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Abstract

We prove that ascending HNN extensions of free groups are word-hyperbolic if and

only if they have no Baumslag-Solitar subgroups. This extends Brinkmann’s theorem that

free-by-cyclic groups are word-hyperbolic if and only if they have no Z2 subgroups. To get

started on our main theorem, we first prove a structure theorem for injective but

nonsurjective endomorphisms of free groups. With the decomposition of the free group

given by this structure theorem, we (more or less) construct representatives for

nonsurjective endomorphisms that are expanding immersions relative to a homotopy

equivalence. This structure theorem initializes the development of (relative) train track

theory for nonsurjective endomorphisms.
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1 Introduction

One of the main themes in Geometric Group Theory is understanding how algebraic

properties of groups determine the geometric properties of spaces they act nicely on and

vice-versa. For example, any group acting geometrically (properly and cocompactly) on

hyperbolic space Hn with n ≥ 2 will have a finite presentation, a solvable word-problem,

both Hopfian/co-Hopfian properties, and, if n ≥ 3, finite outer automorphism groups.

Since acting geometrically on hyperbolic space guarantees various useful algebraic

properties, an obvious (but hard) question to ask is: what are the necessary and sufficient

conditions for a group to act geometrically on hyperbolic space?

This question becomes tractable with more hypotheses. For instance, the fundamental

group of a surface will act geometrically on H2 if and only if the surface is closed and has

negative Euler characteristic. Going up a dimension to H3 leads to Thurston’s

geometrization conjecture but we only highlight one of its components: Thurston’s

hyperbolization theorem for 3-manifolds that fiber over the circle [15]. Succinctly, one

instance of the theorem states that the mapping torus (defined below) of a closed surface’s

homeomorphism will have a fundamental group that acts geometrically on H3 if and only if

the homeomorphism has no periodic homotopy classes of essential simple closed curves, or

equivalently, the fundamental group has no Z2 subgroups.

This dissertation proves a combinatorial analogue of Thurston’s thoerem, a dimension

lower. δ-Hyperbolic spaces are geodesic spaces whose geodesic triangles are all δ-thin, a

feature of Hn that accounts for many of the algebraic properties groups inherit from acting

geometrically on Hn. Groups that act geometrically on proper δ-hyperbolic spaces are

called word-hyperbolic groups. We find necessary and sufficient conditions for a

mapping torus of a π1-injective graph map to have a word-hyperbolic fundamental group.

Main Theorem. If f : Γ→ Γ is a π1-injective graph map and Mf is its mapping torus,

then π1(Mf ) is word-hyperbolic if and only if π1(Mf ) has no BS(1, d) subgroups for d ≥ 1.
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The complete theorem has more equivalent statements but we postpone giving the full

result until the relevant definitions and context is given. The mapping torus of a map

g : X → X is defined to be the quotient space Mg = (X × [0, 1]) /∼g where identification is

given by (x, 1)∼g(g(x), 0) for all x ∈ X. For d ≥ 1, the (metabelian) Baumslag-Solitar

subgroups are BS(1, d) = π1(Md) where d : S1 → S1 is a degree d map. It is a well-known

fact that groups with BS(1, d) subgroups are not word-hyperbolic and so the main theorem

is the converse of this fact for mapping tori of graph maps.

In our setting, F = π1(Γ) is a free group of finite rank and the map f : Γ→ Γ induces

an injective endomorphism φ : F → F . The fundamental group of Mf is denoted by F∗φ

and known as an ascending HNN extension of F . The main theorem can now be

restated as “F∗φ is word-hyperbolic if and only if it has no BS(1, d) subgroups for d ≥ 1.”

Peter Brinkmann [4] proved the case of this theorem when φ is an automorphism. He

uses the Bestvina-Feighn combination theorem [1] and improved relative train tracks to

show word-hyperbolicity of the mapping tori when their fundamental groups have no

BS(1, 1) = Z2 subgroups.

Extending Brinkmann’s theorem to all injective endomorphisms of F remained diffucult

for two reasons. When the injective endomorphism φ : F → F is not surjective, then

1. we do not know if improved relative train tracks exist; and

2. we have to somehow deal with BS(1, d) subgroups where d ≥ 2.

To complicate matters further, even if we assume improved relative train tracks exist, it is

unclear how their properties could help us deal with nonabelian BS(1, d) subgroups. For

example, knowing an endomorphism has an irreducible train track (the best possible

improved relative train track) is still not enough to address the second part.

It turns out, assuming the endomorphism is induced by a graph immersion (a

seemingly strong assumption a priori) is enough to address both difficulties. In the context

of this theorem, being an immersion is stronger than being a train track and, hence, the
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first difficulty is averted. Furthermore, the fact that edges in loops persist under iteration

of immersions, i.e., no cancellation occurs, becomes crucial to accounting for nonabelian

BS(1, d) subgroups.

Ilya Kapovich proved the special case of the theorem under the extra assumption that

the graph map is an immersion on the rose [6]. In previous work [8], we generalized

Kapovich’s argument to work for all graph immersions. Thus prior to this dissertation, the

theorem was known for two extreme cases: φ is an automorphism or φ is induced by an

immersion. Since the persistence of expanding edges in loops under iteration of an

immersion plays a crucial role in how we deal with nonabelian BS(1, d) subgroups, we are

naturally led to three interesting questions:

1. which nonsurjective endomorphisms cannot be induced by expanding graph

immersions?

2. can they instead be induced by graph maps that share the same persistence property

with immersions, i.e., graph maps that are very close to being immersions themselves?

3. will such graph maps be enough to address the two difficulities listed above?

The first two questions are interesting in their own right and, in a sense, the original

contribution of this dissertation is answering them.

Patrick Reynolds [12] made some progress in answering the first question. He proved

that irreducible nonsurjective endomorphisms were induced by expanding graph

immersions. Being irreducible means having no invariant proper free factor system and the

precise definition will be given in the next section. Irreducible endomorphisms ought to be

generic (intuitively speaking), so our previous generalization of Kapovich’s theorem applies

to “most” nonsurjective endomorphisms and the assumption that our graph maps are

immersions is not as strong as it seemed! Furthermore, our generalization was a definite

improvement on Kapovich’s theorem since “most” nonsurjective endomorphisms are
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induced by expanding immersions not on roses but on trivalent graphs. Reynolds’ proof

involved tools like graph of actions and Q-maps for R-tree with dense orbits. We later gave

a different proof [9] of his result using mostly the semi-action of endomorphisms on the

spine of Culler-Vogtmann’s outer space. Part of the work done here was improving this

idea to only use the action on the spine, which sets us up for relativizing the argument.

We will now summarize our complete answers to the first two questions above. The

order we answer the questions in this introduction follows the progression ideas from the

paper [9]. However, the actual proof given in the later sections answers them backwards (or

rather simultaneously). Reynolds’ theorem is a partial answer to the first question: if

φ : F → F is injective, nonsurjective, and cannot be induced by an expanding immersion,

then it is reducible, i.e., it has an invariant free factor system. But it is easy to construct

reducible endomorphisms that are induced by expanding immersions. On the other hand,

obvious examples of endomorphisms not induced by expanding immersions are

automorphisms. By passing to covers, it is not hard to convince ourselves that φ cannot be

induced by an expanding immersion if it has a fixed free factor on which it acts as an

automorphism. So the naive answer to the first question is the converse: “If φ cannot be

induced by an expanding immersion, then it has a fixed free factor system.”

Indeed, we give two equivalent characterizations of when an injective endomorphism is

induced by an expanding immersion:

Corollary 6.6. Let φ : F → F be an injective endomorphism. Then the following

conditions are equivalent:

1. φ is induced by an expanding graph immersion;

2. for all nontrivial g ∈ F , there is a k = k(g) such that [φk(x)] 6= [g] for all x ∈ F ;

3. φ has no nontrivial fixed free factor system.

Condition (2) is equivalent to Reynolds’ definition of φ being expansive. If some nontrivial
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conjugacy class [g] witnesses the failure of (2), we will say [g] has an infinite tail.

Implications (1) =⇒ (2) =⇒ (3) are easy. We sketch the original idea for (3) =⇒ (1).

Fix a maximal filtration and as the base case of our induction, we apply Reynolds’ theorem

to get an expanding immersion for the bottom stratum. At each induction step, we collapse

the lower stratum and, using nonsurjectivity again, produce an relative immersion of the

current stratrum, then we patch this relative immersion with the expanding immersion of

the lower stratum to get an expanding immersion of the current graph. Once we are at the

top of the filtration, we have an expanding immersion that induces the endomorphism. Of

course, more needs to be said as nonsurjectivity is not enough to complete the induction

step. Nevertheless, this strategy suggests the answer for the second question:

Theorem 6.5. If φ : F → F is injective and nonsurjective, then it is induced by an

expanding relative immersion.

Loosely, a relative immersion is a map of a free splitting of F that induces an

immersion on the corresponding covering Bass-Serre trees. Again, precise definitions

appear later. The proof of the answer is essentially the same induction described for the

first answer. We first collapse a maximal fixed factor system and use nonsurjectivity to

prove a variant of Reynolds’ theorem for the base case: that there is an expanding relative

immersion for the bottom stratum. Presumably, we know how to construct relative

immersions since we needed them in the induction step in the previous argument. So once

the base case is covered, we can invoke the previous induction step and be done.

The difficulty in proving the above theorem lies in collapsing the “right” fixed free

factor system at the base and determining its properties that will be needed for the

construction of relative immersions. Conveniently, there is a canonical choice of a maximal

fixed free factor system to collapse first and it has the properties neded to complete the

base case and induction step of Theorem 6.5.

Proposition 3.3. Let φ : F → F be an injective endomorphism. Then φ has a unique
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maximal fixed free factor system A. Precisely, A supports every conjugacy class with an

infinite tail as well as every finitely generated periodic subgroup of F .

This is the one-line summary of the proof of the proposition: repeatedly apply the

bounded cancellation lemma to growing Stallings graphs and find a stable/nonexpanding

subgraph that represents a maximal fixed free factor system. The property that the chosen

fixed free factor system supports all conjugacy classes with infinite tails is what allows us

to complete the proofs of Collorary 6.6 and Theorem 6.5. So, for the corollary, we actually

prove (3) =⇒ (2) and then (3)+(2) =⇒ (1).

To be a bit more precise, we collapse more than the fixed free factor system. The

collapsed invariant systems must also be invariant under backward iteration. Thus we take

preimages to get what we call the elliptic free factor system.

By now, we have completely answered the first two questions and the third question can

be rephrased as: will expanding relative immersions allow us to prove the main theorem?

The answer is: “Yes ∗. ( ∗Terms and conditions apply.)” Simply having expanding relative

immersions is not enough to understand all the dynamics because we are missing what

happens in the collapsed free factor system; however, if they are expanding immersions

relative to the elliptic free factor system, then the restriction of the endomorphism to the

collapsed system is (almost) an automorphism and we have a much better understanding of

those dynamics. In summary, we get to state a more detailed version of the main theorem:

Theorem 9.6. Let φ : F → F be an injective endomorphism. Then the following

statements are equivalent:

1. F∗φ is word-hyperbolic;

2. F∗φ contains no BS(1, d) subgroups, d ≥ 1;

3. No iterate φk has an invariant cyclic subgroup (with index d ≥ 1) for all k ≥ 1.

We have omitted a fourth equivalent condition as it is rather technical for the introduction.

6



Once again, the content of the theorem is the implication (3) =⇒ (1) and we will

briefly give the idea behind it. Start with an expanding immersion relative to the elliptic

free factor system and on the elliptic system choose an improved relative train track.

Together, the hybrid of an expanding immersion and an improved relative train track

addresses the first difficulty raised earlier (Proposition 9.5). To address the second

difficulty, i.e., to deal with invariant cyclic subgroups with index d ≥ 2, we need only

concern ourselves with the dynamics of the relative immersion as such subgroups do not

exist in the elliptic free factor system. Fortunately, relative immersions do have the

persistence property that we needed to generalize Kapovich’s theorem (Proposition 8.5).

We believe the relative immersions we construct in this dissertation will prove to be

extremely useful in understanding the dynamics of free group endomorphisms. For

example, it seems like our techniques can be improved to give a trichotomy of the Dehn

functions of ascending HNN extensions and characterising exactly when each happen:

1. linear ⇐⇒ no BS(1, d) subgroups for d ≥ 1 (Theorem 9.6);

2. quadratic ⇐⇒ has Z2 but no BS(1, d) subgroups for d ≥ 2;

3. exponential ⇐⇒ has BS(1, d) subgroup for some d ≥ 2;

The first equivalence is a reformulation of Theorem 9.6 since groups are word-hyperbolic if

and only if they have linear Dehn functions. We conclude the introduction with an outline

of the dissertation.

Outline. The next section introduces most of the definitions and preliminary results, most

importantly the bounded cancellation lemma. Section 3 proves the existence of a unique

maximal fixed free factor system. Section 5 develops the theory of relative representatives.

This is done to set-up the construction of relative immersion in Section 6. Section 8

introduces pullbacks of an endomorphism and their relation to nonabelian BS(1, d)

subgroups and the final Section 9 proves the main theorem. There are interludes following

Sections 3 and 6 that remind us of the big picture and one provides some useful examples.
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2 Preliminaries

Unless otherwise stated, F will be a free group with finite rank at least 2. A nontrivial

free factor system of F is a collection of nontrivial free factors A = {A1, . . . , Al} of F

such that Ai ∩ Aj is trivial if i 6= j and 〈A1, . . . , Al〉 is free factor of F . We define the

trivial free factor system to be the collection consisting of the trivial subgroup; this will

allow us to treat relative/absolute cases simultaneously in our proofs. A free factor system

A is proper if A 6= {F}, i.e., some free factor A ∈ A is proper. We shall say a free factor

system A supports a collection of subgroups B if for every B ∈ B, there is an A ∈ A and

x ∈ F such that B ≤ xAx−1 and, when B is a free factor system, we shall denoted it by

B � A. The �-relation on free factor systems is a preorder, i.e., it is reflexive and

transitive; it determines an equivalence relation on the set of free factor systems and a

partial order on the set of equivalence classes. Free factor systems will always be

considered up to this equivalence relation. In particular, we are free to replace free factors

in a system with conjugates whenever convenient.

Let φ : F → F be an endomorphism. A free factor system A = {A1, . . . , Al} is

φ-invariant if A supports φ(A) = {φ(A1), . . . , φ(Al)}, i.e, there exists a set of elements

{x1, . . . , xl} ⊂ F and a function σ : {1, . . . , l} → {1, . . . , l} such that φ(Ai) ≤ xiAσ(i)x
−1
i for

all i. A φ-invariant free factor system A is φ-fixed if its free factors are permuted up to

conjugacy, i.e., σ is a permutation and φ(Ai) = xiAσ(i)x
−1
i for all i. When φ is an

automorphism, all φ-invariant free factor systems are φ-fixed. When φ is injective, then, for

any k ≥ 1 and free factor system A of F , φk(A) is a free factor system of φk(F ). A

subgroup A ≤ F is eventually φ-periodic if φm(A) = xφn(A)x−1 for some m > n ≥ 1

and x ∈ F , and it is φ-periodic if φn(A) = xAx−1 for some n ≥ 1 and x ∈ F .

The endomorphism φ is reducible if it has a nontrivial proper invariant free factor

system and irreducible otherwise. One immediate consequence of Stallings folds [14] is

the injectivity of irreducible endomorphisms (Lemma 2.1 below). So we will usually drop
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the injective hypothesis when specializing results to the irreducible cases.

We preface the lemma with a summary of Stallings’ folding theorem. Let R be a rose

whose edges are labelled by a basis {a1, . . . , an} of F and let f : R→ R be the map where

f(ai) is the immersed edge-path in R labelled by φ(ai). Stallings showed that f factors as

ι ◦ fl ◦ · · · ◦ f1 where each fi is a fold and ι is an immersion [14]. We will use this again to

prove bounded cancellation (Lemma 2.5 below).

Lemma 2.1. If φ : F → F is irreducible, then it is injective.

Proof. If φ is not injective, then at least one of the folds in Stallings’ factorization of φ

collapses a subgraph of the domain. In particular, the kernel of φ contains a proper free

factor A ≤ F ; therefore, φ(A) = {1} ≤ A and φ is reducible.

Two group homomorphisms h1, h2 : A→ B are said to be equivalent, denoted

[h1] = [h2], if there is an inner automorphism ib : B → B such that h2 = ib ◦ h1. Outer

endomorphisms of F will refer to equivalence classes on the set of endomorphisms of F .

For the topological view, Γ will be a connected finite graph with the same rank as F ,

i.e., connected, finite 1-dimensional CW-complex such that π1(Γ) ∼= F . A graph map

f : Γ→ Γ′ will be a continuous map of graphs that sends vertices to vertices and any edge

to a vertex or immersed path. Since a graph map f : Γ→ Γ′ is allowed to send edges to

vertices, an edge e of Γ pretrivial if f(e) is a vertex of Γ′. Let K be the maximum of the

(combinatorial) length of the edge-path f(e) as e varies over all the edges of Γ. Then f is

K-Lipschitz, a fact that will be used throughout the dissertation. Generally, K(f) will

denote some (convenient) Lipschitz constant for a graph map f .

A direction at a vertex v ∈ Γ is a half-edge attached to the vertex. The set of

directions at vertex v is denoted by TvΓ. If the graph map f : Γ→ Γ has no pretrivial

edges, then the restriction to initial segments induces the derivative map at v,

dfv : TvΓ→ Tf(v)Γ. The graph map f is an immersion if it is locally injective, i.e., it has

no pretrivial edges and the derivative maps dfv are injective for all vertices v. An
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immersion f is expanding if it has no invariant subforest (subgraph with contractible

components) and the length of fn(e) is unbounded as n→∞ for every edge e of Γ.

Let A = {A1, . . . , Al} be a nontrivial free factor system of F , then an A-marked

graph (Γ∗, α∗) is a collection of graphs Γ∗ = {Γ1, . . . ,Γl} where the finite graphs Γi have

vertices that are at least trivalent and are indexed by markings, i.e., isomorphisms,

αi : Ai → π1(Γi). A marked graph (Γ, α) is an {F}-marked graph. Suppose A is

φ-invariant for some injective endomorphism φ : F → F ; so there is a function

σ : {1, . . . , l} → {1, . . . , l} and inner automorphisms ixi : F → F such that the restrictions

φi = (ixi ◦ φ)|Ai
are homomorphisms φi : Ai → Aσ(i). The collection {φi} is a restriction

of φ to A, denoted by φ|A. A topological representative for φ|A is a graph map

f∗ : Γ∗ → Γ∗ of an A-marked graph (Γ∗, α∗) whose restrictions to graphs Γi are graph maps

fi : Γi → Γσ(i) with no pretrivial edges such that [π1(fi) ◦ αi] = [ασ(i) ◦ φi] for all

i ∈ {1, . . . , l}.

