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Abstract 

 Reproductive performance is crucial for sustained financial success in the beef cattle 

industry.  This dissertation includes a population study that quantified the incidence of Neospora 

caninum infections in the central region of the United States and tested its relationship with 

reproductive performance in beef cattle.  Trial one of that study concluded that 6.9% of open, 

replacement heifers (n = 1306) tested seropositive.  The second trial in that project found that 

9.6% of the breeding age females (n = 500) tested were seropositive for Neospora caninum; and 

that state in which the cattle lived and age impacted (P < 0.05) infection rate.  Breed 

composition, number of farm dogs on the ranch, and use of total mixed rations were not 

associated (P > 0.1) with seropositive tests.  Fewer (P < 0.05) seropositive females were 

pregnant in Oklahoma, but overall infection rate was not associated (P > 0.1) with non-pregnant 

females.  The second study, tested for a relationship between heat shock protein 70 (Hsp70) 

genotypes and reproductive characteristics.  Blood samples were collected from beef heifers (n = 

165) being developed for replacements and Hsp70 genotypes (A1125C, C895D, G1851A, 

G2033C) were determined using a commercial laboratory (Neogen Corporation; Lincoln, NE).  

There was an association (P = 0.04) between C895D genotype and the percentage of 

lymphocytes in circulation.  Pelvic area, reproductive tract score, pregnancy rate, and white 

blood cell concentrations were affected by (P < 0.05) genotype at G2033C.  Cows with 

heterozygous genotype for G2033C had a lower (P = 0.02) pregnancy rate; conversely, those 

same cows had larger (P = 0.02) PA.  No associations were detected between A1125C or 

G1851A and the traits evaluated.  While more research is needed in this area, these projects 

indicate that identifying Neospora caninum infected cattle and Hsp70 genotypes could be useful 

tools for selecting beef cattle.   
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1 

Introduction 

 

 Reproductive efficiency is one of a few ways to increase profit in beef cattle operations.  

Infertility and reproductive failure account for billions of dollars in losses each year (Prevatt et 

al., 2009).  Stress is one of many factors that influence reproductive performance in beef cattle, 

and it can present itself in many forms including nutritional, physical, and environmental affects.  

Each of those stressors can inhibit normal cellular functions that are crucial for peak 

performance.  Therefore, livestock producers spend precious time and money attempting to 

eliminate environmental stressors that may be detrimental to production characteristics.   

Two of the more difficult forms of stress to manage are heat and health stress.  In the United 

States livestock industry, alone, economic losses due to heat stress were once estimated to 

surpass $2.4 billion annually (St-Pierre et al., 2003).  Over half of that dollar figure was 

accounted for by the cattle industry (St-Pierre et al., 2003).  Even though these figures are 

startling, they still do not account for other forms of stress that would likely make this dollar 

figure much more substantial.  While it is possible to mitigate the effects of heat stress by 

offering shade and misters, most breeders who struggle with this issue choose to select more heat 

tolerant breeds and coat colors.  In addition to heat stress, health stress can also have substantial 

impacts on reproductive performance.  Even though some reproductive diseases can be managed 

through vaccines, not all common diseases have effective vaccines available.  A good example of 

this would be Neospora caninum. In this instance, testing and culling may be the most efficient 

way to manage these issues.  Because controlling the weather is yet to be conquered by mankind 

and diseases are difficult to completely eliminate, further research is needed to create 

management strategies and selection tools that will help producers select the proper animals that 

will reproduce in these circumstances. 
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Literature Review 

Neospora Caninum 

Neospora caninum is an infectious parasitic protozoon that can be detrimental to multiple 

animal species, including bovine animals (Dubey, 2003).  It can lead to major economic losses in 

the livestock industry and appears to be a growing concern among cattle producers.  In fact, it 

has been reported to be as high as a 90% infection rate in some herds (Dubey, 2003).  It seems to 

be most widely recognized for its link to abortions because it directly impacts calf crops and net 

income (Gondim et al., 2004a).  Even though abortions are a major concern there are also many 

indirect associations with economic losses such as decreased weight gains (Barling et al., 2001), 

decreased milk yield (Hernendez et al., 2001; Romero et al., 2005), weak or unhealthy offspring 

(Monney et al., 2011), and rebreeding and increased culling rates (Waldner et al., 1998).  

Because of the strong similarities it has with Toxoplasma gondii, it has previously been 

misdiagnosed.  While studying canines in the 1980’s, researchers discovered and described the 

new parasite as a coccidian and suggested the parasite was capable of causing major reproductive 

issues in canine animals (Bjerkas et al., 1984; Dubey et al., 1988).  Soon after those discoveries, 

Dubey and his colleagues discovered the presence of Neospora caninum in canine tissue dating 

back to 1957 (Dubey et al., 1990), suggesting that the parasite has been an issue far before its 

initial discovery.  At the time of the discovery, it was unclear as to what other species may be 

impacted by Neospora caninum, but since then, it has been reported in sheep, goats, cattle, 

buffalo, horses, deer, and many other non-livestock species including rodents, poultry, and 

primates (Dubey et al., 2007).  Although it is not known to be zoonotic, controlled studies have 

shown that oral treatments of Neospora caninum infected monkeys (Barr et al., 1994), which 

raised concerns for human exposure; however, it has never been diagnosed in humans (Dubey, 



3 

2003).  Not only is it important to fully understand exactly what species of animals can be 

susceptible to this disease, but also research has shown that the rate of infection can be highly 

geographical (Dubey et al., 2007).  Evidence of the protozoa has been detected nearly all around 

the world, but aside from geographical influences, the incidence of infection also appears to be 

linked to many other factors. 

Clinical Signs and Outcome of Infection 

Clinical Signs in Cattle 

 Most producers do not realize they have a Neosporosis issue in their herd until they begin 

noticing unexplained abortions or a higher incidence of open cows during later pregnancy 

checks.  Because many of the seropositive animals are asymptomatic and their initial breed up 

rates tend to be normal (Lopez-Gatius et al., 2005), they often go unnoticed.  Producers who 

perform pregnancy detections earlier in gestation may notice they have an issue quicker because 

they realize they have a pregnancy loss problem rather than an issue of establishing pregnancies.  

Even then, it can be very difficult to diagnose because often times the fetus is never found in 

order to perform a Neospora test on.  Even when Neospora caninum is properly diagnosed in the 

cow, it is still difficult to prove it is the true cause of the abortion because there are so many 

other diseases that may lead to abortions.  For this reason, much of the research tends to be 

anecdotal.  Even so, multiple studies have linked Neospora caninum to bovine abortions (Hassig 

and Gottstein, 2002; McAllister et al., 1996; Anderson et al., 1991) and the Merck Veterinary 

Manual along with Almeria and Lopez-Gatius (2015) have recognized it as one of the leading 

causes of abortions in bovine animals.  Abortions caused by Neospora caninum generally occur 

around 5-6 months of gestation but range from three-month gestation to term (Dubey, 2003).  

The stage of gestation the female is in at the time of the first exposure to the infection is 
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important for the livelihood of the offspring (Williams et al., 2000).  There is some disagreement 

on which stage the fetus is most vulnerable to being aborted.  Williams et al. (2000) reported that 

abortions are more likely to occur if they are exposed prior to 30 week of gestation.  Other 

research has supported this belief claiming that calves are more likely to survive if they 

encounter the infection once their immune system has developed (Pare et al., 1996; Wouda et al., 

1998).  In contrast, Lopez-Gatius et al. (2004b) reported that abortions occur at a higher rate after 

90 days of gestation.  To help clarify that Neospora caninum is linked to abortions, Anderson et 

al. (1991) analyzed 95 aborted fetuses over a four-and-a-half-year period and determined that the 

coccidian like protozoa reacted with Neospora antiserum in the brain of 88 fetuses.  McAllister et 

al. (1996) reported an abortion rate upwards of 18% and also found mummified fetuses as a 

result of the infection.  Another study performed in dairy cattle found that seropositive cattle had 

an abortion rate as high as 30.1% (Lopez-Gatius et al., 2005a).  Just a short year prior to that 

their work concluded that abortion rates were 12.2 times more likely to abort than seronegative 

cows (Lopez-Gatius et al., 2004a).  Domestically, abortion rates of seropositive cows that 

aborted in mid-late gestation, have been seen as high as 40% (Jenkins et al., 2000). There has 

been research that generated contrasting results compared to those previously discussed.  In one 

dairy herd where seroconversion rates of seronegative cows reached 47% over a six-month 

period, they still did not see an increased abortion rate within the herd (Dijkstra et al., 2002).  It 

could be that the abortion storm may occur in the year following.  Nonetheless, if no additional 

abortions are detected the first year of seroconversion, it is easy to see how the seroconversion 

rate could go unnoticed.  Contrasting results by Romero et al. (2005) reported that sero-status did 

not have a significant impact on reproductive performance.  It is still unclear why some studies 

did not see the same abortion hikes as many of the others, but it is plausible to believe that there 
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are other factors that work in conjunction with the protozoa that may help determine the severity 

of symptoms.  Although it has not been conclusively proven, there is some belief that season 

may have a role on abortion rates due to Neosporosis (Thurmond et al., 1995).  In the previously 

mentioned study, there was variation among seasons, but it was not statistically significant.  

Perhaps the timing of the first exposure to the parasite in conjunction with the season matters.  In 

other words, seasonal research performed on cows that are already seropositive may yield 

different results than research that is conducted on cows that are just converting to seropositive.  

Research has also explored the possibility of relative humidity effecting the severity of the 

symptoms.  In what little data is available on this matter, Yaniz et al. (2010) suggested that as 

rainfall increased, as well as the number of days with relative humidity less than 60%, the 

abortion rate increased in parous cows infected with Neospora caninum.  The same exposure to 

relative humidity less than 60% also increased abortion rates of infected first calf heifers (Yaniz 

et al., 2010).  Wouda et al. (1999) agreed with the fact that relative humidity worked in favor of 

the parasite.  They performed their study in the Netherlands during the summer months and 

discovered that abortion storms tended to occur when it was warm and humid.  Dubey et al. 

(2007) offer several justifications to this observation by stating that humidity may be 

advantageous for sporulation and survival of the parasite, and also that it favors the growth of 

fungi.  Fungal toxins present in the forages and feed sources may be detrimental to the 

immunocompetence of the animal (Dubey et al., 2007).  It is interesting to entertain the 

possibility that factors such as season and climate could be a determining variable on how each 

animal responds to a Neospora caninum infection, but there needs to be more research focusing 

on this possibility.   
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 Many other factors have been associated with the outcome of the infection.  Feed quality 

appears to have some link to the severity of the infection.  Poor quality and moldy feedstuffs 

seemed to be linked to epidemic abortions (Bartels et al., 1999), but it is unclear what 

mechanism actually hindered the cow’s immunity (Dubey et al., 2007).  For example, was it the 

toxins produced from mold, poor palatability leading to decreased consumption, or just the fact 

that the feed source was contaminated with an elevated oocyst load?   

Bjorkman et al. (2000) explained that Neospora caninum and Bovine Viral Diarrhea 

(BVD) may have concurrent effects, but other studies have failed to generate statistical 

significance supporting this notion (Hassig and Gottstien, 2002; Stahl et al., 2006).  They also 

compared Coxiella burnetii, Chlamydia psittaci, and Leptospira but were unable to conclusively 

link the concurrent effects.  

The age of the dam and parity number may also influence the fetal survival rates in cows 

with Neosporosis.  In herds experiencing epidemic abortion storms, the rate of abortion seemed 

to heighten as the number of parity increased (Wouda, 1998; Wouda et al., 1999a).  Interestingly, 

the opposite occurred in herds experiencing endemic abortion storms (Thurmond and Hietala, 

1997).  This is likely due to the fact that some seropositive cows develop a latent infection and 

have the ability to hold the infection in check in the absence of a stressed immune system.  

Several studies have indicated that titer levels decrease with number of gestations, which 

supports that theory that cows can develop the ability to stave off the infection.  Along with this, 

research has pointed out that naïve cattle are more likely to abort due to a Neospora caninum 

exposure than cows that are chronically infected (Williams et al., 2003). 

Even though abortions garner most of the attention, there are multiple other signs that can 

insinuate that cattle producers may have a Neosporosis problem.  If calves survive a full 
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gestation and are born alive, they can still be born with other defects.  Barr et al. (1991) was one 

of the earliest to document Neospora-like encephalomyelitis in infected calves.  In their 

manuscript, they stated that a three-day old calf had neurological damage with a porencephalic 

cyst in the cerebellum.  In addition, that same calf had contracted tendons on the front legs, a 

misshaped skull, ulcerative ecophagitis, and abomastitis.  According to Donahoe et al. (2015) 

other symptoms of congenitally infected calves include: proprioceptive deficits, hydrocephalus, 

and CNS lesions.  Another inclination that herds may have a Neosporosis issue is if there is an 

elevated incidence of retained placenta.  Studies are limited on this issue, but two publications 

have associated Neospora caninum induced abortions with retained placentas (Bartels et al., 

1999; Hobson et al., 2005). 

Clinical Signs in Other Ruminants 

 Several studies have shown that both sheep and goats can harbor a Neospora caninum 

infection (McAllister et al., 1996; Abo-Shehada and Abu-Halaweh, 2010; Diakou et al., 2013).  

In a mixed operation that had both sheep and goats, research has indicated a seropositive rate of 

16.8% and 6.9%, respectively (Diakou et al., 2013).  In clinically induced infections, sheep not 

only became seropositive, but they also had many of the same symptoms as cattle.  McAllister et 

al. (1996) reported that if ewes were inoculated on day 65 of gestation then it resulted in an 

abortion.  If they were inoculated on day 90 of gestation, then they either aborted or gave birth to 

weak lambs.  If they were inoculated at 120 days of gestation, then they proceeded to give birth 

to clinically normal lambs.  With the exception of a few studies performed domestically, the 

majority of the research available was performed in other countries. 
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Monetary Impacts 

There are very few studies that have even attempted to put a number on financial losses 

due to Neospora caninum because it would be near impossible to truly evaluate all that this 

disease actually encompasses.  With that said, one study conducted determined that in California 

alone, the loss estimations were approximately $35 million annually (Dubey, 1999).  It is worth 

noting that this study only accounted for abortions and did not factor in other indirect losses 

associated with the infection.  In another study on beef cattle located in Texas, an estimation was 

formulated, and expected losses ranged between $15-24 million annually (Kasari et al., 1999).  

Inevitably, much has changed in the industry since those two studies were performed, including 

production expenses and cattle prices, so the estimations may be drastically different now.  A 

more recent study reviewed the economic global impact that Neospora caninum had on both the 

dairy and beef industry.  The most startling figure was that global annual losses could be as much 

as $2.38 billion annually and $546.3 million of that was from the United States dairy industry 

alone (Reichel et al., 2013).  Several studies on milk loss provide evidence that this number is 

quite realistic.  One study stated that seropositive cows milked 3-4% less than seronegative cows 

which resulted in $128 less per lactation (Hernendez et al., 2001) and another reported a 

reduction of 84.7 liters per laction (Romero et al., 2005).  Reichel et al. (2013) also reported that 

the dairy industry accounted for nearly two-thirds of those losses, further confirming that it is 

more of an economic issue for dairy producers than beef; however, this doesn’t negate the fact 

that it can have substantial impacts on the beef industry as well.  While the work from Reichel et 

al. (2013) provides a more recent outlook and may, in fact, be a true representation, their 

experimental criteria ended up only yielding data from ten countries so a more expansive study 

may yield different results.   
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Host 

 Like other parasites, Neospora caninum requires a host to provide the proper 

environment to complete its life cycle.  Literature generally refers to two types of host animals 

that house the parasite during different stages.  The definitive host, also known as the primary 

host, is essential for the parasite to complete sexual reproduction, and the intermediate or 

secondary host is responsible for housing the parasite while it grows to the point of sexual 

maturity (Dubey et al., 2007).  To date, far more intermediate hosts have been confirmed for 

Neospora caninum than definitive. 

