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Abstract 
 

This paper focuses on the use of teacher value-added estimates to assess the distribution of 
effective teaching across students of varying socioeconomic disadvantage.  We use simulation 
methods to examine the extent to which different commonly used teacher-value added estimators 
accurately capture both the rank correlation between true and estimated teacher effects and the 
distribution of effective teaching across student characteristics in the presence of classroom 
composition effects. Varying the amount of teacher sorting by student characteristics, the within-
teacher variability in classroom composition, and the amount of student learning decay, we 
compare aggregated residuals, teacher random effects, and teacher fixed effects models 
estimated in both levels and gains, with and without controls for classroom composition. We find 
that models estimated in levels more accurately capture the rank correlation between true and 
estimated teacher effects than models estimated in gains, but levels are not always preferable for 
recovering the correlation between teacher value-added and student achievement. For recovering 
that correlation, aggregated residuals models appear preferable when sorting is not present, 
though fixed effects models perform better in the presence of sorting. Because the true amount of 
sorting is never known, we recommend that analysts incorporate contextual information into 
their decisions about model choice.   
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1. Introduction 

The unequal access to effective teaching is a long-standing policy concern.  High-poverty 

schools, for example, tend to concentrate higher proportions of novice and academically weak 

teachers. (Becker, 1952; Clotfelter, Ladd, & Vigdor, 2005; Lankford, Loeb, & Wyckoff, 2002).  

High-poverty schools also face disproportionate difficulties in retaining teachers, who often 

leave to teach in more affluent schools (Feng, 2010; Hanushek, Kain & Rivkin, 2004). Motivated 

by the challenges that high-poverty schools face in attracting and retaining qualified teachers, 

recent public and private efforts to close the achievement gap between disadvantaged and more 

advantaged students increasingly focus on redistributing effective teachers.  

The No Child Left Behind Act (NCLB) requires, for example, that states improve the 

equitable distribution of highly qualified teachers as measured by their licensure and subject 

matter preparation. Race to the Top—another federal government initiative—rewards states that 

convincingly plan to improve the share of highly effective teachers in high-poverty schools.  

Meanwhile, the Bill & Melinda Gates Foundation is collaborating with a group of districts and 

charter management organizations across the country to refine their human resource policies in 

ways that improve disadvantaged students’ access to effective teachers. Similarly, the U.S 

Department of Education, Institute of Education Sciences (IES) funded Talent Transfer 

Initiative, offered a financial incentive to the teachers with the highest scores on value-added 

measures if they would transfer to a lower-achieving school in the same district and remain there 

for at least two years. 

However, teacher attributes traditionally used to proxy for teacher effectiveness—

academic credentials, licensure and subject matter preparation, for example—are only weakly 

connected to teachers’ effects on student achievement (Aaronson, Barrow, & Sander, 2007; Kane 
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& Staiger, 2005; Rivkin, Hanushek, & Kain, 2005; Rockoff, 2004).  For this reason, the focus of 

current efforts that aim to make the distribution of teacher effectiveness more equitable has 

shifted from redistributing effective teachers based on their observable attributes, to 

redistributing effective teachers according to their effect on student achievement, commonly 

referred to as their value-added.  

Teacher value-added is usually understood as the contribution of a teacher to the learning 

of his/her students as measured by test scores and conditional on other factors, including 

students’ background and preparation. Teachers are then considered to be highly effective if their 

students make above average improvements relative to other teachers with comparable students 

(see, for example, Buddin & Zamarro, 2009; Hannaway et al., 2010). 

Estimating a teacher’s impact on student learning requires, however, that other inputs that 

affect student learning be appropriately controlled for.  Typically, past inputs are captured 

through measures of prior student learning such as lagged test-scores, which may be inaccurate 

for a number of reasons. Lagged test-scores may fail to capture, for example, all baseline 

knowledge relevant to the focal year’s test. They may also fail to capture all features of innate 

ability, motivation, and family circumstances that affect student learning.  Lagged test scores 

also contain measurement error and do not reflect an unknown amount of learning decay.  

In addition to past inputs to learning, teacher value-added models also aim to control for 

educational inputs that are contemporaneous with the teacher's contribution. Some 

contemporaneous inputs are intrinsic to the student and are imperfectly measured by his or her 

own characteristics such as gender, race and free lunch status. Other contemporaneous inputs 

include classroom composition characteristics, which may influence a student’s experience in a 

classroom independently of the teacher who is leading the class, and which may also be 
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imperfectly measured by observable classroom averages of gender, race and free lunch status, 

among other variables. For example, a large class or the presence of a few extremely difficult 

students who require special attention may make it harder for other students to learn.  

For these reasons, teacher value-added models are an imperfect approach to identifying 

teachers’ impact on student achievement. Moreover, models that estimate teacher’s value-added 

most precisely—i.e., that minimize mean squared error—may not be the models that best recover 

unbiased estimates of a distribution parameter that measures the correlation between teacher 

effectiveness and student characteristics.  Some teacher value-added models may yield biased 

estimates of the correlation between a student’s demographic characteristics and teacher’s 

effectiveness due to unobserved student sorting and model specification choices.  

Chetty, Friedman, and Rockoff (2011) argue, for example, that teacher value-added 

estimates based on aggregated residuals—in which teacher effects are estimated from 

unexplained variance after accounting for student and classroom features—are unbiased 

estimates of teachers’ contributions to student achievement.  Hannaway and colleagues (2010), 

on the other hand, argue that models that in addition to including teacher fixed effects also 

include student fixed effects, are more suitable to estimating the distribution of effective teaching 

among students of varying socioeconomic disadvantage.  Using administrative data from a large 

school district in the U.S., we demonstrate that the choice of teacher value-added model affects 

estimates of the distribution of effective teaching among students of varying socioeconomic 

disadvantage. This finding partly motivates our simulation approach.    

While attempts have been made at quantifying the bias of different teacher value-added 

models to measure teacher effectiveness using simulation methods (See for example, Rothstein, 

2009 or Guarino, Reckase, and Wooldridge, 2013), there is no previous effort at quantifying the 
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bias in estimates of a distribution parameter that measures the correlation between teacher 

effectiveness and students’ socioeconomic background obtained from various teacher value-

added models.  This paper aims to address this outstanding research gap. 

 To understand the suitability of various teacher value-added models for estimating the 

relationship between teacher effectiveness and students’ socioeconomic characteristics, this 

paper employs a simulation approach in which we vary our model specifications as well as our 

assumptions about student sorting and classroom composition effects. Specifically, we address 

three research questions: 

1.  Which of several popular value-added modeling approaches (including the aggregate 

residuals model, teacher random effects, and teacher fixed effects models most 

accurately captures the (a) rank correlation between true and estimated teacher effects 

and (b) correlation between teacher effects and demographic characteristics of their 

students under varied amounts of teacher sorting when classroom composition effects 

are present? 

2.  How sensitive are the results to the amount of student learning decay, to modeling in 

levels versus gains, and to the amount of within-teacher variation in classroom 

composition? 

3.   How does each modeling approach fare with and without the inclusion of controls for 

classroom-average covariates? 

To make these questions more tractable, we make some simplifying choices.  Among the 

possible array of student characteristics, we only consider socioeconomic disadvantage and use 

teacher value-added estimates to assess the distribution of effective teaching across students of 

 
 

5 



varying socioeconomic disadvantage.  Therefore, our data-generating process includes only 

observed student heterogeneity measured by socioeconomic disadvantage; there is no 

unobserved heterogeneity in the simulated data.  Also, we assume there is no measurement error 

in lagged test scores.   

Our simulation approach begins with the simplest case in which teacher assignment to 

students is random, which implies that teacher effectiveness is orthogonal to socioeconomic 

disadvantage at the student and at the classroom level. We then create an alternative scenario in 

which more-effective teachers are systematically assigned to more socioeconomically 

advantaged students, so that the percentage of disadvantaged students in a teacher’s caseload is 

negatively correlated with the teacher’s effectiveness.  

We examine these scenarios in cases with low, medium, and high student learning decay 

from prior assessments. We also vary the amount of within-teacher variation in classroom 

composition by allowing high versus low year-to-year mobility of students among schools.  