Choosing a marked graph (R,α) where R is a rose is equivalent to choosing a basis B

for F determined by the pre-images of the (oriented) petals over the marking α. Fix a

marked graph (Γ, α); for any conjugacy class of a nontrivial element g ∈ F , denoted by [g],

we define its length with respect to α, ‖g‖α, to be the (combinatorial) length of the

immersed loop in Γ representing [g]. When (R,α) is a marked rose corresponding to a basis

B, we shall denote the respective length of [g] by ‖g‖B.

For any nontrivial subgroup H ≤ F , the Stallings (subgroup) graph for H with

respect to (Γ, α) is the smallest graph S(H) with a marking β : H → π1(S(H)) and an

immersion ι : S(H)→ Γ such that [π1(ι) ◦ β] = [α|H ]. Alternatively, S(H) is the core of

the cover Γ̂H of Γ corresponding to α(H), i.e., the smallest deformation retract of Γ̂H , and

ι is the restriction to S(H) of the covering map Γ̂H → Γ. If H and H ′ are in the same

conjugacy class, [H], then there is a homeomorphism h : S(H)→ S(H ′) such that ι = ι′ ◦h.

The converse holds as well. So the Stallings graph is well-defined for the conjugacy class

[H] and vice-versa. Suppose φ : F → F is injective, A is a nontrivial free factor system of
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F , and k ≥ 1. We define S(φk(A)) to be the disjoint union of the Stallings graphs of the

free factors of φk(F ) in φk(A). By definition, S(φk(A)) is a φk(A)-marked graph with the

markings β∗ = {βi : Ai → π1(Si) | Si = S(φk(Ai)) is a component of S(φk(A)) }.

Unlike the base graph Γ, we allow a Stallings graph S = S(H) or S(φk(A)) to have

bivalent vertices. More precisely, we assume S is subdivided so that ι : S → Γ is

simplicial/isometric, i.e., ι maps edges to edges. With this subdivision, we get a

combinatorial metric on (S, β) that is compatible with (Γ, α), i.e., for any nontrivial

element g in H or φk(A), ‖g‖α = ‖g‖β. For graphs with bivalent vertices, branch points

are vertices that are not bivalent and natural edges are maximal edge-paths whose

interior vertices are bivalent.

Lemma 2.2. Let φ : F → F be injective and H be a finitely generated nontrivial subgroup

of F . If H is not eventually φ-periodic, then the length of the longest natural edge in

S(φk(H)) is unbounded as k →∞.

Proof. Suppose the length of the longest natural edge in S(φk(H)) with respect to some

marked graph (Γ, α) was uniformly bounded as k →∞. We want to show that H is

eventually φ-periodic. The number of natural edges in S(φk(H)) is bounded by

3 · rank(H)− 3. So our assumption implies there is a bound on the volume of (number of

edges in) the graphs S(φk(H)) as k →∞. So the sequence S(φk(H)) is eventually periodic,

i.e., there are integers m > n ≥ 1 and an isometry h : S(φm(H))→ S(φn(H)) such that

ιm = ιn ◦ h. Since a Stallings graph determines the conjugacy class of its defining subgroup,

we have [φm(H)] = [φn(H)], i.e., H is eventually φ-periodic.

Conversely, the next lemma handles the case when an invariant free factor system

consists entirely of eventually periodic free factors:

Lemma 2.3. Let φ : F → F be injective and A be a nontrivial φ-invariant free factor

system. If all free factors in A are eventually φ-periodic, then some nonempty subset

B ⊂ A is a φ-fixed free factor system and φk(A) is supported by B for some k ≥ 0.

11



Proof. Let σ : {1, . . . , l} → {1, . . . , l} be the function used to define the φ-invariance of

A = {A1, . . . , Al}. Then there is a nonempty subset J ⊂ {1, . . . , l} on which σ acts as a

bijection and σl({1, . . . , l}) = J . Let B � A by the nontrivial φ-invariant free factor system

corresponding to J . Then φl(A) is supported by B since the image of σ l is J . It remains to

show that B is φ-fixed. Set j to be the order of σ|J , fix B ∈ B, and let ix : F → F be the

inner automorphism such that ix ◦ φj(B) ≤ B. Define ψ = ix ◦ φj. As B is eventually

φ-periodic and hence eventually φj-periodic, there are integers m > n ≥ 1 such that

[ψm(B)] = [φjm(B)] = [φjn(B)] = [ψn(B)]. Therefore, there is an element y ∈ F such that

yψn(B)y−1 = ψm(B) ≤ ψn(B). But no finitely generated subgroup of F is conjugate to a

proper subgroup of itself (Lemma 2.4 below). So ψm(B) = ψn(B) and, by injectivity of φ,

ψ(B) = B. Since B ∈ B was arbitrary, φj fixes the free factors of B up to conjugation; as B

is φ-invariant, it must be φ-fixed.

The following fact will be used again in the proof of Lemma 3.5.

Lemma 2.4. No finitely generated subgroup of F is conjugate to a proper subgroup of itself.

Proof. By Marshall Hall’s theorem, free groups are subgroup separable/locally extended

residual finiteness (LERF), i.e., for any finitely generated subgroup H ≤ F and element

g ∈ F \H, there is a finite group G and a surjective homomorphism ϕ : F → G such that

ϕ(g) /∈ ϕ(H). We sketch a proof of this due to Stallings in Appendix A.

For a contradiction, suppose there is an element y ∈ F such that yHy−1 ≤ H and

g ∈ H \ yHy−1. By subgroup separability, there is a finite group G and homomorphism

ϕ : F → G such that ϕ(g) /∈ ϕ(yHy−1). But g ∈ H implies ϕ(g) ∈ ϕ(H) and, by finiteness

of G, yHy−1 ≤ H implies ϕ(yHy−1) = ϕ(H) — a contradiction.

The next lemma, also known as the Bounded Cancellation Lemma, will be used

extensively in this dissertation. At the risk of overloading notation, for an edge-path p in a

graph Γ, [p] denotes the immersed edge-path that is homotopic to p rel. endpoints; for a

loop ρ in Γ, [ρ] will be the immersed edge-path that is freely homotopic to ρ.

12



Lemma 2.5 (Bounded Cancellation). Let g : Γ→ Γ′ be a π1-injective graph map. Then

there is a constant C(g) such that, for any natural-edge-path decomposition p1 · p2 of an

immersed path in the universal cover Γ̃, the edge-path [g̃(p1)] · [g̃(p2)] is contained in the

C(g)-neighborhood of [g̃(p1) · g̃(p2)].

The following proof is due to Bestvina-Feighn-Handel [2, Lemma 3.1].

Proof. Any graph map g : Γ→ Γ′ factors as a pretrevial edge collapse and edge subdivision

g0, a composition of r ≥ 0 Stallings folds g1 ◦ · · · ◦ gr, and an isometric immersion gr+1. The

collapse, subdivision, and immersion obviously have cancellation constants 0 while each

fold has cancellation constant 1 by π1-injectivity. Thus we may choose C(g) = r.

If f : Γ→ Γ is a topological representative for an injective endomorphism φ : F → F ,

A is a nontrivial φ-invariant free factor system of F , and Γ̂k is the disjoint union of covers

of Γ corresponding to φk(A) for some k ≥ 1, then f lifts to a map f̂k : Γ̂k → Γ̂k and the

deformation retraction Γ̂k → S(φk(A)) induces a map f̄k : S(φk(A))→ S(φk(A)) with

K(f̄k) = K(f) and C(f̄k) = C(f). We shall call f̄k the (k-th) homotopy lift of f .

The maps f̄k need not be topological representatives for φ|A with respect to natural

edges: they might map branch points to bivalent vertices (interior of natural edges) or fail

to be locally injective on natural edges. We hope to replace f̄k with homotopic maps that

are as close to topological representatives as possible for our purposes while still

maintaining uniform control on the Lipschitz and cancellation constants.

As the bounded cancellation lemma only considers natural-edge-paths p1, p2,

homotopies that are supported in the interior of natural edges will not affect the

cancellation constant. Using a (tightening) homotopy supported in the interior of natural

edges of S(φk(A)), we may replace f̄k with a homotopic map that maps any natural edge

to either a vertex or an immersed path and has the same Lipschitz and cancellation

constants. One would usually collapse the pretrivial edges of S(φk(A)) to get a map that is

locally injective on natural edges but we will not since we want to preserve compatibility:
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‖·‖β is the restriction of ‖·‖α to φk(A). The next lemma uses bounded cancellation to

measure how close the homotopy lift f̄k is to mapping branch points to branch points.

Lemma 2.6. Let f : Γ→ Γ be a topological representative for an injective endomorphism

φ : F → F . For any k ≥ 1, if f̄k : S(φk(A))→ S(φk(A)) is a homotopy lift of f with

C(f̄k) = C(f), then f̄k maps branch points to the C(f)-neighborhood of branch points.

Proof. Set C = C(f) = C(f̄k). If S(φk(A)) is the C-neighborhood of its branch points,

then there is nothing to prove. Suppose ν ∈ S(φk(A)) is a bivalent vertex whose distance

to the nearest branch point is > C. We need to show that ν is not the f̄k-image of any

branch point. Set ε1 and ε2 to be the distinct oriented directions originating from ν and

ε̄1, ε̄2 are the same directions with opposite orientation.

Suppose v ∈ S(φk(A)) is a branch point and f̄k(v) = ν. As v is a branch point, there

are at least three distinct oriented directions originating from v: e1, e2, and e3. Let p12 be

an immersed path that starts and ends with e1 and ē2 respectively and define p23 similarly.

Set p13 = [p12 · p23] and p′13 = [p12 · p̄23], where p̄23 is the reversal of the path p23 (See

Figure 1). Although the paths are loops, we still treat them as paths, i.e., reduction is done

rel. the endpoints (v or ν). Without loss of generality, assume [f̄k(p12)] starts with ε1.

If [f̄k(p12)] ends with ε̄1, then [f̄k(p12)] = µ1 · ρ · µ̄1 , where µ1 is an extension of ε1 to an

embedded path from ν to a branch point and ρ is an immersed loop. By hypothesis, µ1 is

longer than C. Since p12 starts and ends with e1 and ē2 respectively, the concatenation

p12 · p12 is an immersed path such that [f̄k(p12)] · [f̄k(p12)] has µ̄1 · µ1 as a subpath, violating

bounded cancellation. So we may assume [f̄k(p12)] starts and ends with ε1 and ε̄2.

If [f̄k(p23)] starts and ends with ε2 and ε̄1, then [f̄k(p13)] = [f̄k(p12) · f̄k(p23)] starts and

ends with ε1 and ε̄1 respectively, which violates bounded cancellation for the same reason

given in the previous paragraph. Similarly, if [f̄k(p23)] starts and ends with ε1 and ε̄2, we

rule out this possibility by considering [f̄k(p
′
13)]. We have ruled out all cases, and therefore,

no branch point v of S(φk(A)) is mapped to ν.
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Figure 1: Schematic for paths p12, p23, p13, and p′13. The path p13 starts with e1 follows the
dashed path and ends with ē3. The path p′13 is the “figure 8” path traced by p12 then p̄23.

As f̄k maps branch points to the C(f)-neighborhood of branch points, we replace it

with a homotopic map that maps branch points to branch points. The homotopy can

potentially increase both the Lipschitz and cancellation constants. However, since the

homotopy is moving the image of a branch point a distance at most C(f), we can use

K(f̄k) = K(f) + C(f) and C(f̄k) = 2C(f). We will now summarize the properties of

homotopy lifts that we will be using in the next sections.

Proposition 2.7. Suppose f : Γ→ Γ is a topological representative for an injective

endomorphism φ and A is a nontrivial φ-invariant free factor system of F . For any k ≥ 1,

there is a map f̄k : S(φk(A))→ S(φk(A)) on the Stallings graph that has these properties:

1. it is a homotopy lift of f , i.e., ι ◦ f̄k ' f ◦ ι;

2. it maps branch points to branch points and any natural edge to a branch point or an

immersed path;

3. K(f̄k) = K(f) + C(f) and C(f̄k) = 2C(f).

The point being that the Lipschitz and cancellation constants are independent of k.

15



3 Elliptic free factor systems

In this section, we will construct a canonical invariant free factor system for any given

injective endomorphism of F . This free factor system, called the elliptic free factor system,

is crucial for the construction of (expanding) relative immersions later in the dissertation.

Suppose φ : F → F is an injective endomorphism with an invariant free factor system

A. We shall say A supports a nontrivial conjugacy class [g] in F if there is a

nontrivial element g′ ∈ A,A ∈ A such that [g′] = [g]. Similarly, A supports an infinite

φ-tail of a nontrivial conjugacy class [g] in F if for every n ≥ 1, there is a nontrivial

element gn ∈ A,A ∈ A such that [φn(gn)] = [g]. We now state the main technical result of

this section.

Theorem 3.1. If φ : F → F is an injective endomorphism, then φ has a nontrivial fixed

free factor system if and only if some nontrivial conjugacy class in F has an infinite φ-tail.

Remark. Patrick Reynolds defined expansive endomorphisms [12, Definition 3.8] and φ is

expansive in this sense if and only if some conjugacy class has an infinite φ-tail. Under this

equivalence, Reynolds’ Remark 3.12 in [12] is a weaker form of this theorem.

Proof. The forward direction is obvious: if φ has a nontrivial fixed free factor system, then

it has a periodic free factor A ≤ F and this implies all nontrivial conjugacy classes [g] in A

have an infinite φ-tail. The main content of the theorem is in the reverse direction.

Suppose the φ-invariant free factor system {F} supports an infinite φ-tail of some

nontrivial conjugacy class [g] in F . If φ is an automorphism, then {F} is a nontrivial

φ-fixed free factor system and we are done. So we assume φ is nonsurjective and proceed

by descending down the poset of free factor systems. The following claim is the key idea:

Claim (Descent). If D is a φ-invariant free factor system that supports an infinite φ-tail of

[g] but contains a free factor that is not eventually φ-periodic, then some φ-invariant free

factor system D′ ≺ D supports an infinite φ-tail of [g].
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Since the poset of free factor systems has no infinite chains, the descent starts with the

free factor system {F} and nonsurjectivity of φ and then finds a φ-invariant free factor

sytem A that supports an infinite φ-tail of [g] and whose free factors are eventually

φ-periodic; such a free factor system contains a φ-fixed nontrivial free factor system by

Lemma 2.3 and we are done. It remains to show the proof of the descent claim.

Note that the assumption that D contains a free factor that is not eventually

φ-periodic is more general than we really need for our conclusion. In fact, we could have

worked with a more natural assumption, D has no periodic free factors, and gotten the

same conclusion. However, we give the general argument instead since we plan on invoking

a variation of the claim again in the next proposition.

Proof of descent. Let (Γ, α) be a marked graph, f : Γ→ Γ be a topological representative

for φ, and set K = K(f) + C(f) and C = 2C(f). Suppose D is a φ-invariant free factor

system that supports an infinite φ-tail (gn)n≥1 of [g] and contains a free factor that is not

eventually φ-periodic. Then, for all k ≥ 1, there is an immersed loop ρk(gk) in

∆k = S(φk(D)) of length ‖g‖α corresponding to [φk(gk)] = [g], where ∆k = S(φk(D)) is the

Stallings graph with respect to (Γ, α). Set L = max{‖g‖α, C}.

For all k ≥ 1, let f̄k : ∆k → ∆k be the homotopy lifts of f given by Proposition 2.7. In

particular, these lifts map branch points to branch points, map any natural edge to either a

branch point or an immersed path, and have Lipschitz and cancellation constants K and C

respectively. As (gn)n≥1 is an infinite φ-tail of [g] supported in D, we get, for any fixed

k ≥ 1, an infinite sequence of immersed loops (ρk(gn))n≥k in ∆k such that f̄n−kk (ρk(gn))

have length L for all n > k but they need not be homotopic to ρk(gk) in ∆k as φn(gn) need

not be conjugate to φk(gk) in φk(F ).

Form a directed graph Gk whose vertices are the natural edges of ∆k and there is an

edge Ei → Ej if f̄k maps Ei over Ej. Note that the number of natural edges of ∆k is at

most N = 3 · rank(F )− 3 and so Gk has at most N vertices.

Since D contains a free factor that is not eventually φ-periodic, the length of natural
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edges in ∆k is unbounded as k →∞ by Lemma 2.2. Fix k � 0 such that the longest

natural edge in ∆k is longer than L ·KN−1. Let L0 be the natural edges of ∆k longer than

L ·KN−1 and L be the union of L0 and all natural edges that have a directed path to L0 in

Gk. Since f̄k is K-Lipschitz and the shortest directed path in Gk from a natural edge in L

to L0 has at most N natural edges on it, every natural edge in L is longer than L. The

natural edges in L will be referred to as the long natural edges and the remaining natural

edges as short .

Set ∆′ ⊂ ∆k to be the union of short natural edges, which is a proper subgraph since

long natural edges exist. The subgraph is automatically f̄k-invariant by the construction of

L. Since ρk(gk) is an immersed loop in ∆k with length ‖g‖α ≤ L, its natural edges are

short and ∆′ is a nonempty, noncontractible proper subgraph of ∆k. Therefore, ∆′

determines a nontrivial φ-invariant proper free factor system D′ ≺ D. Technically, it

determines a φ|φk(F )-invariant free factor system of φk(F ) but, as φ is injective, this

corresponds to a φ-invariant free factor system of F . It remains to show that D′ supports

an infinite φ-tail of [g].

Let L ⊂ Gk be the full subgraph of generated by the long natural edges L. If there are

no directed cycles in L, then f̄Nk (∆k) ⊂ ∆′; in this case, the sequence of nontrivial loops

(f̄Nk (ρk(gn)))n≥k+N in ∆′ naturally determines an infinite φ-tail of [g] supported in D′ and

we are done. Now suppose there are directed cycles in L and ρ be an immersed loop in ∆k

that contains a long natural edge in such a cycle. Then, by bounded cancellation and the

fact long natural edges are longer than L ≥ C, [f̄mk (ρ)] contains a long natural edge in the

same directed cycle in L for all m ≥ 1. Consequently, none of the immersed loops ρk(gn) in

∆k contain a long natural edge that is in a directed cycle of L. Therefore, as far as the

sequence of loops (ρk(gn))n≥k is concerned, we may assume there are no directed cycles in

L and, as before, the sequence (f̄Nk (ρk(gn)))n≥k+N determines an infinite φ-tail of [g]

supported in D′.
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The following dichotomy is (equivalent to) a result in Reynolds’ thesis.

Corollary 3.2 ([12, Proposition 3.11]). If φ : F → F is irreducible, then either φ is an

automorphism or no nontrivial conjugacy class in F has an infinite φ-tail.

Proof. Suppose φ is irreducible and there is a nontrivial conjugacy class with an infinite

φ-tail. By Theorem 3.1, there is a nontrivial φ-fixed free factor system A. Since φ is

irreducible, A = {F} and φ is an automorphism.

The fixed free factor system given by Theorem 3.1 may depend on the chosen

conjugacy class in F that has an infinite tail. The following proposition constructs a

canonical fixed free factor system for injective endomorphisms that supports all conjugacy

classes with an infinite tail as well as all finitely generated periodic subgroups. The proof

will use both ascent and descent in the poset of free factor systems!