Definitive Host 

Animals of the Canis genus have been identified as the definitive host for Neospora 

caninum (Donahoe et al., 2015).  Dogs have garnered the most attention as being the primary 

host animals because of their popularity as both working dogs and pets (McAllister et al., 1998; 

Lindsay et al., 1999).  Additionally, clinically and sub-clinically infected dogs are found world-

wide, which technically could provide Neospora caninum with hosts on every continent (Dubey 

and Lindsay 1996).  Antibodies have been isolated from dogs spreading from Argentina (Basso 

et al., 2001b), New Zealand (Reichel et al., 1998), Turkey (Coskun et al., 2000), Brazil (Gennari 

et al., 2002; Mineo et al., 2001), Italy (Cringoli, et al., 2002), Chile (Patitucci et al., 2001), 

Germany (Klein and Muller, 2001), Romania (Gavrea et al., 2012), and the United States 

(Cheadle et al., 1999).  Rural farm dogs, in particular, have shown to be more regular hosts for 

the parasite.  Multiple studies have confirmed that dogs housed on dairy farms had a much 

higher presence of antibodies than dogs from urban areas (Sawada et al., 1998; Wouda et al., 

1999b; Basso et al., 2001a).  Wouda et al., (1999b) concluded that the number of dogs on the 

farm also was highly correlated to antibody concentration in dairy cattle.  A few years later, 
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Sanchez et al., (2003) supported this theory by showing that dairy cattle on farms with dogs 

expressed significantly higher antibody counts than dairy farms without dogs.  Other members of 

the canine family have been identified as definitive hosts as well.  Perhaps the most recognizable 

to North American cattle producers is coyotes (Gondim et al., 2004c).  Coyotes are one of the 

primary predators to livestock in North America and are regularly in contact with domestic cattle 

(Gondim et al., 2004c).  Because of their population density in some areas, along with their 

familiarity with cattle, they are certainly capable of contaminating feed sources with their feces.  

In addition to this, they are also carnivores that have a reputation for eating deceased livestock as 

well as afterbirth, which can propagate horizontal transmission.  Gray wolves aren’t as dense 

nationwide and seem to be more geographical in their population than coyotes, but nonetheless, 

they too serve as definitive hosts (Dubey et al., 2011).  While they may not be a threat to the 

domestic cattle industry in the United States, it comes to no surprise that Australian dingoes have 

also been identified as definitive hosts (King et al., 2010).  It is plausible to believe that there are 

more definitive hosts that are yet to be discovered.  Due to the difficulties that come with 

studying non-domesticated animals, researching other possible hosts can pose certain limitations 

that make it extremely challenging to confirm new hosts. 

Intermediate Host 

 A wide array of warm blooded animals has been identified as intermediate hosts.  

Because of their economic importance, cattle have been more extensively researched than many 

other species that may possibly serve as secondary hosts.  Much of the original research 

conducted in cattle focused on dairy farms (Dijkstra et al., 2003; Hietala and Thurmond, 1999; 

Bartels et al., 2007; Mazuz et al., 2014; Gonzalez-Warleta et al., 2011).   
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Sheep and goats have been added to the list of ruminants that can harbor the parasite and get the 

infection (Barr et al., 1992; Gazzonis et al., 2016; Gonzalez-Warleta et al., 2014; Pena et al., 

2007).  Just prior to that, water buffalo were added to the list of animals that serve as a vector for 

the parasite (Reichel et al., 2015).  This comes to no surprise because they share many 

commonalities with domesticated cattle, but it is interesting that the incidence of infection was as 

high as 48% in water buffalo (Reichel et al., 2015).  Chickens are also among the list of domestic 

farm animals that have been identified as intermediate hosts (Costa et al., 2008).  Unfortunately 

for farm chickens, they are often easy targets for predators and are occasionally eaten by animals 

such as dogs and coyotes, which could provide another explanation for the rapid transmission 

that takes place on some farms. 

Wildlife is believed to be a key contributor to the spread of Neospora caninum because 

the infection has been identified in several wildlife species, and they are often preyed upon by 

many carnivores, which provides an obvious route of transmission. Red foxes may be one of the 

more interesting species identified as intermediate hosts for the parasite because it seems closely 

related to dogs, which are known as primary hosts for the parasite (Almeria et al., 2002), but do 

not share commonalities in their role as hosts for the parasite.  In the same manuscript, the author 

states that Neospora caninum was detected in the brain of rural red foxes, but no oocysts were 

found in the feces.  Schares et al. (2002) conducted another study to help clarify the role red 

foxes may have in the Neospora caninum life cycle.  They did so by feeding tissue of clinically 

induced sheep and goats to both dogs and red foxes.  Like the work of Almeria et al. (2002) 

concluded, Schares et al. (2002) provided clarification that red foxes are not final hosts for 

Neospora caninum but, rather, neutral intermediate hosts.  Dubey et al., (1999) added to the list 

of wildlife by detecting antibodies in white tailed deer.  Since then, tachyzoites have been 
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recovered from non-captive, white tailed deer (Vianna et al., 2005) along with conformation of 

transplacental transmission (Dubey et al., 2013).  While this does not guarantee that all deer 

species can host the parasite it does reveal and add to the possibilities that may be uncovered 

later.  Of the wildlife that have been researched, white tailed deer are likely to be major 

contributors in spreading the parasite in this region because deer carcasses are regularly eaten by 

dogs and coyotes, and it is well documented that these animals can become infected by eating 

tissue from infected animals (Dijkstra et al., 2001; McAllister et al., 1998).  Further studies 

continue to find evidence of Neospora caninum in many other wildlife species.  Donahoe et al. 

(2015) authored a review that compiled reports of either DNA or antibodies being found in over 

20 species of artiodactyla (hooved animals with even number of toes), multiple species of 

perissodactyla (herbivores with either one or three hooves/toes on the hind foot), rodentia, 

lagamorpha (hares, rabbits, and pika), insectivora, proboscidea (elephants), cetacea (whales, 

dolphins, and porpoises), pinnipedia (carnivorous aquatic mammals), marsupialia, and birds.  

These reports are a far stretch from actually confirming Neosporosis in each of these species, but 

it helps illustrate the possibilities of just how broad the issues of Neospora caninum might reach.  

Once an animal is identified as a host, it is important to understand how it is transmitted from 

one host animal to another.  Some of the listed species are often in direct contact with canines so 

it is easy to draw conclusions on how the transmission takes place, but others are more difficult 

to determine if they lend much to the transmission process of the parasite from definitive to 

intermediate hosts.  

Transmission 

 Most literature uses the terms horizontal and vertical transmission to describe methods of 

Neospora caninum transmission (Bartels et al., 2007; Bartley et al., 2013; Davison et al., 1999; 
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Dubey et al., 2007; French et al., 1999).  In regards to Neospora caninum, authors commonly 

describe all forms of post-natal transmission as horizontal, but this may be a bit deceiving 

because by definition, “horizontal transmission is the spread of an infectious disease from one 

individual to another susceptible contemporary” (Miller-Keane, 2003).  Even though the 

majority of literature uses these two terms to describe transmission methods in cattle, perhaps the 

term “trophic infection” would be more appropriate for describing post-natal transmission 

because according to the Merck veterinary manual, cows are not actually capable of spreading it 

to one another post-natal (McAllister, retrieved 2019).  With that said, a review of the literature 

suggests that researchers in this discipline continuously use vertical transmission to describe 

infections that occur in-utero via transplacental transmission and horizontal transmission when 

describing new infections that are initiated by the ingestion of new oocysts (Davison et al., 1999; 

Dubey et al., 2007; Bartels et al., 2007; Bartley et al., 2013).  For post-natal transmission to take 

place, oocysts from a definitive host must be ingested by the uninfected animal (Bartley et al., 

2013; De Merez et al., 1999; Dubey et al., 2007; O’Handley et al., 2002).  It is important to note 

that only feces from a definitive host can cause an infection of a seronegative bovine animal.  To 

date, there has been no diagnosed infections that were believed to be spread from one 

intermediate host to another.  The most obvious routes of ingestion are feed stuffs, water sources, 

and pastures.  While cattle can become infected after birth (De Merez et al., 1999; Trees et al., 

2002), research has shown that vertical transmission is far more common in cattle (Barr et al., 

1994; Hall et al., 2005).  Studies have continually shown that naturally occurring vertical 

transmission rate in dairy cattle is regularly quite high and often times as high as 95% in infected 

herds (Davison et al., 1999; Shares et al., 1998).  These results are consistent with many other 

species that are considered intermediate hosts.  While vertical transmission is present in dogs, 
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according to Barber and Trees (1998), results are far more variable when trying to forecast the 

likelihood of vertical transmission in canines.  Regardless of species, both vertical and horizontal 

transmission of Neospora caninum is considered to play a major role in spreading the parasite 

within herd. 

Post-Natal Transmission in Cattle 

The most common method of post-natal transmission in bovine animals comes after 

consumption of sporulated oocysts released by definitive host (Bartley et al., 2013).  With no 

evidence of Neospora caninum infections being spread from one cow to another’s unless it was 

through vertical transmission or colostrum, new infections are most likely to come from 

contaminated feed stuffs or pastures.  For a cow to consume oocysts in a pasture setting, they 

would most likely need to consume oocysts that have been excreted onto the ground by a 

definitive host such as a dog or coyote.  For this reason, there is some speculation that areas with 

denser stocking rates may provide a better opportunity for cows to graze over a contaminated 

area and, in turn, lead to a greater number of seropositive animals (Otranto et al., 2003).  

Sanderson et al. (2000) reported that herds that grazed cows during the summer had lower 

seroprevalence and implied that seasonal grazing patterns were linked to seroprevalence.  A few 

years later, another article was published stating that farms with denser stocking rates and no 

summer grazing practices were also at a higher risk for seropositive animals (Otranto et al., 

2003).  Likewise, Dijkstra et al. (2002) provided evidence that cows being fed a mixed ration 

were more likely to be seropositive.  This makes sense because often times hay, silage, and grain 

piles are attractive spots for wild animals to eat and sleep, making these areas more likely to 

acquire contaminated feces.  Both of these results have helped lead to the belief that the coyote, 

dog, and dingo populations may be linked to a higher incidence of horizontal infections.  
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Although there are many other confounding factors, multiple researchers have linked dog 

populations to a higher incidence of seropositive cows (Dijkstra et al., 2002; Otranto et al., 

2003).   

In uncontrolled, commercial settings it is very difficult to prove exactly how newly 

infected animals develop the infection, but multiple clinical studies have induced new infections.  

Several approaches have been used to induce the infections.  Since oral transmission most likely 

mimics the route of natural infection, some models have used an oral route to prove that oocysts 

can cause new infections in cattle (De Marez et al., 1999; Gondim et al., 2004a; Trees et al., 

2002).  Similarly, calves were clinically infected by being fed oocysts shed by dogs.  That same 

study observed immune responses of calves’ post infection (De Marez et al., 1999).  After two to 

four weeks post infection, Neospora specific IgG1 and IgG2 antibodies were found in serum of 

infected cows, but were not present in the control group.  Other oral infections have been 

induced in calves through Neospora contaminated colostrum (Davison et al., 2001).  An 

additional study determined that calves born to seronegative dams and bottle fed contaminated 

colostrum developed serum antibodies, but after they were euthanized they showed no signs of 

pathological lesions and no evidence of the parasite (Uggla et al., 1998).  To further support the 

idea that oral contamination through colostrum may take place, Moskwa et al. (2007b) confirmed 

that Neospora caninum DNA was present in the colostrum of infected cows; however, this is still 

not conclusive evidence that calves can be infected in this manner because DNA does not 

necessarily lead to infections (Dubey and Schares, 2011).  Scientists have also inoculated cows 

via intravenous and subcutaneous methods and showed that both methods can lead to fetal death 

in pregnant cows, but they determined that the intravenous route caused more acute placental 

lesions and greater mortality (Macaldowie et al., 2004).  The chances of this route of infection 
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taking place in an uncontrolled setting seem rather unlikely but do help prove horizontal 

transmission as a possibility.   A dose-response effect has also been reported from heifers that 

received an intrauterine inoculant of tachyzoites (Serrano-Martinez et al., 2007).  The experiment 

didn’t necessarily produce a confirmed infection but did elicit specific anti-serum antibodies in 

some heifers. 

Vertical Transmission in Cattle 

Most literature uses the terms exogenous and endogenous transmission to describe 

transplacental transmission (Trees and Williams, 2005).  Exogenous refers to new infections that 

take place after a pregnant dam ingests oocysts while endogenous transmission refers to 

persistently infected animals that experience resurgence of the infection during gestation (Dubey 

et al., 2007).  As mentioned previously, the rate of endogenous transplacental infection is quite 

high in cattle.  It appears that several of the key factors that determine the outcome of the disease 

are the maternal immune regulation in the placenta and the immunocompetence of the fetus at 

the onset of infection (Horcajo et al., 2016; Regidor-Cerillo et al., 2014).  Vazquez et al. (2019) 

added to this list of factors by implying that the method of exposure and parasite dose also 

affects the outcome.  They saw a dose-dependent effect on the parasite counts in the placenta and 

also in fetal brain tissues.  There is no shortage of studies showing that seropositive cows are 

more likely to give birth to seropositive calves (Anderson et al., 1997; Schares et al., 1998; 

Davidson et al., 1999; Thurmond et al., 1997; Dijkstra et al., 2003).  On the higher end, one 

study checked 154 seropositive cows and 124 seropositive heifers and determined that 95% of 

them gave birth to seropositive calves (Davison et al., 1999).  A Canadian dairy study showed a 

more moderate vertical transmission rate of 40.7 % among seropositive cows and only 6.7% of 

seronegative cows gave birth to seropositive calves (Pan et al., 2004).  It is worth noting that 
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these studies were from herds that already had a high prevalence herd.  There have been reports 

of herds with a much lower rate of vertical transmission (Bergeron et al., 2000).  Several 

publications are available outlining the incidence of infection at birth before nursing, indicating 

vertical transmission, and also some that insinuate post-colostral infections are possible.  Not 

only is there multiyear studies that continuously linked serological infections from dam to 

offspring (Frossling et al., 2005; Bjorkman et al., 1996), but clinically induced infections have 

also yielded offspring that were born infected (Gondim et al., 2004a).  This pattern has also been 

seen in other species of ruminants (McAllister et al., 1996); however, not all clinically induced 

infections resulted in transplacental infection.  McCann et al. (2007) induced infections on 18 

pregnant cows at three different stages of pregnancy (70, 120, and 210 days) and concluded that 

the only transplacental infections came from the group that was the furthest in gestation.  They 

also only inoculated them with a modest dose of 40,000 oocysts.  The previously mentioned 

project by Gondim et al. (2004a), was in agreement with McCann et al., (2007) that the rate of 

transplacental transmission elevated the later the cows were in gestation and as the inoculation 

dose increased.  Albeit a smaller sample size, the previously mentioned project by Trees et al. 

(2002) induced persistent infections in cows by utilizing as little as 600 sporulated oocysts, but 

all the cows calved normally and no transplacental infections occurred.  Together, these data 

imply that the outcome of infection may be greatly dependent on the timing of infection and the 

amount of oocysts consumed.   

It is challenging to prove transplacental infections in aborted fetuses because often times 

the fetus is never found; however, there has been instances where PCR results detected that 

aborted calves were infected with Neospora caninum, which suggest they developed the 

infection in-utero (Yao et al., 2009).  Histopathological studies that tested for lesion in CNS have 
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further validated this belief (Pescator et al., 2007; Kamali et al., 2014).  The epidemiology is not 

completely understood, therefore there is still plenty to learn about how the placental 

transmission actually takes place, but several beliefs are offered as to how the parasite actually 

transmits to the offspring.  In mid-late term abortions, the placental type 2 cytokines down-

regulate the maternal type 1 T-cell cascade, consequently, the dam’s immune system is 

compromised and the Neospora caninum population rises (Haddad et al., 2005).  The sudden 

influx of Neospora caninum results in increased tachyzoite loads within the placenta and the calf 

(Haddad et al., 2005).  At that point, the result of the infection is believed to be dependent on 

how secure and advanced the calf’s immune system is.  If the offspring’s immune system is 

entirely compromised, then it will have severe tissue damage and lead to abortion.  If its immune 

system is advanced enough, then they may be born alive but with neurological or 

encephalomyelitis challenges as well as low birth weights (Bryan et al., 1994; Innes et al., 2002; 

Haddad et al., 2005).   

As discussed, there are difficulties in diagnosing mid-later term abortions caused by 

Neospora caninum, but at least there are occasionally recoverable tissues that can be tested.  In 

the instance of early term abortions, it is even more challenging to prove Neospora caninum is 

responsible.  Not only are there no fetal tissues to test, but those samples may not actually have 

detectable sign of Neospora yet.  For example, abortions that take place in early embryonic 

stages may not actually be due to the parasite itself crossing the placental membranes and 

infecting the fetus, but rather the inflammatory response that comes from the mother’s immune 

response.  Haddad et al. (2005) outlined one possibility for this by describing a pro-inflammatory 

response where T helper type-1 cytokines at the maternal-fetal interface are harmful to the 

placental attachments.  They support this theory by previous work that shows the mother’s 
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immune system responds to the parasite antigen with an intense cell proliferation of IFN-gamma 

(Innes et al., 2002).  In this instance, even though the offspring never actually developed an 

infection, the Neospora caninum parasite would still be responsible for the fetal loss.   