Our study considers three classes of models commonly used in the literature to estimate 

teachers’ value-added effectiveness—aggregated residuals, teacher random effects, and teacher 

fixed effects. All of these models attempt to mitigate bias in estimates of teacher value-added 

associated with non-random sorting of students into classrooms and non-random teacher 

assignment to classrooms. It is not clear, however, how well these models mitigate bias when the 

parameter of interest is the correlation between teacher effectiveness and students’ observed 

characteristics.  For each scenario, we fit models in which the dependent variable is either the 

current level of student achievement regressed on prior achievement (levels) or the difference 

between current and lagged achievement (gains). Under each specification, we examine the rank 

correlation between true and estimated teacher value-added, as well as the true versus estimated 

 
 

6 



correlation between teacher value-added and student characteristics. We also examine the 

sensitivity of these results to the inclusion or exclusion of classroom characteristics. 

The paper is organized as follows: Section 2 empirically motivates our simulation with 

data from a large, urban district, in which we find that our parameters of interest are very 

sensitive to modeling decisions. Section 3 describes our assumptions about the education 

production function, and Section 4 presents our data-generating process for the simulations. 

Section 5 describes the modeling specifications we choose and their rationales. Section 6 

presents results for each scenario and modeling choice, and section 7 concludes with a discussion 

of implications. 

 

2. The Sensitivity of Estimates of the Distributional Parameter of Teacher 

Effectiveness 

We motivate our simulation exercise with estimates of a distribution parameter that 

measures the correlation between teacher effectiveness and students’ socioeconomic 

disadvantage based on the three different classes of teacher value-added models described above. 

The analytic sample includes data for students in grades 2 through 5 for eight consecutive years.  

Estimation of the distribution parameter proceeds in three steps.  In the first step we 

estimate a student-level regression in which the dependent variable is students’ reading test 

scores, standardized to have a mean of 0 and a standard deviation of 1 in each year. Covariates in 

the model include students’ one-year lagged reading test scores, a dichotomous student-level 

OBD indicator representing minority students eligible for subsidized meals, and the proportion 

of students in the classroom who are OBD, which is intended to separate classroom composition 

effects from individual teacher effects. 
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In the second step we “shrink” teacher effect estimates from step one to account for 

heterogeneity in the amount of information available to estimate each teacher’s contribution to 

student achievement (Jacob & Lefgren, 2007).  In the third step, we estimate the distribution 

parameter, which is the correlation between shrunken teacher effect estimates and average level 

of socioeconomic disadvantage (OBD) of all the students ever assigned to that teacher.  Table 1 

shows estimates of the distribution parameter for the various teacher value added models we 

consider.   

As results in Table 1 show, empirical estimates of the correlation between teacher quality 

measures and the average level of socioeconomic disadvantage are sensitive to modeling 

approach, as well as to the inclusion or exclusion of classroom composition controls. Models in 

levels would conclude a negative correlation while models in gains would conclude a small 

positive correlation, in all cases except teacher fixed effects with classroom controls.  The 

estimate of the distribution parameter, however, is fairly sensitive to the choice of teacher value-

added model employed.  For models in levels, teacher random effects (RE) and teacher fixed 

effects (FE) yield similar distribution parameter estimates of around negative 20 to negative 25 

percent, suggesting that in the data, more effective teachers are assigned more often to more 

socioeconomically advantaged students.  Estimates of the distribution parameter based on 

aggregated residuals (AR) methods in levels suggests, on the other hand, a much smaller 

correlation between teacher effectiveness and student socioeconomic disadvantage in models of 

about  negative 6 to negative 13 percent. Turning to models estimated with gain scores rather 

than regression of current on lagged scores, the estimates under all specifications are strikingly 

smaller, ranging from -0.004  for fixed effects with classroom-level covariates to 0.04 using 

random effects without classroom-level covariates.  
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3. Basic Model for Simulations 

This section describes the theoretical model that underlies our Monte Carlo simulation 

approach. An education production function is the underlying basis for nearly all recent studies 

of student achievement. Following Todd and Wolpin (2003), we denote Tit as the test score 

measure of student i that is observed in year t, and let Xit and itξ represent observed and 

unobserved inputs for student i at time t, respectively.  We denote by µi0 the student’s endowed 

ability that does not vary over time.  We assume that the cognitive production function is linear 

in the inputs and in the unobserved endowment and that input effects do not depend on the 

student’s age but may depend on the age at which they were applied relative to the current age.  

Then, a general cognitive production function can be written as: 

    

0 1 2 1 1 2 1... ...it i it it it it itT X Xµ α α δ ξ δ ξ ω− −= + + + + + + +      (1) 

 

where test scores in a given year are a function of current and past observed and unobserved 

inputs as well as of the initial ability of the student.   

Similarly, the equation for the lagged test score 1itT −  is: 

1 0 1 1 2 2 1 1 2 2 1... ...it i it it it it itT X Xµ α α δ ξ δ ξ ω− − − − − −= + + + + + + +   

Multiplying the lagged test score equation byβ , the persistence rate of prior learning (where 

persistence is defined as one minus decay), we get:  

1 0 1 1 2 2 1 1 2 2 1... ...it i it it it it itT X Xβ βµ βα βα βδ ξ βδ ξ βω− − − − − −= + + + + + + +  (2) 

Subtracting equations (1) and (2) yields:                    
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1 0 1 2 1 1

1 2 1 1 1

(1 ) ( ) ...
( ) ... ( )

it it i it it

it it it it

T T X Xβ β µ α α βα
δ ξ δ βδ ξ ω βω

− −

− −

− = − + + − + +
+ − + + −       (3) 

 

Assuming constant decay, the value of all prior measured and unmeasured inputs must be 

decaying at the same constant rate from their time of application, i.e., αt = β αt-1 and 
1t tδ βδ −= , 

∀t.  Then (3) becomes: 

1 0 1 1 1(1 ) ( )it it i it it it itT T Xβ β µ α δ ξ ω βω− −− = − + + + −   

Adding 1itTβ −  to both sides of the equation we obtain that:  

0 1 1 1 1(1 ) ( )it i it it it it itT X Tβ µ α β δ ξ ω βω− −= − + + + + −   (4) 

For simplicity, we assume that the only observed student input is OBD status and that it 

is time-invariant.  Since we can link each student to a specific teacher and classroom assignment, 

we can represent the effect of these inputs with the time varying parameter jtγ , which denotes 

the effect of student’s classroom (teacher, peers, etc.) at time t. Therefore, we operationalize 

equation (4) with the following two equations:  

 

'
i0 1(1 )it i it jt itT OBD Tβ µ α β γ υ−= − + + + +

                
(5) 

jtjt j jtOBDγ λ φ ε= + +                    (6)                                                                                                                  

In equation 5, time-varying classroom effects are the sum of three components: a permanent 

teacher effect, jφ , which represents teachers’ ability independent of the classrooms they are 

assigned, a time-varying term represented by the proportion of OBD students the teacher is 
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assigned to ( jtOBD ) in a given year, and a random error term, jtε  , which represents other, 

unmeasured attributes of classroom j at time t that contribute to the performance of student i. 

Equations (5) and (6) constitute the basis of our data-generating process.  In our 

simulations, we arbitrarily vary the assignment of teachers to classrooms in a way that creates a 

correlation between a teacher's effectiveness, jφ , and the average characteristics of her students 

over all of her classes, jOBD  (
Cov( , )

j j

jj

OBD

OBD

φ

φ
ρ

σ σ
=

⋅
). We refer to this correlation as ρ , and it is 

our main parameter of interest in the Monte Carlo simulations.  

Intuitively, once we control for the direct effect of classroom composition (for jtOBD  ) 

on time-varying classroom effects jtγ , the correlation between the time-invariant teacher effect 

jφ and the average characteristics of all her students jOBD  will be different from zero only if 

teachers are assigned to classrooms non-randomly, but rather as a function of average classroom 

composition. Therefore, under random assignment of students to teachers, we would have that ρ

=0.  When teacher assignment is non-random such that more effective teachers are assigned to 

classrooms with more socioeconomically advantaged students, 𝜌 < 0. Motivated by previous 

empirical literature on teacher assignment, we only consider cases in which the more effective 

teachers are assigned to more socioeconomically advantaged students, such that 𝜌 is always less 

than zero. 

 

4. Data-Generating Process 

To make the problem tractable, we make some simplifying choices in our Monte Carlo 

simulations. As noted, we only consider socioeconomic disadvantage and use the teacher value-
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added estimates to assess the distribution of effective teaching across students of varying 

socioeconomic disadvantage.  We also ignore possible unobserved student heterogeneity that is 

not already captured by students’ socioeconomic disadvantage.  Finally, we assume there is no 

measurement error in lagged test scores.   

