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ABSTRACT 

The implementation of stone columns as a ground improvement technique has become 

more popular in geotechnical construction practice as a result of their ability to improve strength, 

stiffness and permeability characteristics of weak clayey soil deposits. There are several 

analytical and empirical approaches to estimate the bearing capacity of stone column foundation 

systems; however, there is notable variation in the performance of these existing methods when 

compared with full-scale experimental results. For very weak cohesive soils (i.e., undrained 

shear strength less than 15 kPa), the use of conventional stone columns becomes restricted 

because of the insufficient confinement that these types of soils can provide to the columns. 

Hence, the inclusion of cement-coated aggregate has been developed as an alternative method to 

improve the efficacy of stone columns in soft soils. Limited information is available regarding 

the global performance, load-transfer mechanism, and design of these types of cemented stone 

columns under various field conditions. Efforts to refine the accuracy of current design methods 

and reinforcement techniques for conventional stone columns naturally point to the need for 

improving the understanding of the fundamental load-transfer mechanisms of stone columns. 

Three-dimensional discrete element method (DEM) simulations of small- and full-scale 

footing loading tests were developed to investigate the effects of aggregate strength, pier length, 

aggregate Young’s modulus, area replacement ratio, cement content, and undrained shear 

strength of the matrix soil on the bearing pressure-displacement responses of isolated 

foundations supported on stone columns. The elemental responses of the aggregate and plastic 

matrix soil were calibrated against laboratory and in-situ test data from a well-characterized site 

and compared against the results of small- and full-scale footing loading tests. The column 

aggregate material was represented by discrete-deformable tetrahedrons in conjunction with 



 
 

strain-softening and strain-hardening models in order to improve the simulation of the nonlinear 

response of the cemented aggregate. Joined deformable blocks were employed to represent the 

continuous mechanical behavior of the surrounding clayey soil. The numerical results are in 

excellent agreement with the experimental laboratory and field data and provide improved 

estimates of the bearing pressure-displacement curves of the column-foundation systems 

investigated in this study. The Young’s modulus of the aggregate column and the area 

replacement ratio were found to have the greatest influence on the bearing pressure-displacement 

response. The DEM results also improve the understanding of the effects of granular material-

cementation on the performance of stone columns. At low cement contents the stone column 

exhibits a type of bulging failure mechanism similar to uncemented stone columns, but at higher 

cement contents (10 % in this study), bulging is not observed, and the behavior resembles more 

like that of a concrete pile. These types of behavioral differences also have different implications 

for single isolated stone columns and group column behavior.   
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CHAPTER 1. INTRODUCTION 

1.1 Research motivation 

 

 Ground improvement and reinforcement techniques developed by specialty contractors 

have proven effective for mitigating poor deformation performance in weak soil deposits 

(Schaefer et al. 1997). Aggregate piers are typically used to increase the bearing capacity and 

decrease total and differential settlement of foundations and embankments, and they have been 

shown to be a cost-effective ground improvement alternative (Van Impe and de Beer 1983; 

Vahedian et al. 2014; Stuedlein and Holtz 2013, 2014). Aggregate piers are particularly 

advantageous for layered soils of contrasting stiffnesses and hydraulic conductivities, as they can 

accelerate the rate of consolidation (Han and Ye, 2001; Castro and Sagaseta 2009), reduce 

liquefaction potential (Ashford et al. 2000; Adalier et al. 2003; Rayamajhi et al. 2014a, 2014b; 

Stuedlein et al. 2015), and improve the stability of slopes (Vautrain 1977; Barksdale and Bachus 

1983).  

Typically for aggregate pier projects, between 15 to 40% of the treated soil area is 

replaced with compacted granular material using different types of installation techniques such 

as vibro-displacement, vibro-replacement, or tamping (Nazari and Ghazavi 2014; and Stuedlein 

and Holtz 2012a). When the vibrational installation technique is used, aggregate piers are better 

known as stone columns. Provided that sufficient densification is achieved in the aggregate 

during construction, the performance of spread footings on stone column-reinforced clayey soils 

has been satisfactory for a variety of installation methods and aggregate gradations (Stuedlein 

and Holtz 2012a). However, despite their history of good performance, available methods for the 

static design of shallow foundations with regard to capacity (Greenwood 1970; Hughes and 

Withers 1974; Brauns 1978; Madhav and Vitkar 1978; Mitchell 1981) and displacement (Fox 
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and Cowell 1998; Wissmann et al. 2007; White et al. 2007) have been shown to exhibit poor 

accuracy (Stuedlein and Holtz 2013; 2014). This generates not only lack of confidence in these 

methods that could consequently lead to over-engineered designs, but also the need for 

verification of the column performance through expensive field testing (Stuedlein, 2008).  

For very weak strata with high compressibility and low shear strength characteristics 

(e.g., peat, organic material), the implementation of conventional stone columns is questionable 

because of the lack of lateral support that these types of soft soils can provide (Barksdale and 

Bachus 1983). Approaches for improving the effectiveness of stone columns in low shear 

strength soils consists of increasing the column’s stiffness (e.g., cemented aggregates, high 

compaction), restricting the column’s lateral deformation (e.g., geosynthetic encasement), or 

some combination of the two. Recent experimental investigations have shown that the use of 

cemented aggregates produces substantial improvement in the performance of stone column-

foundation systems, with no significant increase in the construction cost (Golait and Padade 

2016). However, there is lack of information regarding design and modeling parameters and the 

global performance of these type of columns under different field conditions in comparison with 

conventional uncemented aggregate columns. Advancements in the performance of stone 

columns requires further refinement of the accuracy of the current design methods and 

improvement in the understating of the mechanical behavior of reinforcement techniques 

developed. 

Because of the difficulties in measuring the load transfer and deformation occurring 

around a stone column in either small- or full-scale experiments, numerical analyses have been 

used to investigate the complex soil-column-foundation interaction. To date, continuous 

analytical and numerical approaches have primarily been used to simulate stone columns. One 
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issue with these methods is that they cannot properly capture the internal interaction occurring 

between the individual aggregate particles comprising a stone column (Ngo et al., 2016).  An 

alternative solution is to use the discrete element method (DEM), which is a numerical approach 

used to calculate the mechanical behavior of a system consisting of a large number of distinct 

blocks or elements such as granular material (Cundall 1988; and Luding 2008).  Experimental 

calibration or verification of these models is important in order to provide confidence in the 

numerical findings. The experimental data can be derived from either laboratory element or 

scaled tests, or full-scale field tests. Stuedlein and Holtz (2012a) described a comprehensive full-

scale footing loading test program designed to investigate the effects of aggregate pier 

installation method, aggregate gradation, and column length on the bearing pressure-

displacement performance. This experimental program was conducted on single, isolated 

cemented and uncemented stone columns, as well as small groups of stone columns. Newton 

(2014) further characterized the aggregates used in Stuedlein and Holtz (2012a) using triaxial 

consolidated drained tests to examine the stress-strain and volumetric response of the cemented 

and uncemented aggregates. Golait and Padade (2016) conducted a scaled-model laboratory 

experimental program to evaluate the effectiveness of cemented stone columns and developed a 

theoretical procedure to estimate the bearing capacity of weak clayey deposits reinforced with 

these types of columns. These experimental investigations provide excellent field and laboratory 

data for calibrating and validating the three-dimensional discrete element models (3D-DEM) 

conducted in this research.  

1.2 Goal and objectives of this research 

 

The overall goal of this research was to improve understanding of the complex, 

nonlinear, and progressive nature of load transfer in uncemented and cemented stone columns 
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using three-dimensional multiscale DEM simulations. The elemental responses of the aggregate 

and clayed soil were calibrated against laboratory and in-situ test data compared against the 

results of small-and full-scale footing loading tests. The main factors governing the global 

performance and load transfer mechanism of single and group aggregate columns (e.g., strength 

and stiffness of the surrounding soil, area replacement, pressure-dependence of the stiffness and 

strength of the aggregate, column geometry) were systematically varied and examined. The 

results obtained from this numerical investigation are used to advance the current design 

methods and reduce uncertainties in the prediction of the performance of spread foundations on 

aggregate columns reinforced clay in order to obtain more cost-effective designs. 

The research objectives aimed at achieving this goal include: 

1. Improve understanding of the behavior of isolated foundations supported on conventional 

stone columns through calibrated and validated DEM simulations. This objective includes the 

following research tasks:  

1.1 Conduct element test simulations to calibrate the responses of the uncemented 

aggregate reported in Duncan et al. (2007) and Newton (2014). 

1.2 Develop and calibrate full-scale 3D-DEM models to evaluate the bearing pressure-

displacement responses of single uncemented stone columns investigated by 

Stuedlein et al. (2012a).  

1.3 Conduct a parametric study of single uncemented stone columns to investigate the 

effect of parameters (e.g., column length, aggregate gradation, area replacement ratio) 

on the bearing pressure-displacement response.  
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2. Evaluate the performance of isolated footings resting on cemented stone columns by 

conducting a DEM numerical investigation. This objective includes the following research 

tasks:                     

2.1 Conduct calibrated and validated small- and full-scale 3D-DEM models to evaluate 

the effectiveness of cemented stone columns investigated by Stuedlein (2008) and 

Golait et al. (2016) 

3. Reduce uncertainties in the prediction of the bearing capacity of spread foundations on stone 

column groups. This objective includes the following research tasks: 

3.1 Compare the differences in the bearing pressure-displacement responses of external 

and internal columns within a small stone column group with the results obtained 

from a unit-cell model. 

3.2 Compare estimations of the ultimate bearing pressure obtained using the calibrated 

3D-DEM simulations with existing methods for footings on small stone column 

groups.  

 

1.3 Dissertation overview 

 

 This dissertation contains a description of the numerical investigation conducted to 

increase the understanding of the global behavior and load transfer mechanisms of isolated 

foundations supported on aggregate column reinforced clay. This dissertation is organized into 

six chapters. Chapter 2 presents a summary of the relevant literature on aggregate columns 

including: general aspects of stone column installation, current methods for estimating the 

bearing capacity of single stone columns and small aggregate column groups, and an outline of 

previous DEM investigations conducted on stone columns.  A description of the laboratory and 
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field experimental database used for calibration and validation of the 3D-DEM simulations is 

provided in Chapter 3. Details of the test site characterization and footing loading test program 

conducted by Stuedlein and Holtz (2012a), as well as information related to the laboratory 

experimental program developed by Golait and Padade (2016) are given. Chapter 4 provides 

detailed aspects of the development of the 3D-DEM simulations. Description of the numerical 

framework features, selection of model geometries and boundary conditions, as well as 

calibration of selected material properties and constitutive stress-strain relationships are 

presented. Chapter 4 also includes the validation of the small- and full-scale footing loading test 

simulations against experimental data.  Chapter 5 presents the numerical results obtained from a 

parametric study conducted to investigate the effects aggregate strength and stiffness, column 

length, cement content, area replacement ratio, and undrained shear strength of the matrix soil 

have on the load transfer mechanisms of isolated spread foundations on aggregate columns. A 

summary of the numerical investigation is presented in Chapter 6 along with the significant 

findings of the research and suggestions for future work.  
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

 

The need to construct civil engineering projects on weak soils has led geotechnical 

engineers and specialty contractors to develop cost-effective techniques for improving the 

strength, stiffness and permeability of compressible soils. Because they are economically viable 

and environmentally acceptable, vibrated stone columns are considered one of the best soil 

improvement alternatives (Vahedian et al. 2014). Typically, stone columns are used for 

increasing the bearing capacity and reducing the total and differential settlement of foundations 

supported on soft to medium stiff fine-grained soils. Other advantages of using stone columns 

include: acceleration of consolidation and permeability, reduction of liquefaction potential and 

stabilization of slopes (e.g., Vahedian et al. 2014; Zhang et al. 2013; Ambily et al. 2007; and 

Stuedlein and Holtz 2012).   

This chapter contains general aspects of single and group of stone columns, followed by a 

summary of several methods that have been developed to estimate the bearing capacity of 

uncemented and cemented stone columns. A review of the numerical modeling conducted on 

stone columns using DEM is also presented in this section. 

 

2.2 Stone column construction 

 

 Stone column-foundation systems are comprised either of a single column or a small 

group of columns. For a group of columns, the typical installation configurations are triangular, 

square or rectangular patterns, and the columns are distributed on the treated surface area using 

center-to-center column spacing ranging from 1.5 to 3 times the diameter of the column as 

illustrated in Fig. 2.1. Aggregate columns can be designed and installed to bear on a firm soil 
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layer (end-bearing columns), or as a floating system (frictional columns) where the load is 

transferred along the length of the column (Barksdale and Bachus 1983). The installation 

techniques used for placing, vibrating and compacting the granular material into the weak strata 

are widely known as wet-top feed method (vibro-replacement), and dry-bottom feed method 

(vibro-displacement). These stone column installation techniques are generally employed in soils 

with fines contents greater than 20% and undrained shear strengths typically greater than 15 kPa.  

 

Fig. 2.1. Stone column-foundation systems. (a) single, isolated stone column and (b) small group 

of stone columns. 

 

To begin the column installation process, the vibro-flot is positioned over the location 

where the aggregate column will be constructed, and it is lowered into the soil until the desired 

depth is reached. While the vibro-flot penetrates into the ground, its jets are opened expelling 

water or air to facilitate the drilling process. When water is used, the procedure is known as a wet 
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process. If air is employed, it is termed a dry process. Once the vibro-flot has reached the desired 

depth, the void created by displacing the in-situ soil is filled with granular material using either 

the top feed or bottom feed method. The wet-top feed method is typically used below the water 

table and has been effective in soft cohesive soil; however, its use has been significantly reduced 

because of the environmental regulations due to the water flush on the surface (Kelly 2014). In 

this system, the water circulating around the vibro-flot helps the borehole to remain open, while 

the aggregate is discharged from the top of the surface falling through the cylindrical space 

between the vibro-flot and the borehole wall. This method does not significantly disturb the 

native soil so that no marked change in the lateral effective stress occurs.  

The dry-bottom feed method is the most predominantly used stone column installation 

technique today (McCabe et al. 2009). Advantages of the dry-bottom feed method include: more 

effective horizontal densification, no environmental issues related to water flush, no need for 

water supply, less aggregate waste, and better differential settlement performance. In addition, 

McCabe et al. (2009) reported that this method has been successfully used in very soft soil with 

undrained shear strength (su) as low as 5 kPa if the installation process is controlled and 

monitored automatically. Another advantage of the dry bottom feed method is that the vibro-flot 

does not have to be withdrawn during the installation procedure, which improves radial 

densification. In the dry-bottom feed procedure, the granular material is directly placed to the 

desired depth through a pipe that is attached to the vibro-flot edge and connected at its top to a 

hopper where the aggregate is initially deposited (Kelly 2014). Fig. 2.2 shows the procedures 

described for wet-top feed and dry-bottom feed methods. Regardless of the selected installation 

method, the aggregate is usually vibrated and compacted by the probe in lifts ranging from 1.0 ft 

to 4.0 ft depending on the slenderness ratios (column length over diameter, Lsc/Dsc). Common 
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values for the Lsc/Dsc ratio range from six to 10; however, values of up to 15 can be used 

depending on the thickness of the weak soil layer. It is important to highlight that the effects of 

the installation process on the performance of the stone columns analyzed in this study were not 

directly incorporated in the DEM simulations.  

 

Fig. 2.2. Most common stone column installation methods. (a) dry-bottom feed method, and (b) 

wet-top feed method (after Raju and Sondermann 2005). 
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 The direct costs associated with stone column construction include costs for aggregate 

material, installation equipment, labor, and mobilization (may be included separately). Other 

costs related with the installation control and quality assurance process (e.g., field testing and 

instrumentation) need to be added to the direct cost items. There are also other factors that can 

affect the costs of a specific stone column project such as project size and accessibility, weather 

and climate conditions, labor rates, availability of aggregate material, and soil conditions. The 

influence of these factors on the overall cost needs to be carefully identified and examined 

depending on the project characteristics. The direct costs for stone column construction are 

commonly measured in unit-prices per linear foot (LF) or square feet of column production. 

Typical unit-prices for aggregate column installation range from $15.00 to $60.00 per LF 

(Schaefer et al. 2017). Actual project costs from three state department of transportation (DOT) 

sources are summarized in Table 1.  

Table 1. Examples of actual aggregate column projects (Data obtained from the second Strategic 

Highway Research Program SHRP2-R02). 

Project Description Quantity Unit Low  

unit- price 

High  

unit-price 

Average 

unit-price 

Source 

Stone columns (dry-

bottom feed method) 

6,467 LF $39.62 $64.00 $53.62 

New York 

DOT 

Misc. stone columns 3,470 LF $25.91 $27.43 $26.41 

Missouri 

DOT 

Stone columns 

11,160 LF $26.00 $40.00 $29.73 South 

Carolina 

DOT 

17,888 LF $25.00 $34.00 $29.76 

74,138 LF $17.85 $19.36 $18.64 
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2.3 Bearing capacity of single, isolated conventional stone columns 

 

 The behavior of vertically loaded aggregate column-foundation systems is not yet fully 

understood due to the complex interaction occurring between the surrounding soil, foundation 

and stone column, even though it has been extensively studied since the early ‘70s. Many 

methods ranging from simplified to complex have been developed to estimate the bearing 

capacity of single, isolated uncemented stone columns installed in soft clayey strata. These 

methods consist of analytical or semi-empirical methods (e.g., Greenwood 1970; Vesic 1972; 

Hughes et al. 1974, 1975; Stuedlein and Holtz 2013; and Bouassida and Frikha 2014), and 

empirical methods which are based on calibrations using field loading tests (e.g., Mitchell 1981; 

and Barksdale and Bachus 1983). These available methods are limited in their use and have not 

been satisfactory established and implemented in design codes, which has resulted in a lack of 

guidance for estimating the bearing capacity of single uncemented stone columns. The empirical 

and semi-empirical methods proposed by Mitchell (1981) and Hughes and Withers (1974), 

respectively, remain as the most useful approaches for estimating the bearing capacity of single 

stone columns and also widespread uncemented stone columns.  

An initial methodology to estimate the ultimate bearing capacity of single stone columns 

(Eq.1) was proposed by Greenwood (1970) based on the classical plasticity theory assuming that 

plane-strain conditions at plastic equilibrium of the column aggregate are valid.  

 

𝑞ult = σ1 = σ3 ∙ 𝐾𝑝 = σ3 ∙
(1 + sinϕsc)

(1 − sinϕsc)
                                                                                               (1) 
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where Kp is the coefficient of passive earth pressure, sc is the internal friction angle of the 

column aggregate, σ3 is the confining pressure, and qult is the ultimate effective bearing pressure. 

