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Abstract 

This dissertation proposes a Built-In Self-Test (BIST) hardware implementation for 

Multi-Threshold NULL Convention Logic (MTNCL) circuits. Two different methods are 

proposed: an area-optimized topology that requires minimal area overhead, and a test-

performance-optimized topology that utilizes parallelism and internal hardware to reduce the 

overall test time through additional controllability points. Furthermore, an automated software 

flow is proposed to insert, simulate, and analyze an input MTNCL netlist to obtain a desired fault 

coverage, if possible, through iterative digital and fault simulations. The proposed automated 

flow is capable of producing both area-optimized and test-performance-optimized BIST circuits 

and scripts for digital and fault simulation using commercial software that may be utilized to 

manually verify or adjust further, if desired. 
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1 Introduction 

While synchronous circuits have been the dominant architecture in digital systems for 

decades, asynchronous designs exhibit several advantages that are becoming more enticing as 

fabrication process technology continues to shrink. Several of the primary advantages involve 

the lack of a global clock, resulting in reduced power, noise, and electromagnetic interference, 

and robustness to PVT (process, voltage, temperature) variations [1]. However, there are several 

barriers to adoption of asynchronous design styles, including lack of designer familiarity with 

asynchronous architectures, synthesis methods to generate asynchronous circuits from register-

transfer level (RTL) hardware description language (HDL) code, and testing methods to validate 

functionality of the resulting asynchronous circuits. 

Fortunately, several asynchronous design synthesis systems have been developed [2], [3]. 

Although these software tools provide the ability to generate designs from RTL, little research 

has been done in terms of tools to support the testing of these asynchronous designs. It is 

imperative that testing methods are developed to allow the ease of asynchronous design creation 

and integration into larger systems. 

The final objective of this work is to develop an automated tool to insert built-in self-test 

(BIST) functionality [4] into multi-threshold NULL convention logic (MTNCL) designs [5] and 

obtain and validate desired fault coverages. An automated tool to perform this task will reduce 

the effort required to design self-testing MTNCL circuits. Standard synchronous test software is 

leveraged when possible to minimize custom software, while also providing designers with a 

sense of familiarity.  For a usage scenario, a designer will provide an MTNCL netlist, an area or 

performance preference, and the desired fault coverage. The tool will then be able to parse the 

netlist, determine register stages within the MTNCL design, insert the BIST structures into the 
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design, create and use simulation macros to both simulate the design in a digital simulation 

environment, and evaluate the fault coverage. The final design will be exported and include the 

BIST implementation, testbenches, and simulation macros so that the user can manually evaluate 

the design, if desired. 

2 Background 

2.1 NULL Convention Logic (NCL) 

NCL is a quasi-delay insensitive (QDI) asynchronous design paradigm that is 

symbolically complete [6]. To achieve this, NCL utilizes a 1-hot encoding scheme, wherein any 

single one of N wires, called rails, is asserted to represent a DATA value, and all rails are de-

asserted to represent a NULL value, which represents absence of DATA. Only one rail of a 

multi-rail signal may be asserted at any given time; if multiple rails are simultaneously asserted, 

the state is illegal. The most commonly used encoding scheme is dual-rail logic; in this version 

there are two rails, where the D1 rail is asserted to represent a Boolean logic 1, the D0 rail is 

asserted to represent a Boolean logic 0, and both rails are de-asserted to represent the NULL 

state. For NCL, each DATA wavefront must be followed by a NULL wavefront that resets the 

circuit to the NULL state (all gate outputs are logic 0) before the next DATA wavefront can be 

processed. The flow of DATA/NULL wavefronts is controlled by handshaking signals [1]. 

In an NCL pipeline, stages consist of NCL registers, NCL combinational logic (C/L), and 

completion detection components, as shown in Figure 1. Each NCL register has a data input port, 

a data output port, an acknowledge in (Ki) port, and an acknowledge out (Ko), port. For signals 

present on the acknowledge ports, one of two states are possible: request for DATA (RFD) or 

request for NULL (RFN). When RFD is present on the Ki port of an NCL register, the register 

allows a DATA wavefront to pass and then presents a RFN on its Ko. Likewise, when a RFN is 
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presented to the Ki port, the register allows a NULL wavefront to pass and then presents a RFD 

on its Ko. The function of the completion components is to merge the multiple signals at each 

register’s Ko into a single signal; RFD or RFN is presented at the completion detection 

component’s output when all inputs to the completion detection component are either RFD or 

RFN, respectively [1]. 

The NCL registers, C/L, and completion detection circuits are comprised of NCL 

threshold gates. Threshold gates, shown in Figure 2, use a naming convention of THmn, where n 

denotes the number of inputs and m denotes the threshold value. The output of a threshold gate is 

asserted when at least m of the n inputs are asserted. NCL gates exhibit hysteresis, such that once 

the output is asserted, it will remain asserted until all inputs are de-asserted [1]. 

To enable delay-insensitivity, NCL C/L must be input-complete and observable. Input-

completeness requires that all outputs may not transition from NULL to DATA until all inputs 

have transitioned to DATA. Similarly, all outputs may not transition from DATA to NULL until 

all inputs have transitioned to NULL. Observability requires that any wires that transition during 

a DATA wavefront and do not affect the output may not propagate through a gate [1]. 

The generic block structure of an NCL threshold gate is shown in Figure 3. It consists of 

a pull-down Set block and a pull-up Reset block. When the inputs to complete the logical 

function are present, the Set block pulls down the internal node, and the output will rise. The 

Hold1 block provides the hysteresis function to hold the output high until all inputs are de-

asserted. Likewise, when a NULL wavefront is passing through the system, the Reset block pulls 

the internal node high when all gate inputs are logic 0, such that the output will be de-asserted. 

The Hold0 block provides the hysteresis function to keep the output at logic 0 until the set 

function is true [1]. 



 

 

 
Figure 1. NCL Pipeline Architecture [1]. 

 
Figure 2. THmn Threshold Gate [1]. 

 
Figure 3. NCL Gate Structure [1]. 
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2.2 Multi-Threshold NULL Convention Logic (MTNCL) 

MTNCL is an adaptation of NCL that is capable of achieving substantially lower leakage 

power, lower dynamic power, faster performance, and reduced area. This is accomplished using 

multi-threshold CMOS (MTCMOS) and the concept of power gating [5]. 

In MTCMOS, transistors are utilized that possess different threshold voltages (Vt). High-

Vt transistors are slower than standard-Vt transistors but have lower leakage current. Likewise, 

low-Vt transistors are faster than standard-Vt transistors but have higher leakage current. An 

example of MTCMOS power gating is shown in Figure 4, where a high-Vt transistor is inserted 

as either a header or footer switch between power or ground, respectively, and the low-Vt logic. 

The high-Vt transistor is controlled using an external sleep signal that allows the circuit to 

function when the sleep signal is de-asserted. The high-Vt transistor has much lower leakage than 

other transistors, enabling significant reduction of static power dissipation, since all current flows 

through that transistor. Performance is improved by utilizing low-Vt transistors for all other 

transistors, as these transistors are faster than standard-Vt or high-Vt transistors [5]. 

 
Figure 4. MTCMOS Power Gating [5]. 
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To produce an MTNCL gate, the high-Vt (circled) and low-Vt transistors are incorporated 

into an NCL gate as shown in Figure 5. The NULL wavefront is forced by the sleep signal, so 

the Reset block is not necessary and is removed to save area. For the Early Completion MTNCL 

architecture [5], input-completeness is provided by the sleep mechanism; therefore the Hold1 

block to provide hysteresis may also be removed. The Hold0 block utilizes all high-Vt 

transistors, since these are only turned on when the gate is slept during the NULL wavefront; 

therefore, performance is not reduced, but leakage current is reduced during operation. One high-

Vt transistor is implemented in every path to ground in the Set block to provide low-leakage 

during NULL wavefronts; all other Set transistors utilize low-Vt for increased speed [5]. 

 
Figure 5. MTNCL Gate Structure [5]. 

In an MTNCL pipeline, stages consist of MTNCL registers, MTNCL combinational 

logic, and slept early completion detection components, as shown in Figure 6. Each MTNCL 

register only has a data input port, a data output port, and a Boolean sleep input. The 

acknowledge RFD and RFN signals are generated and combined in the slept early completion 

detection components in a fashion similar to NCL. These signals control the flow of DATA and 

NULL through the pipeline and also provide the sleep control mechanism. When DATA input is 
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present for the current pipeline and the following pipeline stage acknowledge is RFD, the current 

stage will be unslept to allow the DATA wavefront to pass. When the current stage is slept 

during RFN, all MTNCL gates in the stage are reset to 0, which is the NULL state. 

The MTNCL slept early completion component is shown in Figure 7, which is comprised 

of MTNCL TH12 gates to detect a DATA or NULL for each register input bit, and a tree of 

MTNCL THnn gates to combine the multiple TH12 gate outputs into a single signal, which is 

then combined with the subsequent stage’s early completion component’s sleep output via a 

resettable inverted NCL TH22 gate, to generate the current stage’s early completion 

component’s sleep output. 



 

 

 
Figure 6. MTNCL Pipeline Architecture [5]. 