To date, research has suggested that infected cows become persistent and remain infected 

for life; however, it is possible that some cows develop a latent infection over an extended time 

frame and their antibody levels drop below detectable thresholds (Dubey et al., 2007, Conrad et 

al., 1993).  This may serve as one possible explanation as to why congenitally infected calves are 

occasionally born to seronegative cows. 

Venereal Transmission in Cattle  

 At this point, venereal transmission seems highly unlikely (Osoro et al., 2009), but the 

notion that sires may serve as a source for transmission has not been completely ruled out.  

Neospora caninum DNA has been extracted from inherently contaminated bulls (Ferre et al., 

2005; Ortega-Mora et al., 2003) and has also been traceable in frozen and extended bovine 

semen (Caetano-da-Silva et al., 2004).  To coincide with these reports, there is an article 

available which outlined the possibilities of females developing infection from contaminated 

semen (Serrano et al., 2006).  In this study, heifers were artificially inseminated using semen 

containing 107 Neospora caninum tachyzoites and responded by seroconversion and developing 

a specific IFN- response.  They also reported traceable DNA was found in the blood, brain, 

lungs, liver, and uterine horn of some of the heifers.  In contrast, heifers artificially inseminated 

with non-contaminated semen didn’t experience any sort of response (Serrano et al., 2006).  Six 

of the nine heifers made embryos that were all free of Neospora caninum DNA.  Contrary to the 

work performed by Serrano et al. (2006), work performed by Canada et al. (2006) was unable to 

develop Neospirosis in cows through artificial insemination of semen contaminated with 
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tachyzoites.  There are several possible explanations for these discrepancies in results.  One is 

provided by another manuscript authored by Serrano-Martinez et al. (2007), which tested heifers 

and cows at several tachyzoite doses and concluded that cows were more difficult to induce 

infections in.  Other possible explanations may have to do with the strain and dose used.  Even 

though the aforementioned studies provide valuable insight, it is still far from confirming 

venereal transmission. 

Canines Role in Transmission 

 To fully understand Neosopora caninum in cattle, researchers must continue to gather 

information on other hosts and their role in harboring and spreading the parasite.  For now, one 

of the primary hosts studied is canine animals; therefore, they have been identified as key 

suspects associated with cattle infection rates.  Much like the intermediate host already 

discussed, transmission in canines occurs both horizontally and vertically.  Natural infection 

through vertical transmission has been reported by multiple sources (Bjerkas et al., 1984; Dubey 

et al., 1990) and has also been confirmed in experimentally induced infections (Cole et al., 1995; 

Dubey and Lindsay, 1989).  Vertical transmission was actually identified as a point source for 

the infection in dogs before it was cattle.  With that said, the likelihood of a transplacental 

infection seems to be more variable in dogs than in bovine animals (Barber and Trees, 1998) and 

seems to occur at a lower rate than in cattle (Dubey and Lindsay, 1996).  Even more interesting 

is that not all offspring out of the same litter, born to seropositive bitches, are born seropositive 

(Dubey et al., 2005).  This implies that transplacental infection affects some pups but not others, 

all in the same pregnancy.  Much like in bovine animals, it may be that those particular fetuses 

were more immune suppressed than the non-infected pups, but it is still striking that they co-

existed in the same pregnancy.   
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 Horizontal transmission in canines occurs, but in a different manner than in cattle.  

Unlike intermediate hosts, scientists are still unsure if the consumption of oocysts can induce an 

infection in dogs (Dubey et al., 2007).  It appears that canines develop post-natal infections by 

eating tissue contaminated with the tachyzoites (Lindsay et al., 1999).  Oocysts have been 

recovered from dogs after being fed contaminated tissue from many sources including mice 

(Lindsay et al., 2001), guinea pigs (Schares et al., 2001), deer (Gondim et al., 2004b), calves 

(Gondim et al., 2002), sheep (Schares et al., 2001), and goats (Schares et al., 2001).  They were 

not only animals of different species, but also different tissue types such as brains (Gondim et al., 

2002), skeletal muscle (Schares et al., 2001), and placental tissues (Dijkstra et al., 2001).  At 

least one study failed to recover oocysts from dogs that consumed Neosopora induced, aborted, 

bovine fetuses (Bergeron et al., 2001a), but the parasite has been discovered in placentas from 

naturally infected dams (Bergeron et al., 2001b; Shivaprasad et al, 1989).  It may be possible that 

natural infections are more likely to occur after consuming placentas instead of the fetus itself 

because the placenta may have a heavier parasite load than the fetus. 

As previously established, canine animals shed oocysts that are hazardous to other 

intermediate hosts that consume them, but it has been relatively difficult to confirm just how 

many oocysts are normally present in the feces of an infected dog.  In what little data is available 

on naturally infected dogs, the results have varied from as little as a few oocysts (Basso et al., 

2001a), to as many 114,000 per gram of feces in an older 13-year-old dog (Schares et al., 2005), 

and even upwards of one million in a yearling pup (Slapeta et al., 2002).  Part of what makes it 

difficult is that oocyst shedding appears to be inconsistent (Dubey et al., 2007).  In fact, McGarry 

et al. (2003) checked a follow up sample on a dog four months after the original sample revealed 

84,000 oocysts per gram and discovered that the oocyst count had dropped drastically.  Dubey et 
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al. (2007) also alluded to the thought that the species of tissue that the host dog consumed may 

have an association with the number of oocysts they shed.  This thought is justified by previous 

work where dogs shed more oocysts after eating bovine tissue than they did after consuming 

mouse tissue (Gondim et al., 2002).  Dubey et al. (2007) adds to their discussion by implying 

that the age of the infected host dog may also have an association with oocyst counts.  Much like 

cattle, it appears that immuno-compentency of the infected dog may also play a role in the 

outcome of the infection because dogs immune-challenged with corticosteroids had altered 

oocyst production (Dubey et al., 2007; Lindsay et al., 1999; Lindsay et al., 2001). 

Biology and Epidemiology  

Neospora caninum is a tissue-dwelling coccidian and member of phylum Apicomplexa 

(Reid et al., 2012).  There are three known infectious stages: tachyzoites, tissue cysts, and 

oocysts (Dubey, 2003).  Tachyzoites and tissue cysts are found intracellularly in animals serving 

as the intermediate host (Al-Qassab et al., 2010; Khan et al., 2020).  Tachyzoites are rod or 

banana shaped and measure roughly 6 x 2 µm in area.  There have been varying reports 

pertaining to the size of tachyzoites and this may be due to the different stages and growth 

patterns (Dubey and Lindsay, 1996).  They can be transmitted from an infected mother to the 

offspring via the placenta (Dubey, 2003).  Al-Qassab et al. (2010) explains the parasite life cycle 

and shares that they originate from sporozoites that are formed from oocysts in the gastro 

intestinal tract. These sporozoites travel to host cells and begin to replicate.  Once they replicate, 

they begin to migrate to neuro cells, macrophages, fibroblasts, vascular endothelial cells, liver 

cells, and renal tubular epithelial cells (Al-Qassab et al., 2010).  Tissue cysts are most commonly 

present in the central nervous system but have also been found in other muscle tissue (Peters et 

al., 2001).  They are generally round or oblong shaped with a solid wall surrounding them and 
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may measure up to 107 µm in length (Al-Qassab et al., 2010; Dubey, 2003).  The tissue cysts are 

referred to as bradyzoites, and according to Al-Qassab et al. (2010), they develop following a 

cell mediated immune response that exposes tachyzoites to γ interferon (IFN-γ).  These tissue 

cysts play a big role in the transmission of the disease because they are present in muscle tissue 

and placenta membranes that are often eaten by predators.  After the definitive host ingests the 

tissue cysts, the bradyzoites are released and they attack the neural and skeletal muscle fiber cells 

where they then undergo asexual reproduction (Al-Qassab et al., 2010).  This process propagates 

the life cycle of the parasite and then develops to create a newly infected definitive host.  The 

definitive host then sheds unsporulated oocysts.  The oocysts are very similar to Toxoplasma 

gondii and Hammondia hammondi that is common in felines.  Unsporulated oocysts measure 10-

11 µm in diameter (Perrucci et al., 2017), and this is very similar to the findings Lindsay et al. 

(1999) reported nearly twenty years earlier, as they stated that unsporulated oocyst were 11.7 x 

11.3 µm.  After the oocysts are expelled and shed in the feces of the host animal, they sporulate 

within a few days and become a hazard to animals that may consume them (Al-Qassab et al., 

2010; Dubey, 2003).  Although they typically shed cysts five to ten days after the infection and 

continue to shed around 10 days, there is some variation in the shedding patterns of canines.  

One of the determinates that may affect the number of cysts is the age of the host.  One study 

showed that puppies expelled more oocysts than mature dogs (Gondim et al., 2002).  That same 

author reported that dogs that consumed infected calf tissue had more oocysts than they did from 

infected mouse tissue which implies that maybe even the tissue type and source may affect the 

outcome of oocysts numbers.  It is still unknown exactly how long the oocysts can survive under 

environmental conditions outside the host.  It would be very beneficial to understand the details 

of survival outside the host and this may help explain why some areas have more infections than 
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others.  It is plausible to believe that the oocysts are more survivable in some climates than 

others. 

 More recent research has focused on different strains and isolates of Neospora.  In an 

article authored by Calarco et al. (2018), they reported that there is over 100 different identified 

strains of Neospora caninum isolates.  Like many other research studies investigating disease, 

much of the literature began with treatments on mice in a lab setting.  In mice, three strains 

referred to as NC-1, NC-2, and NC-3 have been applied to test how quickly they elicited an 

infection and the immune response.  The NC-1 strand induced a faster and more severe immune 

response to the infection (Lindsay and Dubey, 1990), and NC-3 did not induce any clinical 

symptoms (Lindsay et al., 1995).  McGuire et al. (1997) also reported measurable differences in 

mice as NC-2 caused a higher mortality rate than NC-Liverpool.  Many of these isolates from 

other species, such as deer, are being applied to mice and may not perfectly represent an 

authentic situation.  Nonetheless, it does provide insight on how much variation there may be 

and it does so in a much cheaper and controlled research setting.  After all, financial limitations 

put restrictions on the amount of research that has been conducted in cattle.  Also, there has been 

research that applied different isolates to cattle.  Jimenez-Pelayo et al. (2019) investigated Nc-

Spain7 and Nc-Spain1H isolates and found that certain strains, in this case Nc-Spain7, may be 

more potent and faster acting than others.  Likewise, heifers inoculated with NC-1 experienced 

more fetal loss than NC-Spain1H (Rojo-Montejo et al., 2009).  It is also noteworthy that some 

isolates may just be tougher and more survivable than others.  Bradyzoites from NC-2 lived for 

30 minutes in pepsin-HCL solution whereas NC-1 bradyzoites died in that time period (Lindsay 

and Dubey, 1990).  The strain may also be correlated to the immune response of the infected 

animal as NC-Spain7 caused a faster and greater anti-Neospora caninum IgG response than NC1 
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(Caspe et al., 2012).  To help understand these marked differences in strains, scientists have 

begun to study differences in strain potency at the genetic level.  Garcia-Sanchez et al. (2019) 

used the NC-Liverpool genome, which is the only Neospora caninum genome currently available 

(Reid et al., 2012), to study gene expression differences between isolates in bovine macrophages.  

They illustrated that the Nc-Spain1H isolate enhanced the gene expression of surface antigens 

and bradyzoite-stage specific genes.  Alternatively, the Nc-Spain7 increased the expression of 

genes linked to parasite growth and survival in macrophages.  These same two strains showed 

differences in the expression of genes that are associated with host cell invasion and attachment, 

glideosomes, rhopties, metabolic process, and stress responses (Horcajo et al., 2017).  The ability 

to distinguish between strains is valuable and has been useful in describing the differences often 

seen from case to case in animals infected with Neosporosis.  Even though there have been clear 

differences in isolates and how they may affect the outcome of the infection and the immune 

response of the host, in bovine animals, there has not been much variation in antigens that are 

developed in response to the infection (Al-Qassab et al., 2010). 

Valuable insight about the epidemiology of Neospora caninum has also been cultivated 

from prior knowledge about Toxi gondii and its affiliation with the Apicomplexa phylum.  

Apicomplexan parasites are different from many other parasites because of their intracellular 

characteristics (Calarco et al., 2018).  They alter their hosts cell physiology by secreting effector 

proteins via secretory organelles (Calarco et al., 2018).  These organelles are specific to 

Apicomplexan parasites and are referred to in literature as micronemes, rhoptries, and dense 

granules (English et al., 2015) and are believed to be released in a step by step cascade (Nam, 

2009).  It is hypothesized that adhesions that are synonymous with Neospora-infected animals 

are a result of micronemal proteins that are secreted following initial contact with the host cell 
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(Calarco et al., 2018; Cerede et al., 2005).  Following the secretion of micronemal proteins, 

rhoptry proteins are released into the host cell cytosol (Calarco et al., 2018), which changes the 

function and allows the infectection to proceed.  That step then leads to the creation of a 

parasitophorous vacuole (Talevich and Kannan, 2013).  This vacuole has been heavily studied in 

toxoplasmosis and plays a critical role in the parasites’ ability to develop while protecting itself 

from the attack of the host cell and eventually becomes the outer layer of the cyst membrane 

(Paredes-Santos et al., 2019).  Following the development of the parasitophorous vacuole, the 

dense granules (GRA) then release GRA protiens, in which Calarco et al. (2018) imply it may be 

linked to nutrient acquisition.  These granules are regular in tachyzoites and bradyzoites and 

comprise much of the circulating antigens.  These GRA proteins offer resistance to the host IFN-

γ response and allow for the parasite to develop a chronic infection (Fox et al., 2019).  If 

Neospora caninum shares these same similarities, this research provides insight on how it creates 

a chronic infection within the host and how it reactivates during periods of immune deficiency.  

Referring back to the previous discussion about gene expression, profiling work performed by 

Garcia-Sanchez et al. (2019) may help provide clarity on why there are such drastic differences 

among strains.  Their work showed that specific strains differed in their expression of genes 

which encoded for rhoptry proteins, which could definitely explain observed differences in 

parasite proliferation.  More specifically, they illustrated that in Nc-Spain7 two genes related to 

the rhoptry kinase family were highly expressed (Garcia-Sanchez et al., 2019). 

Host Immune Response 

The exact mechanisms by which the Neospora caninum parasite migrates in the host 

tissue and how the host’s immune system responds are still unclear, but several studies have 

produced helpful insight.  It has been shown that inflammatory cytokines, specifically IFN-γ, 
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play a significant role in the defense mechanism that host animals use after the parasite enters the 

body (Almeria et al., 2017).  The same publication describes an innate immune response that 

provides acute protection by expressing pattern-recognition receptors that induces the production 

of IFN-γ (Almeria et al., 2017).  Similarly, in vitro studies suggest that pro-inflammatory 

cytokines, including IFN-γ (Innes et al., 1995), and tumor necrosis factor (TNF-α) (Yamane et 

al., 2000) limit proliferation of Neospora caninum.  In addition, when pro-inflammatory 

cytokines such as IFN-γ were produced in elevated levels in the cow, the spleen and thymus 

harvested out of several recovered fetuses also yielded the same results (Bartley et al., 2012).  

Evidence is also available showing that infected cattle generate parasite-specific CD4+ T and 

natural killer (NK) cells which are capable of lysing cells that have been invaded by the parasite 

(Staska et al., 2003).  In naïve cells, pro-inflammatory cytokine IL-17 is expressed in the 

presence of a Neospora caninum infection, and this may promote the role INF-γ.  More recent 

work has focused on nucleotide-binding oligomerization domain receptors (NLR’s) and their 

role in Neospora-infected macrophages.  These cytoplasmic receptors have drawn attention 

because in the presence of pathogens, they induce an inflammasome complex’s that help prevent 

the proliferation of the parasite (Wang et al., 2019).  Wang et al. (2019) stated that NLR’s help 

regulate the activation of caspase-1 in infected bovine macrophages and that caspase-1 was 

correlated to the number of parasites in the parasitophorous vacuole.  Those same authors 

determined that ATP treatment of Neospora caninum infected bovine macrophages reduced the 

proliferation of newly infected cells, which may prove to be valuable insight for creating a 

vaccine.  Other focal points of the immune systems response to Neospora caninum include 

extracellular traps (ET) that are derived from macrophages.  These extracellular traps have been 

shown to play a key role in combating larval and other pathogens (Bonnee et al., 2014; Wong 
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and Jacobs, 2013); therefore, Wei et al. (2018) studied the role of macrophage-derived ET’s and 

their role in controlling Neospora caninum in host animals.  They provided some of the first data 

that suggest ET’s may be part of the animal’s defense against tachyzoites.  

Scholars have attempted to understand exactly how recrudescence and reactivation occurs 

within cows.  The recrudescense process occurs when bradyzoites convert to tachyzoites and is 

believed to take place around the middle and last stage of pregnancy (Horcajo et al., 2016).  

