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ABSTRACT 

Repeated, consistent, and precise gesture performance is a key part of recovery for stroke and 

other motor-impaired patients. Close professional supervision to these exercises is also essential 

to ensure proper neuromotor repair, which consumes a large amount of medical resources. 

Gesture recognition systems are emerging as stay-at-home solutions to this problem, but the best 

solutions are expensive, and the inexpensive solutions are not universal enough to tackle patient-

to-patient variability. While many methods have been studied and implemented, the gesture 

recognition system designer does not have a strategy to effectively predict the right method to fit 

the needs of a patient. This thesis establishes such a strategy by outlining the strengths and 

weaknesses of several spatiotemporal learning architectures combined with deep learning, 

specifically when low-cost, low-resolution capacitive sensor arrays are used. This is done by 

testing the immunity and robustness of those architectures to the type of variability that is 

common among stroke patients, investigating select hyperparameters and their impact on the 

architectures’ training progressions, and comparing test performance in different applications 

and scenarios. The models analyzed here are trained on a mixture of high-quality, healthy 

gestures and personalized, imperfectly performed gestures using a low-cost recognition system. 
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Chapter 1:  Introduction 

Recent research has indicated that touch-interaction is intuitive to humans; consequently, 

it has become one of the primary interfaces for human computer interaction (HCI). Capacitive 

sensing is currently emerging as one of the leading technologies used by touch-interaction 

systems due to its robustness, application flexibility, and ability to sense multi-touch gestures. 

This has resulted in the development of a wide variety of devices that use capacitive sensing to 

allow humans to better communicate with technology and improve their lives. Not every 

application can be universally applied, however, as some tasks require tailoring to specific 

individuals or needs. In order to create a useful HCI system, there are many factors that the 

designer must consider, but it can be difficult to navigate the vast complexities of modern deep 

learning without getting lost. This thesis examines the relationship between HCI, capacitive 

sensing, and deep learning through the lens of a smart rehabilitation system. 

1.1  Motor Rehabilitation 

Stroke is the fifth leading cause of death and the leading cause of long-term disability in 

the United States [1] [2]. One of the most common disabilities as a result of stroke is reduced 

motor skills or motor impairment. The literature is clear that motor skill repetition is an 

important part of the process towards recovering motor capabilities and that exercising those 

muscles is evidenced to largely decrease recovery time after a stroke [3], [4]. In these 

rehabilitation exercises, it is crucial that the gestures are monitored by a physical therapist to 

ensure that the gesture is performed correctly. Repeated incorrect gestures can hinder, and even 

somewhat reverse the rehabilitation benefits, which slows the patient’s recovery process [5]. 

However, they must also be performed daily in order to be effective. This creates a huge demand 
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for therapists’ valuable time and results in a large amount of travel time to and from the hospital 

for patients every day, which can be difficult and even harmful for a recovering stroke patient. In 

other situations, during a pandemic for instance, it is simply dangerous and irresponsible to 

continue this practice. 

Gesture recognition solves this issue by eliminating the need for professional monitoring. 

There are many suggested methods to approach this such as monitoring EMG 

(electromyography) patterns [6], virtual reality-based gesture therapy [7], and other forms of 

motion-tracking [4] that have seen success. However, there are several issues that arise with 

some of these solutions. 1.) These approaches are very expensive, and some of them cannot be 

easily transformed into an application that a patient could use in isolation without expertise. 2.) 

Camera-based solutions are intrusive and are subject to issues of privacy when security is not 

ensured. 3.) The relevant applications serve a target demographic that is highly associated with 

elderly patients. Elderly people are generally willing to use new technology if there is a clear 

benefit; however, their biggest concern is often lack of instructions for complicated systems [8].  

Therefore, a crucial goal of this thesis is to advance the efficiency and accuracy that low-

cost, unobtrusive forms of gesture recognition can achieve independently and reduce the current 

dependency on accelerometers, depth imaging, camera tracking, and other mediums of sensory 

input. This will reduce application complexity and make it easier for elderly patients to adapt.  
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Figure 1.  The Portable Transparent Activities Table (Activity board).  

The ideal gesture recognition platform for rehabilitation should be easy to use, cheap, and 

non-intrusive. For example, an activity board (Figure 1) equipped with gesture recognition can 

evaluate and record a patient’s exercises without the need for supervision or the presence of 

cameras. Such an application would be capable of recording accuracy on gestures performed 

daily. This tool could then provide feedback directly to the patient or create a report for a 

physical therapist to read and provide feedback to the patient weekly. The primary application 

studied in this thesis employs the use of low-cost capacitive sensor arrays to accomplish this. 

1.2  Smart Touch Systems  

Touch-based technology is an important part of our society and an important tool for 

HCI. Many modern phones and tablets utilize capacitive touch as a paradigm for this interaction 

which has created a universal familiarity with touchscreen systems, leading to a wave of research 

studying the effectiveness of touchscreen technology as an assistive or rehabilitation-oriented 

tool for elderly or disabled people. Many forms of home automation for the disabled that use 

touchscreen technology have since been implemented and tested [9], [10]. 
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Interestingly, it has been shown that elderly persons are both better at adopting, and have 

a significant preference for larger touchscreen devices, such as tablets or laptop-sized screens 

[8]. Recent studies have capitalized on this phenomenon and applied it to the field of gesture 

recognition for motor rehabilitation, such as a handheld tablet that uses modern capacitive touch 

technology for hand gestures [11], and a multi-touch tabletop game platform equipped with 

frustrated total internal reflection technology [12]. This work continues the investigation into 

touchscreen systems by studying recognition methods for large, inexpensive, and simple 

capacitive sensing applications. 

1.3  Deep Learning vs. Machine Learning 

Many of the studies regarding motor rehabilitation or home automation discussed in this 

thesis use traditional machine learning algorithms such as k-nearest neighbor (k-NN), support 

vector machine (SVM), and different forms of clustering. While these techniques are extremely 

useful, they are somewhat limited in their capabilities. An application designer must have some 

expertise on the subject being learned in order to extract the most useful features to make the 

algorithms work. These algorithms can also be slow to make predictions about new data that is 

taken from the environment or supplied after training, particularly k-NN where inference time 

scales with the amount of data. The speed of inference time is important for gesture recognition 

so that patients are quickly notified when they are performing a gesture inadequately.  

Deep learning has been studied heavily over the last several decades as an alternative to 

traditional machine learning algorithms with several advantages. A well-trained deep neural 

network can respond incredibly quickly to new inputs with accurate predictions [13]. Thanks to 

the development of APIs and libraries that use deep learning, it is now possible for someone to 

create a task-specific network capable of solving complex problems, such as gesture recognition, 
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without expert knowledge of the environmental parameters used for learning. However, an 

extremely common characteristic of deep learning is that it operates like a black box: it is given 

an input, then produces an output, but the observer cannot interpret much of what is happening in 

between. Explainable artificial intelligence (XAI) attempts to provide insight to a network’s 

performance; however, approaches in the field are relatively new and are far from perfect [14]. 

This black-box behavior can be desirable because a designer does not need to manually break 

down the problem, since an end-to-end network can take the most basic forms of input and 

translate them directly to a prediction or output. The downside emerges when designing the 

network itself, since it is difficult to know which architecture will best suit the specific problem. 

1.4  Problem 

Based on its low cost, non-intrusiveness, simplicity, and design flexibility, capacitive 

sensing is the ideal solution to motor rehabilitation and touchscreen systems for stroke patients. 

A shift towards deep learning may also improve gesture recognition results for these systems, 

where it is applicable. However, both capacitive sensing and deep learning are relatively young 

fields, with much left to be perfected and studied. Under these assumptions, there is still a 

problem: it is unclear to a task-specific application designer which learning architectures are the 

most capable and the most appropriate for the desired task. 

1.5  Objective 

Through meta-analysis of different hyper parameters and application-specific needs, this 

thesis establishes a decision-tree-like method to determine the best approach to a given learning 

problem in the field of gesture recognition with capacitive sensing. More specifically, this thesis 

analyzes the performance of different learning models on several different kinds of capacitive 
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sensor arrays using multiple gesture recognition problems. Based on several experiments, a 

consistent method is identified for choosing the best model depending on the problem, the 

technology available, and the primary goals of the problem-solvers. 

  



 7 

Chapter 2:  Background 

In order to investigate the complex and specific topics presented here, it is necessary to 

provide an introduction to the foundational concepts of those fields, as well as a very brief 

history on their development. Specifically, this thesis focuses on the understanding and careful 

comparison of the hyperparameters and intricate architectural differences of spatiotemporal 

gesture recognition. Consequently, relevant forms of neural networks and their functions will be 

covered in the most detail. Additionally, the experiments presented here are all performed using 

capacitive sensor arrays, and thus it is crucial to review concepts related to that technology. 

2.1  Capacitive Sensing 

Capacitive sensing has a vast list of applications in modern society and is crucial to many 

forms of human computer interaction. The field emerged as a solution to many problems which 

required non-traditional forms of input for automated systems [15], as well as extending the use 

of technology to people with hindering disabilities and illnesses [16]. Examples of such 

applications include touchscreen kiosks, buttonless keyboards [17], and perhaps most significant, 

the touchscreen mobile phone [18]. Some of these employ the use of surface capacitance, which 

is useful for determining the rough location of a touch event on a screen but has many 

shortcomings. The rest of what is discussed in this section is presented with projected 

capacitance in mind, a more complex and accurate technology. 

Projected capacitive sensing fundamentally revolves around manipulating the electric 

field produced by a capacitor with a conductor, such as a human hand or finger, and measuring 

the change in capacitance experienced by the capacitor [15]. A capacitor is most commonly 

made up of two parallel conductive plates separated by some non-conductive medium known as 
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the dielectric or insulator. When voltage is supplied to the capacitor, a positive charge builds up 

on the positive side, and an equal and opposite charge builds up on the negative side, creating a 

potential difference across the plates as well as an electrostatic field (E-field) that propagates 

between plates. This stored charge can be discharged later, and is described in Equation 1, 

 𝑄 = 𝐶𝑉 (1) 

where Q represents stored charge, C is the capacitance between the plates, and V is the voltage 

difference across them [19]. 

A capacitor generally acts as a rechargeable battery-like construct within a circuit that 

typically holds small amounts of charge but can be recharged extremely fast. However, it is 

useful here because the amount of charge stored in the capacitor can be measured as a way of 

interpreting the state of the environment it resides in. More importantly to this discussion, 

capacitance is also described in Equation 2, 

 𝐶 = 	 𝜀!𝜀"
𝐴
𝑑 (2) 

where	𝜀! represents the permittivity of free space, 𝜀" represents the relative permittivity of the 

insulating material between the plates, A is the plate area, and d is the distance between plates 

[19]. Changing the distance between plates or introducing a conductive body that interferes with 

the propagation of the E-field will proportionally and measurably affect the capacitance. 

Combining these phenomena yields the ability to accurately sense touch, pressure, proximity, 

and other experimental measurements. There are two main types of projected capacitance that 

are discussed here: self-capacitance and mutual capacitance. 
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2.1.1  Self-capacitance  

Self-capacitance generally refers to the measurement of an individual electrode’s 

capacitance with respect to earth ground [20]. Figure 2 shows an example schematic that 

incorporates several relevant capacitances within a circuit between a microcontroller unit (MCU) 

and a single sensing electrode. Most of the components on the MCU are uniquely coupled with 

the local ground, which is in turn coupled with earth ground [19]. The most important factor is 

the capacitance formed between a nearby earth-grounded human finger [21] and the electrode 

(Ctouch). As the foreign conductor moves closer, the distance to the electrode decreases, which 

increases the overall capacitance between the two plates (Equation 2), providing a measure of 

proximity. When a touch event occurs, the capacitance increases suddenly, due to the absence of 

air as a dielectric, providing a measurable indication of touch. 

 

Figure 2.  Visualization of the different capacitances throughout a self-capacitance circuit [19]. 