 

Figure 7. MTNCL Slept Early Completion Component. 
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2.1 Synchronous Test Methods 

Integrated circuits (ICs) require testing to detect faults that can occur during the 

fabrication process, such as a wire being shorted to ground (i.e., stuck-at-0) or shorted to VDD 

(i.e., stuck-at-1), to ensure correct operation. Test methods for synchronous circuit designs have 

been well-established in both literature and practice. Design For Testability (DFT) methods [4] 

are commonly employed to test circuits. This form of testing typically requires external 

equipment to both present the input patterns and measure the output patterns. Scan methods are 

frequently employed by adjusting the Device Under Test (DUT) to embed serial shift 

functionality into the registers of the circuit. By shifting data into a primary input, applying the 

appropriate number of clock periods to perform the combinational function, and then shifting 

data out of a primary output, it is possible to apply test patterns to numerous circuits inside the 

DUT and measure the responses with a low I/O count. To further improve test performance, the 

primary scan chain may be broken up into parallel scan chains. Scan chains are common choices 

for DFT due to the availability of both DFT insertion and automatic test pattern generation 

(ATPG) software [4]. 

BIST methods incorporate test validation into the DUT so that input patterns may be 

presented and outputs validated internally, without requiring external test hardware. To present 

input patterns to the DUT, linear feedback shift registers (LFSRs) are regularly used. These are 

essentially circular shift registers with XOR elements in various feedback paths to provide the 

desired input patterns. An example 3-bit LFSR circuit design is shown in Figure 8. The LFSRs 

require a reset to a known seed value and then produce a pseudorandom pattern that is 

deterministic. A depiction of the various states for the 3-bit LFSR mentioned above is shown in 

Table 1. LFSRs may be designed to present a maximal length 2n-1 test patterns, where n is the 
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number of LFSR bits. The all-0 test pattern is not possible in LFSRs unless the number of bits is 

increased and at least one of the LFSR outputs is not utilized; however, this may lead to 

additional test time as the number of possible output patterns is increased. Other methods may 

implement a larger memory structure such as read-only memory (ROM) to provide several 

specific test patterns. Designs including this may utilize DFT scan methods so that overall 

pattern counts are low and coverage high, at the expense of additional area requirements for 

memory and auxiliary circuits [4]. 

 
Figure 8. Linear Feedback Shift Register (LFSR). 

Table 1. LFSR State Table. 

State Output State Output State Output State Output 

0 001 2 100 4 111 6 110 

1 010 3 101 5 011 0 001 

To measure the outputs, several methods have been developed. Transition counting is one 

method wherein the number of transitions on the output, or where the output changes state, is 

counted and compared to the correct number of transitions assuming a correctly-functioning 

DUT. However, this may provide a false positive diagnosis because the number of transitions for 

an invalid DUT could match the number of transitions for a valid DUT. Parity bits are another 

output response validation technique in which the parity of each consecutive output is measured, 
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and the final parity of the test patterns is compared to the proper parity. This parity validation 

could yield a false diagnosis as each pattern yields a single parity bit, so two bits flipped in the 

output response would yield a good result. Multiple input shift registers (MISRs) are frequently 

utilized to provide a form of output measurement [4]. MISRs are essentially LFSRs with 

additional XOR gates inserted between every stage of the shift register with the second input tied 

to an external input. This provides a method for the input to influence the state of the LFSR. An 

example MISR is shown in Figure 9. 

 
Figure 9. Multiple Input Shift Register (MISR). 

2.2 Asynchronous Test Methods 

There are far fewer test methods for asynchronous circuit paradigms, such as NCL or 

MTNCL. Hence, traditional synchronous methods are typically modified to work with a specific 

asynchronous paradigm. Due to the limited number of asynchronous test methods, tests requiring 

additional testing equipment or significant additional on-chip circuitry are frequently used. 

DFT techniques involving scan chains have been examined to allow synchronous ATPG 

tools to be utilized with MTNCL [7]. This allows standard ATPG tools to generate low numbers 

of input vectors that yield high fault coverages. A block diagram of this DFT strategy is shown in 

Figure 10. However, this testing methodology requires testing equipment or additional integrated 
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hardware to provide the test patterns. Integrated hardware would likely consist of ROM that 

would hold the test patterns and output responses along with a controller to present the inputs, 

measure the outputs, and also validate the functionality of the circuit; this would require a large 

area overhead, especially for large pattern counts. 

 
Figure 10. Asynchronous DFT MTNCL Scan Chain Design [7]. © 2016 IEEE. 

Quiescent current testing, also known as IDDQ testing, has been designed for NCL circuits 

[8]. In this test, a number of random inputs are presented to the primary inputs of the DUT, and 

the supply current of the DUT is measured. If stuck or bridging faults are present in the circuit, 

higher current draws should be observable under certain input conditions, as shown in Figure 11. 

This form of testing requires some form of equipment or hardware to present the stimulus to the 

circuit and a sensitive measuring device, since supply current draws may be rather low. Testing 



13 

 

is slow, as the IDDQ measurements must be taken after the dynamic current draws from the 

charging or discharging of internal capacitance occur. 

 
Figure 11. IDDQ Test for Semi-Static NCL Gates (right) [8]. © 2016 IEEE. 

BIST methods have also been investigated. An asynchronous interleaved scan 

architecture was implemented in [9]. This method implemented two scan paths inside of NCL 

circuits that would generate the required alternating DATA and NULL wavefront between 

consecutive register stages, as shown in Figure 12. Two versions were designed: one consisted of 

a single long scan chain with two test pattern generators (TPGs) and output response analyzers 

(ORAs), and a second that had multiple parallel scan chains with two larger TPGs and ORAs. 

Block diagrams for these circuits are shown in Figure 13. Detailed descriptions of the TPGs and 

ORAs are excluded, but [9] does mention that these exist as external structures. Additionally, a 

controller is necessary to facilitate the interleaved nature of DATA and NULL wavefronts. 

 
Figure 12. Interleaved Scan Structure for NCL [9]. © 2016 IEEE. 
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Figure 13. Advanced Interleaved Scan Architecture for NCL BIST (a) RTS (b) STUMPS [9].  

© 2016 IEEE. 

3  Built-In Self-Test of MTNCL Circuits 

Two methods of BIST were implemented for MTNCL circuits. The first implementation 

requires less area but may result in a longer test duration; the second utilizes parallelism and 

design reuse to increase controllability and reduce test time. In this section, the two methods are 

presented, and a common architecture for using them is detailed. 

3.1 Area-Optimized MTNCL BIST Stage Implementation 

An area-optimized BIST implementation was designed that enables simple functional 

BIST with minimal area overhead. The area-optimized BIST stage, indicated by a dashed box in 

Figure 14, is essentially the complete MTNCL pipeline from the DUT, and the BIST architecture 

functions as a wrapper around the entire DUT. All the input and output ports remain the same for 

the BIST stage. Due to this, test patterns can only be applied to primary inputs, and only primary 

outputs can be measured. This may limit the controllability and observability of the DUT, 

especially as the number of pipeline stages and logic depth increases, similar to synchronous 

designs [4]. It is important to note that the DATA output component of this implementation is an 

MTNCL register; when the register’s slept early completion component de-asserts the sleep 

signal, there will be a delay before the final DATA output appears on the MTNCL register. 



 

 

 
Figure 14. MTNCL Area-Optimized BIST Stage. 

 

1
5

 



16 

 

3.2 Test-Performance-Optimized MTNCL BIST Implementation 

A test-performance-optimized BIST implementation was designed, which requires a 

larger area overhead compared to the area-optimized BIST implementation but yields higher test 

performance through parallelism of multiple BIST stages and design reuse. Contrary to the area-

optimized BIST implementation, the MTNCL DUT is parsed for pipeline stages and broken up 

into multiple BIST stages as shown below in Figure 15. Due to the structure of MTNCL pipeline 

stages, the initial and final BIST stages are slightly different than the intermediate BIST stages. 

Intermediate BIST stages consist of the MTNCL register and combinational logic for a pipeline 

stage and the following pipeline stage’s completion detection component. The initial stage also 

includes the first input completion detection component; the final stage also includes the final 

register. The inputs to each stage consist of a data input and output, ki and slpin inputs, and ko 

and slpout outputs. Once again, it is important to note that the DATA output component of the 

final stage is an MTNCL register; when the register’s slept early completion component de-

asserts the sleep signal, there will be a delay before the final DATA output appears on the 

MTNCL register. For a 2-stage MTNCL pipeline, there will be two BIST stages; intermediate 

BIST stages are required for MTNCL pipelines larger than 2-stages deep. 

 



 

 

 

Figure 15. MTNCL Test-Performance-Optimized BIST Stages. 
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3.3 MTNCL BIST Block Implementation 

To implement MTNCL BIST, traditional synchronous BIST methods were adjusted for 

compatibility with MTNCL asynchronous systems. As LFSRs are a simple and effective way to 

present a large number of input patterns, while requiring minimal additional logic, an LFSR was 

utilized to generate the BIST inputs. Since DFFs typically have both a Q and Q’ output with 

potentially slightly different timing delays for these signals, a dual-rail gating (DRG) component 

was implemented to allow for proper flow of DATA and NULL wavefronts by presenting a 

NULL wavefront when its D/N’ control signal is 0 and a DATA wavefront when its D/N’ control 

signal is 1. The output response of the BIST stages were measured with an MISR by connecting 

both the D0 and D1 rails of the circuit to inputs of the MISR to enable checking both rails 

simultaneously. Multiplexers were used to control the flow of data between standard operation 

and BIST mode. Additionally, simple Boolean logical equivalence checkers were utilized to 

control the number of input patterns presented to the DUT by gating off the LFSR clock once the 

final input pattern was presented, and then validating that the final MISR output was the 

expected value, meaning that the circuit is functioning correctly. 