Much of what has been concluded about the recrudescence process has been mined from 

literature about Toxi gondii because of their similarities.  In Toxi gondii the conversion takes 

place during the period when Th2 cytokines increase and Th1 cytokines become impaired 

(Horcajo et al., 2016; Luft et al., 1984).  Horcajo et al. (2016) hypothesize that the normal Th2-

biased immune response that takes place during pregnancy in cattle may result in a brief 

compromise that hinders the dam’s ability to stave off a resurgence of Neospora caninum.  This 

timeline would match and explain the reports that antibody levels increase during the final two 

stages of pregnancy (Nogareda et al., 2007) and also provide support for the theory that 

tachyzoites reach the placenta during this phase (Horcajo et al., 2016). 

In regards to the dam’s immune response and its role of maintaining the pregnancy, there 

have been several possible explanations for how the immune response to the parasite may lead to 

fetal death in pregnant hosts.  During normal pregnancies, NK cells are dense up until the time of 

implantation and then become dominated by macrophages as gestation advances (Mor et al., 

2006).  As gestation continues, macrophages are recruited to the endometrium and are believed 

to aid in clearing apoptotic cells and controlling placental lactogen levels at the fetal-membrane 

interface (Fair, 2015).  Previous research also reported that early in normal pregnancies 

individuals generate Th-1 and Th-2 cytokines (Sykes et al., 2012).  In humans and mice, at some 
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point during the pregnancy, there appears to be a shift where the cytokine production becomes 

favored toward Th-2 production to the point where it predominates the final two trimesters of 

pregnancy (Raghupathy, 2009; Joachim, 2003).  This normal up-regulation along with the 

increased INF-γ in response to the foreign parasite may lead to an imbalance that has adverse 

effects on the pregnancy (Almeria et al., 2017).  Their study also suggested that other cytokines 

such as IL-12 and IL-10 are crucial for preventing an imbalance that leads to pregnancy loss.  

Another article proposes that the increase in Th-1 cytokines that is effective for protecting the 

dam may also result in an infiltration of CD4 cells and NK cells at the maternal-fetal interface 

that may be dangerous to the fetal tissue (Maley et al., 2006).  Human research has shown that 

NK cells have the ability to convert to lymphokine-activated killer (LAK) cells that can lyse 

trophoblasts and lead to fetal loss (Loke and King, 2000).  Raghupathy (2009) continues by 

describing the possibilities of NK cells leading to increased IFN-γ which then activates decidual 

macrophages that go on to produce nitric oxide and TNF-α.  In this instance, Th1 cytokines 

would affect pregnancy by activating cellular effectors and damaging the placenta (Raghupathy, 

2009).  Additional research outlines the possibilities of stress altering the normal progesterone 

levels necessary to maintain a normal pregnancy.  During pregnancy, progesterone is generally 

produced and binds to progesterone receptors, which causes progesterone-induced blocking 

factor (PIBF) to be released from lymphocytes (Joachim et al., 2003).  This PIBF response is 

crucial for providing the Th2 biased immune response that was previously linked to pregnancy 

maintenance (Joachim et al., 2003).  Their anti-abortive responsibilities begin with their effect on 

B cells and their ability to increase production of asymmetric, non-cytotoxic antibodies 

(Druckmann and Druckmann, 2005).  Those same authors further validate the importance of 

PIBF listing three key roles in the immune response: alters lymphocyte secretion of cytokines 
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and leads to elevated production of non-inflammatory and non-cytotoxic interleukins, reduces 

cytotoxic cytokines, and blocks the cytotoxity of NK cells.  They influence NK cells by stopping 

their degranulation and perforin release and also preventing their transformation into LAK cells 

(Druckmann and Druckmann, 2005), which were previously alluded to because of their role in 

human miscarriages.  All of this information provides evidence that altered progesterone levels 

in response to stress could very easily compromise pregnancies in cattle.  Joachim et al. (2003) 

tested this theory by adding a progesterone derivative called dydrogesterone to stressed mice.  

They concluded that stress caused lower levels of progesterone and PIBF in plasma and lowered 

progesterone receptors at the placental interface.  By adding dydrogesterone they minimized the 

effect of stress on abortion rate and improved plasma PIBF levels.  Interestingly, another study 

conducted a few years later found that progesterone treatments applied during mid-gestation in 

dairy cows with Neosporosis led to increased abortion rates (Bech-Sabat et al., 2007).  The 

conflicting results are not completely clear, but a few obvious differences in methodology could 

possibly have influenced the outcome.  The bovine study used cows Neospora caninum-infected 

cows with high titers and applied an intravaginal progesterone source.  The other study applied 

dydrogesterone by injection and induced the stress by sound exposure.  Regardless, stress 

induced alteration of steroid hormones is certainly capable of causing issues in animals infected 

with Neospora caninum. 

The immune competence of the developing fetus may certainly have a role in the 

outcome of the pregnancy in infected animals.  To some extent the offspring’s immune system is 

correlated to the immune health of the dam, but research states that the fetus’s immune system 

advances throughout gestation and is more capable of defending itself against a foreign pathogen 

as its own immune system progresses (Barrinton, 2001; Chase et al., 2008).  Several projects 
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have verified that the effects of Neospora caninum infections are more severe in animals during 

the first stage of gestation, and it is at this point that absorption or mummification is more likely 

to occur (Williams et al., 2000; Gibney et al., 2008; Rosbottom et al., 2008; Regidor-Cerillo et 

al., 2014; Horcajo et al., 2016).  If the dams are infected mid-gestation then the outcome is 

relatively unpredictable, but the majority of Neospora caninum induced abortions are reported 

during this period (Dubey et al., 2007; Almeria and Lopez-Gatius, 2013; Harcajo et al., 2016).  

This may be due to the fact that the innate immune system organized by phagocytic cells does 

not actually become fully mature until late gestation (Horcajo et al., 2016). 

Several proposals have been offered to help describe the process by which Neospora 

caninum can lead to fetal damage, and it is easy to believe that all mentioned mechanisms may 

occur and possibly work together.  There is certainly more work to be conducted, but the 

information that is currently available has served as the basis for vaccine production. 

Vaccines 

 The production of a commercialized vaccine would be beneficial for negating the adverse 

effects that often result from Neospora caninum infections.  There have been a few 

commercialized vaccines created, but the efficacy along with the benefits relative to the expense 

have been debated (Almeria et al., 2017).  The debates on efficacy of the vaccine may depend on 

the expectations by which the vaccine is measured.  For instance, preventing abortions is 

different from preventing infections.  Several studies have shown vaccinations yield beneficial 

effects but there seem to be varying degrees of efficacy, and results are variable depending on 

the animal model tested, age, stage of pregnancy, and vaccine type. 

 Several vaccine types have been experimented on mice.  Early studies showed Neospora 

caninum tachyzoites (107), administered intraparatoneally, did offer short term protection from 
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an acute infection, but they did not elaborate on the possible benefits for preventing abortions in 

pregnant dams (Ramamoorthy et al., 2006).  Two popular surface antigens of Neospora caninum, 

NcSAG1 and NcSAG2, were tested in an intramuscular vaccine and did help prevent mice from 

developing symptoms (Cannas et al., 2003).  This vaccine utilized a combination of DNA and 

recombinant antigen, but did not include abortion or pregnancy rates in their study (Cannas et al., 

2003).  With that said, there has been research that focused on preventing abortions and vertical 

transmission.  Miller et al. (2005) administered live NC-Nowra tachyzoites prior to pregnancy 

and reported a reduction in transplacental infections from 76%-8%.  They also used an injection 

crude lysate of NC-Nowra, which yielded a reduction in transplacental infections by 14%.  The 

two forms elicited different responses.  They reported the crude lysate induced only IgG1 

antibodies, while the whole tachyzoites led to both an IgG1 and IgG2 response (Miller et al., 

2005).  Since that study, other strains of Neospora caninum have been used in vaccines with 

lessor results.  Jimenez-Ruiz (2012) had difficulties proving efficacy when using NCGRA7, 

NCSAG4, NCBSR4, and NCSRS9. 

 Vaccine research on bovine models first focused the use of killed tachyzoites because it 

induced an IFN-γ response, much like the one observed in natural infections (Horcajo et al., 

2016).  The tachyzoites used did lead to an increase in IgG1 along with increased IFN-γ but was 

not effective for preventing infection in the offspring (Horcajo et al., 2016; Andrianarivo et al., 

2000).  The commercialized bovine vaccine utilized tachyzoite lysate to develop immunity, and 

there have been multiple studies that challenged the efficacy of this vaccine.  Romero et al. 

(2004) conducted a study with 876 head of dairy cows and concluded that the vaccination with 

killed tachyzoites did reduce the abortion percentage from 20.8%-11.2%.  In this study, they 

administered two 5 ml doses one month apart and began giving the first shots between 75-90 
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days of gestation (Romero et al., 2004).  Since that study there has been more recent work that 

experienced different results.  This New Zealand based study was performed on five dairy herds.  

In this study, the first vaccination was given earlier in gestation at days 30-60 but still 

administered in two doses one month apart (Weston et al., 2012).  Their work reported the 

vaccine was beneficial for reducing abortions in one herd but not the remaining four.  They went 

on to report that the vaccine resulted in more seropositive offspring, suggesting that it may 

increase the risk of vertical transmission.  With that said, there was not another follow up study 

with those seropositive offspring to see if they were more likely to abort nor does this address the 

issue of preventing seronegative cows from seroconverting at a later date.   

Live vaccines are certainly viable options for protecting against apicomplexan coccidian, 

but to date, they appear to present issues with vaccine expense and stability (Monney et al. 

2011).  Horcajo et al. (2016) outlined several live-attenuated vaccines that could be useful.  

Attenuated vaccines using both Nc-Nowra (Williams et al., 2007) and Nc-Spain1H (Rojo-

Montejo et al., 2013) have been linked to fetal protection and decreasing vertical transmission.  

Interestingly, both these projects opted to vaccinate cattle prior to breeding rather than during 

gestation, which differs from several of the other articles previously reviewed.  Those two 

studies also clinically induced infections in an experimental setting.  Mazuz et al. (2015) 

conducted a case study using live tachyzoites in naturally infected cattle and discovered that 

NcIs491 reduced the abortion rate but did not reduce transplacental infections. 

Scientists have begun exploring the possibilities of using subunit antigens for improving 

vaccine efficacy.  Monney et al. (2011) referred to subunit antigens as a safer option with a 

longer shelf life.  Apicomplexan profilins surfaced as antigen candidates because of their binding 

capabilities to toll-like receptors that propagate a series of signaling pathways believed to be 
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linked to IFN-γ and IL-12 production (Mansilla and Capozzo, 2017).  This concept is supported 

by previous research by Wang et al. (2019) that focused on using nucleotide-binding domain and 

leucine-rich repeat proteins (NLRP), specifically NLRP3 inflammosomes, and their ability to 

eliminate parasite proliferation and growth.  As mentioned earlier, GRA proteins that are released 

from the parasitophorous vacuole play a key role in preventing parasite growth; therefore, their 

usefulness for vaccine formulation has gained traction.  In what limited work that has been 

conducted with GRA proteins, NcGRA7 vaccinations did reduce the parasite load in the brain of 

vaccinated cattle (Nishimura et al., 2013), but more work is needed to conclusively show that it 

will prevent abortions.   

Other challenges may face vaccine production because coccidian vaccines often require 

adjuvants (Sander et al.; 2019).  According to Sander et al. (2019), there are typically drawbacks 

with using prophylactic vaccines because they could possibly lead to unwanted residues in meat 

and milk.  For this reason, plant based adjuvants may serve as safer options for compounding 

recombinant antigens and are likely to be studied more in depth moving forward.  In regards to 

vaccines specifically for Neospora caninum, Mansilla et al. (2015) reported soya lecithin/β-

glucan adjuvant had no negligible effects on the dam or offspring when used in pregnant cattle. 

It is also important to note that the commercialized vaccines that have been used in the 

past can still show up as seropositive if tested with serological assays (Dubey et al., 2007).  

Because the serological test cannot distinguish between vaccinated animals and truly infected 

animals, all animals will have to be treated the same within a herd (Dubey et al., 2007).  This 

could be difficult for trade purposes, but also for managers who are hoping to use serological 

tests to perform regular culling measures. 
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Diagnosis and Testing 

 There are several options available for testing for Neospora caninum, and each one 

comes with its own strengths and weaknesses.  Most research either uses serological assays, 

polymerase chain reaction (PCR), or histopatholgy test to detect Neospora caninum.  Evidence 

of antibodies, DNA, or tissue cysts is not necessarily synonymous with viable parasites 

(Donahoe et al., 2015), but it is generally the most realistic means of testing because, as a general 

rule, Neospora caninum is extremely difficult to isolate (Donahoe et al., 2015).  Not only is it 

difficult to recover viable parasites in large enough numbers, but it can also take up to several 

weeks to distinguish parasite stages in cell culture (Conrad et al., 1993; Kim et al., 2000).  

Although it may be more applicable in wildlife specific strains, Donahoe et al. (2015) discuss the 

challenges of growing some isolates in cell culture.  For these reasons, serological tests seem to 

be the most popular testing tool for Neosopora caninum (Donahoe et al., 2015) and multiple 

studies have reviewed the efficacy of a few of the more popular tests. 

Serological Assays 

Serological analysis in cattle is generally performed by the following assays: enzyme-

linked immunosorbent assay (ELISA), indirect immunoflourescent antibody test (IFAT), 

Neospora agglutination test (NAT), and immunoblotting (IB).  The ELISA assay can be used 

with milk or serum and some of the original studies showed ELISA as a viable test for 

diagnosing seropositive cattle.  In fact, Almeria (2013) writes that it is one of the best tests for 

testing bovine animals at the herd and individual level.  Pare et al. (1995) established that the 

ELISA test was more sensitive and specific than immunofluorescent antibody test (IFA).  

Another study comparing ELISA to IFAT determined that the ELISA test generated more 

accurate test results than IFAT at a cut off value of 0.200 (Frossling et al., 2003).  At that cut-off 
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value, the ELISA test produced a sensitivity of 96% and specificity of 99%.  The IFAT test had a 

specificity of 99%, but the sensitivity was only 78%.  Their suggested optimal densities were 

≤0.150 to ≥0.550.  Wouda et al. (1998) also compared three different ELISA tests for their 

ability to detect antibodies in bovine sera.  One was based on chemically-fixed, intact, tachyzoite 

antigens, one was based on sonicate lysate of whole tachyzoites, and they were compared against 

a detergent lysate of whole tachyzoites.  They determined that all three tests were in agreement 

when they tested serum from cows that had recently aborted due to Neospora caninum; however, 

there seemed to be more variability when they tested serum from cows doing total herd 

screenings.  These tests had different sensitivity levels, and it affected their consistency when 

testing chronically infected cows with low antibodies (Wouda et al., 1998).  ELISA analysis 

using milk is still recognized as a useful tool but is less specific than serum.  The milk test was 

also variable depending on how far in lactation the cow was (Schares et al., 2004).  The 

usefulness of each test may also depend on what species are being tested.  Donahoe et al. (2015) 

reported that ELISA and NAT are generally the test of choice for wildlife, because unlike other 

test, there is no need for species-specific subordinate antigens. 

There are some drawbacks with the serological test.  The antibody levels can fluctuate 

during pregnancy and also in cows with chronic infections (Dubey et al., 2007; Dubey and 

Schares, 2011).  It is still unknown exactly when and how much they fluctuate, but it is plausible 

to believe that an infected cow could drop below the sensitivity level set by the test.  There are 

also reports available that imply not all infected animals produce detectable amounts of 

antibodies (De Marez et al., 1999; Lindsay et al., 1999).  In a study conducted on congenitally 

infected calves, four percent experienced a period from 9-18 months when their antibody level 

dropped below detectable levels and then elevated again after that period (Hietala and 
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Thurmond, 1999).  Others have cited the extra time, labor, and equipment required to perform an 

ELISA test as another disadvantage (Liao et al., 2005).   

Polymerase Chain Reaction 

The PCR analysis is a highly sensitive test that is capable of testing tissues, as well as 

blood and other fluids (Donahoe et al., 2015).  This analysis is useful for determining parasite 

stages and identifying the presence of Neospora caninum DNA (Almeria, 2013).  According to 

Dubey and Schares (2006) the most commonly used markers for identifying Neospora caninum 

is the Neospora caninum-specific, repetitive Nc5 gene, along with the internal transcribed spacer 

one (ITS1) region of the rRNA gene.  The brain seems to be the most common tissue tested 

because Neospora caninum is notorious for traveling to nervous tissues (Dubey et al., 2007).  

