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ABSTRACT 

Under the umbrella of statistical mechanics and particle-based simulations, two distinct problems 

have been discussed in this study. The first part included systems of finite clusters of three and 13 

particles, where the particles are interacting via Lennard Jones potential. A machine learning 

technique, Diffusion Maps (DMap), has been employed to the large datasets of thermodynamically 

small systems from Monte Carlo simulations in order to identify the structural and energetic 

changes in these systems. DMap suggests at most three dimensions are required to describe and 

identify the systems with 9 (N = 3) and 39 (N = 13) dimensions. At the end of the study, a model 

has been proposed to functionalize the potential energy in terms of geometric variables that are 

identified with a heuristic screening. Investigation of the thermodynamics of bulk systems was 

another major focus of this thesis. The phase diagrams of the pure square-well solids and binary 

mixture of square-well and hard-disk particles, under the assumption of a pseudo-single-

component model, have been constructed, and the phase equilibria behaviors were discussed. The 

datasets were also created in Monte Carlo simulations. The results showed isostructural solid-solid 

phase transition, which was previously identified that the pure square-well system with a very 

short range of attraction undergoes, also occurs in the presence of additional hard-disk 

components, namely for the binary mixture of square-well and hard-disk systems. 
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CHAPTER 1 

INTRODUCTION 

In this thesis, the behaviors of two different systems have been investigated from a 

thermodynamics and statistical mechanics point of view. In both studies, numerical investigations 

have been employed to the different characteristics of data sets that are produced via Monte Carlo 

simulations.  

The first study was an investigation of the variables of thermodynamically small systems 

by using machine learning (ML) techniques. The focus was on atomic clusters having the number 

of particles equal to three and 13. Many researchers have focused on small clusters throughout the 

years due to the characteristics they possess that classical thermodynamics often fail to describe 

accurately. These mentioned characteristics differ significantly from the fundamental 

thermodynamic relations, such as having a range of coexistence temperature at the point of phase 

separation. In light of these and similar discrepancies between finite systems and bulk counterparts, 

the well-known thermodynamics conventionally applied to the bulk systems needs to be revisited, 

and new variables that are physically meaningful and applicable to the small systems should be 

identified in order to define the thermodynamic state of the system. For that particular purpose, 

small clusters have been simulated via Monte Carlo simulations with a constant number of 

particles, volume, and temperature (NVT). The output data contains the particle positions and their 

corresponding potential energy values. By using Diffusion Maps (DMap), which is one of the ML 

techniques that has been studied extensively with atomic or molecular clusters, output trajectories 

are embedded in the reduced subspaces. The possible relations of the subspaces with the order 

parameters that describe the structural and energetic changes in configurations are investigated. 

An extensive investigation has been conducted, and a numerical model of potential energy as a 
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function of the ‘best’ structural order parameters have been prepared. All details about the 

mentioned study are given in Chapter 2.  

Chapter 3 of this thesis is dedicated to the investigation of the phase transition of the binary 

mixture of hard-disk and square-well particles. In contrast to the previously studied finite systems 

mentioned above, the thermodynamics of the bulk system has been the focal point of this chapter. 

For that purpose, a pure square-well system and 75% square-well (SW) 25% hard-disk (HD) binary 

mixture has been simulated by using Monte Carlo simulations. An extensive literature survey 

showed that the phase transition characteristics of pure square-well and pure hard-disk systems 

and their individual binary mixtures are widely studied and well documented. However, the best 

to our knowledge, the phase transitions in the binary mixture of square-well and the hard-disk 

system remains unstudied. Notably, it was shown that pure square well particles could exhibit an 

isostructural solid-solid transition for a very short range of attraction (Bolhuis, Hagen & Frenkel, 

2004). This type of phase transition has an interesting feature as the configurational symmetry is 

preserved at different values of the lattice constant. It also resembles the first order liquid-solid 

phase transition by terminating at a critical point. Therefore, the main motivation behind the study 

was to see the effect of the additional hard-disk component on the square well solids on the phase 

transition behavior. In order to build the phase diagram of a binary mixture, free energies are 

calculated based on the thermodynamic integration methods that are given for the pure square-well 

systems (Bolhuis, Hagen & Frenkel, 2004). The rest of the study is explained in Chapter 3 in detail. 

The outline of the thesis is built as follows. In Chapter 2, the ML technique to identify the 

variables of thermodynamically small systems has been explained and discussed with the results. 

Chapter 3 focuses on the phase transition of bulk hard-disk and square-well binary mixtures. The 

conclusions for each study are given at the end of their related sections.  
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CHAPTER 2  

MACHINE LEARNING TO IDENTIFY VARIABLES IN THERMODYNAMICALLY 

SMALL SYSTEMS 

2.1 Introduction 

Over the past two decades, there has been a vast amount of research in the field of 

nanoscience, where the main focus is systems having dimensions on the order of the nanometers 

(Love et al. 2005). This growing interest in nanotechnology (Hill 2001; R. Stephen Berry 2002; 

Sehgal & Maroudas 2015; Marks & Peng 2016; Mohazzabi & Mansoori 2018; Grigoryan & 

Springborg 2019) emphasizes the necessity to fundamentally comprehend the characteristics of 

small clusters of particles such as atoms or colloids and shifts the focus of the related research 

from macroscopic to small systems. 

As the interest in nanoscale applications rapidly increases in various scientific areas, 

thermodynamically small systems with a number of interacting particles N in the range of 1-1000 

have been the focal point of numerous studies (Qian 2012). This interest calls attention to the 

discrepancies between the thermodynamics of small (finite) and infinite systems. As powerful as 

classical thermodynamics is, its ability to explain equilibrium behavior in small systems is 

inadequate, due to the lack of insights it provides for intermolecular interactions and energy 

fluctuations (Tester & Modell 1997; Baletto & Ferrando 2005). Thermodynamics of the small 

systems has been first discussed by Hill (1963), addressing the relation between bulk and small 

system thermodynamics, with the consideration of finite-size effects. A major conclusion of this 

new “Nanothermodynamics” is that various intensive properties are affected by the size of the 

system, where no similar effects of size were observed for macroscopic systems (Hill,1963;1964). 
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In order to re-cast the macro scale thermodynamic relations into a more generalized form 

that could be applicable for small systems as well, some modifications should be employed. As an 

example, differential changes in the Helmholtz free energy A for bulk systems may be expressed 

as, 

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 (2.1) 

where S is the entropy, T is temperature, V is volume, and p is the pressure.  On the other hand, 

this equation needs an alteration if it is desired to be valid for the small systems such as liquid 

droplets, or colloidal particles. If the droplet or particle is still ‘large enough’, the addition of a 

new term in Equation 2.2, which shows the effect of surface forces, should suffice to describe the 

thermodynamics. 

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑝𝑑𝑉 + 𝛾𝑑Λ 
(2.2) 

Here, 𝛾  and Λ represent surface tension and the surface area, respectively. At this point, the major 

challenge is that utilizing the surface area or the volume as a variable for very small systems is not 

possible; in other words, the definitions themselves can be obscure. This situation creates a demand 

for new variables to be implemented to describe the thermodynamic relations for the small systems 

more accurately. Considering the characteristics of the systems and keeping in mind that the 

classical thermodynamics cannot prevail to come up with an explanation, statistical mechanics-

based approaches that operate on particle-level simulations are required (Pan & Chandler, 2004). 

The output of the particle level simulations for N discrete particles is a set of particle 

coordinates X, which is in a 3N dimensional space for 3-dimensional physical models. For each ri 

that describes the position of the particle i in the Cartesian coordinates, X is shown in Eq. 2.3. 

𝑿: {𝐫1, 𝐫2, 𝐫3, … , 𝐫N}  ∈  ℝ3𝑁 (2.3) 
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From the statistical mechanics point of view, the Helmholtz free energy is defined as follows, 

𝐴(𝑁, 𝑉, 𝑇) = −𝑘𝐵𝑇𝑙𝑛𝑄(𝑁, 𝑉, 𝑇) (2.4) 

where kB is the Boltzmann constant. Q (N, V, T) is the partition function is defined as follows, 

𝑄(𝑁, 𝑉, 𝑇) = ∑ exp (−𝑈𝑗(𝑁, 𝑉)/𝑘𝑇)

𝑗

 (2.5) 

where Uj(𝑁, 𝑉) indicates the potential energy of the microstate j, where the points in the phase 

space describes particle positions. (Hannon & Tromp, 2003).  

As briefly shown in Equations 2.4 and 2.5, statistical mechanics could provide a 

straightforward route for the computation of Helmholtz free energy. However, for each 

different N and type of the particles, this calculation should be repeated, which yields a high 

computational cost. For an alternative analysis and understanding of the system, the dimensionality 

could be reduced into a form that is represented with a thermodynamic state equation such as 

Eq.2.2, by the aid of several variables that possess the collective properties of X. Dimensionality 

reduction of these complex systems can be done via techniques that rely on disciplines including 

machine learning (ML) and statistics (Coifman et al., 2005; Das et al., 2006; Stamati et al., 2010; 

Ferguson et al., 2010, 2011).  

In the current study, the output data sets of the canonical ensemble Monte Carlo simulation 

are processed with an unsupervised type of dimensionality reduction technique, Diffusion Maps 

(DMap) (Coifman et al. 2005),to identify the subspaces that reveal the underlying system 

characteristics. This method has been used in previous studies in order to recognize the subspaces 

in numerous kinds of finite systems (R. R. Coifman et al. 2008; A. L. Ferguson et al. 2010; Andrew 

et al. 2011; Rohrdanz et al. 2011; Xue et al. 2013; Nedialkova et al. 2014; Mansbach & Ferguson 

2015; Dsilva et al. 2015; Reinhart et al. 2017). 
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This study can be divided into two main parts. First, the generation of the output trajectories 

of N particles, which includes the positions and potential energy data of the particles, occurs with 

the canonical ensemble MC simulation. Second, processing of the dataset to represent the data 

with the reduced coordinates has been executed, and the concluding remarks about order 

parameters have been stated. The main focus of this work is to study two different small systems 

with three and 13 particles interacting via Lennard Jones (LJ) potential. In the three-particle system 

(LJ3), the number of particles is selected considering the existing studies that have been performed 

for Argon clusters  (Kaelberer & Etters 1976; Beck et al. 1988; Hinde, Berry & Wales 1992)  Beck, 

Leitner, & Berry, 1988). Although a three-particle system seems extremely simple for a molecular 

simulation study, it is complex enough to demonstrate different structural behaviors to investigate 

the fundamental thermodynamic characteristics of small systems. The latter studied model system 

(LJ13), on the other hand, contains 13 interacting particles, which is known as one of the “magic 

numbers” based on the distinctive stability characteristic with respect to melting. Moreover, 13-

particle clusters have broad phase coexistence ranges between solid-like and fluid-like structures, 

and, in comparison to the similarly small sized counterparts, they need higher temperatures to show 

significant fluctuations in distances between the particles (Beck et al. 1988; Beck, Berry & Becka, 

1988). With the insight that working with both three and 13-particle systems provides, more 

accurate predictions of a scale-up to a system that has a larger set of particles could be made. 

 The main objective of this study is to discover the subspaces in X that collect essential 

information about the physical characteristics of the small systems LJ3 and LJ13 by applying 

DMap. After conducting DMap analyses for the two different systems, a set of collective variables 

that will formulate the thermodynamics are examined heuristically and presented. 
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2.2 Literature Review 

In this subsection, studies that use the machine learning techniques to identify lower-

dimensional subspaces that describe interesting structural transitions that are observed in very 

small clusters mostly having three and 13 particles are summarized. Additionally, a brief review 

of the studies that have performed DMap analyses on the molecular simulation trajectories is 

presented. 