Our Monte Carlo simulations use 100 samples of data that we generate from equations 

(5) and (6).  We assume a single cohort of 2,400 students that we observe for four consecutive 

years.  Half of the students in the simulated data are assigned OBD status, and students are 

assigned into schools randomly, so that the average number of disadvantaged students in each 

school has a mean of 0.5 and standard deviation 0.3.1   

 We consider a total of 120 teachers so that average classroom size is twenty students per 

teacher, although in the simulations, class size varies randomly, with a minimum of ten students 

per teacher.  Teachers are assigned to classrooms in a way that produces different values of ρ : 

random assignment ( 0ρ  ) and noisy sorting on the proportion of OBD students in the 

classroom ( 0.5ρ −  ). For each teacher assignment scenario, we generate 100 simulated 

samples.  

 We then consider two scenarios for student and teacher mobility. Our first scenario is 

such that we have extreme variability in classroom composition. In this case, we ignore the 

school dimension, and students and teachers are re-assigned into classrooms each year. This 

scenario corresponds to a case where we have similar levels of between- and within-teacher 

variation in the data.  Our second scenario limits the variability in classroom composition over 

time, generating a more realistic case where schools are located in certain types of 

1 This distribution replicates the distribution of school-average OBD observed in administrative data from 
a large, urban school district.   
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neighborhoods, students remain in the same school for subsequent years, and teachers serve 

similar types of students year after year. This case results in a larger proportion of between-

teacher variation in student characteristics than in the case with high between-school student 

mobility. This scenario therefore increases the potential noise in teacher fixed effect estimates, as 

they are estimated using only within-teacher variation in student characteristics. In particular, for 

this latter scenario, we consider 20 schools with 6 teachers per school. Teachers and students are 

assigned into schools the first year and not allowed to leave the school in subsequent years. 

Students are then re-assigned to classrooms each year within schools.  

Under each scenario presented above, permanent teacher effects ( jφ ) are drawn from a 

normal distribution with mean zero and standard deviation 0.2. Similarly, jtε in equation (6) 

above is also a draw from a normal distribution with mean zero and standard deviation 0.1. With 

these assumptions, we derive time-varying teacher effects from equation (6).2  

 Baseline student test scores are generated following a standard normal distribution, Ti0 ~ 

N(0,1). For each subsequent year, student test scores are generated following equation (5) above, 

assuming itυ is normally distributed with mean and standard deviation such that the resulting test 

scores have mean zero and variance 1 in each period.  

Because we are concerned, especially for models in gains that make the implicit 

assumption of a zero decay rate, with how the models perform under various scenarios for the 

persistence of prior learning, we simulate data under different assumptions for the persistence 

parameter, β ( 0.8; 0.4; 0.2)β β β= = = (Note that this parameter represents 1 minus the rate of 

decay.) The rest of parameter estimates in the equations (5) and (6) are set to correspond to those 

2 The standard deviation of this error distribution is restricted so that the resulting variance of the error in 
the test score equation itυ  has feasible values.  
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obtained from estimates using data from a large school district.  Specifically, these parameters 

are: 0.08; 0.3α λ= − = − , indicating a weak negative correlation between student-level OBD and 

test scores and a moderately negative correlation between classroom-average OBD and 

classroom fixed effects.  

 

5. Modeling Specifications Tested 

We test three models commonly used to estimate teacher effects: i) aggregated residuals 

(e.g., Kane and Staiger, 2008); ii) teacher random effects (e.g., McCaffrey et al., 2003); and iii) 

teacher fixed effects (e.g., Rothstein, 2010) with and without Empirical Bayes adjustment. For 

each type of model, we fit equations in levels by regressing the current score on explanatory 

variables that include the lagged score, and we fit equations in gains by omitting the lagged test 

score from the set of explanatory variables and using gains in test scores as our dependent 

variable instead. Because levels and gains models utilize different assumptions about the rate of 

learning decay, with gains presuming no decay and levels estimating the degree of decay 

(Clotfelter, Ladd, & Vigdor, 2007), it is important to examine the performance of both types of 

models. 

We arrive at our basic estimation equation in levels by substituting (6) into (5) from 

above:  

0 1 1 2 3 jtijt it i ijtT T OBD OBDα α α α η−= + + + +
              

(7) 

where   ηijt = 𝜙𝑗 + εjt + υit.  In equation (7), Tijt represents the standardized test-score for 

student i with teacher j in year t, Tit−1 is student i’s lagged test-score, OBDi is an indicator for 

whether student i has observed background disadvantage,  jtOBD is the fraction of students with 
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observed background disadvantage in the classroom taught by teacher j in year t, and ijtη  is an 

error term that comprises teachers’ time invariant value-added ϕj, an idiosyncratic time-varying 

classroom effect, εjt, and an idiosyncratic time-varying student effect, υit.     

Another common specification used often in the literature corresponds to our basic 

estimating equation in gains which has the following form: 

         1 0 1 2 jtijt it i ijtT T OBD OBDβ β β η−− = + + +                                                                 (8) 

It is important to note, however, that if we consider the model in levels described in (7) 

and subtract the lagged test scores from both sides of the equation we get: 

 1 0 2 3 1 1(1 )ijt it i jt it ijtT T OBD OBD Tα α α α η− −− = + + + − +                                          (9) 

As we can see in equation (9) models in levels and in gains would then be equivalent only under 

the assumption that the persistence parameter 1α  equals 1. Otherwise the remaining unexplained 

part of the effect of lagged test scores will be an omitted variable leading to omitted variable bias 

in the estimated parameters, as lagged test scores will be correlated with the independent 

variables.  

In the case of random sorting of teachers, the omitted variable (lagged test score) will 

only be correlated with the individual disadvantage indicator iOBD . However, in the case of 

non-random sorting of teachers, lagged test score will also be correlated with classroom 

composition jtOBD  and with teacher effectiveness. Therefore, we expect the gains model to lead 

to biased estimates of the coefficient on the classroom composition and of teacher effects, 

epecially when using teacher fixed effect methods. 

The first model that we consider, aggregated residuals, is one in which student 

achievement test scores are regressed on lagged test score and a student Observed Background 
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Disadvantage (OBD) indicator, as well as classroom-level averages of OBD status, which are 

intended to distinguish classroom composition effects from teacher effects. The student-level 

residuals are then aggregated by teacher, with each teacher’s value-added defined as her 

students’ average residual performance (see, for example, Kane & Staiger, 2005, 2008).  

In the aggregated residuals model, we estimate equation (7) or (8) by OLS and compute 

the estimated residuals (η�ijt  ). We then obtain Empirical Bayes teacher-effect estimates, ϕ�j, by 

applying a random effects estimation in the following equation:  

η�ijt = 𝜙𝑗 + ζijt          (10)     

Note that in aggregating the residuals to estimate teachers’ effectiveness, we assume that 

teachers’ time-invariant effects (ϕj) are not correlated with the rest of explanatory variables in 

the model. Any true variance in teacher effectiveness associated with classroom-average 

characteristics may be attributed to the classroom-average covariates, potentially leading to 

biased estimates of teacher value-added. This is a key potential drawback of this type of model 

for estimating the correlation between teacher value-added and student characteristics, though 

the severity of the bias under varying assumptions is an empirical question. 

The second class of model is a random effects or variance-components model, which 

assumes that a portion of the unexplained variation in students' test scores is associated with 

teacher effectiveness. The random effects model differs from the aggregated residuals model in 

that the presence of the teacher random effect in the error term causes the estimator to draw more 

on the within-teacher relationship between test scores and covariates. In such a model, the 

teacher value added is estimated by the best linear unbiased predictions (BLUP) from the model, 

which reflect the imprecision in each teacher’s estimate due to the number of students taught and 

the correlation with classroom covariates (McCaffrey et al., 2003). However, like the aggregated 
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residual estimates, teacher random effects estimates of equation (7) and (8) are obtained under 

the additional assumption that the teacher time-invariant effects are not correlated with the rest of 

explanatory variables in the model. Random effects estimators give us teacher effects that are 

already shrunken, and no further Empirical Bayes adjustments are necessary. As both aggregated 

residuals methods and teacher random effects estimates require that explanatory variables are not 

correlated with the teacher time-invariant effects, they will provide biased estimates when we 

deviate from the random assignment of teachers into classrooms. It is an empirical question, 

however, how this bias in the estimated coefficients translates into bias in the estimation of our 

correlation parameter of interest, . 

The third class of models consists of teacher fixed effects models, which are estimated by 

allowing teacher time invariant effects (ϕj)  to be correlated with student and classroom 

characteristics. These models are then robust to non-random sorting of teachers into classrooms 

and are then expected to provide unbiased estimates of the model parameters under non-random 

sorting of teachers into classrooms. However, with small samples and limited variability of 

classroom composition, estimates based on teacher fixed effect models can suffer from problems 

of high noise in the estimated parameters of both classroom composition and teacher effects. 