Proposition 3.3. If φ : F → F is an injective endomorphism, then there is a unique

maximal φ-fixed free factor system A. Precisely, A supports every a nontrivial conjugacy

class in F with an infinite φ-tail and every finitely generated φ-periodic subgroup of F .

Proof. If φ is an automorphism, then let A = {F} and we are automatically done. If φ has

no fixed nontrivial free factor system, then the trivial free factor system is automatically

the unique maximal φ-fixed free factor system. By Theorem 3.1, there are no conjugacy

classes with an infinite φ-tail and, consequently, there are no φ-periodic subgroups. So the

trivial free factor system vacuously supports infinite φ-tails and φ-periodic subgraphs. So

we may assume φ is nonsurjective and has a fixed nontrivial free factor system D0. We

proceed by ascending up the poset of free factor systems:

Claim (Ascent). Let A ≤ F be a finitely generated φ-periodic subgroup and [g] be a

nontrivial conjugacy class in F with an infinite φ-tail. If D is a φ-fixed nontrivial free

factor system that does not support both {A} and [g], then some φ-fixed proper free factor

system D′ � D supports both {A} and [g].
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Once again, as there are no infinite chains in the poset of free factor systems, the

ascent starts with the φ-fixed nontrivial proper free factor D0 and will stop with the

necessarily unique maximal φ-fixed proper free factor system A that supports all finitely

generated φ-periodic subgroups of F and all conjugacy classes in F with an infinite φ-tail.

It remains to prove the ascent claim.

Proof of ascent. Let A ≤ F be a finitely generated φ-periodic subgroup, [g] be a nontrivial

conjugacy class in F with an infinite φ-tail, and D be a φ-fixed free factor system that does

not support both {A} and [g]. We now describe the descent portion:

Claim (Descent). If D′′ is φ-invariant free factor system that supports {A}, an infinite

φ-tail of [g], and D but contains a free factor that is not eventually φ-periodic, then some

φ-invariant free factor system D′′′ ≺ D′′ supports D, {A}, and an infinite φ-tail of [g].

Starting with {F} and nonsurjectivity of φ, the descent will find a φ-invariant proper

free factor system D∗ that supports D, {A}, and an infinite φ-tail of [g] and whose free

factors are eventually φ-periodic. By Lemma 2.3, D∗ contains a φ-fixed free factor

subsystem D′ ⊂ D∗ such that φk(D∗) is supported by D′ for some k ≥ 0. As A is

φ-periodic, it is supported by D′. Similarly, D′ supports [g] since D∗ supports an infinite

φ-tail of [g]. So D′ is a φ-fixed free factor system that supports D, {A}, and [g] as needed

for ascent. It remains to prove the descent claim.

Proof of descent. Let (Γ, α) be a marked graph, f : Γ→ Γ be a topological representative

for φ, and set K = K(f) + C(f) and C = 2C(f). Suppose D′′ is a φ-invariant free factor

system that supports D, {A}, and an infinite φ-tail of [g]. Let S(φk(D)) and S(φk(A)) be

the Stallings graphs of φk(D) and A with respect to (Γ, α). Since A and the free factors of

D are finitely generated and φ-periodic, the length of the longest immersed loop in

S(φk(D)) or S(φk(A)) that covers any edge at most twice is uniformly bounded by some L0

for all k ≥ 1. Set L = max{L0, ‖g‖α, C}. The proof now mimics that of descent in

Theorem 3.1 so we only give a sketch.
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For all k ≥ 1, let ∆′′k = S(φk(D′′)) and, by Proposition 2.7, there is a K-Lipschitz

homotopy lift f̄k : ∆′′k → ∆′′k that maps branch points to branch points and has cancellation

constant C. As some free factor in D′′ is not eventually φ-periodic, we can fix k � 0 so

that the longest natural edge in ∆′′k is longer than L ·KN−1 by Lemma 2.2. Define the long

and short natural edges as before and deduce long natural edges are longer than L. Set

∆′′′ ⊂ ∆′′k to be the union of the short natural edges, which is necessarily proper and

f̄k-invariant. Recall that immersed loops of S(φk(D)) and S(φk(A)) that cover any edge at

most twice have length bounded by L0 ≤ L and these Stallings graphs have isometric

natural immersions into ∆′′k. Hence the images of these natural immersions lie in the

subgraph of short natural edges ∆′′′. So ∆′′′ is nonempty and noncontractible. The

subgraph ∆′′′ determines a φ-invariant proper free factor system D′′′ ≺ D′′ that supports

both D and {A} since both S(φk(D)) and S(φk(A)) have immersions into ∆′′′. From the

proof of descent in Theorem 3.1, L ≥ C implies D′′′ supports an infinite φ-tail of [g].

Although this proposition produces a canonical φ-fixed free factor system for an

injective endomorphism, we shall enlarge the system again to get a better φ-invariant free

factor system that gives us some control of the relative dynamics of φ. We do this by

taking iterated preimages of the free factor system.

Proposition 3.4. If φ : F → F is an injective endomorphism and A is the maximal

φ-fixed free factor system, then there is a unique maximal φ-invariant free factor system

A∗ � A such that φk(A∗) is supported by A for some k ≥ 0.

We shall call the free factor system given by this proposition the (canonical) φ-elliptic

free factor system. The elliptic nature will be apparent from the proof.

Proof. Let φ : F → F be an injective endomorphism and A be the maximal φ-fixed free

factor system of F given by Proposition 3.3. If φ surjective or has no nontrivial fixed free

factor systems, then A∗ = A is {F} or trivial respectively and we are done. Thus, we
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assume that φ is nonsurjective and A is a nontrivial proper free factor system. Let T be a

simplicial tree with a minimal F -action whose edge stabilizers are trivial and nontrivial

point stabilizers are conjugates of free factors in A. The quotient F\T is a graph of groups

decomposition of F with trivial edge groups and A as the nontrivial vertex groups; this is

also known as a free splitting of F . We give a quick review of Bass-Serre theory in

Appendix B. For any k ≥ 1, we get a φk(F )-action on the minimal subtree Tk ⊂ T of

φk(F ). Under this action, the quotient φk(F )\Tk is a free splitting of φk(F ). By the

injectivity of φ, we get a free splitting of F whose vertex groups form a free factor system

of F denoted by φ−k · A = Ak. Since A is φ-invariant, we get that A � Ak � Ak+1 for all

k ≥ 1 and, consequently, all Ak are φ-invariant. As there are no infinite chains in the poset

of free factor systems of F , we get that the chain of φ-invariant free factor systems

Ak (k ≥ 1) stabilizes and we can set A∗ to be the maximal free factor system in the chain.

By construction, A∗ supports any subgroup A ≤ F such that φk(A) is supported by A for

some k ≥ 0 and this implies the uniqueness of A∗.

The next lemma states that the elliptic free factor system is simply a disjoint union of

the maximal fixed free factor system with a free factor system that eventually gets mapped

into the maximal fixed free factor system.

Lemma 3.5. If φ : F → F is an injective endomorphism, A is the maximal φ-fixed free

factor system, and A∗ is the φ-elliptic free factor system, then A ⊂ A∗ after replacing the

free factors of A with conjugates if necessary.

Proof. Suppose σ : {1, . . . l} → {1, . . . , l} is the function associated to the φ-invariance of

the φ-elliptic free factor system A∗ = {A1, . . . Al}. Then there is a maximal nonempty

subset J ⊂ {1, . . . , l} on which σ is a bijection. Let AJ = {Aj ∈ A∗ : j ∈ J }. Since A∗

supports the maximal φ-fixed free factor system A, it follows that A � AJ . Replace free

factors of A with conjugates if necessary and assume each A ∈ A is a subgroup of some

Aj ∈ AJ . We want to show that A ⊂ AJ . Choose a free factor A ∈ A and let Aj ∈ AJ be
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the free factor such that A ≤ Aj. Furthermore, fix an inner automorphism ix : F → F such

that ix ◦ φs(Aj) ≤ Aj for some s ≥ 0. Set ψ = ix ◦ φs and note that ψ and φ must have the

same maximal fixed and elliptic free factor systems by construction. Consequently, Aj ∈ A∗

implies ψk(Aj) is conjugate to a subgroup of a ψ-periodic free factor A′ ∈ A for some

k ≥ 0. We must have A′ ≤ Aj since A′ ≤ Aj ′ ∈ AJ , {A′} supports {ψk(Aj)}, ψ(Aj) ≤ Aj,

and σ|J is a bijection. So iy ◦ ψk(Aj) ≤ A′ ≤ Aj for some inner automorphism iy : F → F .

The ψ-periodicity of A′ implies (iy ◦ ψk)m(A′) ≤ A′ is conjugate to A′ for some m ≥ 1. But

Lemma 2.4 says no finitely generated subgroup of F is conjugate to a proper subgroup of

itself. Therefore, (iy ◦ ψk)m(A′) = A′ and, by injectivity of ψ, iy ◦ ψk(Aj) = A′ = Aj. In

particular, A = A′ = Aj. As this holds for arbitrary free factors A ∈ A, we get A ⊂ AJ .

It is obvious that the maximal φ-fixed free factor system is proper if and only if φ is

nonsurjective. The same holds for the elliptic free factor system:

Lemma 3.6. Let φ : F → F be an injective endomorphism. The φ-elliptic free factor

system is

1. nontrivial if and only if there is a nontrivial conjugacy class with an infinite φ-tail;

2. proper if and only if φ is nonsurjective.

Proof. Let A∗ be the φ-elliptic free factor system. Then, by construction and injectivity of

φ, A∗ is nontrivial if and only if φ has a nontrivial fixed free factor system. The first

equivalence then follows from Theorem 3.1.

The forward direction in the second equivalence is the fact that the elliptic free factor

system of an automorphism is {F}. For the backward direction. Suppose A∗ = {F}. By

construction of A∗ and injectivity of φ, the maximal φ-fixed free factor system A is

nontrivial. So A = {F} by Lemma 3.5 and φ is an automorphism.
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4 — Interlude —

Let us take a short moment to summarize the previous two sections and how they will

relate to the next two sections. We will end the interlude with three useful examples.

In the previous section, we considered pairs of free factor systems A ≺ {F} where we

only varied A until we found an invariant free factor system with unique properties with

respect to an injective endomorphism φ : F → F , e.g., the unique maximal φ-fixed free

factor system. The main tools we used were bounded cancellation and the fact Stallings

graphs S(φk(F )) have arbitrarily long natural edges (Lemma 2.2).

The whole discussion was done in terms of marked graphs (Γ, α) and Stallings graphs

S(φk(A)) that come with immersions into the base graph Γ. On the other hand, we could

have equivalently done everything in terms of F -trees T , i.e., simplicial trees T with a free

minimal F -action α : F → Isom(T ), and φk(A)-forests that come with equivariant

embeddings into the ambient tree T . Taking universal covers gives the translation from the

graph-setting to the tree-setting while taking quotients by deck transformations gives the

translation back.

In the next section, we will consider more general pairs of invariant free factor systems

A ≺ B where A is more or less fixed/understood and there is no free factor system strictly

between the two in the poset of invariant free factor systems. This discussion will be done

in terms of forests T∗ with minimal B-actions whose edge-stabilizers are trivial. We shall

distinguish A by having its conjugates in B be the nontrivial point stabilizers under the

B-actions and we call these (B,A)-actions. In lieu of Stallings graphs S(φk(B)), we will be

looking at minimal subforests T∗(φ
k(B)) in an ambient forest T∗. The main objective of the

next section is to define relative representatives and give a relative version of bounded

cancellation and Lemma 2.2. These relativizations will be the main tools for understanding

relative dynamics.

We now give examples to illustrate the constructions from the previous section and
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motivate the relative setting in the next sections. Let F = F (a, b) be the free group on two

generators and φ, ϕ, ψ : F → F be injective endomorphisms given by

φ : (a, b) 7→ (ab, ba), ϕ : (a, b) 7→ (a, bab−1), and ψ : (a, b) 7→ (a, abab).

The standard rose is the marked rose (R,α) such that ‖a‖α = ‖b‖α = 1; it will be

graphically represented by a rose with two oriented petals labelled by a and b respectively.

A Stallings graph S with respect to the standard rose along with its corresponding

immersion ι : S → R are graphically represented as R-digraphs, i.e., S will be an oriented

graph whose oriented edges are labelled by a or b and no two a- or b-edges share an origin

as shown in the following figure.

S(φ(F )) S(φ2(F )) S(φ3(F ))

Figure 2: Stallings graphs S(φk(F )) with respect to the standard rose for k = 1, 2, 3.

The Stallings graphs S(φk(F )) are roses for all k ≥ 1 and each petal doubles in size

with each iteration. Since φ is injective, we may consider S(φk(F )) as marked roses

(Γk, αk) for k ≥ 1, and forgetting the bivalent vertices in Γk, we recover the standard rose.

So topologically, the marked roses (Γk, αk) are (equivalent to) the standard rose and this is

equivalent to φ having a topological representative defined on the standard rose that is an

immersion [9, Lemma 3.2]. Indeed, the obvious map on the standard rose is an immersion.

Remembering the bivalent vertices in Γk again, the fact that the petals of Γk double in

size with each iteration implies φ is in fact induced by an expanding immersion, which in

turn implies φ has no fixed nontrivial free factor system. We shall see later (Corollary 6.6)

that the converse holds as well: if an injective endomorphism has no fixed nontrivial free

factor system then it is induced by an expanding graph immersion.
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S(ϕ(F ))

S(ϕ2(F ))

S(ϕ3(F ))

Figure 3: Stallings graphs S(ϕk(F )) for k = 1, 2, 3.

The Stallings graphs S(ϕk(F )) are barbells for all k ≥ 1, the middle bars roughly

double in length with each iteration, and the embedded loops are labelled by a. Considering

the graphs as marked barbells (Bk, βk) for k ≥ 1 and forgetting the bivalent vertices in Bk,

we get the standard barbell (B, β), i.e., the barbell formed by expanding the vertex of the

standard rose to a separating edge. So topologically, the marked barbells (Bk, βk) are the

standard barbell and φ is induced by an immersion g : B → B of the standard barbell.

Remembering the bivalent vertices in Bk, the fact that all the barbells Bk have a loop

labelled by a implies [a] has an infinite ϕ-tail. Hence, the immersion g is not expanding,

the maximal ϕ-fixed free factor system is Aϕ = {〈a〉}, and the ϕ-elliptic free factor system

is A∗ϕ = {〈a〉, 〈b〉}. However, if we lift g to the universal cover g̃ : B̃ → B̃ and then collapse

all translates of axes of a and b in B̃, then we get an expanding immersion ḡ : T → T on an

(F,A∗ϕ)-tree T where every edge doubles in length.

Finally, the Stallings graphs S(ψk(F )) are roses for all k ≥ 1 where one petal roughly

doubles in length with each iteration and another is labelled by a. Unlike the previous two

examples, the corresponding marked roses are all distinct for k ≥ 1 due to the folding

occuring at each iteration. In particular, ψ cannot be induced by a graph immersion! But

the fact the marked roses all have a petal labelled by a implies [a] has an infinite ψ-tail. In
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S(ψ(F )) S(ψ2(F ))

Figure 4: Stallings graphs S(ψk(F )) for k = 1, 2.

this case, the maximal ψ-fixed free factor system and the ψ-elliptic free factor system are

Aψ = A∗ψ = {〈a〉}. Despite ψ not being induced by an immersion, there is a topological

representative h : R→ R defined on the standard rose such that collapsing the translates

of the axis of a in the universal cover R̃ induces an expanding immersion h̄ : Y → Y on an

(F,A∗ψ)-tree Y where every edge doubles in length.

The main result of the next two sections is that this construction will always produce

expanding immersions: any nonsurjective injective endomorphism of a free group has a

topological representative f : Γ→ Γ such that collapsing the translates of axes in Γ̃ of the

elliptic free factor system will induce an expanding immersion f̄ : T → T on a tree T .
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5 Relative representatives

This section defines relative representatives that will be the basis for inductively studying

dynamical properties of free group endomorphisms. For the whole section, we suppose

φ : F → F is an injective endomorphism and φ−1 · A = A, i.e, A is a φ-invariant proper

free factor system such that there is no free factor system A′ � A for which A supports

φ(A′); e.g., consider an injective-nonsurjective φ and its elliptic free factor system.

An (F,A)-tree is a simplicial tree T with no bivalent vertices along with a minimal

F -action by isometries whose edge stabilizers are trivial and point stabilizers are trivial or

conjugates of the free factors in A. Any given (F,A)-tree endowed with the combinatorial

metric has an associated length function lT : F → R. Precisely, any isometry of a simplicial

tree is either elliptic (fixes a point) or loxodromic (preserves an axis of least displacement).

If g ∈ F is elliptic, then lT (g) = 0; otherwise, lT (g) is the translation distance of g acting on

its axis. As this will be relevant in the next section, note that an (F, {F})-tree is a point.

For any (F,A)-tree T , the condition φ−1 · A = A implies that loxodromic elements in F

have loxodromic φ-images. Let T and T ′ be (F,A)- and (F ′,A′)-trees respectively and

ψ : F → F ′ be an injective homomorphism such that ψ−1 · A′ = A. A graph map

f : T → T ′ is ψ-equivariant if f(g · x) = ψ(g) · f(x) for all g ∈ F and x ∈ T . The first

step is to establish the bounded cancellation lemma for trees.

Lemma 5.1 (Bounded Cancellation). Let T and T ′ be (F,A)- and (F ′,A′)-trees

respectively and ψ : F → F ′ be an injective homomorphism such that ψ−1 · A′ = A. If

g : T → T ′ is a ψ-equivariant graph map, then there is a constant C(g) such that for every

natural-edge-path decomposition p1 · p2 of an immersed path in T , the edge-path

[g(p1)] · [g(p2)] is contained in the C(g)-neighborhood of [g(p1) · g(p2)].

Proof. The proof is exactly the same as before. The map g factors as an equivariant

pretrivial edge collapse and subdivision, a composition of r ≥ 0 equivariant folds, and an

equivariant isometric embedding. We may choose C(g) = r.
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More generally, we want to consider pairs A ≺ B of φ-invariant free factor systems. A

(B,A)-forest T∗ is a forest whose components are (Bi,Ai)-trees Ti for each free factor

Bi ∈ B, where Ai is either the trivial free factor system or the nonempty maximal subset of

A supported by {Bi}; this is essentially the relative analogue of B-marked graphs. Let

σ : {1, . . . l} → {1, . . . l} be the function corresponding to the φ-invariance of B and

φ|B = {φi : Bi → Bσ(i)} be a restriction of φ. An A-relative representative for φ|B is a

map f∗ : T∗ → T∗ whose restrictions to components are φi-equivariant graph maps

fi : Ti → Tσ(i) with no pretrivial edges. Additionally, we shall say the relative representative

is minimal if it has no orbit-closed invariant subforests with bounded components.

Let T∗ be a (B,A)-forest and f∗ : T∗ → T∗ be a A-relative representative for φ|B. For

all k ≥ 1, set T∗(φ
k(B)) ⊂ T∗ to be the minimal subforest for φk(B); these subforests are

the relative analogues of Stallings graphs. We will assume the minimal subforests

T∗(φ
k(B)) inherit their simplicial structure from the ambient forest T∗ and so they might

have bivalent vertices unlike T∗. For a graph of groups decomposition with bivalent

vertices, branch points are vertices that are images of branch points of the Bass-Serre

tree and natural edges are images of natural edges of the tree.