A schematic of the final MTNCL BIST block architecture is shown in Figure 16 for the 

single-BIST-stage area-optimized BIST implementation and the last BIST stage of the test-

performance-optimized BIST implementation. These BIST stages have an MTNCL register for 

the data output; they do not have a completion detection component connected to the data output, 

so there is no way to ensure that valid DATA is present inherently from the DUT. Thus, a 

completion tree component is added to detect when the BIST stage data output has become valid 

DATA, and then clock the MISR. This ensures that DATA is stable when the MISR is clocked. 

The operation of the circuit is detailed below after Table 2. 



 

 

 
Figure 16. Final MTNCL BIST Block Architecture for BIST Stage with Output Register. 
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A slightly modified MTNCL BIST block architecture is shown in Figure 18. This 

architecture is utilized for all BIST stages in the test-performance-optimized BIST 

implementation except for the final stage, which requires an added completion tree component as 

shown in Figure 17. The test-performance-optimized implementation re-uses the completion 

components within the MTNCL pipeline to reduce hardware overhead. Since the internal 

completion component is directly connected to the BIST stage data output as shown in Figure 15, 

it serves as a valid function for determining when DATA arrives, and can therefore be utilized 

with the addition of only a single inverter. The operation of the circuit is detailed below after 

Table 2. 

The purpose of completion tree component is to produce a Boolean logic 1 output once 

all inputs have transitioned from NULL to DATA and to produce a Boolean logic 0 output once 

all inputs have transitioned from DATA to NULL. As a valid DATA wavefront must only have 

one of the two rails asserted, TH12 gates are utilized to determine when each dual-rail input 

signal has become DATA or NULL. A threshold-gate-based AND-tree utilizing TH44, TH33, 

and TH22 gates is then appended to merge all the input completion logic into a single final 

output that is only asserted once each input is DATA, and only de-asserted once each input is 

NULL. A completion tree component for five input bits is shown in Figure 17. 

 
Figure 17. Completion Tree Component for Five Input Bits. 



 

 

 
Figure 18. Final MTNCL BIST Block Architecture for BIST Stage with Output Combinational Logic. 
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Similarly, the purpose of the Boolean equivalence component is to assert its output once 

the inputs reach a specific Boolean condition. This component is generated to form a gate-count-

optimized AND-tree using every input bit or its complement so that only one input condition 

may assert the output. This component is paired with DFFs from an LFSR or MISR that provide 

the input bit and its complement, so no additional hardware is required for any inversions. An 

example of an equivalence component with an input pattern of 00101 is shown in Figure 19. The 

least significant four input bits are merged using a 4-input AND gate, and the most significant 

input bit is merged with this using a 2-input AND gate. 

 
Figure 19. Equivalence Component for Input Pattern of 00101. 

The DRG component is combined with the LFSR to produce a valid DATA/NULL 

wavefront, essentially enabling a common synchronous design to function with asynchronous 

circuits. The schematic of a single bit DRG component is shown in Figure 20, and the truth table 

is shown in Table 2. As RFD is Boolean logic 1 and RFN is Boolean logic 0, the D/N’ control 

signal could be connected directly to the output of completion detection components, and the Q 

and Q’ of a DFF enabled passing the proper DATA and NULL wavefronts from the output of the 

LFSR. It is important to note that the DFF should be clocked with the inverse of the D/N’ control 

signal to avoid glitches and potential data corruption in the DATA wavefront. If the same 

polarity is used, the DATA could transition to an invalid state where both the D0 and D1 rails are 

asserted for a brief moment during the shift operation of the LFSR. Using the inverse allows the 
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LFSR to shift only when NULL is present, so the DUT will only receive valid static DATA 

wavefronts following NULL wavefronts. 

 
Figure 20. Dual-Rail Gating (DRG) Component. 

Table 2. Truth Table for DRG. 

D/N’ Output Z Z’ 

0 NULL 0 0 

1 DATA A A’ 

 

To enter test mode, the circuit must first be reset. Then the test mode may be selected by 

asserting the test input. This configures the BIST stage input data multiplexer to provide inputs 

from the LFSR and DRG. The BIST stage acknowledge input signal, ki, is configured through a 

multiplexer to utilize either an inverted output from the output completion tree component in 

Figure 16 or a twice-inverted slpout signal in Figure 18, which produces the same effect. This 

enables the circuit to free run as long as valid DATA/NULL wavefronts are continuously 

provided at the BIST stage input as they are requested. Once a valid DATA wavefront arrives at 

the data output, the ki signal is transitioned to RFN to request a NULL wavefront. Likewise, 

once a valid NULL wavefront arrives at the data output, the ki signal will be adjusted to RFD to 

request a DATA wavefront. This simple circuit provides the full DATA/NULL flow required 

without the use of any actively changing control signals. Similar to how the BIST stage ki is 

controlled in an asynchronous fashion using a completion tree component or the internal 

completion detection component, the BIST stage sleep in signal, slpin, is primarily controlled by 
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the inverse of the BIST stage acknowledge output, ko. This inverted ko is merged with an OR of 

the inverted reset signal to ensure a valid state as the circuit is reset prior to test mode. This 

feedback system allows the BIST stage’s input circuitry to be slept and produce the NULL 

wavefront when RFN is requested at the BIST stage ko output. 

To enable the circuit to halt at a known test input condition, the equivalence component is 

configured to assert its output only once the LFSR’s output matches the pattern following the 

desired final input pattern. The output from this equivalence component is inverted and fed into a 

combinational logic circuit that enables clocking the DRG and LFSR components only during 

test mode. Once the pattern following the final input pattern is reached, the combinational logic 

circuit freezes the D/N’ control signal to the DRG component, providing the BIST stage with a 

static NULL data input. As the BIST stage data input never changes, the LFSR additionally is 

never clocked because the BIST stage acknowledge output, ko, is static at RFD; the equivalence 

component will never adjust its output. At this point, the inputs to the BIST stage will be frozen 

with the desired number of input patterns presented to the BIST stage. 

The MISR utilized at the data output of the DUT measures that all the DATA wavefronts 

produced from each BIST stage are logically correct. The output of the MISR is also connected 

to a Boolean equivalence component to detect that the valid final checksum signature is present 

at the output of the MISR after all of the inputs have been presented to the BIST stage from the 

LFSR. To achieve this, the LFSR’s equivalence component and MISR’s equivalence component 

outputs are ANDed with the test signal; this allows the status output to raise if the circuit is 

functional during test mode and prevent variations of the status signal during standard operation 

of the DUT. There is a possibility that through a number of potential faults, the MISRs may 

evaluate to a known good checksum even if the circuit does not function properly. This is 
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referred to as aliasing and is beyond the scope of this dissertation, but there are methods to 

handle such issues [4]. The aliasing probability of the circuit can be calculated so that the 

probability of a faulty circuit providing the MISR output pattern indicating a properly 

functioning circuit is known [4]; also, MISR length, XOR taps, and both number and order of 

LFSR input patterns may be adjusted to reduce the aliasing probability, if needed. For each new 

variation of the LFSR inputs, fault analysis must be re-run to ensure that the desired fault 

coverage is achieved. 

3.4 MTNCL BIST Top-Level Design 

For the top-level BIST design for the area-optimized BIST implementation, the circuit is 

essentially the same as the schematic shown in Figure 16. The top-level design is shown in 

Figure 21. As the area-optimized BIST functions as a wrapper around the MTNCL DUT, one 

additional input and one additional output are required. The test port is added as an input to 

control when the circuit functions in BIST mode instead of the standard operating mode, and the 

status output is added to show if the DUT successfully arrives at the final MISR output, 

indicating a good self-test. 

 
Figure 21. MTNCL BIST Top-Level Design for Area-Optimized MTNCL BIST Implementation. 

In this configuration, the ko port may be monitored to observe that the DUT is running in 

the test mode. As the LFSR continues to provide inputs to the DUT, the ko should alternate 

between RFD and RFN as the circuit free-runs, indicating that the circuit is continuing to process 

various DATA and NULL wavefronts. Once this signal becomes static, it indicates that the test 
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will either be complete soon once the final input propagates to the output or that the circuit has 

locked up, potentially due to a fault in the circuit. In the event of a long-pipelined design, there 

may still be a significant period of time until the final DATA wavefront reaches the MISR, as ko 

indicates the DUT’s response to inputs. 

Likewise, the slpout port may be monitored to observe that the DUT is providing outputs 

to the MISR. This signal will de-assert as the final output register of the DUT is unslept to 

provide DATA wavefronts to the data output and MISR and assert as the final output register of 

the DUT is slept to provide a NULL wavefront to the data output. Note that the MISR doesn’t 

validate NULL wavefronts; however, this is not needed, since all NULL wavefronts are the same 

(i.e., all rails are logic 0), and the circuit will halt operation if not able to transition back to 

NULL after any DATA wavefront. Once the slpout signal is static, the final DATA output has 

been clocked into the MISR, and the status signal indicates whether the design’s built-in self-test 

has passed. 