2.2.1 Thermodynamically Small Systems 

As nanoscience and nanotechnology continue to advance in various application areas, 

including photonics, energy conversion, biological molecules, and condensed matter systems  

(Wang et al. 2017) methods of fabrication of these applications yield to even smaller systems of 

interest (De Miguel & Rubí 2017). These so-called “small systems,” involving particle numbers 

of ten to a thousand, act as a unifying path between individual molecules and bulky macro systems 

(Jortner & Rao 2002). However, as we deviate from macro-scales to nanometric scales, classical 

thermodynamics becomes insufficient to explain the behavior of the systems as chemical and 

physical properties of these materials as well as with idiosyncratic structural characteristics 

substantially different from the bulk material characteristics (Jortner & Rao 2002). Therefore, 

understanding how a small system behaves thermodynamically is crucial to exploit the progress 

of the assembly of those nano-systems to produce collective structures, including arrays, 

assemblies, and super-lattices. 

Studies about the structural changes have a significant role in comprehending the features 

of the non-macroscopic systems, and the rich variation of the structural changes that occur in the 

course of phase transition. Hence, the reviewed studies provided reference points about the 

temperature values used in this study, although this study is not mainly focused on the phase 
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transitions of the small system. The variations in different structures that the system has, enables 

us to collect the dataset, which has rich characteristics to be further detected by machine learning 

techniques. 

The uniqueness of small systems becomes obvious during phase transition; such that, the 

discrete temperature where the phase transition occurs at the constant pressure in bulk systems 

becomes a range of temperatures for the significantly small counterparts, and creates ambiguity 

between first and second-order transitions (Borrmann, Mülken, & Harting 2000; R.; Berry, 2002; 

Reguera et al. 2003; Palomares-Baez, Panizon, & Ferrando 2017; Philippe 2017). Transitions 

between solid-like and liquid-like structures in the small clusters having a number of particles as 

low as three have been shown by using Monte Carlo simulations (Kaelberer & Etters 1976). A 

study by Beck and Berry investigated the behavior of small clusters having a varying number of 

particles from seven to 33 in the constant energy ensemble during the phase transition. Molecular 

dynamics simulations were used, particularly focusing on the melting-freezing transition, by 

changing the number of particles. They also pointed out three magic number clusters (N = 7, 9, 

and 13) with the results of the potential minima on the surface have stable isomers when they are 

neighboring with the excited isomers. Also, during the melting stage, frequently observed 

structures are the ones that possess the pentagonal symmetry (Beck & Berry, 1988). The same 

structure was observed in the melting stage later by Hoare and Pal (2006). For 13 particle Lennard 

Jones clusters (Kaelberer & Etters 1976; Quirke & Sheng 1984; Jellinek et al. 1986; Honeycutt & 

Andersen 1987; Davis, Jellinek &  Berry 1987; Berry et al. 1988; Beck et al. 1988; Berry & 

Smirnov 2009; Calvo, Parneix & Basire 2009) melting has been observed as the configuration 

morphed from icosahedral to a non-crystalline structure(Quirke & Sheng 1984). Intriguing 

structural transition characteristics have also been analyzed with the heat capacity curves of the 
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related systems, and the phase transition for such small systems have been unexpectedly found in 

comparison to the well-known first order phase transitions (R Stephen Berry, Jellinek & Natanson 

1984; Quirke & Sheng, 1984; Davis, Jellinek & Stephen Berry, 1987). An exhaustive review of 

the phase transition of different size clusters can be found elsewhere (Berry & Smirnov, 2009). 

2.2.2 Diffusion Maps 

 Diffusion Maps (DMap) ( Coifman et al., 2005) is a non-linear machine learning technique 

that has been studied extensively in recent years and has been proven to be effective as a non-

linear dimensionality reduction technique (Koronaki, Nikas & Boudouvis, 2020). Moreover, its 

versatility has been confirmed as its successful applications has been previously published in 

various research areas including meteorology (Fernandez et al., 2015) data analysis and algorithm 

improvement in flight simulators (Jia et al., 2016), academic data mining and informetrics 

(Nieminen, Polonen & Sipola, 2013), genome and biomedical engineering (Xu et al., 2010; 

Galdino, Benevides & Tenorio, 2020) and life sciences (Wai et al., 2009) along with numerous 

other adaptations.  

DMap has also gained significant interest in stochastic and multi-scale dynamic system 

interpretations, as the study by Nadler et al. focused on implementing DMap for the evaluation of 

predicting reaction coordinates in a particle-based reaction system (Nadler et al., 2006). It was 

concluded that diffusion maps naturally are impactful in analyzing the empirical datasets generated 

from an unknown probability distribution. Diffusion maps were also found to be a powerful tool 

for analyzing dynamic systems such as reaction and particle systems, with different scales of time, 

and characteristics of the dynamic systems can be successfully characterized in the long term by 

considering the top eigenfunctions. Another work based on a similar understanding was published 

by Koronaki and co-workers (Koronaki, Nikas & Boudouvis, 2020), where an effort was made to 
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combine both DMap and neural networks (NN) to construct a low-order model for a non-linear 

system. In the mentioned study, a tubular reactor with multiple steady-state cases was analyzed, 

and an accurate low-dimensional projection of the datasets both derived by simulations and 

experiments was constructed. It was concluded that the combination of DMap and NN was 

successful in representing the non-linear data in a lower-dimensional manifold. DMap has also 

been employed to identify the number of variables to create dynamic models in colloidal systems 

(Bevan et al., 2015; Yang et al., 2016).  To model the crystallization dynamics of colloidal clusters, 

DMap has been used to investigate the required number of variables in another study. After a 

heuristic analysis based on the author’s previous studies  (Beltran-Villegas & Bevan, 2011; 

Beltran-Villegas et al., 2011), the order parameters were identified as; the radius of gyration of the 

cluster, and the crystalline parameter which briefly is the average number of neighboring particles 

in expected lattice locations that each particle possesses (Beltran-Villegas et al., 2012). The same 

order parameters have been found to be proper to identify the solid-solid transition at low 

temperatures, and the fluid-solid transition at high temperatures after the number of variables has 

been detected by DMap for an LJ38 cluster (Sehgal, Maroudas & Ford, 2014). Hub and de Groot 

(2009) reported a method, which is called as ‘functional mode analysis’ (FMA) to interpret the 

relations between collective motions and a particular protein function. The protein function is 

basically identified with its geometric, electrostatic, or chemical properties. The relation between 

functional quantity and collective motion was proposed to build by using two ways, such as using 

the motion that exhibits the highest correlation to functional quantity and the motion which 

performs large variations in the functional quantity. 

DMap was also utilized to improve the already-established techniques, as the study by 

Lancewicki and Aladjem (2014) focused on enhancing the locally multi-dimensional scaling 
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(LMDS) by performing clustering in DMap to construct so-called “neighborhoods” in the high-

dimensional dataset. Different than the original LMDS method chosen, the lower-dimensional 

DMap data revealed that the system could be interpreted with a fewer number of parameters to be 

selected by the user, thus yielding an easier interpretation of the mapping. As a promising approach 

to use DMap in bioprocesses, the folding mechanism of Trp-cage, a helical mini-protein, was 

investigated using unbiased MD simulations and DMap in work by Kim et al. (2015). The MD 

dataset was analyzed and via DMap, by projecting the MD dataset onto a lower-dimensional space, 

and the folding-unfolding pathways of the select protein were characterized. Although minor 

discrepancies were observed between computational and experimental findings, it was concluded 

that DMap was a robust tool to extract the underlying characteristics of the folding sequences in a 

lower-dimensional space, without the need of any other physical order parameters. Lastly, in an 

exhaustive work by Ferguson and co-workers, the approach to use DMap as a dimensionality 

reduction technique was reviewed, and its applications in the branch of molecular simulations were 

discussed (Ferguson et al., 2011). In summary, the study implies that DMap is a powerful tool to 

extract low-dimensional embeddings from high-dimensional simulation trajectories, and crucial 

dynamical modes can be discovered. The work also mentions several application examples from 

chemical and biochemical processes. 

2.3 System Description and Computational Method 

2.3.1 System Description 

The particles are modeled with the pair-wise Lennard-Jones potential, uij, as shown in Eq. 

2.6. These interactions are categorized as attractive and repulsive forces, which are presented by 

the terms (𝜎 𝑟𝑖𝑗⁄ )
6

  and  (𝜎 𝑟𝑖𝑗⁄ )
12

, respectively. 
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where rij= |𝐫𝑖 − 𝐫𝑗| defines the distance between particles i and j, and 𝐫i is the Cartesian coordinates 

of particle i. The terms ε and σ are the Lennard Jones energy and size parameters, which vary 

based on the atom or molecule. Figure 2.1 represents the LJ potential as a function of the distance 

between particles, where for the short pair-wise distances, particles have repulsive potential caused 

by the overlap between the electron clouds of the atoms presented (Parker, 2001). If the distance 

between particles is large, atoms have the attractive van der Waals forces (Vlugt 2009). 

Specifically, LJ potential has its minimum when rij = 21 6⁄ 𝜎. LJ potential has been used in a vast 

number of studies as seen in Section 2.2.1, and global minimum energies of clusters with a 

different numbers of particles interacting via LJ potential are well documented (Hoare & Pal, 1971; 

Wales & Berry, 1990). 

 

In the current study, interacting particles in a three-dimensional box, which is 10σ on a 

side, are simulated in the canonical ensemble, where the number of particles N, the volume V, and 

the temperature T of the system are kept constant throughout the simulation. During the simulation, 

the units of length and temperature are defined as σ, and kB/ε, respectively. The total potential 

r/σ

u
ε

⁄

𝑢𝑖𝑗 = 4𝜀 [(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

] (2.6) 

Figure 2.1. LJ potential as a function of displacement (source: Vlugt et al., 2009) 
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energy of the particles U is the summation of the uij between particles defines the potential energy 

of the configuration and can be computed as follows. 

𝑈 = ∑ ∑ 𝑢𝑖𝑗

𝑁

𝑗=𝑗+1

𝑁−1

𝑖=1

 (2.7) 

 From now on, all variables will be reported in the non-dimensional form, including the 

non-dimensional temperature, which is defined as T* = kBT/ε, and dimensionless potential energy 

on a per-particle basis, that is given as u* = U/Nε. For the LJ3 system, T* is selected as 0.18. On 

the other hand, two different temperature values as 0.28 and 0.4 are examined for the LJ13. The 

selection criteria of the temperature are explained in Section 2.3.3.2. In the LJ3 system, initial 

configuration is chosen as triangular structure of minimum energy with u* = -3, while an initial 

configuration, which gives the global minima for the icosahedron structure with u* = -3.4097 is 

used for the LJ13 system (The Cambridge Cluster Database (CCD), n.d.). The total length of the 

simulation is set to 107 simulation steps, and with the sampling, 5000 configurations are collected 

for further data analysis.  

2.3.2 Structure Dependent Variables - Identification of the Structural Variations 

During the simulation, there are changes in the size and shape of the configurations in the 

clusters. This study aims to describe the possible thermodynamic variables of the small systems. 

Therefore, some physical variables that can be used to characterize the structural variations of 

small clusters are described below. 

The radius of gyration rg is an essential parameter that has been significantly used to 

identify the structural changes that may occur in the clusters. This parameter explains to what 

extent the cluster is dissociated or condensed. Each clusters’ intrinsic size could be found by 

computing their rg values (Lerbret et al., 2005). As a well-known fact from the literature, the 
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previous studies have shown that the rg is a good parameter to deduce useful information about the 

configurational changes in small systems (Beltran-Villegas & Bevan, 2011; Beltran-Villegas et 

al., 2011; Beltran-Villegas et al., 2012). rg can be calculated with the following formula:  

𝑟𝑔 =
1

𝑁
√∑ ∑ ‖𝐫𝑖 − 𝐫𝑗‖

2
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 
(2.8) 

Another key variable for capturing the structural changes is the number of bonds (nb) 

between the particles. The calculation of the nb can be found in the Eq. 2.9. 

𝑛𝑏 = ∑ ∑ 𝑓𝑐(𝑟𝑖𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 
(2.9) 

where 𝑓𝑐(𝑟𝑖𝑗) is zero if the Euclidean distance between the particles is larger than the cutoff 

distance, and one, if the pair-wise distance is smaller than the cutoff distance. For both systems, 

the cutoff distance was selected as 1.2σ. 

The final parameter that was included in this study is the connectivity C, which can be 

described as the average of the number of bonds of each particle is defined in Eq. 2.10. 