 

Hughes et al. (1974) conducted small-scale laboratory experiments to investigate the 

behavior of single stone columns. In this particular study, it was found that the failure 

mechanism of a single, isolated, uncemented aggregate column is primarily controlled by the 

horizontal confinement or reaction that the native soil can provide at the top part of the column 

known as the bulging zone. This lateral confinement is governed by the undrained shear strength 

of the surrounding soil. Based on the conditions of their experimental study, the authors reported 

that when the column Lsc/Dsc ratio is greater than four, bulging is the predominant failure 

mechanism controlling the global behavior of single, isolated uncemented stone columns. 

Utilizing the cavity expansion elasto-plastic theory developed by Gibson and Anderson 

(1961) and considering undrained conditions, Hughes and Withers (1974) presented Eq. (2) to 

determine the ultimate lateral pressure developed by the surrounding soil as the column bulges 

 

σ3ult = [σro + {1 + ln (
Ec

2 ∙ 𝑠𝑢 ∙ (1 + ν)
)} ∙ 𝑠𝑢   ]                                                                                   (2) 

 

where σ3ult is the ultimate undrained confining pressure, σro is the initial total horizontal stress, Ec 

is the modulus of elasticity of the surrounding soil, su is the undrained shear strength of the 

lateral soil at the bulging zone, and ν is the native soil Poisson’s ratio. Based on experimental 

data obtained from field testing, Hughes et al. (1975) suggested that Eq. (3) can be simplified to:   

 

σ3ult = σ′3ult = [σ′ro + 4 ∙ 𝑠𝑢]                                                                                                                  (3) 
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Assuming critical state conditions for the aggregate within the bulging zone, Hughes et 

al. (1975) recommended that the ultimate effective bearing pressure that can be applied on a 

single aggregate column can be computed by using Eq. (4):  

 

𝑞ult = σ′1ult = σ′3ult ∙ 𝐾𝑝 = [σ′ro + 4 ∙ 𝑠𝑢] ∙
(1 + sinϕsc)

(1 − sinϕsc)
                                                               (4) 

 

where Kp is the coefficient of passive earth pressure generated by the stone column, and sc is the 

internal friction angle of the column aggregate. This equation remains as the one of the most 

useful for estimating the bearing capacity of single, isolated uncemented stone columns. 

Vesic (1972) proposed that the ultimate lateral confining pressure could be estimated 

based on an elasto-plastic cylindrical cavity expansion solution considering the internal friction 

angle and cohesion of the surrounding soil and defined as: 

 

σ3 = 𝑐 ∙ F′c + 𝑞 ∙ F′q                                                                                                                                    (5) 

 

where c is the matrix soil cohesion, q is the isotropic mean stress at the corresponding failure 

depth [q=(σ1+σ2+σ3/3)], and F’c and F’q are known as the cavity expansion factors. These factors 

depend on the friction angle of surrounding soil (c), the rigidity index (Ir) and the average 

volumetric strain (δ) and are defined as: 

 

F′c = (F′q − 1) ∙ cot ϕc                                                                                                                              (6) 

F′q = (1 + sinϕc) ∙ [(
Ir

1 + Ir ∙ δ ∙ secϕc
) ∙ secϕc]

sinϕc
1+sinϕc

                                                               (7) 
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Ir =
Ec

2 ∙ (1 + ν) ∙ (𝑐 + 𝑞 ∙ tanϕc)
                                                                                                             (8) 

 

For undrained conditions (c=0) and ignoring any reduction in the rigidity index during 

plastic deformation, Eq. (5) provides identical results to Eq. (2). The ultimate effective bearing 

pressure that can be applied on the column can be estimated by Eq. (9) using the same principle 

of failure mode previously mentioned for Eq. (4).    

 

𝑞ult = σ1 = σ3 ∙ 𝐾𝑝 = [𝑐 ∙ F′c + 𝑞 ∙ F′q] ∙
(1 + sinϕsc)

(1 − sinϕsc)
                                                                    (9) 

 

Based on both field data and the semi-empirical method proposed by Hughes et al. 

(1974), Mitchell (1981) recommended that the bearing capacity of a single, isolated aggregate 

column under undrained soil conditions be estimated as:  

 

𝑞ult = Ncsc ∙ 𝑠𝑢                                                                                                                                           (10) 

 

where Ncsc is the bearing capacity factor for the stone column (a value of 25 was suggested by 

Mitchell 1981), and su is the representative undrained shear strength of the surrounding soil 

within the bulging depth.  

In 1983, Barksdale and Bachus presented a very useful two-volume manual that 

summarized the main concepts and recommendations for designing and constructing stone 

columns. Fig. 2.3 illustrates the three different failure mechanisms for a single stone column 

fully embedded in a homogeneous weak layer presented by Barksdale et al. (1983). For these 
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three failure modes, the column is only loaded over the surface of its cross section, which could 

be a representation of a plate loading test scenario. The authors mentioned that regardless of the 

tip column condition (end bearing or free floating) stone columns with slenderness ratios greater 

than 3 fail in bulging as shown Fig. 2.3(a). However, when the Lsc/Dsc ratio is less than three, and 

the tip column condition is rigid, short columns fail in general or global shear at the surface as 

illustrated in Fig. 2.3(b).  On the other hand, for short-floating columns, either punching or shear 

failure could occur as presented in Fig. 2.3(c). For estimating the bearing capacity of a single 

aggregate column which fails in bulging, Barksdale et al. (1983) recommended using the 

Mitchell (1981) method with Ncsc values ranging from 18 to 22. These values are suggested 

based on back calculations from plate loading tests considering the stiffness of the surrounding 

soil (i.e., matrix soil). A value for Ncsc of 18 is recommended when the matrix soil has low 

stiffness, whereas a value of 22 is suggested for soils with relative high stiffness. Barksdale et al. 

(1983) also proposed that the elasticity modulus in the equation proposed by Hughes et al. (1974) 

could be calculated as 11su. However, Stuedlein et al. (2013) pointed out that this value produces 

estimations that are too conservative for bearing capacity.  

In 2013, Stuedlein and Holtz conducted a statistical evaluation of the existing methods for 

estimating the bearing capacity of spread foundations placed on a clayey soil reinforced with 

aggregate columns. Stuedlein et al. (2013) reported that there is a notable variation in the 

performance of the existing methods (previously described) for estimating the bearing capacity 

of single uncemented stone columns with respect to the responses obtained from the full-scale 

experimental program conducted by Stuedlein (2008). Therefore, in order to advance these 

current available approaches, Stuedlein and Holtz (2013) empirically adapted the Mitchell (1981) 

method and the semi-empirical method proposed by Hughes et al. (1975) based on the field 



17 
 

database presented by Stuedlein (2008). Using back calculations, the bearing capacity factor of 

the stone column (Ncsc) and the ultimate lateral pressure (σ3ult) were defined as functions of the 

undrained shear strength as presented in Eq. (11) and Eq. (12).  

 

    Ncsc = exp(−0.0096 ∙ 𝑠𝑢 + 3.5)                                                                                                       (11) 

 

     σ3ult = [σro + {8.52 − 1.45 ∙ ln(𝑠𝑢)} ∙ 𝑠𝑢]                                                                                     (12) 

 

 

Fig. 2.3. Failure mechanisms of a single, isolated stone column in a homogeneous soft layer  

(modified from Barksdale and Bachus 1983). 

 
 Eqs. (13) and (14) were proposed by Stuedlein et al. (2013) to determine the bearing 

capacity of a single stone column installed in a clayey soil including the modifications made to 

the Mitchell (1981) and Hughes et al. (1975) methods, respectively.  
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𝑞ult = Ncsc ∙ 𝑠𝑢 ∙ 𝐴𝑟 + λc ∙ dc ∙ Nc ∙ 𝑠𝑢 ∙ (1 − 𝐴𝑟)                                                                               (13) 

 

𝑞ult = [σro + {8.52 − 1.45 ∙ ln(𝑠𝑢)} ∙ 𝑠𝑢]
(1 + sinϕsc)

(1 − sinϕsc)
 + λc ∙ dc ∙ Nc ∙ 𝑠𝑢 ∙ (1 − 𝐴𝑟)              (14) 

 

In these equations Ar represents the area replacement ratio, which is defined as fraction of the 

total tributary loaded area substituted by the stone column within the unit-cell. λc, and dc are the 

shape and embedment correction factors for circular, square or rectangular foundations, and Nc is 

the bearing capacity factor based on the Meyerhof (1965) method (taken as 2+ for c=0).  

Fig. 2.4 and Table 2 present the results of the statistical evaluation of the existing (e.g., 

Eq.1, 4, 9 and 10) and modified (e.g., Eq.13 and 14) bearing capacity methods for single stone 

columns. The performance of existing methods showed a widespread level of bearing capacity 

estimation variability, with bias (i.e., the ratio of observed to estimated bearing capacity) of the 

methods (previously described) ranging from 0.76 (Hughes et al. 1975) to 2.49 (Greenwood 

1970), with a range in COVs in bias from 22 to 30%, respectively (Stuedlein et al. 2013). This 

variability in the results generates a lack of confidence in these existing methods and may lead 

stone column designers to select unsuitable factors of safety for bearing capacity of single stone 

columns. Even though the equations proposed by Stuedlein et al. (2013) include more variables 

that could likely result in a more accurate estimation of the bearing capacity of a single, isolated 

aggregate column, their use is restricted to field project conditions within the range of the field 

database (e.g., geometry, material properties) used to calibrate these modified equations 

(Stuedlein et al. 2013). 

 

 



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. Comparison of estimated ultimate bearing capacity to that estimated using existing 

methods for single stone columns (after Stuedlein et al. 2013). 

 

 

 

In 2014, based on the existing cavity expansion theory, Bouassida and Frikha (2014) 

proposed Eq. (17) to determine the ultimate bearing pressure that can be applied on a single 

stone column installed in a weak cohesive soil. This equation was calibrated with a field database 

obtained from 25 plate loading tests performed on single, isolated aggregate columns, and it 

considers the effect of the angle of dilatancy of the column aggregate on the bearing pressure 

capacity of the column. 

 

k =
(1 − sinψ)

(1 + sinψ)
                                                                                                                                         (15) 
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α = −0.1812 ∙ k + 0.1408                                                                                                                      (16) 

 

𝑞ult = [σro + {1 +
2

1 + k
∙ ln (

Ec
3 ∙ (α)k−1 ∙ 𝑠𝑢

)} ∙ 𝑠𝑢]
(1 + sinϕsc)

(1 − sinϕsc)
                                               (17) 

 

where ψ is the dilation angle of the column aggregate, and α and k are calibrated parameters 

established by Bouassida et al. (2014). The rest of the variables have been previously defined.  

 

 

Table 2. Comparison of statistical results of existing and modified bearing capacity models 

(Table from Stuedlein et al. 2013). 

Method 

Bias, l Mean absolute error 

 [kPa] Mean COV (%) 

Greenwood (1970) 2.49 29.7 533 

Vesic (1972) 1.48 25.9 231 

Hughes et al. (1975) 0.76 22.2 234 

Mitchell (1981), Ncsc=15 0.76 24.2 197 

Mitchell (1981), Ncsc=20 1.01 24.2 76 

Mitchell (1981), Ncsc=25 1.27 24.2 228 

Modified Hughes et al. (1975) 1.01 9.5 40 

Modified Mitchell (1981) 1.01 6.5 37 
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2.4 Bearing capacity of single, isolated cemented stone columns  

 

 In a column-foundation system, the column and its surrounding soil act as a composite 

system, where the stiffer aggregate column carries a higher percentage of the applied bearing 

pressure compared to the native adjacent soil (Barksdale et al. 1983). Larger modular ratios 

between the column and the native soil result in higher stress concentrations in the column, 

reducing the overall settlement of the system. Therefore, the stiffness of the aggregate column 

plays an important role in the bearing pressure-displacement response (q-) of a single, isolated 

stone column. When the aggregate column stiffness is not enough to meet the serviceability limit 

state design requirements for a specific project, the applicability of conventional stone columns 

as a soil improvement alternative is restricted unless techniques to reinforce the columns are 

implemented. For very poor strata (e.g., peat, organic material, and sensitive silts and clays for 

which strength may be reduced by the column installation procedure), the implementation of 

conventional stone columns is also questionable because of the early formation of bulging 

failures resulting from insufficient lateral support from the native soil (Barksdale et al. 1983). 

Several techniques have been developed to increase the effectiveness of conventional stone 

columns by providing extra lateral support or confinement to the column, enhancing the column 

granular material stiffness and strength, or combining these two options. Two examples of these 

techniques are: geotextile-encased stone columns and cemented stone columns (Golait and 

Padade 2016). Golait et al. (2016) reported that the construction of cemented aggregate columns 

does not result in significant additional cost or construction difficulties when compared to the use 

of regular uncemented granular material. As such, they have the advantage of being much easier 

to implement, and thus, are the focus of this study.  
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 Cemented aggregate columns are less dependent on the lateral confinement provided by 

the surrounding soil and can provide stiffer q- responses in very weak soil deposits and 

disturbed soil zones when compared to uncemented aggregate columns (Barksdale et al. 1983; 

Stuedlein 2008, Golait et al. 2016). Typically, only a small percentage (between 3 to 5% by 

aggregate weight) of a binder (e.g., cement, fly ash, lime) is mixed with the conventional 

aggregate to produce a lightly-cemented granular mixture. An increase in the aggregate stiffness 

and strength is expected to be developed as a result of the cement-aggregate bonds generated at 

the particle contact areas as illustrated in Fig. 2.5(a). As the percentage of cement used in the 

mixture increases, the stiffness of the cemented granular material also increases so that it tends to 

behave more as a semi-rigid or rigid porous material (Fig. 2.5b). Therefore, the q- response of a 

single cemented stone column would be more similar to that of a conventional vertically loaded 

pile (Golait et al. 2016). While cemented columns offer a more cost-effective alternative for soil 

improvement, very little information regarding their design or performance has been found in the 

literature. A direct relationship between cement content and resulting stone column behavior has 

not been established to aid designers in estimating the bearing capacity of cemented columns.  

 

Fig. 2.5. (a) Schematic of cemented aggregate material, and (b) variation of stress-axial 

strain response of cemented aggregate as a function of cement content. 
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 Golait and Padade (2016) conducted an analytical study of a single, isolated cemented 

stone column conceptualizing the load transfer mechanism of the column as an idealization of an 

axially loaded pile. The total cemented column-foundation system resistance (Qf) is computed as 

the summation of the foundation bearing capacity contribution (Rs), the column side friction (Rf) 

and end bearing resistance (Rt) as expressed in Eq. (18) and illustrated in Fig. 2.6.  

 

    Qf = Rs + Rf + Rt                                                                                                                               (18) 

 

The bearing resistance beneath the rigid circular foundation (Eq. 19) is computed 

assuming a local shear failure mode acting within a depth equal to the foundation diameter (B). 

The shaft resistance (Eq. 20) and the tip resistance (Eq. 21) are calculated as the following based 

on the assumption that there is enough relative displacement generated between the column and 

the surrounding soil to fully develop both shaft and toe resistances: 

 

    Rs = 4.04𝑠𝑢 × (𝐴 − 𝐴𝑠𝑐)                                                                                                                     (19) 

 

    Rf = (π × α × Dsc × Lsc)𝑠𝑢                                                                                                                (20) 

 

    Rt = [10.35 − 0.45 (
Lsc
Dsc

)] 𝐴𝑠𝑐 × 𝑠𝑢                                                                                                 (21) 

 

where A and Asc are the circular foundation and column cross section areas, respectively, su is the 

undrained shear strength of the surrounding clayey soil, α is the adhesion factor, which is 

assumed as 0.95 for clayey soils with su values less than 25 kPa, and Lsc is the column length, 
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which shall be less than 23 times the diameter of the column (Dsc). The bearing capacity of a 

cemented column-foundation system can be estimated using Eq. (22). 

 

    𝑞𝑢𝑙𝑡 = [{4.04 × (1 − 𝐴𝑟)} +  {4 × 𝛼 × 𝐴𝑟 ×
Lsc
Dsc

} + {10.35 − 0.45 (
Lsc
Dsc

)} 𝐴𝑟 ] 𝑠𝑢             (22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6. Failure mechanism of a single cemented stone column. (a) untreated soft clay failure 

mode, and (b) single cemented stone column failure mode (after Golait and Padade 2016). 
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Golait and Padade (2016) validated their proposed analytical solution for estimating the 

bearing capacity of cemented stone columns by conducting scaled laboratory experiments. The 

authors reported excellent agreement between the analytical and the experimental results, with 

percentage error less than 10%. Additionally, a significant increase in the effectiveness of the 

cemented stone columns tested was observed when compared to not only the conventional stone 

columns, but also to other techniques for reinforcing stone columns. For example, for a Lsc/Dsc 

ratio of 10, Golait and Padade (2016) reported bearing capacity improvement factors (Fb) ranging 

from 2 to 4 for area replacement ratios varying from 0.10 to 0.30, respectively. This analytical 

and experimental research is one of the few studies conducted on cemented granular columns, 

making it a useful contribution; however, there are several limitations. First, its validation is 

based on small-scale representations of cemented stone columns, and its application is restricted 

for soft soils with su less than 25 kPa. There is no guidance for stone columns installed in 

medium stiff cohesive soils with su values ranging from 30 kPa to 45 kPa. Furthermore, all the 

laboratory tests were conducted for long-cemented stone columns with Lsc /Dsc ratios greater 

than 10. The authors reported that Fb linearly increases as the Lsc /Dsc ratio varies from 10 to 20. 

This implies that for short columns, Fb decreases; however, no bearing capacity improvement 

factors were reported for columns with slenderness ratios less than 10, which results in a gap in 

the knowledge, making it unclear how effective relative short-cemented stone columns may be.   

Based on results obtained from full-scale load tests conducted on small foundations 

supported on single, isolated cemented stone columns with Lsc /Dsc ratios of six, Stuedlein (2008) 

reported bearing pressure improvement factors ranging from 2.5 to 3.2 compared to conventional 

stone columns. More details of the experimental programs conducted by Stuedlein (2008) and 

Golait et al. (2016) are presented and discussed in the next chapter.  
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2.5 Bearing capacity of uncemented stone column groups 

 

The behavior of grouped uncemented stone columns is more complex and not well 

understood compared to the behavior of single, isolated uncemented aggregate columns. 