For any k ≥ 1, let f∗,k : T∗(φ
k(B))→ T∗ be the restriction of f∗ to T∗,k and then replace

it with an equivariantly homotopic map T∗(φ
k(B))→ T∗(φ

k(B)) that is induced by the

deformation retraction of f∗,k(T∗(φ
k(B))) to T∗(φ

k(B)), which we suggestively call the

(k-th) homotopy restriction of f∗. Note that if X ⊂ T∗(φ
k(B)) is an axis such that

f∗|X is an immersion, then f∗,k|X is still an immersion.

These homotopy restrictions are the relative analogues of homotopy lifts. As before,

using an equivariant (tightening) homotopy supported in the interior of natural edges, we

replace f∗,k : T∗(φ
k(B))→ T∗(φ

k(B)) with a homotopic map that maps any natural edge to

either a vertex or an immersed path and has Lipschitz and cancellation constants K(f∗)

and C(f∗). Once again, if X ⊂ T∗(φ
k(B)) is an axis such that f∗,k|X is an immersion before

tightening, then it is still an immersion after tightening. The proof of the following lemma
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is also almost the same as that of Lemma 2.6.

Lemma 5.2. Let f∗ : T∗ → T∗ be an A-relative representative for φ|B. Then for any k ≥ 1,

if f∗,k : T∗(φ
k(B))→ T∗(φ

k(B)) is a homotopy restriction of f∗ with C(f∗,k) = C(f∗), then

f∗,k maps branch points to the C(f∗)-neighborhood of branch points.

Proof. Set C = C(f∗,k) = C(f∗) and let ν be a bivalent vertex in T∗(φ
k(B)) whose distance

to the nearest branch point is greater than C. In particular, ν has a trivial stabilizer. We

denote by ε1, ε2 the 2 distinct directions at ν oriented away from the vertex. Suppose v is a

branch point of T∗(φ
k(B)) such that f∗,k(v) = ν. So v has a trivial stabilizer under the

action of φk(B). Choose 3 distinct directions at v: e1, e2, and e3. Let p12 be an embedded

path in T∗(φ
k(B)) that starts with e1 and ends with a translate ē2. Since v has a trivial

stabilizer, the path determines a unique loxodromic element g12 in φk(B) with axis a12 such

that p12 is a fundamental domain of the axis under the translation action of g12. Without

loss of generality, [f∗,k(p12)] starts with ε1.

If [f∗,k(p12)] ends with the translate φ(g12)ε̄1, then [f∗(p12)] = µ · ρ · (φ(g12)µ̄), where µ

is an extension of ε1 to an embedded path from ν to the axis of φ(g12) and ρ is a

fundamental domain of the axis of φ(g12). By assumption, µ is longer than C. Decompose

the axis a12 = a− · a+ at v, then [f∗,k(a−)] · [f∗,k(a+)] has µ̄ · µ as a subpath, violating

bounded cancellation. The remaining cases are handled similarly. Upon ruling out all

cases, we conclude that no branch point v of T∗(φ
k(B)) is mapped to ν.

This lemma allows us to replace the current homotopy restriction with an equivariantly

homotopic map f∗,k that maps branch points to branch points, maps any natural edge to a

branch point or an immersed path, and has Lipschitz and cancellation constants

K(f∗,k) = K(f∗) + C(f∗) and C(f∗,k) = 2C(f∗) respectively. If X ⊂ T∗(φ
k(B)) is an axis

and f∗,k|X is an immersion before the homotopy, then f∗,k(X) is an immersed path after

the homotopy; the restriction f∗,k|X may fail to be an immersion due to pretrivial edges.
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Collapsing a maximal (orbit-closed) f∗,k-invariant subforest of T∗(φ
k(B)) with bounded

components and forgetting the bivalent vertices induces a minimal φk(A)-relative

representative g∗,k : Y∗,k → Y∗,k for φ|φk(B) defined on a (φk(B), φk(A))-forest Y∗,k. Note

that the collapsed maximal subforest contains the pretrivial edges as φ−1 · A = A. Since

g∗,k is induced by equivariantly collapsing a forest and forgetting bivalent vertices, we may

use K(g∗,k) = K(f∗) + C(f∗), C(g∗,k) = 2C(f∗), and lY∗,k ≤ lT∗|φk(B). If X is an axis of b in

T∗(φ
k(B)) and f∗,k|X is an immersion modulo pretrivial edges, then g∗,k|X′ is an immersion,

where X ′ is the axis of b in Y∗,k. The following summary is an analogue of Proposition 2.7.

Lemma 5.3. Let f∗ : T∗ → T∗ be an A-relative representative for φ|B and k ≥ 1. There is

a (φk(B), φk(A))-forest Y∗,k (with no bivalent vertices) and a minimal φk(A)-relative

representative g∗,k : Y∗,k → Y∗,k for φ|φk(B) such that:

1. lY∗,k : φk(B)→ R is dominated by the restriction lT∗|φk(B) = lT∗(φk(B));

2. K(g∗,k) = K(f∗) + C(f∗) and C(g∗,k) = 2C(f∗).

3. If f∗ restricted to the axes of some conjugacy class [b] in φk(B) is an immersion, then

g∗,k restricted to the axes of [b] is also an immersion.

For an A-relative representative f∗ for φ|B, we define the transition matrix A(f∗).

Let A(f∗) be a nonnegative integer square matrix whose rows and columns are indexed by

the orbits of edges in T∗; the entry of A(f∗) in row-i and column-j, A(f∗)(i, j), is given by

the number of translates of ei that are contained in the immersed edge-path f∗(ej), where

ei is a orbit representative for the i-th orbit of edges. An A-relative representative f∗ is

irreducible if the matrix A(f∗) is irreducible, i.e., for any pair (i, j), there is a positive

integer nij such that A(f∗)
nij(i, j) > 0. In this case, the stretch factor of f∗, λ(f∗) ≥ 1, is

the Perron-Frobenius eigenvalue of A(f∗). An irreducible A-relative representative is

expanding if λ(f∗) > 1. Note that irreducible A-relative representatives are minimal.
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We say φ|B is irreducible relative to A if there is no φ-invariant free factor system C

such that A ≺ C ≺ B. If A is trivial and B = {F}, then we recover the definition of φ’s

irreducibility. The next lemma is the most useful property of an irreducible restriction for

our purposes.

Lemma 5.4. If φ|B is irreducible relative to A, then every minimal A-relative

representative for φ|B is irreducible.

Proof. Suppose some minimal A-relative representative for φ|B has a reducible transition

matrix; in particular, it has an invariant B-equivariant proper subforest (with unbounded

components) that determines a φ-invariant free factor system C such that A ≺ C ≺ B. So

φ|B is not irreducible relative to A.

Remark. Bestvina-Handel give the absolute version of this property as the definition of

irreducibility and then prove that it is equivalent to the definition of irreducibility given in

this dissertation [3, Lemma 1.16]. The relative version of this equivalence holds as well but

we will not prove it as it is not needed.

Bestvina-Handel used the next proposition to construct train tracks [3, Theorem 1.7].

Proposition 5.5. If φ|B is irreducible relative to A, then there is an irreducible A-relative

representative f∗ : T∗ → T∗ for φ|B with the minimal stretch factor, i.e., if f ′∗ : T ′∗ → T ′∗ is

an irreducible A-relative representative for φ|B, then λ(f ′∗) ≥ λ(f∗).

The minimal stretch factor will be denoted by λ(φ,B,A).

Proof. Let g∗ : Y∗ → Y∗ be a minimal A-relative representative for φ|B and suppose φ|B is

irreducible relative to A. Then g∗ is an irreducible A-relative representative by Lemma 5.4

with stretch factor λ(g∗). By the lack on bivalent vertices, any irreducible A-relative

representative has a transition matrix of size ≤ N = 3 · rank(F )− 3. Suppose B is an

irreducible integer square matrix with Perron-Frobenius eigenvalue λ(B) ≤ λ(g∗). Then B
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has a positive right eigenvector ~v associated with λ(B). So for all k ≥ 1, Bk has right

eigenvector ~v associated with eigenvalue λ(B)k. Assuming the smallest entry of ~v is 1

(rescale if necessary), we get that the minimum row-sum of Bk is at most λ(B)k for any

k ≥ 1. If B has no more than N rows, then the largest entry of B is at most the minimum

row-sum of BN !, which we know is at most λ(B)N ! ≤ λ(g∗)
N !. So there are finitely many

irreducible integer square matrices with size ≤ N and Perron-Frobenius eigenvalue ≤ λ(g∗).

Thus, there is a finite set of stretch factors ≤ λ(g∗) for irreducible A-relative

representatives for φ|B. In particular, there is an irreducible A-relative representative

f∗ : T∗ → T∗ for φ|B with the minimal stretch factor.

Bestvina-Handel’s work [3] can be adapted to show that an irreducible A-relative

representative for φ|B with the minimal stretch factor is in fact an A-relative train track

(See Appendix C) and, conversely, bounded cancellation implies all irreducible A-relative

train tracks for φ|B have the minimal stretch factor. We do not prove this converse as it is

not needed. The next lemma is an application of train track theory that will be invoked

once, in the second half of the proof of Proposition 5.7.

Lemma 5.6. If φ|B is irreducible relative to A and f∗ : T∗ → T∗ is an irreducible

A-relative representative for φ|B with the minimal stretch factor, then there is an element g

in B with an axis ag such that the restriction of fk∗ to ag is an immersion for all k ≥ 1.

Such an axis will be known as an f∗-legal axis.

Proof. If λ(f∗) = 1, then f∗ is a simplicial embedding and we are done. So we may assume

λ(f∗) > 1. By minimality of its stretch factor, f∗ is an expanding irreducible A-relative

train track for φ|B (Theorem C.1), i.e., for any edge e in T∗, f
k
∗ (e) is an expanding

immersed path for all k ≥ 1. A 2-edge path e1 · e2 is f∗-legal if it is a translate of a subpath

of fk∗ (e) for some edge e and integer k ≥ 1. By irreducibility of f∗, every edge e is

contained in a 3-edge path e− · e · e+ whose 2-edge subpaths are both f∗-legal. This means
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we can form an axis ag whose 2-edge subpaths are all f∗-legal. By the train track property,

the restriction of fk∗ to ag is an immersion for all k ≥ 1.

The main tools from Section 2 that were used in the previous section were Lemma 2.2,

bounded cancellation, and Proposition 2.7. The relative analogues of the latter two have

been established in this section. We now state the main technical result of this section, an

analogue of Lemma 2.2 — analogous in the sense that both give sufficient conditions for

iterated subgroup graphs to have arbitrarily long natural edges.

Proposition 5.7. Let A ≺ B be a chain of φ-invariant free factor systems that support the

φ-elliptic free factor system. If φ|B is irreducible relative to A and λ(φ,B,A) > 1, then the

length of the longest natural edge in T∗(φ
k(B)) is unbounded as k →∞.

Before starting the proof, we will first describe the (absolute) vertex blow-up

construction. Let f∗ : T∗ → T∗ be a A-relative representative for φ|B defined on some

(B,A)-forest T∗. Replace the free factors of Ai ⊂ A with conjugates if necessary and

assume they are subgroups of Bi ∈ B. Fix some A-marked roses (RA, αA) and a topological

representative fA : RA → RA for φ|A. Define ΓB to be the graph formed by identifying the

appropriate vertices of the graph of groups B\T∗ with the basepoints of roses (RA, αA). If

c : RA → ΓB is the inclusion map, then Bass-Serre theory gives markings

αB = {αi : Bi → π1(Γi)} such that π1(c) ◦ αA = (αB)|A. Thus, (ΓB, αB) is a B-marked

graph. This construction and, in general any pair of graphs Γ′A ⊂ Γ′B with collections of

markings α′A, α
′
B such that π1(c′) ◦ α′A = (α′B)|A will be referred to as (vertex) blow-up.

We note that the Stallings graph S(φk(B)) with respect to (ΓB, αB), as a φk(B)-marked

graph, is a blow-up of φk(B)\T∗(φk(B)): let ι : S(φk(B))→ ΓB be the Stallings graph’s

immersion and SA ⊂ S(φk(B)) be the core of the subgraph ι−1
B (RA). Since φ−1 · A = A,

SA = S(φk(A)) is marked by an isomorphism α′A : φk(A)→ π1(SA) and α′A is the

restriction of the marking α′B : φk(B)→ π1(S(φk(B))) to φk(A) with respect to the

inclusion SA ⊂ S(φk(B)). Therefore, S(φk(B)) is also a vertex blow-up of φk(B)\Y∗,k. The
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noncontractible components of the subgraph ι−1
B (RA) will be known as the lower stratum

and the rest of the graph as the top stratum.

Construct a topological representative fB : ΓB → ΓB for φ|B that agrees with fA on the

A-marked roses RA and induces f∗ on the Bass-Serre forest T∗ upon collapsing the roses

RA. For any k ≥ 1, we let g∗,k : Y∗,k → Y∗,k be the minimal φk(A)-relative representatives

for φ|φk(B) given by Lemma 5.3 and f̄k : S(φk(B))→ S(φk(B)) be the homotopy lift of fB

given by Proposition 2.7. By Lemma 5.3(3), if an element b in B has an f∗-legal axis, then

φk(b) has a g∗,k-legal axis. It can be arranged for S(φk(A)) ⊂ S(φk(B)) to be f̄k-invariant

and f̄k to induce g∗,k on the (φk(B), φk(A))-forest Y∗,k upon collapsing a maximal invariant

proper subgraph containing S(φk(A)) and forgetting bivalent vertices.

Now for the idea behind the proof. By irreducibility of the restriction φ|B, we may

assume the map g∗,k is an expanding irreducible representative for φ|φk(B). Suppose the

forests T∗(φ
k(B)) had uniformly bounded natural edges. Then there is a sequence of

loxodromic elements bk in φk(B) with uniformly bounded translation length lT∗(gk). Now

suppose that the vertex blow-up S(φk(B)) had natural edges with aribtrarily long top

stratum subpaths. Bounded cancellation, the fact f̄k induces g∗,k, and the irreducibility of

g∗,k imply g∗,k is an expanding irreducible immersion. However, this contradicts the first

assumption since lY∗,k ≤ lT∗(φk(B)). So the second supposition is false and the natural edges

of S(φk(B)) have top stratum subpaths with uniformly bounded length. Using the

Lipschitz property, expanding irreducibility of g∗,k, and existence of a g∗,k-legal axis (train

track theory), we find uniformly bounded lower stratum paths in S(φk(B)) connecting the

origin of any oriented top stratum subpath of a natural edge to another top stratum

subpath of a natural edge. Consequently, we are able to build uniformly bounded

immersed loops in S(φk(B)) that contain top stratum subpaths. This implies some

loxodromic conjugacy class in B has an infinite φ-tail, which contradicts Proposition 3.3:

any conjugacy class with an infinite φ-tail is elliptic. So the first supposition is false too

and the forests T∗(φ
k(B)) have arbitrarily long natural edges for k ≥ 1.
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Proof of Proposition 5.7. Suppose A ≺ B are φ-invariant free factor systems that supports

the φ-elliptic free factor system, φ|B is irreducible relative to A, fA : RA → RA is a

topological representative for φ|A defined on A-marked roses (RA, αA), and f∗ : T∗ → T∗ is

an expanding irreducible A-relative representative for φ|B with the minimal stretch factor

λ(f∗) > 1 (Proposition 5.5). By Lemma 5.6, there is an element b in B with an f∗-legal

axis. Set (ΓB, αB) to be the vertex blow-up of B\T∗ with respect to the A-marked roses

(RA, αA). The discussion preceding the proof gives minimal φk(A)-relative representatives

g∗,k : Y∗,k → Y∗,k for φ|φk(B) and homotopy lifts f̄k : S(φk(B))→ S(φk(B)) of a topological

representative fB : ΓB → ΓB for φ|B which have these properties: for all k ≥ 1,

1. lY∗,k : φk(B)→ R is dominated by the restrictions lT∗|φk(B) = lT∗(φk(B));

2. φk(b) has a g∗,k-legal axis;

3. f̄k maps branch points to branch points and any natural edge to a branch point or an

immersed path;

4. K = K(f̄k) = K(fB) + C(fB) and C = C(f̄k) = 2C(fB);

5. f̄k induces g∗,k on Y∗,k upon collapsing RA ⊂ ΓB.

The collection φ|φk(B) is conjugate to φ|B by injectivity of φ. So φ|φk(B) is irreducible

relative to φk(A) and λ(f∗) is the minimal stretch factor for φ|φk(B) relative to φk(A).

Furthermore, the minimal φk(A)-relative representatives g∗,k are irreducible (Lemma 5.4)

and λ(g∗,k) ≥ λ(f∗) > 1 by the minimality of λ(f∗).

Suppose, for a contradiction, there is a bound L ≥ 1 such that all natural edges in

T∗(φ
k(B)) are shorter than L for all k ≥ 1. Then, for all k ≥ 1, there is a loxodromic

element bk in φk(B) such that lT∗(bk) ≤ (3N − 3)L, where N = 3 · rank(F )− 3. Every edge

E in Γ∗,k = φk(B)\Y∗,k lifts to a φk(B)-orbit of a natural edge E ′ in φk(B)\T∗(φk(B)),

which corresponds to a top stratum subpath Ē of a natural edge in S(φk(B)).
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Claim. The subpath Ē in S(φk(B)) has length ≤ C·KN−1 for all edges E in Γ∗,k and k ≥ 1.

Suppose, the graph Γ∗,k has an edge E0 whose corresponding subpath Ē0 in S(φk(B)) is

longer than C ·KN−1 for some k ≥ 1. As we did in the proof of Theorem 3.1, we construct

the set of long edges E by looking at all the edges of Γ∗,k that are eventually mapped over

E0. Here, an edge E1 in Γ∗,k mapped over E0 if there are lifts E ′1 and E ′0 in Y∗,k such that

g∗,k maps E ′1 over E ′0. Since f̄k : S(φk(B))→ S(φk(B)) is K-Lipschitz and it induces g∗,k on

Y∗,k, each long edge in Γ∗,k corresponds to a top statrum subpath in S(φk(B)) longer than

C. Since g∗,k is an irreducible φk(A)-relative representative, all edges eventually map over

E0 and hence are long. The long natural edges of S(φk(B)) will be the natural edges in

S(φk(B)) containing top stratum subpaths.