This is so because the information available to distinguish between the effects of classroom 

composition and teacher effectiveness will be limited.  It is important to point out that this won’t 

be a problem with aggregated residuals or teacher random effect models because estimates in 

this case are based on both between and within teacher variation in the data.   

However, there is a possible source of bias in the fixed effects estimator if teachers have 

some of the same students in consecutive years. It is well known that panel data models that 

include both student fixed effects and a lagged dependent variable lead to biased estimates 

ρ
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(Nickell, 1981). Although our specifications use teacher fixed effects and not student fixed 

effects, a similar bias will occur in our levels specification if some students have the same 

teacher in consecutive years. For these "repeater" students, their lagged test score will be 

correlated with the true teacher effect for their current year, a part of which will be in the error 

term for the estimated model. This will lead to bias in all the estimated coefficients in the 

equation. In our limited classroom variability scenario in which students and teachers stay in the 

same school, one-sixth of the students on average have the same teacher in consecutive years 

thereby leading to bias in the levels models with teacher fixed effects. Note that this is not a 

problem in the gains model, because the lagged test score is not included on the right hand side 

of the model. It is an empirical question then to assess the tradeoff between bias and variance 

implied by these estimators in different scenarios and study how these translate into estimates of 

our correlation parameter of interest . 

For the teacher fixed effects models, we apply Empirical Bayes adjustments to our 

teacher effects estimates following Tate (2004).  Let σ�j2 be the estimated variance of the teacher 

effect estimate ϕj and µ� and σ�2 be the mean and variance, respectively, of the distribution of 

estimated teacher effects in the sample.  We construct the Empirical Bayes estimate of each 

teacher’s value-added as: 

ϕj
EB = 𝜙�j ∙ χj + µ� ∙ (1 − χj)       (11)     

where χj  is the reliability of ϕ�j , which equals σ�2 (σ�2 +⁄ σ�j2).  

Finally, in order to study the sensitivity of the results to the inclusion of classroom 

average characteristics, all models are also estimated without including the controls for the 

average proportion of OBD students. 

 

ρ
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6. Results 

6.1 Baseline scenario: Accuracy of teacher effects estimates and the distribution of 

effective teaching under random teacher assignment 

 

In Table 2 we present average estimates from our Monte Carlo simulations for the case in 

which teacher assignment to classrooms is random.  We begin by focusing on how accurate the 

different models are at recovering true teacher effects under various assumptions about 

variability in classroom composition and student learning decay.  We measure accuracy by the 

rank correlation between true and estimated teacher effects ( ( , ))j jCorr φ φ .  All model 

specifications represented in Table 2 control for student-level OBD status and the classroom 

proportion OBD; models in levels also control for students’ lagged test scores.   

We highlight three findings about the accuracy of estimated teacher effects in recovering 

true teacher contributions to learning.  Our first finding is that, regardless of model specification, 

assumptions about variability in classroom composition and about year-to-year student learning 

decay, models in levels produce more accurate estimates of teacher effects than models in gains.  

For instance, when we assume that there is extreme variability in classroom composition and that 

learning persistence (β) is 0.8, the average rank correlation between true and estimated teacher 

effects is 0.93 for models in levels and is 0.91 for models in gains (Panel A).  At the other 

extreme, with limited variability in classroom composition and student learning persistence of 

0.2, the average rank correlation is around 0.8 for models in levels and around 0.68 for models in 

gains (Panel C).  A similar pattern holds for all other intermediate cases and modeling choices. It 

is not clear whether we would find a similar pattern in a scenario of no decay (represented here 

as β=1), since gains models assume zero decay (Clotfelter, Ladd, & Vigdor, 2007). However, 
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work by Guarino, Reckase, and Wooldridge (2013) demonstrates strong performance of levels 

relative to gains models even under conditions of perfect learning persistence. Moreover, it is 

also not clear that an assumption of zero learning decay is reasonable in real-world contexts.       

Our second finding is that, for any given modeling choice and assumption about 

variability in classroom composition, the accuracy of estimated teacher effects diminishes with 

the amount of student learning decay.  In other words, it is easier to accurately predict a teacher’s 

true contribution to learning when learning gains are persistent over time than when they are not.  

For example, in the scenario of extreme year-to-year variability in classroom composition under 

an aggregated residuals model, the rank correlation between true and estimated teacher-effects is 

0.93 when the persistence parameter (representing 1 minus the rate of decay) is 0.8, is 0.88 when 

the persistence parameter is 0.4, and is 0.85 when the persistence parameter is 0.2 (column 1, 

Panel A of Table 2).  Similarly, under limited variability in classroom composition, an empirical 

Bayes teacher fixed effects estimator in test-score gains produces a rank correlation with true 

teacher effects that is 0.85 with persistence of 0.8, is 0.74 with persistence of 0.4 and is 0.68 with 

persistence of 0.2 (column 8, Panel C of Table 2). The same pattern holds for other modeling 

choices in both levels and gains. 

Our third finding concerning accuracy of teacher effect estimates under a baseline 

scenario of random teacher assignment is that, for all modeling choices and assumptions about 

student learning decay, estimates from settings with extreme variability in classroom 

composition are more accurate at recovering true teacher effects than those from settings with 

limited variability in classroom composition. This is specially the case for models using teacher 

fixed effects. As discussed above this is not surprising as with limited variability in classroom 
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composition we are limiting the available within variation in the data that fixed effect methods 

are based on.   

Continuing with the baseline case of random teacher assignment, we now turn attention 

to estimates of the distribution of effective teaching with respect to student background 

disadvantage.  Here we highlight four main findings.   

  The first finding is that, regardless of the assumptions we consider about student 

learning decay, under extreme variability in classroom composition all models produce accurate 

estimates of the correlation between teacher effectiveness and the proportion of OBD students a 

teacher faces.  In the case of random teacher assignment, this correlation is close to zero by 

construction, and we find that, on average, estimates of the distribution correlation are centered 

on zero.   

The second finding is that, even when teacher assignment is random, estimates of the 

distribution correlation from teacher fixed effects models in levels (with and without post-hoc 

empirical Bayes adjustment) are negatively biased when there is limited variability in classroom 

composition regardless of student learning decay assumptions.  With student learning persistence 

of 0.8, for instance, the estimated average distribution correlation is -0.24 without empirical-

Bayes adjustment and -0.23 with adjustment (columns 3 and 4, Panel A of Table 2).  At the other 

extreme, with persistence of 0.2, the estimated average distribution correlation is -0.25 with and 

without adjustment.  We find some variation in the average estimates of the distribution 

correlation parameter depending on the degree of learning decay assumed, but such relation does 

not seem to be monotonic. 

The third finding is that when teacher assignment is random and there is limited 

variability in classroom composition, aggregated residuals models in levels produce the most 
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accurate estimates, on average, of the distribution correlation.  Random-effects models in levels 

represent an intermediate case between aggregated residuals and teacher fixed effects, with 

estimates between -.08 and -0.14 depending on assumptions about student learning decay. 

Our fourth finding is that when teacher assignment is random and there is limited 

variability is classroom composition, teacher random- and fixed effects models estimated in 

gains produce distribution correlations that are more accurate than those based on models in 

levels regardless of the assumptions about student learning decay.  With learning persistence of 

0.2, for example, the average distribution from random-effects models changes from   -0.08 to 

0.002 going from levels to gains estimation (columns 2 and 6, Panel C of Table 2).  Similarly, for 

teacher fixed effects models with and without empirical Bayes adjustment, the average 

distribution correlation moves from -0.25 when we estimate the value-added model in levels to 

0.014 when we estimate it in gains (columns 3, 4, 7 and 8, Panel C of Table 2).  

One possible explanation for the second finding regarding the bias in teacher fixed effects 

models applied to samples with limited variability in classroom composition is that teacher effect 

estimates from models in levels are imprecise when there is limited variability of classroom 

composition.  Our simulation results, however, do not support this idea.  For any given level of 

student learning decay, the rank correlation between true and estimated teacher effects is always 

weaker in models in gains than in models in levels.  

Another possible explanation is bias in estimates of the coefficients on the observed 

covariates of the value-added model.  As Appendix Table A1 shows, however, this conjecture is 

also unlikely because, for models estimated in levels in settings with limited classroom 

variability, the bias in estimates of student learning persistence (β) and in estimates of the 

coefficient on individual background disadvantage status is similar for aggregated residuals, 
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teacher random effects and teacher fixed effects models.  Moreover, the bias in the coefficient 

estimate for the classroom proportion of disadvantaged students in teacher fixed effects models 

is similarly biased when we estimate the model in levels and in gains. 