The top-level BIST design for the test-performance-optimized BIST implementation is 

shown in Figure 22. As the test-performance-optimized BIST implementation utilizes parallelism 

by breaking up each pipeline stage of the MTNCL design, each pipeline stage is included in its 

own BIST block in the top-level design. Additionally, the status of each is merged using an AND 

tree to show a final self-test status of all the BIST blocks. As each BIST block is capable of 

controlling itself using the BIST circuitry, the controllability and observability of the system is 

increased because each of the BIST stage data inputs and outputs are provided by an LFSR and 

measured using an MISR, respectively. 

Similar to the area-optimized version, the ko of the first pipeline stage BIST block may 

be monitored to ensure that DATA/NULL wavefronts are being presented to the pipeline stage, 
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and the slpout of the final pipeline stage BIST block may be monitored to observe that the final 

BIST block MISR is receiving DATA/NULL wavefronts. The status of DATA/NULL 

wavefronts within internal BIST blocks may be observed by adding additional external outputs 

to monitor their ko and slpout signals, but this is not required. 

 
Figure 22. Top-Level MTNCL BIST Design for Test-Performance-Optimized MTNCL BIST 

Implementation for Four-Stage MTNCL Pipeline DUT. 

4 MTNCL BIST Automation 

An automated method was implemented to import an MTNCL DUT Verilog netlist, 

automatically insert the required MTNCL BIST logic, simulate digital functionality, evaluate 

fault coverage, and iterate , by first increasing the number of test patterns and then trying different 

LFSR initial values, until either the desired fault coverage is achieved or the maximum possible 

fault coverage is obtained. This automation tool was designed using Python for netlist parsing, 

implementing all BIST component netlists and testbenches, creating simulation macros, running 

both digital and fault simulations, evaluating simulation results, and iteration to improve fault 

coverage. Mentor Graphics ModelSim and Synopsys TetraMAX were utilized for digital 

simulation and fault simulation, respectively, as these are industry-standard synchronous 

software packages. The developed MTNCL BIST automation procedure was specifically 

designed to utilize these commercial tools, although modifications to function with other 

simulators would be possible. 
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A generic flowchart outlining the high-level developed procedure is shown in Figure 23 

for a design in which the target fault coverage is capable of being obtained using only pattern 

count or LFSR seed adjustment. The details of each block are greatly expanded, and additional 

information is provided in following subsections. The subsections are broken up: one for area-

optimized mode and one for test-performance-optimized mode. 

 
Figure 23. Flowchart of High-Level Tool Procedure. 

A pipelined MTNCL design netlist is provided as input to the automation tool. This file 

must first be parsed to determine the input and output bit lengths, the number of pipeline stages, 

and what basic function block of an MTNCL pipeline each gate in the netlist belongs to: 

registers, completion detection components, or combinational logic. This is done through several 

stages of parsing the netlist. A basic flowchart of this algorithm is shown in Figure 24. The input 

netlists utilized for tested circuits were synthesized from RTL using the UNCLE toolset [2]. 

There are some slight nuances to netlists produced using this tool compared to standard MTNCL 

pipelines; the Python tool was designed to convert the UNCLE netlists into the standard MTNCL 

pipeline format. 
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Figure 24. Flowchart for Parsing Netlist. 
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Once the input netlist is presented to the automation tool, it initially parses the netlist to 

find and classify the acknowledge completion detection components, further referred to as acks, 

as these control the flow of DATA/NULL wavefronts through the design and are critical to the 

proper functionality of the BIST circuitry and DUT itself. This section of parsing is referred to as 

parsing acks. 

There are several subtypes of these ack type components. Referring back to Figure 7, the 

left-most components in which both rails of a dual-rail signal are connected are referred to as 

input subtypes. These consist of TH12m gates in standard MTNCL pipelines. However, UNCLE 

uses an NCL-based input completion detection circuit composed of OR2 gates (functionally 

equivalent to TH12 gates) for the first pipeline stage. UNCLE may also utilize a TH33w2, 

classified as an input subtype, to merge a single dangling dual-rail signal into the AND tree to 

reduce area. To ensure that none of these gates are actually utilized as combinational logic 

components, the inputs of the input subtype must have matched net names after the first 

character; UNCLE utilizes a “t_signal” and “f_signal” to denote D1 rail and D0 rail, respectively, 

where the “_signal” must be matched and the “signal” is the dual-rail name. 

Following these dual-rail detectors is the threshold-based AND trees consisting of 

TH22m, TH33m, and TH44m gates, potentially with their NCL equivalents as used by UNCLE 

for the first pipeline stage. These gates are assigned a tree subtype. 

The primary output stage of handshaking MTNCL completion components is a TH22ir, 

or a TH22r for the last stage of an UNCLE design, and is assigned an output subtype. In the gate 

name, r refers to the gate including a reset input to initialize the gate output to 0, and i means that 

the gate output is inverted. These merge the final output of the threshold-based AND tree, shown 
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in Figure 17, with the output from the following pipeline stage’s acknowledge signal to enable 

asynchronous handshaking. 

UNCLE additionally uses inverters in certain MTNCL architectures; if the input to an 

inverter is the output of a completion detection component, it is classified as an inv subtype. 

Once parsing ack structures is complete, the registers of the MTNCL design must then be 

parsed for the reg type. UNCLE also utilizes an NCL-based output register comprised of TH22r 

gates for the output stage. These are grouped and checked for consistency amongst other TH22r 

gates to ensure that a “t_signal” and “f_signal” are present for each dual-rail signal where 

“signal” is a common dual-rail net name. As each of these is for a single rail of a dual-rail signal, 

these are given a subtype of 1 representing the total signal count of inputs to the register. The 

remainder of registers are comprised of drlatnm gates; these are classified as a reg type with a 

subtype of 2, as each dual-rail register has both the D1 and D0 inputs.  

As a safeguard, the sum of all reg types is compared against the count of all ack types 

with input subtypes. This helps ensure that both the acknowledge structure and register structures 

were properly parsed; a warning is placed in the log file if these quantities don’t match. Once all 

these other classifications have been made, all remaining gates are classified as a logic type. 

Due to difficulties managing the large number of assignments produced during synthesis, 

all of the assignments found in the netlist are down-selected to a single net name and replaced 

throughout the entire design. To further complicate this process, the order of net assignment and 

multi-net assignments can cause difficulties; nets may have multiple non-sequential assignments 

to other nets. A dictionary is created from each assignment structure, and net name priority is 

filtered to register inputs, as these dual-rail net names must match for both rails per the parsing 

implementation. The dictionary is iterated upon and restructured until only register input net 
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names, taking priority, or other logical net names are remaining in the design without any 

references to any other assignments. The assignment structures are adjusted so that they are 

commented out in any future exported netlists, as only the primary assignment net name that had 

priority is necessary. Then, all gates are iterated upon to remove any non-primary assignments in 

the structural port mapping and replace those net names with primary assignments. 

Once the assignments are replaced, the pipeline stages are parsed to determine stage 

order. The primary handshaking signals coming from ki backwards towards ko passing through 

the ack output subtypes are determined. These are then reversed to present the parsing algorithm 

with an index-based sleep list from ack outputs that properly represents the sleep signals 

provided to various stages of the pipeline. Index zero would be the first pipeline stage, and index 

one would be the second pipeline stage. This would continue for all stages in the pipeline. 

All gates are then assigned a stage using this sleep list. Any reg or logic types have a 

pipeline stage assigned equal to the matching index in the sleep list of their sleep pin because 

these components are slept by their pipeline stage’s early completion component. The output 

registers utilized by UNCLE do not have a sleep pin as they are NCL-based; these are 

automatically assigned to the last pipeline stage. Any ack types with input or tree subtypes are 

assigned an index equal to the matching index plus one in the sleep list of their sleep pin because 

these components are slept from the preceding pipeline stage. As UNCLE utilizes an NCL-based 

early completion component for the initial pipeline stage, these are assigned a stage of 0 if they 

do not have a sleep pin. The ack type output subtypes are assigned a stage equal to the matching 

index in the sleep list of their output pin as these components sleep their own pipeline stage. 

All UNCLE-based pipeline structures are then converted to the standard MTNCL 

pipeline structure shown in Figure 6. The ack type input subtypes OR2 gates are converted to 
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TH12m gates with the sleep pin connected to slpin, as these are only present in the first pipeline 

stage. Likewise, the TH33w2 gates are converted into TH33w2m gates. For ack type tree 

subtypes with NCL gates, these are adjusted to their MTNCL variation: a TH22m for a TH22, a 

TH33m for a TH33, or a TH44m for a TH44. Once again, these will have sleep inputs connected 

to the slpin signal. For the final pipeline stage, the ack type output subtype TH22r gate is 

replaced with a TH22ir gate to remain consistent in convention, and any inverters in the ack 

structures are removed. The output register TH22r gates are replaced with drlatnm gates; each 

pair of complimentary TH22r gates for the dual-rail signal are merged into this single 

component. 

At this point, the function and structure of all components inside the MTNCL design are 

known and understood, so the various MTNCL BIST automation flows are possible. Without 

this parsing step, potential issues could arise due to the nuances employed by the UNCLE tool 

flow. 