Suppose an edge E of Γ∗,k had a lift E ′ in Y∗,k that is the initial segment of the

g∗,k-image of two edges that share an initial vertex. Then the top stratum subpath Ē is in

a long natural edge of S(φk(B)) that is the initial segment of f̄k-images of natural edges

that share an initial vertex; this violates bounded cancellation since long natural edges of

S(φk(B)) longer than C = C(f̄k). Hence, there is no folding in g∗,k, i.e., g∗,k is an

expanding irreducible φk(A)-relative immersion. We may now find an m ≥ 1 such that all

loxodromic elements b in φk(B) have lY∗,k(φm(b)) > (3N − 3)L. Since lY∗,k is dominated by

lT∗|φk(B), we get that lT∗(b
′) > (3N − 3)L for all loxodromic elements b′ in φk+m(B). This

contradicts the assumption that lT∗(bk+m) ≤ (3N − 3)L for some loxodromic bk+m in

φk+m(B). So the top stratum subpath Ē in S(φk(B)) has length ≤ C ·KN−1 for all natural

edges E of Γ∗,k and k ≥ 1. This ends the proof of the claim.

Next, we prove the existence of lower stratum paths in S(φk(B)) with uniformly

bounded lengths connecting top stratum paths. Suppose E0, E1, and E2 are edges of Γ∗,k

with lifts E ′0, E
′
1, and E ′2 in Y∗,k such that E ′1 · E ′2 is a subpath of the immersed path

g∗,k(E
′
0). Then Ē1 · P12 · Ē2 is a subpath of immersed path f̄k(Ē0) for some lower stratum

path P12 in S(φk(B)). Since Ē0 has length bounded by C ·KN−1 and f̄k is K-Lipschitz, the
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path P12 has length bounded by C ·KN . We say the 2-edge path E1 · E2 in Γ∗,k has a

nondegenerate turn bounded by C ·KN .

As g∗,k is an expanding irreducible relative representative that has a legal axis (this is

part of the argument that invokes train track theory), every edge E ′ in Y∗,k can be

extended to an immersed 3-edge path E ′− · E ′ · E ′+ that is a translate of a subpath of

gn∗,k(E
′) and n ≤ 2·N !. In particular, any edge in Γ∗,k can be extended to a 3-edge path

whose 2-edge subpaths both have nondegenerate turns bounded by C ·KN−1 ·K2·N !, i.e.,

every top stratum subpath Ē can be extended to an immersed path Ē−·P−·Ē·P+·Ē+ with

top stratum subpaths Ē−, Ē+ and lower stratum paths P−, P+ with length bounded by

C ·KN−1 ·K2·N !.

Using this bound on lower stratum paths and the bound on top stratum subpaths

given by the claim, we can now form an immersed loop ρk in Γ∗,k with the properties:

1. ρk lifts to an axis in Y∗,k for some loxodromic conjugacy class [b′k];

2. ρk passes any edge of Γ∗,k at most twice and only takes short turns (including the

turn at the endpoint), which implies it has at most 2N edges and (short) turns; and

3. ρk corresponds to a loop in S(φk(B)) with length bounded by 2N ·C(1 +K2·N !)KN−1.

In summary, for each k ≥ 1, we find a loxodromic conjugacy class [b′k] in φk(B) with

αB-length bounded by a constant independent of k. As there are finitely many conjugacy

classes with αB-length bounded by any given constant, the sequence of conjugacy classes

([b′k])
∞
k=1 has a constant infinite subsequence. Thus, some loxodromic conjugacy class [b′]

has an infinite φ-tail supported in B. This is the contradiction that ends the proof — recall

that the free factor system A supports the maximal φ-fixed free factor system by hypothesis

and the latter supports all conjugacy classes with an infinite φ-tail (Proposition 3.3); on

the other hand, A does not support loxodromic conjugacy classes in B by definition.
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6 Relative immersions

The main result of this section is the existence of expanding immersions for nonsurjective

endomorphisms relative to their elliptic free factor systems.

Let φ : F → F be an injective endomorphism, A ≺ B be a pair of φ-invariant free

factor systems such that φ−1 · A = A, and φ|B : B → B be a restriction of φ to B. An

A-relative immersion for φ|B is an A-relative representative f∗ : T∗ → T∗ for φ|B that

is also an immersion. An A-relative immersion f∗ for φ|B is expanding if it is minimal

and every edge expands under f∗-iteration. Recall that a relative representative is minimal

if it has no orbit-closed invariant subforests with bounded components.

There will be two possible ways of obtaining a relative immersion for a relatively

irreducible restriction with the minimal stretch factor λ. If λ = 1, then an irreducible

representative with stretch factor λ is automatically an isometric immersion. The next

proposition shows how to construct an immersion when λ > 1. This construction is unique

to nonsurjective endomorphisms because we require that the restriction be irreducible

relative to a free factor system that supports the φ-elliptic free factor system — when φ is

an automorphism, the φ-elliptic free factor system is {F} and no such restriction exists.

Proposition 6.1. Let φ : F → F be injective and A ≺ B be a chain of φ-invariant free

factor systems that support the φ-elliptic free factor system. If φ|B is irreducible relative to

A and λ(φ,B,A) > 1, then there is an expanding irreducible A-relative immersion for φ|B.

Proof. Suppose φ : F → F is injective, A ≺ B are φ-invariant free factor systems that

supports the φ-elliptic free factor system, φ|B is irreducible relative to A, and f∗ : T∗ → T∗

is an expanding irreducible (B,A)-relative representative for φ|B with minimal stretch

factor λ(f∗) > 1. Set K = K(f∗) + C(f∗) and C = 2C(f∗). Recall that, for all k ≥ 1, there

is a homotopy restriction f∗,k : T∗(φ
k(B))→ T∗(φ

k(B)) that maps branch points to branch

points, maps any natural edge to a branch point or an immersed path, and has Lipschitz

and cancellation constants K(f∗,k) = K and C(f∗,k) = C.
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The first part of the proof proceeds as a relativized version of the proof of Theorem 3.1.

By Proposition 5.7, we may fix k � 0 such that the set of natural edges L0 in T∗(φ
k(B))

longer than C ·KN−1 is nonempty, where N = 3 · rank(F )− 3. Choose L to be the set of

all natural edges that eventually get mapped over those in L0 by f∗,k and call L the long

natural edges. As f∗,k is K-Lipschitz and there are at most N orbits of natural edges in

T∗(φ
k(B)), the long natural edges are longer that C. Injectivity of φ implies φ|φk(B) is

conjugate to φ|B. So φ|φk(B) is irreducible relative to φk(A), λ(f∗) is the minimal stretch

factor for φ|φk(B) relative to φk(A), and the short natural edges of T∗(φ
k(B)) form an

orbit-closed f∗,k-invariant subforest with bounded components.

Collapse a maximal f∗,k-invariant subforest of T∗(φ
k(B)) that has bounded components

and contains the short natural edges then forget the bivalent vertices; this induces a

minimal φk(A)-relative representative g∗,k : Y∗,k → Y∗,k for φ|φk(B). The map g∗,k is

irreducible φk(A)-relative representatives for φ|φk(B) (Lemma 5.4) and λ(g∗,k) ≥ λ(f∗) by

the minimality of λ(f∗). So g∗,k is an expanding irreducible φk(A)-relative representative.

Since the lifts in T∗(φ
k(B)) of all edges in Y∗,k are longer than the cancellation constant

C, there is no folding in g∗,k — otherwise, there would be folding in f∗,k identifying paths

longer than its cancellation constant, absurd. Thus, g∗,k is an expanding irreducible

φk(A)-relative immersion for φ|φk(B). By injectivity of φ, we can view Y∗,k as a (B,A)-forest

and g∗,k as an expanding irreducible A-relative immersion for φ|B.

We are now ready to state and prove our base case for the construction. In light of the

previous proposition, the point is that a restriction φ|B that is irreducible relative to the

φ-elliptic free factor system A will satisfy λ(φ,B,A) > 1.

Proposition 6.2. Let φ : F → F be injective and A ≺ B be a chain of φ-invariant free

factor systems where A is the φ-elliptic free factor system. If φ|B is irreducible relative to

A, then there is an expanding irreducible A-relative immersion for φ|B.

Proof. Let φ : F → F be injective and φ|B be irreducible relative to the φ-elliptic free
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factor system A. Then there is an irreducible A-relative representative f∗ : T∗ → T∗ for φ|B

with stretch factor λ(f∗) = λ(φ,B,A) ≥ 1 (Proposition 5.5). We say Bi ∈ B is loxodromic

if Ti ∈ T∗ is not a point, i.e., Bi contains a loxodromic element; similarly, the component

Bi\Ti of the graph of groups B\T∗ is loxodromic if Bi is loxodromic. If λ(f∗) = 1, then the

induced map on the loxodromic components of B\T∗ is a graph isomorphism. So for some

k ≥ 1, if A ∈ A is supported by a loxodromic B ∈ B, then A is φk-invariant. By

Proposition 3.4 and Lemma 3.5, the set of all A ∈ A supported by loxodromic free factors

of B form a φ-fixed free factor subsystem. As f∗ induces a graph isomorphism on the

loxodromic components of B\T∗ and these components’ set of vertex groups is a φ-fixed

free factor system, we get that f∗ is surjective when restricted to the unbounded

components of the forest T∗ and the loxodromic free factors of B form a φ-fixed free factor

system. This is a contradiction since φ-periodic free factors are elliptic (Proposition 3.3).

Therefore, λ(f∗) > 1 and the result follows from Proposition 6.1.

Specializing this proposition to the case where φ is irreducible and nonsurjective gives

an alternate proof to a result due to Reynolds.

Corollary 6.3 ([12, Corollary 3.23]). If φ : F → F is irreducible and nonsurjective, then φ

is induced by an expanding irreducible graph immersion.

The proof of Proposition 6.2 given here can be thought of as a relativization of our

previous proof [9, Theorem 4.5] of Reynolds’ result but it does have one crucial difference:

there is no mention here of limit trees in the compactification of outer space.

The next proposition is the induction step for our construction.

Proposition 6.4. Let φ : F → F be injective, A be the φ-elliptic free factor system, and

A ≺ B ≺ C be a chain of φ-invariant free factor systems. If there is an expanding

A-relative immersion for φ|B and a B-relative immersion for φ|C, then there is an

expanding A-relative immersion for φ|C.
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Although the proof gets a bit technical, the idea is rather simple: a B-relative

immersion for φ|C (top stratum) and an expanding A-relative immersion for φ|B (lower

stratum) can be patched together via a (relative) vertex blow-up to get a minimal

A-relative representative g∗ : Y∗ → Y∗ whose only possible folds would have to happen

between a top and lower stratum edge of Y∗. As the restriction of g∗ to the lower stratum is

an expanding immersion, we may assume the edges in the lower stratum are longer than

the cancellation constant. This means no lower statum edge is identified by a fold and so

no folding in g∗ is possible. Thus, g∗ is a minimal A-relative immersion for φ|C, which will

be expanding if A is the φ-elliptic free factor system.

Let us now describe the vertex blow-up of a (C,B)-forest TC with respect to a

(B,A)-forest TB. For any free factor Ci ∈ C, let Bi the maximal subset of B that is

supported by Ci. Replace the free factors of B with conjugates if necessary and assume the

free factors B ∈ Bi are subgroups of the free factors Ci ∈ C. Identifying the appropriate

vertices of the graph of groups C\TC with basepoints on the graph of groups B\TB results

in a graph of groups decomposition for C whose Bass-Serre forest T∗ is a (C,A)-forest that

contains TB as a subforest.

Proof of Proposition 6.4. Let φ : F → F be injective, B ≺ C be a chain of φ-invariant free

factor systems that support the φ-elliptic free factor system A. Suppose fB : TB → TB is an

expanding A-relative immersion for φ|B and fC : TC → TC is a B-relative immersion for φ|C

then define T∗ to be the vertex blow-up of TC with respect to TB. The edges of T∗ are of

two types: the lower stratum, which are edges that are contained in the C-orbit of TB, and

the top stratum, which are the remaining edges.

Let f∗ : T∗ → T∗ be a minimal A-relative representative for φ|C that agrees with fB on

TB and induces fC upon collapsing the lower stratum. For all k ≥ 1, set T∗(φ
k(C)) and

T∗(φ
k(B)) be the minimal subforests of T∗ for φk(C) and φk(B) respectively. Similarly,

define the minimal subforest TB(φk(B)) ⊂ TB. By the inclusion of TB in T∗, we get an
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isometric identification of T∗(φ
k(B)) with TB(φk(B)). However, we want to consider these

two forests differently with respect to the simplicial structure of branch points and natural

edges. In particular, there may be branch points of T∗(φ
k(C)) that are bivalent when

considered as points on the subforest T∗(φ
k(B)). So by “natural edges of T∗(φ

k(B))”, we

mean those inherited from the parent forest T∗(φ
k(C)); on the other hand, by “natural

edges of TB(φk(B))”, we do mean exactly that. Under the identification of the two forests,

the natural edges of T∗(φ
k(B)) partition any natural edge of TB(φk(B)) into at most 2X

segments, where X = rank(F )− 1.

Since fB : TB → TB is an A-relative immersion for φ|B, the restrictions of fB to

TB(φk(B)) are φk(A)-relative immersions fB,k : TB(φk(B))→ TB(φk(B)) for φ|φk(B) that are

conjugate to fB. As f∗ agrees with fB on TB, the restriction of f∗ to T∗(φ
k(B)) is exactly

fB,k for all k ≥ 1. Similarly define φk(B)-relative immersions fC,k : TC(φ
k(C))→ TC(φ

k(C))

for φ|φk(C) that are conjugate to fC. As f∗ induces fC upon collapsing the lower stratum,

any edges in f∗(T∗(φ
k(C))) but not T∗(φ

k(C)) must be in the lower stratum and the

restriction of f∗ to T∗(φ
k(C)) induces fC,k for all k ≥ 1 upon collapsing the lower stratum.

Applying the deformation retraction f∗(T∗(φ
k(C)))→ T∗(φ

k(C)) produces a homotopy

restriction f∗,k that still agrees with fB,k on T∗(φ
k(B)) and still induces fC,k. By

Lemma 5.2, we know that f∗,k maps branch points of T∗(φ
k(C)) to C(f∗)-neighborhoods of

branch points.

That the map f∗,k induces the immersion fC,k upon collapsing the lower stratum means

any branch point of T∗(φ
k(C)) that is not mapped to a branch point must be in the lower

stratum. By the same token, f∗,k agreeing with the immersion fB,k on T∗(φ
k(B)) means any

branch point of T∗(φ
k(B)) that is not mapped to a branch point must be a bivalent point in

TB(φk(B)). So we can apply a bounded homotopy to get a homotopy restriction

f∗,k : T∗(φ
k(C))→ T∗(φ

k(C)) that maps branch points to branch points, maps any natural

edge to a branch point or immersed path, still induces fC,k upon collapsing T∗(φ
k(B)), but

differs from fB,k on T∗(φ
k(B)) by a homotopy supported in the natural edges of TB(φk(B)).
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By the bound on the homotopy, K(f∗,k) = K(f∗) + C(f∗) and C(f∗,k) = 2C(f∗) can be

taken as the new Lipschitz and cancellation constants of f∗,k.

Since fB : TB → TB is an expanding A-relative immersion for φ|B, the minimal subforest

TB(φk(B)) is an fB-invariant subforest whose lengths of natural edges grows exponentially

with k for all k ≥ 1. So there is a k0 � 0 such that all natural edges of TB(φk(B)) are

longer than 2X ·C ·K3X−1 for all k ≥ k0. By the pigeonhole principle, each natural edge of

TB(φk(B)) contains a natural edge of T∗(φ
k(B)) longer than C ·K3X for all k ≥ k0. Let Gk

be the directed graph of natural edges of T∗(φ
k(B)) where a directed edge Ei → Ej

corresponds to f∗,k mapping Ei over Ej. Set S0 to be those natural eges with length ≤ C

and S to be those natural edges with directed path from S0 in Gk; these will be the short

natural edges. Since f∗,k is K-Lipschitz and the shortest path between any natural edges in

Gk has 3X natural edges, all the short natural edges have length ≤ C ·K3X−1. So the short

natural edges S form an orbit-closed f∗,k-invariant subforest of T∗(φ
k(B)) ⊂ T∗(φ

k(C)) with

bounded components as S does not cover any natural edge of TB(φk(B)).

Collapsing all translates in T∗(φ
k(C)) of the short natural edges in T∗(φ

k(B)) induces a

map g′∗,k : Y ′∗,k → Y ′∗,k with the same cancellation constant C(g′∗,k) = C. Now collapse the

pretrivial edges until the induced map g∗,k : Y∗,k → Y∗,k has none. The new map g∗,k still

induce the immersion fC,k upon collapsing the rest of the lower stratum and, as a result,

folding in g∗,k may only occur between initial segments of natural edges of Y∗,k whose

g∗,k-images are lower stratum natural edges. However, all natural edges in the lower

stratum of Y∗,k are longer than C by construction and so no folding in g∗,k is possible by

bounded cancellation, i.e., g∗,k is an immersion.

Collapsing a maximal invariant subforest with bounded components and forgetting

bivalent vertices if necessary, we may assume g∗,k : Y∗,k → Y∗,k is a minimal φk(A)-relative

immersion for φ|φk(C). By the injectivity of φ, the restrictions φ|φk(C) and φ|C are conjugate

and we can view g∗,k as a minimal A-relative immersion for φ|C. It remains to show that

every natural edge of Y∗,k expands under g∗,k-iteration.
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Suppose not, i.e., suppose there is a natural edge of Y∗,k whose g∗,k-iterates have

uniformly bounded length. Since g∗,k is minimal, the non-expanding edges in the graph of

groups C\Y∗,k contain fixed subgraph F that supports a loxodromic element. The subgraph

F is a free splitting of a φ-invariant free factor. Recall that the φ-elliptic free factor system

A decomposes as a union of the maximal φ-fixed free factor system and free factors that

eventually get mapped into this fixed system (Proposition 3.4 and Lemma 3.5). By

construction, the point stabilizers of Y∗,k are conjugates of A. So any vertex of the fixed

graph F is labelled by either the trivial group or a free factor of the maximal φ-fixed free

factor system. Thus F is a free splitting of a φ-fixed free factor system that supports some

loxodromic element. However, this contradicts Proposition 3.3 which states that all

φ-periodic free factors are supported by the maximal φ-fixed free factor system and hence

will be elliptic. Therefore, g∗,k is an expanding A-relative immersion for φ|C.

We are now ready to inductively construct expanding relative immersions.

Theorem 6.5. If φ : F → F is injective and nonsurjective, then there is an expanding

A-relative immersion for φ, where A is the φ-elliptic free factor system.

Proof. Suppose φ : F → F is injective but not surjective. By Lemma 3.6, the φ-elliptic free

factor system A is proper. The naive approach is to assume there exists a chain

A = B0 ≺ · · · ≺ Bn = {F} in the poset of φ-invariant free factor system such that the

restrictions φ|Bm+1
are irreducible relative to Bm for all m ≥ 1. This assumption is typical

when working with automorphisms. For each restriction φ|Bm+1
, if the minimal stretch

factor λ(φ,Bm+1,Bm) = 1, then there is automatically a Bm-relative immersion for φ|Bm+1
;

and if λ(φ,Bm+1,Bm) > 1, then there is an expanding Bm-relative immersion for φ|Bm+1
by

Proposition 6.1. In either case, there is a Bm-relative immersion for φ|Bm+1
. By

Proposition 6.2, λ(φ,B1,B0) > 1 and there is an expanding B0-relative immersion for φ|B1 .