This form of capacitance yields stronger signals than mutual capacitance and does not 

inherently require multiple electrode layers. This paradigm can also be used with an array of 

electrodes to approximate touch within a two-dimensional space. However, with this approach, 
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self-capacitance is incapable of determining the exact locations of two simultaneous touches, an 

effect known as “ghosting” [22], and therefore cannot incorporate multi-touch gestures [19]. 

2.1.2  Mutual Capacitance 

 

Figure 3.  Disturbance of the E-field propagation between two electrodes [20]. 

While self-capacitance has a large potential for many applications, most of the work 

presented here involves mutual capacitance applications. Mutual capacitance is very similar to 

self-capacitance, except that a single capacitor is formed from a pair of nearby electrodes rather 

than an electrode with the earth ground. The positively charged electrode that emits the E-field is 

commonly known as the transmit electrode (Tx), while the negative electrode that receives the E-

field is known as the receive electrode (Rx). As a conductor approaches an electrode pair, it 

disrupts the E-field formed between electrodes (Figure 3), which causes a decrease in 

capacitance that can be measured by the MCU. This is especially effective because humans are 

coupled with earth ground, which means that a touch is analogous to introducing a ground shield 

[20]. 

This approach is also very good at sensing pressure. If the Tx and Rx electrodes are 

stacked on top of one another, then applying pressure to the electrode area will decrease the 

distance between the electrodes and therefore increase the capacitance between them (Equation 
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2). Note that this requires either the substrate between them to be compressible, the surface of the 

sensor to be flexible, or some other component to be non-rigid. 

2.1.3  Capacitive Sensor Arrays 

One downside to mutual capacitance is that a single sensing element requires two pins on 

an MCU. However, like self-capacitance, if the Tx and Rx electrodes are run perpendicularly, 

then a two-dimensional matrix can be formed that contains many more sensing elements than the 

number of pins required to implement it. This configuration is known as a capacitive sensing 

array, or CSA. In a CSA, when a Tx electrode and an Rx electrode cross paths, they form an 

electrode pair, which represents a single sensing element within the array, analogous to a single 

pixel within a digital image. Figure 4 shows a 4x4 mutual capacitance array that has 16 sensing 

elements, but only requires 8 MCU pins. There are several patterns that can be used to create 

two-dimensional capacitive sensor arrays with mutual capacitance. When the diamond pattern is 

used as in Figure 4, the thin, straight bridge connecting two diamonds is where two electrodes 

meet and form a pair [23]. Other well-studied patterns include multi-square patterns [23], fork-

shaped patterns [24], and snowflake-shaped patterns [25]. However, the applications evaluated 

here use only straight lines and diamond-shaped patterns. 

In this thesis, mutual capacitance is the primary paradigm that is used, for three reasons. 

1.) Unlike self-capacitance, mutual capacitance does not suffer from the issue of ghosting, which 

means that multi-touch interpretation is possible. With self-capacitance, each electrode forms an 

individual capacitor, such that activity is reported on an individual row or column basis. With 

mutual capacitance, activity is reported on an exact coordinate basis, since each sensing element 

is a unique capacitor that can be measured independently [22]. 2.) The E-fields between 

electrode pairs are restricted to a small space, which means that mutual capacitance allows for a 
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higher resolution and less noise between nearby elements. 3.) Because mutual capacitance does 

not rely on electrodes coupling directly with ground, parasitic capacitances to ground throughout 

the circuit are much less detrimental to sensor accuracy [20]. 

 

Figure 4.  A 4x4 diamond-shaped pattern of electrodes with 16 electrode pairs. The bottom 
right-most electrode pair is denoted by the red circle. 

2.2  Neural Networks and Deep Learning 

In a broad sense, machine learning is heavily tied to linear regressions and Gaussian 

mathematics, and thus has been around for centuries [26]. The modern design of the artificial 

neural network (ANN), often simply referred to as a neural network (NN), was originally 

inspired by the anatomy of the neurons located in the mammalian brain (Figure 5) [27], and more 

recent works continue to compare neural networks to biological structures [28]. Often, neural 

networks are made up of many interconnected perceptrons that carry information across the 

network. The perceptron, sometimes referred to as a node within a network, can be thought of as 

a combinatorial processor between its inputs and its output, where the inputs are a set of signal-

transmitting neurons that carry learnable weights, and the output is typically a single real value  
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Figure 5.  A neuron of the mammalian brain [29]. 

[30], [31]. If the linear combination of the input neurons and their respective weights is above 

some arbitrary threshold, then the perceptron “fires”, otherwise it does not [30], [32]. The 

threshold can also be learned by introducing a single-value bias. Together, the weights, biases, 

and any other learnable values of a network are known as the network’s parameters. An example 

perceptron is illustrated in Figure 6, and the output value of a perceptron is formalized in 

Equation 3, where w is a weight, x is the value of an input node, b is the bias, and n is the 

number of input nodes. 

 ℎ(𝑥) = 	-1						if	1𝑤#𝑥# + 𝑏 > 0
$

#%&

	

0						else																													

 (3) 

 ℎ(𝑥) = 	𝑓(		1𝑤#𝑥# + 𝑏		)
$

#%&

 (4) 

In a mathematical sense, a basic perceptron with a “binary activation” (formally known 

as the unit step function) will output either a 0 or a 1, which mimics the behavior of biological 

neurons [33]. This introduces a level of nonlinearity which allows the network to make decisions 

based on each perceptrons’ inputs and is generally referred to as the activation function. In more 

recent neural networks, the behavior of a perceptron is modified to better reflect Equation 4, 

where the function f represents the activation function for that perceptron. There are many other 
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activation functions besides unit step, such as Rectified Linear Unit (ReLU) [34], Sigmoid [35], 

and Tanh [36]. 

 

Figure 6.  Schematic of a basic perceptron with a unit step activation [37]. The bias is 
represented by w0. 

A typical neural network consists of many sensory input nodes, collectively known as the 

input layer, that are all interconnected to many perceptrons that form a hidden layer. Such a 

structure of nodes that are fully connected to all nodes in the next layer is often called a linear 

layer or a fully connected layer. Additionally, the outputs of those perceptrons may act as inputs 

to another layer of perceptrons, where each perceptron of the previous layer is connected to 

every perceptron in the next layer (Figure 7). This process can be repeated an arbitrary number 

of times, resulting in a structure that is generally known as a multilayer perceptron (MLP). Deep 

learning is the study of deep networks with many layers, while networks with very few layers are 

described as shallow [38]. By nature, information flows in one direction from the input layer to 

the output layer, and thus this structure is known as a feed-forward neural network, illustrated in 

Figure 7 [39]. The final layer is known as the output layer; the output layer demonstrates the 

behavior of the network in response to the input stimuli and is typically used to come to some 

conclusion or prediction about the nature of the environment. 
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Figure 7.  A feed-forward Neural Network with three layers, and activations at the hidden and 
output layers [29]. 

In order for a network to learn, it must assign credit to different weights to decide how to 

update them so that the network exhibits the desired behavior. Supervised learning (SL) 

accomplishes this by comparing the network’s output to a user-defined label given to the input 

data [40]. In order to quantify this comparison, an error function (or loss function) is chosen and 

used to analyze the correctness of the network’s output relative to the provided label. From there, 

the process of backpropagation (BP) provides a link between the final error and the weights 

throughout the network that contributed the most to that error, using differentiable calculus to 

find the gradient of the error function with respect to each individual parameter (Figure 7) [41], 

[42]. Gradient descent (GD) was later developed and is now widely used as an algorithm to 

manage the process of learning the parameters [43]. Equation 5 demonstrates GD to update the 

weights of a network, 

 𝑊' = 𝑊'(& − 𝜂
𝜕𝐸(𝑊)
𝜕𝑊  (5) 

where k refers to the current iteration of the algorithm, E is the error or loss function, and η is the 

learning rate (LR), which the designer can use to control how heavily the parameters are 

adjusted. Gradient descent combined with backpropagation offers a solution to the credit 
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assignment problem by retroactively deciding which weights to update and by how much in 

order to minimize the loss function and improve performance. 

There are many other methods of learning (unsupervised, reinforcement, etc.) and 

gradient descent (Adam, RMS, etc.) that are not covered here. In this thesis, the focus is on 

supervised learning models, which is typical for gesture recognition. Specific algorithms used in 

the experiments will be established in greater detail in Chapter 5. 

2.2.1  Convolutional Neural Networks 

While neural networks are very powerful, they do not excel at learning spatial qualities of 

their inputs. The order of the inputs that a linear layer receives does not typically matter, which 

implies that a node’s neighbors do not have any effect on that node’s meaning. When the input is 

something with spatial quality, such as an image, this is obviously a desirable feature. The 

convolutional neural network (CNN) was developed in order to train neural networks to learn 

spatial features from their inputs. LeNet was one of the earliest CNNs that implemented 

gradient-based backpropagation in order to learn and was a very influential work in the field 

[43]. LeNet-5, shown in Figure 8, features two essential components of CNNs: convolutional 

layers and subsampling layers.

 

Figure 8. The architecture of LeNet-5. The architecture features multiple convolution layers, 
each followed by a subsampling layer, with several fully connected layers at the end [43]. 
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Convolution can be thought of as sliding a small set of weights, collectively known as a 

kernel or filter, over an array of information. At each stride, the dot product between the kernel 

and the window of information it is currently sliding over is computed, and the resulting output 

value is written to the corresponding spatial location in the output image. This dot product 

essentially produces a larger value if the window of input information is similar to the kernel, 

and a smaller value if there is little correspondence between the two. Each unique kernel learns 

its weights independently and produces a different unique output channel, or feature map, that is 

dependent on the input it passes over. The input can also include a third dimension, usually 

referred to as the channel or depth dimension. For example, color images are typically 

represented with three channels, one for red, green, and blue, where each pixel value represents 

the intensity of one color in that specific pixel of the image.  

Regardless of the number of input channels, the output dimensionality of a convolutional 

layer is equal to the number of kernels that it learns. When there are multiple input channels, all 

input channels are convolved with an individual kernel, and the resulting feature map produced 

by the kernel is equal to the depth-wise sum of all convolutions. This behavior is what makes a 

convolutional layer linear, similar to a simple linear layer, as every input channel is connected to 

every output channel. Finally, a convolutional operation generally reduces the spatial size of the 

input slightly, by about half of the kernel size. This is usually helpful for reducing the number of 

features learned but is not always desired. Zero-padding is a method of overcoming this spatial 

reduction; by increase the size of the input image to include extra zeros around the border, it is 

possible to eliminate any change in spatial dimensions. 

When feature reduction is desired, the small reduction offered by a convolutional layer is 

not the most efficient. In many CNNs, a subsampling layer follows each convolutional layer. 
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This is also called pooling, and simply reduces the size of a feature map by evenly compressing 

the image along each dimension. A common example is known as max pooling, where only the 

maximum value from each block of pixels is retained, and the rest are discarded. After a number 

of convolution and subsample pairs, a CNN consists of many small feature maps that each 

represent high-level spatial characteristics about the original input. At this point, these features 

might be “unrolled” to a series of linear layers, as is done in LeNet-5, where the spatial 

representation no longer matters because the remaining features are essentially linked to the 

original spatial qualities [43]. More recent architectures such as U-Net [44] and DenseNet [45] 

demonstrate the impressive feats that convolutional architectures are capable of. Convolution is 

arguably one of the foundations of modern deep learning due to its many useful functions and is 

also applied to several of the architectures evaluated here. 

2.2.2  Recurrent Neural Networks 

While CNNs excel at learning spatial features, they generally do not have a strong ability 

to learn features that span a time-ordered sequence. Convolution offers a possible solution when 

consecutive timesteps are convolved together as input channels, but this is not the best approach. 