A plausible explanation for the results presented above stems from the fact that when we 

estimate teacher fixed effects models in settings with limited variability in classroom 

composition, even if teacher assignment is random, the covariance between contemporaneous 

classroom proportion of student disadvantage and lagged classroom average scores is non-zero.  

In large samples, with extreme variability in classroom composition, this covariance approaches 

zero, which is why all models in levels recover without bias the distribution correlation.  With 

limited variability in classroom composition, a teacher gets assigned to a similar “type” of 

student year-after-year so that there is systematic correlation between classroom composition, 

teacher effectiveness and student learning over time.  Limited variability in classroom 

composition is, therefore, not a concern in aggregated residuals models because by assuming that 

teacher effects are the portion of test scores that are uncorrelated with covariates included in the 

model, aggregated residuals is effectively imposing orthogonality between teacher value-added 

and classroom composition even though in the data-generating process, classroom composition 

contributes to learning. This problem would be potentially less important in models in gains, 

especially with lower levels of learning decay ( β  close to 1), because lagged scores are not part 

of the set of explanatory variables.   

Another likely explanation for the bias of teacher fixed effects estimates of levels models 

in the case of limited variability of classroom composition comes from Nickell bias as discussed 

above. This bias will only arise when the lagged test score is on the right hand side, as is the case 

in the levels model, and when some students have the same teacher in two consecutive years, as 
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is the case in the limited variability of classroom composition scenario. It should be noted that 

the bias also shows up in the random effects model but at a lower level, which can be understood 

by recalling that random effects can be constructed as a weighted average of fixed effects and 

pooled estimators.  

 

6.2 Sensitivity to the exclusion of classroom composition controls under random teacher 

assignment  

 Although teacher effects from random- and fixed-effects models in levels are fairly 

accurate estimates of the true teacher contributions to student learning, they produce inaccurate 

estimates of the distribution correlation in settings with limited variability in classroom 

composition as it might become difficult to separate classroom composition effects from teacher 

effectiveness.  In this subsection we study how results change if we omit controls for classroom 

composition in our analysis.  Results for this case are presented in Table 3.  

Our three key findings concerning the accuracy of teacher effect estimates also hold for 

models that do not control for classroom composition.  Specifically, as results in Table 3 

indicate: i) models in levels produce more accurate estimates of teacher effects than models in 

gains; ii) the accuracy of estimated teacher effects diminishes with the amount of student 

learning decay and iii) teacher effect estimates from settings with extreme variability in 

classroom composition are more accurate at recovering true teacher effects than those from 

settings with limited variability in classroom composition. 

While not controlling for classroom composition does not affect our conclusions about 

the accuracy of teacher effect estimates under random teacher assignment and the various 

scenarios we consider, not doing so substantially affects some of our conclusions about the 
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distribution of effective teachers with respect to student disadvantage.  We highlight three main 

changes.  

First, regardless of modeling choice and assumptions about student learning decay, not 

controlling for classroom composition leads to negatively biased estimates of the distribution 

correlation even in the case of extreme variability in classroom composition.   

Second, as Table 3 shows, not controlling for classroom composition introduces 

considerable bias in estimates of the distribution correlation parameter ρ  derived from 

aggregated residuals and teacher random effects methods when these models are estimated in 

levels, in the case of limited variability in classroom composition.  Before, estimates of  ρ from 

aggregated residuals models were centered around zero, whereas now the average estimate is 

 0.18ρ = − .  Without class composition controls, the bias in the distribution correlation from 

teacher random effects is as severe as in teacher fixed effects models.  Moreover, for both of 

these methods, the bias in the distribution correlation becomes more severe with greater student 

learning decay. 

This result is probably not surprising if we take into account that when classroom 

composition is part of the data-generating process but we omit it from our estimation equation. 

The direct contribution of classroom composition to student learning—which previously was 

netted out—now loads onto the estimated teacher effects, creating an spurious correlation with a 

teacher’s proportion of disadvantaged students.  Since in our simulations teacher quality 

positively affects learning while the classroom proportion of disadvantaged students negatively 

does so, the direction of the bias becomes negative.  

Third, while estimates of the distribution correlation from value-added models in gains 

are considerably better than those from models in levels when there is limited variability in 
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classroom composition, the improvement in these estimates is less than in the case in which we 

control for classroom composition.  This result is true regardless of the assumptions we make 

about student learning decay.  

         

6.3 Accuracy of teacher effects estimates and the distribution of effective teaching under 

partially systematic teacher assignment 

We now present simulation results from a perhaps more realistic scenario in which 

teachers are assigned to classrooms in a way that teacher quality becomes  correlated  with the 

proportion of disadvantaged students a teacher has.  In particular, we assume that the true 

correlation between teacher effectiveness and the proportion of OBD students is -0.5, such that 

the best teachers tend to be assigned to the classrooms with the lowest proportion of OBD 

students.  

Introducing systematic teacher assignment does not fundamentally alter our three main 

conclusions about the accuracy of estimated teacher effects from those in the case of random 

teacher assignment.  We continue to find that models in levels produce more accurate estimates 

of teacher effects than models in gains; that the accuracy of estimated teacher effects diminishes 

with the amount of student learning decay and that teacher effect estimates from settings with 

extreme variability in classroom composition are more accurate at recovering true teacher effects 

than those from settings with limited variability in classroom composition. 

However, systematic teacher assignment fundamentally alters our conclusions about the 

appropriateness of various value-added models to recover the distribution of teacher 

effectiveness with respect to student background disadvantage.  For example, as Table 4 

indicates, in the case of extreme variability in classroom composition, all models—particularly 
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aggregate residuals—in both levels and gains understate the degree of teacher sorting with 

respect to student disadvantage.  This conclusion holds regardless of assumptions about student 

learning decay.   

Second, unlike the case of random teacher assignment, when there is limited variability in 

classroom composition, teacher fixed effects models in levels—with and without empirical 

Bayes adjustment—produce the best estimates of the distribution correlation, followed by 

random effects and aggregated residuals.  When year-to-year learning decay is low ( 0.8β = ) 

fixed effects models do a better job at recovering the true distribution correlation than when 

learning decay is high ( 0.2β = ) but even in the case of high learning decay, teacher fixed effects 

models in levels perform notably better than aggregated residuals and teacher random effects 

when there is limited variability in classroom composition.  

As Appendix Table A2 shows, part of the reason why aggregated residuals models in 

levels perform so poorly at recovering the distribution correlation is that, when there is partially 

systematic teacher assignment and limited variability in classroom composition, aggregated 

residuals models overstate by orders of magnitude the true contribution of classroom 

composition to student learning.  On average, the estimate of the coefficient on classroom 

proportion OBD is -0.96 when the true parameter is -0.3. In doing so, the aggregated residuals 

model is purging some of the true contribution of teacher effectiveness to learning, and because 

teacher effectiveness positively affects student learning, the resulting estimate of the distribution 

correlation is biased towards zero. Although this coefficient was also biased in the case of 

random assignment, when using aggregated residuals methods, the bias was not as severe as in 

this case. 
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Third, unlike the case of random teacher assignment, when there is limited variability in 

classroom composition, models in gains produce even worse estimates of the distribution 

correlation regardless of assumptions about student learning decay.  The most dramatic departure 

from the true distribution correlation when estimating models in gains occurs for fixed effects 

models with and without empirical Bayes adjustment.  As Appendix Table A2 shows, this result 

is not driven by the fact that teacher fixed effects models in levels produce less biased estimates 

of the coefficient on classroom proportion of disadvantaged students than models in gains.  In 

fact, with limited variability in classroom composition, the bias in the estimates of the coefficient 

on classroom proportion of disadvantaged students is roughly the same in levels and gains, 

independent of assumptions about student learning decay. 

   

6.4 Sensitivity to the exclusion of classroom composition controls with partially 

systematic teacher assignment  

In Table 5 we present results on the accuracy of teacher effect estimates and of the 

distribution correlation parameter ρ  when there is systematic sorting of teachers into classrooms 

based on the proportion of disadvantaged students, and we exclude controls for classroom 

composition.  Results on teacher effects accuracy and ρ    for the case of extreme variability in 

classroom composition are identical to those in Table 4 in which we controlled for the classroom 

proportion OBD.  The main difference, however, arises in the case of limited variability in 

classroom composition for the aggregated residuals model. 