𝐶 =
𝑛𝑏

𝑁
 

(2.10) 

2.3.3 Computational Methods  

2.3.3.1 Monte Carlo Simulations 

Particles are simulated by using the Monte Carlo (MC) simulations. MC is a practical way 

of simulation for the cases where the dynamics of the system are not considered, but only the static 

(equilibrium) properties are the matter of interest. In the current study, the main motive behind 

using MC simulations is to sample different structures that the small systems with three and 13 

particles hold in an ensemble. Thus, it is not necessary to take the time into account. 

The trajectory output dataset was generated by the Metropolis algorithm (Metropolis et al., 

1954). This algorithm is built upon the acceptance of the particles moving based on a probability 
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value of 𝑒−𝛽∆𝑢,  where β and Δ𝑈 are the inverse temperature and the potential energy difference 

between two consecutive steps, respectively. One important criterion in the use of the Metropolis 

algorithm is the selection of the maximum displacement δrmax, which develops the size of the trial 

move and is responsible for the acceptance of the moves by checking the convergence of the 

Markov chain. Extra attention should be given to select δrmax, since for the significantly small 

values of δrmax almost all moves are accepted, and conversely, for very large values of δrmax, a high 

percentage of the moves are rejected. In this study, δrmax is identified as 0.15σ initially, and this 

value is adjusted throughout the simulation to maintain the 50% acceptance rate of the trial moves. 

The initial value of δrmax should not be set as more than the half-box size and the 

selected δrmax value for this study is one of the typically used values in the literature (Vlugt,2009; 

Dijkstra, 2014). 

In the simulation of the mentioned systems, periodic boundary conditions (PBCs) are used 

to maintain the periodicity with the assumption of the unit cell is replicated to model an infinite 

space. Minimum image convention approach was used in the calculation of the pair-wise 

separation distances between the particles to apply PBCs. Since there are no solid boundaries 

between the central unit cell and the replicas, a particle can travel from the central unit cell to one 

of the neighboring boxes in any direction. However; as all the atomic movement is known to be 

replicated by the neighboring unit cells simultaneously, another particle from the other neighboring 

replica having the same potential energy comes across the boundaries to the main unit cell, 

resulting in conservation in the total number of particles (Allen & Tildesley, 2017).  
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2.3.3.2 Data Generation 

To generate the dataset, a canonical ensemble Monte Carlo simulation code from the 

literature (Allen & Tildesley, 2017) was used by implementing minor modifications. The output 

potential energy values are validated against literature data where available. For the LJ13 system, 

corresponding potential energy values were already reported by Kaelberer and Etters (1977), and 

the current study simulation results are found to be in good agreement (Fig. 2.2). As, the potential 

energy increases gradually, the slope of the curve undergoes some discrepancies in the range of 

T* = 0.25 and 0.30 values; also, at T* = 0.4, which might suggest the phase transitions between 

solid-like and liquid-like structures, and a liquid-to-vapor transition could be occurring in the said 

T* values. In light of these, the temperature values were selected as 0.28 and 0.4 for the simulation. 

The literature data stopped at T*=0.28. A more detailed investigation about the possible transitions 

at the mention temperatures is done with the help of heat capacity computations and will be given 

further on.  

 
Figure 2.2. Validated results of dimensionless potential energy values with reference studies. 
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To investigate the statistical significance of the validation, an unpaired t-test was applied to 

the simulation data and data acquired from the literature for validation (GraphPad, San Diego, CA, 

USA). As a result, the statistical difference between two datasets was found to be not significant, 

with an overall p-value of 0.8723 (N = 25). 

 

Figure 2.3. LJ3 system, T* = 0.18 (a) Histogram of dimensionless potential energy u* (b) 

different structures observed at T* = 0.18 (i) tightly clustered, (ii) linear, (iii) partially dissociated, 

and (iv) completely dissociated. 

The value of the temperature is crucial since it directly affects the nature of the data. In 

order to identify the number of structures sampled by the system, an extensive analysis of the 

system’s potential energy distribution at varying temperature values has been performed. The 

range of the potential energy values that the systems have, and the heat capacity curve can be used 

as the indicators of the different phases. Figure 2.3(a) shows that the LJ3 system has 

different u* values varying from -1 to 0 when T* is equal to 0.18. This was stated by Ford et al. 

(2020) and quoted as follows. “It is noteworthy to point out that seeing positive values of u* is 

possible when one or more of the pair-wise distances are less than σ; however, they are rather 

uncommon at this relatively low-temperature. In the data set, the maximum value observed 

was u∗ = 0.00013, and very few configurations had u∗ > 0 so that no counts in that region are 
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visible on the scale of the histogram” (Ford et al., 2020). In Figure 2.3(b), four different structures 

varying from tightly clustered to completely dissociated that the LJ3 system has experienced 

during the simulation can be seen. Consequently, T* was selected as 0.18, because all of the 

structural motifs and potential energies were observed in a single molecular simulation trajectory. 

An extensive study to identify temperature values that are rich in terms of the different 

structures has also been done for the LJ13 system. Similar to the 3-particle system, potential energy 

histograms are used as helpful tools to decide on the value of temperature. Figure 2.4 represent the 

potential energy distributions for LJ13 system at T* = 0.28 and T* = 0.4. The configurational 

snapshots are created with Open Visualization Tool (OVITO) (Stukowski,2010). 

 

Figure 2.4. LJ13 system. Histograms of dimensionless potential energy u* at (a) T* = 0.28 and 

(c) T* = 0.4. Some select structures that have been observed for LJ13 system at (b) T* = 0.28, (d) 

T* = 0.4. 
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Besides the wide range of the potential energy, and the existing literature about the phase 

transition of Ar13 studies, heat capacity values have been calculated for these specific temperature 

values with the formula given in Eq. 2.11 (Davis, Jellinek, and Stephen Berry 1987). 

𝐶𝑣 =
〈𝑢2〉 − 〈𝑢〉2

𝑘𝑇
 

(2.11) 

The case when T* equals 0.28 has already been reported as a transition temperature for 

Ar13 clusters in the literature, as a result of having a peak in the heat capacity curve (Davis, 

Jellinek, & Berry, 1987). The current study results also represent a peak in the heat capacity versus 

temperature plot, as it was shown in Figure 2.5. The first peak at T* = 0.28 may be indicating that 

there could be a transition occurring between solid-like and liquid-like configurations. The next 

peak in the heat capacity curve is observed at the temperature around 0.4, where the particles 

exhibit more broken structures. Therefore, it can be classified as a liquid-like to the gaseous-like 

phase transition. 

 
Figure 2.5. Heat capacity values as a function of temperature for LJ13 system. 
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2.3.3.3 Dimensionality Reduction 

The output trajectories represent the spatial configurations of the N particles and their 

corresponding potential energies, which are obtained at the 3N dimensional system. A total 

number of 5000 configurational ‘snapshots’ that were collected throughout each simulation run 

treated by ML techniques in order to investigate the characteristics of those “thermodynamically 

small systems” (Hill, 1963) to display that it is possible to identify the order parameters which 

then can be used to describe the potential energy. Based on the non-linear characteristics of the 

output trajectory, an unsupervised ML technique, DMap is applied to the data set. The method can 

be briefly explained as the re-organization of the data based on a diffusion metric by mapping the 

data from the original coordinates to the diffusion space (Coifman & Lafon, 2006). 

The construction of DMap mostly relies on the principles of Markov’s random walk and 

the diffusion theory. As the first step in the DMap algorithm, Gaussian kernel matrix Kij should be 

assembled by considering pairwise distance between set of particles in configurations i and j.  

𝐾𝑖𝑗 = exp (−
𝑑𝑖𝑗

2

2𝛿2
) (2.12) 

After constructing the kernel matrix, the kernel bandwidth (δ), which has the role of 

describing the local connectivity between data points, should be evaluated before proceeding to 

the rest of the algorithm. The selection of this parameter is important in terms of having a proper 

characterization of the data set in mapping onto the reduced space. Low values of kernel bandwidth 

represent larger distances between pairs of the data points, which is an indicator of loosely 

connected behavior and returns to small kernel sum. On the other hand, for the relatively higher 

values of δ, the scaled distance between data points decreases, and consequently, the data points 

become well-connected in a pair-wise sense. The linear region in the plot of log(∑ 𝐾) as a function 

of log(𝛿) bridges those two extremes is the region of interest, as it captures the natural connectivity 
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of the data at intermediate scales, and the value of δ is selected from this region, as will be 

discussed later. 

For each data point, the summation Dii of the particular data point and all other points are 

found, and the Kernel matrix is normalized dividing by this summation. 

𝐷𝑖𝑖 = ∑ 𝐾𝑖𝑗

𝑗

 (2.13) 

Markov matrix which describes the probability of the transition from one particular 

configuration to another, is constructed as: 

𝑀𝑖𝑗 =
𝐾𝑖,𝑗

𝐷𝑖𝑖
 (2.14) 

The eigenvalues 𝜆 and right eigenvectors 𝜓 shown in Equation 2.15 is calculated with the 

eigenvalue decomposition. 

One of the crucial steps in the DMap algorithm is the selection of the type of distance 

calculation to obtain the kernel matrix given in Equation 2.12. The definition of the distance affects 

the ultimate results based on the inherent characteristics of the data, and the investigation of these 

effects is one of the major purposes of this study. In the current study, in order to examine the 

impact of distance type, four different types of distance calculations are used. 

The first definition is the Hausdorff distance, which is a relatively general and 

straightforward metric for the data points in the Euclidean space. To calculate this distance, the 

Euclidean distance from each discrete particle in one configuration to all the particles in the other 

configuration is computed, and the shortest of these distances is determined. The greatest of these 

distances gives the Hausdorff distance between the two configurations. Mathematically, this can 

be represented as (R. R. Coifman et al. 2008), 

𝐌𝝍 = 𝜆𝝍 (2.15) 
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𝑑(𝑆1, 𝑆2) = 𝑚𝑎𝑥 { max
1≤𝑖≤𝑁

min
1≤𝑗≤𝑁

‖𝑆1
𝑖 − 𝑆2

𝑖 ‖, max
1≤𝑖≤𝑁

min
1≤𝑗≤𝑁

‖𝑆2
𝑗

− 𝑆1
𝑖‖} (2.14) 

where 𝑆1
𝑖  and 𝑆2

𝑖  are the positions of ith and jth particles in the configurations S1 and S2, respectively. 

The second distance definition is constructed based on an adaption of Mayer f-bond from 

statistical mechanics (Mayer, 1942). Each configuration is assigned with a numerical value called 

Fm (Eq. 2.15), and the distance metric is constructed by calculating the absolute difference between 

configurational Fm values. 

𝐹𝑚 = 1 − exp (−𝑢∗) (2.15) 

 As Fm is an explicit function of u∗, and u∗ does not precisely discriminate between structural 

motifs as shown in Figure 2.3(a), it is not expected this distance metric to solve the problem at 

hand but rather to serve as a kind of test case. For this metric, the DMap analysis should collapse 

the data to one dimension that correlates perfectly with u*. The descriptions of IsoRank and 

Eigensprecta distance metrics were given previously in Ford et al. (2020), and I quote them here. 

“The third distance metric is based on IsoRank (Singh et al., 2008), which is an algorithm to detect 

the best alignment between two given plot structures. IsoRank was first used as a distance metric 

for DMap calculations for molecular clusters in work by Long and Ferguson (2014), to counter the 

lack of an invariant basis in the dataset when the particles are indistinguishable. This distance 

metric utilizes two adjacency matrices. The first matrix (R ∈ ℝN ×N) holds the squared Euclidean 

distance between particles i and j (Rij = ||ri − rj||2) while the second matrix (G ∈ {0, 1}N ×N ) is a 

binary connectivity matrix representing the existence of or lack thereof a bond between the two 

particles that can be defined based on a cutoff distance (used as 1.2σ). IsoRank is a metric that 

computes an alignment score between two configurations of unlabeled particles. The first step of 

the distance computation is to compute the scores for all possible permutations of labels and pick 



 
23  

the best alignment. This step is the main bottleneck of this technique, as one must get the alignment 

scores for every possible permutation before selecting the best alignment. For snapshots i and j, 

let  𝐑i
∗, 𝐆i

∗, 𝐑j
∗, 𝐆j

∗
 be the best alignment detected by IsoRank. Then, the distance kernel for building 

the diffusion mapping is calculated by the sum of the absolute differences between the inter-

particle distances as follows, 

𝑑𝑖𝑗 = ∑ ∑ |𝐑i
∗(𝑝, 𝑞)𝐆i

∗(𝑝, 𝑞) − 𝐑j(𝑝, 𝑞)𝐆j(𝑝, 𝑞)|

𝑁

𝑞=𝑝+1

𝑁

𝑝=1

 (2.17) 

 The algorithm clips away particles that are far away by multiplying the distance with the 

binary bond value. This step ensures explicit separations of particles that are broken off a cluster. 