The recurrent neural network (RNN) was later introduced as a method of learning time 

relationships. Initially, learning this way was not very efficient, until backpropagation through 

time (BPTT) was introduced, a method that is still commonly used today [46]. Later, the RNN 

was popularized when it began making large improvements to the field of language modeling 

and text prediction [47]. 
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Figure 9. A simple recurrent neural network structure, where x is the input, h is a hidden node, y 
is the output, and w is a weight. The numbered subscripts represent the location in time [48]. 

A simple RNN structure is shown in Figure 9, where each input node represents the state 

of the input at that time and is connected to a hidden node, also called a recurrent cell. Each 

recurrent cell passes information forward in the time direction to the next recurrent cell and 

produces its own output as well, providing an output at every timestep. Similar to a linear layer, 

additional hidden recurrent layers can be stacked such that the output of one layer acts as the 

input to the next layer. Unlike a hidden node within a linear layer, a recurrent cell in an RNN 

often contains an array of hidden values that form the hidden dimension, which introduces a 

complexity that allows the network to learn complex temporal relationships. The foundational 

equation for computing the hidden feature vector within a typical modern RNN cell is given in 

Equation 6,  

 ℎ) = tanh	(𝑊*𝑥) +𝑊+ℎ)(& + 𝑏) (6) 

where 𝑥) is the input feature vector at every timestep t, ℎ) is the current hidden state, b is the 

bias, and 𝑊* and 𝑊+ are the weight matrices associated with the states and inputs. 

When backpropagating through time, gradients often begin to “vanish” rather quickly due 

the large number of cells they must pass through to get back to the beginning of the time series. 

The long short-term memory (LSTM) cell was invented as a solution to this problem, where a 
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recurrent cell consists of many learnable “gates” that help control the flow of information, 

allowing recurrent networks to “remember” much more information when a sequence spans a 

large time period [49]. When LSTMs initially remembered information too well, the forget gate 

was added to help the LSTM learn when sequential information is not important [50]. Peephole 

connections were incorporated later to provide the ability to accurately learn the timing of 

features as well as the order [51]. An LSTM cell is visualized in Figure 10, and the general 

equations that an LSTM cell learns are listed in Equation 7, 

 

𝑖) = 𝜎(𝑊*#𝑋) +𝑊+#ℎ)(& + 𝑏#) 
𝑓) = 𝜎(𝑊*,𝑋) +𝑊+,ℎ)(& + 𝑏,) 
𝑔) = tanh(𝑊*-𝑋) +𝑊+-ℎ)(& + 𝑏-) 
𝑐) = 𝑓) ∘ 𝑐)(& + 𝑖) ∘ 𝑔) 
𝑜) = 𝜎(𝑊*.𝑋) +𝑊+.ℎ)(& + 𝑏.) 
ℎ) = 𝑜) ∘ tanh	(𝑐)) 

(7) 

 
where i, f, g, and o represent the input, forget, cell, and output gates, respectively, t is the current 

time step, W is the weight matrix for the entire layer, b is the bias at each gate, X is the input 

feature vector, h is the hidden state vector, c is the cell state vector, 𝜎 is the sigmoid activation 

function, and ∘ is the Hadamard product (element-wise multiplication) [42]. 

 

Figure 10. A standard LSTM cell (without peephole connections). The black arrows are copies 
where inputs are matrix multiplied by weights. Yellow circles are element-wise operations, and 

orange boxes are activation layers. The gates are labeled at the bottom in blue. 
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LSTMs have proven to be a critical tool in the field of temporal learning and sequence 

modeling and are used at the forefront of several architectures evaluated in this thesis. However, 

an LSTM network requires a rather large number of learnable parameters to work effectively. 

More recently the Gated Recurrent Unit (GRU) was proposed as an alternative solution to the 

vanishing gradient problem in RNNs with a much lower parameter space [52]. Equation 8 

outlines the equations that define a GRU, 

 

𝑟) = 𝜎(𝑊*"𝑋) +𝑊+"ℎ)(& + 𝑏") 
𝑧) = 𝜎(𝑊*/𝑋) +𝑊+/ℎ)(& + 𝑏/) 
𝑛) = tanh(𝑊*$𝑋) + 𝑟) ∘ (𝑊+$ℎ)(& + 𝑏$) 
ℎ) = (1 − 𝑧)) ∘ 𝑛) + 𝑧) ∘ ℎ)(& 

 

(8) 

 
where r, z, n, represent the reset, update, and new gates, respectively. 

2.2.3  Deep Networks 

The U-Net mentioned previously is an example of an extremely deep CNN [44] that 

creates a heavy abstraction from the original input to what is learned much farther down. In 

general, deep learning also includes a wide variety of networks and different forms of learning to 

accomplish complex and specific tasks. Some examples are networks that combine architectures 

such as convolutional and recurrent layers [53], [54], and networks that operate on multiple 

forms of input at once [55]. One major focus of this thesis is experimenting with several different 

deep architectures, reducing them to fit the complexity of simpler applications, and analyzing 

how they might be applied to achieve the same level of results.  
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Chapter 3:  Motivation 

This work is a continuation of recent research in the fields of gesture recognition and 

capacitive sensing, primarily for rehabilitation purposes. Prior to the work presented in this 

document, a series of investigations were made into other capacitive sensing applications, such 

as soft robotic actuators, wearable data collection sensors, and different forms of machine 

learning, which helped motivate the experiments presented here. Together, these studies, along 

with the questions they raised, helped motivate the thesis statement made here and the 

experiments performed to reinforce that statement. 

3.1  Related Work 

This section outlines the recent works mentioned in the previous paragraph. In addition, 

many of the techniques experimented with in this thesis are inspired by works that are outside of 

the field of smart motor rehabilitation, but still hold strong relevance. This thesis attempts to 

combine these methods and tune them to the specific task of optimizing low-resolution gesture 

recognition architectures that are compatible with microcontrollers. Most importantly, this work 

builds heavily off of the use of gesture recognition using low-cost capacitive sensing for 

rehabilitation purposes [56], [57]. 

3.1.1  Gesture Recognition 

 Gesture recognition is a popular topic in recent literature with many approaches to the 

problem including deep spatiotemporal learning. Space-time augmentation has been used to 

standardized multiple dimensions and avoid overfitting with 3D convolution [58]. Some works 

focus on using multiple components such as depth images to learn two mediums of features 
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simultaneously [59], [60]. 3D convolution has also been combined with recurrent structures to 

model large time frames as shorter clips [61], recognize actions frame by frame [55], and label 

entire video sequences [54]. 

3.1.2  Capacitive Sensor Arrays   

Capacitive sensor arrays hold relevance in several fields including wearable technology, 

motor rehabilitation, and smart-home systems. Specifically, wearable CSA technology is a major 

focus of recent efforts by our lab and the individuals within it. Several works have been 

published by our PI detailing the use of machine learning for gesture recognition together with 

wearable CSAs, specifically for the benefit of patients recovering from a loss of motor functions. 

These works are tied very closely to the original work presented in this thesis, and thus are 

important to the discussion. Wearable CSAs, accelerometers, and flex-sensing gloves have been 

combined with machine learning to provide home automation for disabled patients [62], [63]. 

Additionally, several methods have been tested to tackle the issue of rotational, translational, and 

person-to-person variance in gesture performance [64]. More recently, it has been evidenced that 

the specific system, gesture set, and learning algorithm must all be personalized to the user’s 

specific type of injury [56]. 

Rigid CSAs, as opposed to flexible CSAs, have also been the subject of recent gesture 

recognition models. Recent work by our team has shown that CSAs with convolutional LSTMs 

are a low-cost and highly effective solution for analyzing gestures as a part of motor 

rehabilitation with high-range motions [57]. Small hand-sized CSAs are also being evaluated for 

their use in gaming paradigms that are adaptive to those with motor or other physical disabilities 

[65].  
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3.1.3  Soft Robotics 

 

Figure 11.  Flexible capacitive sensor made embedded in silicon rubber (Left). Wearable 
capacitive sensor array embedded in denim fabric (Right). 

In recent years, the field of soft robotics has grown significantly, and the focus of many 

applications has been to mimic biological systems, in ways such as flexibility and environmental 

proprioception. One such method of achieving this is by equipping soft robotic actuators with 

multiple kinds of flexible capacitive sensors that work together to gain a useful proprioception 

[66]. Our team has performed experiments of our own as well, studying the performance of 

several multi-modal flexible capacitive sensor designs that contain multiple sources of feedback 

(Figure 11). The aim of those studies was to establish a proof of concept showing that flexible 

proprioception can be achieved at a very low cost with a reasonable degree of accuracy. A 

technical report was written outlining the proof of concept and its results, which were successful 

in achieving touch, proximity, and pressure, and is awaiting submission. Additionally, we 

collaborated with a Mechanical Engineering lab to create several prototypes of flexible, 

motorized soft robotics that are capable of moving, rotating, and bending in multiple dimensions. 
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These robotic actuators were equipped with wearable fabric sensors as well as flexible sensors 

integrated into the silicon material of the actuators, with the aim of establishing proprioception 

within a soft robotic application.  

3.2  Thesis Motivation  

After observing the experiments, results, and conclusions of the works in the previous 

section, it is clear that there are many different approaches to the problem of gesture recognition 

that are capable of success. However, there is a reason for this. Most of these works are very 

applied, meaning they are very specifically tuned to a certain task, and that fact is reflected in the 

machine learning algorithms used. For instance, soft robotics require different types of feedback 

than hard robotics, and thus require different algorithms to manage. Even within the field of 

capacitive sensing, there are many methods that have been proven to work on a range of different 

CSA applications. Regarding non-touch capacitive sensing applications, there are quite a few 

factors which affect the capacitance substantially, as it is a complex signal processing science 

with many forms and physical implementations. That is to say that there is not one single model 

which could work optimally for every problem. 

Table 1:  Breakdown of relevant CSA-based gesture recognition papers. Table 4 in the 
Appendix provides a list of algorithm acronyms and their full names. 
 

First Author (Year) Sensor Used Recognition 
Algorithm / Model 

Best Accuracy 

Nelson (2015) [64] Wearable CSA HMM, DTW 97%, 99% 
Singh (2016) [63] Wearable CSA NNC, DTC, NBC 98% 
Nelson (2018) [67] Wearable CSA and 

accelerometer 
DTW 100% 

Liu (2019) [57] Activity board CSA C-LSTM 100% 
 
Table 1 shows a breakdown of several recent works in gesture recognition that use 

capacitive sensing, and what method they used to learn gestures. The results indicate that there is 
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a wide variety of approaches that can be used for solving a wide variety of capacitive gesture-

based problems. While there are many different studies that have been successful, there has not 

been a thorough analysis that demonstrates which approaches are the most efficient for which 

problems, and why. From that, we came up with an important fundamental question: can it be 

known, or at least confidently guessed which model is the right one without implementing and 

testing all models considered? It has not been established whether there exists a reliable method 

for identifying the best approach to use for a given application before the testing phase. Such a 

method would be very useful, as it would provide inspiration to those attempting to solve new 

problems, save time during the development phase, and generally improve experimental results 

early on. 

3.3  Goals  

A series of experiments are presented here that are performed on capacitive sensing 

applications in order to establish method of determining which spatiotemporal learning methods 

should be considered in an application-specific manner. This is expanded to include the 

constraint of real-time recognition for motor rehabilitation. This means that partial or incomplete 

gestures and a network’s ability to classify those are considered as well. Such a constraint serves 

as one motivation for the exploration into deep learning for this task; simple RNNs often fall 

short when there are issues of time dilation or less than complete samples. LSTMs excel at 

learning time-variant patterns but combining LSTM with convolution has been shown to perform 

better when spatial relationships are important. Additionally, low-cost sensors such as those used 

here are often subject to high degrees of noise and random variance, as is demonstrated in Figure 

12. Variances between different subjects and how they perform gestures are even larger. Deep 

learning is deployed here to maximally eliminate all of these variances when the highest 
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classification accuracy is desired, and alternatively learn the variances when personalization or 

the identification of imperfections is an interest. The experiments performed here cover a broad 

range of hyperparameters and design structures that are used to analyze deep learning as a tool 

for low-cost gesture recognition platforms on low-resolution CSAs. 