Difficulties emerge with the load transfer and interaction between the columns and the 

surrounding soil, as well as the nonlinear stress-strain responses of the elements comprising the 

column-foundation system. The bearing capacity of a large group of stone columns is typically 

computed as the summation of the capacities of the single columns in the group (Zhang et al. 

2013). The capacity of a representative single stone column within the group is calculated based 

on the assumption of bulging failure mechanism (softer cohesive soils with su, ranging from 20 

kPa to 30 kPa) and the implementation of the unit-cell concept (widespread loading conditions). 

Then, this individual-representative capacity is multiplied by the total number of columns 

forming the group to obtain the total bearing capacity of the group.  In a unit-cell model, the 

domain is represented by a cylindrical cell of an equivalent diameter (De), with no lateral 

movement and shear stress transfer on the cell boundaries as illustrated in Fig. 2.7. The 

equivalent unit-cell diameter is computed based on the stone column installation configuration, 

and center to center spacing between columns (S). For a square pattern, De is calculated as 1.05 

S, whereas it is estimated as 1.13 S for an equilateral triangular pattern (Barksdale and Bachus 

1983). As previously discussed, the average stress in the granular column is higher compared to 

the native surrounding soil within a unit-cell model because of its higher stiffness. Therefore, the 

relationship between the average stress in the column (sc) and soil (s) can be expressed in 

terms of a stress concentration factor (n) as presented in Eq. (23).   

   

    n =
𝜎𝑠𝑐
𝜎𝑠

                                                                                                                                                     (23) 
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Assuming that the applicability of the unit-cell is valid and static equilibrium is satisfied, 

the total average stress acting in the unit cell (Eq. 24), stone column (Eq. 25), and adjacent soil 

(Eq. 26), respectively, as a result of the applied bearing pressure at a given depth can be 

expressed as:  

 

   𝜎avg = 𝜎𝑠𝑐 × 𝐴𝑟 + 𝜎𝑠 × (1 − 𝐴𝑟)                                                                                                      (24) 

 

  𝜎sc = [
𝑛

1 + (𝑛 − 1) × 𝐴𝑟
] × 𝜎avg = 𝜇𝑠𝑐 × 𝜎avg                                                                             (25) 

 

  𝜎𝑠 = [
1

1 + (𝑛 − 1) × 𝐴𝑟
] × 𝜎𝐚𝐯𝐠 = 𝜇𝑐 × 𝜎avg                                                                                 (26) 

 

where 𝜎avg is the total average stress acting over the unit-cell tributary area, Ar is the area 

replacement ratio within the unit-cell, and 𝜇𝑠𝑐 and 𝜇𝑐 are the ratio of stresses in the granular 

column and adjacent soil to 𝜎avg, respectively.  

The methods developed using the unit-cell concept (Priebe 1976; Goughnour and Bayuk 

1979a; Balaam and Booker 1981; Barksdale and Bachus 1983; Poorooshasb and Meyerhof 1997; 

Hughes et al. 1975) do not consider the effect of the column-group interaction, which is an 

important parameter for the design of isolated foundations supported on small stone column 

groups (Hanna et al. 2013). These methods are typically used due to their simplicity and 

acceptable estimations of the bearing capacity of widespread-large stone column groups.  
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Fig. 2.7.  Idealization of unit-cell concept for group stone columns. (a) square pattern, (b) 

triangular pattern, and (c) unit-cell model and boundary conditions (modified from Barksdale 

and Bachus, 1983). 

 

For rigid foundations supported on small stone column groups, the relative position of an 

aggregate column with respect to the adjacent columns and foundation center seems to govern 

the behavior of the column within the group. The columns located along the edges of the 

foundation are not restricted to laterally expand into the in-situ soft soil likely exhibiting a 

bulging failure mode analogous to single, isolated aggregate columns. The columns located 

closer to the center of the foundation are presumably subjected to higher confining pressures and 

stress ratios that likely generate diagonal shear failure modes (Stuedlein, 2008). This has been 

investigated through laboratory experimental studies that have revealed that the failure 

mechanism of a small stone column group-foundation system is mostly controlled by a conical 
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shape of general shear failure instead of bulging of the individual columns as shown in Fig. 2.8 

(Hu et al. 1997, Wehr 1999, and Wood et al. 2000).  Based on a numerical investigation, Hanna 

et al. (2013) also observed that for area replacement ratios (Ar) greater than 10%, the analyzed 

stone column group-foundation systems failed in shear failure modes (global, local or punching) 

rather than individual column bulging failure.  These authors reported that small aggregate 

column groups with high Ar values failed in a global shear failure mode, whereas for low Ar 

values, local or punching shear failure was observed.   

 

 

 

 

 

 

 

Fig. 2.8. Global shear failure mode of the small-scale stone column group investigated by Wood 

et al. (2000). 

 

 Barksdale and Bachus (1983) provided guidance for estimating the ultimate bearing 

capacity (qult) of foundations supported on stone column groups based on the soil strength. For 

softer soils (e.g. su less than 30 kPa), Barksdale et al. (1983) recommended estimating qult for 

wide-spread column scenarios using the empirical method proposed by Mitchell (1981). For firm 

cohesive soils (e.g. su greater than 30 kPa) where no local bulging failure mechanism of single 

columns within the group is expected to develop, Barksdale et al. (1983) suggested using average 

strength parameters of the composite soil-column system to approximately estimate qult of a 

Shape of the 

failure mode 
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square-rigid foundation resting on a small stone column group. The ultimate bearing resistance 

beneath the rigid-square foundation, 𝑞𝑢𝑙𝑡, is computed using Eq. 30 assuming a global wedge 

shear failure mode acting within a depth equal to the foundation width (B) times the angle  

forming the failure plane with the foundation as illustrated in Fig. 2.9. 

 

   β = 45° +
𝜙avg

2
                                                                                                                                      (27) 

 

   𝜙avg = tan−1(𝜇𝑠𝑐 × 𝐴𝑟 × tan𝜙𝑠𝑐)                                                                                                    (28) 

 

  𝑠𝑢avg = (1 − 𝐴𝑟) ×  𝑠𝑢                                                                                                                          (29) 

 

   𝑞𝑢𝑙𝑡 = 𝜎3 × tan2(𝛽) + 2 ×  𝑠𝑢avg × tan(𝛽)                                                                                   (30) 

 

 

where 𝜙avg and  𝑠𝑢avg are the average strength parameters of the stone column reinforced 

cohesive soil acting along the failure plane beneath the rigid foundation, 𝜙avg is the shear 

contribution due to the aggregate column friction angle (𝜙𝑠𝑐), 𝑠𝑢avg is the average undrained 

shear resistance of the in-situ cohesive soil, and 𝜎3 is the average ultimate lateral pressure 

provided on the failure wedge by the native soil. For square foundations, Barksdale and Bachus 

(1983) recommended estimating 𝜎3 using the Vesic cavity expansion theory for cylinders 

discussed above. It is noted that no full-scale numerical simulations validating this approach and 

comparing the differences in the bearing pressure-displacement responses of external and 
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internal columns within a small stone column group using a unit-cell model were found in the 

literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig. 2.9. Square foundation on stone column group analysis (modified from Barksdale and 

Bachus 1983). 
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2.6 Numerical modeling of stone columns 

 

Many continuous numerical models have been developed to investigate the behavior of 

stone columns (e.g., Balaam et al. 1977, Poorooshasb and Meyerhof 1997, Han and Ye 2001, 

Elshazly et al. 2008, Ambily and Gandhi 2007, McCabe et al. 2009, and Hanna et al. 2013). The 

first finite element method (FEM) model used to analyze stone columns was conducted by 

Balaam et al. (1977). The authors treated the model domain considering the unit-cell idealization 

and reported a significant effect of the column stiffness on the bearing-pressure response of their 

model. A more recent FEM study of single and group stone columns was conducted by Ambily 

and Gandhi (2007). These authors reported that the most critical parameters affecting the stone 

column design are the aggregate column stiffness and applied load distribution within the 

surrounding soil and the column. It was also reported that the unit-cell framework provides a 

good representation of the behavior of an internal column within a group if the adjacent columns 

are simultaneously loaded. Hanna et al. (2013) also conducted a FEM investigation to identify 

the failure modes and estimate the bearing capacities of a raft supported on a single stone column 

and a group of stone columns. The numerical results showed that as the aggregate friction angle 

and modulus ratio between the column and the native soil increase, there is substantial 

improvement in the capacity of the stone column-foundation system. Even though numerical 

continuum approaches have been used extensively to simulate conventional granular columns 

(e.g., Balaam et al. 1977, Mitchell and Huber 1985, Ambily and Gandhi 2007, Hanna et al. 2013, 

McCabe et al. 2016, Ammari et al. 2018), similar approaches have not been used to examine 

cemented stone columns.  

 The column shearing resistance and stiffness depend on aggregate features such as 

particle shape, gradation, and aggregate-matrix soil interaction. The previously mentioned 
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analytical, empirical and numerical approaches have significantly contributed to the macroscopic 

understanding of the global behavior of stone columns. However, the use of these continuous 

approaches to simulate stone columns might be less suitable because they cannot properly 

capture the internal interaction occurring between the aggregate particles comprising a stone 

column (Ngo et al. 2016). Therefore, it is beneficial to use a numerical tool capable of providing 

a better representation of this aggregate particle interaction. This can be attained by using the 

discrete element method (DEM), which is a numerical approach used to simulate the behavior of 

discontinuous media (e.g., granular material).  

Several numerical investigations using DEM have examined different factors affecting 

the performance of stone columns (e.g., Indraratna et al. 2015, Siahaan et al. 2015, Tan and Chen 

2018). Indraratna et al. (2015) analyzed the bearing pressure-displacement response of a small-

scale single stone column using a coupled numerical model. This model employed DEM to 

simulate the behavior of the aggregate column, whereas the surrounding soft clay was modeled 

using continuous finite difference method (FDM), as illustrated in Fig. 2.10. Even though the 

results of this coupled model were in good agreement with the experimental data, the use of 

monitored nodes for coupling the DEM-FDM model makes this numerical framework difficult to 

implement. Additionally, this study used a 2D analysis which requires a conversion from an 

axisymmetric domain to an equivalent plane strain model. Another limitation of this numerical 

approach is that the granular material was modeled using circular particles instead of more 

realistic crushed aggregate shapes, which could be improved to obtain better representation of 

the aggregate behavior.  
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Fig. 2.10. Coupled DEM-FDM model conceptualization. (a) axisymmetric unit-cell, and (b) 2D-

plane strain model geometry and meshing (after Indraratna et al. 2015). 

 

A 3D DEM simulation was performed by Siahaan et al. (2015) to investigate the 

influence of particle size distribution on the bearing pressure-displacement performance of single 

stone columns. Clumped spheres were used to replicate basalt particle shapes, and an equivalent 

force-methodology (stress-controlled particles) was implemented at the cylindrical interface 

between the column and the soft soil to facilitate vertical and horizontal load transmission from 

the column to the soil as presented in Fig. 2.11. The results of this numerical investigation 

indicated that slight variations on the aggregate gradation affect the initial stiffness of the bearing 

pressure-displacement response of the columns, with well-graded gradations showing a tendency 

to result in a stiffer response at small displacements. Siahaan et al. (2015) mentioned that stone 

columns are mostly comprised of angular particles rather than rounded particles; therefore, the 
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use of clump spheres in a stone column model needs to be well calibrated in order to obtain a 

good representation of the micromechanical behavior of inter-particle interaction.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11. Laboratory experiment and particle shapes used in the DEM simulations. (a) 

experimental test setup used by Sivakumar et al. (2011), (b) representation of basalt particle 

shapes used in the DEM Model, and (c) process to convert real particle shapes to simplified 

clump particles for the DEM model (after Siahaan et al. 2015). 

 

Tan and Chen (2018) conducted a two-dimensional numerical investigation on a single 

stone column in a clayey stratum using a coupled DEM-FDM model similar to the framework 

proposed by Indraratna et al. 2015. Tan and Chen used the Universal Distinct Element Code 

(UDEC), which is a 2D-DEM program mainly developed to represent the behavior of 

discontinuous materials (e.g., jointed rock mass, aggregate columns) exposed to either static or 

dynamic forces. In UDEC, the distinct blocks behave as either rigid or deformable elements, 

which also allows simulating continuous materials. Tan and Chen (2018) simulated the column 

(a) 

(b) 

(c) 
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granular material in UDEC as convex-shaped discrete rigid blocks (polygons) randomly 

generated based on the Voronoi tessellation, whereas the adjacent clayey soil was simulated as 

continuous Mohr-Coulomb material using deformable blocks as illustrated in Fig. 2.12. The 

advantage of this procedure implemented in UDEC is that the complex interaction between the 

aggregate column and surrounding soil can be simulated in a single model without needing 

monitored nodes for coupling the DEM-FDM model. The numerical results coincided well with 

the laboratory experimental data indicating the potential of this proposed modeling procedure for 

further numerical investigations to continue advancing the understanding of the behavior of stone 

column-foundation systems. However, this modeling framework presents a significant limitation 

in terms of the aggregate void ratio and relative density modeling. By using the Voronoi block 

system, the stone column is generated in a zero-porosity packing arrangement, which represents 

a much denser compaction condition than in stone columns. Additionally, it is typical in DEM 

models that the micro-mechanical contact parameters are different that those obtained from 

laboratory testing (Tan et al. 2015, 2016). Therefore, proper calibrations are needed in order to 

ensure that the modeling contact parameters reproduce the behavior of the granular material. The 

authors also highlighted that the three-dimensional behavior of a stone column could only be 

approximately simulated using 2D-rigid disks and plain strain model. Hence, a full-scale 3D-

DEM model could improve understanding of the complex behavior of stone columns.  
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Fig. 2.12. Model conceptualization from the experimental to the numerical model. a) 

experimental test setup used by Meng and Shen (1987), and b) two dimensional DEM-FDM 

model in UDEC (after Tan and Chen 2018). 

 

2.7 Summary of literature review and main areas for investigation  

 

Despite the fact that the use of stone columns as a soil improvement option has 

significantly increased in the last few decades, there are still some uncertainties regarding their 

internal and global behavior that have not been fully captured by analytical and numerical 

continuous approaches.  In reference to the literature, three main areas need to be investigated 

further in an effort to improve the design of isolated foundations supported on stone columns. 

These are: 

1. Lack of reliability and validation of the existing design methods for spread foundations 

resting on single, isolated conventional stone columns. 

(a) (b) 
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Previous efforts to assess the load transfer mechanisms have treated the bulging failure 

mechanism of single, isolated columns as analogues to the expansion of a cylindrical cavity, 

using results of pressuremeter testing or idealized elasto-plastic constitutive responses to 

represent the native soil and aggregate. However, the soil constituents comprising the stone 

column system exhibit nonlinear, pressure-dependent stress-strain characteristics, a critical 

shortcoming in the methods. Additionally, the load transfer between the column and the 

surrounding soil is progressive in nature and depends on the exceedance of local shear stresses 

and redistribution of normal and shear stresses that are governed by the magnitude of the 

imposed displacements and the loading boundary conditions (Stuedlein 2010). Furthermore, the 

accuracy of these methods has not been validated in full-scale footing loading test experiments, 

largely due to the difficulty in observing and measuring load transfer of stone column-reinforced 

soil (Stuedlein and Holtz 2008).   

2. Lack of available information regarding the performance of cemented stone columns. 

The applicability of conventional stone columns is generally restricted for low-strength 

clayey soils (i.e. su < 20 kPa) because of the insufficient lateral confinement that these types of 

soils can provide to the aggregate columns, which can result in the occurrence of premature 

bulging failure (Barksdale and Bachus 1983). The use of cemented aggregate has been 

considered as one of the solutions to improve the efficiency of conventional stone columns 

installed in very soft soils. However, cemented aggregate columns have not widely been 

implemented because there are still uncertainties regarding their global performance under 

different loading and field conditions in comparison with conventional stone columns. 

Furthermore, there is a lack of information regarding material parameters (e.g., Young’s 

Modulus, friction angle, cohesion) needed for design and numerical modeling. 
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3. Lack of methods for predicting the bearing capacity and settlement of foundations supported 

on small stone column groups. 

Typically, stone columns installed in wide spread group configurations are designed 

using methods developed considering the unit-cell concept. However, the application of this 

approach to design footings resting on small stone column groups is questionable because it does 

not provide an appropriate representation of the global three-dimensional failure mode (conical 

shear failure) and does not take into account the group effect. However, a lack of convincing 

information comparing the design and performance of small stone column groups with or 

without considering the unit-cell concept was found in the literature review. Additionally, the use 

of the method proposed by Barksdale and Bachus (1983) is restricted for some soil types and 

foundation shapes.   
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CHAPTER 3. DESCRIPTION OF EXPERIMENTAL DATABASE 

Experimental calibration or verification of the 3D-DEM models is important in order to 

provide confidence in the numerical findings. This calibration was developed based on the 

experimental studies conducted on the full-scale stone columns (Stuedlein 2008; and Stuedlein et 

al. 2012a) and small-scale cemented stone columns (Golait et al. 2016).  

3.1 Overview of Full-scale Experimental Program by Stuedlein et al. (2012a)  

 

 Stuedlein (2008) and Stuedlein and Holtz (2012a) described a comprehensive footing 

loading test program designed to investigate the effect of aggregate column installation method, 

aggregate gradation, and column length on the bearing pressure-displacement performance. This 

information was used to form a basis for validation of the numerical approach and evaluation of 

various design variables described herein.   

3.1.1 Description of the Test Site Location and Geology 

 

 The test site was located in Baytown, TX, at an approximate distance of 50 km east of 

Houston. The strata at the test site is known as the Beaumont clay formation, and it is primarily 

composed of an overconsolidated, tan and brownish red clay with sporadic thin seams of silty 

sand or silt. The initial depositional process of the Beaumont clay formation occurred on areas 

subjected to flooding during the first Wisconsin glacial stage approximately 100,000–50,000 

years ago (Stuedlein et al. 2010, 2012a). After deposition, the clay formation surface was 

exposed to a net lowering of the sea level of the nearby Gulf of Mexico of approximately 125 m 

during the late Wisconsin glacial stage, which induced desiccation in the Beaumont clay 

formation. This desiccation subsequently produced the development of fissures and joints in the 
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Beaumont formation originating coefficients of lateral earth pressure for at-rest condition close 

to passive earth pressure (Stuedlein et al. 2012a; O’Neill and Yoon 1995).   