This also tends to generate a discrete subspace due to the sparse nature of G. 

The fourth distance metric, Eigenspectra distance, borrows the idea of using an adjacency 

matrix representation to compare two clusters from IsoRank. Instead of using two adjacency 

matrices (one holding distances and one holding connection values), only one matrix H ∈ ℝN×N 

is defined that holds a value between 0 and 1 representing an implicit notion of the bond strength. 

This metric is computed by normalizing the pair-wise distances between 0 and 1. Let 𝐇𝑖 and 𝐇𝑗 

be the bond-strength matrices for two configurations with indices i and j respectively and 𝚿𝑖𝚲𝑖𝚿𝑖
𝐭
 

and 𝚿𝑗𝚲𝑗𝚿𝑗
𝐭
 be their respective eigen decomposition (Λ is a diagonal matrix holding the 

eigenvalues of H, with Ψ holding the respective eigenvectors). One important thing to note is that 

H is semi-definite, which means that the eigenvalues are always real numbers. The distance 

between configurations i and j is then computed as the absolute difference between the eigenvalue 

matrices as, 

𝑑𝑖𝑗 = 𝑇𝑟|𝚲𝑖 − 𝚲𝑗| (2.18) 
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where Tr represents the trace operation. This is different from the approach used in the IsoRank-

based distance as instead of aligning the graph, eigen decomposition is performed to compare the 

geometric properties of the graphs and counter the lack of invariance. The use of eigenvalues to 

compare the structures of two graphs is inspired by the established mathematics of networks 

(Straffin, 1980). The asymptotic complexity for eigen decomposition is O(N3), with N being the 

number of particles, as compared to IsoRank, which scales exponentially with N due to the particle-

index permuting step” (Ford et al., 2020). 

Computations for Hausdorff and Mayer f -bond distances were done using MATLAB 

(MathWorks, Natick, MA, USA), and computations for IsoRank and Eigenspectra distances were 

done using Python 3.0 with NumPy for the linear algebra calculations.  

2.4 Results and Discussion 

In the following section, the results are exhibited for both LJ3 and LJ13 systems at the 

corresponding temperatures. The datasets are represented in the reduced plane, and the variables 

which were found after the heuristic study for describing the thermodynamics of the systems are 

discussed.  

2.4.1 Pre-processing of the Data 

Considering that the system has 3N dimensionality, for three-particle and 13-particle LJ 

systems, dimensionalities are calculated as 9 and 39, respectively. Before employing DMap to the 

mentioned datasets, translational and rotational degrees of freedom of the systems should be 

removed in order to focus on internal structure solely. The purpose of removing these degrees of 

freedom was explained in the study by Ford et al. (2020): “Removing translational and rotational 

degrees of freedoms serves to minimize differences between configurations that are based purely 

on absolute location and orientation within the simulation box; thus, allowing the subsequent 
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analyses to identify the internal differences in the structure. Most of the analyses employed here, 

with the exception of DMap using the spectral distance and IsoRank metrics, would be sensitive 

to differences in absolute location and orientation, and these pre-processing operations also reduce 

that sensitivity” (Ford et al.,2020). The raw output data and pre-processed version of the same 

datasets are presented in Figure 2.6 both for LJ3 and LJ13 systems. 

 

Figure 2.6 Representation of the output trajectory obtained for 5000 configurations. 

Unprocessed data for (a) N = 3, T* = 0.18, (b) N = 13, T* = 0.28, (c) N = 3, T* = 0.4. 

Configurations after mean-centering and aligning by their principal axes of rotation for (d) 

N = 3, T* = 0.18, (e) N = 13, T* = 0.28, (f) N=3, T* = 0.4. Data is colored based on the 

deviations in the potential energy. 

2.4.2 Eigenvalue Spectrum Based on Different Distance Metrics and Dimensionality 

After the pre-processing, the DMap algorithm was applied to the dataset with varying 

distance metrics. As the first step of the DMap method described in the previous section, a proper 

kernel bandwidth should be identified first. For that, the method which was proposed by Coifman 

et al. (2008) was used, and log(ΣK) vs. log(δ) plots were drawn for both LJ3 and LJ13 systems. 

Kernel bandwidth values were selected from the linear regions of the sigmoidal shape curves, and 

corresponding values were exhibited in Figures 2.7 and 2.8 for LJ3 and LJ13 systems, respectively.  

(a) (b) (c)

(e)(d) (f)

T=0.18, N=3 T=0.28, N=13 T=0.4, N=13

u* u*u*
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Kernel bandwidth values that are selected from the linear region of the sigmoidal shape curve for 

each case are indicated with the arrow in the sub-figures of in Figures 2.7 and 2.8. Some 

investigations have been completed before deciding which δ value from the linear region is best 

in terms of showing relations between possible order parameters. The preliminary studies showed 

that the results obtained by using the δ value from the edge of the linear region can show interesting 

relations with order parameters that have not been observed for their counterparts from the middle 

of the linear region. 

 

Figure 2.7. Identification of the kernel bandwidth with different distance metric types for the 

three-particle system. (a) Hausdorff Distance, (b) Mayer f-bond, (c) IsoRank Distance, (d) 

Spectral Distance. 

The first seven eigenvalues calculated as a part of the solution for the right eigenvalue 

problem given in Equation 2.15 concerning different types of distance metrics are exhibited in 

Figures 2.9 and 2.10 for N = 3, and N = 13. By the aid of these plots, and considering the spectral 

gap between the data points, the total dimensionality of the system can be estimated for each 

particular system analyzed with the different distance metrics. The number of eigenvalues that 

yield to the most significant spectral gap between the current and successive eigenvalue presents 
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the number of dimensionalities. Based on this approach, the number of dimensionalities, that is 

required to comprehend the system characteristics fully and to completely analyze the system is 

suggested to be at most three for all types of distance metrics for both LJ3 and LJ13 systems. 

 

Figure 2.8. Identification of the kernel bandwidth with different distance metric types for 

the 13-particle system. T* = 0.28 for the figures at the top, T* = 0.4 for the figures at the bottom. 

(a) and (d) Hausdorff Distance, (b) and (e) Mayer f-bond, (c), and (f) Spectral Distance. 

 

 

Figure 2.9. First n number of eigenvalues for different distance metric types when N = 3. 

(a) Hausdorff Distance (b) Mayer f-bond distance (c) IsoRank (d) Spectral Distance. 
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Figure 2.10. Eigenvalue spectrum for different distance metric types when N = 13. T* = 

0.28 at top, T* = 0.4 at the bottom. (a) and (d) Hausdorff Distance, (b) and (e) Mayer f-bond 

distance, (c) and (f) Spectral Distance. 

 

2.4.3 Embedding the Data in the Lower Space 

In this section, the datasets for LJ3 and LJ13 particles are represented in the reduced 

subspaces, which are directly linked to the eigenvectors found at the end of the DMap analysis. 

The eigenvectors are examined in terms of the different distance metrics, and detailed results are 

represented. The analyses are performed by looking at the correlations of the eigenvectors with the 

dimensionless potential energy. 

Figure 2.11 demonstrates the datasets mapped onto the reduced space, which are the final 

results of the DMap with the different diffusion metrics for N = 3. Although the dimensionality of 

the system has been concluded to be not more than three, the data was represented in three 

dimensions for the sake of a better visualization. For mapping the data onto the reduced space, the 

top non-trivial eigenvectors are used as the new coordinates.  
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Figure 2.11. Subspaces generated by Diffusion Maps for LJ3 at T* = 0.18. (a) Hausdorff 

Distance (b) Mayer f-bond (c) IsoRank (d) Spectral Distance. Data is colored based on 

potential energy. 

In Figure 2.11(a), DMap results, which are obtained by using the Hausdorff distance 

metric, manifest that the first non-trivial eigenvector (ψ2) can effectively discriminate the 

configurations having lower potential energy values (blue region) from the ones with the moderate 

(green region) and high (yellow region) energy ones. On the other hand, this eigenvector cannot 

discriminate between configurations with moderate and high potential energy values. The third 

eigenvector has no contribution to discriminate the data further than what the second eigenvector 

has already done, and essentially this eigenvector seems to be capturing only a symmetry effect. 

These outcomes were expected, considering the nature of the Hausdorff distance, which is based 

on the maximum distance of the particles in one configuration from the closest particle in the other 

(a) (b)

(d)(c)



 
30  

configuration. Thus, it is not good at discriminating between any two ‘broken’ structures, which 

are represented in Figure 2.3(b). The segregation between the moderate and high levels of potential 

energy, which could not have been previously accomplished by the Hausdorff Distance, can be 

successfully presented by the Eigenspectra distance metric (Fig. 2.11(d)). Potential energy is well-

correlated by the corresponding eigenvector in the continuous subspace. Different configurations 

in completely dissociated clusters can be captured with this distance metric. It can also be viewed 

as a continuous form of the IsoRank-based subspace with the continuity arising due to the use of 

a continuous variable to represent the bond distance between two particles. Another key difference 

is that instead of collapsing all fully broken clusters to one point, the Eigenspectra distance captures 

the different modes within the entirely broken configurations. On the other hand, Figure 2.11(c) 

shows that employing the IsoRank distance metric indeed yields in a result in which the data are 

separated into four distinct clusters, previously verified as corresponding to the four structural 

motifs shown in Figure 2.3(b) (this will be exhibited more clearly under the order parameter 

analysis in section 2.4.4). The correlation of the individual diffusion coordinates with the potential 

energy values is weak, but the energy distribution within each data grouping is quite smooth. The 

IsoRank-based diffusion mapping reduced the fully disconnected configurations to a single point, 

as the unbonded particles are clipped away by the multiplication with zero. Detection of the 

mentioned point in the plot is somewhat challenging; nevertheless, its exact location was guided 

by an arrow. Figure 2.11(b) shows subspace that were obtained by using Mayer f-bond definition 

to create distance metric. It was concluded from the results that only one dimension is enough to 

describe the system features since there is a strong correlation between the non-trivial second 

eigenvector and the potential energy of the system.  
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Figure 2.12. Subspaces generated by Diffusion Maps for LJ13 at T* = 0.28 (top) and T* = 

0.4 (bottom). (a) and (d) Hausdorff Distance (b) and (e) Mayer f-bond distance (c) and (f) 

Eigenspectra Distance. Data is colored based on potential energy. 

For the LJ13 system, subspaces created with the eigenvectors for two different sampling 

temperatures can be found in Figure 2.12. For these systems, the same distance metric types are 

investigated except the IsoRank since it is intractable for a higher number of particles, as was also 

indicated by Long and Ferguson (2014). The data for T* = 0.28 and T* = 0.4 in the reduced 

coordinates is represented at the top and the bottom of Fig. 2.12, respectively. The primary 

investigation proved that the data could be embedded in two dimensions; therefore, diffusion 

coordinates are represented in 2-D instead of 3-D. Data are colored based on the corresponding 

potential energy of the configurations in order to see the possible correlations. DMap analysis, 

which has been performed using Hausdorff distance, showed (Fig. 2.12(d)) very similar results 

with LJ3 systems for the T* = 0.4 case, where the second eigenvector can capture the information 

about the structure of configuration whether it is broken or clustered. However, this distance metric 

cannot succeed to segregate different types of the broken structures, as there is no clear distinction 

(a) (c)(b)

(d) (f)(e)



 
32  

between the blue and green regions in Figure 2.12(d) with respect to the second eigenvector. 