 

Figure 12.  Two snapshots from the same CSA, taken at an identical point in time within the 
same gesture performed by the same subject. The second sample was recorded immediately after 

the first. Purple represents 0 intensity and yellow represents maximum intensity. 
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Chapter 4:  Methodology 

The requirements of this thesis include the ability to experiment on real capacitive sensor 

array data from several different designs, the ability to quickly create datasets from that data that 

simulate a variety of different applications, and the ability to easily compare the performance of 

different spatiotemporal learning architectures that are universally compatible with the collected 

data. This chapter outlines the steps that were taken in order to build working capacitive sensor 

arrays that interface with a microcontroller, collect gesture data, process and augment the data, 

and develop the algorithms and models to learn with the data. 

4.1  Physical Approach 

The experiments described in the next chapter are performed using a microcontroller, a 

programmer board, an activity board, several CSA designs made out of a variety of conductive 

and structural materials, and many custom-built connectors to facilitate the flow of information 

across the different components. This section provides specific detail on the construction of 

components and sensors, as well as the capabilities of the hardware used. 

4.1.1  Hardware Specifications 

The microcontroller used for collecting CSA data is the MSP430FR2676 MCU 

(microcontroller unit), made by Texas Instruments (Figure 5). For capacitive sensing, the 

MSP430FR2676 has 16 sensor inputs that are capable of sensing 16 electrodes in self-

capacitance mode or 64 electrodes in mutual capacitance mode, and it supports the parallel 

scanning of up to 4 electrodes at a time at a sampling rate of roughly 50 Hz [68]. By default, the 

MCU has an operating voltage of 3.0 V but is tolerant to supply voltages from 3.6 V down to 1.8 
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V. Additionally, the MCU has five low-power modes including wake-on-touch support, five 16-

bit timers for application use, over 40 I/O pins, and a 12-bit, 12-channel on-chip ADC. The 

FR2676 chip supports clock speeds of up to 16 MHz, as well as UART, IrDA, I2C, and SPI 

communication [68]. These features make it a highly capable board for embedded learning 

applications. 

 

Figure 13.  The MCU Programmer board (Left), connected to the MSP430FR2676 MCU 
(Right). 

For testing designs, the MSP430 MCU Programmer board is used to program and debug 

the FR2676 chip while connected to a PC. The Programmer board is also capable of recording 

energy traces and other useful metrics while operating in the field but is not required for the 

MCU to perform inference [69]. 

4.1.2  Activity Board 

The portable transparent activities table (referred to as the activity board) is a unique 

piece of equipment that has recently seen use in gesture classification and has been adopted to 

the field of motor rehabilitation [56], [57]. The activity board is made up of a 61x57cm wooden 

frame, that is hinged to a wooden base, such that the frame’s angle to the ground is adjustable, 

which is beneficial to patients with different posture requirements. The wooden frame is topped 
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by a glass panel surface, with several slots underneath the surface to hold additional glass or 

plexiglass frames. These slots allow large CSAs to be inserted into the table underneath the 

surface, so that a subject can perform gestures on the glass surface without interfering with the 

CSA signals. 

4.1.3  Sensor Designs 

Two rigid CSA designs are applied here to collect experimental data. Sensor electrodes 

are made out of adhesive copper tape, conductive fabrics, and conductive threads. There are 

many methods for fabricating these electrodes; one method that is used frequently here utilizes 

the ScanNCut2 CM350e electronic cutting machine to precisely fabricate intricate electrode 

patterns. Both straight lines and diamond-shaped patterns are used. Plexiglass is the primary 

substrate between Rx and Tx layers. 

 

Figure 14.  8x8 CSA used in activity board (Left). Activity board with CSA and hatched ground 
frames inserted (Right) 

The first design is intended to be used for upper extremity motor rehabilitation and 

gestures involving the motion of the arms and hands [57]. The CSA is built on a 52x52cm 
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plexiglass frame that fits directly into the activity board frame slots. The frame is 2mm thick 

which represents the distance between Rx and Tx electrodes. The electrodes are 6mm-wide strips 

of copper adhesive cut into straight lines that cover the length of the frame. The Rx and Tx lines 

run perpendicular to each other as is typical for two-dimensional mutual capacitance CSAs. The 

Tx electrodes are placed on the surface side and run vertically, while the Rx electrodes are 

positioned on the opposite side and run horizontally. A group of jumper wires carries signals 

from each electrode to the MCU. To ground the CSA, an additional plexiglass frame is inserted 

into the activity board below the CSA at a distance of 20cm. The ground plane is a hatched-

ground design made from 6mm strips of copper adhesive and connected directly to the MCU 

ground. Other details about the design’s construction can be found in [57]. 

 

Figure 15.  Small 8x8 CSA with diamond-shaped electrode pattern. 

The second CSA design is much smaller and is meant for hand and finger gestures such 

as swipes or drawn symbols. It is very similar to the previous design with the main differences 

being its size and the shape of the electrodes. The CSA itself is built using two 16x16cm 

plexiglass frames, stacked on top of one another and held together with double-sided adhesive. 

The Rx and Tx electrodes are placed on opposite faces of the top frame, and the ground plane is 
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located on the underside of the bottom frame. The electrodes are laminated for protection and are 

cut in a diamond-shaped pattern connected by thin bridges. As before, the vertical Tx electrodes 

are on the top surface, and the horizontal Rx electrodes are underneath. The ground plane is a 

single uniform sheet of copper adhesive covering the entire frame surface and is connected to 

MCU ground. Both frames are 2mm thick which means all three electrode layers are spaced 

equal distances apart. The whole apparatus is attached to and sits on adhesive silicon mounts, so 

that the ground plane is raised about 4mm above whatever surface it is placed on. 

Finally, both designs suffer from issues with cross-sensor noise. The hardware on the 

MCU is designed so that it should not matter what formation the signal bus is in when connected 

to the MCU. In this case, because the maximum number of MCU capacitive input pins are being 

used, the jumper wires carrying the signals are very close together, which can cause some 

parasitic capacitance between different wires. To handle this, each CSA inputs signals to the 

MCU in a unique formation to minimize the noise between electrodes. 

4.2  Signal Processing 

In order to learn from CSA data, the data must be accessed and organized in a way that 

can be understood by modern neural network architectures. First the MCU must record raw 

sensor data captured from the CSA using charge-transfer technology [70]. Specifically, the 

MSP430 repeatedly charges an on-chip capacitor with the charge from an individual sensing 

element (electrode pair) and counts the number of charge-transfer cycles that occur during a 

sampling window. The element “counts” are used as a metric for quantifying the capacitance 

change on each electrode. Higher count values represent a lower capacitance on that electrode. 

However, the count can be affected by a number of environmental variables such as temperature, 

moisture and the board’s operating voltage [71]. Due to its low-cost design, variations in the 
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physical sensor itself and cross-sensor noise can also affect the count slightly. To counter this, 

the long-term average (LTA) of each sensor is subtracted from its “count” to yield the “delta” 

value D at every timestep t (Equation 9). This delta value is used to numerically represent the 

amount of activity that a single electrode is reporting relative to the electrode’s no-activity state. 

Finally, standard normalization is used on the delta values by subtracting the minimum value and 

dividing by the range of values across the entire sample, which results in all data existing within 

the range 0 ≤ 𝐷 ≤ 1 (Equation 10). 

 𝐷) = 𝑐𝑜𝑢𝑛𝑡) − 𝐿𝑇𝐴) (9) 

 𝐷$."0 =
𝐷 − 𝐷0#$

𝐷01* − 𝐷0#$
 (10) 

This signal processing approach provides a direct digital representation of the proximity 

of a user’s hand, arm, or other body part that can sufficiently serve as the input to deep learning 

architectures evaluated in this thesis. 

4.3  Software Approach 

A large number of libraries and tools are utilized to implement CSA design, signal pre-

processing, data collection, data visualization, architecture development, and network training. 

Anaconda, a data science platform for managing machine learning libraries and virtual 

environments, is used to organize these tools and keep them working together cohesively. This 

section establishes the specific tools used, their purpose, and how they are used to accomplish 

the necessary tasks. 
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4.3.1  Design Tools 

Several high-level design tools are used to interface with the microcontrollers. CapTIvate 

Design Center (CDC) is used to design capacitive sensor arrays with a GUI, which allows for 

several different sensor specifications to be tuned and controlled. From there, this software 

generates the C language code required to interface with the external sensors. Code Composer 

Studio is used to edit code and flash the programs onto the MCU. Once flashed, CDC can be 

used as a live GUI tool to visualize the sensor feedback and test the designs. This information is 

passed over UART from the MCU to the PC. 

4.3.2  Data Logging 

The CDC features a built-in data logging module that is used to record sensor data to csv 

files. Due to limitations with the MCU Programmer, the data logger sampling rate is about 30Hz 

for each electrode. The delta value is compared with a threshold to determine if there is sensor 

activity. For time-based gestures, many gestures can be recorded at once, where the threshold is 

used to tokenize the entire recording into individual gesture samples. When static images are 

desired, a simple pushbutton circuit is used to interface with the MCU and data logger, to specify 

when the snapshot should occur. From this point, several python scripts are used to convert the 

raw sensor data into a collection of samples that are each associated with a label. The NumPy 

and pandas libraries are utilized heavily here. To form a dataset, the samples are first shuffled, 

and then a predefined number of samples are chosen and split into train and test groups. These 

groups are stored separately as csv files. MATLAB is used to visualize the data and check for 

bad samples or issues in the signal processing pipeline. 
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4.3.3  PyTorch Implementations 

PyTorch, similar to Tensorflow and Keras, is a large machine learning library that is 

implemented in Python and is the primary software tool that is used to develop and test the 

different models evaluated in this thesis. PyTorch is centered around organizing multi-

dimensional arrays of data into structures called tensors, which are capable of storing gradients 

during the forward pass of a network so that the backpropagation process is efficient and quick. 

First, in order to use the collected data with PyTorch, the PyTorch Dataset class is 

extended to a class written specifically to manage CSA data. The PyTorch DataLoader class is 

then used to handle batching the data for the training process and convert data stored in .csv files 

to learnable PyTorch tensors [72]. One obstacle for training time-based gestures is batching 

together sequences of different length. One of the methods evaluated circumvents this by 

normalizing all samples to a fixed number of frames. In general, a collate function is used 

dynamically with the DataLoader to zero-pad all samples of a batch to the length of the longest 

sample [72]. Sorting the data by sequence length beforehand also helps to minimize the amount 

of padding required for each batch. This strategy makes temporal learning in the network much 

simpler. 

To implement the different network designs, a class extending the PyTorch Module class 

is created for each architecture [73]. The architecture is created by identifying and initializing the 

different modules, or layers, used within the architecture. The aforementioned modules are a 

combination of modules that are predefined within the PyTorch library and represent 

conventional neural network structures, and custom-built modules that utilize the predefined 

modules as well as other tools to implement experimental network structures in a bottom-up 

fashion. This format allows for a high level of control over the way each architecture operates. 
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Lastly, a forward pass function must be written to outline the specific sequence of modules used, 

and how the data is transformed in between modules. The PyTorch library contains many other 

useful modules that are used for training, such as a mini-batch gradient descent optimizer that is 

capable of performing the backpropagation of an architecture automatically. 
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Chapter 5:  Experiments 

A large assortment of experiments was conducted to investigate the challenges of 

spatiotemporal learning on capacitive sensor arrays. Because the goal of this thesis is to outline a 

design strategy for low-cost CSAs, many variables must be considered and tested as decision-

making points that cover different applications, environments, and target demographics. 

Therefore, these experiments operate on a variety of human subjects, datasets, sensor devices, 

and spatiotemporal learning architectures that are utilized to simulate a wide range of 

applications.  