By inductively patching these immersions together using Proposition 6.4, we get an

expanding B0-relative immersion for φ and we are done. Unfortunately, since φ is
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nonsurjective, it could be that no chain A = B0 ≺ · · · ≺ Bn = {F} satisfies the naive

assumption we made at the start. Recall that our definition of φ|Bm+1
being irreducible

relative to Bm presupposed φ−1 · Bm = Bm. Fortunately, this is a minor complication that

can be easily addressed. The proof follows the approach described above closely but uses a

chain with slightly weaker conditions on it.

We first construct a chain A = B0 ≺ · · · ≺ Bn = {F} in the poset of φ-invariant free

factor system that we will induct on. Let A ≺ B1 be a chain of φ-invariant free factor

systems such that φ|B1 is irreducible relative to A. Suppose Bm has been constructed for

some m ≥ 1 and let C � Bm be the maximal free factor system in the chain

Bm � φ−1 · Bm � φ−2 · Bm � · · · of φ-invariant free factor systems. If φ−1 · Bm = Bm = C,

then let Bm ≺ Bm+1 be a chain of φ-invariant free factor systems such that φ|Bm+1
is

irreducible relative to Bm. If Bm ≺ C, then let Bm ≺ · · · ≺ Bm+k = C be the chain of

φ-invariant free factor systems such that Bm+i = φ−i · Bm for 1 ≤ i ≤ k.

We proceed by inducting on the resulting chain between A and {F}. For the base case,

φ|B1 is irreducible relative to A; therefore, there is an expanding A-relative immersion for

φ|B1 by Proposition 6.2. For our induction hypothesis, suppose that there is an expanding

A-relative immersion fBm : TBm → TBm for φ|Bm for some m ≥ 1. By our construction of

the chain, either φ|Bm+1
is irreducible relative to B or φ(Bm+1) is supported by Bm. We

deal with these two cases separately.

Case 1. Suppose φ|Bm+1
is irreducible relative to Bm. By Proposition 5.5, there is an

irreducible Bm-relative representative f∗ : T∗ → T∗ for φ|Bm+1
with minimal stretch factor.

If λ(f∗) = 1, then fBm+1 = f∗ is a Bm-relative isometric immersion for φ|Bm+1
. If λ(f∗) > 1,

then there is an expanding B-relative immersion fBm+1 for φ|Bm+1
by Proposition 6.1. In

either case, we get a Bm-relative immersion fBm+1 : TBm+1 → TBm+1 for φ|Bm+1
defined on a

(Bm+1,Bm)-forest TBm+1 . Thus, there is an expanding A-relative immersion for φ|Bm+1
by

the induction hypothesis and Proposition 6.4.

Case 2. Now suppose φ(Bm+1) is supported by Bm. Let TBm(φ(Bm+1)) ⊂ TBm be the

46



minimal subforest of φ(Bm+1) and TBm+1 = TBm(φ(Bm+1)) be the same forest after

forgetting bivalent vertices. By injectivity of φ, we may consider TBm+1 as a

(Bm+1,A)-forest that comes with a natural φ|Bm+1
-equivariant immersion g : TBm+1 → TBm .

Since fBm : TBm → TBm is an immersion, we can identify a subdivision of TBm with the

minimal subforest TBm+1(Bm) ⊂ TBm+1 of Bm. Composing g with the subdivision and

inclusion TBm+1(Bm) ⊂ TBm+1 gives an A-relative immersion fBm+1 : TBm+1 → TBm+1 for

φ|Bm+1
, which is expanding since its image lies in TBm+1(Bm) and its restriction to

TBm+1(Bm) is the expanding A-relative immersion fBm after forgetting bivalent vertices.

This gives us a complete characterization of when an injective endomorphism is

induced by an expanding graph immersion.

Corollary 6.6. Let φ : F → F be an injective endomorphism. Then the following

conditions are equivalent:

1. φ is induced by an expanding graph immersion;

2. no nontrivial conjugacy class in F has an infinite φ-tail;

3. φ has no nontrivial fixed free factor system.

Proof. The implications (1) =⇒ (2) =⇒ (3) are obvious. Suppose φ has no nontrivial

fixed free factor system. Then φ is nonsurjective and the φ-elliptic free factor system is

trivial. By Theorem 6.5, there is an expanding φ-equivariant immersion f̃ : T → T defined

on an F -tree T . So φ is induced by an expanding immersion f of the graph Γ = F\T .

Remark. Unpacking the implication (3) =⇒ (1) given by Theorem 6.5 in the corollary’s

proof, we use the fact (3) =⇒ (2) (Theorem 3.1) and then show (3) + (2) =⇒ (1).

47



7 — Interlude —

Let us now contextualize the previous section and, especially, Corollary 6.6. In our

previous work [8], we determined exactly when the mapping torus of an expanding graph

immersion has a word-hyperbolic fundamental group.

Theorem 7.1 ([8, Theorem 6.3]). Let φ : F → F be induced by an expanding graph

immersion. F∗φ is word-hyperbolic if and only if it has no BS(1, d) subgroups for d ≥ 2.

By Reynolds’ result (Corollary 6.3), we knew this theorem applied to all irreducible

and nonsurjective endomorphisms but it was unknown at the time what the general class of

endomorphisms induced by expanding graph immersions was. It is clear that if φ has a

periodic free factor, then it cannot be induced by an expanding graph immersion.

Corollary 6.6 shows that the existence of periodic free factors is the only obstruction to

being induced by an expanding graph immersion. So Theorem 7.1 can be restated as:

Theorem 7.2. Let φ : F → F be an injective endomorphism with no fixed free factor

system. F∗φ is word-hyperbolic if and only if it has no BS(1, d) subgroups for d ≥ 2.

The interesting thing about the restatement is that it is purely algebraic, i.e., there is

no mention of topological graph immersions. Since fixed free factor systems correspond to

free-by-cyclic subgroups F ′ o Z of F∗φ, the restatement suggests that our proof of

Theorem 7.1 can be adapted to work for all nonsurjective injective endomorphisms.

In what follows, we will use expanding relative immersions to relativize the proof of

Theorem 7.1. For instance, the sequence of lemmas/propositions in the next section is

essentially identical to the sequence in [8, Section 3]. However, this will not constitute an

alternate proof of Brinkmann’s theorem: F o Z is word-hyperbolic if and only if it has no

Z2 subgroups [4]. We assume Brinkmann’s theorem as the base case of our generalization.
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8 Pullbacks

In our previous work [8, Sections 3], topological pullbacks for a graph immersion f : Γ→ Γ

were used to give sufficient conditions for π1(f) = φ : F → F to have an invariant nonfixed

cyclic subgroup system. The goal of this section is to drop the immersion hypothesis and

give sufficient conditions that apply to all injective endomorphisms of F .

Suppose immersions f1 : Γ1 → Γ and f2 : Γ2 → Γ induce inclusions of free groups

H1, H2 ≤ F respectively. Then components of the core (topological) pullback of (f1, f2) are

in one-to-one correspondence with nontrivial intersection H1 ∩ gH2g
−1 as g ranges over

(H1, H2)-double coset representatives of H1\F/H2. For a graph immersion f : Γ→ Γ that

induces an endomorphism φ : F → F , we get a one-to-one correspondence between

components of the core pullback of (fk, fk) and nontrivial conjugacy classes

[φk(F ) ∩ gφk(F )g−1] as [[g]] ranges over φk(F )-double cosets for all k ≥ 1. We will not

define topological pullbacks since we will be working algebraically in this section.

Given subgroups H1, H2 ≤ F , we define the (algebraic) pullback of (H1, H2),

denoted by H1 ∧H2, to be the set of all nontrivial components [H1 ∩ gH2g
−1] as [[g]]

ranges over the (H1, H2)-double cosets in F . When H1 and H2 are finitely generated, then

their pullback is a finite set.

For an endomorphism φ : F → F and k ≥ 1, define the algebraic pullbacks

Λk = φk(F ) ∧ φk(F ). There is a natural restriction φ|Λk
: Λk → Λk+1 of φ to Λk given by

[φk(F ) ∩ gφk(F )g−1] 7→ [φk+1(F ) ∩ φ(g)φk+1(F )φ(g)−1].

Lemma 8.1. If φ : F → F is injective and k ≥ 1, then φ|Λk
: Λk → Λk+1 as a function on

the set of components is injective.

Proof. Fix k ≥ 1 and let g1 and g2 be φk(F )-double coset representatives such that φ(g1)

and φ(g2) were in the same φk+1-double coset. So there are x, y ∈ φk+1(F ) such that
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xφ(g1)y = φ(g2). Equivalently, there are x′, y′ ∈ φk(F ) such that φ(x′)φ(g1)φ(y′) = φ(g2).

Since φ is injective, we get x′g1y
′ = g2. So g1 and g2 are in the same φk(F )-double coset.

For the rest of the section, assume φ : F → F is an injective endomorphism. Then we

get a chain of injections {F} = Λ0 → Λ1 → Λ2 → · · · . Furthermore, injectivity of φ implies

the restriction to components are isomorphisms. We will be mainly interested in

Λ̂k+1 = Λk+1 \ φ(Λk), i.e., the components of Λk+1 that are not part of φ(Λk). Equivalently,

Λ̂k+1 has the following description:

Λ̂k+1 = { [φk+1(F ) ∩ gφk+1(F )g−1] ∈ Λk+1 : g /∈ φ(F ) }.

We might say pullbacks stabilize if Λ̂k = ∅ for some k. The image φ(F ) is malnormal in F if

and only if Λ̂1 = ∅. Pullback stability is a sort of generalization of malnormality for φk(F )

with respect to φ.

Lemma 8.2. Suppose φ : F → F is injective and k ≥ 1. If Λ̂k is empty then so is Λ̂k+1

and if Λ̂k has only cyclic components, then Λ̂k+1 is empty or has only cyclic components.

Proof. There is an obvious “inclusion” of components, Λ̂k+1 � Λ̂k, induced by

φk+1(F ) ∩ gφk+1(F )g−1 ≤ φk(F ) ∩ gφk(F )g−1.

That Λ̂k = ∅ implies Λ̂k+1 = ∅ is obvious. Suppose Λ̂k has cyclic components, then Λ̂k+1 is

empty or has cyclic components as the subgroups of a cyclic group are trivial or cyclic.

The reduced rank of a nontrivial finite rank free group H is rr(H) = rank(H)− 1 and

the reduced rank of a pullback H1 ∧H2, where H1, H2 are finitely generated free groups, is

the sum of the reduced ranks of nontrivial intersections in H1 ∧H2. The latter is denoted

by rr(H1 ∧H2). Since the restriction φ|Λk
gives natural isomorphisms of the components,
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the chain of injections produces a nondecreasing sequence of positive integers

rank(F )− 1 = rr(F ) ≤ rr(Λ1) ≤ rr(Λ2) ≤ · · · .

Observe that rr(Λi) = rr(Λi+1) if and only if Λ̂i+1 is empty or has cyclic components

only. By Lemma 8.2, the sequence becomes constant once two consecutive entries are

equal. Walter Neumann used topological pullbacks to bound the reduced ranks of algebraic

pullbacks thus improving Hanna Neumann’s bound [10] on the rank of intersections.

Theorem 8.3 ([11, Proposition 2.1]). If H1, H2 ≤ F are nontrivial finitely generated

subgroups, then rr(H1 ∧H2) ≤ 2 rr(H1) rr(H2).

Remark. Although weaker than the Strengthened Hanna Neumann Conjecture (the

Friedman-Mineyev Theorem [5, 7]), this bound is sufficient for our purposes.

Lemma 8.4. If φ : F → F is injective, then either Λ̂k has cyclic components for all

k ≥ 2 rr(F )2 or Λ̂k = ∅ for some k.

Proof. Theorem 8.3 gives us a uniform bound on the reduced ranks of the pullbacks

rr(Λk) ≤ 2 rr(φk(F ))2 = 2 rr(F )2 for all k ≥ 1. By Lemma 8.2 and the uniform bound on

the nondecreasing sequence of reduced ranks, rr(Λk) are all equal for k ≥ k0 = 2 rr(F )2.

Therefore, Λ̂k0 is empty or has only cyclic components. The lemma follows by applying

Lemma 8.2 again.

We say φ : F → F has an invariant cyclic subgroup system with index d ≥ 1 if

there is an integer k ≥ 1, element x ∈ F , and nontrivial cyclic subgroup 〈c〉 ≤ F such that

φk(〈c〉) ≤ x〈c〉x−1 and has index d. We can now give the main result of this section:

Proposition 8.5. If φ : F → F is injective and Λ̂k is nonempty for all k ≥ 1, then φ has

an invariant cyclic subgroup system with index d ≥ 2.
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Proof. Let k0 = 2 rr(F )2 and φ : F → F be an injective endomorphisma such that Λ̂k is

nonempty for all k ≥ 1. By Lemma 8.4, Λ̂k has cyclic components for k ≥ k0.

So far nothing in the section has used relative immersions but our main motivation for

constructing them was this proposition. Note that Λ̂1 6= ∅ automatically implies φ is not

surjective. So φ is injective and nonsurjective. By Theorem 6.5, there is an expanding

A∗-relative immersion f : T → T for φ, where A∗ is the φ-elliptic free factor system and T

is an (F,A∗)-tree. Elements of F will be called elliptic if they act with fixed point on T ,

i.e., their conjugacy classes are supported by A∗. By construction of the φ-elliptic free

factor system (Proposition 3.4), there is an m ≥ 1 such that [φm(g)] is supported by the

maximal φ-fixed free factor system A for all elliptic elements g ∈ F . By φ-invariance of A,

we get that [φk(g)] is supported by A for all k ≥ m and elliptic elements g ∈ F . As A is a

φ-fixed free factor system, φk(A) = {φk(A) : A ∈ A} are free factor systems of F

equivalent to A in the poset of free factor systems for all k.

Suppose [φk(F ) ∩ gφk(F )g−1] ∈ Λ̂k for some k ≥ k1 = k0 +m. As this component is

cyclic, we may assume it has a representative φk(F ) ∩ gφk(F )g−1 generated by a nontrivial

element x ∈ φk(F ). In particular, there exists y ∈ φk(F ) and g ∈ F \ φ(F ) such that

x = gyg−1. We first show that x is loxodromic, i.e., it is not elliptic. Suppose x ∈ φk(F ) is

elliptic. Then so is y and, furthermore, the two are in the free factor system φk(A) as

k ≥ m. Since g /∈ φ(F ), we have g /∈ φk(A) for any A ∈ A. But this contradicts the

malnormality of free factor systems: elements in a free factor system, e.g. x, y in φk(A),

cannot be conjugated by an element not in the free factor system, e.g. g not in φk(A).

Therefore, x is loxodromic. The integer k ≥ k1 and component 〈x〉 ∈ Λ̂k were arbitrary, so

all components of Λ̂k are loxodromic for k ≥ k1.

Recall from the proof of Lemma 8.2 that each component of Λ̂k+1 is supported in a

component of Λ̂k for all k ≥ 1. We denote this with an infinite descending chain:

Λ̂1 � Λ̂2 � Λ̂3 � · · ·
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Since Λ̂k1 has finitely many components and the components are all cyclic, there is a cyclic

component in Λ̂k1 which supports some component of Λ̂k for all k ≥ k1. Suppose this

component has a representative generated by c = φk1(x) ∈ φk1(F ). Then for all k ≥ k1,

there is a cyclic component of Λ̂k with a representative generated by φk(xk) ∈ φk(F ) such

that 〈c〉 supports 〈φk(xk)〉.

If we let α ⊂ T be the axis for element c, then the previous sentence implies there are

sequences of element (xk)k≥k1 and (yk)k≥k1 such that the (unoriented) axes of φk(xk) are all

translates yk · α of the (unoriented) axis α. For any k ≥ k1, replace xk with its inverse if

necessary so that the action of φk(xk) on its axis is coherent (respects orientation) with the

action of c on α. By passing to a strictly increasing subsequence (ki)i≥1, we may assume

there is an edge e of T such that the axes αki of (xki)i≥1 all contain a translate of e. We

now pass to the graph of groups Γ = F\T in order to avoid mentions of translates and

orbits. The axis α will project to an immersed loop ᾱ in Γ representing c and axes αki

project to immersed loops ᾱki that represent xki and whose f̄ki-image is a power ᾱdi up to

cyclic rotation/homotopy, where di ≥ 0 and f̄ : Γ→ Γ is the immersion induced by

f : T → T . The edge e projects to an edge ē that is contained in all the loops ᾱki for i ≥ 1

The proof now mimics the proof of [8, Proposition 3.11]. Since f is an immersion, it

maps axes in T onto axes and f̄ maps immersed loops in Γ to immersed loops. So f̄ki(ē) is

a subpath of the immersed loop f̄ki(ᾱki) ' ᾱdi for all i, and since f is expanding, f̄ki(ē)

contains arbitrarily long powers of ᾱ as i→∞. Set N to be the number of subpaths of ᾱ

(up to rotation) that are also loops. Choose n� 0 such that f̄kn(ē) contains the loop ᾱN+1

as a subpath. Then f̄kn+1(ē) is a subpath of ᾱdn+1 that contains the loop f̄kn+1−kn(ᾱN+1) as

a subpath. In fact, for all positive integer j ≤ N + 1, the loop f̄kn+1−kn(ᾱj) is a subpath of

ᾱdn+1 . Thus, there is a sequence of loops (εj)
N+1
j=1 that are subpaths of ᾱ and strictly

increasing positive integers (sj)
N+1
j=1 such that f̄kn+1−kn(ᾱj) · εj is ᾱsj up to rotation. By

definition of N and pigeonhole principle, some εt = εt′ = ε for some t < t′ and

f̄kn+1−kn(ᾱt
′−t) is ᾱst′−st up to cyclic homotopy. Lifting back to the (F,A)-tree T , we find
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that fkn+1−kn maps the axis α to a translate of itself. So φkn+1−kn(c) is conjugate to a

nontrivial power cd and d ≥ 2 since f is expanding.

Remark. A careful examination of the proof reveals that it can be made more effective with

the pigeonhole principle. So for any injective endomorphism φ, we can construct a specific

number k = k(φ) for which Λ̂k 6= ∅ implies φ has an invariant cyclic subgroup system with

index d ≥ 2. Thus, one would not have to check infinitely many pullbacks to know that an

invariant cyclic subgroup system with index d ≥ 2 exists.

The (algebraic) mapping torus of an injective endomorphism φ is the ascending

HNN extension of F with the presentation F∗φ = 〈F, t | t−1xt = φ(x),∀x ∈ F 〉.

In the next section, we will actually be using the contrapositive of the proposition: if φ

is injective and has no invariant cyclic subgroup system with index d ≥ 2, then pullbacks

stabilize. In this case, we get control on the types of annuli in the mapping torus F∗φ,

which allows us to prove the main theorem: F∗φ is word-hyperbolic if φ additionally has no

fixed cyclic subgroup system.