3.1.2 Geotechnical Characterization of the Test Site 

 

 The characterization of the subsurface conditions at the test site location was conducted 

by a series of in-situ tests in combination with laboratory testing.  The field exploration program 

was developed using five mud rotary borings (designated B-1−B-5; Stuedlein and Holtz 2010) 

and nine cone penetration tests (designated CPT-1−CPT-3, CPT-F1− CPT-F6; Stuedlein and 

Holtz 2010) distributed over the test site as illustrated in Fig. 3.1.  Two of the five mud rotary 

borings were used for standard penetration tests (SPTs) while the rest were used for thin-walled 

tube sampling. Based on the results obtained from the CPT soundings, SPT blow counts, and 

thin-walled tube sampling, a representation of the subsurface profile was developed along 

section A-A’, as illustrated in Fig. 3.2 (Stuedlein and Holtz 2012b). The subsurface consisted of 

a desiccated clay crust layer 0.6 m thick, overlying an approximately 3 m thick upper layer of 

medium stiff to stiff, low to medium plasticity Beaumont Clay, underlain by a layer of stiff to 

very stiff medium to high plasticity clay. The upper and lower clay layers were separated by a 

thin, loose to medium dense layer of sandy silt to silty sand.  Table 3 summarizes the results 

obtained from the in-situ test program. Soil samples obtained from the test site using thin-walled 

tubes were used to perform consolidated isotropic undrained (CIU) triaxial strength tests using 

the SHANSEP laboratory testing protocol (4 tests) and recompression procedure (8 tests), as 

detailed in Stuedlein (2008). Fig. 3.3 shows the CIU triaxial strength test results for the 

desiccated clay at different overconsolidation ratios (OCRs). The stress-strain responses of the 

soil specimens prepared using the recompression technique are presented in Fig. 3.3a, whereas 
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Fig. 3.3b shows the stress path and principal stress ratios as function of the axial strain for 

samples prepared using SHANSEP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Plan view of the experimental program and exploration plan of the test site (after 

Stuedlein and Holtz 2012b). 

 

 

 

 

The red-dashed circles indicate the foundations selected to 

calibrate the DEM simulations. 
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Fig. 3.2. Subsurface profile was developed along section A-A’(after Stuedlein and Holtz 2012b). 

 

Table 3. Summary of results obtained from the in-situ test experimental program. 

Soil type USCS Consistency 

Thickness 

[m] 

SPT, Nm CPT, qt [MPa] 

Min Mean Max Min Mean Max 

Desiccated crust CL Very Stiff 0.6 --- --- --- 0.94 7.45 21.6 

Upper clay layer CL Medium stiff 3.2 5 7 10 0.06 1.35 4.19 

Silty sand/ sandy silt SM/ML Loose 0.8 6 8 10 0.79 2.94 8.20 

Lower clay layer CH Stiff to very stiff --- 9 14 19 1.27 2.05 4.21 

qt= corrected tip resistance. Table modified from Stuedlein and Holtz (2012b). 
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Fig. 3.3. Results from the CIU triaxial strength tests for the overconsolidated clay at different 

overconsolidation ratios. (a) stress-strain responses using the recompression technique, and (b) 

stress path and principal stress ratios as function of the axial strain for SHANSEP (after 

Stuedlein and Young 2012; Stuedlein and Holtz 2012b). 

 

 

Stuedlein et al. (2012b) followed the procedure proposed by Mahar and O’Neill (1983) to 

develop the normalized undrained shear strength (su/’v) multiplied by the liquid limit (LL) as a 

function of OCR’s (SHANSEP curve) for the test site, as illustrated in Fig. 3.4. The CPT results 

in conjunction with SHANSEP curve, correlations, and a geostatistical model of the 3D spatial 

(Stuedlein et al. 2012c) were used to estimate field geotechnical material properties (e.g., 

preconsolidation stress, ’p, overconsolidation ratios, OCRs, undrained shear strength, su, lateral 

earth pressure coefficient at-rest, Ko) at the test site. Eq. 31 (Chen and Mayne 1996), Eq. 32, Eq. 

33 (Mahar and O’Neill 1983, Stuedlein et al. 2012b), and Eq. 34 (Kulhawy and Mayne 1990) 

were used to develop the subsurface soil profiles for ’p, OCRs, su, and Ko, respectively, at each 

desired location within the test site (Fig. 3.5).   

 

   𝜎′
𝑝 = 0.305 × (𝑞𝑡 − 𝜎𝑣𝑜)                                                                                                                     (31) 

 

(a) (b) 
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   𝑂𝐶𝑅 =
𝜎′

𝑝

𝜎′
𝑣𝑜
                                                                                                                                             (32) 

 

   𝑠𝑢 = (
𝑠𝑢
𝜎′

𝑣𝑜
)
𝑁𝐶

× 𝜎′
𝑣𝑜 × 𝑂𝐶𝑅𝑚 = 0.364 × 𝜎′

𝑣𝑜 × 𝑂𝐶𝑅0.706                                                      (33) 

 

   𝐾𝑜 = [

(
𝑠𝑢
𝜎′

𝑣𝑜
)
𝑂𝐶

(
𝑠𝑢
𝜎′

𝑣𝑜
)
𝑁𝐶

]

0.6

                                                                                                                               (34) 

 

where 𝜎𝑣𝑜 and 𝜎′
𝑣𝑜 are the total and effective vertical stresses, and m is fitting parameter of the 

SHASHEP curve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. Fitted SHANSEP curve for Beaumont clay (after Stuedlein and Holtz 2012b). 
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Fig. 3.5. Subsurface property profiles. (a) corrected tip resistance, qt, (b) overconsolidation ratio, 

OCR, (c) undrained shear strength, su, and (d) coefficient of earth pressure at-rest, Ko (data 

provided by Dr. Stuedlein). 

 

3.1.3 General Details of the Full-Scale Testing Program  

 

 Twenty full-scale loading tests on unreinforced and stone column-reinforced soil were 

conducted, including 14 tests on small circular concrete footings (0.76 m diameter, B) and six on 

large square concrete footings (2.74 m width, B), as detailed in Table 4. The tests were 

performed to evaluate the effect of densification method (those investigated in the proposed 

work are vibrated, designated by V), depth of treatment (3.05 and 4.57 m, designated as 10 and 

15 feet), predrilling prior to densification (designated by P), and aggregate gradation (U or W, 

representing uniform- and well-graded aggregate, respectively). The diameter, Dsc, of the test 

columns ranged from 0.74 to 0.76 m, resulting in area replacement ratios, Ar, ranging from 95 to 
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100% for the small footings, whereas Ar was approximately 30% for the large footings. The 

slenderness ratio, Lsc/Dsc, evaluated was either four or six for both small and large footings, as 

shown in Table 4. Two small baseline footings (designated P30-1 and P30-2; Stuedlein and 

Holtz 2010), overlying unreinforced ground, were tested with the same configuration to evaluate 

repeatability and were found to produce nearly identical results. The small footings overlying the 

unreinforced (baseline condition) and stone column-reinforced soil were embedded 0.61 m 

below grade. Also, a large baseline footing (designated G3; Stuedlein and Holtz 2010) was tested 

on the unimproved ground, and its response was found to be similar to the other two small 

baseline footings in terms of the mobilized shear strength as a function of the normalized 

displacement as presented in Fig. 3.9. The large square footings (0.27 m thick) were not 

embedded into the desiccated crust layer, and a square-stiffened steel structure (3.05 m square) 

was centrically placed over them in order to provide a rigid foundation condition.  

 Two of those load tests were conducted on footings (embedded 0.61 m below grade) 

supported on single, isolated stone columns constructed using cement-coated aggregate. One of 

these columns (V15C/2U, Stuedlein and Holtz 2012a) was constructed with cemented aggregate 

in the upper half, and uncemented aggregate in the bottom half (designated here as V15U-

PCSC). The other column (V15CU, Stuedlein and Holtz 2012a) was entirely constructed with 

cemented aggregate (referred to here as V15U-FCSC). Views of the setup of the small footings 

and large footings are presented in Fig. 3.6 and Fig. 3.7, respectively. 
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Table 4. Foundation and stone column geometries for full-scale DEM models 

 

Element 

Footing/ Column, 

B/Dsc 

Number of 

Columns 

Length,  

Lsc 

Lsc/Dsc  

ratio 

Area Replacement  

 Ratio, Ar 

[m]  [m] --- [%] 

V10PW 0.76/0.76 1 3.05 4 100 

V15PW 0.76/0.76 1 4.57 6 100 

V10PU 0.76/0.74 1 3.05 4 95 

V15PU 0.76/0.74 1 4.57 6 95 

V15U-UCSC 0.76/0.74 1 4.57 6 95 

V15U-FCSC 0.76/0.76 1 4.57 6 100 

V15U-PCSC 0.76/0.74 1 4.57 6 95 

V10PU-5 (G4) 2.74/0.74 5 3.05 4 30 

V15PU-5 (G6) 2.74/0.74 5 4.57 6 30 

P30-1 (Baseline) 0.76 --- --- --- --- 

G3 (Baseline) 2.74 --- --- --- --- 

B=footing size, Dsc=stone column diameter, Lsc=stone column length. 
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 Fig. 3.6. Sketch of the small footing setup on single stone column (after Stuedlein et al. 2012b). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Sketch of the large footing setup on a small stone column group (after Stuedlein et al. 

2012b). 
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3.1.4 Aggregate Material Used in Stone Column Construction 

 

 The granular material used within stone columns is generally, crushed gravel (typically 

limestone) or waste rock. The selection of the aggregate gradation, typically made by the 

geotechnical specialty contractor, depends on the installation method, column length and 

diameter, and groundwater table, but the particle size generally varies from 6 mm to 50 mm 

(Barksdale and Bachus 1983). The aggregate used to construct the stone columns in Stuedlein 

and Holtz (2012b) was a uniformly-graded crushed gravel (#57 limestone gradation, GP, Cu = 

2.3, Cc = 1.2, D50 = 13.5 mm) and a well-graded, angular, silty sand and gravel mixture (21b 

limestone gradation, GW-GM, Cu = 250, Cc = 2.5, D50 = 6.1 mm), as illustrated in Fig. 3.8a,b. 

For the cemented columns, this aggregate was mixed in the front-end loader bucket at a cement 

to aggregate ratio of 5 to 6 % of the total dry aggregate weight (Fig. 3.8c). The bottom feed 

method was used to place the aggregate into the ground during stone column installation 

(Stuedlein, 2008).  

 

 

 

 

 

 

Fig. 3.8. Illustrations of aggregates used to construct stone columns. (a) uniformly-graded 

aggregate-#57 limestone, (b) well-graded aggregate-21b limestone, (c) cemented uniformly-

graded aggregate (after Duncan et al. 2007; Newton 2014). 

(a) 

(b) 

(c) 
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3.1.5 Bearing Pressure-Displacement Responses of Small and Large Footings on 

Unreinforced and Stone Column-Reinforced Soil 

 

 The variation of the mobilized undrained shear strength as a function of the normalized 

vertical displacement is illustrated in Fig. 3.9. The mobilized shear strength curves computed for 

the small and large baseline footings (P30-1, P30-2, and G3) exhibited almost an identical 

tendency, which indicates a very consistent response of the untreated ground at the test site.   

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. Mobilized undrained shear strength-normalized vertical displacement response of 

untreated clayey soil (after Stuedlein, 2008). 

 

 Fig. 3.10 presents the bearing pressure-displacement, or q-, curves, for the baseline 

footing and aggregate column-reinforced footings described in Table 4. The footings overlying 

V10PW and V15PW share a near-identical response, despite differences in the column length, 

whereas the corresponding columns with uniformly-graded aggregate (i.e., V10PU, V15PU) 
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show significant differences. While some differences in the q- response can be attributed to 

differences in column length or soil strength (through column location in the spatially-variable 

soils at the test site; Stuedlein et al. 2012c) there is no consistent trend observed in the responses. 

Stuedlein et al. (2012a) reported that the longer stone columns constructed with uniformly-

graded aggregate exhibited greater initial stiffness than the shorter columns, whereas the column 

length did not appear to affect the q- response of the well-graded columns. These findings leave 

questions regarding the role of aggregate column length, gradation, and strength and stiffness of 

the surrounding soil on the bearing pressure response of footings supported on stone columns. 

These questions are explored using numerical modeling in the remaining sections of this 

dissertation due to ability to systematically vary and compare these factors in the DEM 

simulations. 

 

Fig. 3.10. Bearing pressure-displacement curves for selected well-graded and uniformly-graded 

stone columns (after Stuedlein and Holtz 2012a). 
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 The q- responses for the cemented stone columns, V15U-PCSC and V15U-FCSC, and 

the uncemented stone column, V15U-UCSC, are presented in Fig. 3.11. The q- responses for 

the cemented stone columns were considerably stiffer than the uncemented column. For a 

settlement value of 20 mm, the bearing pressure improvement ratio of columns V15U-FCSC and 

V15U-PCSC to column V15U-UCSC is approximately 2.6 and 3.5, respectively, indicating a 

substantial increase in the bearing pressure performance and reduction on the foundation 

settlement. It is important to highlight that V15U-PCSC, constructed with the cemented 

aggregate in only the upper half of the column, exhibited a stiffer q- response than V15U-

FCSC, which cannot be explained only by the cement inclusion in the aggregate mixture. 

Experimental or field observations are not able to explain these differences, and further 

investigation using numerical models is needed.   

 

Fig. 3.11. Bearing pressure-displacement curves for selected uniformly-graded-cemented stone 

columns (after Stuedlein and Holtz 2012a). 
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Fig. 3.12 illustrates the bearing pressure-displacement curves for the baseline footing (G3) 

and aggregate column-reinforced footings (G4 and G6). The large footings G4 and G6 were 

constructed over a group of five vibro-compacted aggregate columns that were installed using 

uniformly-graded uncemented aggregate to depths of 3.05 m and 4.57 m, respectively. The q- 

responses of G4 and G6 initially coincide with that corresponding to G3 up to approximately 90 

kPa. However, beyond this value, both G4 and G6 exhibited stiffer responses than that of G3 with 

a reduction in the observed displacement (≈ 62 mm) at the final load increment of approximately 

50% in comparison with G3 (≈ 123 mm). G4 exhibited a slightly stiffer q- response than G6 for 

q values greater than 200 kPa, which cannot be explained by the length difference, but it might be 

caused by the variation in the su profile at each footing location.  

 

 

 

 

 

 

 

 

 

Fig. 3.12. Bearing pressure-displacement curves for selected uniformly-graded-uncemented 

stone column groups (after Stuedlein and Holtz 2012a). 
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3.2 Overview of Small-scale Experimental Investigation by Golait et al. (2016)  

 

 Golait and Padade (2016) conducted small-scale 1g laboratory experiments on single 

cemented stone columns to evaluate the performance and effectiveness of these type of columns 

in comparison with the conventional stone columns and other column-type soil improvement 

techniques. The experimental results were also used to validate the analytical procedure that the 

authors proposed for cemented aggregate column design using the unit-cell idealization.  

 The unit-cell idealization employed in the laboratory setup was intended to represent a 

stone column 4.0 m long and 0.40 m in diameter, installed in a triangular configuration with a 

center-to-center column spacing of 0.95 m. The authors selected a scale factor of 10 to reduce the 

prototype geometry to a small-scale model with the column length (Lsc= 40 cm), column 

diameter (Dsc= 4.0 cm), and until-cell diameter (B= 10 cm) as illustrated in Fig.3.13a. Based on 

this model geometry (Table 3), the column slenderness ratio (Lsc/Dsc) was 10, and the area 

replacement ratio (Ar) was approximately 16% (Table 5). A schematic of the experimental setup 

is presented in Fig. 3.13b, which included: a perforated mild-steel tank (diameter and height of 

50 cm), a saturation tank, dial gauges for settlement measurements, and a rigid steel plate 

(loading ram, B= 10 cm) to apply a uniform pressure on top of the unit-cell (Golait et al. 2016). 

Table 5. Foundation and stone column geometries for small-scale DEM models 

    Model 

 

Element 

Diameter  

B/Dsc  

Length,  

Lsc 

Lsc/Dsc  

ratio 

Area replacement  

 ratio, Ar 

[m] [m] --- [%] 

Small-Scale  

(Golait et al. 2016) 

UCSC, PCSC, and 

FCSC 
0.1/0.04 0.40 10 16 

B=footing diameter, Dsc=stone column diameter, Lsc=stone column length 
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Fig. 3.13. (a) Schematic of the unit-cell idealization, and (b) laboratory setup for testing small-

scale cemented stone columns (after Golait et al. 2016). 
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 To examine the cementation effect within the bulging zone, a column (designated here as 

PCSC) was constructed with cemented granular material in the upper half, whereas the lower 

half of the column was constructed using uncemented granular material. Another column was 

constructed entirely of cemented granular material for comparison (referred to here as FCSC).  

 The granular material used to construct the PCSC and FCSC columns contained 60% 

coarse sand and 40% fine sand and was mixed with 2% cement and 6% fly ash for the cemented 

granular material. The granular materials were mixed at a water content of 5% and then were 

placed and compacted within a small-diameter “borehole” perforated into the clay layer (Golait 

et al. 2016). 

 The bearing pressure-displacement responses for the partially cemented stone column 

(PCSC) and fully cemented stone column (FCSC) are presented in Fig. 3.14, along with the q- 

curve corresponding to the unreinforced clayey soil (USS), and an uncemented stone column for 

comparison (UCSC). PCSC and FCSC exhibited a similar initial linear behavior, but for q values 

above 60 kPa, a nonlinear behavior was observed. Overall, FCSC exhibited a slightly stiffer q- 

response than PCSC. This is an opposite behavior of what was observed from the full-scale 

cemented stone columns tested by Stuedlein (2010) and Stuedlein and Holtz (2012a), indicating 

the need for further investigation using numerical models to improve understanding this 

behavior. Computed using the double tangent method, columns PCSC and FCSC provided an 

increase in the bearing capacity of 44% and 57%, respectively, with respect to UCSC. The 

bearing capacity improvement factors are approximately 2.3 and 2.5 for PCSC and FCSC, 

respectively, computed in terms of the bearing capacity of the unreinforced soil.  
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Fig. 3.14. Bearing pressure-displacement curves for selected small-scale cemented stone 

columns. USS refers to the unreinforced soil, and USCS, PCSC, and FCSC refer to uncemented, 

partially cemented, and fully cemented stone columns, respectively (after Golait et al. 2016). 
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CHAPTER 4. NUMERICAL FRAMEWORK AND METHODOLOGY 

4.1 Summary of Previous DEM Simulations on Stone Columns 

The behavior of stone columns has been investigated using numerical continuum 

mechanics to address questions of system or global response (e.g., Balaam et al. 1977, Mitchell 

and Huber 1985, Ambily and Gandhi 2007, Hanna et al. 2013, McCabe et al. 2016, Ammari et 

al. 2018). However, continuum approaches may be limited due to the difficulty of capturing 

internal interactions occurring between the aggregate particles comprising the stone column. The 

discrete element method (DEM) provides an alternative modeling approach capable of capturing 

these particle interactions, as well as the global response of particulate materials, and researchers 

have shown recent success in modeling stone column systems using coupled discrete-continuum 

approaches (Indraratna et al. 2015, Tan et al. 2018). Indraratna et al. (2015) simulated the 

bearing pressure-displacement response of a small-scale single stone column using a 2D coupled 

numerical model that linked discrete element analyses (comprised of disks) of the stone column 

to the surrounding soft clay, which was modeled as a continuum. Tan et al. (2018) conducted a 

similar study using coupled DEM-FDM approach implementing the Universal Distinct Element 

Code (UDEC) to simulate stone columns in clay. The granular material comprising the stone 

column was simulated using convex-shaped discrete-rigid polygon blocks randomly generated 

using a zero-porosity Voronoi tessellation packing scheme, whereas the surrounding clay soil 

was simulated as a continuum using deformable blocks with a Mohr-Coulomb failure criterion. 