Results for T* = 0.28 (Fig. 2.12(a)) cannot discriminate the structural differences in the 

configurations. Therefore, instead of the continuous distribution throughout the diffusion 

coordinates as a function of u*, only discrete points can present in which they have clustered for 

similar potential energy values. Figures 2.12(b) and 2.12(e) draw the same conclusion about the 

results of the DMap obtained via Mayer f-bond distance metric for two different temperatures with 

the results of the three-particle system. Independent from the number of particles, there exists a 

perfect correlation between u* and second eigenvector, which is suggested by DMap analysis as 

one and only variable that can describe the system characteristics. Although this distance metric 

perfectly segregates all different configurations based on the corresponding potential energy 

values, the need of having the potential energy data is an important limitation of this type of 

distance metric, since the underlying potential energy function may not generally be known for a 

given empirical data set. This was expected based on the definition of this distance metric, as 

discussed in section 2.3.1.1 above. In practice, this metric is not directly useful for the problem at 

hand, but it does demonstrate that the DMap technique generates a result that is consistent with 

the distance metric employed. Figure 2.12(c) shows the subspace generated and colored by u* for 

the LJ13 system simulated at T* = 0.28 for the Eigenspectra distance metric. u* does not show a 

strong correlation with the diffusion distances, which is expected since within the manifold 

itself, u* did not previously exhibit any correlation within the Cartesian coordinates (Fig. 2.7 (b). 

Nevertheless, for reasonably higher u* values, the plot shows a slight correlation with respect to 

the second eigenvector. A similar outcome can be observed for T* = 0.4 cases as well (Fig. 

2.12(f)). Different than T* = 0.28, the second eigenvector relates better with u*, and a broader 

trend was observed due to the nature of u* itself, which has a broader spread in u* values, in 
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comparison to the lower temperature case. This broader range of u* values could be attributed to 

a greater variety of configurations that are seen at the higher temperatures, as represented in Figure 

2.4(a).  

2.4.4 Investigation of the Order Parameters 

In section 2.4.3, it was demonstrated that the DMap could successfully identify the low-

dimensional picture of the data. Nevertheless, this method cannot provide direct information about 

the physical significance of a new variable space. For the classification of the set of order 

parameters that are computable for a given configuration solely from the information in the 

original coordinate space X, a heuristic study has been conducted. 

           In order to obtain the variables that can describe the system characteristics and can serve as 

substitutional variables to explain the thermodynamics of the system, an extensive study has been 

performed with several order parameters. The radius of gyration is one of these parameters, and it 

was previously extensively studied (Beltran-Villegas & Bevan, 2011; Beltran-Villegas et al., 2011; 

Beltran-Villegas et al., 2012). Other intuitive variables, including the number of the bonds nb or 

connectivity C, are relatively unstudied and investigated as the order parameters in this study.  

It is important to note that investigations of the order parameters based on the relation with 

the non-trivial eigenvectors have been employed only for IsoRank and Eigenspectra distance 

metric results. Mayer f-bond has already exhibited an excellent association with u*; therefore, 

there is no need for this distance metric to be correlated with any order parameters. For Hausdorff 

distance metric, on the other hand, it will not be possible to capture any discrepancies between 

different forms of the broken structures based on its nature. Hence, in the rest of this section, 

eigenspectra distance and IsoRank will be used as the primary screening tools to find out the order 

parameters, based on what we have learned about the nature of the method. 
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Figure 2.13 shows the order parameters that have been found after the heuristic study for 

the LJ3 system. The figures are colored by two structural order parameters as nb at the top figures 

and rg at the bottom figures. Figure 2.13(a) shows that nb can identify the structural differences 

between different broken cases where nb has low values, in the direction of 𝜓2. The results for the 

IsoRank-based distance metric (Fig. 2.13(b)) look qualitatively different because this metric 

creates a discrete grouping of data in the eigenvector space. Furthermore, nb can correlate well in 

a discrete form with the first two non-trivial eigenvectors. The variable rg describes changes in 

shape within a given bonding state. Figure 2.13(c) shows that rg correlates very well 

with 𝜓2 across the entire range for the eigenspectra distance. It is not the same with IsoRank 

distance (Fig. 2.13(d)) metric based on its discrete nature; this distance metric might not be used 

to be described by a continuous structural variable like rg. 

Figure 2.14 depicts the correlation results of the first two non-trivial eigenvectors ψ2 

and ψ3 for the LJ13 system. As stated earlier, for the sake of a better physical explanation for the 

higher number of particles, instead of the number of bonds (nb), connectivity (C) is used as a 

measure to capture the structural changes in the configurations. Figure 2.14(a) shows the subspace 

generated with the eigenspectra distance metric and colored by rg for LJ13 simulated at T* = 0.28. 

It is clearly observed that the second diffusion coordinate 𝜓2 encodes rg very well, while 𝜓3 cannot 

capture any symmetry variable. However, as mentioned before in the context of Figure 2.11(c), 

within the manifold itself, 𝜓3 encodes the spread of u*. This implies that the diffusion coordinates 

generated by the eigenspectra distance metric encode rg entirely in 𝜓2 with 𝜓3 encoding the energy 

distribution at a specific value of rg. This can be said for the subspace generated for T* = 0.4 as 

the subspace (Fig. 2.14(b)) showed a similar spread of u*, as was previously seen in Figure 2.11(b). 
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Figure 2.13. Subspaces generated by DMap colored by the variable yields to the correlation for 

LJ3. (a) and (c) Eigenspectra distance metric. (b) and (d) IsoRank distance metric. Top figures 

are colored by nb and bottom figures are colored by rg.  

For very low values of rg, the contribution of the third eigenvector in T* = 0.28 is significant, 

whereas the value of rg increases, only 𝜓2 can describe the system. For T* = 0.28, on the other 

hand, the contribution of the 𝜓3 is observed for the high values of rg. This difference can be 

attributed to the nature of the dataset. The dataset at T* = 0.28 has the majority of the data with 

low rg values; therefore, a few data points are presented with high rg values. Whereas, the dataset 

at T* = 0.4 has a variety of rg values as the energy is very high, and therefore particles in the cluster 

show less bonding formation. In order to find the contribution of 𝜓3, correlations with C are 

investigated for both T* values. Figure 2.14(c) shows that 𝜓3 correlates well with C for its low to 

intermediate values. However, the same conclusion cannot be drawn for T* = 0.4, as can be seen 
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in Figure 2.14(d) since there is no correlation observed between 𝜓3 and C for the region where the 

data shows more spread distribution.  

 

Figure 2.14. Subspaces generated by DMap colored by the variables yield to the correlation 

for 13-particle system. T* = 0.28 (left), T* = 0.4 (right). Eigenspectra Distance metric colored 

by (a) and (b) rg, (c) and (d) C 

Based on these results, rg, and nb (or C), will likely provide a good set of parameters for 

both LJ systems. Usage of these variables as the new thermodynamic variables can be studied by 

the aid of Figure 2.15, which demonstrates the complete picture of the functionality between the 

variables and the potential energy. Figure 2.15(a) shows that nb divides the data into four main 

structural motifs, meanwhile rg is responsible for capturing the different modes of the motions. 

Small changes in rg cause substantial changes in u*, and this yields to the stiffest case, where the 

rg rg

(c) c(d)
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value of nb is three. Although the data shows a broad behavior for the case nb = 1, which could be 

credited to the modes of motion that rg cannot capture; overall, the collapse of the data was 

successfully executed. Similarly, Figures 2.15(b) and 2.15(c) depict the potential energy landscape 

for a 13-particle system in the reduced space. The variables discovered are the same as the three-

particle system, but as clarified before, C has been used as the counterpart of the number of bonds 

not to deal with the scaling for large values of nb. For T* = 0.28, there is a small spread in the 

dataset for the low values of potential energy, which is reasonable since both rg and C show some 

spread at that range of potential energy as can be clarified with their individual correlation plots in 

Figure 2.15.  

 

Figure 2.15. Energy Landscape with reduced parameters. (a) N = 3, T* = 0.18 (b) N = 13, T* 

= 0.28, (c) N = 13, T* = 0.4. 

u*

nb
(a)

(b) (c) u*
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After the relation between u*, rg, and C has been obtained to show the analytical equation 

of u* as a function of C and rg, a regression analysis has been performed by using MATLAB non-

linear multi-dimensional regression function. The model equation is given in Equation 2.20, and 

the corresponding coefficients can be found in Table 2.1.  

𝑢∗ = (𝑎1 ∗ (𝑟𝑔 − 𝑎2)
2
) + (𝑎3 ∗ (𝑟𝑔 ∗ 𝐶)) + (𝑎4 ∗ (𝐶 − 𝑎5)2) + 𝑎6 (2.20) 

Table 2.1. Fitting coefficients for Equation 2.20 

T* a1 a2 a3 a4 a5 a6 

0.28 -2.7611 1.5281 0.3481 0.0705 6.3099 -4.4123 

0.4 0.0059 -35.7733 -0.089 0.1328 3.1038 -10.5523 

The regression coefficient R2 was calculated as 0.796 and 0.887 for T* = 0.28 and T* = 0.4 

datasets, respectively. The points with high potential energy values, which are distinguished by 

the spread in the dataset, reduces the value of the R2 for T* = 0.28.  

 

Figure 2.16. Combination of the results of the model equation and the original datasets 

for the LJ13 system.  (a) T* = 0.28, (b) T* = 0.4. The fitted surface is the model equation results, 

and black points are the original data points. 
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The fitted surfaces which represent the model equation and the dataset at the corresponding 

temperatures can be seen in Figure 2.16. Considering the good agreement between the model 

equation and the datasets, using this equation as a tool to interpret the system’s thermodynamic 

state can be suggested. 

2.5 Conclusions 

In this study, dimensionality reduction was applied to two different systems, having a 

different number of particles (three and 13) that are interacting via Lennard-Jones potential. 

Datasets for both systems were created by canonical ensemble Monte Carlo simulations. DMap 

analyses concluded that, for both three and 13 particle systems, the datasets were found to be 

successfully interpreted with two independent variables, rather than the initial number of 

dimensions of nine and 39, respectively.  

 The data collected for a 3-particle system at T* = 0.18 exhibits the most structural 

variation. For the LJ13 system, T* values are selected as 0.28 and 0.4, considering the transitions 

between solid-like liquid-like structures and the liquid-like gas-like structures based on the 

observations. In order to fully exploit the characteristics of the data, and describe the 

thermodynamic relations of a small system, the quantity, as well as the types of independent 

variables related to the system have to be evaluated. As mentioned earlier, DMap analyses revealed 

that the number of variables that can describe the system was found to be two, rather than nine, 

which signals a complex fashion. It has also been shown that by taking heuristics into consideration 

as well; the thermodynamic state can be completely explained when the potential energy is a 

function of the two reduced variables, one being the discrete and other continuous which are the 

number of bonds nb and the radius of gyration rg for the current system. Moreover, the results can 

be used to create an analogy with a moderately small system, where the potential energy is 
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traditionally described as a function of volume and area. Hence, it can be concluded that the 

outcomes gained from this simple system of N = 3 can open pathways to analyzing larger systems 

with high complexity without a dramatic increase in the number of variables required. On the other 

hand, for the LJ13 system, DMap was found to be effective in reducing the dimension of this 

system as well, despite the noisy nature of the complex dataset. The number of variables was 

decreased from 39 to two for this system, where those two effective variables were found to be 

connectivity C and radius of gyration rg. After the order parameters are detected, potential energy 

is modeled as a non-linear function of C and rg using the regression.  