Even so, it does have the capability to set up in other organs and skeletal tissue (Almeria, 2013).  

In this instance, PCR on brain tissue only could risk missing the infections if it is located 

elsewhere.  The expense of a PCR test is also a concern for producers who want to test for herd 

prevalence.  

Histopathology 

 Histopathology is valuable for detecting lesions and also analyzing parasite distribution 

(Donahoe et al., 2015).  Evidence of lesions gives visual support of the parasite.  Confirmation of 

lesions provides support for Neospora caninum infections that may have already been detected 

through serology tests.  Besides the fact that histopathalogy tests are more invasive than 

serological tests, it also requires recoverable tissue that may not always be available unless the 

animal is deceased and recoverable. 
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Management Strategies 

 Much like the majority of all other diseases, management practices can be performed to 

help mitigate the effects and incidence of Neosporosis in a herd.  In regards to preventing the 

infection from occurring in the first place, testing and culling seems to be the fastest way and 

most cost-effective way to reduce Neospora caninum infections in a herd (Larson et al., 2004).  

This is assuming that the primary source of infection comes from vertical transmission that takes 

place during gestation.  If the primary source of infection is stemming from trophic infections, 

then other practices should be considered to reduce the risk of contaminated feed and water 

sources.  Rodent, varmint, and coyote control could help reduce the number of host animals that 

could possibly be shedding oocysts in feed sources such as silage piles, hay stacks, or 

commodity pits.  Producers may also want to consider modifying grazing patterns for cows to 

graze during the summer, as there has been a strong correlation between Neosporosis and cows 

that have limited grazing during the summer months (Otranto et al., 2003).  Less intensively 

grazed pastures and a lower stocking rate should also help reduce the risk of infection (Otranto et 

al., 2003). 

 There are also options for managing cows that are already infected.  At least two studies 

have presented evidence that crossbred pregnancies are more likely to survive a Neospora 

caninum infection (Almeria et al., 2009; Lopez-Gatius et al., 2005b), suggesting that using 

semen of other breed types to impregnate infected cows may pay dividends for producers.  Other 

reproductive techniques such as embryo transfer can be used as well.  Due to the timing of 

vertical transmission in naturally infected animals, embryos can be removed and transferred into 

seronegative recipients and still result in a seronegative calf (Baillargeon et al., 2001; Landmann 

et al., 2002).  Obviously, this would lead to additional expenses that may not be feasible for 
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commercial cattlemen, but it does provide an option for producers who place special value on an 

infected cow but want to avoid the risk that comes with an infected dam. 

Heat Shock Proteins 

Although good management accepts the responsibility of providing proper husbandry 

practices that protect livestock from stressful elements, the animals themselves also have an 

innate defense mechanism to help them cope with stress.  Naturally, livestock often rely on the 

secretion of stress hormones and the cell-mediated production of heat shock proteins to help 

battle stress.  While stress hormones are a beneficial coping mechanism for animals, they may 

also negatively impact normal functions, such as reproduction and immunity (Burdick et al., 

2011).  Heat shock proteins (HSP) are a class of conserved proteins that are hyper expressed in 

the presence of stress (Garrido et al., 2006).  Although many of these proteins are always 

available in the cells, exposure to stress induces and intensifies the expression (Whitley et al., 

1999).  The exact mechanisms by which they operate are not completely known, but 

transcription and translations play an important role in the HSP response (Whitley et al., 1999).  

They were first reported in 1962 when they were discovered in Drosophila flies after noticing 

alterations in polytene chromosomes during exposure to heat and oxidative stress (Ritossa, 

1962).  Since then, they have been heavily researched and most widely known for their ability to 

mitigate stress-induced damage by binding to denatured proteins and counteracting 

proteotoxicity (Tower, 2011) and termed as molecular chaperones.  These proteins exist in both 

prokerurotic and eukyrotic and are found in all cells of the body.  Within the cell, they can be 

present in the cytosol, mitochondria, endoplasmic reticulum, and the nucleus (Kiang and Tsokos, 

1998).  Because they were first discovered in a study researching heat stress in flies, they earned 

the name heat shock proteins, but many other forms of stress have since then been linked to their 
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expression (Whitley et al., 1999).  As research began to associate these proteins with other 

stressors, they became recognized for their role in aging, immune function, thermotolerance, and 

reproduction.  It is now well known that there are several different types of heat shock proteins 

that appear to serve different roles in maintaining proper cellular balance.  In humans, there have 

been associations between several health disorders and the abnormal supply of stress proteins 

(Whitley et al., 1999).  The same has occurred in cattle studies, and because of it, HSPs may be 

used for biomarkers in health and reproduction (Tower, 2011).  These biomarkers may be 

consistent with specific breeds and their physical characteristics.  In fact, research indicates that 

some breed types synthesize HSPs more regularly, as Mullins et al. (2016) reported that basal 

levels of Hsp27 and Hsp70 are found in higher concentrations in the skeletal muscle of Bos 

indicus than Bos taurus. Understanding exactly how each family of HSPs impact normal bodily 

functions in all breeds of cattle could benefit the industry greatly.  The classifications of HSPs 

are named for their molecular size (Whitley et al., 1999) and their unique characteristics are 

described below. 

Hsp100-110 

 Although this group of HSPs is the largest in terms of molecular weight, it is still the 

third or fourth most abundant of the heat shock families found in mammalians (Easton et al., 

2000).  Hsp100 is located in the cytoplasm, and Hsp110 is present in the cytosol and nucleus 

(Jee, 2016).  Hsp100 is most well known for being a co-chaperone with Hsp40, Hsp70, and 

Hsp90 and is generally associated with refolding aggregates (Jee, 2016).  Much like Hsp70, the 

Hsp110 family shares the same loop structure and is a key component of the immune response 

(Zou et al., 2016).  Hsp110 also lend to cell survival by working with Hsp70 and GRA78 
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(Gething and Sambrook, 1992; Hartle, 1996).  Zou et al. (2016) also concluded there may be 

endogenous immune-stimulation of large HSP directly following an injury.   

Hsp90 

 The Hsp90 family ranges from 83kDA to 110kDA and have been studied extensively for 

their relationship in protecting the body from many diseases (Zuehlke et al., 2017).  On the other 

hand, human medicine has discovered that tumor cells synthesize HSPs, which protect these cells 

from many types of treatments and therapies (Lang et al., 2019).  These proteins are generally 

abundant at normal temperatures and get further induced as temperatures elevate above normal 

body conditions (Lindquist and Craig, 1988).  Much like many of the HSPs, they are critical 

components in maintaining peptide integrity and aid in enzyme folding (Wiech et al., 1992).  

This group of proteins is present in the cytosol and nucleus (Whitley et al., 1999).  Albeit in 

human HSPs, an extensive review by Zuehlke et al. (2017), explains the structural components 

of Hsp90.  They feature a dimeric structure and each monomer has a N-terminal ATP-binding 

domain, a middle co-chaperone and client binding domain, along with a C-terminal dimerization 

domain (Zuehlke et al., 2017).  Their chaperone capabilities come following a conformational 

change which is influenced by ATP (Zuehlke et al., 2017).  When they are not bound to 

nucleotides the C-terminal domains are dimerized and remain in an open conformation (Zuehlke 

et al., 2017).  Upon nucleotide interaction, the N-terminal domains undergo dimerization, which 

strengthens its ATPase competence and leads to a closed conformation (Zuehlke et al., 2017).  

After ATP-hydrolysis, Hsp90 reverts back to its open conformation.  Those same authors explain 

the importance of co-chaperones in the function of Hsp90 during the ATPase cycle.  They 

outline two important co-chaperones, p50Cdc37 and Hop, that bind to the open conformation of 

Hsp90 and are crucial for avoiding kinase degredation and apoptosis.  Perhaps a more intriguing 
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co-chaperone relating to reproduction is immunophilin because it recognized for impact on 

steroidogenesis (Zuehlke et al., 2017).  With this, they also bind steroid receptors, protein 

kinases, intermediate filaments, microtubules, and actin microfilaments, while being a critical 

piece of glucocorticoid receptors (Jee, 2016).  During the phase when the N-terminal undergoes 

dimerization and Hsp90 is in the closed conformation, it coordinates with immunophilin proteins 

at the C-terminal.  Aside from their intracellular capabilities, many HSPs have extracellular 

functions which may be associated with their paralogs.  In regards to Hsp90, it has two paralogs 

known as Hsp90-α and Hsp90-β, and it is the alpha paralog that is associated with the 

extracellular capabilities (Li et al., 2013).  In humans, the Hsp90 that is secreted extracellularly 

appears to play an important role in medicinal research because of its significance in binding to 

surface receptors that mediate invasiveness (Lang et al., 2019).  The full capacity of these 

extracellular components and their importance in livestock is yet to be determined, but there is a 

good possibility they play a bigger role than initially expected.  

Hsp70 

 The most conserved and most plentiful family of HSP’s is Hsp70 (Lindquist and Craig, 

1988).  The Hsp70 gene is encoded by a single exon and is 1926 base pairs long, and the protein 

is comprised of 641 amino acids (Gade et al., 2010).  Named for its molecular size (Whitley et 

al., 1999), this family of HSP’s varies from 66 kDa to 78 kDA (Tavaria et al., 1996) and is well 

known for its role in thermoregulation (Lindquist and Craig, 1988).  Along with their expression 

after heat exposure, they also offer protective properties during other forms of stress, including 

cold and oxidative stress (Lindquist and Craig, 1988).  Interestingly, the expected half-life of 

Hsp70 induced by heat stress is expected to be approximately 48 hours (Mizzen and Welch, 

1988).  During stress exposures, protein denaturation occurs, but Hsp70 has the ability to 
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maintain the protein integrity by assisting in the folding process of new proteins and also 

refolding of damaged proteins (Mayer and Bukau, 2005).  They act in the cell as in-house 

components of folding and signal transduction pathways and operate through the interaction of 

Hsp70 with hydrophobic peptide segments of proteins in an ATP-modulated system (Mayer and 

Bukau, 2005).  Much like Hsp90, their primary characteristics include N-terminal ATPase 

domain, substrate binding domain, and C-terminal domain (Schlesinger, 1990; Kiang and 

Tsokos, 1998). 

Hsp70 co-chaperones 

 Co-chaperones assist HSPs in binding to their target proteins (Mayar and Bukau, 2005).  

Research has identified several co-chaperones that work together with Hsp70, along with other 

HSPs, but not all are necessarily proven to be present in cattle.  In mammalian species it is 

estimated that there are over 100 different co-chaperones (Caplan, 2003).  It is believed that the 

majority of co-chaperones belong to two classes known as the J-domain proteins (JDP) and 

tetratricopeptide repeats (TPR) (Caplan, 2003).  Over 70 JDPs have been identified in 

mammalian genomes and a couple hundred TPRs (Caplan, 2003).  JDPs are responsible for 

mediating ATP hydrolysis-dependent locking in the binding region of Hsp70 (Mayer and Bukau, 

2005).  Human HSPs utilize several co-chaperones such as Bag proteins, Hip, HOP, and CHIP 

(Mayer and Bukau, 2005), but literature is sparser on exactly what co-chaperones cooperate with 

cattle HSPs. 

Hsp70-2 & Hsc70t 

 Two products of Hsp70 are produced specifically in spermatogenic cells (Eddy, 1999).  

Expression of the Hsp70-2 gene occurs during the meiotic phase (Allen et al., 1988; Eddy, 1999; 

Rosario et al., 1992; Zakeri et al., 1988) and the Hsc70t occurs during the post-meiotic stages of 
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spermatogenesis (Zakeri and Wolgemuth, 1987; Maekawa et al., 1989; Matsumoto and 

Fujimoto, 1990).  In mice, Hsp70-2 takes place directly following transcription in leptotene-

zygotene spermatocytes (O’Brien 1987) and Hsp-2 mRNA is present in spermatids (Eddy, 1999).  

Because of its presence in male germ cells, it has been studied for its role in spermatogenesis.  

Eddy (1999) also describes the importance of maturation promoting factor (MPF) in the 

maturation of spermatocytes.  The MPF is a dimer comprised of a catalytic subunit called Cdc2 

and a regulatory subunit know as cyclin B (Dunphy et al., 1988).  According to Eddy (1999), the 

Cdc2 gains protein kinase activity upon the binding of cyclin B, which propagates changes in 

Cdc2 phosphorylation.  Apparently, this Cdc2-cyclin B complex is essential for spermatocyte 

development (Eddy, 1999).  Due to its association with the HSP family of molecular chaperones, 

it is hypothesized that Hsp70-2 is a crucial chaperone for germ cell maturation.  This hypothesis 

was supported when Zhu et al. (1997) added a recumbent Hsp70-2 to the gonads of mutant mice 

who regained their ability to form an active kinase resulting from the heterodimer of Cdc2 and 

cyclin B (Zhu et al., 1997; Eddy, 1999).  It is not fully understood if Hsp70-2 has other functions 

and exactly what species require this protein, but the current research implies that it may serve as 

a key contributor to proper spermatogenesis. 

Hsp60 

 The Hsp60 family varies from 58-65 kDa (Whitley et al., 1999) and are large, oligomeric 

complexes that contain two stacked, heptomeric rings with a central cavity (Frydmann and Hatl, 

1994).  Similar to most other HSPs, they are hyper-expressed due to stress and are critical 

chaperones in folding, transport, and assembly of protein subunits (Neuer et al., 2000), but in the 

presence of stress they can lead to protein denaturation (Frydmann and Hatl, 1994).  They 

primarily localize in the mitochondria (Jindal et al., 1989), but they also have cell surface 
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properties (Soltys and Gupta, 1996).  Because of their location, they are believed to be one of the 

more important HSP directly related to reproduction (Neuer et al., 2000).  Not only has there 

been a parallel between Hsp60 expression and spermatogenic function (Werner et al., 1997), but 

they also play a significant role in steroid metabolism in the placenta (Olvero-Sanchez et al., 

2011).  In humans, follicular fluid from patients undergoing in-vitro fertilization had detectable 

amounts of Hsp60 (Neuer et al., 1997).  It is unclear the exact purpose for its presence in the 

follicular fluid, but it is easy to believe that it could be a natural expression during oogenesis. 

sHSP 

 The molecular weight of sHSP range between 15-43 kDa and are commonly referred to 

as HSPβ (Jee, 2016).  They have a high affinity for unfolded proteins and protect against larger, 

insoluble aggregates.  They are not directly responsible for folding proteins, but they indirectly 

catalyze refolding by directing substrates to larger Hsp70 complexes (Cox et al., 2018; Lang et 

al., 2019). They have the ability to transition from shorter to larger oligomers and are believed to 

play more of a role in the vascular system (Whitley et al., 1999).  Research has linked many of 

the sHSP to raspatory morphology and cardiac development (Jee, 2016).  When released by the 

placenta during pregnancy, Hsp10 is known to be a suppressor of the mother’s immune response 

(Noonan et al., 1979), and in humans, it is often used as a biomarker for endometrial cancer 

(Dube et al., 2007). 

Regulation Through Heat Shock Factors 

 The regulation of HSPs is mediated by heat shock elements (HSE) that are positioned 

upstream of HSP genes and available in multiple copies (Akerfelt et al., 2010; Pelham, 1982).  

Inside the promoter of HSPs are binding sites for heat shock factors (HSF).  These HSF provide 

a near-instant response to stress and alter from its monomer-state into trimer form (Lang et al., 
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2019).  The heat shock promoter is described as readily accessible and maintains an open 

chromotin nucleosome-free make-up (Wu, 1984; Mason and Lis, 1997).  The primary two 

factors that bind to the promoter are GAGA factor and TATA binding protein of the TFIID 

complex (Lis and Wu, 1993).  Earlier research showed that transcriptional regulation takes place 

after HSF binds to cis-acting elements made up of nGAAn pentomers known as HSE, which 

leads to the induction of HSP genes expression (Wu, 1984; Parker and Topol, 1984).  Once the 

HSF is bound to the DNA, the binding domain recognizes the HSE in the major groove of the 

double helix (Wu, 1995).  In mammals there are four classes of HSFs referred to as the 

following: HSF1, HSF2, HSF3, and HSF4 (Akerfelt et al., 2010).  Akerfelt et al. (2010) referred 

to HSF1 as the master of HSP gene regulation in vertebrates because of its responsibilities in the 

transcriptional activation of HSP genes.  HSF1 is abundant in most tissues and cell types but is 

not activated until it is exposed to stress (Akerfelt et al., 2010).  As the main activator of 

molecular chaperones, HSF1 transcriptional activation of HSPs is believed to be rapid and robust 

(Vihervaara and Sistonen, 2014) and is activated by cyclic AMP-dependent protein during stress 

exposure (Choi et al., 1991).  HSP1 is an inactive monomer that is held together by the binding 

of three leucine zipper domains that form a triple stranded coiled coil (Calderwood et al., 2010; 

Zou et al., 1998; Zou et al., 1994).  Unfavorable conditions due to stress cause the unraveling of 

the dormant proteins.  It accomplishes this by breaking the bonds between the leucine zippers 

and trimers interact with the first leucine zipper, which provides its DNA-binding affinity (Zou 

et al., 1994; Zou et al., 1995).   