As Table 5 indicates, when there is limited variability in classroom composition and we 

do not control for the classroom proportion of disadvantaged students, the accuracy of teacher 

effect estimates from the aggregated residuals model in both gains and levels increases 
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substantially and now matches that of teacher random and fixed effects models.  This 

improvement in accuracy is most pronounced when there is high student learning decay, as in 

Panel A of Table 5, than when we assume a rate of persistence of 0.8.  

Not controlling for classroom composition also improves our estimates of ρ  using 

aggregated residuals in cases with limited variability in classroom composition.  For example, 

when persistence is 0.8 (Panel A) the average estimated ρ  is now -0.39 which is much closer to 

the true value of -0.5 (when controlling for classroom composition our estimated ρ  was only -

0.06).  This improvement in estimating ρ  is even larger when student learning decays more.  As 

Panels B and C of Table 5 indicate, the average estimated ρ  is-0.46 when we set persistence to 

be 0.4 or 0.2 (column 1).  As column 5 shows, not controlling for classroom composition also 

improves our estimated ρ  when we estimate aggregated residuals models in gains, although our 

estimated ρ  from models in gains continue to be significantly far from the true value when there 

is partially systematic teacher assignment and limited variability in classroom composition.    

Not controlling for classroom composition also improves our estimates of ρ  using 

teacher random effects methods value added models.  As column 2 of Table 5 indicates, 

estimates of ρ  from teacher random effects methods resemble those of teacher fixed effects 

models in this case.  The improvement is most pronounced when there is little student learning 

decay, as is the case in Panel A of Table 5 when we assume persistence to be 0.8.  However, like 

all other models, significant bias remains in estimates of ρ  from teacher random effects in gains, 

regardless of the degree of student learning decay we assume.   

 

7 Conclusion 
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 In light of our finding from one large, urban district that the estimated distribution of 

teacher effectiveness among more and less disadvantaged students depended on our modeling 

approach, this simulation study sought to compare a variety of popular value-added models in 

terms of their ability to provide unbiased distribution estimates. Our parameters of interest were 

not only the rank correlation between true and estimated teacher value-added parameters, but 

also the correlation between estimated teacher value-added and the proportion of the teacher’s 

students who are observably disadvantaged. Our simulations maintained the assumption that 

students' test scores were affected by their own disadvantage as well as by the average 

disadvantage of their classmates. Our simulations varied the amount of systematic teacher 

sorting, the amount of student learning decay, and the amount of within-teacher variation in 

classroom composition. Our estimates compare the accuracy of aggregated residual, teacher 

random effects, and teacher fixed effects models estimated in levels and in gains, with and 

without the inclusion of classroom composition covariates. 

 
We find that the distribution of teacher value-added by student characteristics depends on 

modeling method and specification. Moreover, we find that models that do well at recovering the 

relative size of teachers’ contributions to learning are not necessarily those that do a good job on 

estimating the degree of teacher sorting by student characteristics. Specifically, models in levels 

that employ teacher fixed effects produce less-biased estimates of student sorting than the other 

approaches when sorting is indeed nonrandom. However, in the absence of student sorting, 

aggregated residuals methods or models in gains perform better at recovering the distribution 

parameter. Since the true amount of sorting is unknown in real-world contexts, it may be 

preferable to exclude classroom characteristics from aggregated residuals or teacher random 

effects models, especially if demographic sorting is likely.  
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If using teacher fixed effects models, which appear to have particular advantages when 

sorting is present, the use of gains rather than levels appears preferable if the distribution 

correlation is the parameter of interest. This is particularly true when some or all students have 

the same teacher in consecutive years, as is the case with "looping" or with a single teacher 

teaching the advanced versions of a subject in multiple grades. But when the parameters of 

interest are the teacher fixed effects themselves, estimates from levels appear preferable in 

scenarios of low as well as high decay.  

Given the sensitivity of both the rank correlations and the distribution parameter to the 

amount of true student sorting and to the within-teacher variability in classroom composition, the 

choice of model should potentially take contextual information into account. For instance, an 

analysis of variance of student characteristics between and within teachers will shed light on the 

amount of variability available from which to distinguish classroom and teacher effects. The 

amount of likely sorting is also an important consideration. Though schools may claim that 

students are randomly assigned to teachers and classrooms, it may be worth understanding the 

assignment procedures more carefully in a particular context to anticipate the amount of true 

sorting that may be present. If high sorting is likely, aggregated residuals may not be the best 

approach for recovering the distribution parameter. If high sorting is unlikely, however, teacher 

fixed effects may be less desirable, especially estimated in levels. 

The results we present here simply underscore the importance of testing the results of any 

modeling choice for sensitivity to that choice and of transparently reporting that information to 

policymakers, alongside clear guidance about which models have the best properties in a 

particular context. 

 

 
 

31 



References 

Aaronson, D., Barrow, L., & Sander, W. (2007). Teachers and student achievement in the 
Chicago Public High Schools. Journal of Labor Economics, 25, 95-135.  

Andrabi, T., Das, J., Khwaja, A. I., & Zajonc, T. (2011). Do value-added estimates add value? 
Accounting for learning dynamics. American Economic Journal: Applied Economics, 3, 
29-54. 

Becker, H. S. (1952). The career of the Chicago public school teacher. American Journal of 
Sociology, 57(5), 470-477.  

Borjas, G. J., & Sueyoshi, G. T. (1994). A two-stage estimator for probit models with structural 
group effects. Journal of Econometrics, 64(1-2), 165-182.  

Buddin, R. & Zamarro, G. (2009). Teacher qualifications and student achievement in urban 
elementary schools. Journal of Urban Economics, 66, 103-115. 

Chetty, R., Friedman, J. N., & Rockoff, J. E. (2011). The long-term impacts of teachers: Teacher 
value-added and student outcomes in adulthood (Working Paper # 17699). Cambridge, 
MA: National Bureau of Economic Research.  

Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2005). Who teaches whom? Race and the 
distribution of novice teachers. Economics of Education Review, 24(4), 377-392.  

Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2007). How and why do teacher credentials matter 
for student achievement? (Working Paper # 12828). Cambridge, MA: National Bureau of 
Economic Research. 

Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2010). Teacher credentials and student 
achievement in high school: A cross-subject analysis with student fixed effects. Journal 
of Human Resources, 45(3), 655-681.  

Feng, L. (2010). Hire today, gone tomorrow: New teacher classroom assignments and teacher 
mobility. Education Finance and Policy, 5(3), 278-316. doi: 10.1162/EDFP_a_00002 

Guarino, C., Reckase, M. D., & Wooldridge, J. M. (2013). Can value-added measures of teacher 
performance be trusted? Bloomington, IN: Indiana University. 

Hannaway, J., Xu, Z., Sass, T. R., Figlio, D., & Feng, L. (2010, October 19). Value added of 
teachers in high-poverty schools and lower poverty schools: Implications for research, 
policy and management. Paper presented at the Association of Public Policy Analysis and 
Management Fall Conference, Boston, MA. 

Hanushek, E. A., Kain, J. F., & Rivkin, S. G. (2004). Why public schools lose teachers. Journal 
of Human Resources, 39(2), 326-354.  

 
 

32 



Jacob, B. A., & Lefgren, L. (2007). Principals as agents: Subjective performance assessment in 
education. Journal of Labor Economics, 26(1), 101-136.  

Kane, T. J., & Staiger, D. O. (2005). Using imperfect information to identify effective teachers 
(pp. 61). Cambridge, MA: National Bureau of Economic Research. 

Kane, T. J., & Staiger, D. O. (2008). Estimating teacher impacts on student achievement: An 
experimental evaluation. Working paper no. 14607. Cambridge, MA: National Bureau of 
Economic Research. 

Koedel, C., & Betts, J. R. (2007). Re-examining the role of teacher quality in the education 
production function. Working paper. San Diego, CA: University of California San Diego. 

Lankford, H., Loeb, S., & Wyckoff, J. (2002). Teacher sorting and the plight of urban schools:  
A descriptive analysis. Educational Evaluation and Policy Analysis, 24(1), 37-62.  

McCaffrey, D. F., Lockwood, J. R., Koretz, D. M., & Hamilton, L. S. (2003). Evaluating value-
added models for teacher accountability (pp. 191). Santa Monica, CA: RAND 
Corporation. 

Nickell, S. (1981) Biases in Dynamic Models with Fixed Effects. Econometrica , 49(6), 1417-
1426.  

Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and academic 
achievement. Econometrica, 73(2), 417-458.  

Rockoff, J. E. (2004). The impact of individual teachers on student achievement:  Evidence from 
panel data. American Economic Review, 94(2), 247-252.  

Rothstein, J. (2009). Student sorting and bias in value-added estimation: Selection on 
observables and unobservables. Education Finance and Policy, 4(4), 537-571.  