Overall, high dimensional Monte Carlo simulation data was used to explore the 

applicability of machine learning techniques on dimensionality reduction. Precise recognition of 

distorted motifs in high-dimensional Lennard Jones cluster systems was achieved by using 

diffusion maps, and a sufficient number of reduced variables that can successfully describe the 

complex systems was detected. Future works could explore detecting parameters in more complex 

systems that could act as state variables on which an energy landscape can be built on, to achieve 

a more controlled design of experiments in research which are based on colloidal and interfacial 

sciences. 
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CHAPTER 3 

PHASE TRANSITIONS IN BULK SQUARE WELL AND HARD DISK BINARY 

MIXTURES 

3.1 Introduction 

Phase transitions have long been a topic of interest since they play a role in design of 

materials. Hence, predicting the phase transitions is crucial in analyzing the material for further 

development with the macroscopic properties. Phase transitions can be studied experimentally, 

theoretically, or by the aid of computational studies. This study focuses on the computational side 

of the phase behavior examinations. Working with simulations leads to a convenience for the cases 

where executing an experimental study of the system is challenging, or sometimes even 

impossible. Moreover, to be able to predict the possible phase diagram based on molecular 

interactions for any system could be helpful when the theory needs to be validated, or for the cases 

where the applicability of the theory onto the studied system is not possible. 

Throughout the years, to be able to create basic model systems in the computational 

environment, one of the most commonly used types of pair potential to model the particles is the 

hardcore potential (uhd). This fundamental and simple approach to evaluate the potential between 

particles solely describes repulsion in short distances without any attractive interactions. Hardcore 

potential, namely hard-sphere in three-dimensions and hard disk in two-dimensions, which is the 

focal area for this study, is shown in Figure 3.1 and described in Equation 3.1. 

 

𝑢ℎ𝑑(𝑟) = {
∞      𝑟 < 𝜎
0       𝑟 ≥ 𝜎

  (3.1) 
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Another simplistic model is the square well potential, which also takes the attractive 

interactions between the particles into account in addition to the repulsion. Basically, for particles 

having the distance smaller than 𝜎 there exist repulsive interactions. However, the interaction 

between those particles is attractive with strength 𝜀 and characteristic range (𝛿) outside the 

repulsive core (Wood 1970; Wood and Erpenbeck 1976). The square well pair potential is defined 

in Equation 3.2, and the corresponding representation can be found in Figure 3.2. 

 
Figure 3.2. Representation of the square well potential 

 
Figure 3.1 Representation of the hard disk potential where 𝜎 is the characteristic diameter of 

the particles, and r is the distance between the centers of the particles. 

𝑢𝑠𝑤(𝑟) = {
∞           0 ≤ 𝑟 < 𝜎

−𝜀     𝜎 ≤ 𝑟 < 𝜎 + 𝛿 
0            𝑟 ≥ 𝜎 + 𝛿

 
(3.2) 

where 𝜀 is the square well depth.   
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Through the decades, both pure component square well and hard disk potentials were 

extensively studied, because of their highly applicable properties to the real-life experiments, and 

intriguing phase transition characteristics that they exhibit. Additionally, the characteristics of 

square well mixtures and hard disk mixtures have also been well-documented due to the mentioned 

qualities. Although individual examinations of hard disk and square well potentials are considered 

primitive and well-examined, in terms of the principles behind the phase behavior of simple and 

atomic structures, to our knowledge, the mixture of the square well and hard disk particles has not 

been extensively studied. Therefore, the phase transition behavior of this binary mixture is still not 

well discovered and needs further clarification. Here, it is noteworthy to clarify that binary mixture 

denotes a system whose components are identical in terms of the size and shape but differ in the 

type of potentials they possess. 

The biggest motivation behind this study is the observation of the isostructural solid-solid 

transition due to the short-range interaction, which is first reported by Bolhuis and colleagues 

(Bolhuis, Hagen & Frenkel 1994). Isostructural phase transition is a symmetry preserving, and it 

resembles a first order liquid-solid transition, which ends at the critical point. It was shown that 

both two and three-dimensional systems that are simulated with square well potential undergo a 

solid-solid phase transition when the ratio between the attraction potential and particle diameter is 

less than 0.07. Moreover, this isostructural solid-solid phase transition, which is caused by the 

short-ranged attractions, can also be encountered in real applications such as uncharged colloids, 

nonadsorbing polymers, and hard disk colloid mixtures. Given in the mentioned paper, the phase 

diagram of the pure square well particles which undergo an isostructural solid-solid phase 

transition for the δ range of 0.01 to 0.07 can be found in Figure 3.3. 
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Figure 3.3. Phase diagram of a two-dimensional pure square well particle system. The range of 

attraction (δ) increases from 0.01 (far right) to 0.07 (far left) for the solid-solid transition curves. 

(Source: Bolhuis, Hagen & Frenkel, 1994). 

Phase diagrams could be constructed via theoretical methods, such as fundamental measure 

density functional theory (Smithline & Haymet, 1987; Likos, Nemeth & Lowen, 1994), 

thermodynamic integration(van Gunsteren and Berendsen 1987; Elliott and Hu 1999). Gibbs-

Duhem integration (Kofke 1993) and perturbation theory (Rosenfl & Thieberger, 1973; Chang & 

Sandler, 1994;  Velasco, Navascue & Mederos, 1999); or with the simulations of Gibbs ensemble 

(Vega et al., 1992; Giacometti et al., 2009).  Parameters of the phase diagram can be evaluated 

either with the perturbation theory followed by Gibbs-Duhem integration or implementing 

Maxwell construction on free energy. In this study, coexistence densities are computed with the 

double tangent construction method, which shares the same underlying idea conceptually with the 

Maxwell construction, yet more preferable for the systems working with Helmholtz free energy 

instead of Gibbs free energy. Although this study has focused on the binary mixtures, the equation 

which was proposed for the pure square well solids with the new set of coefficients was adapted 

into the free energy calculations (Bolhuis, Hagen & Frenkel, 1994).  Further details about the 
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computations can be found in section 3.3. Additional comments about the alternative calculation 

route were given at the end of the results and discussion section. 

The main objective of this study is to create a phase diagram of the hard disk and square 

well binary mixture by the aid of free energy calculations. For that purpose, the pure square well 

solid-solid isostructural phase diagram is prepared, and the effect of the additional hard disk 

component on the phase diagram is investigated simulating for 75% square well %25 hard disk 

binary mixture for a fixed attractive interaction parameter 𝛿 as 0.04.  

3.2 Literature Review 

Understanding the thermodynamic characteristics of the substances through their phase 

transition behaviors has gained a substantial attraction to lead researchers to work in this field. 

Phase transition behavior of various material systems have been extensively studied thus far; 

however, in this section, particular attention has been given to the studies that are conducted mostly 

by molecular simulations. Existing studies show that molecular simulations with different model 

potentials, including hardcore, square well, or Yukawa potential, can be directly consolidated with 

the upcoming computational or experimental studies that aim to create the broad new approaches 

in condensed matter physics and colloidal science. Therefore, these studies can navigate both 

theoretical and practical advancements in the near future. As the main focus of this study is 

obtaining phase diagram of square well and hard disk binary mixtures, a collection of the existing 

studies that concentrate on the mentioned types of potentials are briefly summarized in the 

following paragraph.  

The pure hardcore potential has been widely studied, and their characteristics are well 

documented. Nevertheless, the nature of the potential varies in two-dimensional hard disks and 

three-dimensional hard spheres, thus creating an exciting demand to examine the phase transition. 
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An early work about the hard disk potential has been performed via molecular dynamics 

simulations for 870 hard disk particles by Alder, and Wainwright (Alder and Wainwright 1962) 

concluded that an increase in the density causes a phase transition from liquid to two-dimensional 

crystal solid structures.  Based on the ability of hard disk particles to provide a geometric 

description of freezing at the packing fraction of 0.69, they have been primarily modeled in the 

studies that mainly focus on the statistical mechanics of the liquid systems (Monson & Kofke, 

2007). After this remarkable results presented by Alder and Wainwright (1962), freezing (and 

melting) processes in two-dimensional hard disk particles were continued to be investigated to 

fully comprehend if this phase transition is a well-known first-order transition, or some other 

continuous transition form (Alder, Hoover & Young, 1968a; Mitus, Weber & Marx, 1997; Wood 

1968; Erpenbeck & Luban, 1985; Da Silva, Caliri & Mokross, 1987; Ree &  Hoover, 1964; 

Truskett et al., 1998; Huerta, Henderson & Trokhymchuk, n.d.; Kawamura,  2005; Hu & Yu, 2009; 

Bernard & Krauth, 2011). Moreover, Speedy (Speedy, 1999) provided the thermodynamic features 

of the glass transition in binary hard disk mixtures, which were composed by a ratio of the particle 

diameters is approximately 0.77. Huerta and colleagues presented packing fractions for binary hard 

disk mixtures with a range of particle diameters varying from one to 1.4 in order to comprehend 

the difference in the freezing between pure hard disk particles and binary mixtures. Their results 

claimed that the addition of another hard disk component with a different diameter moves the 

freezing transition point to high packing ratios (Huerta, Carrasco-Fadanelli & Trokhymchuk, 

2012). 

The square well potential was utilized in a vast amount of studies either computationally 

(Brilliantov & Valleau, 1998; Orkoulas & Panagiotopoulos, 1999; Armas-Pérez et al.,2014), or 

theoretically(Henderson, 1974; Bokis & Donohue, 1995) as a fundamental approach to model the 
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intermolecular attractions of the particles. Additionally, it gives an adequate explanation for the 

uncharged colloidal particles with a short-ranged attraction. As mentioned previously, square well 

particles exhibit features of attractive forces that real physical systems possess. The addition of 

short-range interactions, whether it is attractive or repulsive, greatly impacts the high-density 

phase behavior. It can also cause symmetry conserving transition between two crystal phases. 

Isostructural phase transition was first reported by Young and Alder (Young & Alder, 1979) by 

using a square well potential with long-range attractions. They concluded that the results were not 

very realistic based on the long-range attraction that they have used to model the particles. The 

phase transition from condensed to expanded solid phases between the particles with a face-

centered cubic (fcc) structure has been studied by Bolhuis and Frenkel (1994). The intermolecular 

attraction was approximated based on the square well potential that can be related to the uncharged 

colloidal particles with short-range attraction. For the particles that have sufficiently short-ranged 

interactions, a phase transition has been found to be occurring parallel to phase change between 

liquid and vapor phases with a long-range attraction, since it ends in critical temperature. Another 

computational study to describe the phase behavior of a hard-sphere system with attractive 

Yukawa interactions has been done by Dijkstra (Dijkstra, 2002). In the same study, spinodal 

instabilities in solid and fluid phases, along with the metastable isostructural phase transitions 

between the fluid and solid phases, have been discussed. Phase diagram of square well systems 

with a short-range attraction has also been investigated by Likos and Senatore (Likos & Senatore, 

1995) and the isostructural phase transition between stable crystalline phases of particles was 

observed to be in a similar trend with the aforementioned studies. Results obtained by density 

functional theory (DFT) showed that the observed phase transition is isostructural when the ratio 

of attraction potential to the particle diameter is less than 0.05. Also, increasing the said ratio was 
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found to be triggering a melting. The particles with short-range attractive square well potential are 

explored by Foffi et al. (2002). In this study, phase transitions have been investigated with the 

variation of potential range, and interaction diameter to repulsive core to provide theoretical 

information to the several application areas such as nanoparticle aggregation and protein 

crystallization. Their results showed that as the range of potential parameter decreases, critical 

point shifts from lower density to higher density.  

Apart from the studies that investigate pure square well particles, the focus on the 

component mixtures of square well systems (Wang & Wang, 1990; Gulati & Hall, 1997; 

Maldonado et al., 2015) has enlightened the field, particularly the colloids science. The outcomes 

of such studies serve significant purposes by creating unique ideas for real-life applications as the 

thermodynamic behaviors of these systems are exploited (Alder, Alley, and Rigby 1974). 

Similarly, existing literature has a variety of studies about one component mixture of hard disk 

particles (Speedy 1999; A. Huerta, Carrasco-Fadanelli & Trokhymchuk, 2012; Russo & Wilding, 

2017; Lin & Oettel, 2018) and their three-dimensional counterparts (Kranendonk & Frenkel,1989; 

Denton & Ashcroft, 1990; Eldridge, Madden & Frenkel, 1993; Velasco, Navascué & Mederos,  

1999; Warshavsky & Song, 2008; Kummerfeld, Hudson & Harrowell, 2008). 