Further details have been unveiled about how HSFs operate within the promoter region of 

the HSP gene and provide insight on how stress can induce expression of the HSP gene.  The 

promoters are generally made up of two classes of sequence elements referred to as the core 
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region and the TATA box (Greene and Kingston, 1990).  The core region contains the 

transcription start site and extends to approximately 40 nucleotides on either side of start site 

(Weber et al., 1997).  The TATA box is approximately 30 nucleotides upstream from the start 

site and has been linked to upstream activation sequences (Greene and Kingston, 1990).  As 

previously discussed, the heat shock gene promoters contain HSE that possess three repeating 

nGAAn sequences (Calderwood et al, 2010; Wu et al., 1995).  The binding sites for HSF1 

trimers are generated from these HSE located in the promoter which generates the rapid response 

to stress by propagating the activation of transcription (Calderwood et al., 2010; Wu et al., 1995).  

As illustrated by Vihervaara and Sistonen (2014), it adds to its rapid capabilities by priming the 

promoter for activation by GAGA factor, transctiption factor IID, and transcriptionally engaged 

polymerase II.  Following the stress encounter, HSF1 unites at the promoter and sparks the 

recruitment of mediator complexes and positive transcription elongation factor b (Lis et al., 

2000; Park et al., 2001).  In response to the stressful event, on the Hsp70 gene the carboxyl-

terminal domain of the hypophosphorylated Pol II is phosphorylated, resulting in a 

hyperphosphorylated Pol II in the productive elongated state (O’Brien et al., 1994).  Park et al. 

(2001) also imply that the key regulatory step in the transcription activation of heat shock genes 

is a result of the mediator complex that is recruited to the promotor.  Other work has offered 

insight on HSP specific pathways.  During oxidative stress, a subset of HSPs are expressed 

through JNK pathway and transcription factor Foxo (Wang et al., 2005) and the menin protein is 

crucial for prolonged exposure of HSPs (Papaconstantinou et al., 2005).  As for the other HSFs, 

HSF2 is also important for the regulation of HSPs but is dependent upon HSF1 and operates in 

response to HSF1 by its recruitment to the HSP gene promoters (Ostling et al., 2007).  They 

regulate HSF1-mediated gene expression by forming heterotrimers with HSF1 and progressing 



48 

to the target sites (Vihervaara and Sisonen, 2014).  In addition to their responsibilities in HSE 

binding activities, HSF2 may also contribute to the regulation of the heat shock gene during 

embryogenesis in mice (Mezger et al., 1994).  In terms of HSP production, the role of HSF3 and 

HSF4 are a little more unclear, but they are believed to play a role in other biological processes, 

such as organ development (Arkerfelt et al., 2010).   

HSPs Role in Reproduction 

 Proper reproduction takes immense coordination of many physiological functions and can 

easily be altered by environmental stressors.  As much as producers try to eliminate stress, most 

cattle are exposed to some sort of environmental stress at some point during the year.  Most 

people focus on heat stress, but it can actually come in several forms including cold, nutrition, 

and health stress.  An animal’s ability to cope with these stressors can directly impact fertility 

and reproductive performance. 

Germ Cell Production and Survival 

 Male fertility is an integral part of reproduction.  As previously discussed, HSPs are 

present in spermatogenesis and have been associated with sperm cell survival post ejaculation 

(Dix et al., 1996; Huang et al., 2000).  After ejaculation, some of earlier work performed by 

Huang et al. (2000) showed a correlation between low Hsp70 concentrations and reduced 

motility, morphology, and sperm concentration parameters.  To support this work, Elliot et al. 

(2009) deduced that Hsp70 concentrations were linked to extended longevity and viability of 

spermatozoa.  Additional research found that Hsp70 exist on the acrosome of ejaculated bull 

spermatozoa (Kamaruddin, 1998), which implies that it may serve a purpose in gamete 

interaction when fertilization is taking place (Matwee et al., 2001).  Prior to copulation, other 

data has shown that HSPs are regularly expressed in the testicles during sperm development.  
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Not only has Hsp70-2 been evident in the maturation process of spermatocytes (Eddy, 1999), but 

both Hsp60 and Hsp70 have been shown to present on the cell surface (Neuer et al., 2000).  

According to Govin et al. (2006), Hsp70 also has a function in spermatid DNA-packaging 

proteins at the time of spermatogenesis.  In mouse studies, the absence of Hsp70 effected the 

development of normal spermatocytes and increased cell death (Christians et al., 2003).  On 

another note, in humans, endocervical cells exposed to semen resulted in transcription of Hsp70 

(Neuer et al., 2000).  It is certainly possible that the contents of the seminal fluid are capable of 

stress response.  Neuer et al. (2000) offers a theory which explains the process by which the 

Hsp70 expression may inhibit the immune response of the female reproductive tract to the 

semen, and in turn, allow for the survival of spermatozoa. 

 Much like in male germ-cell production, oogenesis experiences HSP expression, and it is 

likely to depend on these events for survival during hyperthermic stress (Neuer et al., 2000).  

Heat stress can cause multiple abnormalities including multinuclear eggs and a larger sized first 

polar body (Baumgartner and Chrisman, 1981).  Higher temperatures are capable of limiting the 

number of oocytes that advance to metaphase II and often results in lower fertilization rates 

(Lenz et al., 1983).  It appears that the expression of HSP takes place during earlier steps of 

oogenesis, and then reduces as the oocyte fully matures and follicular differentiation has taken 

place (Curci et al., 1987; Curci et al., 1991).  Hsp60 has been detected in follicular fluid of 

humans, but this was pre-ovulation (Neuer et al., 1997).  In mouse oocytes, Hsp70 is present in 

preovulatory oocytes, as well, but resides following the breakdown of germinal vesicles (Curci et 

al., 1991).  This could explain why mammalian oocytes are so vulnerable to elevated heat.   
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Fertilization and Embryo Development 

 The majority of progress that has been made on the understanding of HSP on embryo 

development has been conducted on species other than bovine animals.  Due to limitations of in-

vivo studies, most of the available literature appears to be in-vitro.  It is still unknown to what 

extent other experimental models can be applied to bovine research; however, research in other 

species provides some groundwork for the possibilities that may take place in cattle.  For 

example, Hsp60, Hsp70, and Hsp90 are all synthesized by murine embryos prior to implantation 

(Bensaude et al., 1983).  Likewise, the induction of Hsp70 antibodies retarded the development 

of embryos to the hatched blastocyst stage (Neuer et al., 1998).  A year following, work by 

Neuer et al. (1999) concluded that embryos cultured with HSP antibodies had a higher degree of 

DNA fragmentations.   

 In what literature is available on HSPs role in bovine embryo development, it appears to 

follow suit with what has been determined in other species.  The first results presented focused 

on the effects of anti-Hsp70 on sperm-oocyte interaction (Matwee et al., 2001).  They reported 

that anti-Hsp70 significantly reduced the number of spermatozoa tightly bound to the zona 

pellucida, suggesting that Hsp70 is beneficial to gamete interaction (Matwee et al., 2001).  They 

also reported a significant loss in development when embryos were cultured in anti-Hsp70 at a 

concentration of 50 µg/ml; however, the response was dose-dependent because the effects were 

minimal at a concentration of 1µg/ml.  They also discuss the possibilities of HSP present in the 

spermatozoa playing a role in early embryo development post fertilization.  Since the activation 

of the embryonic genome does not begin at the onset of early cleavage, they may offer a 

formattable defense against stress during the early cleavage stage (Matwee et al., 2001).  

Although research has shown 2-cell bovine embryos do contain HSPs and synthesis does take 
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place that early in the presence of heat stress, Matwee et al. (2000) imply that it is probably not 

until the 4-cell stage that regulation at the transcription level takes place.  It could also be that the 

role they play in luteal maintenance is related to embryo survival.  Khanna et al. (1994) found 

that HSPs were key mediators in luteal regression, which could obviously impact development 

since its primary function is to produce the hormone responsible for maintaining pregnancy. 

HSP Effect Steroidogenesis 

 Heat shock proteins play an important role in steroidogenesis which is directly related to 

many biological processes including reproduction.  Like many other cells, steroidogenic cells 

respond to stress by increasing Hsp70 production (Murphy et al., 2001).  Much like steroid cells, 

many inhibitors for steroid production such as PGF2α, ionomycin, and TNFα, also respond to 

heat stress by increasing Hsp70 (Khanna et al., 1995).  That same author reported that Hsp70 

negated the inhibitory effects of PGF2α on progesterone production by the corpus luteum 

(Khanna et al., 1995).  Research has shown that heat shock effects alter steroid production by 

disrupting steroidogenic acute regulatory protein (StAR) expression at the transcriptional level 

(Murphy et al., 2001).  They believe it does so by acting on the promoter that is responsible for 

basal and cAMP inducible expression of StAR (Murphy et al., 2001).  To further explore the 

mechanisms by which the process of steroidogenesis copes with heat stress, Oka et al. (2017) 

reviewed the mechanisms by which HSF1 influences leydig cell steroidogenesis.  They 

concluded that HSF1 maintains cholesterol transport and protects StAR protein.  This, of course, 

has important implications in steroidogenesis in the male, as testosterone production starts with 

cholesterol transport into the mitochondria due to StAR protein in the leydig cells (Oka et al., 

2017). 
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Polymorphisms in the Hsp70 Gene 

 Single nucleotide polymorphisms (SNPs) in the HSP gene have gained interest as 

potential biomarkers for forecasting stress tolerance in cattle.  We know that HSPs are critical 

components to maintain normal cell functions, but polymorphisms within the genes have not 

been studied in its full capacity.  Many researchers in the human field have detected an 

association between SNPs in the Hsp70 gene and human health concerns, primarily cancer (He et 

al., 2014; Partida-Rodriguez et al., 2010; Wang et al., 2010).  Because of their relationship with 

protein stabilization, they have a beneficial relationship with several immune cells and different 

haplotypes seem to affect the person’s response to potential stressors (He et al., 2014).  

Surprisingly, some SNPs in Hsp70 genes associated with an increased risk to cancer while other 

SNP’s had no relationship (He et al., 2014).  They reported that Hsp70-2 was associated with 

increased cancer risk but not SNPs in Hsp70-1.  Their work agrees with that of Guo et al. (2011), 

who also failed to correlate SNPs in Hsp70-1 to cancer.  Alternatively, other studies have 

reported an association with specific types of cancer (Partida-Rodriguez et al., 2010; Wang et al., 

2010).  In addition to cancers, other research has linked SNPs to health factors such as diabetic 

nephropathy (Buraczynska et al., 2009), and chronic obstructive pulmonary disease 

(Matokanovic et al., 2012).  Research in this area is not as advanced in cattle as it is humans, but 

SNPs in the Hsp70 gene are likely to have similar associations in cattle. 

 In cattle, SNPs have been linked to multiple production traits that could directly correlate 

to the bottom-line profits of a cow herd.  One of the more obvious associations was with 

thermotolerance (Bhat et al., 2016; Li et al., 2011).  This association is shown in both beef (Bhat 

et al., 2016) and dairy cattle (Basirico et al., 2011; Li et al., 2011).  Knowing of this association, 

alone could possibly explain the remainder of associations that have been discovered.  For 
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example, SNPs in the promoter region were associated with the weaning weights of cross bred 

calves (Starkey et al., 2007).  Their work highlighted a tendency between a cytosine deletion at 

base 895 and increased weaning weights.  Other factors that could influence both growth and 

reproduction in cattle include milking parameters.  SNPs in the Hsp70 gene have been shown to 

impact milking traits such as mastitis (Cheng et al., 2009).  Both of those studies focused on 

traits that are of more importance once the live offspring is on the ground.  Other work has 

shown an association between SNPs and overall reproductive traits that correlate to even getting 

a live calf.  In the promoter region, SNPs were associated with pregnancy rates of crossbred 

cows (Banks et al., 2007).  Similar research conducted by Rosenkrans et al. (2010), indicated that 

cows that were homozygous for the minor allele at transversion site A1125C or G1128T has 

lower calving percentages, than the cows that were homozygous for the major allele.  In the same 

study, they concluded that cows with a deletion for cytosine at base 895 not only had decreased 

calving percentages but also had a later Julian calving date (Rosenkrans et al., 2010).  This is the 

same deletion that Starkey et al. (2007) associated with heavier weaning weights in crossbred 

calves.  These two studies could describe a potential conflict that takes place in selecting females 

in beef cattle herds.  After all, it is likely that commercial cattlemen are tempted to keep females 

in their herd that raise the fastest growing calves with heavier pay weights, but Rosenkrans et al. 

(2010) imply that these cows may also be less productive in terms of reproduction.  Although the 

majority of research has focused on cow production traits, SNP in the Hsp70 gene may also 

affect male fertility.  In goats, SNPs in the Hsp70 were associated with sperm concentration and 

motility characteristics (Nikbin et al., 2014).  They also correlated sperm cryopreservation 

characteristics to SNPs.  SNPs in the Hsp70 gene also have an association with boar semen 

characteristics (Huang et al., 2002). 
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 All of these traits could be a direct result of their ability to cope with thermal stress.  In 

addition, SNPs in the HSP genes appear to have a breed type association, which would explain 

differences in heat tolerance between breeds (Lamb et al., 2007).  There work determined that 

the majority of SNPs found were present in Brahman cattle (Lamb et al., 2007).  As mentioned 

before, identification of SNPs in the Hsp70 gene could serve as a biomarker for selecting animals 

to suit specific production environments. 

Summary 

 Both Neospora caninum infections and environmental stressors can be detrimental to 

reproductive performance in beef cattle.  To make matters worse, it is possible for multiple 

stressors to work together.  Due to the nature of Neospora caninum infections and the 

inflammation response that may come with it, along with the stress induced mechanisms of 

Hsp70, it is conceivable to believe that Hsp70 genotypes could be associated with the mother’s 

immune response to the infection.  Regardless, both of the two show capabilities of influencing 

pregnancy status and outcome, which justifies the need for additional research.  Specifically, 

there is a need for research that will help producers in the United States know how to select cattle 

that will be suited for their environment. 
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Incidence of Neospora Caninum Infection in Beef Cattle and its Relationship with 

Reproductive Performance 

Abstract 

 Neospora caninum is an infectious protozoon that has been linked to reproductive failure.  

It is primarily recognized for its association with abortions, but also causes substantial economic 

losses by affecting milk yield, weight gains, and calf morbidity.  Cost estimates are difficult to 

fully quantify, but global estimations suggest Neospora caninum is responsible for billions of 

dollars in losses annually.  This study tested for the incidence of Neospora caninum in beef cattle 

located in the central region of the United States and evaluated the relationship between 

seropositive animals and production characteristics.  The study consisted of two trials.  Trial one 

was an epidemiology population-study testing for the incidence of the infection in open, beef 

replacement heifers (n = 1306), and it yielded an infection rate of 6.9%.  Trial two utilized serum 

samples collected from breeding-age beef cattle (n = 500) and evaluated the relationship that 

location, age, breed, farm dogs, and feeding mixed rations had with the infection rate and 

pregnancy outcome.  Based off a serology test, the infection rate was 9.6%.  There was a 

relationship (P < 0.05) between state residency of cows, cow age, and seropositive infection 

rates, but not between the number of seropositive animals and breed, number of farm dogs, or 

feeding a mixed ration (P < 0.1).  While serostatus had no effects (P > 0.1) on pregnancy rates 

across the population, in Oklahoma fewer (P < 0.05) seropositive cows were pregnant.  Overall, 

this project provides evidence that Neospora caninum is prevalent in the central region of the 

Unites States and may explain decreased reproductive rates for cattle in some areas. 

Keywords: Abortion, Cattle, Infection, Protozoa, Neospora caninum 
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Introduction 

 Neospora caninum is an infectious protozoon that is a member of the Apicomplexan 

family (Reid et al., 2012) and has been linked to reproductive failure in bovine animals (Hassig 

and Gottstein, 2002; McAllister et al., 1996).  It is transmitted vertically by trans-placental 

contamination during gestation (Barr et al., 1994; Hall et al., 2005), and also after parturition, 

through the ingestion of contaminated food and water sources (De Merez et al., 1999; Trees et 

al., 2002).  Economic ramifications from this disease are difficult to quantify, but global 

estimations have been as high as $2.38 billion annually (Reichel et al., 2013). The United States 

dairy industry accounted for $546.3 of this dollar figure, suggesting it can have substantial 

financial impacts on the United States agricultural economy (Reichel et al., 2013).  It is widely 

recognized as one of the leading causes of abortion in bovine animals. Because of this, the 

majority of financial losses are attributed to abortions (Gondim et al., 2004), which have been 

reported as high as 90% within some herds (Dubey, 2003); however, Neospora caninum is also 

responsible for decreased milk yields (Hernandez et al., 2001; Romero et al. 2005), decreased 

gains (Barling et al., 2001), morbidity in offspring (Monney et al., 2011), delayed breed back 

(Waldner et al., 1998), and increased culling rates (Waldner et al., 1998).   

