, the NRE model presents a higher variance

and bias than the REBmodel. This result indicates that using a simpler model can lead to significant

errors even for estimating the MTTF of the system. For the REB model, the flat priors result in

worse performance that using the MLE which might be due to requiring more samples to converge
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Figure 4.7: Relative error of the MTTF estimate.

to the posterior distribution. On the other hand, the estimates based on informative priors present

a slightly less bias than the ML estimates while having roughly the same variability. This result

seems to contradict with the results in Figure 4.6 since one would expect to observe a similar

behavior on both figures. This apparent contradiction can be explained by examining the estimate

of the final mean of the inverse-mean parameter (see Figure 4.8). The variability of the estimate

of the improved (corrected) mean of the inverse-mean degradation is similar for both informative

Bayesian andMLmethods, while beingworse for the Bayesian with flat priors. Themain difference

is that the informative Bayesian method presents a negative bias when only 3 units are tested,

specially for process 2. This result indicates that the informative Bayesian method assigns all the

uncertainty to the estimate of the correction factor dνs while keeping the estimate of ν close to

its initial value. In practical terms, both methods have a similar performance in predicting the

MTTF but can present significantly different conclusions on the observed reliability growth (i.e.,

the estimate of dνs).

Lastly, we study the ability of the methodologies to select the correct copula function and esti-

mating its parameter. Table 4.3 presents the proportion of replications that the BIC or EBIC leads to
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Figure 4.8: Relative error of the corrected mean inverse-degradation (νdνs) estimate.

selecting the correct copula function for both NRE and REB models. Ignoring the random effects

can lead to choosing the wrong copula function. In particular, the ML method struggles to select

the correct copula even under the REB model. On the other hand, the Bayesian method is robust to

errors on the parameter estimates of the degradation processes since the proportion of correct se-

lection ir high regardless of the prior and model. Increasing the number of measurements improves

the chance for correct selection while increasing the the number of units makes the selection worse

for the ML estimate.

Table 4.3: Probability of selecting the right copula function.

(Measurements, Units) Method NRE REB

(25,3)
Bay 0.82 0.99

BayF 0.84 0.99

ML 0.36 0.79

(50,3)
Bay 0.90 1.00

BayF 0.88 1.00

ML 0.25 1.00

(25,6)
Bay 0.82 1.00

BayF 0.81 1.00

ML 0.31 0.87
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Figure 4.9 presents the average percentage error on the estimate of the copula parameter when

the correct copula was identified. Both methods tend to severely underestimate the value of the

copula parameter. This suggests that the MTTF and reliability estimates would be biased even if

the true parameters of the degradation processes were known and only the copula parameter were

estimated.

Figure 4.9: Relative error of the copula parameter estimate.

4.5 Conclusions

In this paper, we proposed the first parametric model to analyze accelerated reliability growth data

based on multiple correlated degradation processes. The dependency between degradation incre-

ments is modeled using a copula function. The model addresses random effects by assigning a

probability distribution on the base-line inverse-mean and the diffusion parameters and incorpo-

rates explanatory variables that change the inverse-mean parameter. We developed Bayesian and

ML methods to estimate the model parameters using a two-stage process, and the copula function

was selected based on the BIC or EBIC score among multiple choices.

We presented numerical examples to illustrate the effectiveness of the proposed methods to
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capture the final reliability function of a system. In particular, the ML methods are better at iden-

tifying the absence of random effects. On the other hand, the Bayesian methods with informative

priors are better at estimating the general location of the system’s reliability function and MTTF.

Moreover, both methods show similar performance as the amount of data increases due to increas-

ing the number of measurements taken from each unit or the number of units tested. These results

illustrate the usefulness of Bayesian models at early development stages when the testing data is

scarce for selecting the correct copula function and predicting the MTTF. On the other hand, the

extra computational time required to sample the posterior distribution loses its advantage as more

data becomes available. Finally, this model could be used to support resource allocation decisions

like whether to test a small number of units for a long period of time or a large number of units for

a short time period.