Rothstein, J. (2010). Teacher quality in educational production: Tracking, decay and student 
achievement. Quarterly Journal of Economics, 125(1), 175-214.  

Tate, R. (2004). A cautionary note on shrinkage estimates of school and teacher effects. Florida 
Journal of Educational Research, 42, 1-21.  

Todd, P. E., & Wolpin, K. I. (2003). On the specification and estimation of the production 
function for cognitive achievement. The Economic Journal, 113(485), F3-F33.

 
 

33 



Table 1.  Empirical estimates of the distribution correlation between estimated teacher 
effectiveness and the proportion OBD of a teacher’s students (𝜌�) using data from a large urban 
school district.   
 
                
  Levels   Gains 

  
AR 
(1) 

RE 
(2) 

FE 
(3)   

AR 
(4) 

RE 
(5) 

FE 
(6) 

With classroom controls -0.064 -0.252 -0.227   0.007 0.015 -0.004 
                
Without classroom controls -0.133 -0.246 -0.207   0.029 0.04 0.014 

Notes: All test scores are standardized within grade and year prior to estimation. AR=aggregated 
residuals model; RE=teacher random effects model; FE=teacher fixed effects estimation model 
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Table 2. Monte Carlo simulation estimates of the rank correlation between true and estimated teacher effects (𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗)) and of the 
distribution correlation between teacher effectiveness and proportion of OBD students (𝜌�) under random teacher assignment (i.e. ρ=0) 
controlling for classroom average OBD.  
                      
    Levels   Gains 
    AR RE FE EB-FE   AR RE FE EB-FE 
     (1) (2) (3)  (4)    (5)  (6)  (7)  (8)  
Variability of 
Classroom 
composition   Panel A. Persistence=0.8 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.925 0.926 0.926 0.926   0.911 0.911 0.911 0.911 

𝜌� 0.000 0.001 0.001 0.001   0.001 0.001 0.001 0.001 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.916 0.906 0.882 0.880   0.862 0.860 0.852 0.848 

𝜌� -0.020 -0.144 -0.237 -0.230   -0.006 -0.036 -0.072 -0.070 
                      
    Panel B. Persistence=0.4 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.882 0.883 0.882 0.882   0.821 0.821 0.820 0.821 

𝜌� -0.001 -0.001 -0.002 -0.002   0.001 0.001 0.000 0.000 

                      
Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.870 0.865 0.824 0.823   0.758 0.758 0.746 0.744 
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𝜌� -0.028 -0.112 -0.285 -0.277   -0.004 -0.010 -0.041 -0.040 
                      
    Panel C. Persistence=0.2 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.850 0.850 0.850 0.850   0.768 0.768 0.768 0.767 

𝜌� 0.003 0.003 0.003 0.003   0.007 0.009 0.010 0.010 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.835 0.832 0.794 0.793   0.697 0.697 0.679 0.677 

𝜌� -0.024 -0.078 -0.254 -0.246   0.001 0.002 0.014 0.014 
                      

Notes: This table shows average estimates from 100 Monte Carlo simulations with four years of student test score data, 120 teachers a 
single cohort of 2,400 students and data generating process following the parameterization described in the text.  AR=aggregated 
residuals model; RE= teacher random effects model; FE=teacher fixed effects model; EB-FE=empirical Bayes teacher fixed effects 
model. In the extreme variability of classroom composition scenario we assume that there is only one school and all teachers and 
students are randomly reassigned to classrooms each year.  In the limited variability of classroom composition scenario we assume 
that there are 20 schools, no student or teacher mobility across schools and teachers and students are reassigned randomly to 
classrooms each year within school.  Various persistence scenarios refer to the assumptions about the true coefficient of the lagged 
score in the data generating process. 
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Table 3. Monte Carlo simulation estimates of the rank correlation between true and estimated teacher effects (𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗)) and of the 
distribution correlation between teacher effectiveness and proportion of OBD students (𝜌�) under random teacher assignment (i.e. ρ=0) 
without controlling for classroom average OBD.   
                      
    Levels   Gains 
    AR RE FE EB-FE   AR RE FE EB-FE 
     (1) (2) (3)  (4)    (5)  (6)  (7)  (8)  
Variability of 
Classroom 
composition   Panel A. Persistence=0.8 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.922 0.922 0.922 0.922   0.907 0.907 0.907 0.907 

𝜌� -0.074 -0.075 -0.075 -0.075   -0.072 -0.073 -0.073 -0.073 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.899 0.884 0.882 0.882   0.859 0.857 0.857 0.856 

𝜌� -0.183 -0.251 -0.256 -0.255   -0.069 -0.093 -0.096 -0.096 
                      
    Panel B. Persistence=0.4 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.88 0.88 0.879 0.88   0.819 0.819 0.819 0.819 

𝜌� -0.07 -0.071 -0.071 -0.071   -0.066 -0.067 -0.067 -0.067 

                      
Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.848 0.832 0.827 0.827   0.757 0.757 0.756 0.757 
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𝜌� -0.221 -0.282 -0.297 -0.296   -0.033 -0.041 -0.045 -0.044 
                      
    Panel C. Persistence=0.2 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.849 0.848 0.848 0.849   0.767 0.767 0.767 0.767 

𝜌� -0.064 -0.065 -0.065 -0.065   -0.057 -0.058 -0.058 -0.059 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.815 0.802 0.796 0.796   0.697 0.696 0.695 0.696 

𝜌� -0.212 -0.265 -0.284 -0.283   -0.014 -0.017 -0.019 -0.019 
                      

 
Notes: This table shows average estimates from 100 Monte Carlo simulations with four years of student test score data, 120 teachers a 
single cohort of 2,400 students and data generating process following the parameterization described in the text.  AR=aggregated 
residuals model; RE= teacher random effects model; FE=teacher fixed effects model; EB-FE=empirical Bayes teacher fixed effects 
model. In the extreme variability of classroom composition scenario we assume that there is only one school and all teachers and 
students are randomly reassigned to classrooms each year.  In the limited variability of classroom composition scenario we assume 
that there are 20 schools, no student or teacher mobility across schools and teachers and students are reassigned randomly to 
classrooms each year within school.  Various persistence scenarios refer to the assumptions about the true coefficient of the lagged 
score in the data generating process. 
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Table 4. Monte Carlo simulation estimates of the rank correlation between true and estimated teacher effects (𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗)) and of the 
distribution correlation between teacher effectiveness and proportion of OBD students (𝜌�) under partially systematic teacher 
assignment of the most effective teachers to low-proportion OBD classrooms (i.e. ρ=-0.5) controlling for classroom average OBD.   
                      
    Levels   Gains 
    AR RE FE EB-FE   AR RE FE EB-FE 
     (1) (2) (3)  (4)    (5)  (6)  (7)  (8)  
Variability of 
Classroom 
composition   Panel A. Persistence=0.8 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.915 0.925 0.926 0.925   0.898 0.908 0.909 0.909 

𝜌� -0.261 -0.357 -0.366 -0.364   -0.255 -0.345 -0.359 -0.356 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.846 0.912 0.912 0.910   0.794 0.819 0.842 0.838 

𝜌� -0.058 -0.321 -0.506 -0.496   -0.030 -0.105 -0.210 -0.205 
                      
    Panel B. Persistence=0.4 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.867 0.877 0.878 0.877   0.808 0.817 0.820 0.819 

𝜌� -0.253 -0.335 -0.358 -0.356   -0.234 -0.297 -0.334 -0.332 

                      
Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.813 0.857 0.850 0.850   0.689 0.695 0.716 0.715 
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𝜌� -0.071 -0.246 -0.595 -0.580   -0.025 -0.043 -0.153 -0.149 
                      
    Panel C. Persistence=0.2 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.833 0.841 0.843 0.843   0.749 0.756 0.760 0.760 

𝜌� -0.246 -0.314 -0.346 -0.343   -0.219 -0.266 -0.311 -0.309 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.778 0.812 0.831 0.831   0.624 0.625 0.624 0.623 

𝜌� -0.069 -0.189 -0.572 -0.561   -0.016 -0.021 -0.063 -0.061 
                      

 
Notes: This table shows average estimates from 100 Monte Carlo simulations with four years of student test score data, 120 teachers a 
single cohort of 2,400 students and data generating process following the parameterization described in the text.  AR=aggregated 
residuals model; RE= teacher random effects model; FE=teacher fixed effects model; EB-FE=empirical Bayes teacher fixed effects 
model. In the extreme variability of classroom composition scenario we assume that there is only one school and all teachers and 
students are randomly reassigned to classrooms each year.  In the limited variability of classroom composition scenario we assume 
that there are 20 schools, no student or teacher mobility across schools and teachers and students are reassigned randomly to 
classrooms each year within school.  Various persistence scenarios refer to the assumptions about the true coefficient of the lagged 
score in the data generating process. 
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Table 5. Monte Carlo simulation estimates of the rank correlation between true and estimated teacher effects (𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗)) and of the 
distribution correlation between teacher effectiveness and proportion of OBD students (𝜌�) under partially systematic teacher 
assignment of the most effective teachers to low-proportion OBD classrooms (i.e. ρ=-0.5) without controlling for classroom average 
OBD.   