Let us end the section with a third description of Λ̂k. The mapping torus F∗φ is the

fundamental group of a circle of groups with one vertex group F and edge group F (See

Appendix B). The edge monomorphisms for this circle of groups are the identity map

idF : F → F and endomorphism φ : F → F and the corresponding Bass-Serre tree T has

one orbit of edges and vertices. The tree also comes with a natural orientation where each

vertex has exactly one outgoing oriented edge and the stable letter t ∈ F∗φ acts on its

directed axis with positive translation. By construction, there is a unique vertex • of T

whose stabilizer in F∗φ is exactly F . Let T • be the full subtree of T rooted at •. The

components of Λ̂k are nontrivial stabilizers (up to conjugacy) of (φk(F )-orbits of) geodesics

in T • whose midpoint is •. Colloquially, we can think of T • as a •-descendants family-tree.

In this view, the components of Λ̂k are nontrivial conjugacy classes of simultaneous

stabilizers for a pair of kth-generation vertices in T • whose only common ancestor is •.
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9 Hyperbolic endomorphisms

We are finally ready to put all the pieces together. The first piece involves understanding

the relationship between annuli in the mapping torus F∗φ and pullbacks of φ. The second

piece involves building on Brinkmann’s theorem to show that atoroidal injective

endomorphisms are hyperbolic. In our previous work [8], we used these two pieces to give

sufficient conditions for the mapping torus to be word-hyperbolic.

Theorem 9.1 ([8, Theorem 6.4]). If f : Γ→ Γ is a based-hyperbolic graph map and strictly

bidirectional annuli in the mapping torus Mf are shorter than some positive even integer,

then π1(Mf ) is word-hyperbolic.

We will define the new terms in the theorem as we go. Suppose φ : F → F is an

injective endomorphism and f : Γ→ Γ is its topological representative. Recall that the

(topological) mapping torus of f is the quotient space Mf = (Γ× [0, 1]) /∼f with the

identification (x, 1) ∼f (f(x), 0) for all x ∈ Γ and the algebraic mapping torus F∗φ is

isomorphic to the fundamental group π1(Mf ). The edge-space of Mf will be the

cross-section in Mf represented by Γ× {1
2
}.

Strictly bidirectional annuli of the mapping torus Mf with length 2L can be thought of

as the pullbacks Λ̂L of φ but it does take a bit of work to give the correspondence. Fix a

basepoint ? ∈ S1. For integers L1 < L2, an (topological) annulus in Mf of length

L = L2 − L1 is a homotopy of loops h : S1 × [L1, L2]→Mf satisfying the following

conditions:

1. it is transverse to the edge-space of Mf ;

2. the h-preimage of the edge-space is S1 × ([−L1, L2] ∩ Z);

3. for integers i ∈ [L1, L2], the rings of the annulus hi = h(·, i) : S1 →Mf are locally

injective every where except possibly at the basepoint ?;
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4. and for the trace of the basepoint h? = h(?, ·) : [L1, L2]→Mf , no subpath between

consecutive integer coordinates [i, i+ 1] is homotopic rel. endpoints into the

edge-space.

This is the definition used in [8]. In light of our last description of Λ̂k in the previous

section, we give alternative definition. Let T be the Bass-Serre tree for F∗φ and • be the

point whose stabilizer is F . An (algebraic) annulus ([α], pα) in F∗φ of length L ≥ 2 is a

choice a nontrivial conjugacy class [α] in F∗φ and an orbit of a geodesic path in pα ⊂ T of

length L fixed by α. Since elements of [α] act on T with fixed points, we can always choose

a representative α ∈ F . Technically, we have defined a conjugacy class of algebraic annuli

but the distinction will not be relevant for us.

Given a topological annulus h in Mf of length L ≥ 1, then the generator of the image

π1(h) : Z→ π1(Mf ) determines a conjugacy class [α] in π1(Mf ) ∼= F∗φ. Condition (3)

ensures π1(h) is injective and α is nontrivial. Let h̃ : R× [L1, L2]→ M̃f be the lift of the

annulus to the universal cover of Mf . Collapsing the Γ̃-direction of M̃f produces the

Bass-Serre tree T and Condition (2) ensures the induced map h̄ : R× ([L1, L2] ∩ Z)→ T is

constant on the first factor and its image is a collection of edge-midpoint; each ring hi

determines a conjugacy class in the stabilizer of the corresponding edge-midpoint. By

Conditions (1) and (4), the midpoints extend to a geodesic edge-path pα in T of length

L+ 1 fixed by α.

The other direction works in a similar fashion. For any conjugacy class [α] in F∗φ and

two consecutive edge-midpoints in T • fixed by α ∈ F , we can construct an annulus of

length 1 as follows. Fix a basepoint in the edge-space and assume • is the vertex between

the midpoints. If the midpoints are increasing/decreasing, then α = φ(x) ∈ φ(F ) without

loss of generality. Let σ, ρ be based loop in the edge-space representing x, φ(x) ∈ F and τ a

based loop in Mf representing t ∈ F∗φ. Then the based path σ · τ · ρ̄ · τ̄ is null-homotopic

and can be extended to an annulus with ends σ, ρ and trace τ . If the midpoints are at the
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same height, then α = φ(x) ∈ φ(F ) and α = gφ(y)g−1 ∈ gφ(F )g−1 for some g /∈ φ(F ). Let

σ, ρ, γ be based loops in the edge-space representing x, y, g ∈ F respectively and τ a based

loop in Mf representing t ∈ F∗φ. So the based path σ · τγτ̄ · ρ̄ · τ γ̄τ̄ is null-homotopic and

can be extended to an homotopy between σ, ρ satisfying Conditions (1)-(3) and having

trace τγτ̄ . This trace satisfies Condition (4) because tgt−1 /∈ F and thus the homotopy is a

topological annulus with ends σ, ρ. Given a geodesic path in T of length L ≥ 2 fixed by α,

we can replace the path with a translate in T • without affecting the class [α] and then

construct a topological annulus in Mf of length L− 1 by concatenating the length 1 annuli

from the preceding discussion. This concludes the correspondence between topological and

algebraic annuli.

The natural orientation on T gives a dichotomy for algebraic annuli ([α], pα) in F∗φ:

1. all edges of pα have the same orientation— we say α is unidirectional.

2. pα switches from increasing to decreasing exactly once — we say α is bidirectional.

The reason each vertex of T has exactly one outgoing edge and hence the geodesic pα

cannot switch from decreasing to increasing follows from F having index 1 in F . For

similar reasons, bidirectional annuli do not exist if and only if φ(F ) is malnormal in F .

The next proposition generalizes this equivalence of bidirectional annuli (or lack thereof)

and malnormality.

An annulus ([α], pα) in F∗φ is strictly bidirectional if the switch from increasing to

decreasing occurs at the midpoint of pα.

Lemma 9.2. Let φ : F → F be injective. For any integer L ≥ 1, the mapping torus F∗φ

has a strictly bidirectional annulus of length 2L if and only if Λ̂L is nonempty.

Proof. Algebraic annuli and the last description of Λ̂L make this a trivial observation. If

there is a strictly bidirection annulus ([α], pα) in F∗φ of length 2L, then we may assume the

midpoint of pα is • after replacing pα with a translate. Then the stabilizer of pα contains α

and so it is nontrivial. Therefore, the conjugacy class of the stabilizer is a component of Λ̂L.
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If Λ̂L is not empty, then some path in T • of length 2L with midpoint at • has a

nontrivial stabilizer. Choose a nontrivial element α in this stabilizer and ([α], pα) is a

strictly bidirectional annulus in F∗φ of length 2L.

Let φ : F → F be an injective endomorphism with a topological representative

f : Γ→ Γ. If φ has no invariant cyclic subgroup system with index d ≥ 2, then there is an

integer L ≥ 1 for which Λ̂L is empty (Proposition 8.5) and all strictly bidirectional annuli in

Mf are shorter than 2L (Lemma 9.2). This sets up the second hypothesis of Theorem 9.1.

As for the first hypothesis, we begin by defining based-hyperbolicity and hyperbolicity.

For a real number λ > 1 and integer n ≥ 1, we say a graph map f : Γ→ Γ is

(based-) (λ, n)-hyperbolic if all (based) loops σ : S1 → Γ (with the basepoint mapped

to a vertex) satisfy the inequality

λ|fn(σ)| ≤ max( |f 2n(σ)|, |σ| )

where | · | is the combinatorial length after tightening; whether tightening respects a

basepoint (based homotopy) or not (free homotopy) will be apparent from the context.

When a graph map is (based-) (λ′, n)-hyperbolic for some λ′ > 1, n ≥ 1, then it is

(based-) (λk, nk)-hyperbolic for all k ≥ 1 and λ ∈ (1, λ′]. So the constants can be omitted

and when we do need them, we can assume λ > 1 is any preferred integer. Hyperbolicity is

a property of the homotopy class [f ] while based-hyperbolicity is a property of the map f .

In the setting we will be interested in, the former will imply the latter.

A graph map f : Γ→ Γ is atoroidal if there is no nontrivial loop σ in Γ and integer

k ≥ 1 such that fk(σ) ' σ. This again is a property of the homotopy class [f ].

Bestvina-Feighn-Handel showed, as a step in [2, Theorem 5.1], that hyperbolic atoroidal

graph maps are based-hyperbolic. Their argument is reproduced here, modified for the

possibility f is not a homotopy equivalence. This allows us to consider the growth rate of

loops without basepoints for the rest of the section
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Lemma 9.3. If the graph map f : Γ→ Γ is atoroidal and (3, n)-hyperbolic, then it is

based-(2, n′)-hyperbolic.

Remark. To avoid context-ambiguity in the proof, we use ‖·‖ for lengths of free homotopy

classes of loops and | · | for lengths of loops rel. basepoints. However, the distinction is not

needed after the proof as all loops afterwards will be considered up to free homotopy.

Proof. Suppose f : Γ→ Γ is atoroidal and (3, n)-hyperbolic for some integer n ≥ 1. Set M

to be the maximum length of fk(s) rel. basepoint over all embedded based loops s in Γ for

k ∈ {0, n, 2n}.

Suppose |fn(σ)| ≥ 4M for some immersed based loop σ and pick an embedded based

loop s with same basepoint as σ so that the concatenation s · σ is an immersed loop, i.e.,

‖s · σ‖ = |s|+ |σ|. As the graph map f is (3, n)-hyperbolic, we get

3‖fn(s · σ)‖ ≤ max( ‖f 2n(s · σ)‖, ‖s · σ‖ ).

For a concatenation of based loops ρ1 · ρ2, we get | |ρ1| − |ρ2| | ≤ ‖ρ1 · ρ2‖ ≤ |ρ1|+ |ρ2|.

Case 1. If ‖f 2n(s · σ)‖ ≥ 3‖fn(s · σ)‖, then

|f 2n(σ)| ≥ ‖f 2n(s · σ)‖ − |f 2n(s)| ≥ 3‖fn(s · σ)‖ −M

≥ 3|fn(σ)| − 3|fn(s)| −M

≥ 3|fn(σ)| − 4M

≥ 2|fn(σ)|.

Case 2. If ‖s · σ‖ ≥ 3‖fn(s · σ)‖, then

|σ| = ‖s · σ‖ − |s| ≥ 3‖fn(s · σ)‖ −M ≥ 3|fn(σ)| − 4M ≥ 2|fn(σ)|

Combining both cases: 2|fn(σ)| ≤ max( |f 2n(σ)|, |σ| ). If |fnk(σ)| ≥ 4M for an immersed
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based loop σ in Γ and k ≥ 1, then by induction

2k · |fnk(σ)| ≤ max( |f 2nk(σ)|, |σ| ).

For any bound B, there are only finitely many immersed based loops σ′ in Γ with |σ′| ≤ B.

Since f is atoroidal, there is an integer k � 0 such that |fnk(σ′)| ≥ 8M for every based

loop σ′ with |σ′| ≤ 4M and we conclude that f is based-(2, nk)-hyperbolic .

When p is a subpath of an immersed loop σ and n ≥ 1, then [fn(p)]σ is the subpath of

[fn(p)] that survives in [fn(σ)] and |fn(p)|σ is the length of [fn(p)]σ. Bounded cancellation

implies |fn(p)| ≤ |fn(p)|σ + 2C(fn). The next lemma is based on Brinkmann’s Lemma 4.2

in [4] with a few necessary changes made to account for φ possibly being nonsurjective.

Lemma 9.4. Let f : Γ→ Γ be a graph map and R∗ ⊂ Γ be an f -invariant union of roses

such that the restriction f |R∗ : R∗ → R∗ is (4, n)-hyperbolic. For some constant Lc, if

p ⊂ R∗ is a subpath (edge-path) of some immersed loop σ in Γ and |fn(p)|σ ≥ Lc, then

3|fn(p)|σ ≤ max
(
|f 2n(p)|σ, |p|

)
.

The number Lc is the critical length of the triple (f,Γ, R∗).

Proof. Let f : Γ→ Γ be a graph map and R∗ ⊂ Γ be an f -invariant union of roses such

that the restriction f |R∗ is (4, n)-hyperbolic. Set M to be the maximum length of fk(s) rel.

basepoint over all petals s in R∗ and k ∈ {n, 2n}. Choose Lc = 2C(f 2n) + 5M where

C(f 2n) is the cancellation constant for f 2n. Recall the triangle inequality:

| |p1| − |p2| | ≤ |p1 · p2| ≤ |p1|+ |p2| for any path decomposition of a loop p1 · p2. A remark

on the context: paths [pi] are reduced rel. endpoints but the loop [p1 · p2] is freely reduced.

Given a subpath p ⊂ R∗ of some immersed loop σ in Γ, pick a petal s in R∗ such that
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s · p is an immersed loop in R∗. As the restriction to R∗ is (4, n)-hyperbolic, we get

4|fn(s · p)| ≤ max( |f 2n(s · p)|, |s · p| ).

If 4|fn(s · p)| ≤ |f 2n(s · p)|, then

4|fn(p)|σ ≤ 4|fn(p)| ≤ 4|fn(s · p)|+ 4|fn(s)|

≤ |f 2n(s · p)|+ 4M

≤ |f 2n(p)|+ 5M

≤ |f 2n(p)|σ + 2C(f 2n) + 5M (bounded cancellation)

Similarly, if 4|fn(s · p)| ≤ |s · p|, then

4|fn(p)|σ ≤ |p|+ 1 + 4M

≤ |p|+ 5M + 2C(f 2n) (since M ≥ 1)

Since Lc = 2C(f 2n) + 5M , we have the desired implication:

|fn(p)|σ ≥ Lc =⇒ 3|fn(p)|σ ≤ max
(
|f 2n(p)|σ, |p|

)
.

An injective endomorphism φ : F → F is atoroidal if it has no fixed cyclic subgroup

system, i.e., no invariant cyclic subgroup system with index d = 1. If f : Γ→ Γ is a

topological representative for φ, then f is atoroidal if and only if φ is atoroidal. The

following proposition is an extension of Brinkmann’s theorem [4, Proposition 7.1] and is

the last technical result of the dissertation.

Proposition 9.5. If φ : F → F is injective and atoroidal, then it has a (2, n)-hyperbolic

topological representative for some integer n ≥ 1.

Proof. Suppose φ : F → F is an injective and atoroidal endomorphism. If φ is surjective,
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then the proposition is precisely Brinkmann’s theorem. So we may assume φ is injective

and nonsurjective. By Theorem 6.5, there is an expanding A∗-relative immersion

g : T → T for φ, where A∗ is the φ-elliptic free factor system. Fix some A∗-marked roses

(RA∗ , αA∗) and set Γ to be the (RA∗ , αA∗)-vertex blow-up of the graph of groups F\T . The

roses RA∗ form the lower stratum of Γ and the remaining edges the top stratum.

We outline the proof which follows closely the idea behind Brinkmann’s proof of his

theorem. Patch together a homotopy equivalence of the lower stratum with the expanding

relative immersion to get some topological representative f of φ. By Brinkmann’s theorem,

the restriction of f to the lower stratum is hyperbolic. The expanding relative immersion

on the top stratum means loops that are mostly top stratum will have uniform exponential

growth under forward iteration. Lemma 9.4 implies loops that are mostly lower stratum

will have uniform exponential growth under forward and/or backward iteration. The heart

of the proof lies in specifying (quantifying) what being mostly top or lower stratum means

and showing that all loops are one or the other. Of course, there are a few minor

technicalities that need addressing; for instance, the restriction to the lower stratum is

almost but not exactly a homotopy equivalence.

Recall that the maximal φ-fixed free factor system A is a subset of A∗ and there is an

integer k0 ≥ 0 such that φk0(A∗) is supported by A (Proposition 3.4 and Lemma 3.5). So

we may find a topological representative fA∗ : RA∗ → RA∗ for φ|A∗ whose restriction to the

periodic roses RA, denoted by fA, is a homotopy equivalence. As φ is atoroidal, the

restriction fA is (4, n0)-hyperbolic for some n0 ≥ 1 (Brinkmann’s theorem).

If σ is an immersed loop in RA∗ , then [fk(σ)] is a loop in the periodic roses RA for all

k ≥ k0. Since the restriction fA is (4, n0)-hyperbolic and fn0k
A∗ (σ) is a loop in RA for any

loop σ in RA∗ and k ≥ k0, we get the inequality

4 · |fn0
A (fn0k

A∗ (σ))| ≤ max( |f 2n0
A (fn0k

A∗ (σ))|, |fn0k
A∗ (σ)| ) for all loops σ in RA∗ and k ≥ k0.

Choose an integer k1 ≥ 1 so that 4k1 ≥ 4Kn0k0 , where K = K(fA∗) is the Lipschitz

constant for fA∗ . Suppose σ is a loop in RA∗ .
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If 4 · |fn0
A (f

n0(k0+k1−1)
A∗ (σ))| ≤ |f 2n0

A (f
n0(k0+k1−1)
A∗ (σ))|, then by induction

4k0+k1 · |fn0(k0+k1)
A∗ (σ)| ≤ |f 2n0(k0+k1)

A∗ (σ)|.

If 4 · |fn0
A (f

n0(k0+k1−1)
A∗ (σ))| ≤ |fn0(k0+k1−1)

A∗ (σ)|, then by induction and Lipschitz property

4k1 · |fn0(k0+k1)
A∗ (σ)| ≤ |fn0k0

A∗ (σ)| ≤ Kn0k0 · |σ| and 4 · |fn0(k0+k1)
A∗ (σ)| ≤ |σ| by choice of k1.

Therefore, the lower stratum map fA∗ is (4, n1)-hyperbolic with n1 = n0(k0 + k1).

Let f : Γ→ Γ be a topological representative for φ that extends fA∗ to the top stratum

and induces the expanding A∗-relative immersion g : T → T upon collapsing the lower

stratum in the universal cover Γ̃. For an arbitrary immersed loop σ in Γ, define σtop (σlow

resp.) to be the collection of maximal subpaths of σ in the top (lower resp.) stratum. For

all n ≥ 1, define [fn(σtop)]σ ([fn(σlow)]σ resp.) to be the collection of paths [fn(p)]σ where p

is some path in σtop (σlow resp.). That f induces an immersion g upon collapsing the lower

stratum implies that the top stratum is persistent: if σ is an immersed loop in Γ, then

f(σ)top survives in [f(σ)].