5.1  Sensor Applications 

Two devices were primarily used as platforms for data collection: 1.) the large 8x8 

activity board CSA, and 2.) the smaller 8x8 diamond-patterned CSA (Section 4.1.3). For 

conciseness, these two devices will be referred to here as the “activity CSA” and the “small 

CSA,” respectively.  The activity CSA serves as the platform for bilateral arm gestures, the small 

CSA is the platform for multi-touch touchscreen hand gestures, and both CSAs are used for the 

EdgeWrite dataset to serve as a comparison point between the two sensor devices. These datasets 

are detailed in the next section. 

5.2  Datasets 

Four datasets are utilized as blueprints for data collection; two are derived from the 

EdgeWrite dataset for single-stroke gestures and are identical except for the sensor used, and the 

other two are custom-designed to incorporate different types of motions discussed here. All 

gesture samples used for training were recorded specifically for this work by multiple subjects 
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that performed gestures on the previously described devices. This section details the following 

datasets, which will be referred to by their underlined name for the remainder of this document: 

1.) Bilateral: Exercises that involve moving two arms simultaneously have been shown to 

be a necessary part of the stroke recovery process [5]. It has even been suggested that when 

utilized correctly, bilateral arm gestures can be much more effective than unilateral gestures [5], 

[74]. This dataset establishes several bilateral gestures that involve moving both hands across the 

activity CSA in a mirrored fashion with the intention of mimicking the arm movements 

incorporated in bilateral rehabilitation exercises. These gestures focus on reaching the arm to 

different positions with the hand fixed, which is one of several key characteristics of useful 

bilateral motions studied in the past [5]. As such, subjects were instructed to perform the gestures 

with their wrists on the surface of the activity board and both hands in a static fist shape, sliding 

the fists across the board at a consistent pace (Figure 16). The gestures were designed to share 

similar movements in order to challenge the architectures. Two subjects performed the four 

different gestures a fixed number of times each for a total of 800 samples. 

2.) EWActivity & EWSmall: The EdgeWrite dataset was originally created as a baseline 

for text entry across multiple platforms using single-stroke motions and can be used in a variety 

of applications [75]. Several works have adapted this dataset for analysis of gesture recognition 

on wearable capacitive sensor arrays [64], [63], [67]. Five gestures were adapted for network 

analysis from the EdgeWrite dataset, specifically the letters H, M, N, W, and Y (Figure 17). 

which were selected based on their high similarity in order to challenge the different 

architectures tested here. These gestures were recorded on both the activity CSA and the small 

CSA, forming two distinct but very similar datasets that differ only in the sensor application used 

to record them. Together, they serve as a baseline between the two primary sensor applications 



 39 

evaluated here. A total of 1000 samples were collected as training data for each dataset. 

Additionally, several variants of EWActivity were recorded on the activity board with additional 

subjects and additional instructions; these variants are covered in Section 5.7. 

 
Figure 16.  The four gesture types recorded in the Bilateral dataset. Each gesture is performed 
with both hands moving simultaneously in a mirrored fashion across the activity board. 

     

Figure 17.  Five letters from the EdgeWrite Dataset used as gesture templates. 

3.) MultiTouch: In addition to proximity-based motor rehabilitation, touchscreen 

applications for home automation and other complex HCI systems are evaluated here. The 

MultiTouch gesture set is specifically collected with variance in mind, as would be appropriate 

for a context-aware system that aims for the highest classification accuracy above all else. Each 

sample in the MultiTouch gesture set is performed with a level of variance in rotation, intensity, 

and spatial location. The MultiTouch dataset consists of several two-digit and five-digit hand 

gestures, including a pinch, a spread (opposite of pinch), a spiral motion, and a swipe. A list of 

gestures performed in this dataset can be found in Table 5. Each gesture includes a variant that is 

labeled as a separate class; the spiral is performed both clockwise and counterclockwise; the 

swipe, the pinch, and the spread are all performed with two and five fingers at a time. These 

gestures were recorded on the small CSA and vary largely from sample to sample, whereas the 
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other gesture sets are fairly consistent across all samples. Two subjects recorded 50 repetitions 

each for every gesture. 

5.3  Gesture Data Collection 

Five human subjects were asked to perform the gestures that make up the datasets 

mentioned in the previous section. Four subjects recorded gestures for the EWActivity and 

EWSmall datasets, and two of those subjects recorded gestures for the MultiTouch and Bilateral 

datasets. The fifth subject later recorded a number of gestures for EWActivity test variants 

(Section 5.7). None of the subjects are afflicted by any known motor impairments or suffer from 

any of the medical diseases discussed in this thesis. For consistency, and to reduce friction on the 

sensors, the subjects wore conductive gloves known for their compatibility with mobile phone 

screens. Note that the gloves do not affect the measured capacitance changes although regular 

gloves may reduce conductivity. This section details the instructions that subjects were given for 

each set of gestures and provides insight to what variations these instructions led to and their 

implications. 

1.) The EWActivity dataset was recorded first. Each participant was shown an image 

depicting the EdgeWrite letter and its starting point (Figure 17), then asked to perform the 

gesture a specified number of times without further instruction. Each subject showed slightly 

different mannerisms in their arm movement, speed, and hand position. Two subjects made a fist, 

one subject held their hand in a position similar to if they were preparing to type on a keyboard, 

and one subject actually “drew” the gestures, making quick, straight movements with short 

pauses in between as if they were actually drawing with a pencil on paper. However, each 

subject maintained personally consistent gesture performance across all of their gestures. No 

instruction was given on which hand to use; all subjects used their right hand. 
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2.) Recording the EWSmall dataset was conducted in a similar manner to the EWActivity 

set. Each subject was once again showing an image of each gesture, without being given any 

other instructions. Again, variance between subjects was visible, but individual subjects 

performed most of their gestures with a high degree of consistency. One subject used their thumb 

to “draw” the gestures on the board, one subject used two fingers, and the other two used one 

finger. All but one of the subjects held their hand low and close to the board while performing 

the small gestures, leading to more than just their finger being visible on the signal readings, due 

to the close proximity. 

3.) For the Bilateral dataset, each subject was asked to make a flat fist for performing 

gestures, which corresponds to the kind of position that is beneficial for motor rehabilitation. For 

each gesture, they were shown a diagram of what the motion should look like (Figure 16), a short 

verbal description, and one demonstration. This led to very consistent movements and paces 

across all subjects which is similar to what a patient should be doing for rehabilitation. 

4.) Similar to the Bilateral dataset, the MultiTouch dataset was recorded after giving the 

subject a verbal description and a demonstration of each gesture. However, they were also 

instructed to use a large amount of variance in the spatial location, size, and orientation of the 

gestures, as well as some variance in the pace. This is because the MultiTouch dataset intends to 

test architectures on how well they can classify a gesture where maximum prediction accuracy is 

desired, such as in a home automation system. 

5.4  Architectures 

Three different deep spatiotemporal learning architectures are evaluated on low-cost 

capacitive sensing applications. ConvLSTM, CLDNN, and 3D Convolution are all implemented 

and tested for each of the applications described above. Each architecture is trained with varying 
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hidden dimensionalities and other hyperparameters within the network. For the architectures 

involving recurrent structures (CLDNN and ConvLSTM), this work also presents evaluations 

where LSTM cells are replaced with RNN and GRU cells. Note that since both CSAs are 8x8, 

the inputs to all networks are three-dimensional tensors of shape TxNx64, where T is the number 

of frames for all sequences in the batch and N is the batch size. 

5.4.1  CLDNN 

C-LSTM typically refers to the combination of convolutional layers, alongside or 

followed by LSTM layers, in some large, deep network. One of the first works that introduced 

this presented an architecture they called CLDNN, short for Convolutional, Long Short-Term 

Memory, Deep Neural Network [76]. This architecture has been previously shown to have high 

success when learning bilateral gestures on a low-cost CSA [57] and has been re-adapted here to 

fit the experiments performed. CLDNN is essentially the combination of convolutional layers, 

recurrent layers, and fully connected linear layers in one deep architecture. An architectural 

summary of the design used in experiments is included here: 
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Figure 18.  The CLDNN architecture [76] 

Key frames are selected from the input sequence such that they are equally spaced apart 

by a constant step size. Each key frame Xt is convolved with l previous frames (Xt-l, …, Xt) as 

input channels in two back-to-back 2D convolutional layers with a kernel size of 3x3, and 

sufficient zero-padding so that there is no spatial reduction. The two convolutional layers each 

produce 2
3
, and H feature maps, respectively. The output channels are then downsampled through 

max pooling to a 4x4 spatial resolution and concatenated temporally such that the time 

dimensionality of the whole batch is reduced to a size of T. Each output at timestep t is then 

processed by a linear layer to reduce its feature dimensionality by a factor of 8. 

The output of the linear layer at each timestep t is then concatenated with the features 

from the original key frame Xt to create a stronger short-term connection (1) at each timestep 

[76]. All T timesteps are then unrolled and input to an LSTM with two layers. The recurrent 

output is concatenated with the output of the linear layer from before along the time dimension 
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(2). The max value from every timestep t is then input to a final group of two linear layers such 

that the number of features is reduced first by half, and then down to the number of classes. This 

network is very complex, yet it maintains a very low parameter space due to the connections that 

skip layers. 

5.4.2  ConvLSTM 

“ConvLSTM” was originally introduced as a method of predicting rainfall intensities 

over a short period of time [77]. Conceptually, it is identical to a typical LSTM framework, with 

one main deviation: instead of using matrix multiplication to connect the input and hidden states 

with the network’s weights, the states are convolved with weights using 2D convolution. 

Equation 7 in Section 2.2.2 lists the six equations that are considered standard to LSTM. The 

modified convolutional LSTM equations are shown in Equation 11: 

 

𝑖) = 𝜎(𝑊*# ∗ 𝑋) +𝑊+# ∗ ℎ)(& + 𝑏#) 
𝑓) = 𝜎(𝑊*, ∗ 𝑋) +𝑊+, ∗ ℎ)(& + 𝑏,) 
𝑔) = tanh(𝑊*- ∗ 𝑋) +𝑊+- ∗ ℎ)(& + 𝑏-) 
𝑐) = 𝑓) ∘ 𝑐)(& + 𝑖) ∘ 𝑔) 
𝑜) = 𝜎(𝑊*. ∗ 𝑋) +𝑊+. ∗ ℎ)(& + 𝑏.) 
ℎ) = 𝑜) ∘ tanh	(𝑐)) 

(11) 

 
where * represents the convolutional operator [77]. This approach essentially transforms the 

hidden state vector into a three-dimensional matrix where every spatial “cell” contains its own 

hidden state vector.  

The ConvLSTM implementation used in experiments here is adapted from a public 

PyTorch implementation [78] and extended to include the option to use GRU or RNN cells 

instead of LSTM cells. The implementation first inputs the features to the ConvLSTM module 

with two recurrent layers. After recurrent convolution takes place, the output features are in the 

shape TxHx8x8, where T is the number of timesteps, and H is the number of hidden nodes. The 
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largest feature value along the time dimension is kept and the rest discarded. The remaining 

Hx8x8 features are input to two more linear layers, reducing the number of features by half first, 

and then down to the number of classes for prediction. 

5.4.3  3D CNN 

In addition to combining convolution with recurrent structures, three-dimensional 

convolutional neural networks are useful for learning spatiotemporal features. The 3D CNN 

model evaluated here is inspired by a relatively early work in the field of video-based action 

recognition [79]. C3D is also another important architecture that was considered, implemented, 

and tested here, but is not included in the official evaluations [80]. To clarify, when shapes are 

described here, the time dimension is first, followed by height and then width. 

 

Figure 19.  The 3D CNN architecture [79]. 