As one of the common real-life examples, colloidal systems have been the focal point of 

various studies to show the isostructural solid-solid phase transitions. Colloids can interact with 

an effective potential with an attractive minimum with the addition of non-adsorbing polymers. 

More recently, a theoretical study has been conducted by Garcia and co-workers to predict the 

phase behavior of colloid superballs and non-adsorbing polymer dispersion with experimentally 

observed phase behaviors (García et al., 2018). In their work, superballs and non-adsorbing 

polymers are modeled as hard spheres. The results that were obtained by using free volume theory- 
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a commonly used method to explain the phase behavior of colloid dispersions- showed that the 

said mixture exhibits an isostructural phase transition in both fluid-fluid and solid-solid cases. 

Coexistence between simple cubic phases was found to be dependent on the curvature of the 

particles, and the particles having more curvature need a higher depletant concentration in order 

to be in the coexistence between phase transitions. For the long-ranged depletion attraction cases, 

there exists an isostructural fluid-fluid coexistence irrespective of the shape parameters. As a 

perfect reference system for colloid-polymer mixtures, a mixture of hard spheres, which were used 

as depletants, was studied, and isostructural solid-solid phase transition was perceived 

experimentally when the size ratio between depletant and colloid is smaller than 0.091 (Garcia et 

al., 2018). Rey and co-workers experimentally observed the isostructural solid-solid phase 

transition between two crystalline phases at core-shell microgel-laden fluid interfacial monolayer. 

By utilizing the serial monolayer transfer procedure, notable challenges at the experimental 

procedures have been overcome, and a proper experimental system leads to study two-dimensional 

system which has an interaction at contact due to the repulsion with the length scales (Rey et al., 

2016). 

3.3 Computational Methods 

This section contains the details of data generation and the calculation with the related 

equations used in the course of calculations. First, the simulation model and the details are 

described. Next, thermodynamic relations in order to compute the free energy of pure square well 

and hard disk square well binary mixtures are given. At the end of this section, the double tangent 

construction method, which is used for obtaining phase coexistence densities, is explained. 
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3.3.1 Simulation Details and Model System 

In this study, the canonical ensemble Monte Carlo simulations have been used to find the 

thermodynamic variables of the system at varying volume and temperature values.  The studied 

case includes 196 particles in the square box. For the computations in Monte Carlo, periodic 

boundary conditions are applied to the system. The acceptance ratios for the translational and 

rotational movement of the particles are set to 20% by varying the δrmax whose value was initially 

given as 0.1σ. After examining the fluctuations in the energy for varying combinations of the 

number of production steps, the total number of steps for each run is employed as 107, with the 

number of the equilibrations and number of passes per subaverage as 5x104 and 104, respectively. 

For each run, the initial configuration is created as a hexagonal lattice for the given temperature 

and the volume. In the binary mixture case, the ordered lattice structures are designed in a way 

that a unit cell would have one hard disk particle at the corner, and square well particles are located 

at the other three edges as can be visualized in Figure 3.4. 

The density and temperature range for both pure square well cases and square well and 

hard disk binary mixture is determined similarly to the reference study. The range of reduced 

density is defined between 0.8 and 1.14 with a spacing of 0.1, and the reduced inverse temperature 

(𝜀) is set in the range of 0.1 to two with the grid size of 0.1. A total of 660 sets of combinations 

for temperature and density are needed to be run to collect energy data for the pure square well 

and the binary mixture cases separately. After the energy data is obtained as the output of each 

simulation run, corresponding free energy values are calculated to evaluate the coexistence density 

and temperature values to generate the phase diagram. In the following part, the details about the 

free energy computations are given. 
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Figure 3.4. Representation of the (a) initial configuration snapshot for T = 0.86, 𝜌 = 1.102, (b) 

enlarged version of the unit cell with one hard disk (pink) and three square well (red) particles 

3.3.2 Computation of the Free Energy 

The free energy of a square well solid phase cannot be evaluated directly by using canonical 

ensemble Monte Carlo simulations. To calculate the free energy values as a function of density 

and temperature, thermodynamic integration (Frenkel, 1991) is performed. To be able to create a 

reversible path, the free energy of a hard disk calculated for the corresponding density values are 

used as the reference state with the equation given below. 

𝐹(𝜌, 𝜀) = 𝐹𝐻𝐷(𝜌) + ∫
〈𝑈〉𝜀∗

𝜀∗
𝑑

𝜀∗

0

𝜀∗ (3.3) 

where 𝜀∗=
𝜀

𝑘𝐵𝑇
 as kB is being Boltzmann constant, and T is the temperature. 〈𝑈〉𝜀∗ is the canonical 

ensemble average energy obtained at constant 𝜀∗. 𝐹𝐻𝐷(𝜌), and 𝐹(𝜌, 𝜀) are the free energy of hard 

disk and square well solid, respectively. Bolhuis and co-workers (Bolhuis, Hagen & Frenkel, 1994) 

have suggested using the relation between 〈𝑈〉𝜀∗ and the number of atomic pairs, Np, and the 

mentioned relation is stated below. 
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〈𝑈〉𝜀∗ = 𝑁𝑝𝜀 (3.4) 

Since this equation was originally used for the pure square well solid particles, the values 

of 〈𝑈〉𝜀∗ were obtained from the pure-square well computer simulations. However, as the context 

of the current study, a pseudo-pure approach was taken where binary mixtures were treated as pure 

components, and the results were evaluated. 

By modifying Eq. 3.3 by substituting the 〈𝑈〉𝜀∗ term in Eq. 3.4, and dividing each side by 

NkBT, the final equation which gives the free energy is formed.  

𝐹(𝜌, 𝜀)

𝑁𝑘𝐵𝑇
=

𝐹𝐻𝐷(𝜌)

𝑁𝑘𝐵𝑇
− ∫

〈𝑁𝑝〉

𝑁
𝑑𝜀∗

𝜀∗

0

 (3.5) 

The term FHD, which is the abbreviation of the hard disk free energy, is calculated with the 

equation (Eq. 3.6) given in the study by McBride & Vega, ( 2002). It is noteworthy to mention 

that, although the mentioned study focuses on the evaluation of the hard disk dimer case, the 

equation related to the monomer case was also included and is used in our research. 

𝐹𝑡𝑜𝑡𝑎𝑙

𝑁𝑘𝐵𝑇
=

𝐹𝑖𝑑𝑒𝑎𝑙

𝑁𝑘𝐵𝑇
+

𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑁𝑘𝐵𝑇
 (3.6) 

In Eq. (3.6), 𝐹𝑖𝑑𝑒𝑎𝑙  and 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  are the ideal and residual components of Helmholtz free energy 

of a hard disk, 𝐹𝑡𝑜𝑡𝑎𝑙 . The individual definitions of 𝐹𝑖𝑑𝑒𝑎𝑙  and 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙   are given in Eq. 3.7 and 

3.8, as follows. 

𝐹𝑖𝑑𝑒𝑎𝑙

𝑁𝑘𝐵𝑇
= 𝑙𝑛(𝜌𝜎2) − 1 (3.7) 

𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑁𝑘𝐵𝑇
=

𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝜂0)

𝑁𝑘𝐵𝑇
+ ∫

𝑍𝑠𝑜𝑙𝑖𝑑 − 1

𝜂

𝜂

𝜂0

𝑑𝜂 (3.8) 

where, 𝜂 is the volume fraction and for the 2-dimensional particles, its formula is given in Eq. 3.9. 
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𝜂 = 𝜌
𝜋

4
 (3.9) 

𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝜂0) is given as 3.818 for 𝜂0 = 0.716 (McBride & Vega, 2002). Equation of state for the 

solid phase, 𝑍𝑠𝑜𝑙𝑖𝑑  is given in Equation 3.10 (Alder, Hoover, & Young 1968). 

𝑍𝑠𝑜𝑙𝑖𝑑 =
2

𝛼
+ 1.90 + 0.67𝛼 (3.10) 

where 𝛼  is expanded as, 

𝛼 =
𝜌0 − 𝜌

𝜌
 (3.11) 

Close packing value 𝜌0 can be found in Eq. 3.12. 

𝜌0 =
2

𝜎2√3
 (3.12) 

Consequently, the result of integration becomes, 

 With the substitution of 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝜂0 = 0.716) in the integration given in the Eq. (3.13), 

hard disk free energy can be written as in the following form. 

𝐹𝐻𝐷(𝜌)

𝑁𝑘𝐵𝑇
= 2.818 −

0.6077

𝜂
− 2 log(0.9069 − 𝜂) + 0.23 log(𝜂) + log (1.2732𝜂) (3.14) 

For the evaluation of the Helmholtz free energy of the square well solid, Bolhuis and 

colleagues (Bolhuis, Hagen & Frenkel, 1994) have derived a functional form of Np/N by fitting 

their simulation data into a model.  

𝑁𝑝(𝛿, 𝜀, 𝑥)

𝑁
=

3

2
+

3

2
𝑒𝑟𝑓 (

3

4
𝑥 −

1

2
) + 𝑒−𝑥 ∑ 𝑐𝑖𝑗𝑘𝛿𝑖𝜀−𝑗

1,2,6

𝑖,𝑗,𝑘=0

𝑥𝑘 (3.15) 

where cijk are the fitted coefficients, and the explicit form of x is exhibited below.  

∫
𝑍𝑠𝑜𝑙𝑖𝑑 − 1

𝜂

𝜂

𝜂0

𝑑𝜂 = −
0.6077

𝜂
− 2 log(0.9069 − 𝜂) + 0.23 log(𝜂) (3.13) 
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𝑥 =
𝛿

(
𝜌0
𝜌 )

0.5
− 1

 (3.16) 

Although this equation has been derived for the pure square well solid, in the current study, 

it has been used to calculate the free energy of a binary mixture consisted of hard disk and square 

well solid particles under the assumption of a pseudo-single-component model, as mentioned 

before. For that purpose, coefficients for the Monte Carlo simulation data fit for our results of the 

binary mixture are obtained by using the nonlinear multidimensional regression function provided 

by MATLAB (MathWorks, Natick, MA, USA). Before evaluating the new coefficients for the 

binary mixture case, regression analysis has also been performed on the pure square well Monte 

Carlo dataset, which has been calculated for the current study. A set of new regression coefficients 

are found (Table 3.1), and the results of the calculation of Eq 3.15 with the new coefficients are 

compared with the results obtained via the original coefficients to validate the accuracy of the 

regression analysis. The original coefficient can be found in Table 1 of the reference study 

(Bolhuis, Hagen & Frenkel, 1994). The model equation results calculated via the regression 

coefficients, and the simulation data are drawn in the same figure to show the accuracy of the 

model equation (Fig 3.5). 

Table 3.2. Fitting coefficients for the model that has been computed for the pure square well data. 

i j 

K  

0 1 2 3 4 5 6 

0 0 2.2714 -1.4632 0.9594 -4.0919 3.4633 -2.6562 -1.0668 

0 1 0.2262 3.1229 -0.035 -0.5273 1.6103 0.0002 -0.2105 

0 2 7.3919 -2.0908 0.9188 -3.2121 1.3188 -0.7939 -0.5908 

1 0 -69.7481 9.6954 70.6136 -20.2517 -11.3612 42.9310 29.7028 

1 1 3.1915 -46.6812 -21.1724 -16.6389 -1.1455 -12.1479 6.0917 

1 2 -178.1813 9.2223 71.7349 -1.2048 -4.6107 17.4717 14.3207 
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Figure 3.5. Fitting function results (colored surface) and the Monte Carlo simulation data (black 

dots) for pure square well solid. 

The fit successfully matched with the simulation data, with an R2 value of 0.982. Since the 

accuracy of the new coefficients has been successfully proved with the pure square well case, the 

same approach is employed for the binary mixture of hard disk and square well solids. The 

corresponding coefficients are given in Table 3.2. As can be seen from Figure 3.6, the results of 

the model equation (colored surface) and the simulation data (black dots) are in a reasonably good 

agreement, with a model R2 of 0.896.  