Tan et al. (2018) reported good agreement between experimental results and the simulations; 

however, the calibration efforts necessary to approximate the experimental results using the suite 

of contact law parameters is computationally expensive and time-prohibitive, and the assumption 

of zero-porosity of the column material model deviates significantly from the physical frictional 
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phenomena giving rise to aggregate strength and stiffness. Additionally, 2D simulations of the 

actual 3D loading and geometry of discrete aggregate columns, as well as the effects of out-of-

plane soil-aggregate interfaces, cannot capture potentially important and salient aspects of 

aggregate column performance (Tan et al. 2018). Siahaan et al. (2015) used 3D-DEM 

simulations to investigate the influence of particle size distribution on the q- response of single 

stone columns. Clumped spheres were used to replicate basalt aggregates whereas stress-

controlled nodes along the cylindrical interface to simulate the interaction between the column to 

the surrounding soil. The use of stress-controlled nodes makes this numerical framework 

difficult to implement when the adjacent soil is nonhomogeneous. Slight variations of the 

aggregate gradation were shown to affect the initial q- response, with well-graded aggregates 

providing a stiffer response at small displacements.  

4.2 Overview of Modeling Methodology 

 The computational platform 3DEC by Itasca Consulting Group, Inc. was used to conduct 

the 3D-DEM investigations herein. This platform has been used extensively to investigate the 

mechanical response of discontinuous media modeled as assemblies of discrete “blocks” of 

arbitrary 3D shapes. Individual 3D blocks can be modeled either as a rigid or deformable body in 

response to nodal static or dynamic forces (Itasca 2013). Rigid blocks are comprised of 

polygonal-plane faces, and their motion state is described in terms of three translational and three 

rotational degrees of freedom. The deformable blocks are internally discretized into finite 

difference tetrahedral zones with vertices that enable three translational degrees of freedom 

(Cundall 1988). The polyhedral blocks interact along specified discontinuities, which are treated 

as boundary conditions (e.g., block joints or contacts). The mechanical interaction between the 

discrete blocks is governed by the normal stiffness and tensile strength criterion in the direction 
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perpendicular to the sub-contact surface, and the tangential stiffness and shear strength criterion 

in the direction parallel to the sub-contact area (Itasca 2013). Once calculated for given time 

step, the sub-contact forces are used to compute the total force and moment at the centroid of 

each rigid block and its position is updated using the equations of motion. In the case of 

deformable blocks, the equations of motion defined for each block’s grid-points are solved using 

an explicit time-domain integration scheme. The new stress state for the tetrahedral zones is then 

calculated using a stress-displacement contact law (Cundall 1988). Fig. 4.1a illustrates a 

schematic of a simple assembly of discrete rigid and deformable blocks generated in 3DEC, and 

a diagram of the calculation process for rigid and deformable blocks implemented in 3DEC is 

presented in Fig. 4.1b.  

4.3 Block Zone Generation  

 Typical of all numerical techniques, the generation of block zones (analogous to mesh 

discretization) represents a critical aspect in the performance and efficiency of a DEM model in 

3DEC. Deformable blocks can be discretized into tetrahedral zones in 3DEC using three 

different types of zoning techniques (e.g., regular tetrahedral zoning, high-order tetrahedral 

zoning, and six-sided polyhedra zoning- “quads”). A tetrahedral zone generation developed using 

either high-order zones or quad zones (referred to as mixed discretization) provide a more 

accurate solution than regular tetrahedral zones for simulations including large plastic 

deformations (Itasca 2013).  Fig. 4.2 presents the q- responses of a rigid foundation on a soft 

soil simulated using these three types of tetrahedral zone generation techniques.  It can be 

noticed that the q- curves for the high-order zoning and mixed discretization zoning are almost 

identical and in good agreement with Meyerhof’s (1963) analytical solution (Fig. 4.2).  The 
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mixed zone discretization technique was used in this study to discretize the blocks into 

deformable tetrahedrons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Illustration of discrete blocks in 3DEC: (a) basic block discretization in 3DEC; (b) 

calculation cycle for rigid and deformable blocks in 3DEC Program (adapted from Itasca 2013 

and Tran et al. 2018). 
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Fig. 4.2. Bearing pressure-displacement responses for rigid circular foundation using different 

tetrahedral zoning techniques in 3DEC. 

 

Discrete-deformable blocks can be joined to create larger elements of arbitrary shape and 

thus simulate the mechanical response of a continuous material. Joined-deformable blocks were 

used to model the clay soil material surrounding the column, whereas mixed zone discretization 

was used to refine the blocks located near the aggregate columns to improve the accuracy of 

computed deformations, confining and shear stress distributions, and development of 

displacements along the soil-column interface. The aggregate material comprising the stone 

columns was also generated using block elements, which are discrete and deformable according 

to specified constitutive characteristics and unique to this study (Fig. 4.3). Although the block 

size distribution does not precisely replicate the aggregate gradations, the blocks were refined 
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and internally discretized into tetrahedrons to better capture the non-linear behavior of the 

aggregate. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. Block generation and zone discretization generated in 3DEC for full-scale stone column 

simulations (only a quarter of the model is presented). (a) deformable block generation and (b) 

mixed zone discretization.  

 

4.4 Numerical Modeling of Full-Scale Field Testing  

4.4.1 Model Geometries and Boundary Conditions  

 The dimensions of the 3D-DEM models were selected based on the full-scale loading 

tests previously described (Table 4). For all the full-scale 3D-DEM simulations, global boundary 

conditions of the numerical mesh are specified in the usual manner, with vertical and lateral 

fixity applied to the bottommost blocks and lateral fixity applied to the sides of the mesh nodes. 

(a) 

Aggregate Material 

Discrete-Deformable 

Tetrahedral Blocks 

Clay Soil Material 

Joined-Deformable Blocks Mixed Zone 

Discretization 
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The boundary conditions are located as far as possible from the model central axis to minimize 

their effects on the simulation results, and they are defined based on the foundation dimensions. 

Vertical displacement was uniformly applied on the rigid foundation to simulate the plate 

bearing testing.  Fig. 4.4 shows the model boundary conditions and block mesh generated in 

3DEC for small-footings supported  on single, uncemented stone column simulations. The 

polyhedral faces are not shown for clarity. Similarly, Fig. 4.5 illustrates the model boundary 

conditions and geometries corresponding to the cemented stone column. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. Typical 3DEC mesh and model geometry used in the numerical simulations of small 

footings on single stone columns constructed with uncemented aggregate. (a) example soil 

layering for a pier with slenderness ratio of four, and six, (b) plan view of the mesh, and (c) side 

view of mesh through an isolated, single stone column. 
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Fig. 4.5. Typical 3DEC mesh and model geometry used in the numerical simulations of small 

footing on a single stone column constructed with cemented aggregate. (a) example soil layering 

for a pier with slenderness ratio of six, (b) plan view of the mesh, and (c) side view of mesh 

through an isolated, single stone column. 

 

The dimensions of the 3D-DEM simulations of large foundations supported on five stone 

columns were selected to replicate the field test conditions previously discussed. The model 

geometry, section of block mesh, simplified soil stratigraphy, and boundary conditions are 

illustrated in Fig. 4.6.  
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Fig. 4.6. 3DEC mesh and model geometry used in the numerical simulations of large footings on 

a small group of stone columns constructed with uncemented aggregate. (a) example soil 

layering for a pier with slenderness ratio of six, and (b) side view of mesh along section A-A’. 
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 Variation in the geometry of field test conditions were conducted to simulate alternative 

geometric models for footings resting on five-column groups. Fig. 4.7 shows the geometric 

configurations for an equivalent diameter single stone column and unit-cell model, respectively.  

 

 

Fig. 4.7. Alternative geometric models for large footings on small group of stone columns. (a) 

equivalent column diameter and (b) unit-cell model. 

 

4.4.2 Model Validation of the Native Soil (Overconsolidated Clay) 

In order to select appropriate constitutive model parameters for the native soil, 

information reported from a variety of sources (largely from previous studies of the same test 

site) were used. The bearing pressure-displacement responses of the baseline small and large 

footings were then evaluated to validate the models. The native soils were modeled using the 

(a) (b) 
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linear elastic-perfectly plastic stress-strain response with the Mohr-Coulomb failure criterion and 

the nonlinear Duncan-Chang model (Duncan and Chang 1970). Duncan-Chang model  assumes  

a hyperbolic stress-strain response where the deviatoric stress (1-3) is expressed as a function 

of the axial strain (e) and initial undrained Young’s modulus (Ecu), as presented in Eq. (35), with 

the failure criterion defined by the available undrained shear strength (Eq. 36) for undrained 

conditions (Stuedlein and Holtz 2010).  

 

   σ1 − σ3 =
ε

1
Eu

+
ε

(σ′1 − σ′3)ult

                                                                                                           (35) 

 

   (σ′1 − σ′3)ult = 2 × 𝑠𝑢                                                                                                                        (36) 

 

Geotechnical properties (e.g., OCR, su, lateral earth pressure coefficient at-rest, Ko, 

undrained Young’s modulus, Eu) for the clayey layers are selected based on the laboratory test 

data for samples retrieved from the test site reported by Stuedlein and Holtz (2010) in 

conjunction with CPT results, correlations, and a geostatistical model of the 3D spatial 

variability (Stuedlein et al. 2012c). Fig. 4.8 illustrates the variation of the undrained Young’s 

modulus for the native soils with depth resulting from CIU triaxial strength tests at different 

confining pressures (Stuedlein and Holtz 2010), and the correlations proposed by Duncan and 

Buchignani (1987).  

Profiles of su with depth for the selected footing loading tests (Table 2) are shown in Fig. 

4.9, including the variability inferred from the calibrated geostatistical model. The su profile was 

subdivided into small sublayers (0.30 m thick) to more realistically represent the profile of su 
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within the bulging zone. Fig. 4.9b illustrates the comparison of the field su profile and the 

representative su profile that was used to simulate column V10PW (DEM models were developed 

using a representative su profile corresponding to each footing location). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8. Variation of the undrained Young’s modulus for native soils with depth using 

laboratory testing results and correlations. 

 

Ecu+σ 
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Fig. 4.9. Profiles of  su for the (a) single-uncemented stone columns, (b) approximated su profile 

used in the model for stone column VP10W, (c) single-cemented stone columns, and (d) small-

uncemented stone column groups (data from Stuedlein 2008). 
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A three-dimensional CIU triaxial test simulation (Fig. 3.3a; Test R6-CL; OCR=17.2; 

’3=46 kPa) was developed to calibrate the constitutive response of the native soil by 

implementing the Duncan-Chang model (Eq.35-36) and using joined-deformable blocks. Fig. 

4.10 indicates that the numerical stress-axial strain response is in a good agreement with the 

laboratory response; hence, validating the ability of the 3D DEM models to adequately capture 

the response of  continuum materials (e.g., cohesive soils). However, it is important to highlight 

that the use of joined deformable blocks is more a finite difference method than DEM.  3D DEM 

simulations of the small, 0.76 m circular footing (P30-1) and large, 2.74 m square footing (G3) 

supported on unimproved ground were conducted to validate the selected constitutive model 

parameters for the native soil. Table 6 summarizes the constitutive model parameters used to 

simulate the native soils. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10. Comparison of numerical and measured deviatoric stress-axial strain responses of CIU 

triaxial test at a confining pressure of 46 kPa.  
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The baseline footing (P30-1) was modeled using both the Mohr-Coulomb model and 

Duncan-Chang model for comparison, whereas the large baseline footing (G3) was only modeled 

using the hyperbolic model (Duncan and Chang 1970). The q- responses of the baseline 

footings simulated using the selected model parameters are compared with the observed 

responses corresponding to the footing (P30-1) in Fig. 4.11. The numerical results indicate good 

agreement with the field data for the range in displacements considered, thus validating the small 

footing DEM model and constitutive parameters used for the native soils.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11. Comparison of the bearing pressure-displacement curves for the small footing, P30-1. 
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foundation center were estimated using a triangulation of the observed displacements and 

rotations at each gauge location as described by Stuedlein (2008). Additionally, Stuedlein (2008) 

reported that the q- point for the last load increment (i.e., 383 kPa) was extrapolated using the 

q- data recorded from the previous load increments due to a failure of the helical reaction 

anchors before completing the load application time (i.e., 64 min). Fig. 4.12 shows that the 

numerical and field q-responses for footing G3 agree well throughout the range of observed 

displacements at each gauge location, indicating a satisfactory validation of the constitutive 

parameters of the native soils.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12. Comparison of the bearing pressure-displacement curves for large footing G3. 
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Table 6. Summary of model parameters used in the DEM simulations for native soils. 

Material 

T γ ν Ecu su PI OCR 

[m] [kN/m3] --- [MPa] [kPa] [%] --- 

Desiccated Crust (CL) 0.60 17 0.495 30-40 130-170 --- >20 

Upper Clay (CL) 3.2 18 0.495 Fig. 4.8 Fig. 4.9 26 12 

Lower Clay (CH) --- 19 0.495 Fig. 4.8 Fig. 4.9 42 6 

Foundation (P30-1) 0.60 23.5 0.20 30000 --- --- --- 

Foundation (G3) 0.40 23.5 0.20 30000    

thickness, = total unit weight, = Poisson’s ratio, Ecu= undrained Young’s modulus, OCR= 

overconsolidation ratio, PI= plasticity index, su= undrained shear strength, 

 

 Lateral soil displacements adjacent to the large footing G3 were measured at depth 

intervals of approximately 0.305 m using a vertical inclinometer casing installed to a depth of 

10.7 m below the ground surface and at an approximate distance of 0.20 m away from the edge 

of the footing (Stuedlein et al. 2010).  Fig. 4.13 compares the estimated and observed profiles of 

lateral soil displacements with depth adjacent to the footing G3.  However, it is clearly noticed 

that the DEM simulation overestimates the measured lateral displacements for all applied bearing 

pressure increments. The numerical results indicate a maximum lateral displacement of 29 mm at 

a depth  0.90 m, which is approximately 32% greater than the maximum observed lateral 

movement (i.e., 22 mm) at the same depth for q = 335 kPa. No comparisons were made between 

simulated and measured profiles for q = 383 kPa since no increase in the lateral displacement 

profile was observed for this last bearing pressure increment (Stuedlein 2008).  Minimal lateral 

soil movements were observed for depths greater than the size of the foundation (B=2.74 m), 



76 
 

with negative lateral displacements for depths ranging from 1B to 2B likely generated by casing 

bending (Stuedlein 2008). However, the numerical results show that lateral movement is 

negligible for depths greater than 2B.   

 The variability with depth of the undrained Young’s Modulus (Fig. 4.8) and coefficient 

of lateral earth pressure at-rest condition (Fig. 3.5d ) at the site were investigated as a possible 

factor influencing the lateral soil displacement profile by considering the standard deviation () 

in these both parameters. Figs. 4.14 and 4.15 present comparisons of the lateral displacement 

profiles incorporating the mean (Ecu and Ko) +  with depth, respectively, indicating close 

agreement with the observed data. However, these incorporations of inEcu and Ko, 

respectively, resulted in stiffer q- responses of G3 (Fig. 4.16).   

 The bentonite-cement grout stiffness and anisotropic behavior of the native soils are other 

possible factors affecting the inclinometer measurements but are more difficult to implement in 

the DEM models because of a lack of data to conduct a proper model calibration. As a result of 

the good agreement of the q- responses with the field data for both baseline footings (P30-1 and 

G3) , constitutive parameters for the native soils (Table 6) were considered calibrated despite the 

slight difference in the lateral displacements and were used for the surrounding soil in 

subsequent simulations considering the aggregate-reinforced soil. 
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Fig. 4.13. Comparison of profiles of lateral soil movements adjacent to the large footing G3. 
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Fig. 4.14. Comparison of profiles of lateral soil movements adjacent to the large footing G3 

considering the mean Ecu + . 
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Fig. 4.15. Comparison of profiles of lateral soil movements adjacent to the large footing G3 

considering the mean Ko + . 
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Fig. 4.16. Comparison of  the bearing pressure-displacement responses for large footing G3 

considering (a)  the mean Ecu + and(b)the mean Ko + . 

 

4.4.3 Model Validation of the Stone Column Aggregates  
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dilatancy characteristics of the uniformly-graded uncemented material used in the full-scale 
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mineralogy as those reported by Duncan et al. (2007), and the variation of friction angle, dilation 

angle, and Young’s modulus with confining stress for these aggregates were used herein for this 
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compression tests reported by Duncan et al. (2007) and Newton (2014) is presented in Fig. 4.17, 
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The strength, dilatancy, and stiffness of these granular materials, as represented by the 

peak internal friction angle, ’sc, dilation angle, sc, and Young’s modulus, Esc, respectively, 

vary considerably owing to the suppression of dilation with increases in radial confining 

pressure, ’r, as illustrated in Fig. 4.17.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.17. Mechanical response of well-graded (Dr=66-86%) and uniformly-graded (Dr=67-72%) 

aggregates: (a) gradations commonly used in stone columns, (b) variation of peak friction angle 

with effective confining pressure, (c) variation of dilation angle with effective confining 

pressure, (d) variation of initial Young’s Modulus with effective confining pressure (data from 

Duncan et al. 2007, Stuedlein et al. 2012a, and Newton 2014). 
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'sc=44°-10° log (
σ'r
Pa
)                                                             (37) 


sc
=-6.1°-42.7° log (

σ'r
Pa
)    for 

sc
>0                                 (38) 

Esc(MPa)=46.3 (
σ′r
Pa
)

0.31

                                                     (39) 

and the frictional response and stiffness of the uniform-graded aggregates with Dr ranging from 

66 to 86% was described using (Newton 2014)  

'sc=47.3°-9.6° log (
σ'r
Pa
)                                                         (40) 


sc
=14.7°-31.8° log (

σ'r
Pa
)                                                       (41) 

Esc(MPa)=41.1 (
σ′r
Pa
)

0.68

                                                     (42) 

where Pa is atmospheric pressure (101.3 kPa). 