4.1 Area-Optimized Implementation Automation 

A flowchart detailing the automation for the area-optimized MTNCL BIST 

implementation is shown in Figure 25. The inputs required are the actual MTNCL netlist, desired 

fault coverage, and area-optimized mode selected. Additionally, initial number of test patterns, 

maximum number of test patterns, initial LFSR seed, and maximum number of LFSR seeds can 

also be specified as optional inputs; otherwise, they default to 5 initial patterns, 2n-2 max 

patterns, where n is the number of BIST stage inputs, a starting LFSR seed of binary 1, and 2 for 

maximum number of LFSR seeds, such that one additional seed other than the initial binary 1 is 

tried. The netlist is then parsed as previously mentioned. An iterative loop is then entered, in 

which digital and fault simulations are performed, and the final fault coverage is compared to the 
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desired fault coverage until either the desired fault coverage is achieved or the maximum number 

of patterns is reached. If desired fault coverage is not met, another iterative loop is entered that 

randomly adjusts the LFSR initial seed until either the desired fault coverage is achieved or the 

maximum number of seeds is reached. Once desired fault coverage is achieved, or the maximum 

number of patterns and initial seeds are analyzed, the final design is output, along with the 

additional hardware, simulation macros, and analysis of fault coverage. If the target fault 

coverage was not met, the final design is the last design tested, which may not be the one with 

the best fault coverage. In this case, the designer should check the end of the log file to determine 

the maximum fault coverage achieved by any of the designs analyzed, and then rerun the tool 

with this maximum achievable fault coverage as the desired fault coverage, in order to output the 

best design. 
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Figure 25. Flowchart for Area-Optimized MTNCL BIST Implementation Automation. 
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To create the various equivalence hardware, the LFSR and MISR outputs of a golden 

simulation must be run for the desired number of patterns. As digital simulation is an efficient 

manner of calculating theses values, a base BIST stage, block, and testbench is initially created. 

The architecture for a base BIST block is shown in Figure 26 for the area-optimized 

implementation where the output of the BIST stage wrapper is always a register. Although it 

appears similar to the final BIST block shown in Figure 16, there are several key differences. 

Primarily, the equivalence circuits do not yet exist for these designs, as the final LFSR and MISR 

output patterns are currently unknown. Although the MISR outputs are not connected to any 

hardware, they are monitored during the simulation. 

Since TetraMAX is a cyclic fault simulator, it is incapable of properly handling the 

asynchronous DATA and NULL wavefronts unless both the changing inputs and outputs occur 

in the same cycle; additionally, the DATA wavefront must be provided last so that the simulator 

may settle on the proper outputs. To enable this, the base BIST block requires both the input and 

output to transition only once during a cycle through the use of the added TH22 threshold gate 

that conjoins the BIST block’s completion tree component’s inverted output with the ko output 

from the BIST stage and feeds this back into the ki for the BIST stage. Essentially, this ensures 

that the BIST block will not request a NULL wavefront until after a valid DATA wavefront has 

appeared at the output, propagating from the static DATA input. To further constrain the system 

with a static DATA input per cycle, the DRG D/N’ control signal is taken from this ki as well 

and inverted for the LFSR clock. If multiple DATA transitions occur in a single cycle, as in the 

case where inputs are provided as soon as requested, the TetraMAX functional simulator may 

produce invalid results compared to the golden simulation; this results in an invalid fault grading 

result. 



 

 

 
Figure 26. Base MTNCL BIST Block Architecture for BIST Stage with Output Register. 
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Additionally, a simulation macro for digital simulation is written, which includes 

measuring the outputs of the LFSR and MISR at the desired input and output pattern count along 

with the test time at which these outputs occur. However, this test time is not utilized by the tool. 

Once the final output count is reached, the simulation is stopped. This macro is run in the digital 

simulator, and the simulation log is checked once the simulation process closes to validate that 

the simulation completed successfully and to ensure that the LFSR pattern and MISR pattern are 

present in the log. 

Once the LFSR and MISR pattern are known, the equivalence modules are created during 

the process of writing the module BIST stage, block, and testbench. The architecture for the 

module BIST block produced during the area-optimized implementation is shown in Figure 27. 

This architecture is a fusion of the Base and Final MTNCL BIST Block architectures. The LFSR 

equivalence circuit is produced to match the input pattern following the desired final input count 

so that the inputs will be frozen at a NULL wavefront between these two patterns, presenting the 

desired number of inputs to the BIST stage. The two inverters, AND, and OR gates connected to 

LFSR equivalence component enable this function; once the final pattern is reached, the LFSR is 

no longer clocked. Additionally, the D/N’ DRG control signal remains low, providing a static 

NULL wavefront at the BIST stage input. 

As the module BIST block architecture will be utilized for fault simulation by 

TetraMAX, it includes the constrained acknowledge signals merged with the TH22 gate and 

utilizes the BIST stage ki for the gating mechanism for the LFSR and DRG control signals. This 

ensures that only one DATA input will be presented to the BIST stage during each fault 

simulation cycle, as required by TetraMAX for fault simulation. 

 



 

 

 
Figure 27. Module MTNCL BIST Block Architecture for BIST Stage with Output Register. 
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A macro, similar to the initial base BIST block simulation macro, is created for the 

module digital simulation. Instead of outputting the LFSR and MISR patterns at a specified input 

or output count, they are measured and recorded once the simulation has completed. This occurs 

once the final input DATA and NULL wavefronts are presented to the BIST stage, and once the 

circuit has reached a steady state after the final DATA and NULL wavefronts appear at the 

output. Additionally, all ports of the BIST stage are monitored, using a vcd dumpports command, 

and output to a VCD file. This creates a file structure that is checked prior to fault simulation to 

ensure that the digital simulation, referred to as the golden simulation, and functional fault 

simulation match. If the golden simulation and functional fault simulation do not match, any 

fault analysis may be invalid because nets may not transition as expected, and therefore any 

faults may not propagate correctly. Essentially, this file includes the entire set of results of the 

BIST stage during digital simulation; input value states, output value states, and all state 

transition times are recorded for all ports of the BIST stage. This macro is run in the digital 

simulator, and the simulation log is checked once the simulation process closes to validate that 

the simulation completed successfully, and to ensure that the final LFSR pattern and MISR 

pattern match the desired values that were previously generated during the base BIST block 

simulation. 

Now that the MTNCL BIST block architecture including the equivalence circuitry is 

implemented and simulated digitally, a TetraMAX fault simulation macro is written. The models 

and netlists are read into the simulator. It is important to note that the version of TetraMAX 

simulator utilized was not capable of simulating behavioral models in Verilog. Thus, any 

behavioral models provided in the UNCLE toolset and utilized for MTNCL synthesis were 

adjusted to use a dataflow representation utilizing assignments. The fault models are built, and a 
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digital simulation is run inside TetraMAX and compared to the ModelSim digital simulation’s 

VCD file. The fault grading simulation is then run, and the fault summary is recorded. 

Although the fault simulation may have run, several things must be checked to ensure 

that it is valid. If the TetraMAX digital simulation matches with the ModelSim digital 

simulation, then the actual fault analysis should be valid since the circuits’ behaviors match. If 

there is a mismatch between simulations, the fault simulation is disregarded, and the algorithm 

stops; additional fault simulations will incur the same issues. This should only happen if either 

model is not valid for use with the TetraMAX digital simulator, as mentioned above, or if there 

is an error in the DUT or BIST circuitry that does not follow standard MTNCL conventions. 

If the fault simulation validly completes, then all fault summary information is parsed and 

utilized to calculate fault coverage. This includes the detected faults (DT), possibly detected 

faults (PT), undetectable faults (UD), ATPG untestable faults (AU), not detected faults (ND), 

and total faults. DT faults include faults that TetraMAX was able to completely evaluate as being 

detected with the present set of inputs. PT faults are evaluated when the good digital simulation 

values are known, but the faulty machine simulation resulted in an unknown state (X). UD faults 

are faults that cannot be tested and may be due to unused outputs, pins that are statically tied to 0 

or 1, may have controllability or observability limitations, or may have redundant logic that 

would mask the actual fault. AU faults are faults that cannot be controlled or observed due to 

constraints utilized during fault simulation or faults regarding non-scan sequential devices. As 

these constraints and devices that would incur this are not utilized with this tool or MTNCL, 

faults of this type have not been observed. ND faults are faults that were not detected during fault 

simulation and may occur due to a lack of controllability or observability based on the current 

input pattern set. Total faults represent the total number of faults simulated. 
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The fault coverage is then calculated using the same method that TetraMAX uses, as 

shown in Eq. 1. As PT faults have a 50% chance of being detected in a binary system, they are 

assigned a weight of 0.5. None of the other fault types are utilized in this calculation, although 

they are recorded in the simulation log for preservation. Although TetraMAX directly outputs 

this fault coverage, additional calculation is necessary for the test-performance-optimized 

implementation, so the calculation is performed for the area-optimized implementation as well. 