 
                    

    Levels   Gains 
    AR RE FE EB-FE   AR RE FE EB-FE 
     (1) (2) (3)  (4)    (5)  (6)  (7)  (8)  
Variability of 
Classroom 
composition   Panel A. Persistence=0.8 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.926 0.926 0.926 0.926   0.909 0.909 0.909 0.909 

𝜌� -0.364 -0.368 -0.369 -0.367   -0.356 -0.36 -0.361 -0.359 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.920 0.917 0.916 0.915   0.840 0.854 0.856 0.855 

𝜌� -0.386 -0.511 -0.521 -0.52   -0.173 -0.225 -0.232 -0.231 
                      
    Panel B. Persistence=0.4 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.878 0.878 0.878 0.878   0.82 0.82 0.82 0.82 

𝜌� -0.353 -0.357 -0.358 -0.357   -0.328 -0.331 -0.333 -0.332 
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Limited  
𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.877 0.863 0.856 0.856   0.71 0.716 0.719 0.719 

𝜌� -0.463 -0.571 -0.597 -0.595   -0.09 -0.107 -0.12 -0.119 
                      
    Panel C. Persistence=0.2 

Extreme  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.843 0.844 0.844 0.844   0.760 0.760 0.761 0.761 

𝜌� -0.340 -0.343 -0.345 -0.343   -0.304 -0.307 -0.31 -0.308 
                      

Limited  𝑐𝑜𝑟𝑟(𝜙𝑗,𝜙�𝑗) 0.849 0.842 0.836 0.835   0.634 0.637 0.639 0.639 

𝜌� -0.461 -0.553 -0.587 -0.586   -0.048 -0.055 -0.062 -0.062 
                      

 
Notes: This table shows average estimates from 100 Monte Carlo simulations with four years of student test score data, 120 teachers a 
single cohort of 2,400 students and data generating process following the parameterization described in the text.  AR=aggregated 
residuals model; RE= teacher random effects model; FE=teacher fixed effects model; EB-FE=empirical Bayes teacher fixed effects 
model. In the extreme variability of classroom composition scenario we assume that there is only one school and all teachers and 
students are randomly reassigned to classrooms each year.  In the limited variability of classroom composition scenario we assume 
that there are 20 schools, no student or teacher mobility across schools and teachers and students are reassigned randomly to 
classrooms each year within school.  Various persistence scenarios refer to the assumptions about the true coefficient of the lagged 
score in the data generating process. 
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Appendix Table A1. Monte Carlo simulation value added model parameter estimates under random teacher assignment (i.e. ρ=0) 
controlling for classroom average OBD.  The true value for the coefficient on OBD status (α) is -0.08; for the coefficient on class 
proportion OBD (λ) is -0.3.   
                  
    Levels   Gains 
    AR RE FE   AR RE FE 
                  
Variability of 
Classroom 
composition    Panel A. Persistence (β) =0.8 

Extreme �̂� 0.329 0.328 0.328    - -  -  

𝛼� -0.137 -0.138 -0.138   -0.027 -0.027 -0.027 
  �̂� -0.717 -0.719 -0.719   -0.712 -0.712 -0.713 
             - -  -  

Limited �̂� 0.364 0.341 0.339         
𝛼� -0.141 -0.145 -0.145   -0.055 -0.055 -0.055 

  �̂� -0.459 -0.221 -0.028   -0.167 -0.108 -0.037 
                  
    Panel B. Persistence (β) =0.4 

Extreme �̂� 0.023 0.023 0.023    - -  -  
𝛼� -0.119 -0.119 -0.119   0.004 0.004 0.004 

  �̂� -0.452 -0.449 -0.448   -0.466 -0.464 -0.463 
                  

Limited �̂� 0.037 0.025 0.023    - -  -  
𝛼� -0.117 -0.118 -0.118   -0.017 -0.017 -0.017 
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  �̂� -0.378 -0.265 -0.007   -0.054 -0.046 -0.003 
                  
    Panel C. Persistence (β) =0.2 

Extreme �̂� 0.003 0.003 0.003    - -  -  
𝛼� -0.098 -0.098 -0.098   0.013 0.013 0.013 

  �̂� -0.365 -0.369 -0.369   -0.386 -0.399 -0.407 
                  

Limited �̂� 0.011 0.003 0.000   -  -  -  
𝛼� -0.091 -0.092 -0.092   -0.003 -0.003 -0.003 

  �̂� -0.307 -0.247 -0.031   -0.025 -0.025 -0.039 
 
Notes: This table shows average estimates from 100 Monte Carlo simulations with four years of student test score data, 120 teachers a 
single cohort of 2,400 students and data generating process following the parameterization described in the text.  AR=aggregated 
residuals model; RE= teacher random effects model; FE=teacher fixed effects model; EB-FE=empirical Bayes teacher fixed effects 
model. In the extreme variability of classroom composition scenario we assume that there is only one school and all teachers and 
students are randomly reassigned to classrooms each year.  In the limited variability of classroom composition scenario we assume 
that there are 20 schools, no student or teacher mobility across schools and teachers and students are reassigned randomly to 
classrooms each year within school.  Various persistence scenarios refer to the assumptions about the true coefficient of the lagged 
score in the data generating process. 
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Appendix Table A2. Monte Carlo simulation value added model parameter estimates under partially systematic teacher assignment of 
the most effective teachers to low-proportion OBD classrooms (i.e. ρ=-0.5) controlling for classroom average OBD.  The true value 
for the coefficient on OBD status (α) is -0.08; for the coefficient on class proportion OBD (λ) is -0.3.   
                  
    Levels   Gains 
    AR RE FE   AR RE FE 
                  
Variability of 
Classroom 
composition    Panel A. Persistence (β) =0.8 

Extreme �̂� 0.329 0.327 0.327    -  -  - 
𝛼� -0.132 -0.132 -0.132   -0.015 -0.015 -0.015 

  �̂� -0.951 -0.106 -0.021   -0.941 -0.150 -0.020 
                  

Limited �̂� 0.378 0.357 0.353    -  -  - 
𝛼� -0.140 -0.143 -0.143   -0.050 -0.050 -0.050 

  �̂� -0.955 -0.467 -0.021   -0.360 -0.225 -0.031 
                  
    Panel B. Persistence (β) =0.4 

Extreme �̂� 0.024 0.024 0.024    -  -  - 
𝛼� -0.119 -0.119 -0.119   0.011 0.011 0.011 

  �̂� -0.616 -0.141 0.001   -0.611 -0.229 0.003 
                  

Limited �̂� 0.040 0.027 0.022    -  -  - 
𝛼� -0.115 -0.116 -0.116   -0.010 -0.010 -0.010 

  �̂� -0.814 -0.593 0.020   -0.114 -0.091 0.052 
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    Panel C. Persistence (β) =0.2 

Extreme �̂� 0.004 0.004 0.004    -  -  - 
𝛼� -0.101 -0.101 -0.101   0.014 0.014 0.014 

  �̂� -0.480 -0.151 0.006   -0.470 -0.226 0.012 
                  

Limited �̂� 0.015 0.006 0.001    -  -  - 
𝛼� -0.094 -0.095 -0.096   -0.006 -0.006 -0.006 

  �̂� -0.677 -0.551 -0.007   -0.048 -0.043 0.006 
 
Notes: Table shows average estimates from 100 Monte Carlo simulations with four years of student test score data, 120 teachers a 
single cohort of 2,400 students and data generating process following the parameterization described in the text.  AR=aggregated 
residuals estimation model; RE=random effects estimation model; FE=fixed effects estimation model. In extreme variability of 
classroom composition scenario we assume that there is only one school and all teachers and students are randomly reassigned to 
classrooms each year.  In limited variability of classroom composition scenario we assume that there are twenty schools, no student 
mobility across schools and teachers and students are reassigned randomly each year within school.  Various persistence scenarios 
refer to the assumptions about the true coefficient of the lagged score in data generating process. 
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