Table 3.3. Fitting coefficients for the model that has been computed for the binary mixture of 

hard disk and square well data 

i j 

K 

0 1 2 3 4 5 6 

0 0 0.50959 3.98785 -36.33678 55.13986 -52.95864 17.92443 -1.32665 

0 1 8.39415 -67.27926 207.60521 -308.14618 235.57835 -89.70096 14.12087 

0 2 -7.10379 101.32649 -208.02093 307.24666 -241.94340 96.93078 -4.80585 

1 0 -53.92652 135.15834 11.27487 6.20017 190.68349 2.23080 -36.55148 

1 1 -5.56736 -2.90760 22.96883 -14.98402 16.18487 -5.12853 -16.90736 

1 2 -3.761001 -937.15796 130.83027 32.73360 -10.43285 -60.63613 -240.84331 
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Figure 3.6. Fitting function results (colored surface) and the Monte Carlo simulation data (black 

dots) for binary mixture of hard disk and square well solid. 

To construct the phase diagram of pure square well solids, and the hard disk and square 

well binary mixtures, the values of the thermodynamic variables at the coexistence should be 

evaluated first. At the coexistence of two different phases, the chemical potential and pressure 

values of corresponding phases are required to be identical. Once free energies are evaluated as 

described in the previous section, coexistence pressure 𝑃𝑐𝑜𝑒𝑥 can be calculated, as shown in Eq. 

3.20 considering the thermodynamic relations given between Equations 3.17 and 3.19.  

𝐹 = 𝑈 − 𝑇𝑆 + 𝜇𝑁 (3.17) 

The differential form of Equation 3.17 can be written as follows, 

𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 (3.18) 

where 𝜇 is the chemical potential, and S is the entropy. Hence, the pressure is computed, as 

shown in Equation 3.19. 

(
𝜕𝐹

𝜕𝑉
)

𝑇,𝑁
= −𝑃 

(3.19) 
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Therefore, at the equilibrium Eq. 3.20 should be satisfied. 

𝜕𝐹

𝜕𝑉
|

𝑉=𝑉1
=

𝜕𝐹

𝜕𝑉
|

𝑉=𝑉2
= −𝑃𝑐𝑜𝑒𝑥 (3.20) 

For two phases being at coexistence, in addition to having the same pressure value, they 

should have the same chemical potential as well. The thermodynamic relations to calculate the 

chemical potential for such conditions are summarized below. 

𝐺 = 𝑈 − 𝑇𝑆 + 𝑝𝑉 + 𝜇𝑁 (3.21) 

By substituting the F term in Eq. 3.21 with 3.17, Eq. 3.22 is obtained. 

The differential version is, 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁 (3.23) 

Hence, the chemical potential is calculated as, 

(
𝜕𝐺

𝜕𝑁
)

𝑇,𝑃
= 𝜇 (3.24) 

For a constant number of particles, with the combination of Eq. 3.21 and Eq. 3.25 chemical 

potential is calculated as shown in Eq. 3.26. 

𝑈 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁 (3.25) 

𝜇 =
𝐺

𝑁
 (3.26) 

For the purpose of computing the phase coexistence densities and at a fixed temperature, 

double tangent construction is applied on Helmholtz free energy vs. volume plot. This method is 

conceptually identical to Maxwell’s equal-area rule, which is applied for a system with measured 

Gibbs free energy. Since Helmholtz free energy values were computed for the systems in the 

current study, instead of Maxwell’s equal-area rule, double tangent construction is implemented.  

𝐺 = 𝐹 + 𝑝𝑉 + 𝜇𝑁 (3.22) 



 
58  

For better visualization of the method, an example diagram of free energy vs. volume, 

which was obtained for the binary mixture of 75% SW - 25% HD case at T = 0.68, is given in 

Figure 3.7. Briefly, two minima, which have the same pressure on the free energy curve, namely 

two points on the free energy curve with the same derivatives, are detected as A (F1, V1) and B (F2, 

V2). These points indicate the coexistence densities of two different states for a given temperature. 

These two points on the line also satisfy the necessary conditions to possess the same value of 

Gibbs free energy. If two points on the curve of  (
𝜕𝐹

𝜕𝑉
)

𝑇,𝑁
are linked with a line, and the slope of 

this line is also the negative of the pressure value at these particular points, the requirement for 

having the same Gibbs free energy, hence the chemical potential values are met. The equation of 

the straight-line which binds points A and B can be written as, 

 𝑦𝐷𝑇𝐶 = 𝐹1 + (
𝐹2−𝐹1

𝑉2−𝑉1
) (𝑉 − 𝑉1) (3.27) 

 

Figure 3.7. Representation of the identification of the two coexistence volumes for the binary 

mixture of 75% SW - 25% HD by the double tangent construction at T = 0.68. 
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3.4 Results and Discussion  

In this section, the results, including phase diagrams and phase transition behavior for the 

pure square well and the binary mixture of hard disk and square well, are presented. Firstly, the 

current study results that are obtained for the pure square well solid have been validated. Following 

this, the effect of adding hard disk components into pure square well systems on the transition 

characteristics are discussed. 

Firstly, the effect of the composition mixture of the particles on the potential energy with 

the changing inverse temperature (ε) was investigated. Although the study mainly focuses on the 

results of the 75% square well and 25% hard disk particle mixtures, the effect of additional hard 

disk components with different compositions on the potential energy of the system has been 

examined (Figure 3.8). 

For the sake of a clearer exhibition for the potential energy, the term <U>ε instead of where 

<U> values are directly taken from the simulation output dataset, for a specific range of inverse 

temperature, 𝜀. For a constant 𝜀, the pure square well particle system has the lowest average 

potential energy, which is an expected result, since the square well potential has the potential 

energy of −𝜀 in its natural form (Figure 3.2). Hence, as the impurity caused by hard disk 

components increases, the average potential energy also increases. This representation also serves 

as proof of the fact that the simulation code modified explicitly for this study is capable of 

generating physically accurate datasets. It is also noteworthy to mention that, for the maximum 

hard disk component concentration case, the values of <U>ε are actually in the order of -10-6, 

although the results seem “0”  from the plot, due to the lack of the step values that y-axis possesses. 
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Figure 3.8. Effect of change in the square well compositions on the average potential energy as a 

function of 𝜀. 

As the starting point, free energy values have been computed for the pure square well solids 

at the range of attraction (δ) value of 0.04. With that respect, the phase diagram of the pure square 

well solid has been constructed and represented with the black diamonds in Figure 3.8. Another 

main objective of obtaining the mentioned square well phase diagram is to validate the 

computation steps which have been used throughout the free energy calculations and the double 

tangent construction method that has been employed for building the phase diagram. As can be 

seen from Figure 3.9, the black diamond points, which represent the current study results, match 

almost perfectly with the results of the reference study, which is shown in Figure 3.3 (Bolhuis, 

Hagen & Frenkel, 1994). An accurate calculation of the coexistence densities was achieved. The 

isostructural solid-solid phase transition is visually supported with the snapshots from two 

different thermodynamic densities at points A and B having the same symmetric structure. An 

unpaired t-test was applied to understand the significance of the change between the two datasets. 

By conventional criteria, this difference is considered to be not statistically significant, with a p-

value of 0.9765 (GraphPad, San Diego, CA, USA).  
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Figure 3.9. Phase diagram of the pure square well solid with 𝛿 = 0.04. Black diamond points are 

the current study results, and the dashed line represents the reference study results (Bolhuis, 

Hagen & Frenkel, 1994) 

The aid of Figure 3.10 can explain the effect of the addition of hard disk solid particles into 

the pure square well solid on the phase transition. As can be extracted from the figure, for both 

pure square well (SW) and square well and hard disk (SW-HD) binary mixture systems, solid 

phases have been divided into two branches (S1 and S2) which are distinguished by different 

densities. Both cases were observed to be isostructural solid-solid phase transitions since for both 

systems; the transitions are stopped at corresponding critical temperatures (TC). The reason behind 

the TC for the binary mixture is lower than the pure SW system can be explained as; HD 

components exhibit higher potential energies than SW do; hence, the phase transition could be 

triggered at a lower temperature than a pure SW system. The slight decrease in the critical 

temperature can be attributed to the decreased intensity of the intermolecular forces with the 

addition of HD since they promote the presence of looser contacts between two particles, resulting 

a decrease in the mixture case. It was also observed that a tighter range of density difference 

between two branches of the binary mixture case was present when compared to the pure SW case. 

The studies performed by Bolhuis and co-workers (Bolhuis, Frenkel, and Waals 1994) and Tejero 

et al. (1994) presented the decrease in the value of δ causes a reduction in the density gap for pure 
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square well solids. Although parameter δ was kept constant for the current study, this output can 

also be adapted into our system, where adding a portion of HD particles diminishes the attractive 

range as if the delta was decreased in the overall system. This adjustability of the density gap 

between two solid phases can further be examined by changing the concentration of contaminant 

particles (in our case, HD) to be added to the system. Thus, the design of the desired materials can 

be further fine-tuned with the expandability of the final solid structure. Configurational snapshots 

that were prepared with the visual molecular dynamics (VMD) software (UIUC, IL, USA) were 

also given for two distinct points at S1 and S2 branches of the 75% SW – 25% HD phase transition 

curve. As seen in the snapshots, the symmetry of the lattice structures was preserved, which is 

another indication of the system going through an isostructural solid-solid phase transition.   

As it was briefly summarized in the Section 3.2, there are various rigorous theoretical and 

numerical methods to compute the free energy. Due to the fact that pure square well free energy 

calculation procedure has been followed with the modifications for the binary mixture in this study, 

one of alternative methods to compute the free energy which are originated for the binary mixtures 

will be explained briefly. Typically, when a phase diagram is trying to be constructed for a binary 

mixture, simulations of two different phases at the same T and P are individually performed by 

using the Gibbs ensemble. Then, a method called particle exchange is performed between two 

individually exploited phases to characterize the phase equilibria behavior of the system as a 

whole. However, the particle exchange method is challenging when one of the phases is solid, due 

to the fact that the density is very highl and a large number of particle transfer attempts are needed 

in between the corresponding phases. Therefore, Kofke (1993) firstly proposed the Gibbs-Duhem 

integration instead of Gibbs ensemble, to be used for the cases where a solid phase is involved in 

the system. The difference between two previously mentioned methods is replacing challenging 
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particle exchange step with the numerical integration of the Clasius-Clapeyron equation. Basically, 

this scope of the implementation of this equation is to determine the behavior of the field variables, 

which are kept constant in between the coexisting phases but vary throughout the phase equilibria 

line. To execute this integration, an initial condition of one component with the parameters 

including its temperature, pure component fugacity, and the composition are needed. A brief 

assumption is also made during this integration, where one of the species is assumed to be dilute, 

to be able to obey Henry’s Law.  

 

Figure 3.10. Isostructural solid-solid phase transition behaviors for pure square well (SW) and 

75% SW - 25% hard disk (HD) binary mixture. 

For our study, fcc pure square well coexistence data can be used as the initial condition. 

The output of the Gibbs-Duhem integration directly gives the temperature values as a function of 

fugacity, and with these results, the corresponding T-x diagrams can be created for the solid-solid 

and/or solid-liquid phases. 

3.5 Conclusion  

In this study, the phase behavior of the binary mixtures consisted of hard disk and square 

well solid particles has been examined. For that purpose, average potential energy data has been 
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generated by using canonical ensemble Monte Carlo simulations for 196 particles. After the free 

energy calculations with the assumption of pseudo-single-component approach, phase diagrams 

of the pure square well and 75% square well and 25% hard disk binary mixture have been 

investigated for a very short range of attraction as 0.04. The results showed that the isostructural 

phase transition, which was already exhibited for pure square well solid particles, occurs in the 

presence of the additional hard disk particles as well. The existence of the critical temperature for 

solid-solid transition is the indication of the isostructural phase transition. Additionally, 

configurational snapshots have been provided as a visual representation, to indicate the presence 

of conservation in the configurational symmetry at two different solid phases. Critical values of 

temperature and density were found as 0.87 & 1.09 for the solid-solid isostructural phase transition. 

In the following steps of this study, as the future work, current results can be validated with 

alternative methods and the study could be enhanced with the introduction of new parameter 

effects including varying the diameter ratio and compositions with the implementation of Gibbs-

Duhem integration method. 
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