𝐹𝑎𝑢𝑙𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠 + 0.5 ∗ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠
 ( 1 ) 

If the calculated fault coverage meets or exceeds the desired fault coverage, the tool 

proceeds to write the final BIST stage, block, and testbench, and the top-level design. If the 

desired fault coverage is not met, then the tool checks to see if the maximum number of patterns 

has been reached. If this number of patterns is not yet reached, the tool doubles the pattern count 

and repeats the entire process. By default, the maximum number of patterns is equal to 2n-2, 

where n is the number of inputs bits to the BIST stage. For a simple feed-forward design with no 

feedback or state memory, this will practically produce the maximum fault coverage possible 

with the BIST architecture. For a design that may include a state machine or has internal 

feedback, additional input patterns could potentially increase fault coverage. If a maximum 

pattern count parameter is specified in the tool, then this number may be increased to allow 

repeated iterations of the LFSR patterns presented to the circuit; however, it will be limited to the 

maximum of the two values because the LFSR must be at least as long as the number of input 

bits for the BIST stage for the circuit to function. This allows the output length of the LFSR to be 

larger than the number of input bits; the upper bits of the LFSR are only utilized by the 

equivalence hardware and do not pass through the DRG or multiplexers to the BIST stage. 
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If the tool has reached the maximum number of patterns and the desired fault coverage 

still hasn’t been achieved, then the tool checks to see if the maximum number of LFSR seeds has 

been reached. The LFSR seed is the starting LFSR value. Until this condition check is reached, 

0x1 is utilized for the LFSR seed value when the pattern numbers are increased. When the LFSR 

seed is adjusted, a random number is generated based upon the current number of seeds utilized 

and the length of input bits to the stage. This random number must be an integer between one 

and 2n-1, where n is the number of output bits of the LFSR. This ensures that a non-zero value is 

utilized to satisfy the requirements of the LFSR. Like the maximum number of LFSR patterns, 

the maximum number of seeds is an additional input parameter that may be adjusted; a default of 

two seeds is utilized to allow for one seed change, which may enable the user to determine if the 

fault coverage is significantly impacted by the order of patterns presented to the inputs. Both the 

initial pattern count and initial seed may also be specified in the software. This enables the 

control of both the starting and ending points of the fault simulation for greater control. 

Regardless of the status of the fault coverage once the maximum number of seeds has 

been reached, the tool proceeds to write the final BIST stage, block, and testbench and the top-

level design. These files are considered the primary outputs of the tool, as these files include the 

design of the area-optimized MTNCL BIST implementation. The obtained fault coverage of the 

MTNCL BIST design is recorded in the output log; in the event the desired fault coverage was 

not obtained, the MTNCL BIST design still reaches some level of fault coverage. If this is near 

the desired fault coverage, the user may find this number acceptable. Alternatively, all the output 

files may continue to be adjusted for manual tuning by the user, if desired. To aid in this task, the 

various simulation macros for both digital and fault simulation are maintained to allow for 

alterations and validation of the results. 
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4.2 Test-Performance-Optimized Implementation Automation 

A flowchart detailing the automation for the test-performance-optimized MTNCL BIST 

implementation is shown in Figure 28. This algorithm is similar to the algorithm utilized for the 

area-optimized MTNCL BIST implementation. However, several key differences exist; the 

pipeline of the MTNCL DUT is parsed and separated to form multiple BIST stages; these BIST 

stages are iterated over for the digital and fault simulations. Additionally, each BIST stage except 

for the final BIST stage will utilize a variant of the MTNCL BIST block architecture to reduce 

component count by reusing the internal completion detection component. The calculation of 

fault coverage is adjusted, as shown in Eq. 2, to account for all stages in parallel. 

The required inputs to the tool are the MTNCL netlist, desired fault coverage, and test-

performance-optimized mode selection. Additionally, initial number of test patterns, maximum 

number of test patterns, initial LFSR seed, and maximum number of LFSR seeds can also be 

specified as optional inputs; otherwise, they default to 5 initial patterns, 2n-2 max patterns, where 

n is the number of BIST stage inputs, a starting LFSR seed of binary 1, and 2 for maximum 

number of LFSR seeds, such that one additional seed other than the initial binary 1 is tried . The 

netlist is then parsed as previously detailed. The original MTNCL design is then split into 

multiple stages where BIST stages are formed from the original MTNCL pipeline structure as 

shown in Figure 15. As previously mentioned, all BIST stages between the first and last BIST 

stage include the current pipeline stage’s register and combinational logic and the following 

pipeline stage’s slept early completion component. The first and last BIST stages are slightly 

different – the first BIST stage includes these components in addition to the input slept early 

completion component, and the last BIST stage includes these components in addition to the 

output register. 
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Figure 28. Flowchart for Test-Performance-Optimized MTNCL BIST Implementation 

Automation. 
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From the MTNCL pipeline structure in the MTNCL DUT, a base BIST stage, block, and 

testbench are created along with a macro to enable the digital simulation of this design for each 

BIST stage in the design. In the test-performance-optimized MTNCL BIST implementation, two 

varieties of BIST block architectures exist to utilize three types of BIST stages. The final BIST 

stage includes an output register and thus utilizes the base MTNCL BIST block architecture for 

BIST stages including output registers, shown in Figure 26.  

However, the first and all other BIST stages output combinational logic and a slept early 

completion component and thus utilize the base MTNCL BIST block architecture for BIST 

stages including output combinational logic shown in Figure 29. The primary difference in this 

architecture is that the BIST stage slpout signal is inverted once to clock the MISR instead of 

adding an additional completion tree component with inputs connected to the BIST stage data 

output. As with the area-optimized MTNCL BIST implementation, the base MTNCL BIST block 

architecture for BIST stages including output combinational logic, includes a BIST stage 

acknowledge input from a TH22 threshold gate with inputs coming from the BIST stage ko and 

twice-inverted slpout to constrain the system so that only one DATA wavefront is presented to 

the BIST stage. Essentially, this ensures that the BIST block will not request a NULL wavefront 

until after a valid DATA wavefront has appeared at the output, propagating from the static 

DATA input. This acknowledge input is also utilized by the DRG and LFSR gating components 

to further constrain the system. If multiple DATA transitions occur in a single cycle, as in the 

case where inputs are provided once requested, the TetraMAX functional simulator may produce 

invalid results compared to the golden simulation; this results in an invalid fault grading result. 

 



 

 

 
Figure 29. Base MTNCL BIST Block Architecture for BIST Stage with Output Combinational Logic. 
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The digital simulation macro is then run to digitally simulate the design. The digital 

simulation output log is parsed and validated to ensure that it ran properly; the LFSR and MISR 

patterns for the final input and output patterns presented to the BIST stage are included in this 

log. 

The module BIST stage, block, and testbench are then created, including the necessary 

equivalence modules for the parsed LFSR and MISR patterns, along with a module digital 

simulation macro. Once again, two types of architectures are utilized with the test-performance-

optimized implementation. For the final BIST stage, the module MTNCL BIST block 

architecture for BIST stage with output register, shown in Figure 27, is utilized. The module 

MTNCL BIST block architecture for BIST stages with output combinational logic, shown in 

Figure 30, is utilized for all other BIST stages in the design. Once again, the key difference 

between these two architectures is that the additional completion tree component is replaced with 

an inverter as the internal BIST stage slept early completion detection component fulfills the 

completion detection purpose. 

The module BIST block architecture is a fusion of the base and final BIST block 

architectures; the added combinational logic connected to the LFSR equivalence components 

prevents the LFSR from being clocked and freezes the DRG output to the NULL state once the 

LFSR reaches the input pattern following the final desired input to the BIST stage. Additionally, 

the MISR equivalence component asserts its output once the valid MISR output is produced. The 

outputs of the two equivalence circuits are ANDed together with the test mode, so that the final 

status output will assert once the final input pattern has been presented, if the valid MISR output 

is obtained during test mode. 

 



 

 
Figure 30. Module MTNCL BIST Block Architecture for BIST Stage with Output Combinational Logic. 
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The module digital simulation macro created includes measurements to ensure that at the 

end of the simulation, once all inputs and outputs are static, the LFSR and MISR patterns are 

equivalent to the base digital simulation, indicating that the equivalence component generation 

was correct and circuit functionality is valid. Additionally, all ports of the BIST stage are 

monitored using a vcd dumpports command and output to a VCD file. This creates a file 

structure that is checked prior to fault simulation to ensure that the digital simulation, referred to 

as the golden simulation, and functional fault simulation match. 

The module digital simulation is run, and the simulation log output is parsed to ensure 

that the simulation successfully completed. If the LFSR and MISR patterns match the previous 

digital simulation, then a TetraMAX fault simulation macro is written; this macro reads in the 

modules and netlists into the simulator. The fault models are built, and a digital simulation is run 

inside TetraMAX and compared to the ModelSim digital simulation’s VCD file. The fault 

grading simulation is then run, and the fault summary is recorded. It was noted that for large 

designs, fault simulation may take less time for the test-performance-optimized MTNCL BIST 

implementation as less memory is necessary because the design size in each simulation is 

reduced. However, more fault simulations may be necessary because fault simulations must be 

run for each BIST stage. Once again, the fault simulation output log is parsed to ensure that the 

fault simulation successfully completed and yielded valid fault information for the BIST stage. 

This includes the detected faults (DT), possibly detected faults (PT), undetectable faults (UD), 

ATPG untestable faults (AU), not detected faults (ND), and total faults for each BIST stage.  