The 3D CNN evaluated here has three convolutional layers that convolve in three 

dimensions, and two max pooling layers that subsample in three dimensions (Figure 19). Instead 

of hidden nodes, the constant H that is used for hidden dimensionality in the other three 

architectures is used here to define the number of channels between convolutions. The number of 

output feature maps that each convolutional layer produces are, from first to last, H, 1.5 ∗ 𝐻, and 
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3 ∗ 𝐻. The first convolutional layer uses the standard kernel size of 3x3x3, no padding in the 

time dimension, and 1 pixel of zero-padding in the spatial dimensions, such that there is a small 

reduction in depth but no reduction in height or width. This is followed by a max pooling layer 

that only pools in the time dimension with a stride and kernel size of 2, to keep the spatial 

resolution at 8x8 but reduce the depth by half. The next convolutional layer is the same as the 

first, except for the number of input and output channels as previously mentioned. Another max 

pooling layer follows, but this time there is equal pooling in all three dimensions that reduces all 

by half. This layer outputs a 6x4x4 3D image. The final convolution layer utilizes a 6x4x4 kernel 

that is the same size as the input, meaning that the output feature maps are all 1x1x1. This makes 

it somewhat similar to a linear layer with grouped connections. The final fully connected linear 

layer reduces the number of features to the number of classes in the dataset. 

5.4.4  Standard LSTM 

The final architecture evaluated here is a very simple LSTM network that serves as a 

control group. This network requires far fewer parameters than the other networks, so its 

performance is generally worse than the other architectures on most datasets shown here. The 

network consists of a single recurrent layer that uses LSTM cells but is switched to GRU or 

RNN for the recurrent cell structure comparison. Recurrent layers do not inherently learn spatial 

relationships as their inputs are typically two-dimensional, where one dimension is time. This is 

true for this architecture as well, meaning that the network simply receives 64 features at every 

timestep as input without an understanding of their order. The output hidden state is maximized 

along the time dimension similar to the previous architectures and then finally input to two linear 

layers such that the number of features is reduced by half and then down to the number of classes 

in the dataset. 
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5.5  Hyperparameters 

There are several hyperparameters associated with the previously described architectures 

that are variable and depend on the designer’s specific implementation. The modification of 

these parameters can drastically affect a network’s performance depending on the classification 

task and the type of parameter. The primary hyperparameters included in experiments are 

activation functions, recurrent cell type, and the number of hidden nodes used in the recurrent 

layers. When one of these parameters is not being directly evaluated, a default value is used. 

There are other important hyperparameters, such as kernel size for convolution, that are not 

being investigated and held constant simply for consistency. These default parameters are listed 

in Error! Reference source not found.. 

Table 2.  Default Hyperparameters and Architectural Constants.  
 

Parameter/Function/Structure Default 
Activation function ReLU 
Recurrent cell structure LSTM 
Number of hidden nodes 20, 40, 60, 80, 128 
Kernel size 3x3 
Stride for convolution 1 
Dropout (input) 0.2 
Dropout (convolution) 0.3 
Dropout (recurrent) 0.35 
Dropout (linear) 0.5 

 

ReLU activation is used for all linear and convolutional layers. Recurrent layers are 

activated by the output activation that is standard to each type of recurrent cell, where LSTM is 

the default cell structure. In general, if the number of hidden nodes is not specified directly, then 

the best performance between 40 and 60 nodes is used for comparison. All convolutional kernels 

are 3x3x3 or 3x3 in size, except for the final convolution layer in Conv3D, which is more closely 
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tied to a linear layer than a convolutional layer.  Finally, dropout is used in all networks. Input 

features are directly dropped randomly 

5.6  Training Strategy 

There are many hyperparameters associated with convolution, recurrence, and other deep 

learning frameworks as well as training a network overall. In an effort to minimize the 

experimental variance, all hyperparameters not being investigated directly are kept constant 

across different architectures. This is a necessary step because every network can be optimized 

independently by an expert, but the goal of this study is to identify the best strategy for a 

designer that is a non-expert in deep learning. Optimization techniques, data handling, and other 

constant parameters are summarized in Table 3, and outlined here: 

Mini batch gradient descent is used to train the models, using a batch size of 5, for 100 

epochs. A small weight decay value of 0.001 is used to offer light regularization to the training 

process. Due to the relatively small sample size of the datasets used here, extremely high 

accuracies can be achieved very quickly through gradient descent optimization alone. 

Momentum-based updates can accelerate training and improve accuracy in fewer epochs when 

used properly [81]. However, training a network on a small amount of data in this way can often 

lead to overfitting which results in much lower success in real-world inference, as unseen 

variations are encountered more. This effect was very apparent from early testing; therefore, 

momentum updates are not used, and a relatively small learning rate is used with a simple 

schedule. Specifically, the schedule applied is a cosine annealing learning rate schedule 

beginning at 0.01 with no restarts [82]. Certain architectures still learn much faster than others 

however, so early stopping is utilized as a way to generalize their final state and prevent them 
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from heavily overfitting the training data. In these experiments, if the training loss does not 

improve by 0.05 after 5 epochs, then training is halted early for that architecture. 

The output of each model is a tensor with C class predictions for each class, where C is 

the number of classes in the dataset used for training. The LogSoftmax function is then applied 

to the output where the Negative Log-Likelihood Loss function is used to obtain the loss value 

for the mini-batch. The process of using these two functions consecutively is also known as 

Cross-Entropy Loss. From this point, gradients are computed using standard backpropagation 

through time (BPTT) for recurrent structures. Mini batch gradient descent is then used to update 

the parameters throughout the model. This is achieved with a Stochastic Gradient Descent 

optimizer class in PyTorch, which makes the process very simple and does not require 

mathematical understanding from the designer. 

Table 3:  Training Constants. These training parameters are used across all experiments unless 
otherwise specified. 
 

Hyperparameter Value 
Batch Size 5 
Number of Epochs 100 
Early Stopping Train Loss (0.05) 
Loss Function Negative Log-Likelihood Loss 
Learning Algorithm Stochastic Gradient Descent 
Learning Rate 0.01 
Learning Rate Schedule Cosine Annealing LR [82] 
Momentum Updates 0 (Not used) 
Weight Decay 0.001 

 

Prior to training, datasets are shuffled randomly, and then split into training and testing 

groups at a 20% test ratio. Training data is shuffled after every epoch to introduce some 

additional regularization. In most cases, each sample in a batch is a sequence with a different 

length, so the samples must be aligned temporally for temporal convolution to work. Therefore, a 
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collate function is used to dynamically zero-pad the sequences of a batch each time a batch is 

generated. In this case, zero-padding means that if one clip is 10 frames shorter than the longest 

clip in the batch, then 10 frames of zeros are appended to the end of the shorter clip. 

5.7  Other Considerations 

The overall purpose of the datasets summarized previously is to compare the performance 

of different architectures when deployed to different applications. In general, the results outlined 

in the next chapter are achieved by training and validating the network with a dataset that is 

randomly split into a train group and a test group. The test group is used as a benchmark for a 

network, and the network does not learn from its attempts to classify the test data; this is a very 

common practice in the realm of deep learning. When training networks with a large volume of 

varied data, such as the Moving MNIST dataset, this approach is beneficial because samples in 

the test group might be very unique when compared to a sample in the train group. However, a 

major fallback of this study is that when a subject is asked to perform a large quantity of 

gestures, many of the samples are extremely similar. There is enough noise and variance between 

individual gestures of the same class for the network to learn, but there is still a large degree of 

congruency between the test and train groups, which leads to a level of overfitting that is hard to 

precisely identify without a unique test set. 

In the case of motor rehabilitation, this is not entirely a problem, as it is encouraged for a 

patient to be as consistent as possible. For example, a patient may create a training set under 

supervision from a rehabilitation therapist, and therefore a network’s score would be correlated 

with the patient’s consistency. In that scenario, a lower score indicates the need for 

improvement, and a higher score indicates a well-performed gesture that is beneficial to 
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recovery. Still, the sample similarity is not always ideal, and should generally be considered 

when observing evaluations, excluding networks trained on the MultiTouch dataset. 

In an effort to counter the similarity between train and test groups, additional samples 

were collected on the EWActivity dataset to serve as unique test benchmarks. Note that these are 

merely test groups, meaning that networks are still trained with the original EWActivity dataset. 

A fifth subject performed the five gestures normally for 50 samples, then again with a variety of 

speeds for 50 samples, and again with “bad” or incomplete gestures for 50 samples. The first set 

is referred to as EWActivity-5 and is completely normal but enables the testing of a network on a 

new subject with unique mannerisms not found in the training set. The second set, referred to as 

EWActivity-slow, includes samples that range from extremely slow to slightly faster than normal 

speed, as well as samples that vary in speed from start to finish. This set serves to test how a 

network handles extreme temporal variance. The third set, EWActivity-poor, is made up of 

gestures that are generally poorly performed compared to the main pool of EWActivity samples. 

Gestures that start or end early (incomplete), gestures that only take up a small subspace of the 

board rather than the full area, and gestures that have rotational variance are all examples. This 

set is useful for evaluating how well a network can classify poor gestures after being trained with 

“perfect” gestures. 
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Chapter 6:  Results 

This chapter outlines the evaluations of the ConvLSTM, CLDNN, and Conv3D 

architectures on the different sensor applications and datasets defined previously. Additionally, 

LSTM is evaluated as a control architecture for comparison. All evaluations listed here are 

obtained from networks that are trained on “equal ground”, meaning that they are generally not 

optimized fully with the best training parameters and long, thorough training processes. Rather, 

the results are obtained using consistent training cycles for each experiment. This serves to 

provide a basic, low-level understanding of what the architectures are capable of with minimal 

understanding from a non-masterful designer. 

6.1  Evaluation Methodology 

The results shown here include classification accuracy and loss from both the train set 

and the test set during the training process. Additionally, architectures trained on the EWActivity 

dataset are also tested against the dataset’s aforementioned test variants. To reiterate, when the 

number of hidden recurrent nodes is not being directly investigated, each experiment was 

repeated multiple times with different numbers of hidden nodes, specifically 20, 40, 60, 80, and 

128 unless otherwise specified, and the best result among those repetitions was chosen for 

comparison. Accuracy and loss are both recorded directly from the PyTorch framework during 

the training process. Post-training tests are performed by loading a pre-trained network, 

computing the forward pass, and recording the predictions made at the output layer. Graphs are 

generated with Excel and matplotlib. 
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6.2  Architectural Hyperparameters 

Three common activation functions, three recurrent cell structures, and several different 

hidden dimensionalities are evaluated across the four architectures. Each of these hyperparameter 

groups are applied to all four architectures that are trained on the EWActivity dataset,  

6.2.1  Activation Function 

The three activation functions analyzed here are the Rectified Linear Unit function 

(ReLU), the Tanh function, and the Sigmoid function. Figure 20 shows a comparison of 

activation functions for all four architectures on the EWActivity dataset. Only architectures with 

40 and 60 hidden nodes were trained and evaluated for this experiment. ReLU activation led to 

the best results across all networks on average when all test sets are considered. For ConvLSTM 

and LSTM however, Tanh improved classification accuracy on most EWActivity variants. This 

indicates that ReLU and Tanh are both good activations for this application and should be chosen 

dependent on the specific task. Additionally, it is clear that sigmoid is not fit for this application. 

Interestingly, all networks trained with the sigmoid function on the EWActivity variants 

achieved a best accuracy of exactly 20%. Comparisons of activation functions on the other 

EWActivity test variants can be found in the Appendix. 

6.2.2  Recurrent Cell Structure 

For the architectures that include recurrent layers, substituting the default LSTM structure 

with GRU and RNN structures is analyzed here. Note that 3D CNN is excluded here as it does 

not contain any recurrent layers. Figure 21 shows a comparison of the best test accuracies 

achieved by the four architectures on the EWActivity-slow test set with different recurrent 
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structures. Generally, it is clear that LSTM performs much better than GRU and RNN on the 

EWActivity dataset. This is especially true with the EWActivity-slow test variant, which does 

not come as a surprise because LSTM excels at recognizing patterns even when they are 

stretched over time. Also, while GRU is often claimed as a sufficient alternative to LSTM, GRU 

did not perform better than RNN or LSTM in most experiments here, indicating that it should not 

be considered for these applications. Comparisons of recurrent cell structures on the other 

EWActivity test variants can be found in the Appendix. 