Newton (2014) also conducted a laboratory investigation on the aggregate used by 

Stuedlein (2008) to determine the main factors affecting the mechanical behavior of lightly-

cemented granular material and typical strength parameters that could be used in the design of 

cemented stone columns. Cemented specimens were prepared using 5 and 10% Portland cement 

type I/II by dry aggregate weight with a 0.55 water-cement ratio (Newton, 2014). Based on the 

results from consolidated drained triaxial tests, Newton (2014) reported a significant 

improvement in the compressive strength and modulus of elasticity of the cemented aggregate 

specimens with respect to the uncemented aggregate specimens. It was also noted that the 

cemented aggregate specimens exhibited more strain-softening and reached their peak principal 

stress differences (i.e., peak deviatoric stress) at lower axial strains than the uncemented 

specimens at similar effective confining stress, as illustrated in Fig. 4.18. Newton (2014) also 
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mentioned that the axial strain at peak stress for the 5% cement specimens ranged between 2.8 to 

4.1%, while for the 10% cement specimens, it ranged between 1.7 to 2.7%. Therefore, the axial 

strain values at peak (i.e., failure) are essential input parameters in order to define an appropriate 

constitutive material model that can numerically represent the mechanical behavior of cemented 

aggregate columns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18. Comparison of the deviatoric stress-axial strain responses for different confining stress 

conditions for uncemented and cemented specimens (data from Newton  2014). 
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data from Duncan et al. (2007).  Each discrete-deformable block comprising the aggregate 

material was modeled using the linear elastic-perfectly plastic stress-strain response with the 

Mohr-Coulomb failure criterion (provided in Fig. 4.17) rather than using rigid blocks, as in 

previous studies. Fig. 4.19 indicates that the stress-strain responses for both aggregate gradations 

are adequately captured by the DEM triaxial test simulations, thus validating the constitutive 

model and parameter selection for uncemented aggregate.   

 

 

 

 

 

 

 

 

 

 

Fig. 4.19. Deviatoric stress-axial strain responses of the aggregate for different confining stress 

conditions (a) well-graded aggregate (𝜎𝑟 = 40 𝑘𝑃𝑎), and (b) uniformly-graded aggregate (𝜎𝑟 =
56 𝑘𝑃𝑎). 
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implemented in 3DEC by defining the variation of the material constitutive parameters (e.g., 

cohesion, friction angle, dilation) as a function the plastic shear strain (Itasca, 2013). A friction-

hardening model was used to represent the uncemented aggregate response while the cemented 

aggregate was simulated by combining a cohesion-softening model with a friction-

hardening/softening model as proposed by Vermeer and Borst (1984).  

 Figs. 4.20b and 4.20c show the model parameter functions (i.e., friction angle and 

cohesion versus plastic strain) used to simulate the uncemented aggregate and aggregate with 5 

and 10% cement content in the triaxial test simulations. Simulations were conducted at two 

different confining pressures and compared to laboratory data reported in Newton (2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.20. (a) Illustration of the 3D-DEM triaxial simulations, (b) friction-softening/hardening 

models used in DEM simulations, and (c) cohesion-softening models used in DEM simulations. 
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 Fig. 21a illustrates the deformed-shape of a triaxial simulation, whereas Figs. 21b, 21c, 

and 21d indicate that the constitutive responses for both uncemented and cemented aggregate are 

suitably captured by the DEM triaxial test simulations, thus validating the selected model 

parameters (Table 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.21. Calibration of the aggregate response: (a) illustration of deformed shape of 3D DEM 

triaxial simulation, and (b, c and d) deviatoric stress-axial strain responses of the aggregates for 

different confining stress conditions (data from Newton 2014). 
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Table 7. Summary of constitutive model parameters used in the triaxial DEM simulations to 

calibrate the uncemented and cemented aggregates. 

 

Material 

Block Material Properties Joint Properties 

Model   E c ' Jkn, Jks Jfri Jcoh 

 [kN/m3] --- [MPa] [kPa] [°] [GPa/m2] [°] [kPa] 

Triaxial  

Latex Membrane 14.7 0.49 1.8 --- --- --- --- --- 

Top and Bottom Plate 4.9 0.20 20000 --- --- 50 30 --- 

DEM: TA-1, uncemented 17.9 0.30 41 --- Fig.4.20b 13 40 --- 

DEM: TA-2, uncemented 17.9 0.30 25 ---- Fig.4.20b 8 40 --- 

DEM: TA-3, 5% cement 20.5 0.30 35 Fig.4.20c Fig.4.20b 30 42 85 

DEM: TA-4, 5% cement 20.5 0.30 80 Fig.4.20c Fig.4.20b 30 42 85 

DEM: TA-5, 10% cement 20.5 0.30 210 Fig.4.20c Fig.4.20b 80 65 400 

DEM: TA-6, 10% cement 20.5 0.30 220 Fig.4.20c Fig.4.20b 80 65 400 

= total unit weight, = Poisson’s ratio, E= Young’s modulus, c= cohesion, ’=peak friction 

angle, Jkn= joint normal stiffness, Jks= joint shear stiffness, Jfri= joint friction, Jcoh= joint cohesion 
 

 

4.4.4 Initial Simulations of the Bearing Pressure-Displacement Response of single 

Uncemented Stone Columns 

 The Young’s modulus of the aggregate columns was estimated considering the available 

laboratory data (Fig. 4.17d, Duncan et al. 2007; Newton 2014) and the initial geostatic stresses at 

each stone column location based on cone penetration test (CPT) data (Stuedlein and Holtz 

2012a). The average effective confining stress computed around each aggregate column prior to 

installation is approximately 55 kPa and 50 kPa for column V10PW and V10PU, respectively. 

Using this value as the σ’r corresponding to the mid-point of the height of yielding (Stuedlein 

and Holtz 2013) under the Brauns (1978) bulging failure mechanism, the Young’s Modulus 

estimated from the laboratory aggregate data (Eqs. 39 and 42) is approximately 40 MPa for the 
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well-graded aggregate columns and 25 MPa for the uniformly-graded aggregate columns (Table 

8). Fig. 4.22 compares the observed and simulated q- curves for columns V10PW, V15PW, 

V10PU and V15PU. While good agreement between the column simulations and the observed q-

 responses with well-graded aggregate have been obtained, the response of the uniformly-

graded aggregate columns was observed to be mixed. Fig. 4.22b indicates that the numerical 

response for column V10PU agrees well with the field data; however, simulation of column 

V15PU overestimates the measured displacements, producing a response similar to that 

measured for V10PU.  Based on the close agreement observed between field and numerical 

results for columns V10PW and V10PU, these two columns were determined to be validated for 

the full-scale simulations and were used as references for the sensitivity analyses conducted to 

investigate the factors that may have influenced the response of column V15PU. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.22. Comparison of q- responses for (a) well-graded aggregate columns, and (b) 

uniformly-graded aggregate columns. 
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Table 8. Summary of model parameters used in the full-scale DEM simulations of uncemented 

columns V10PW and V10PU. 

Material 
γ ν Ecu/E su PI OCR ' 

[kN/m3] --- [MPa] [kPa] [%] ---    ° ° 

Desiccated Clay 17 0.495 30 150 --- >20    0       --- 

Upper Clay 

(CL) 
18 0.495 Fig. 4.8 Fig. 4.9 26 12    0       --- 

Lower Clay 

(CH) 
19 0.49 Fig. 4.8 Fig. 4.9 42 6   0       --- 

V10PW 18.5 0.30 40, Eq. 38 0 0 0   Eq. 36 Eq. 37 

V10PU 18.5 0.30 25, Eq. 41 0 0 0   Eq. 39 Eq. 40 

Foundation 23.5 0.20 30000 --- --- --- ---  

 

 

4.4.5 Initial simulations of the bearing pressure-displacement response of single 

cemented stone columns 

Figure 4.23 compares the experimental and simulated q- curves for columns V15U-

UCSC, V15U-PCSC, and V15U-FCSC. These three columns were simulated using the modeling 

parameters (Table 9). As observed, the numerical responses for the uncemented column V15U-

UCSC and fully cemented column V15U-FCSC agree well with the field data. However, 

numerical simulation of the partially cemented column V15U-PCSC substantially overestimates 

the measured settlements (by 2.5 times at q=1200 kPa), resulting in a response slightly less stiff 

than that observed for the fully cemented column V15U-FCSC. This behavior coincides with that 

measured for the small-scale footings reported by Golait et al. (2016), with FCSC column 

providing a marginally stiffer q- performance than PCSC. As illustrated in Fig. 4.9, the su 

profile corresponding to column V15U-PCSC is lower than that for V15U-FCSC within the 
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column critical length (4Dsc); therefore, possible variation in su is unlikely the cause of the stiffer 

performance of V15U-PCSC.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.23. Comparison of the computed and measured bearing pressure-displacement curves for 

full-scale stone columns (field data from Stuedlein 2008). 

 

Table 9. Summary of constitutive model parameters used in the full-scale DEM simulations of 

cemented columns V15U-FCSC, V15-PCSC. 

 

Material 

Block Material Properties Joint Properties 

Model   E c/su ' Jkn, Jks Jfri Jcoh 

 [kN/m3] --- [MPa] [kPa] [°] [GPa/m2] [°] [kPa] 

Full-Scale 

Desiccated clay (CL) 17 0.495 30 150 --- --- --- --- 

Upper clay (CL) 18 0.495 Fig.4.8 Fig.4.9 --- --- --- --- 

Lower clay (CH) 19 0.495 Fig.4.8 Fig.4.9 --- --- --- --- 

Uncemented Aggregate 18.5 0.30 41 --- Fig.4.20b 10 40 --- 

Cemented Aggregate, 5% 20.5 0.30 80 Fig.4.20c Fig.4.20b 30 42 85 

Cemented Aggregate, 10% 20.5 0.30 220 Fig.4.20c Fig.4.20b 80 65 400 

Foundation 23.5 0.20 30000 --- --- --- --- --- 
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4.4.6 Initial Simulations of the Bearing Pressure-Displacement Response of Large 

Footings on small Uncemented Stone Column groups  

A comparison between the observed and simulated bearing pressure-displacement curves 

for large footing G4 resting on five stone columns constructed using uncemented uniformly- 

graded aggregate is presented in Fig. 4.24. Constitutive modeling parameters for the uncemented 

granular material and the native soils were selected based on Eqs. (40 to 42) and Table 8, 

respectively. The total average stresses acting on the stone columns (sc) and surrounding soil 

(c) were monitored and recorded underneath the footing base in the DEM model, whereas the 

average stress on the foundation, 𝜎avg, was computed using Eq. (23) for an area replacement 

ratio (Ar) of approximately 30% (Table 4). The numerical average foundation stress-

displacement curve agrees well with the estimated field q- response at the foundation center 

(Fig. 4.24).  The numerical results also suggest a stiffer q- response of the adjacent soil with 

respect to that corresponding to the aggregate columns, which exhibits an almost linear behavior. 

This indicates that a higher percentage of the applied bearing pressure (q) is transferred to the 

soil as a result of the high strength and compressibility characteristics of the stiff crust.  At q = 

383 kPa, the stress concentration ratio (n) computed using Eq. (23) is approximately 0.73, 

whereas the ratios of stresses in the granular columns (𝜇𝑠𝑐; Eq. 24) and adjacent soil (𝜇𝑐; Eq. 25) 

to 𝜎avg are 0.80 and 1.09, respectively.  
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Fig. 4.24. Comparison of q- responses for large footing G4 resting on a small uncemented stone 

column group of five columns.  

 

  Lateral soil displacements adjacent to the large footing G4 were also monitored using a 

vertical inclinometer casing installed at depth of 10.4 m from the ground surface and distance of 

0.20 m away from the footing edge as described above for G3. A comparison of the numerical 

and observed profiles of lateral soil displacements with depth adjacent to G4 is presented in Fig. 

4.25. As observed for G3, the numerical simulation of G4 also overestimates the measured 

lateral movements.  For q = 383kPa, the maximum numerical lateral displacement is 

approximately 16 mm, which differs by 4 mm (i.e., 33%) with the maximum observed 

movement (i.e., 12 mm) at the same depth of 0.9 m. Contour plots of the vertical displacement 

distributions for G3 and G4 are presented in Fig. 4.26. As observed, the contour plots indicate a 

significant reduction in the footing settlement of the aggregate column reinforced soil when 

compared with the untreated soil.  
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Fig. 4.25. Comparison of profiles of lateral soil movements adjacent to the large footing G4. 
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Fig. 4.26. Contour plots comparing the vertical displacement distributions for (a) large footing 

G3, and (b) large footing G4. 
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4.5 Numerical Modeling of Small-Scale Experimental Program 

 Since the field q- performance of column V15U-PCSC compared to column V15U-

FCSC is contrary to what is expected, numerical simulations of the small-scale cemented stone 

columns were conducted to validate the results obtained from the large-scale cemented stone 

columns models. The model geometry was selected according to the laboratory experimental 

study described in Golait et al. (2016) and above section. The block generation of the 

surrounding soil and aggregate column was developed using hexahedron elements (8-node 

bricks), which are discrete and deformable based on specified constitutive responses. These 

individual hexahedron blocks were internally discretized into tetrahedral zones to improve the 

resolution of the nonlinear behavior of the clayey soil and aggregate material. The blocks 

comprising the stone column and those located near the column edge were further refined to 

enhance the accuracy of computed lateral deformation, stress distribution and failure formation 

along the soil-column interface.  The boundary conditions were specified based on the geometry 

of the mild-steel tank used in the experiment, with full fixity assigned along the bottom of the 

model and lateral fixity applied to the vertical model sides. An illustration of the model 

geometry, block mesh, and boundary conditions for the small-scale DEM simulations is shown 

in Fig. 4.27. 

 

4.5.1 Model Validation of the Soft Clayey Soil  

The soil surrounding the column was classified as highly compressible clay (CH). The 

constitutive model parameters for this soil (Table 8) were obtained from the experimental data 

reported by Golait et al. (2009; 2016). This clay material was modeled using undrained 

conditions and the linear elastic-perfectly plastic stress-strain response with the Mohr-Coulomb 
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failure criterion. The bearing response of the unreinforced soft soil (USS) was simulated with the 

selected constitutive model parameters, and good agreement was obtained between the 

laboratory measured and the numerical q- responses (Fig. 4.28a). Therefore, these parameters 

were used to model the surrounding soil in all subsequent small-scale DEM simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27.3DEC mesh configuration and model geometry used in the numerical small-scale 

simulations: (a) example soil layering for a pier with slenderness ratio of 10, (b) plan view of the 

mesh, and (c) side view of mesh through an isolated, single stone column. 
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reported by the authors (Table 10). Each discrete-deformable block forming the aggregate 

column was represented as an elasto-plastic element with the Mohr-Coulomb failure criterion 

instead of using rigid blocks.  

4.5.3 Initial Bearing Pressure-Displacement Behavior of Small-Scale Cemented Stone 

Columns 

A comparison of the bearing pressure-displacement responses for the partially cemented 

stone column (PCSC), fully cemented stone column (FCSC), and uncemented stone column 

(UCSC) is presented in Fig. 4.28b. Good agreement is observed between the computed and 

measured q- responses for all three simulated columns. The numerical results show that both 

cemented columns provide a similar initial linear behavior for q values less than 150 kPa, 

although slight differences in the initial stiffness are observed in the experiments. As q increases, 

however, the column FCSC exhibits a slightly stiffer q- response than that for column PCSC. 

This behavior coincides with that computed for the large-scale cemented stone columns (section 

4.4.5). At  = 17 mm (close to column failure), the bearing capacity improvement factors are 

approximately 1.5 and 1.6 for PCSC and FCSC, respectively, computed in terms of the bearing 

capacity of the uncemented stone column (UCSC).  

The 3D DEM models that were developed, calibrated and validated using the small and 

full-scale loading tests as described in chapter were used to conduct systematic parametric 

investigations of the factors contributing to the response of stone-column supported footings. 
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Table 10. Summary of constitutive model parameters used in the small-scale DEM simulations. 

 

Material 

Block Material Properties Joint Properties 

Model   E c/su ' Jkn, Jks Jfri Jcoh 

 [kN/m3] --- [MPa] [kPa] [°] [GPa/m2] [°] [kPa] 

Small-scale 

Soft Clay (CH) 12.2 0.49 10 19 10 0.18 10 19 

Uncemented Aggregate 19.6 0.30 15 --- 38 0.25 35 --- 

Cemented Aggregate 19.8 0.49 50 68 37 3 35 68 

Steel Plate 78.5 0.20 200000 --- --- --- --- --- 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.28. Comparison of the bearing pressure-displacement curves for the small-scale DEM 

models: (a) unreinforced soft soil, and (b) cemented and uncemented stone columns reinforced 

soft soil (after Golait et al. 2016). 
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CHAPTER 5. RESULTS AND DISCUSSION OF PARAMETRIC STUDY CONDUCTED 

USING VALIDATED DEM MODELS 

The validated DEM models were used to explore the effects of variables that have been 

confounded during the small and full-scale experimentations, pointing to subtleties that can 

affect load transfer mechanisms, such as aggregate stiffness, friction and dilation angle, su 

profile, and area replacement ratios, cement content, and column geometry. These results point 

to the effect of quality control-type factors in stone column construction on subsequent local load 

transfer characteristics and global bearing pressure-displacement performance. The DEM results 

are also compared with the analytical methods described in chapter 2. 

5.1. Factors Affecting the Response of Single, Uncemented Stone Column-Supported 

Footings 

5.1.1 Effect of Aggregate Gradation 

5.1.1.1 Aggregate Friction Angle 

Fig. 5.1 compares the q- responses for columns V10PW and V10PU considering the two 

different 'sc relationships described by Eqs. 37 and 40. To single out the influence of 'sc, Esc of 

columns V10PW and V10PU were kept constant at 40 MPa and 25 MPa, respectively, based on 

the validated values. Therefore, one curve in each plot represents the validated case while the 

second curve has the same modulus, but a different 'sc relationship. The friction angle influences 

the response of V10PW for bearing pressures greater than 510 kPa; however, this is not observed 

for V10PU. At q = 885 kPa, a difference in settlement of 8 mm is observed between the two 

curves for V10PW, while no difference is observed for V10PU. At the initial confining stresses, 
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the variation of 'sc for both gradations (Eqs. 37 and 40) is approximately 3°. During loading, the 

variation of the average confining stress in the bulging zone increases for the two different 

aggregate gradations as the Esc of the column increases from 25 MPa to 40 MPa (Fig. 5.2). 