The above process is repeated for each BIST stage in the design. The fault coverage is 

then calculated using the same method that TetraMAX uses; the formula is shown below. As PT 

faults have a 50% chance of being detected in a binary system, they are assigned a weight of 0.5. 
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However, for the test-performance-optimized MTNCL BIST implementation, the entire design is 

considered as a single entity; all BIST stages are included together as one complete design. All 

detected faults are summed together from each BIST stage and added to the half-weighted 

summation of possibly detected from each BIST stage, and then this value is divided by the 

summation of the total faults of each BIST stage. This is not output from TetraMAX, although it 

does output the individual fault coverage of each BIST stage separately. 

𝐹𝑎𝑢𝑙𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠 + 0.5 ∗ ∑ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠

∑ 𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠
 ( 2 ) 

If the calculated fault coverage meets or exceeds the desired fault coverage, the tool 

proceeds to write the final BIST stage, block, and testbench for each BIST stage and the top-

level design. If the desired fault coverage is not met, then the tool checks to see if the maximum 

number of patterns has been reached. This occurs for each of the BIST stages. If this number of 

patterns is not yet reached, the tool doubles the specific BIST stage pattern count and repeats the 

entire process. By default, the maximum number of patterns for each BIST stage is equal to 2n-2, 

where n is the number of input bits to that specific BIST stage. If maximum pattern count 

parameter is specified in the tool, then this number may be increased to allow repeated iterations 

of the LFSR patterns presented to the circuit; however, it will be limited to the maximum of the 

two values because the LFSR must be at least as long as the number of inputs bits for the BIST 

stage for the circuit to function. This allows the output length of the LFSR to be larger than the 

number of inputs bits; the upper bits of the LFSR are only utilized by the equivalence hardware 

and do not pass through the DRG or multiplexers to the BIST stage. 

If the tool has reached the maximum number of patterns for a BIST stage, and the desired 

fault coverage still hasn’t been achieved, then the tool checks to see if the maximum number of 

LFSR seeds has been reached. The LFSR seed is the starting LFSR value. Until this condition 
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check is reached, 0x1 is utilized for the LFSR seed value while the pattern numbers are 

increased. When the LFSR seed is adjusted, a random number is generated based upon the 

current number of seeds utilized and the length of input bits to the stage. This random number 

must be an integer between one and 2n-1, where n is the number of output bits of the LFSR for 

the BIST stage. This ensures that a non-zero value is utilized to satisfy the requirements of the 

LFSR. Like the maximum number of LFSR patterns, the maximum number of seeds is an 

additional input parameter that may be adjusted; a default of two seeds is utilized to allow for 

one seed change, which may enable the user to determine if the fault coverage is significantly 

impacted by the order of patterns presented to the inputs. Both the initial pattern count and initial 

seed may also be specified in the software. This enables the adjustment of both the starting and 

ending points of the fault simulation for greater control. 

For the test-performance-optimized MTNCL BIST implementation, each BIST stage will 

continue to simulate in an iterative loop until all BIST stages have reached their maximum 

pattern and seed count, or if the calculated fault coverage met or exceeded the desired fault 

coverage. This allows some stages to improve the fault coverage above the desired fault 

coverage if other BIST stages have a harder time achieving the desired fault coverage due to 

limited controllability or observability. 

Regardless of the status of the fault coverage once the maximum number of seeds has 

been reached, the tool proceeds to write the final BIST stage, block, and testbench and the top-

level design. These files are considered the primary outputs of the tool, as these files include the 

design of the test-performance-optimized MTNCL BIST implementation. The obtained fault 

coverage of the MTNCL BIST design is recorded in the output log; in the event the desired fault 

coverage was not obtained, the MTNCL BIST design still reaches some level of fault coverage. 
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If this is near the desired fault coverage, the user may find this number acceptable. Alternatively, 

all the output files may continue to be adjusted for manual tuning by the user, if desired. To aid 

in this task, the various simulation macros for both digital and fault simulation are maintained to 

allow for alterations and validation of the results. 

5 Experimental Results 

5.1 MTNCL Design Preparation 

A number of circuit netlists were used to evaluate the developed automation flow. 

UNCLE [2] was utilized to synthesize the MTNCL circuits from synchronous RTL. 

To select the designs for evaluation, the ISCAS ‘85 combinational logic circuits [10] 

were selected. These circuits are available as structural Verilog netlists. UNCLE requires a linear 

pipeline design with a minimum of two C/L stages so that an MTNCL pipeline, such as one 

shown in Figure 6, may be created. To implement this linear pipeline functionality into these 

purely combinational circuits, a clk input port was added to enable a synchronous design, an 

input register was added before the combinational logic, and two registers connected in series 

were added to the output of the combinational logic. The default flow of UNCLE synthesis was 

adjusted to further balance these pipelines; Synopsys Design Vision was utilized in the UNCLE 

toolflow, and the synthesis template scripts used by Design Vision within UNCLE were 

adjusted. The input and output register stages are still required, so the set_dont_retime command 

was used on all registers that have net names matching the top-level design input or output ports, 

excluding the clock signal. The register stage immediately following the combinational logic is 

allowed to be adjusted in the design; the optimize_registers command with a 

minimum_period_only option was utilized to appropriately balance the pipeline. This would 

yield a 2-stage pipeline design with input and output registers, and one internal register. Aside 
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from this optimization, all standard synthesis requirements of UNCLE were left intact to avoid 

breaking the UNCLE tool during fast MTNCL synthesis. 

During UNCLE synthesis, the majority of the ISCAS ‘85 benchmark pipelined 

combinational logic designs were able to synthesize into functional MTNCL designs. However, 

some warnings and errors were observed during UNCLE synthesis; these are shown in Table 3. 

The c17 design had a complete synthesis without any warnings. After synthesis, UNCLE runs a 

simulation to validate that the design possesses basic functionality and looks for issues within the 

simulation. Six of the ten synthesis attempts resulted in warnings for input transition values or 

output capacitive loads during simulation; these warnings are related to a lack of buffering. In 

MTNCL, the sleep nets of the MTNCL pipeline stages may have large capacitive loads as the 

number of gates in that pipeline stage increase. For UNCLE fast MTNCL synthesis, the net 

buffering option must be disabled. However, these designs still properly simulate in a digital 

simulator such as ModelSim. Additional buffering could be added to the design if slow 

performance is observed during transistor-level simulation. Three designs failed UNCLE 

synthesis, as shown in Table 3, since UNCLE detected a non-linear pipeline inside the design. 

These designs were excluded from the evaluation. 

Additionally, a few other designs were evaluated. An 8-bit adder and a 32-bit multiplier 

were selected as generic circuits. These two designs were implemented as 2-stage pipelines using 

behavioral RTL. UNCLE was utilized to synthesize the designs into MTNCL. Pipeline balancing 

was not implemented for these designs. Table 4 provides area measures for all designs, where 

gates are the number of MTNCL gates in the design, and area is calculated using the UNCLE 

library’s gate information. Although c6288 is a 16-bit multiplier, the 32-bit multiplier has a 

slightly smaller area due to optimization enabled by RTL versus the structural c6288 netlist (i.e., 
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the 32-bit multiplier uses optimized 4-gate full adders [1], whereas c6288 full adders are 

decomposed into basic logic functions, such as AND and NOR, each requiring at least 2 

MTNCL gates). 

Table 3. UNCLE Benchmark Synthesis Summary. 

ISCAS ‘85 Design UNCLE Status Notes 

c17 Pass Success 

c432 Warning Input transition value 

c499 Warning Input transition value 

c880 Warning Input transition value, output capacitive load 

c1355 Warning Input transition value 

c1908 Warning Input transition value 

c2670 Error Non-linear pipeline detected 

c3540 Error Non-linear pipeline detected 

c5315 Error Non-linear pipeline detected 

c6288 Warning Input transition value, output capacitive load 

 

Table 4. MTNCL Designs Evaluated with BIST Automation. 

Design Gates Area 

c17 38 153 

c432 581 2403 

c499 676 2200 

c880 1030 4502 

c1355 1276 5632 

c1908 1018 4471 

c6288 5320 23731 

adder8 177 621 

mult32x32 7588 21523 
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5.2 General MTNCL BIST Automation Procedure 

For both the area-optimized and test-performance-optimized implementations, three test 

cases of the MTNCL BIST automation were performed for each design. The initial test case had 

a target fault coverage of 75%, no maximum pattern count (the default), and no additional seeds 

besides the initial one. The number of input patterns was initialized to 5. This would enable the 

circuit to utilize the maximum number of patterns for each BIST stage, 2n-2 patterns, where n is 

the number of input bits to that specific BIST stage, provided the target fault coverage was not 

reached first. This run was primarily performed to ensure that the fault simulation would 

complete in a short amount of time. 

For the second test case, a target fault coverage of 100% was utilized. The number of 

patterns was initialized to 5, while the maximum number of input patterns was set to 1E6 

patterns. For any BIST stage with fewer than 20 input bits, this would utilize all possible input 

patterns, with some patterns repeated. For BIST stages with 20 input bits or more, only 1E6 

patterns would be tested. Similar to the previous test case, the number of seeds was limited to 

one and would thus use only the initial seed pattern. This test case was utilized to obtain a 

maximal fault coverage obtainable by each design within 1E6 patterns and using only the initial 

seed. This was used to evaluate performance as the number of input patterns increases. The test 

time increases significantly as the design size and pattern count increases; a maximum pattern 

count was set to essentially limit the test time required for the large designs, specifically c6288 

and mult32x32. 