6.2.3  Number of Hidden Nodes 

Several different recurrent hidden dimensionalities were tested on the EWActivity dataset 

to determine if there is an optimal inner dimensionality of each network. Note that the 3D CNN 

architecture does not have recurrent “hidden” nodes, but the number of inner convolution 

channels between layers is determined based on the constant represented by H, which is shared 

by the other architectures. Figure 22 presents a comparison between different numbers of hidden 

nodes when tested on the EWActivity-slow test set. This experiment unsurprisingly failed to 

identify a consistently optimal number of hidden nodes that is applicable to every scenario. In 

many cases, more hidden nodes led to better performance with one architecture, but too many 

would lead to much worse performance. In some cases, the fewest nodes led to the best 

performance for a specific architecture. These observations show that the optimal hidden 

dimensionality is highly dependent on the specific application and network architecture. 

Comparisons of hidden dimensionality on the other EWActivity test variants can be found in the 

Appendix. 
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Figure 20.  Comparison of activation functions tested on the EWActivity test set. Each color 

represents one of the three activation functions evaluated. 

 
Figure 21.  Comparison of recurrent cell structures tested on the EWActivity-slow test variant. 

Each color represents one of the three recurrent cell structures evaluated. 
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Figure 22.  Comparison of hidden dimensionality tested on the EWActivity test set. Each color 

represents the number of hidden nodes in the recurrent layers. 

6.3  Other Applications 

The tests performed on the other sensor applications are simpler and are primarily 

included to act as a comparison to different kinds of CSA platforms. All tests evaluated on these 

models are repeated experiments from the EWActivity set to provide insight on how results may 

change across applications with different sizes and structures. Overall, the ConvLSTM and 

LSTM architectures performed very poorly while the CLDNN and 3D CNN achieved high 

accuracies. 

6.3.1  Bilateral 

This dataset was designed to include consistently paced movements of multiple 

conductive bodies moving simultaneously. Unsurprisingly, performance is very good as the 

dataset does not contain a large amount of variance. Figure 23 shows the classification accuracy 

of all four architectures on the Bilateral test set. 
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6.3.2  EWSmall 

The results shown in Figure 24 are primarily a cross-device comparison to the 

EWActivity results obtained in Figure 22. Contrary to the EWActivity dataset, the gestures 

performed on the small CSA required more hidden nodes to achieve the same level of success 

with the CLDNN network, and the ConvLSTM simply did not perform well compared to the 

ConvLSTM trained on activity board data. This is likely due to the close proximity of the user’s 

wrist and forearm on the small CSA. When performing gestures on the small CSA, several 

subjects used a technique that includes a low-hanging wrist, which adds noise to the electrodes 

near where the gesture is being performed. This observed noise was quite large for some 

subjects, covering a significant portion of the board. 

6.3.3  MultiTouch 

While the dataset is much different, the results are largely similar to the previous small 

CSA application. On average, ConvLSTM and LSTM both performed even worse on 

MultiTouch than on EWSmall, while CLDNN classification was better overall (Figure 25). This 

provides some indication about the success of these architectures on the smaller CSA board in 

general, due to issues of noise from extra-gestural parts of the body. The resulting CLDNN 

performance is more significant here because the MultiTouch dataset contains much more 

variance than EWSmall, which means the test data is less similar to the train data, giving the 

networks a harder problem to solve. 
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Figure 23.  Classification performance of architectures trained on the Bilateral dataset. Each 

color represents the hidden dimensionality used. 

 
Figure 24.  Classification performance of architectures trained on the EWSmall dataset. Each 

color represents the hidden dimensionality used. 
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Figure 25.  Classification performance of architectures trained on the MultiTouch dataset. Each 

color represents the hidden dimensionality used. 

 
Figure 26.  Comparison of architectures trained on a person-to-person variant of the EWActivity 

dataset. Each color represents the hidden dimensionality used. 

6.4  Person-to-Person Classification 

For home-automation applications, as well as motor rehabilitation applications for 

different patients with different specific disabilities, it may be interesting to gain an 

understanding of which architectures can tell one person’s gestures from another person’s 

gestures and pick up on personal similarities. The EWActivity dataset shown repeatedly in this 

chapter is made up of five gestures from four different subjects, separated into five classes, one 
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for each gesture. This experiment observes what happens when each subject is given their own 

class for each gesture, for a total of twenty classes. The results shown in Figure 26 are even more 

polarizing than previous experiments. CLDNN and 3D CNN performed quite well when 

distinguishing between subjects, which demonstrates a strong ability to learn personalized 

features. In contrast, ConvLSTM barely achieved 1 in 20 correct predictions, which is essentially 

the same as guessing. LSTM did not perform quite as badly but is clearly not a useful 

architecture for this task. The two successful architectures performed at a similar level to their 

accuracies on the original training dataset. This implies that personal distinction is easily 

achievable for motor rehabilitation or home automation with the applications shown here. 

6.5  Combined Learning 

In an effort to improve the results on the slow and poor variants of the EWActivity 

dataset, models were trained again where select samples from the training dataset were replaced 

with samples from each test variant. Those selected samples were simply labeled with the 

gesture that they represent regardless of their quality. In theory, this gives models more 

experience learning different forms and characteristics of the same gesture instead of just the 

consistent particular motions associated with each gesture. The models trained on the combined 

training dataset were then re-tested on the EWActivity test variants, resulting in significantly 

better accuracies on both EWActivity-slow (Figure 27) and EWActivity-poor (Figure 28). This 

training process showed significant improvements compared to the original training group. 

Previously, the highest achieved accuracy on the EWActivity-slow dataset was a mere 80.8%, 

with most performances coming in lower than that. The combined training however brought 

CLDNN up to 99.6% on the slow gestures. ConvLSTM, which usually did not perform well on 

the EWActivity test variants, scored over 90% on the poor gestures when trained with combined 
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data. Figure 29 and Figure 30 show the spread of network performance for all EWActivity test 

variants when trained on the original training data, and the combined data, respectively; 

comparisons to the original training process for the other two test variants can be found in the 

Appendix. 

 
Figure 27.  Comparison of architectures trained on the original training set vs. architectures 

trained on the combined dataset; both are tested on EWActivity-slow dataset. 

 
Figure 28.  Comparison of architectures trained on the original training set vs. architectures 

trained on the combined dataset; both are tested on EWActivity-poor dataset. 
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Figure 29.  Classification performance of architectures trained on training data that combines 
data from all EWActivity test variants. Each color represents one of the four EWActivity test 

variants. 

 
Figure 30.  Classification performance of architectures trained on training data that combines 
data from all EWActivity test variants. Each color represents one of the four EWActivity test 

variants. 

6.6  Other Observations 

Sorting by length: A common training practice in deep learning is to shuffle the training 

dataset after every epoch to regularize the training process. When a sequence-based dataset is 

used as is the case here, shuffling the training set after every epoch can sometimes lead to very 

inefficient training if short samples are batched with long samples, as more padding is required. 
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One solution is to sort the dataset by sequence length initially instead of shuffling after every 

epoch. However, early experimentation indicated that this had generally little effect on the 

outcome of training for most models tested here, so epoch shuffling is preferred in favor of the 

regularization it offers. 

Interpreting the Hidden State: For the architectures evaluated here, the output of a 

recurrent layer is computed by taking the array of hidden state values at all timesteps and finding 

the maximum value across the time dimension for each individual hidden node. This essentially 

extracts the strongest feature value from each hidden node throughout the sequence and helps to 

avoid the issue of weakened features at the end of sequences that are padded with zero frames. 

Another method that is arguably more common is to simply use the hidden state from the last 

timestep in the sequence as the output for the recurrent structure. An experiment was performed 

to identify whether these strategies result in significant differences in performance. Figure 31 

compares these two strategies. Architectures labeled with ‘-last’ denote the second strategy 

described here that differs from the strategy used throughout the other experiments in this thesis. 

CLDNN did not show a large difference in performance; however, the simple LSTM model 

improved drastically using the last hidden state strategy instead of the maximal strategy. This 

demonstrates that these strategies can have large impacts on performance achieved.  

Importance of Dropout: All evaluated architectures include dropout to regularize the 

training process. Dropout simply refers to randomly replacing features (or entire channels in the 

case of convolution) with a zero value at a fixed probability during training, typically between 

many layers, which helps to reduce overfitting to the training data. Exact dropout probabilities 

used are listed in Table 2. Dropout proved to be essential in these experiments due to quantity of 

training data collected, which is rather low relative to typical deep learning studies. An additional 
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training experiment was conducted where no dropout was used. This had a measurably negative 

impact on the performance of the architectures on unseen test sets (Error! Reference source not 

found.) which indicates that dropout is crucial to learning where large volumes of training data 

are not available. 

Interpolation: Convolution requires consistent input size, so the inputs to the 3D CNN 

architecture are interpolated to precisely 30 frames per sample. This is accomplished 

dynamically and without cropping by using trilinear interpolation at the input layer (after input 

dropout). The downside of interpolation is that it cannot be done in real time, unless the designer 

creates a way to define the start and end point of a sample within an endless sequence. Other 

architectures are also compatible with interpolated images, but it is not required. Figure 33 shows 

the performances of architectures that begin by interpolating input sequences to 30 frames. This 

demonstrates that there is not a major correlation between interpolation and increased 

performance. Interestingly, ConvLSTM is the exception as it performed considerably better on 

interpolated sequences than on non-interpolated sequences. Similar comparisons between the 

other EWActivity test variants can be found in the Appendix. 

 
Figure 31.  Comparison of architectures that use different output methods at the recurrent layer. 

Networks that end in ‘-last’ indicate the use of the last hidden state as the recurrent output, 
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otherwise the approach used is the same as the other experiments. Each color represents one of 
the four EWActivity test variants. 

 
Figure 32.  Classification performance of architectures trained with vs. without the use of 

dropout layers and tested on EWActivity-poor. 

 
Figure 33.  Comparison of architectures trained on interpolated samples and tested on 

EWActivity-slow. 
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Chapter 7:  Conclusion 

7.1  Discussion of Results 

While the conclusions reached here can only scientifically be applied to capacitive sensor 

array-based applications, these conclusions also carry implications about spatiotemporal gesture 

recognition in other fields such as video, depth-imaging, and different forms of wearable sensors 

not used here. 

The hypothesis that deep convolution combined with LSTM is superior to simple LSTM 

structures is confirmed by the results shown here. When gestures of a known length are 

concerned as inputs, 3D convolution excels above other architectures in terms of classification 

accuracy. However, 3D convolution is only fully possible when a consistently sized input is 

given, which makes context-awareness more challenging. CLDNN is shown to be sufficient in 

most classification tasks demonstrated here, and requires much fewer parameters than the other 

architectures, making it a superior choice for context-aware classification models. Additionally, 

the performance of CLDNN often seems to improve when the number of hidden nodes is 

increased.  

For most experiments, ConvLSTM fell short in terms of performance. This is likely due 

to the fact that ConvLSTM was originally developed for sequence prediction tasks rather than 

classification. ConvLSTM sometimes requires a separate prediction-encoding network to be 

viable, which is possibly the case here. In any case, it is not abundantly clear why ConvLSTM 

did so poorly when it has been shown to work well in other applications. However, a few 

specific experiments done in this study resulted in excellent performance from ConvLSTM, 

which indicates that it is not inherently unsuitable for this task. Among other things, future work 
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includes analyzing the ConvLSTM architecture more closely with regards to low-resolution CSA 

applications, in order to identify what hyperparameters do lead to success and why the 

architecture is so prone to poor performance in other designs. 

ReLU and Tanh both performed well as activation functions, but in many cases, one led 

to much better results than the other. Further study is required to precisely identify in what 

scenarios one should be used over the other. Sigmoid, on the other hand, is shown to be a 

decidedly poor activation function that should not be used for applications related to those that 

are evaluated here.  