Therefore, the magnitude of the effect of the aggregate friction angle depends also on the 

aggregate stiffness. Additional discussion of the influence of Esc is given below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Comparison of the effect of aggregate friction angle on the q- responses for (a) well-

graded aggregate columns (Esc=40 MPa), and (d) uniformly-graded aggregate columns (Esc=25 

MPa). 
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Fig. 5.2. Average confining stress distribution with depth for different column stiffness for 

column V10PW (a) 40 MPa and (b) 25 MPa. 

 

5.1.1.2 Aggregate Dilation Angle  

 Fig. 5.3 presents the observed and simulated q- responses corresponding to V10PW and 

V10PU modeled with a zero-dilation condition, along with the reported dilation (Eqs. 38 and 41) 

to consider the pressure-dependence of aggregate dilatation angle. The incorporation of various 

sc in the DEM model does not appear to contribute to a variation in the simulated q- responses. 

When the applied q is small, the sc is positive, yet has little effect on the response because the 

corresponding strain is within the elastic region. As q increases, sc reduces which also results in 

minimal influence on the response.  
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Fig. 5.3. Comparison of the effect of aggregate dilatancy angle on the q- responses for (a) well-

graded aggregate columns, and (b) uniformly-graded aggregate columns. 

 

5.1.1.3 Aggregate Stiffness 

 The effect of the initial stiffness of columns V10PW and V10PU was investigated by 

evaluating the pressure-dependent Young’s Moduli associated with Eqs. 39 and 42. Based on in- 

situ conditions and an average at-rest earth pressure coefficient, Ko, of 1.3 obtained by 

correlation to CPT data taken prior to column installation, 'r was calculated as 55 kPa 

(corresponding to an Esc of 40 MPa from Eq. 39) for V10PW and 50 kPa (corresponding to an 

Esc of 25 MPa from Eq. 42) for V10PU. The columns were modeled in the pre-installation 

condition, and for a range of Esc values representing the increase in initial 'r (and thus K0) that 

might occur during installation. Esc values ranging from 40 to 60 MPa for V10PW and 25 to 75 

MPa for V10PU were used based on an increase in the initial 'r of 200 kPa. Comparing Figs. 
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5.4a and 5.4b, it is clear to see that for the same increase in 'r, the range of Esc and the response 

for the well-graded and uniformly-graded aggregate columns is quite different. As illustrated in 

Fig. 5.4a, even if column installation practices result in a higher initial 'r, the q- responses of 

the “W” columns remain similar to the response where geostatic in situ conditions were 

assumed. This is due to the fact that even large increases in the initial 'r result in very small 

changes in the initial stiffness for the well-graded aggregate.  

Figure 5.4b indicates, however, that the q- responses of the “U” columns are more 

sensitive to differences in the initial 'r. The validated case for V10PU modeled using an Esc value 

of 25 MPa agrees well with the observed response; however, it does not capture the observed 

response for V15PU. As the Esc values increase, the simulated response approaches the observed 

response for V15PU.  An Esc above 100 MPa is needed to capture the field q-response, which is 

over four times greater than the value selected based on the laboratory data and pre-installation in 

situ stresses. This would imply an increase in 'r of 250 kPa and a Ko of 5. Elshazly et al. (2008) 

used Ko values ranging from 0.85 to 1.7, Ammari and Clarke (2018) used Ko values varying from 

1.5 to 3.5, whereas Castro (2017) reported Ko values ranging from 0.4 to 2.5. Stuedlein (2010) 

reported Ko values at the location of column V15PU prior to stone column installation ranging 

from 1.2 to 2.2 within the bulging depth. Because the pre-installation Ko values are relatively high, 

a post-installation Ko of 5 for column V15PU is possible and could have generated higher initial 

column stiffness conditions.  
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Fig. 5.4. Comparison of the effect of aggregate stiffness on the q- responses for (a) well-graded 

aggregate columns, and (b) uniformly-graded aggregate columns. 

 

5.1.2 Effect of Column Length 

 Given the 1.5 m difference in length between V15PU and V10PU, the column length was 

also examined as a possible factor influencing the q-responses of these columns. In order to 

account for the column length, columns V10PW and V10PU were modeled using two different 

column lengths (i.e., 3.05 m and 4.56 m). Figure 5.5 shows that the DEM results for both column 

lengths are similar for bearing pressures less than 750 kPa, and only slightly vary for greater q. 

Vahedian et al. (2014) and Castro (2017) note that increases in length beyond the critical length, 

estimated as 1.5 to 3 times Dsc (for isolated columns), do not result in improvements in the q-

response. Likewise, no differences in numerical or experimental q-responses were observed 

for the well-graded aggregate columns (V10PW and V15PW).  
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Fig. 5.5. Comparison of the effect of aggregate column length on the q- responses for (a) well-

graded aggregate columns, and (b) uniformly-graded aggregate columns.  
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Table 11. Estimations of cost savings by stone column length optimization.  

Number of 

columns 

Difference in column length 

[feet] 

Unit-price 

[LF] 

Cost saving 

100 5 $35.00 $17, 500 

1000 5 $25.00 $125, 000 

 

 

5.1.3 Effect of Undrained Shear Strength 

 The inherent variability of the native soil su at the site was investigated by comparing the 

q-curves for “W” and “U” columns considering the standard deviation () in su reported by 

Stuedlein et al. (2012c). Figure 5.6a, and b, presents comparisons of the aggregate columns 

incorporating the mean su ± with depth. In addition to showing that the initial mean estimate of 

su was appropriate based on the site characterization, the comparison of simulations using the 

upper and lower bound su indicates that large variations in su appear to only govern the large 

displacement response of aggregate columns. Further, possible variation in su cannot explain the 

stiffer response of V15PU relative to V10PU.  

 It is important to highlight that the su profiles used in this study were obtained prior to 

column installation; however, these su profiles could have changed due to construction. Fig. 5.6c 

shows the q- response for column V10PU simulated by multiplying its initial su profile by an 

amplification factor to consider an increase in the su profile after column installation. Several 

multipliers were used to determine the value required to represent the V15PU column. As it is 

observed, the initial V10PU su profile (58 kPa) needs to be multiplied by a factor of 2.6 in order 

to obtain a similar q- response to column V15PU. This su profile amplification factor of 2.6 is 
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considered to be disproportionally high since it is completely outside of the field su profiles 

measured by Stuedlein (2008). Unfortunately, this cannot be validated or explored any further 

because of a lack of experimental field data of the su profiles after installation.  

To evaluate the influence of the surrounding soil strength and stiffness, columns V10PW 

and V10PU were modeled using low su values to represent soft clay conditions (i.e., 10kPa and 

20kPa). Fig. 5.6d illustrates that a significant reduction on the bearing capacity of both columns 

is observed as the field average su (55 kPa) is lowered. For a settlement of 25 mm, it is noted 

from the DEM results that the bearing pressures are 55% (su=10 kPa) and 40% (su = 20 kPa) 

lower than the field-measured bearing pressures for both columns, respectively. Also, even 

though the initial response of V10PW is stiffer for settlements up to 45 mm, the differences 

between both q-curves start reducing as a result of the higher frictional response of the No. 57 

gradation in comparison with the 21b gradation. This results in V10PU having a bearing capacity 

equal to or greater than V10PW as shown in Fig. 5.6d.  

Since the geotechnical investigation at the test site was conducted in the spring season 

(March-April, 2005), and the stone columns were tested in the late fall season (November-

December, 2005), differences in the q-responses for the investigated columns (e.g., V10PW, 

V10PU, V15PW and V15PU) could have been caused by variations in the su profiles associated 

with the seasonal variation in the moisture soil conditions at the test site. As illustrated in Fig. 

5.7, the rainfall histories at the test site for the spring and fall seasons in 2005 clearly show an 

increase in the total amount of precipitation in the fall season as compared to the spring season. 

However, since groundwater levels were not monitored and CPT soundings were not performed 

during the fall season, a more quantitative analysis of the effects of the seasonal variation in the 

su profiles on the q-behaviors of the investigated columns cannot be carried out. 
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Fig. 5.6. Comparison of the effect of su profile on the q- responses for (a) well-graded aggregate 

columns su ∓ SD, (b) uniformly-graded aggregate columns su ∓ SD, (c) well-graded aggregate 

columns different su profiles, and (d) uniformly-graded aggregate columns different su profiles. 
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Fig. 5.7. Comparison of rainfall histories at Baytown (a) April 2005 and (b) November 2005 

(data obtained from the National Oceanic and Atmospheric Administration-NOAA). 
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5.1.4 Effect of Area Replacement Ratio 

 The area replacement ratio, Ar, strongly influences the global stone column response 

since the confining and vertical pressure in the surrounding soil increases with increases in the 

loaded area (Barksdale and Bachus 1983). The influence of Ar was evaluated by modeling 

columns V10PW and V10PU for Ar values ranging from 10 to 50% (typical for stone column 

projects), and 95 and 100%, representing the common range for static plate loading tests like 

those conducted in Stuedlein (2008). As illustrated in Fig. 5.8, the bearing pressure-displacement 

responses for column V10PW are more sensitive to changes in Ar compared to V10PU. Because 

'sc  is lower for the well-graded aggregate (Fig. 4.17b), the increase in 'r around the column 

generated as Ar decreases causes a greater reduction in 'sc for column V10PW due to the 

pressure-dependence of the aggregate friction angle. For = 25 mm, the DEM simulations show 

that the estimated bearing pressures are 63% (Ar=10%), 39% (Ar=30%), and 14% (Ar=50%) 

lower than the field-measured bearing pressures (Ar=100%) for column V10PW. On the other 

hand, for V10PU, these values are 50%, 41% and 33%, indicating a narrower range in the 

reduction of the bearing capacity for the same change in Ar. Since the foundation diameter (0.76 

m) is only 2 cm larger than V10PU (0.74 m), the increase in the confining stress around the 

column is localized at the top of the column and is negligible for the rest of the length of the 

column. Therefore, the impact of a 5% increase in Ar on the q- performance of column V10PU 

relative to V10PW is minimal and discrepancies in the q- responses between the two footings 

are likely not caused by the 2 cm difference in the column diameter.   
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Fig. 5.8. Comparison of the effect of area replacement ratio on the q- responses for columns (a) 

V10PW, and (b) V10PU. 

 

5.1.5 Comparison of the Stress Transfer Mechanisms, Displacements, and 

Capacities at the Ultimate Limit State  

 

 The calibrated DEM models facilitated simulation of the response of the aggregate 

columns at the ultimate limit state, including stress transfer mechanisms, displacements, and 

capacities. The field capacity of the two columns was estimated by extrapolation of the available 

q-data, as described by Stuedlein and Holtz (2013), and equaled 1,100 and 1,125 kPa for 

V10PU and V10PW, respectively. DEM simulations were carried out until settlements of 

approximately 100 mm. A similar extrapolation was also used for the first 50 mm of the DEM 

simulation data and compared to the actual DEM results up to 100 mm of settlement to evaluate 

the accuracy of the extrapolation. Fig. 5.9 compares the observed and DEM simulated q-
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responses to the extrapolations of the observed and DEM simulations for columns V10PW and 

V10PU. The extrapolations of the DEM-based q-curves are in excellent agreement with the 

DEM simulations over the range of displacements evaluated.  The extrapolated DEM simulations 

suggest ultimate bearing resistances that are 9 and 13% (i.e., 1,225 and 1,250 kPa) greater than 

that estimated by extrapolation of the observed q-curves for V10PW and V10PU, respectively.  

Differences in the initial stiffness of the q-curves between the two columns do not translate to 

significant differences at large displacements owing to the aggregate-specific pressure-

dependence (i.e., Fig. 4.17), such that the capacities of the two columns are nearly identical at 

large displacements.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9. Comparison of the full DEM bearing pressure-displacement results for columns V10PW 

and V10PU with extrapolated field data and similar extrapolated DEM data. 
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Fig. 5.10 compares the extrapolations of the observed and DEM simulated q-responses 

to the ultimate bearing capacity estimates using existing methods for columns V10PW and 

V10PU. As clearly observed, the ultimate bearing capacity estimates using existing methods 

exhibit a wide variation for both columns. On the other hand, the DEM simulations and the 

methods (e.g., modified Mitchell 1981 and Hughes et al. 1975) proposed by Stuedlein et al. 

(2013) indicate better agreement with the extrapolated field data compared to the other existing 

methods. The modified methods were developed using back-calculations of the extrapolated field 

data; hence, good agreement with the observed data is expected. The numerical results show that 

conducting a DEM simulation incorporating site specific soil conditions and variations in the 

aggregate stiffness and strength based on the actual gradation used to construct the column could 

provide better estimations of the ultimate bearing capacity of a single stone column. Therefore, 

this could result in an improvement in selecting an appropriate factor of safety for bearing 

capacity and a reduction in construction costs associated with field verification testing (e.g., plate 

load testing). 

The evolution of the average confining stress ('r), radial displacement, and settlement 

distributions with depth for columns V10PW and V10PU for q = 1,200 kPa (i.e., near the 

ultimate state) are presented in Fig. 5.11. Average 'r was calculated for each 0.3 m height of the 

column by averaging the radial stresses for the “ring” of blocks surrounding the column. The 

radial displacements were tracked at the edge of the stone column for each 0.3 m height of the 

column.  
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Fig. 5.10. Comparison of the full DEM bearing pressure-displacement results with extrapolated 

field data and bearing capacity estimations using existing methods for (a) column V10PW, and 

(b) column V10PU. 
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V10PU exhibits a bulging zone extending beyond 3Dsc, and the average increase in the confining 

pressure within the range of 2Dsc to 3Dsc is 16% greater than that estimated for column V10PW. 

This variation is not only controlled by the differences in the su profiles corresponding to each 

column location, but also by the difference in initial stiffness. Column V10PU exhibited an Esc of 

25 MPa compared to 40 MPa for column V10PW based on the laboratory-validated simulations. 

Therefore, the increase in the settlement and confining stress distributions with depth for column 

V10PU is greater than that for column V10PW as shown in Fig. 5.11b, and c, contributing in part 

to the greater large-displacement capacity.  

The DEM simulations also provide an opportunity to evaluate the accuracy of various 

cavity expansion factors, kp, proposed to compute the bearing capacity of aggregate columns 

(e.g., Hughes et al. 1975; Stuedlein and Holtz 2013). The average 'r estimated from the DEM 

simulations of V10PW within the bulging zone (i.e., 0.80 m to 2.0 m) is approximately 185 kPa 

for q = 1,200 kPa, representing an increase in 'r of 145 kPa from the initial, unloaded condition. 

The ratio of average increase in 'r and average su corresponding to the bulging zone length (51 

kPa) results in kp = 2.84, significantly lower than the kp = 4 recommended by Hughes et al. 

(1975). On the other hand, the empirical equation proposed by Stuedlein and Holtz (2013) results 

in kp = 2.82, within 1% of that derived from the DEM simulations, owing to the ability to capture 

pressure-dependency in the empirical approach. Similarly, kp = 2.15 for the DEM simulations of 

V10PU computed using su, avg =58 kPa and ’r = 165 kPa, compared to 2.63 estimated using the 

methodology proposed by Stuedlein and Holtz (2013), or within 18% (as compared to 46% 

derived using Hughes et al. 1975). Despite some differences between the numerical and semi-

empirical methods (Stuedlein and Holtz 2013 and Hughes et al. 1975), the estimated kp are 

relatively consistent.  
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Fig. 5.11. Average confining stress distribution for V10PW, (b) average confining stress 

distribution for V10PU, (c) settlement distribution with depth for V10PW and V10PU, and (d) 

radial displacement distribution with depth for V10PW and V10PU. 
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Fig. 5.12 compares the variation of the bearing capacity factor (Nc) as a function of Ar for 

columns V10PW and V10PU. The average undrained shear strengths (su, avg.) of the clayey soil 

within the bulging depth are 51 kPa and 58 kPa for V10PW and V10PU, respectively. For both 

columns, the DEM simulations suggest that there is a linear variation of Nc for different 

settlements (i.e., 10 and 25 mm) and failure condition as Ar varies from 10 to 50%.  The bearing 

capacity factors at the failure condition for isolated conditions (Ar=100%) are approximately 24 

and 22 for columns V10PW and V10PU, respectively. These values are slightly above the typical 

value used to determine qult (≈20su) of isolated stone columns as reported by Castro (2007). 

Based on these Nc values, the factors of safety (FS=q/qult) to satisfy foundation serviceability 

limit state were estimated from the DEM results. For =25 mm, on the other hand, the estimated 

FS values are approximately 1.5 and 2.0 corresponding to V10PW and V10PU, respectively. 

Fig. 5.12. Comparison of the bearing capacity factor variation as a function of the area 

replacement ratio for different settlement values and failure condition (a) V10PW and (b) 

V10PU. 
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5.2. Comparison of Load Transfer Mechanism, and Bearing Pressure-Displacement 

Response of Single, Cemented Stone Column-Supported Footings  

 

5.2.1 Settlement and Vertical Stress Distributions in Small-Scale DEM models 

 Distributions of the vertical displacement (-z) and stress (v-z) with depth below the 

edge (A-A’) and center (B-B’) of the foundations on the small-scale granular columns are 

presented in Fig. 5.13, for an applied q of approximately 150 kPa.  A significant reduction (2.3 

times at the soil surface) in the settlement for both foundations supported on cemented columns 

is observed compared to UCSC (Fig. 5.13a, and c). This settlement reduction largely occurs 

within the upper half of the column length (equal to 2B; B = 0.10 m), with no differences in the 

-z between the cemented and uncemented columns for depths greater than 2.5B. On the edge of 

the foundation, minimal influence on the v-z in the matrix soil is observed between all three 

columns. For depths greater than 2B, the v-z are essentially the same for all columns (Fig. 