As the relative immersion g : T → T is expanding, there is an integer k2 ≥ 1, such that

gk2(e) has length ≥ 2 for all edges e in T ; and as f induces g, for any immersed loop σ in Γ

and path p in σtop, we get 2|p|σ ≤ |fk2(p)|σ. We may replace n1 and k2 with a common

multiple and assume n1 = k2. A similar inequality holds in the lower stratum. By the

(4, n1)-hyperbolicity of f |RA∗ and Lemma 9.4, there is a critical length Lc = Lc(f,Γ, RA∗)

such that for any immersed loop σ in Γ and path p in σlow,

|fn1(p)|σ ≥ Lc =⇒ 3|fn1(p)|σ ≤ max( |f 2n1(p)|σ, |p| ).

Set M to be the maximal length amongst all paths in fn1(e)low for all top stratum

edges e of Γ. For any integer k ≥ 1, we distinguish two cases:

Case 1. If |fn1k(σ)low| < (Lc + 6M) |fn1k(σ)top|, then
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|fn1k(σ)| = |fn1k(σ)low|+ |fn1k(σ)top| < (Lc + 6M + 1) |fn1k(σ)top| and

2k |fn1k(σ)top| ≤ |fn1k(fn1k(σ)top)|σ ≤ |f 2n1k(σ)|.

Additionally, if 2k ≥ 2(Lc + 6M + 1), then 2 |fn1k(σ)| < |f 2n1k(σ)|.

Case 2. Suppose |fn1k(σ)low| ≥ (Lc + 6M) |fn1k(σ)top|. Set m to be the number of

paths in fn1k(σ)low. Then m is also the number of paths in fn1k(σ)top and m ≤ |fn1k(σ)top|.

By the pigeonhole principle, some path ρ in fn1k(σ)low satisfies |ρ| ≥ Lc + 6M . As

|ρ| ≥ 6M , we have 3(|ρ| − 2M) ≥ 2|ρ|. Set σ′ = fn1(k−1)(σ). By definition of M and

persistence of fn1(σ′)top, there must be a path p′ in σ′low such that [fn1(p′)]σ′ is a subpath of

ρ, |fn1(p′)|σ′ ≥ |ρ| − 2M ≥ Lc, and 3 |fn1(p′)|σ′ ≤ max( |f 2n1(p′)|σ′ , |p′| ).

If |f 2n1(p′)|σ′ ≥ 3|fn1(p′)|σ′ , then |f 2n1(p′)|σ′ ≥ 2|ρ| and |fn1(k+1)(p′)|σ′ ≥ 3k−1 · 2|ρ|.

If |p′| ≥ 3|fn1(p′)|σ′ , then |p′| ≥ 2|ρ|. By inducting on the same argument used at the

start of the case, there must be a path p in σlow such that |fn1k(p)|σ is a subpath of ρ and

|p| ≥ 2k |ρ|. In either case, we get 2k|ρ| ≤ max( |fn1(k+1)(p′)|σ′ , |p| ). Define fn1k(σ)crit to be

the set of paths ρ in fn1k(σ)low with |ρ| ≥ Lc + 6M . Altogether, we have shown:

2k|fn1k(σ)crit| ≤ max( |f 2n1k(σ)|, |σ| ).

The following computation is lifted from Brinkmann [4, Proof of Proposition 7.1]. Set

A = |fn1k(σ)crit| to be the total length of paths in fn1k(σ)crit, B = |fn1k(σ)low| − A to be

the total length of the remaining paths in fn1k(σ)low, and C = |fn1k(σ)top|. We now find a

positive lower bound of A
A+B+C

that is independent of σ and k. We assumed

A+B ≥ (Lc + 6M)C and so A
A+B+C

≥ A(Lc+6M)
(A+B)(Lc+6M+1)

and we can focus on the factor

A
A+B

= 1− B
A+B

. Recall m ≤ C, so A+B ≥ (Lc + 6M)m. Since each path p in fn1k(σ)low

but not in fn1k(σ)crit satisfies |p| < Lc + 6M and there are at most m of them,

B ≤ m (Lc + 6M − 1). Combining the last two inequalities gives the bound
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1− B
A+B

≥ 1− m (Lc+6M−1)
m (Lc+6M)

≥ 1
Lc+6M

. Altogether, A
A+B+C

≥ 1
Lc+6M+1

.

Additionally, if 2k ≥ 2(Lc + 6M + 1), then 2|fn1k(σ)| ≤ max( |f 2n1k(σ)|, |σ| ).

Choose k ≥ 1 so that 2k ≥ 2(Lc + 6M + 1); the two exhaustive cases above imply f is

(2, n1k)-hyperbolic.

All the heavy lifting is done and we have proved our main theorem

Theorem 9.6. Let φ : F → F be an injective endomorphism. Then the following

statements are equivalent:

1. F∗φ is word-hyperbolic;

2. F∗φ contains no BS(1, d) subgroups with d ≥ 1;

3. φ has no invariant cyclic subgroup system with index d ≥ 1;

4. φ has a based-hyperbolic topological representative and all strictly bidirectional annuli

in its mapping torus are shorter than some positive even integer.

Proof. This proof is just a matter of bookkeeping.

(1) =⇒ (2): BS(1, d) subgroups are well-known obstructions to word-hyperbolicity.

(2) =⇒ (3): if φ has an invariant cyclic subgroup system with index d, then there is a

subgroup of F∗φ isomorphic to a quotient of BS(1, d); use normal forms to show the

subgroup is in fact isomorphic to BS(1, d) (See [6, Lemma 2.3] for details).

(3) =⇒ (4): Proposition 8.5 with Lemma 9.2 give the second part of (4) and

Proposition 9.5 with Lemma 9.3 give the first part.

(4) =⇒ (1) — Theorem 9.1: the proof is a calculation showing Mf satisfies the annuli

flaring condition and then invoking Bestvina-Feighn’s combination theorem [1].
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A Marshall Hall’s theorem applied

Stallings’ paper [14] is the standard reference for the material in this appendix.

A group G is subgroup separable/LERF if, for every finitely generated subgroup

H ≤ G and element g ∈ G \H, there is a finite index subgroup Ĥ ≤ G that contains H but

not g. By passing to the kernel of the action of G on cosets of Ĥ, it follows that this

definition is equivalent to the definition given in the proof of Lemma 2.4.

Marshall Hall’s theorem states that free groups are subgroup separable. Since every

finitely generated subgroup of a free group F is contained in a finite rank free factor of F ,

it is enough to prove the theorem for finite rank free groups. The proof we give here is due

to Stallings.

Theorem A.1 ([14, Theorem 6.1]). Finite rank free groups are subgroup separable.

Sketch proof. Let F be a finite rank free group, (R,α) be an F -marked rose, H ≤ F be a

finitely generated free group, and g ∈ F \H. The Stallings subgroup graph for S(H) with

respect to (R,α) is a core graph uniquely defined for the conjugacy class [H]. We can

extend it to a possibly non-core finite graph S(H, ?) that is uniquely defined for the

subgroup H. This pointed Stallings graph comes with an immersion ι : S(H, ?)→ R that

maps the marked point ? to the vertex of R such that the image of π1(ι) equals α(H) in

π1(R, ι(?)). The graph S(H, ?) and immersion ι can be extended to a graph S(H, g) and

immersion ιg such that the equality between the image of π1(ιg) and α(H) still holds and

there is an edge-path pg in S(H, g) with distinct endpoints and starts at ? for which ιg(pg)

is a loop in (R,α) representing α(g).

As H is finitely generated, S(H, g) is a finite graph and the immersion ιg can be

extended to a finite cover î : R̂→ R. Let Ĥ be the corresponding finite index subgroup. As

S(H, g) ⊂ R̂, we have H ≤ Ĥ and, since the path pg has distinct endpoints in R̂, it follows

that g /∈ Ĥ.
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To turn this sketch proof into a complete proof, the portion in the proof that is

italicized (“ιg can be extended to a finite cover”) needs to be proven. The following

proposition is a stronger version of Lemma 2.4.

Proposition A.2. Let G be a finitely generated subgroup separable group and ψ : G → G be

an automorphism. If H ≤ G is finitely generated and ψ(H) ≤ H, then ψ(H) = H.

Proof. Let G be a finitely generated supgroup separable group, ψ : F → F an

automorphism, and H ≤ G a finitely generated subgroup such that ψ(H) ≤ H. Suppose,

for a contradiction, g ∈ H \ ψ(H) and invoke subgroup separability for the pair (ψ(H), g).

There exists a finite index subgroup Ĥ0 that contains ψ(H) but not g. Let Ĥ1 be the

intersection of all finite index subgroups of G with the same index as Ĥ0. As G is finitely

generated, there are finitely many such finite index subgroups and they are permuted by

any automorphism of G. Therefore, Ĥ1 is a finite index characteristic subgroup and

ψ(Ĥ1) = Ĥ1. By construction, g /∈ Ĥ1 and no nontrivial element h ∈ ψ(H) ≤ Ĥ0 is in the

Ĥ1-coset gĤ1 — if gĥ = h ∈ ψ(H) for some ĥ ∈ Ĥ1 ≤ Ĥ0, then g = hĥ−1 ∈ Ĥ0, which is a

contradiction.

Let π : G → G be the quotient map with kernel Ĥ1, then ψ induces an automorphism

ψ̄ : G→ G as ψ(Ĥ1) = Ĥ1. The conditions on g and nontrivial elements of ψ(H) imply

π(g) ∈ π(H) but π(g) /∈ ψ̄(π(H)) = π(ψ(H)). But this is a contradiction since ψ̄ is an

automorphism of a finite group G, so ψ(H) ≤ H implies ψ̄(π(H)) = π(H).
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B Bass-Serre theory reviewed

Serre’s book [13] is the standard reference for the material in this appendix.

Let G be a group and T be a simplicial tree. Simplicial/isometric G-actions on T will

be assumed to be minimal, i.e., the action doesn’t induce an action on any proper subtree,

and orientation preserving, i.e., G acts without edge-inversion. These are not restrictive

assumptions since any nonminimal G-action with edge-inversion can be subdivided and

restricted to get a minimal and orientation preserving G-action on a another tree. As this

is enough for the results in the first part of this dissertation, let us assume no nontrivial

element of G fixes an edge of any G-tree T .

Let T be a G-tree with a finite/compact quotient graph Q = G\T . Choose a maximal

tree T in Q and lift it to a subtree in T̃ . We are effectively choosing a representative for

each G-orbit of vertices in T . Let V = V (T̃ ) be the vertices of T̃ . For each v ∈ V , let

Gv ≤ G be the subgroup of elements that fix v. Lastly, let E = T c be the set of edges of Q

not in the maximal tree T . The fundamental theorem of Bass-Serre theory uses this

information to construct a presentation: G ∼= 〈Gv, e | v ∈ V, e ∈ E〉.

This presentation is known as a graph of groups decomposition of G. More carefully, a

graph of groups G is a graph whose vertices are labelled by groups. The vertex-labeling

groups are aptly called vertex groups and elements of G conjugate into vertex groups are

known as elliptic elements. Conversely, elements of G that are not conjugate into the

vertex groups, i.e., the elements that act freely, are the loxodromic elements. The

quotient graph Q considered with vertex groups {Gv | v ∈ V } is an example of a graph of

groups. Part of the fundamental theorem of Bass-Serre theory states that all graph of

groups can be constructed this way and their related trees are called Bass-Serre trees.

Graph of groups have a related notion of fundamental groups and, in this language, the

previous isomorphism is a canonical identification between the “deck group” for the

Bass-Serre T → Q and the “fundamental group” π1(Q).
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When G = F is free, the vertex groups form a free factor system of F and the graph of

groups decomposition given by the finite quotient of the F -tree is also known as a free

splitting of F .

When the action of G on T does have a nontrivial element that fixes an edge, then the

presentation for a fundamental group of a graph of groups is a bit more involved and better

understood inductively. Assume the quotient graph Q has a single edge t let Gt ≥ G be the

subgroup of elements that fix (stabilizer for) some orbit representative t̃ of the lift of t to

T . There are two cases:

Case 1. Q has two vertices x, y. Then let Gx, Gy ≤ G be the stabilizers for the

corresponding endpoints of t̃. Note that Gt naturally include into Gx, Gy and we will

denote the inclusions by ix, iy. By the fundamental theorem of Bass-Serre theory, G is an

amalgamated free product of Gx and Gy over the subgroup Gt:

G ∼= π1(Q) = 〈Gx, Gy | ix(z) = iy(z),∀z ∈ Gt〉

Case 2. Q has one vertex x. Then let Gx, Gy ≤ G be the stabilizer for the origin and

terminal endpoint of t̃ respectively and denote as before the inclusions of Gt to Gx, Gy by

ix, iy. Since there only one orbit of vertices, Gx and Gy are conjugate and the conjugation

acts on iy to give a map i′y : Gt → Gx. By the fundamental theorem, G is the HNN

extension of Gx over isomorphic subgroups ix(Gt) and i′y(Gt):

G ∼= π1(Q) = 〈Gx, t | ix(z) = ti′y(z)t−1,∀z ∈ Gt〉

In the latter part of this dissertation, we start studying the ascending HNN extension

G = F∗φ, which can be thought of as an example of this second case: set Gx = Gt = F ,

ix = idF : F → F , and i′y = φ : F → F . So the group F∗φ naturally acts on the Bass-Serre

tree T that has one orbit of edges and vertices.
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C Bestvina-Handel’s algorithm relativized

Bestvina-Handel’s paper [3] is the reference for the material in this appendix.

The objective in this appendix is to sketch the proof of the fact that irreducible relative

representatives with minimal stretch factor are train tracks. Bestvina-Handel’s

construction of train tracks for irreducible automorphisms [3] translates verbatim to the

non-free forest setting.

Let φ : F → F be an injective endomorphism, A ≺ B be φ-invariant free factor systems,

and T∗ be a (B,A)-forest. We allow forests to have bivalent vertices. An A-relative

(topological) representative for the restriction φ|B is a φ|B-equivariant graph map

f∗ : T∗ → T∗ with no pretrivial edges. Additionally, we say the relative representative is

minimal if it has no orbit-closed invariant subforests with bounded components.

For any A-relative representative f∗, we get the transition matrix A(f∗). An

A-relative representative f∗ is irreducible if the matrix A(f∗) is irreducible and, in this

case, the stretch factor of f∗, denoted by λ(f∗), is the Perron-Frobenius eigenvalue of

A(f∗). An A-relative train track for φ|B is an A-relative representative f∗ for φ|B that

additionally satisfies the property: the edge-paths fn∗ (e) are immersed for all edges e in T∗

and integers n ≥ 1. We have set the stage for the theorem.

Theorem C.1 ([3, Theorem 1.7]). If φ|B is irreducible relative to A, T∗ is a (B,A)-forest

with no bivalent vertices, and f∗ : T∗ → T∗ is an irreducible A-relative representative for

φ|B with minimal stretch factor, then f∗ is an irreducible A-relative train track.

We now state the lemmas that will be fundamental steps in the proof. The argument

relies on understanding how various moves on an irreducible A-relative representative f∗

affect λ(f∗) and invoking minimality of λ(f∗) to conclude that no such moves are possible.

Note that although the moves are described locally, they must be performed equivariantly

if we want the resultant forests to be (B,A)-forests. The proofs of these moves/lemmas are

omitted since they are the same as the proofs in [3].
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The first move is subdivision, which occurs at an interior point of an edge that is in the

preimage of vertices under the representative.

Lemma C.2 ([3, Lemma 1.10]). If f∗ : T∗ → T∗ is an irreducible A-relative representative

for φ|B and f ′∗ : T ′∗ → T ′∗ is induced by a subdivision, then f ′∗ is an irreducible A-relative

representative and λ(f ′∗) = λ(f∗).

The next move is bivalent homotopy, which occurs at a bivalent vertex and decreases

the number of edges.

Lemma C.3 ([3, Lemma 1.13]). If f∗ : T∗ → T∗ is an irreducible A-relative representative

for φ|B and f ′′∗ : T ′′∗ → T ′′∗ is an irreducible A-relative representative induced by a bivalent

homotopy followed by collapse of a maximal invariant subforest with bounded components,

then λ(f ′′∗ ) ≤ λ(f∗).

The last move we need is folding, which occurs between a pair of oriented edges

originating from the same vertex that have the same image under the representative.

Lemma C.4 ([3, Lemma 1.15]). Suppose f∗ : T∗ → T∗ is an irreducible A-relative

representative for φ|B and f ′∗ : T ′∗ → T ′∗ is induced by a fold. If f ′∗ is an A-relative

representative, then it is irreducible and λ(f ′∗) = λ(f∗). Otherwise, if f ′′∗ : T ′′∗ → T ′′∗ is an

irreducible A-relative representative induced by a homotopy of f ′∗ that makes the final map

locally injective on the interior of edges, followed by collapse of a maximal invariant

subforest with bounded components, then λ(f ′′∗ ) < λ(f∗).

Sketch proof of Theorem C.1. Let φ|B be irreducible relative to A, T∗ be a (B,A)-forest

with no bivalent vertices, and f∗ : T∗ → T∗ be an irreducible A-relative representative with

minimal stretch factor. If λ(f∗) = 1, then f∗ is a simplicial embedding and we are done. So

we may assume λ(f∗) > 1.

Suppose, for a contradiction, that f∗ is not an A-relative train track, then the

edge-path fn∗ (e) is not immersed for some edge e in T∗ and integer n ≥ 1. Let n be the
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smallest such integer and assume ? is an interior point of an edge e at which fn∗ fails to be

locally injective. We appropriately subdivide T∗ so that a neighborhood U of ? and its

iterates fk∗ (U) (1 ≤ k ≤ n) satisfy nice properties: 1) U is an interval whose boundary

consists of distinct vertices; 2) fk∗ is locally injective on U for 1 ≤ k < n; 3) fn∗ folds U at ?

to an edge; and 4) ? /∈ fk∗ (U) for 1 ≤ k ≤ n. We can then iteratively fold fn−1
∗ (U), . . . ,

f 2
∗ (U), and f∗(U). By minimality of n, all the folds except the last one induce an

irreducible A-relative representative. By the first case of Lemma C.4, this irreducible

A-relative representative has the same stretch factor as f∗. By construction, the last fold

induces a map f ′∗ that fails to be an A-relative representative as it fails to be locally

injective at ?. We can apply a tightening homotopy on f ′∗ to make it locally injective at ?,

then collapse a maximal invariant subforest with bounded components to get

f ′′∗ : T ′′∗ → T ′′∗ , a minimal A-relative representative for φ|B. By Lemma 5.4, the map f ′′∗ is

irreducible. By the second case of Lemma C.4, the stretch factor is strictly smaller:

λ(f ′′∗ ) < λ(f∗). We then sequentially apply bivalent homotopies and collapse maximal

invariant subforests with bounded components until we get an irreducible A-relative

representative f ′′′∗ such that T ′′′∗ has no bivalent vertices. The stretch factor satisfies

λ(f ′′′∗ ) ≤ λ(f ′′∗ ) < λ(f∗) by Lemma C.3. However, this contradicts the minimality of λ(f∗).

So f∗ must have been an expanding irreducible A-relative train track.
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