There are several directions for future research. First, it is worth investigating efficient ways to

improve the accuracy of the estimates of the parameters of the copula function. Moreover, different

versions of degradation models need to be developed for non-monotonic degradation processes. In

addition, more efficient methods to model high-dimensional correlated degradation processes will

be investigated in our future work. Lastly, there are no efficient methods to estimate the credi-

ble intervals (Bayesian) for the system reliability and MTTF. This is due to the two-step estimation

procedure which does not provide samples of all the model parameters. On the other hand, the con-

fidence intervals (ML) for this quantities can be obtained using a parametric Bootstrap procedure

(Nikoloulopoulos & Karlis, 2008), although with a relatively high computational cost..
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Appendix: Some Derivations

PDF of the degradation increments under the REM model.

The PDF of degradation increments of unit k after nk measurements is:

f(∆yik) =

∫ ∞
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wheremi = µ−1
i . In order to evaluate this expression, we first let:

γ = −λi
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2
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Then, we have:
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,

where γ1 and γ2 are defined as:

γ1 =
(
λiYikµ

2
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,
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γ2 =

[
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2
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2

λiYikµ2
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]
.

As a result, the PDF of degradation increments f(∆yik) can be rewritten as:
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PDF of the degradation increments under the REB model.

Similarly to the REM model,

f(∆yik) =

∫ ∞
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By only considering the terms related to λi, the inner integral can be obtained as:
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By defining the auxiliary variable γ as:
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the integral becomes:

Iλ =

∫ ∞

0

λ
αi+(nk+1)/2−1
i exp (−λiγ) dλi =
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Then, by integrating with respect tom0i, we have:
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The integrand can be re-expressed as the PDF of the Student’s t-distribution times a constant by

noting that:
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By replacing γ in the integral, we get:

Im =

∫ ∞

0

√
1

π
Γ(αi + (nik + 1)/2)

[
γ1 +

γ2
2
(m0i − ν ′)2

]−αi−(nk+1)/2

dm0i

=

∫ ∞

0

Γ(αi + (nk + 1)/2)
√
πγ

αi+(nk+1)/2
1

[
1 +

γ2
2γ1

(m0i − ν ′)2
]−αi−(nk+1)/2

dm0i

=
Γ(αi + nk/2)

γ
αi+(nk+1)/2
1

√
2γ1
γ2

∫ ∞

0

Γ(αi + (nk + 1)/2)

Γ(αi + nk/2)
√
π

×

√
γ2(2αi + nk)

2γ1(2αi + nk)

[
1 +

γ2(2αi + nk)

2γ1(2αi + nk)
(m0i − ν ′)2

]−αi−(nk+1)/2

dm0i

=
Γ(αi + (nk)/2)

γ
αi+nk/2
1

√
2

γ2
Υ′

2αi+nk

(
−ν ′

√
γ2(2αi + nk)

2γ1

)
.

75



Then, the PDF of degradation increments under the REB model can be expressed as:

f(∆yik) =

nk∏
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where
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5 Summary

Reliability growth programs are important tools to ensure that newly designed products or system

achieve a minimum reliability requirement in a short development time. Reliability growth pro-

grams consists of a series of stages the system design is changed to improve its reliability. Due

to cost and time constraints, reliability analysis of complex multi-component systems is based on

accelerated testing at component and subsystem level. However, reliability growth models in the

literature only consider single component systems or series systems and often struggle to accurately

incorporate accelerated test data in the analysis. In this dissertation, we develop newmethodologies

for analyzing time-to-failure data and we propose the first methodologies for analyzing degradation

data in the context of a multi-stage reliability growth program with testing at component level.

For analyzing time-to-failure data, we develop a Bayesian reliability growth framework to pre-

dict component reliability, and propose a procedure to aggregate component results to predict the

reliability of the system. A numerical example with simulated data illustrates the superior perfor-

mance of the proposed method when compared to widely used reliability growth methodologies.

In this dissertation, we propose the first models for modeling reliability growth based on degrada-

tion data. We propose a non-parametric model for the case when components only fail due to a

single degradation process. In addition, we develop a novel degradation-based reliability growth

model for a component with multiple correlated degradation processes. Numerical examples using

simulated data are presented to validate the accuracy of the proposed methodologies.

This dissertation has the potential to change the way reliability growth is performed by de-

veloping methodologies for statistical analysis of degradation data which can be combined with

existing physics-of-failure approaches. There are still multiple open research directions such as

the development of more efficient statistical models to analyze high-dimensional degradation data,

characterization of reliability growth with both time-to-failure and degradation data, and the de-

velopment of statistical tests to assess the introduction or removal of random effects after design

changes.
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