5.13c); however, a substantial increase in the v-z occurs below the foundation center of the 

cemented columns in comparison with UCSC (Fig. 5.13d). This increase in v is expected due to 

the stiffer response of the cemented columns, resulting in a maximum increase in v for PCSC 

and FCSC of approximately 2.8 and 3.8 times, respectively, at a depth of 0.3B.  
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Fig. 5.13. Comparison of computed settlement and vertical distributions for small-scale stone 

column DEM simulations for q = 150 kPa: (a) settlement distribution in the soil matrix (A-A’), 

(b) settlement distribution along shaft (B-B’), (c) vertical stress distribution in the soil matrix (A-

A’), and (d) vertical stress variation with depth in the column center (B-B’). 
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bearing pressure-displacement responses for both columns V15U-PCSC and V15U-FCSC 

modeled with the constitutive parameters for 10 % cement exhibit an almost linear initial 

behavior for q less than 1000 kPa and are significantly stiffer than those simulated for 5% 

cement. At q=1200 kPa, simulation of column V15U-PCSC-10% suggests a settlement reduction 

of 30 mm (i.e., 59%) when compared to V15U-PCSC-5%, whereas the simulated response of 

V15U-FCSC-10% indicates a settlement reduction of 66% (i.e., 28 mm) in reference to V15U-

FCSC-5%. For 25 mm, the bearing capacity improvement factor of the partially cemented 

stone columns is 2.3 and 3.3 for columns V15U-PCSC-5% and V15U-PCSC-10%, respectively, 

in comparison with the observed q- response of V15U-UCSC.  For the fully-cemented stone 

columns, the improvement factor is 2.4 and 4.4 for columns V15U-FCSC-5% and V15U-FCSC-

10%, respectively, with respect to V15U-UCSC, indicating a significant improvement in the 

column bearing capacity due to the cement inclusion at the serviceability limit state. Fig. 5.14a 

shows that modeling column V15U-PCSC with material properties corresponding to 10% 

cement provides a better approach to the field data than when simulated using 5% cement; 

however, the numerical results still overestimate the measured settlements. 
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Fig. 5.14. Comparison of the numerical and measured bearing pressure-displacement responses 

for large-scale uncemented stone column (V15U-UCSC) and cemented stone columns (V15U-

PCSC and V15U-FCSC) simulated with 5 and 10% cement content: (a) partially cemented and 

(b) fully cemented (field data from Stuedlein 2008). 

 

5.2.3 Comparison of the Behavior of the Full-Scale Cemented Stone Columns at 

the Ultimate Limit State 
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observed responses in the range of displacement evaluated for columns V15U-UCSC and V15U-

FCSC, indicating ultimate bearing resistances that are 6 and 5% (i.e., 950 and 2,000 kPa) greater 

than that estimated by extrapolation of the observed responses for V15U-UCSC and V15U-

FCSC, respectively.  However, the simulated response for the partially cemented column (V15U-

PCSC) clearly underestimates the observed and extrapolated bearing pressures, with an ultimate 

bearing resistance (i.e., 1800 kPa) that is 20% less than that obtained from the extrapolation of 

the observed q-curve. The bearing capacity ratio (BCR) of the partially cemented columns 

simulated with modeling parameters for 5 and 10% cement is approximately 1.9 and 3.1 for 

columns V15U-PCSC-5% and V15U-PCSC-10%, respectively, when compared to column 

V15U-UCSC. On the other hand, for the fully-cemented aggregate columns, BCR is estimated as 

2.2 and 3.3 for V15U-FCSC-5% and V15U-FCSC-10%, respectively, with reference to V15U-

UCSC. This indicates that the partially cemented stone columns simulated with aggregate 

properties for either 5 or 10% cement provide BCR values very similar to those for the fully 

cemented aggregate column simulations at ultimate limit state. 

 The average confining stress ('r), radial displacement, vertical stress, and settlement 

distributions with depth for columns V15U-UCSC, V15U-PCSC, and V15U-FCSC for q = 750 

kPa (i.e., maximum applied bearing pressure for V15U-UCSC) are shown in Fig. 5.16. The 'r 

and radial displacement distributions suggest a bulging zone development within the upper half 

of the column length for V15U-UCSC, with an increase in the average 'r (i.e., 108 kPa) in this 

zone that is 77% greater than for the cemented aggregate columns (i.e., 61 kPa). The increase in 

the vertical stress distribution with depth for column V15U-FCSC is greater than that for the rest 

of the simulated columns (Fig. 5.16c), resulting from its greater stiffness.  The DEM results also 

indicate a significant reduction in the -z distribution with depth within a length of 
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approximately 3Dsc, with 82 and 96% reduction in at the column top for 5% and 10% cemented 

stone columns, respectively, when compared to the uncemented column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15. Comparison of the full DEM bearing pressure-displacement results for large-scale 

uncemented stone column (V15U-UCSC) and cemented aggregate columns (V15U-PCSC and 

V15U-FCSC) simulated with 5 and 10% cement content with extrapolated field data: (a) 

partially cemented and (b) fully cemented (field data from Stuedlein 2008). 
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Fig. 5.16.Comparison of the DEM stress and displacement distributions with depth for full-scale 

uncemented aggregate column (V15U-UCSC) and cemented stone columns (V15U-PCSC and 

V15U-FCSC) for a bearing pressure of 750 kPa: (a) average confining stress, (b) radial 

displacement, (c) vertical stress, and (d) settlement. 
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 A comparison of the average confining stress, radial displacement, vertical stress and 

settlement distributions with depth for full-scale cemented stone columns (V15U-PCSC and 

V15U-FCSC) at the ultimate limit state is presented in Fig. 5.17. While columns simulated with 

5% cement modeling parameters exhibit a bulging zone within a depth of approximately 2Dsc 

(typical for uncemented single stone columns), no bulging zone is developed in the upper 

column half for the columns simulated with 10% cement. The average 'r computed from the 

DEM results of columns V15U-PCSC-5% and V15U-FCSC-5% within the bulging zone (i.e., 

0.80 m to 2.2 m) is approximately 190 kPa, indicating an increase in 'r of 140 kPa from the 

initial, unloaded condition. On the other hand, for columns V15U-PCSC-10% and V15U-FCSC-

10%, the increase in 'r is approximately 36% of the estimated value for the 5% cement columns. 

The DEM simulations of the partially cemented stone columns show an increase in the average 

'r (i.e., 98 kPa) in the lower column half (Fig. 5.17a), resulting from the lower stiffness and 

strength of the uncemented aggregate within this zone. Because of the floating support condition, 

there is an increase in the radial displacement at the column tip that is 10 and 27 times greater 

than the maximum radial displacement (i.e., 1.4 mm) within the bulging zone for columns 

V15U-PCSC-10% and V15U-FCSC-10%, respectively. Contour plots comparing the vertical and 

radial displacement distributions at ultimate limit state (i.e., =200 mm) for columns V15U-

UCSC, V15U-FCSC-5% and V15U-FCSC-10% are presented in Fig. 5.18, and 19. As observed, 

there is a minimal increase in the vertical displacement distributions for columns V15U-UCSC 

and V15U-FCSC-5% for depths greater than the haft of the column length, with no increase in 

the vertical displacement at the tip of the columns (Fig. 5.18a, and b). This indicates that most of 

the applied q is radially transferred to the soil by lateral deformation of the column (i.e., bulging) 

within the upper column half as observed in Fig. 5.19a and b.   
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Fig. 5.17. Comparison of the DEM stress and radial displacement distributions with depth for 

full-scale cemented stone columns (V15U-PCSC and V15U-FCSC) at ultimate limit state: (a) 

average confining stress, and (b) radial displacement, (c) vertical stress, and (d) settlement. 

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000

D
e
p
th

, 
z 

(m
)

Vertical Stress, z (kPa)

DEM: V15U-UCSC

DEM: V15U-PCSC-5%

DEM: V15U-FCSC-5%

DEM: V15U-PCSC-10%

DEM: V15U-FCSC-10%

0

1

2

3

4

5

6

7

0 50 100 150 200

D
e
p
th

, 
z 

(m
)

Settlement,  (mm)

DEM: V15U-UCSC

DEM: V15U-PCSC-5%

DEM: V15U-FCSC-5%

DEM: V15U-PCSC-10%

DEM: V15U-FCSC-10%

Footing embedment ,  0.60 m 

Half-column length

Full-column length

Footing embedment ,  0.60 m 

Half-column length

Full-column length

0

1

2

3

4

5

6

7

0 100 200 300 400

D
e
p
th

, 
z 

(m
)

Confining Stress,  r (kPa)

DEM: V15U-PCSC-5%

DEM: V15U-FCSC-5%

DEM: V15U-PCSC-10%

DEM: V15U-FCSC-10%

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50

D
e
p
th

, 
z 

(m
)

Radial Displacement (mm)

DEM: V15U-PCSC-5%

DEM: V15U-FCSC-5%

DEM: V15U-PCSC-10%

DEM: V15U-FCSC-10%

Footing embedment ,  0.60 m 

Half-column length

Full-column length

Footing embedment ,  0.60 m 

Half-column length

Full-column length

(a) (b) 

(c) (d) 



127 
 

Fig. 5.18c shows an increase in the vertical displacement distribution within the lower 

column half for column V15U-FCSC-10% in comparison with columns V15U-UCSC and 

V15U-FCSC-5%, with approximately 75% of the footing settlement transferred to the column 

tip.  Column V15U-FCSC-10% exhibit no bulging formation within the upper column half, but 

an increase in the radial displacement at the tip of the column (Fig. 5.19c). This represents that 

this column behaves more like a rigid element where the applied q is largely transferred to the 

surrounding soil by side friction and end-bearing (similar to vertically loaded piles). 

 

Fig. 5.18. Contour plots comparing the vertical displacement distributions at ultimate limit state 

for the: (a) V15U-UCSC, (b) V15U-FCSC -5%, and (d) V15U-FCSC -10%. 

 

 

Fig. 5.19. Contour plots to compare the radial displacement distributions at ultimate limit state: 

(a) V15U-UCSC, (b) V15U-FCSC -5%, and (d) V15U-FCSC -10%. 

 

 

(a) (b) (c) 

(a) (b) (c) 
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5.3. Comparison of Load Transfer Mechanism, and Bearing Pressure-Displacement 

Response of  Large Footings Supported on Small, Uncemented Stone Column Group 

 

5.3.1 Comparison of the q-  Responses of Alternative Geometric Models for 

Footing V10PU-5 (G4) 

 Three-dimensional simplified single-column configurations of field test conditions for 

footing G4 were conducted to evaluate the effectiveness of these alternative approaches to 

estimate the q-responses of footings on a small stone column group. A model of a single stone 

column with an equivalent diameter representing the same total cross-sectional area of the five 

columns and a unit cell-model were developed (Fig. 4.7). The q-curve obtained from the 

equivalent diameter model is in close agreement with not only the 3D DEM model representing 

the actual column configuration (5-columns) used in the field, but also with the observed q-

response presented in Fig. 5.20. On the other hand, the numerical results of the DEM 

simulation developed using the unit cell-model indicate a stiffer q-response of this model 

compared to that observed in the field. The close boundary conditions used in the unit-cell model 

due to the close column spacing configuration for footing G4 prevented the column from 

deforming laterally, resulting in an almost linear q-behavior of the column-footing system for 

all applied bearing pressures. At q = 383 kPa, the unit-cell model underestimated the observed 

settlement (i.e., 58 mm) by 75%, indicating a poor performance of this model to simulate 

individual columns within a small column group.  
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Fig. 5.20. Comparison of q- responses for large footing G4 resting on a small uncemented stone 

column group of five columns using alternative single column models. 

5.3.2 Comparison of the q- Responses for Footing V10PU-5 (G4) and V15PU-5 

(G6) 

Given the differences in length between V10PU-5 (G4) and V10PU-5 (G6)  (i.e., 1.50 

m), the column length was examined as a possible factor influencing the q- responses of these 

large footings. Both footings were simulated using the same su profile to only focus on the 

difference in the length. Fig. 5.21 illustrates that the DEM results for both column lengths are 

almost the same for bearing pressures less than 250 kPa. Beyond this value, there is a slight 

difference in the q-curve, with the longer columns G6 (4.56 m) providing a settlement of 6% 

less than the 3.05 m long columns (G4). This behavior agrees with what was estimated for the 

single, uncemented stone columns (i.e., V10PW and V15PW) as discussed above but is opposite 
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to what was observed in the field for G4 and G6. Because the differences in the q-responses are 

negligible, the length does not result in a stiffer q-response for column G4 with respect to 

column G6, and it confirms that there is very little influence of column length above 4 times Dsc 

for these investigated columns.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.21. Comparison of q- responses for large footing G4 and G6 considering the difference in 

the column lengths. 

 

 

5.3.3 Comparison of the performance of the Full-Scale Footings on Uncemented 

Stone Column group at the Ultimate Limit State 

 The calibrated DEM models were also used to estimate the ultimate bearing resistance of 

footing G4 beyond the field measurements. In order to obtain a suitable estimate of the bearing 

pressure of G4 at failure, the capacity of this footing was estimated for the field-measured 
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response by extrapolation of the q-curves for settlements ranging from 0 to 60 mm using the 

approach described by Stuedlein and Holtz (2013). A comparison of the average column stress-

displacement with the field data is presented in Fig. 5.22a. The numerical results indicate that for 

the same settlement, the average stress acting on the columns is less than the applied pressure on 

the footing as a result of the stiffer crust layer. However, as q increases, the stress in the 

surrounding soil approaches its ultimate capacity, resulting in an increase in the column stress as 

shown in Fig. 5.22a. This indicates that the stress concentration factor (n) increases (i.e., 0.50 to 

1.31) as q also increases  (i.e., 100 kPa to 700 kPa). Fig. 5.22b compares the DEM simulated q-

responses to the extrapolations of the measured field-response data for V10PU-5 (G4). The 

average foundation stress obtained from the DEM simulations agree with the observed q- data 

for settlements less than 60 mm. Beyond this magnitude of deformation, the DEM results appear 

to be stiffer than the response expected from extrapolation of the observed q- field response. At 

= 200 mm,  the DEM simulation provides an ultimate bearing resistance (i.e., bearing capacity; 

725 kPa) that is 11% greater than the value estimated from the extrapolated field data (equal to 

650 kPa) as illustrated in Fig. 18b. The ultimate bearing capacity of G4 was computed using 

Barksdale and Bachus method (Eq.30), resulting in a qult (i.e., 964 kPa) 48% greater than that 

estimated from the extrapolated field data  (Fig. 5.22b). 
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Fig. 5.22. Comparison of the full DEM bearing pressure-displacement results for footing 

V10PU-5 (G4) with extrapolated field data. 
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

Full-scale loading tests reported by Stuedlein and Holtz (2012a), small-scale loading tests 

reported by Golait et al. (2016) and corresponding laboratory investigations were used as a basis 

for the numerical investigation of factors affecting the global response of isolated foundations 

supported on uncemented and cemented aggregate column reinforced soil. The main parameters 

investigated in this study included the pressure-dependence of the aggregate friction angle and 

dilation angle, column length and stiffness, area replacement ratio, undrained shear strength of 

the surrounding soil, and cement content. In general, the 3D DEM simulations were shown to 

replicate the observed bearing pressure-displacement curves, and the validated models could be 

used to systematically investigate aggregate column performance, resulting in the following 

conclusions:  

1. In general, the 3D DEM simulations presented were shown to accurately capture the

complex stress transfer and bearing pressure-displacement response of aggregate

columns. Incorporating friction angle-gradation dependence in the DEM model was a key

factor in improving the accuracy of the bearing pressure-displacement response of the

stone columns at the serviceability level.

2. The effects of the initial conditions and aggregate gradation on pressure-dependent

strength and stiffness were shown to represent critical factors in the performance of the

aggregate columns.

3. The extent of the bulging zone does not appear to be affected by the length of the column

for the slenderness ratios investigated.

4. For conditions approaching the ultimate limit state, the maximum average confining

stresses estimated from the DEM simulations are greater than 150 kPa within a depth
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range less than 2Dsc, which represents a reduction on 'sc of 8° for both gradations. 

Therefore, it is important to consider the pressure-dependent 'sc corresponding to the 

radial stress changes as the ultimate limit state is approached.   

5. The Young’s modulus of the aggregate columns was found to be the main parameter 

affecting the stone column q-performance and the degree of influence was determined 

to be dependent on the aggregate gradation. Because Young’s Modulus varies nonlinearly 

with confining pressure, variations in the initial radial stress acting on the columns results 

in different initial column stiffnesses and discrepancies in the q-responses of the 

columns. The influence of increasing radial stresses on the q-responses of the 

uniformly-graded aggregate columns was greater due to the larger range of corresponding 

initial stiffnesses.  

6. The cavity expansion factors, kp, derived from the DEM simulations are significantly 

lower than the value originally proposed by Hughes et al. (1975), but agree well with the 

values determined using the empirical modifications to existing methods proposed by 

Stuedlein and Holtz (2013). 

7. The 3D DEM simulations provided good agreement with the observed and extrapolated 

data of the cemented aggregate columns investigated, indicating a substantial 

improvement in the q- curves due to the cement-coated aggregate inclusion as compared 

to the uncemented stone columns for serviceability and ultimate limit states.   

8. Numerical results of small- and full-scale partially-cemented stone columns exhibited 

slightly lower bearing pressure capacities than those fully constructed with cemented 

aggregate. Hence, the effectiveness of conventional stone columns can be significantly 

improved by incorporating cemented aggregate into the upper half of the column length; 
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however, using cemented aggregate in the full column length might be more feasible in 

terms of construction convenience.  

9. Increases in cement content in the aggregate mixture from 5 to 10%, showed

improvements in bearing capacity factors in the simulated columns of approximately 2

and 3, respectively, as compared to uncemented columns at the ultimate state condition.

10. Full-scale columns simulated with 5% cement exhibited bulging failure within the upper

half of the column similar to uncemented columns, whereas the columns modeled with

10% cement aggregate properties showed a settlement and load transfer mechanism

similar to vertically loaded piles.

11. The full-scale DEM simulations of large footings on small groups of stone columns were

shown to provide good estimations of bearing pressure-displacement responses compared

to field data. The unit-cell model of these large footings, however, exhibited poor

performance in estimating the bearing pressure-displacement response. A single

aggregate column model developed using an equivalent diameter (i.e., same area

replacement ratio that the five columns) produced a closer estimation of the bearing

pressure-displacement behavior to the field data.

The DEM results show that gradation-specific parameters influence the global response 

of stone columns and should be incorporated into the design. Because the aggregate types and 

gradations used in production vary, it is recommended that aggregate and gradation specific 

laboratory tests be used to quantify the strength and stiffness design parameters, instead of 

assuming typical values. This study was limited to stone columns and plate loading tests 

conducted on the Beaumont clay formation. Therefore, these recommendations are based on 
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aggregate columns that fit into the bounds of the data and loading used in this numerical 

investigation.  
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