7.1.1  Design Process for Motor Rehabilitation  

CLDNN and 3D CNN both proved to be successful architectures for most forms of 

gesture recognition demonstrated here. However, the advantage of CLDNN is that it includes a 

recurrent framework with two LSTM layers that are capable of remembering information over 

longer time sequences. With EWActivity-slow as the benchmark, CLDNN typically outperforms 

3D CNN in the CSA environment. Additionally, 3D CNN requires a fixed temporal size in order 

for the input to fit the 3D model. This means that interpolation of some sort is required on 

sequences of varying length; otherwise, there must be a method for aligning the prediction 

process with the start of a gesture so that the exact number of frames required can be recorded. 

This could also be approached with a multi-network system that continuously makes predictions 

about each consecutive groups of frames with fixed length, using 3D convolution, and including 

another network that analyzes the stream of predictions to find the current or most recently 

formed prediction for a sequence of time. Regardless, this is a difficult task for systems that are 

meant to be context-aware and capable of classifying inputs at any time. This means that there is 

a decision for the designer to make. If the actions are repetitive enough such that it is easy to 
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identify when gestures start and when they begin at all times, and if it is assumed that the gesture 

will typically be performed with a degree of completion or at least the intent to succeed, then 3D 

CNNs may be the best approach for learning all gestures. Otherwise, if the system requires that a 

network can control its memory to learn in dynamic contexts, then CLDNN is shown to be the 

most reliable model evaluated here. 

7.1.2  High Classification Accuracy 

All architectures performed better on the more-difficult EWActivity test variants when 

they were supplied with training data that included data from those test variants. This was 

especially true for EWActivity-poor, where incomplete and partially incorrect gestures were 

included. The reason for this is simple: rather than learning the exact sequence of a perfect 

gesture, a network exposed to imperfect samples will better learn the general characteristics of 

that gesture and will be more capable of recognizing the gesture even when some human error is 

introduced. Clearly, there is a strong advantage in correctly classifying all kinds of gestures when 

a wider variety of training data is supplied to the network. This is very useful for applications 

which require a high classification accuracy such as home automation, adaptive gaming, or other 

context-aware systems. These systems rely on minimal mistakes to function well, so when 

training architectures used for those applications, it is important to include a dynamic variety of 

training data. 

7.1.3  Personalization 

3D CNN and CLDNN were also shown to be extremely capable of differentiating 

between different subjects and classifying their mannerisms when performing gestures. This 

knowledge could be very useful for applications that aim to make decisions about context based 
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on who is using them. This might also be a step towards identifying the quality of a gesture and 

whether it was performed adequately or not, by comparing the confidence of the network’s 

prediction with the full confidence of the original prediction on a perfect-classified training 

sample performed by the same subject. Similarly, ConvLSTM was shown to fall short in this 

task. 

7.2  Future Work 

This thesis was conceived from questions raised while investigating the fields of deep 

learning and gesture recognition. Appropriately, this thesis also raised questions of its own 

during experimentation, not of all of which can be answered within a single investigation. 

Therefore, future work will be dedicated to the topics listed in this section. 

7.2.1  Inference on MCU 

The experiments shown here focus on training networks with a large set of gestures, and 

then testing the performance of the networks on different, previously unseen gestures from the 

same dataset. All of this is done within an Anaconda environment, on a PC, with the help of 

machine learning libraries like PyTorch. While this is useful for deep learning experimentation 

and prototyping, this approach fails to test the real-world application, which would involve 

inference on a microcontroller unit. 

Inference refers to a machine recording or receiving inputs coming directly from the 

environment, in real time, and making a prediction or classification based on the learning model 

that it is equipped with. For example, if a designer wants to implement a custom gesture 

recognition application in a patient’s home, they must implement the chosen network 

architecture directly on an MCU. This is usually done by directly programming the MCU to 
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compute all operations required by the network’s forward pass, then loading all pre-trained 

network parameters to the MCU’s memory. The process of programming a network’s forward 

pass on an MCU can be quite complex and requires confident knowledge of how every layer of 

the network is mathematically represented. This is because the machine learning libraries used in 

development here are not directly compatible with the processors found on most 

microcontrollers. That being said, the chosen MCU must be versatile and directly programmable, 

such as one that is equipped with an ARM-processor (e.g., an Arduino Uno), unlike the MCU 

used in the capacitive sensing applications presented here. Note that the MCU must also be 

configured to record environmental inputs and translate them to a state that is compatible with 

the specific network in real time. Finally, the designer must incorporate some sort of user 

interface (UI) that is human readable, to communicate what the network’s inference prediction 

is. 

Generally, inference applications are designed to run continuously, and therefore must 

also be context-aware, or at least have some method of determining where the start of a gesture 

is, and when to make a prediction. This is extremely important for evaluating a network’s real-

life applicability to problems like motor rehabilitation and is considered the direct next step of 

this work. 

7.2.2  Performance Feedback System 

Where motor rehabilitation is considered, it is important to identify the accuracy of a 

gesture and quantify how well the gesture was performed. One of the target applications of this 

work is a system that can give feedback to the patient on how closely their gesture matched the 

target gesture, in real time. Additionally, a UI integration to the CSA sensor might be able to 
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highlight specific areas where the gesture was less accurate. This kind of application would 

likely be trained on perfect samples as most networks were trained here. 

7.2.3  Real Patients 

The subjects that performed gestures as a part of the experiments shown here do not have 

any known form of motor impairment, neurological or otherwise. Therefore, it would be much 

more useful to repeat these experiments with patients suffering from loss of motor function due 

to different injuries. In that setting, the “bad” gestures that were artificially created by healthy 

subjects would be replaced with gestures performed by real patients, and the “good” gestures 

would still be performed by health subjects as a control group or target. 

Additionally, one of the fundamental requirements of deep learning is the huge amount of 

data that is needed to train a network. While any amount of data can train a network to perform 

some task, network architectures perform the best in real-world applications when they are 

trained on a sufficiently large dataset. This makes the network more reliable and results in fewer 

mistakes in the applications it is designed for by introducing more variance to the training 

process and reducing the effect of overfitting. Unfortunately, a large setback of this work is the 

lack of access to a more significant number of subjects for collecting data, due to a pandemic 

surrounding the time frame of development. In the future, it will be invaluable to collect as much 

data as possible for training the architectures that will see deployment to real applications. 

7.2.4  Wearable CSAs 

While the MCU used in these experiments is large, the MSP430FR2676 chip can also be 

installed on a micro 48x37mm MCU. Furthermore, this chip can be installed on a flexible 

version of the micro MCU board with only the individual components that are needed. Using 
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small ribbon cable ports and micro resistors, these boards retain the same parallel-scanning 

ability and the same number of supported electrodes as the MCU used here. This, combined with 

prior work our lab has done on soft robotics and wearable sensors (Section 3.1.4), implies that 

the conclusions made in this thesis may translate well to wearable micro-CSAs that can be worn 

in clothing. It is very likely the results would differ somewhat with new, flexible sensors in a 

different application environment, and thus would be worth investigating. 

7.2.5  LSTM Peephole Connections 

Equation 12 shows the modified LSTM equations when peephole connections are 

incorporated using the previous cell state vector [83]. One goal of this work that was not 

achieved was to determine if peephole connections can be useful for CSAs to distinguish 

between gestures performed at different speeds, which would be very useful for motor 

rehabilitation. 

 

𝑖) = 𝜎(𝑊*#𝑋) +𝑊+#ℎ)(& +𝑊4# ∘ 𝑐)(& + 𝑏#) 
𝑓) = 𝜎(𝑊*,𝑋) +𝑊+,ℎ)(& +𝑊4, ∘ 𝑐)(& + 𝑏,) 
𝑔) = tanh(𝑊*-𝑋) +𝑊+-ℎ)(& + 𝑏-) 
𝑐) = 𝑓) ∘ 𝑐)(& + 𝑖) ∘ 𝑔) 
𝑜) = 𝜎(𝑊*.𝑋) +𝑊+.ℎ)(& +𝑊4. ∘ 𝑐)(& + 𝑏.) 
ℎ) = 𝑜) ∘ tanh	(𝑐)) 

(12) 

 

7.3  Personal Contributions 

All code used was written by me except for code generated by CapTIvate Design Center 

(Section 4.3.1), and a PyTorch implementation of ConvLSTM forked from GitHub (Section 

5.4.2) [78]. This includes signal processing, dataset generation, dataset manipulation, PyTorch 

interpretation, training procedures, testbenches, and customized PyTorch implementations for all 
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other architectures. All sensor designs were built by me, with the exception of the CSA used in 

the activity board, which was built by a team member in [57]. 
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Appendix 

Table 4.  Full names of algorithms and networks referred to by acronym. 

Acronym Algorithm 
HMM Hidden Markov Model 
DTW Dynamic Time Warping 
NNC Nearest Neighbor Classifier 
DTC Decision Tree Classifier 
NBC Naïve Bayes Classifier 
CLDNN Convolutional, Long Short-Term Memory, Deep 

Neural Network 
ConvLSTM Convolutional Long Short-Term Memory Unit 
3D CNN Three-Dimensional Convolutional Neural 

Network 
LSTM Long Short-Term Memory 
GRU Gated Recurrent Unit 
RNN Recurrent Neural Network 

 

Table 5:  MultiTouch gestures 

Gesture Class Name 
Pinch inward (2 fingers) pinch-2 
Pinch inward (5 fingers) pinch-5 
Spread outward (2 fingers) spread-2 
Spread outward (5 fingers) spread-5 
Swipe up (2 fingers) swipe-2 
Swipe up (5 fingers) swipe-5 
Spiral (1 finger, clockwise) spiral-cw 
Spiral (1 finger, counterclockwise) spiral-ccw 
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Figure 34.  Comparison of activation functions tested on the EWActivity-5 test variant. Each 

color represents one of the three activation functions evaluated. 

 
Figure 35.  Comparison of activation functions tested on the EWActivity-slow test variant. Each 

color represents one of the three activation functions evaluated. 
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Figure 36.  Comparison of activation functions tested on the EWActivity-poor test variant. Each 

color represents one of the three activation functions evaluated. 

 
Figure 37.  Comparison of recurrent cell structures tested on the EWActivity test set. Each color 

represents one of the three recurrent cell structures evaluated. 
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Figure 38.  Comparison of recurrent cell structures tested on the EWActivity-5 test variant. Each 

color represents one of the three recurrent cell structures evaluated. 

 
Figure 39.  Comparison of recurrent cell structures tested on the EWActivity-poor test variant. 

Each color represents one of the three recurrent cell structures evaluated. 
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Figure 40.  Comparison of hidden dimensionality tested on the EWActivity-5 test variant. Each 

color represents the number of hidden nodes in the recurrent layers. 

 
Figure 41.  Comparison of hidden dimensionality tested on the EWActivity-slow test variant. 

Each color represents the number of hidden nodes in the recurrent layers. 
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Figure 42.  Comparison of hidden dimensionality tested on the EWActivity-poor test variant. 

Each color represents the number of hidden nodes in the recurrent layers. 

 
Figure 43.  Comparison of architectures trained on the original training set vs. architectures 

trained on the combined dataset; both are tested on EWActivity test set. 
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Figure 44.  Comparison of architectures trained on the original training set vs. architectures 

trained on the combined dataset; both are tested on EWActivity-5 test variant. 

 
Figure 45.  Classification performance of architectures trained with vs. without the use of 

dropout layers and tested on the EWActivity-5 test variant. 
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Figure 46.  Classification performance of architectures trained with vs. without the use of 

dropout layers and tested on the EWActivity-slow test variant. 

 
Figure 47.  Comparison of architectures trained on interpolated samples and tested on the 

EWActivity-5 test variant. 
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Figure 48.  Comparison of architectures trained on interpolated samples and tested on the 

EWActivity-poor test variant. 
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