Members of the Canis genus are recognized as the primary definitive host for the parasite 

(Donahoe et al., 2015), and they are responsible for shedding oocysts that lead to exogenous 

infections in cattle.  Cattle, along with many other warm-blooded animals, serve as secondary 

hosts (Donahoe et al., 2015).  Because of its similarities to Toxoplasma gondii, it has previously 

been misdiagnosed.  It is also very difficult to diagnose due to the nature and timing of abortions 

because, often, fetal tissue is never recovered for testing.  For this reason, it is likely that 

Neospora caninum is responsible for more reproductive issues than is ever recognized. 
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 Much of the previous work has been performed on dairy cows and has taken place in 

other countries (Almeria et al., 2009; Bartels et al., 2007; Frossling et al., 2005; Romero et al., 

2005; Lopez-Gatius et al., 2004, Dijkstra et al., 2003; Otranto et al., 2003; Hassig and Gottstein, 

2002; Bergeron et al., 2000; Bjorkman et al., 2000; Bartels et al., 1999).  Research is limited on 

the relationship Neospora caninum may have on the beef industry.  While there is data available 

from studies that have taken place here in the United States, more work needs to be conducted 

domestically to determine the severity and outcome of the infection (Barling et al., 2001; 

Sanderson et al., 2000; Thurmond et al., 1995; Anderson et al., 1991).  If producers can perform 

a serological test to identify and cull infected cows out of their herd and also as a selection tool 

for selecting replacement females, then it may pay dividends for improving reproductive success 

and financial gains.  This study was conducted to test for the incidence of Neospora caninum 

infections in the central plains of the United States and to determine the relationship with 

reproductive performance. 

Materials and Methods 

Trial 1: Incidence of Neospora Caninum in Open Replacement Heifers 

 The first trial tested for the incidence of Neospora caninum in non-pregnant beef heifers 

(n=1306) being developed for replacements and also evaluated herd effects on the rate of 

seropositive animals.  Blood samples were collected prior to breeding from four different herds 

located in Illinois, Kansas, and Missouri.  All serum was tested using the ELISA test (IDEXX 

Laboratories, Inc., Westbrook, MA). 

Trial 2: Incidence of Neospora Caninum in Beef Cows 

 Blood samples were collected from 25 beef cattle operations located in a five-state region 

of Arkansas, Kansas, Missouri, Ohio, and Oklahoma.  The cows (n = 500) were randomly 
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selected from each herd, and all were from operations with at least 50 head.  The samples were 

tested for pregnancy-status first using bioPryn Flex (Biotracking, Inc., Moscow, ID), and then 20 

samples from each herd (10 pregnant and 10 open) were tested for Neospora caninum using the 

Idexx Neospora X2, ELISA test (IDEXX Laboratories, Inc., Westbrook, MA).  Data for 

production characteristics also were collected for stage of pregnancy, cow age, number of farm 

dogs, forage type, and use of mixed-ration feeding. 

Serum Preparation and Analysis   

 Whole blood was received in BD vacutainer blood collection tubes.  Serum used for 

pregnancy status was prepared using the bioPryn Flex protocol (Biotracking, Inc., Moscow, ID).  

Serum for Neospora caninum testing was prepared using the IDEXX Neospora X2 protocol 

(IDEXX Laboratories, Inc., Westbrook, MA).   

Statistical Analysis 

 Trial 1: This trial was an epidemiology study that utilized a randomized design to 

perform a general population scan.  Differences were tested with general linear mixed models 

using the GLIMMIX model in SAS.  When F-tests were different (P < 0.05), least squares means 

were separated using multiple t-tests with Tukey-Kramer adjustment. 

Trial 2: The second trial was a randomized complete block design.  Within each herd 

(blocking factor), animals were categorized by pregnancy status as “open” or “pregnant” and 

Neospora caninum “negative” or “positive”.  Differences were tested with general linear mixed 

models using the GLIMMIX model in SAS.  When F-tests were different (P < 0 .05), least 

squares means were separated using multiple t-tests with Tukey-Kramer adjustment.  For 

statistical purposes, breed type was categorized into two groups (straightbred or crossbred), and 
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cow age was categorized into four groups (1 = heifers less than 2 years, 2= 2 years old, 3 = 3 - 6 

years old, and 4 = 7 - 12 years old).   

Results 

 The incidence of seropositive animals in the first trial testing for Neospora caninum in 

open replacement heifers was 6.9% (Table 2.1).  In trial two, the overall seropositive infection 

rate in the beef cow population was 9.6%.  Only four of the twenty-five herds tested did not yield 

at least one positive animal.  The state in which the herd was located had a significant (P < 

0.0001) effect on the rate of infection (Figure 2.1).  Infection rate by state for the states that had 

multiple herds tested were Arkansas (27.5%), Missouri (13.3%), Oklahoma (5.6%), and Kansas 

(4.3%).  Arkansas differed (P < 0.001) from Oklahoma and Kansas (Figure 2.1).  The overall 

infection rate for all states had no effect on pregnancy status nor the pregnancy outcome, except 

for in Oklahoma where seropositive animals had a lower (P < 0.05) percentage of pregnancies 

(Table 2.2).  Seropositive infection rate was greatest (P = 0.02) for cows that were 7 – 12 years 

old (Figure 2.2).  There were no differences (P > 0.1) observed for breed, number of dogs, or 

cattle fed a mixed ration. 

Discussion 

 For years, Neospora caninum infection rates were thought to be primarily an issue for 

dairy cattle due to the nature of how they were confined and managed.  Based on a commercial 

serological test, this study demonstrates that grazing beef cattle are susceptible to this parasite 

with an overall infection rate of Neospora caninum at 9.6%.  It is possible that the incidence 

could be even higher than detected because antibody levels can fluctuate in seropositive animals 

(Dubey et al., 2007; Dubey and Schares, 2011; Hietela and Thurmond, 1999).  Therefore, 

latently infected cows do have the ability to fall below detectable levels only to experience a 
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recrudescence during mid-late gestation (De Marez et al., 1999; Lindsay et al., 1999).  Due to the 

nature and timing of our study, all cows were tested during the first 120 d of bull exposure, so if 

a cow had developed the ability to suppress the infection, they may not have experienced the 

resurgence of antibodies.  Of the states we tested, Arkansas had the highest sero-prevalance with 

a startling figure of 27%.  Other articles support the notion that infection rates can be highly 

geographical (Dubey et al., 2007).  There are several explanations why infection rates may 

drastically vary in different regions.  According to Otranto et al. (2003), it could be that stocking 

rates influence infection rates.  While stocking rates can drastically vary within regions due to 

many variables, it is conceivable that Arkansas and Missouri pastures support more animal units 

per acre than Kansas and Oklahoma.  If this theory is true, then it would match the results of our 

study in which Arkansas was the highest incidence of infection and Missouri was the second 

highest.  Even though all of the herds tested were located in the central portion of the United 

States, there is still noticeable differences in climate and rainfall in this region.  Yaniz et al. 

(2010), along with Wouda et al. (1999) showed that rainfall, humidity, and season could play a 

role in the infection rates.  This is quite possibly because the environment becomes more 

favorable for the parasite survival outside the hosts.  Of the states we tested, the states with the 

highest annual relative humidity and annual rainfall also had the highest infection rate (National 

Weather Service).  Another explanation for the significant interaction observed between states is 

the potential for increased populations of definitive hosts, such as dogs, coyotes, and other 

wildlife in some states versus others.  According to Dubey et al. (2007), the closer the farm is to 

areas of increased human populations, the greater the risk of infection.  They suggest this may be 

due to the fact that coyotes and dogs are more likely to congregate in these areas. 
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 Results from this study also revealed that age has a significant effect on serostatus. The 

two age groups with the most seropositive animals were the second-calf heifers and also the aged 

cows.  If previous research proving that immunosuppressors can affect the dams serostatus is 

applicable to all beef herds, it is possible that heifers bred with their second calf and milking 

their first, along with aged cows, could experience the most nutritional stress, which could 

explain the age effects we observed.     

 Our study also revealed differences in serostatus between herds with one herd being as 

high as 50%.  The herd in which open replacement heifers were developed was associated with 

Neospora caninum infection rates.  One group of 61 potential replacement heifers yielded 19 

(31.6%) seropositive heifers and another group was 33%.  While the study on open replacement 

heifers had a total incidence of 6.2%, it is worth noting that the majority of heifers from that 

study came from a herd that had tested for Neospora caninum infection and culled routinely for 

the past three years.  Heifers from other herds in that study had a seropositive rate of 10.2%.  

While this information is merely anecdotal, it is in agreement with research by Larson et al. 

(2004) that suggests that testing and culling is a beneficial management tool for reducing 

infection rates within a herd.  In addition, previous research found that seropositive, first-calf 

heifers experienced a higher rate of abortion in their first pregnancy than seronegative heifers 

(Lagomarsino et al., 2019; Brickell et al., 2010; Thurmond and Hietala, 1997).  Research from 

Brickell et al. (2010) not only concluded that they were at a higher risk of abortion in their first 

and second pregnancies, but also showed that they were more likely to have perinatal death loss.  

Interestinlgy, they didn’t observe any differences in conception rates or age at first conception.  

Albeit in dairy heifers, another heifer trial found that 61% of seropositive heifers experienced 

abortions compared to only 3% of seronegative heifers (Weston et al., 2005).  If this is applied to 
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the group of open heifers in our first trial, then that group would have likely bred up at similar 

rates, regardless of serostatus, and experienced pregnancy losses in approximately 55 of those 

seropositive females.  Depending on the cattle market and how producers value their time, this 

figure would more than justify testing and culling by using serological tests prior to selecting 

replacements.  This would not guarantee the females stay seronegative for life because they 

could be infected through trophic transmission at a later date, but it would serve as a valuable 

first step in managing the adverse effects of Neospora caninim infections. 

Although previous research has concluded that seropositive cows are more likely to abort 

pregnancies than seronegative cows (Lopez-Gatius et al., 2004; Pare et al., 1997; Thurmond and 

Hietala, 1997), our results indicate that other factors such as geographical location and operation 

are related to the effects of seropositive status on pregnancy outcomes.  There are studies that are 

in agreement with our results, showing that infected dams are not always at risk for pregnancy 

loss (Dijkstra et al., 2002; Romero et al., 2005).  In herds with elevated endemic abortions, first-

calf heifers are at greater risk for experiencing an abortion than cows that are past their first 

lactation (Thurmond and Hietala, 1997).  Our study included a low percentage of first calf 

heifers that were seropositive, which may explain why our results differ from some of the 

previously published work.  Perhaps the best explanation for this discrepancy is the possibility 

that cows used in this study were born seropositive.  If this were the case, then statistics show 

they are less likely to lose their pregnancy than naïve cows that develop an infection after they 

are born (Williams et al., 2003).  Endogenous Neospora caninim infections result in different 

outcomes than exogenous infections (Dubey et al., 2007).  We do not know the previous 

reproductive status of the females tested in our study, but if they had aborted previously then 

their risk of abortion would have been lower during the timecourse of this study; abortion risks 
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decrease with subsequent pregnancies in cows that were born seropositive (Thurmond and 

Hietala, 1997).  Management practices, for our collaborators that developed heifers in our first 

study, resulted in the culling of seropositive heifers; therefore, subsequent testing for longitudinal 

observations of serostatus and pregnancy outcomes was not possible.   

The ELISA test has been referred to as the best test for detecting Neospora infections at 

the herd level (Almeria, 2013; Frossling et al., 2003; Pare et al., 1995); however, the 

commercially available ELISA for detecting pregnancy does not have the capability of staging 

pregnancies, so if Neospora caninim-infected cows lost a pregnancy early and bred back prior to 

pregnancy testing those individuals would not have been identified in our study.  Even though 

there are reports available that support the theory of early pregnancy loss, the majority of 

Neospora-induced abortions were reported in mid-gestation (Williams et al., 2000; Dubey et al., 

2007; Gibney et al., 2008; Almeria and Lopez-Gatius, 2013; Regidor-Cerillo et al., 2014).  

Recent research has focused on strain potency and their relationship with pregnancy outcome 

(Jimenez-Pelayo et al., 2019; Rojo-Montejo et al., 2009).  Perhaps cattle in our study were 

exposed to different strains of Neospora caninim which could explain some of the variation in 

serostatus impacts on pregnancy outcomes in our study.  Identifying Neospora caninim strains, 

their virulence and impact on bovine pregnancies in central USA is a topic for future research.   

Lastly, the climate and weather patterns during the period when the project was 

conducted may have influenced the pregnancy outcome and lack of abortions in seropositive 

animals.  Atleast one recent multi-year study concluded that “year” had a relationship with 

pregnancy outcome in seropositive animals (Lagomarsino et al., 2019).  In our study, rainfall in 

the testing region was above average (National Ocean and Atmospheric Administrations); in 

turn, forage availability and quality may have been superior to most years.  Fall-calving cows, in 
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particular, would have benefited from that increased rainfall and nutritional plane of cattle in this 

region.  Stressors, including plane of nutrition, can compromise immune function and work in 

conjunction with Neospora caninum to increase the risk of abortion (Yaniz et al., 2010; Dubey et 

al., 2007; Bartels et al., 1999).   

Conclusion 

 Neospora caninum infections in cattle can substantially influence reproductive success 

and profit margins.  This study provides evidence that beef cattle located in the central region of 

the United States are at risk of developing Neospora caninum infections providing a possible 

explanation for unexplained fetal loss.  The commercial kit used in our study to determine 

serostatus of Neospora caninum infection may serve as management tool for producers and 

veterinarians for culling decisions; however, additional research is needed to determine the most 

beneficial testing and culling protocols for management of the parasite.   
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Appendix 

Figures and Tables 

 

Figure 2.1  Percentage of cows, based on age classification, that were seropositive for Neospora 

caninum.  Classifications were heifers less than 2 years of age (n = 107), females 2 years of age 

(n = 79), cows 3 to 6 years of age (n = 177), and cows 7 to 12 years of age (n = 77). Values in 

columns without a common superscript differ (P < 0.05). 

 

    

 

 

 

 

 

 



97 

 

Figure 2.2  Percentage of cows that were seropositive for Neospora caninum by state of 

residency.  Arkansas is represented by four herds (n = 80), Kansas is represented by seven herds 

(n = 140), Missouri is represented by four herds (n = 80), and Oklahoma is represented by nine 

herds (n = 180).  Values in columns without a common superscript differ (P < 0.05).  
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Table 2.1  Neospora caninum seropositive incidence in virgin heifers (Trial 1).   

Herd ID State # Tested # Seropositive % Seropositive 

1 Illinois 61 19 31.1a 

2 Kansas 313 35 11.1b 

3 Kansas 85 3 3.5cd 

4 Missouri 296 18 6.0c 

5 Missouri 551 16 3.0d 

Total - 1306 91 6.9 
a,b,c,dpercentages without common superscript differ (P < 0.05). 
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Table 2.2 State effects on Neospora caninum infection rate and pregnancy status (Trial 2). 

Pregnancy 

Status Arkansas Kansas Missouri Oklahoma SEM P value 

Open 27.5a 4.3b 13.3ab 10ab 0.0575 0.0626 

Pregnant 27.5a 4.3b 13.3ab 1.3b 0.0301 < 0.001 

Total 27.5a 4.3b 13.3ab 5.6b 0.0389 0.002 

a,bwithin rows, percentages without common superscripts differ (P < 0.05).  For each herd within 

each state an equal number of pregnant and open females were tested for infection with 

Neospora caninum.   
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Relationship between Heat Shock Protein 70 and Beef Cattle Production 

Abstract 

 Heat shock proteins are widely recognized for their role in protecting proteins and 

maintaining normal physiological functions in the body.  Besides their protein chaperoning 

capabilities, they have been associated with profitability traits in cattle.  This project tested the 

relationship between heat shock protein-70 (Hsp70) genotypes and beef heifer reproductive and 

blood characteristics.  Whole blood was collected from virgin replacement-beef heifers (n = 165) 

and sent to a commercial laboratory for genotyping (Neogen Genomics; Lincoln, NE).  Pelvic 

area (PA), reproductive tract score (RTS), and body weight (BWT) were determined pre-

breeding.  All heifers were synchronized, artificially inseminated (AI), and 14 days after AI 

clean-up bulls were placed with each group of heifers.  Four single nucleotide polymorphisms 

associated with the Hsp70 gene [promoter (A1125C and C895D) and coding region (G1851A 

and G2033C)] were evaluated for their relationship with PA, RTS, WT, pregnancy status, and 

blood cell distribution.  Minor allele frequencies were 40, 6.6, 3.6, and 14%; respectively for 

A1125C, C895D, G1851A, and G2033C.  Mutation C895D was associated (P = 0.04) with the 

percentage of circulating lymphocytes (78.7 vs. 69.5; respectively CC and CD).  Compared to 

homozygous (GG) heifers the heterozygous heifers at G2033C had larger (P < 0.05) PA but 

lower (P < 0.05) pregnancy rates (172 vs. 184 cm2, and 91.8 vs. 78.1%; respectively).   Neither 

A1125C nor G1851A affected (P > 0.1) heifer traits of interest.  Mutations associated with 

Hsp70 impacted reproductive characteristics of beef heifers.  Relationships among cellular 

mechanisms and phenotypic traits will be the subject of future projects.   

Keywords: Heat Shock Proteins, Cattle, Reproduction, Genetics 



101 

Introduction 

Profit potential of beef cattle operations relies heavily on the fertility and reproductive 

success of their cows and reproductive failure can be costly for cattle operations (Bellows et al., 

2002).  Non-pregnant cows along with cows that breed later than their contemporaries can be 

less profitable for commercial cattle producers (Prevatt et al., 2009).  Additionally, the breeding 

rates of first-time heifers are traditionally lower than mature cows and age at first conception can 

affect lifetime productivity (Patterson et al., 1992).  If livestock producers had access to a 

selection tool to help identify more fertile females prior to replacement selection it would serve 

as a valuable management tool.   

Heat shock proteins (HSP) are molecular chaperones that are synthesized naturally in 

response to stressors and are important molecules for managing normal physiological functions 

(Tower, 2011).  The HSP family of proteins have been related to oogenesis (Curci et al., 1987, 

Curci et al., 1991), gamete interaction during fertilization (Matwee et al., 2001), and 

steroidogenesis (Khanna et al., 1995; Murphy et al., 2001).  At the organismal level, genotypes 

within upstream elements of the Hsp70 gene were associated with calving percentage and Julian 

calving date (Rosenkrans et al., 2010).  Collectively, those reports suggest that Hsp70 genotypes 

may be predictive of reproductive success in beef cattle.  The aim of this study was to determine 

the relationships between Hsp70 genotypes and reproductive success and blood cell distributions 

of virgin-beef heifers.  

Materials and Methods 

 Yearling Angus and crossbred Angus-influenced heifers managed at two operations 

(Operation 1, n = 99; Operation 2, n = 66) had an average body condition score of six.  Thirty 

days prior to artificial insemination (AI) body weight, pelvic area (PA), and reproductive tract 
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score (RTS; score 1-5, Pence et al., 1999).  Heifers not meeting the minimum PA of 150 cm2 and 

RTS of three or higher were culled from the project.  All retained heifers were synchronized 

using the 14-day CIDR®+Prostaglandin protocol and timed AI at 66 h following the 

synchronization protocol (Johnson et al., 2013).  Clean-up bulls were placed with the heifers 14 d 

following AI, and heifer pregnancy was determined by ultrasound at 90 d following AI.  At the 

time of pregnancy detection, blood samples were collected and transported on ice to the lab 

where blood cell distribution was determined (Cell-Dyne 3500 hematology analyzer; Abbott 

Laboratories, Abbott Park, IL).  Mutations associated with Hsp70 gene were genotyped (Table 

3.1) from whole blood at Neogen Genomics (Lincoln, NE). 

Statistical Analysis 

Experimental design was a randomized complete block with operation serving as the 

block.  Quantitative traits were analyzed with heifer as experimental unit, and main effects of 

operation and mutation site genotype.  Each of the four single nucleotide polymorphisms (SNP; 

A1125C, C895D, G1851A, and G2033C) were analyzed independently by mixed model 

ANOVA (SAS Inst. Inc., Cary, NC).  When F-tests were significant (P < 0.05) means were 

separated using multiple t-tests with Tukey-Kramer adjustment.  Genotype associations with 

pregnancy status were determined using Chi-square tests. 

Results 

Identification of Polymorphisms  

 Table 3.1 presents base sequences for the four mutations associated with the Hsp70 gene 

that were evaluated in this study; two SNP sites were in the upstream elements (A1125C, and 

C895D) and two were in the coding sequence (G1851A, and G2033C).  Minor allele frequencies 

were 40, 6.6, 3.6, and 14%; respectively for A1125C, C895D, G1851A, and G2033C (Table 3.2). 
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Base Position 1125 

 At 1125 bases upstream of the putative start site a transition (adenine to guanine) was 

identified and labeled as A1125C.  Genotypes of A1125C (Table 3.2) were not associated (P > 

0.1) with reproductive traits or blood cell differential counts (Table 3.3).   

Base Position 895 

 An insertion/deletion was identified at 895 bases upstream of the putative start site and 

was labeled C895D.  Genotypes at C895D were not associated (P > 0.17) with reproductive 

traits and most blood cell parameters.  However, mutation C895D genotypes were associated (P 

= 0.04) with the percentage of circulating lymphocytes (78.7 vs. 69.5; respectively CC and CD; 

Table 3.4).   

Base Position 1851 

 A transition of guanine to adenine was observed at base position 1851, located in the 

coding region (labeled G1851A).  There were 140 heifers’ homozygous guanine, 11 

heterozygous heifers, and zero heifers that were homozygous for the minor allele (Table 3.2).  

Genotypes at SNP G1851A were not associated (P > 0.16) with reproductive traits or blood cell 

differentials (Table 3.5).  

Base Position 2033 

 At base position 2033 in the coding region, a transversion of guanine to cytosine was 

detected and labeled G2033C.  No homozygous minor allele heifers were observed at G2033C 

(Table 3.2).  Compared to homozygous (GG) heifers the heterozygous heifers at G2033C had 

larger (P < 0.05) PA but lower (P < 0.05) pregnancy rates (172 vs. 184 cm2, and 91.8 vs. 78.1%; 

respectively; Table 3.6).  Heterozygous heifers also had a lower (P = 0.04) number of WBC. 
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Discussion 

Previous research has demonstrated that Hsp70 polymorphisms are related to 

reproductive fitness (Rosenkrans et al., 2010; Ortega et al., 2016).  Our study provides additional 

evidence that Hsp70 genotypes can be used to improve reproductive success in beef heifers that 

had previously met culling criteria for minimum PA and RTS.  Heifers with the transversion 

modification of guanine to cytosine (G2033C) had lower pregnancy rates.  Because fertility and 

pregnancy establishment are so crucial for economic success when raising beef cattle, 

uncovering genetic markers linked to pregnancy rates could be huge for the industry.  Other 

scientists have recorded effects of G2033C genotype on multiple cattle production parameters.  

Specifically, Brown et al. (2010) reported differences in milk characteristics.  Another project 

concluded that same SNP affected weaning weights and cow efficiency (Finney, 2018).   

This is one of the first projects that related Hsp70 genotypes to PA.  This is substantial 

because dystocia accounts for millions of dollars in economic losses annually (Patterson and 

Herring, 2017).  Calf death loss is four to eight times higher in cows that experience difficulty in 

calving than in normal births (Patterson and Herring, 2017).  Interestingly, the same group of 

heterozygous G2033C females that had a larger mean PA experienced lower pregnancy rates.  

While it would have been ideal for producers if the G2033C genotype benefited both PA and 

pregnancy rates simultaneously, reader is reminded that all heifers far exceeded the minimum PA 

for replacement beef heifers.  

Lack of relationships between non-G2033C Hsp70 mutation sites and pregnancy rates in 

this study was not consistent with previous research.  Cows with two cytosine bases at mutation 

C895D had higher calving percentages than C895D cows with one or zero cytosine (Rosenkrans 

et al., 2010).  Since then, other studies have determined that deletions in the promoter region for 
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Hsp70 can affect embryo survival (Ortega et al., 2016) and can influence the number of cleaved 

embryos that advance to the blastocyst stage (Cochran et al., 2013).  In the study by Ortega et al. 

(2016), the deletion appeared to benefit embryo development; however, more recently, it was 

discovered that cows with a deletion of cytosine at base 895 had a significantly later Julian 

calving date (Finney, 2018).  Contrasting results in between these studies only validates the need 

for more research to be performed on this topic. 

Even though there was variation amongst genotypes within the tested population, a strict 

culling process was performed on heifers prior to the study, which eliminated heifers that tested 

positive for Neospora caninum, had a PA less than 150 cm2, and RTS lower than three.  Because 

all of these traits have been linked to reproductive performance, it is reasonable to believe that 

the culling process reduced the amount of variation in genotypes we had in our test group and 

may have removed many of the poorer performing females.  In future studies it would be 

valuable to include the females that failed to meet that criteria into the test population, but it is 

difficult to convince collaborators to retain heifers of questionable value. 

Available research describing the association G2033C had on WBC data is limited.  Even 

though there were differences observed in this study, according to Oliver et al. (2000), along 

with the Animal Health Diagnostic Center at Cornell University, the WBC data were within 

normal ranges for cattle.  Therefore, the impact of this genetic relationship on herd health has yet 

to be determined, but it is good for the scientific community to know the relationship exists.  The 

genetic relationships of Hsp70 and production of HSP in response to stressors and ultimately 

exhibited in phenotypic traits is a topic for future research.  Results from this study support the 

need for more research describing the effects of Hsp70 genotypes on immune function and to 
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what extent this information can be used when cattle producers are making management 

decisions. 

Conclusion 

 Reproductive performance and fertility is a critical component for economic success in a 

beef cow-calf operation (Bellows et al., 2002).  The expense of purchasing or developing 

replacement heifers can greatly impact sustainability of a cattle enterprise (Perry et al., 2009).  

By identifying and culling low performing heifers from the herd prior to the expense of 

developing them as replacements, producers could increase their economic and operational 

efficiency.  Results from this study support the previous work that Hsp70 genotypes are 

associated with cattle reproductive success and could be used in conjunction with other selection 

criteria for developing beef heifers.  
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Appendix 

Tables 

Table 3.1 Mutations associated with Hsp70 gene that were evaluated in this study. 

SNPa Sequence Reference 

A1125C 
GACCGCCCGAGGGGCACCAG[A/C]GCGTTCA

GTTTTCGGGTTCC 
Rosenkrans et al., 2010 

C895D 
GCCAGGAAACCAGAGACAGA[C/D]CCTACGC

AGGAGTAGGTGGT 
Rosenkrans et al., 2010 

G1851A 
GAAGAGCGCCGTGGAGGATG[G/A]CTTGGAA

GTAAACAGAAACGGG 
Brown et al., 2010 

G2033C 
CTGGCGGCTTTGGGGCTCAGG[G/C]CCCTAAA

GGGGGCTCTGGGTGG 
Brown et al., 2010 

aSingle nucleotide polymorphism occurred at the site indicated. The first letter represents the 

primary allele and the letter following the numbers indicates the minor allele. 
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Table 3.2 Genotypic distribution for polymorphisms associated with bovine Hsp70. 

 Genotype Distributionb  

Polymorphisma Homo hetero homo MAFc, % 

A1125C 49 81 19 40 

C895D 131 20 0 6.6 

G1851A 140 11 0 3.6 

G2033C 110 41 0 14 
aSingle nucleotide polymorphism occurred at the base indicated. The first letter represents the 

primary allele and the letter following the numbers indicates the minor allele. 
bHomo = homozygous primary allele; hetero = heterozygous; homo = homozygous minor allele 
cMAF = minor allele frequency 
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Table 3.3 Effects of Hsp70 SNP A1125C on beef heifer traits. 

Item AA AC CC SEM P-value 

Number of heifers 49 81 19 - - 

Body weight, kg 353.9 359.3 371.0 6.3 0.27 

Reproductive tract score 4.3 4.5 4.4 0.09 0.23 

Pelvic area, cm2 176.1 172.2 188.0 5.0 0.13 

Pregnancy rate, % 89.8 85.1 100 - 0.17 

Days pregnant 73.2 73.4 77.6 2.9 0.66 

Blood cell differential      

WBC, 1x103/µL 8.7 8.6 8.2 0.78 0.89 

Neutrophil, % of WBC 6.7 9.5 7.3 1.9 0.34 

Lymphocyte, % of WBC 78.7 76.9 75.1 3.2 0.74 

RBC, 1x106/µL 8.6 8.2 8.6 0.18 0.10 

Hemoglobin, g/dL 13.3 13.1 13.4 0.8 0.63 

Hematocrit, % 36.7 36.4 37.0 0.86 0.83 

Platelets, 1x103/µL  135.5 195.1 94.1 82.7 0.60 
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Table 3.4 Effects of Hsp70 SNP C895D on beef heifer traits. 

Item CC CD SEM P-value 

Number of heifers 131 20 - - 

Body weight, kg 358.7 362.2 6.1 0.71 

Reproductive tract score 4.4 4.6 0.09 0.40 

Pelvic area, cm2 175.0 177.9 4.8 0.69 

Pregnancy rate, % 87.0 95.0 - 0.35 

Days pregnant 74.7 71.6 3.0 0.49 

Blood cell differential     

WBC, 1x103/µL 8.7 8.2 0.77 0.64 

Neutrophil, % of WBC 7.9 11.2 2.0 0.24 

Lymphocyte, % of WBC 78.7 69.5 3.1 0.04 

RBC, 1x106/µL 8.4 8.0 0.18 0.17 

Hemoglobin, g/dL 13.2 13.0 0.26 0.70 

Hematocrit, % 36.6 36.5 0.85 0.92 

Platelets, 1x103/µL  177.3 107.4 81.8 0.54 
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Table 3.5 Effects of Hsp70 SNP G1851A on beef heifer traits. 

Item GG GA SEM P-value 

Number of heifers 140 11 - - 

Body weight, kg 359.7 346.7 7.57 0.27 

Reproductive tract score 4.4 4.7 0.11 0.19 

Pelvic area, cm2 175.5 173.8 6.1 0.89 

Pregnancy rate, % 87.8 90.9 - 0.76 

Days pregnant 74.3 73.1 3.6 0.84 

Blood cell differential     

WBC, 1x103/µL 8.5 10.4 0.93 0.17 

Neutrophil, % of WBC 8.6 4.1 2.4 0.2 

Lymphocyte, % of WBC 76.9 84.8 3.8 0.16 

RBC, 1x106/µL 8.3 8.7 0.23 0.28 

Hemoglobin, g/dL 13.2 13.3 0.32 0.72 

Hematocrit, % 36.5 37.3 1.03 0.61 

Platelets, 1x103/µL  167.2 136.1 99.8 0.83 
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Table 3.6 Effects of Hsp70 SNP G2033C on beef heifer traits. 

 

Item GG GC SEM P-value 

Number of heifers 110 41 - - 

Body weight, kg 355.9 367.7 4.9 0.1 

Reproductive tract score 4.4 4.5 0.07 0.79 

Pelvic area, cm2 172.0 184.0 3.9 0.03 

Pregnancy rate, % 91.8 78.1 - 0.02 

Days pregnant 73.7 76.0 2.6 0.54 

Blood cell differential     

WBC, 1x103/µL 9.1 7.5 0.62 0.04 

Neutrophil, % of WBC 7.9 9.4 1.6 0.49 

Lymphocyte, % of WBC 77.6 76.4 2.6 0.73 

RBC, 1x106/µL 8.4 8.3 0.15 0.8 

Hemoglobin, g/dL 13.2 13.0 0.22 0.37 

Hematocrit, % 36.8 36.1 0.7 0.48 

Platelets, 1x103/µL  185.3 128.2 67.3 0.5 
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Conclusion 

 

 These projects were conducted in an effort to improve reproductive performance of beef 

cattle.  We concluded that Neospora caninum is an infectious protozoon that is present in the 

central region of the United States and that serum tests can help identify seropositive animals in a 

herd.  Geographical region, herd, and cow age contributed to variation in Neospora caninum 

infection rates.  Future research could focus on different variables that may work in tandem with 

the infection to cause abortions and also what strains may be present in this region.  Projects 

within this dissertation determined that Hsp70 genotypes were related to reproductive 

characteristics and lymphocyte populations of beef heifers.  Together, these studies help identify 

potential issues that may affect reproductive performance of beef cattle in this region, and also 

provide insight on possibilities for identifying and selecting poorer-performing females.  More 

research is needed to understand the full extent to which these techniques can be utilized, but 

both projects could be potential management tools to identify heifers and cows that are at a 

greater risk for reproductive failure.  
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