The third test case had a target fault coverage of 100%, a pattern count set to exactly 

1000 patterns (i.e., 1000 starting pattern count and 1000 maximum pattern count), and a 

maximum seed count set to 1000 seeds. The seed was initialized to the default initial seed. The 
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1000 static pattern count was selected after reviewing results from the other two test cases; most 

designs converged to a moderately high fault coverage within 1000 patterns. Although this does 

not run an exhaustive simulation for all possible LFSR seeds, this does give insight into how 

fault coverage and test time may vary across different seeds; an untested seed could potentially 

produce better fault coverage. 

All designs were able to run until successful completion, either obtaining the desired fault 

coverage or iterating through all patterns and seeds. For the 75% fault coverage simulations, the 

desired fault coverage was obtained by all designs. During the 100% fault coverage simulations 

with pattern count variations, none of the designs were able to obtain target fault coverage, as 

expected; TetraMAX identified ND faults in all designs. Likewise, none of the designs were able 

to achieve 100% fault coverage by varying the initial seed using 1000 patterns. The large 

designs, consisting of thousands of gates, took a significantly longer time to run than the small 

designs. 

5.3 Area-Optimized MTNCL BIST Results 

All of the designs were initially run through the area-optimized MTNCL BIST 

automation tool using the first test case of 75% fault coverage. Since this test case had a 

maximum pattern count set to 0, only LFSR lengths up to the BIST stage input length would be 

generated. This would provide the minimum sized BIST hardware required for this automation 

task; increased pattern counts could yield slightly larger designs as the LFSR length and 

equivalence circuits would increase in size. The output BIST designs were imported into 

Synopsys Design Vision, ungrouped, and analyzed for area. Libraries utilized were generated 

from the information provided in the UNCLE toolset. The default non-BIST designs were also 
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run through the same procedure so that the BIST insertion area impact could be determined; the 

comparison is shown in Table 5. These and all further results are arranged by design area. 

For the small designs consisting of less than 200 gates, a large area impact was observed 

of 100% or greater. This occurs because the ratio of BIST stage input bits to logic is rather high, 

and a significant area is required to generate the additional BIST hardware compared to the 

combinational logic. For the medium-sized designs of 200-1300 gates, an area impact of 

approximately 30-40% was generally observed. The c499 design had a significantly larger area 

overhead due to an increased ratio of BIST stage inputs to actual combinational hardware. For 

large designs greater than 1300 gates, area overheads ranging from 14% down to 6.4% were 

realized. Overall, the area overhead is dependent on the ratio of BIST stage input length to 

combinational logic. For a coarsely pipelined design with few BIST stage inputs, the area 

overhead will generally be low. Likewise, designs with a small combinational logic to BIST 

stage inputs ratio will incur large area penalties. 

Table 5. Area-Optimized MTNCL BIST Area Comparison. 

Design Area-Optimized BIST 

Name Gates Area Gates Area 
% Area 

Overhead 

c17 38 153 90 355 132.0% 

adder8 177 621 336 1245 100.5% 

c499 676 2200 1100 3891 76.9% 

c432 581 2403 829 3317 38.0% 

c1908 1018 4471 1358 5822 30.2% 

c880 1030 4502 1520 6370 41.5% 

c1355 1276 5632 1700 7323 30.0% 

mult32x32 7588 21523 8328 24513 13.9% 

c6288 5320 23731 5698 25260 6.4% 
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The fault coverage results from the area-optimized first test case are shown below in 

Table 6. In the table, the fault coverage column lists the fault coverages obtained from fault 

simulation as a percentage. The patterns column indicates the number of input patterns simulated 

to reach the specific fault coverage. The test time represents the final test time for the circuits to 

complete the BIST function in the digital simulation nanosecond timescale. The run time is the 

summation of the base and module digital simulation time as well as the fault simulation time for 

the current set of fault simulations, in seconds. This includes time for the tools to read in netlists, 

run the simulations, and produce the output logs, but it excludes any delay from the Python’s 

parsing, file I/O, and process calls to open simulation software. During the short simulations of 

the 75% test case, file I/O and process calls are actually a large portion of the overall tool time; 

however, each run was generally in the range of tens to hundreds of seconds, so the additional 

time is somewhat negligible in the sense that waiting a few extra seconds does not have a large 

impact; all designs are also similarly affected. 

All the area-optimized BIST circuits were able to obtain a fault coverage of at least 75% 

with input pattern counts of 160 or fewer. In some cases, the obtained fault coverage was 

significantly higher than the target fault coverage. Most of the run times for each specific pattern 

count were less than 15 seconds, except for the large designs. For the mult32x32 design, 80 input 

patterns produced a fault coverage of only 40.88%. This is one case where a different starting 

seed may have drastically increased the fault coverage; 65 input patterns are required before the 

output is non-zero due to the initial LFSR seed. However, this simulation did take significantly 

longer than any of the other simulations, likely due to the large area count and lengthy fault 

simulations. 
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Table 6. Area-Optimized MTNCL BIST Results for First Test Case 

(75% Fault Coverage, 0 Patterns, 1 Seed). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 
Patterns 

Test Time 

[ns] 

Run Time 

[s] 

75% Fault 

0 Patterns 

1 Seed 

c17 86.168 10 409 12 

adder8 80.338 40 1932 10 

c499 84.120 80 5129 7 

c432 75.287 160 13129 6 

c1908 77.298 80 6249 13 

c880 77.452 160 12009 11 

c1355 77.716 80 6009 8 

mult32x32 91.775 160 20640 501 

c6288 89.390 80 13449 64 

 

The results from the second test case with a target of 100% fault coverage and a 

maximum pattern count limit of 1E6 patterns are shown in Table 7. None of the designs were 

able to obtain the target fault coverage of 100% within 1E6 patterns. The maximum fault 

coverage obtained through any of the 1E6 patterns is shown for each design; in many cases, this 

fault coverage may be obtained for numerous consecutive iterations as more patterns are 

presented, so the minimum pattern count wherein this fault coverage was achieved is shown 

along with the test time and run time for that specific run. 

All the designs were able to obtain a fault coverage of at least 86%, which may be an 

acceptable fault coverage depending upon user requirements. For all but one design, the 

maximum fault coverage took less than 10 minutes to simulate at that specific scenario. The run 

time does not represent the summation of all the simulations, which may still be substantial. The 

largest design in terms of gate count (but not circuit area), mult32x32, took approximately 230 
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hours to run the digital and fault simulations for 655360 patterns. The only remaining pattern 

count for this design, 1E6 patterns, took over 346 hours to run while achieving the exact same 

fault coverage. Thus, large designs using the area-optimized mode could become a burden in 

terms of both CPU resources and available time for high pattern counts. Tradeoffs of computing 

run time, circuit area, and fault coverage between area-optimized and test-performance-

optimized mode will be discussed in a later section; the test-performance-optimized mode was 

able to achieve a higher fault coverage while having a significantly reduced test time. Test Time, 

listed as the time required to perform a complete BIST of the DUT, approximated by the digital 

simulator, may also be significant to the user. The mult32x32 design required approximately 88 

ms to test using the digital models. Depending upon the cost associated with test equipment, the 

tradeoff of a lower fault coverage may be enticing to reduce testing time and associated costs. 

Since none of the designs achieved the desired fault coverage and the maximum fault 

coverage generally took a moderate test time to obtain, the lowest fault coverage within 2.5% of 

the maximum fault coverage was identified. The results from this relaxation are shown in Table 

8 and demonstrate that although the maximum fault coverage may take a long time to obtain, it 

may be possible to obtain an acceptable fault coverage within a much shorter timespan by 

relaxing the requirements. In some cases, the fault coverage penalty was small. 

As the fault coverage began to increase for designs with a very large pattern count, 

substantial time savings may be observed for both the test and run time. For the mult32x32 

design, the run time difference to obtain 91.78% fault coverage instead of the 93.40% maximum 

value was approximately 230 hours; the slightly lower fault coverage only took 8.4 minutes at 

that specific pattern count. Likewise, the BIST digital simulation would also complete in a 

significantly faster time, approximately 21 µs instead of 88 ms. 
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Table 7. Area-Optimized MTNCL BIST Maximum Results for Second Test Case 

(100% Fault Coverage, 1E6 Patterns, 1 Seed). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 
Patterns 

Test Time 

[ns] 

Run Time 

[s] 

100% Fault 

1E6 Patterns 

1 Seed 

Maximum 

c17 86.929 40 1609 4 

adder8 87.956 163840 7999728 191 

c499 86.783 5120 327689 55 

c432 87.492 2560 209929 19 

c1908 86.552 20480 1597449 286 

c880 86.097 40960 3072009 563 

c1355 86.920 5120 384009 118 

mult32x32 93.396 655360 87679426 828165 

c6288 90.424 160 26889 92 

 

Table 8. Area-Optimized MTNCL BIST Relaxed Results for Second Test Case 

(100% Fault Coverage, 1E6 Patterns, 1 Seed). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 
Patterns 

Test Time 

[ns] 

Run Time 

[s] 

100% Fault 

1E6 Patterns 

1 Seed 

Relaxed 

c17 86.168 10 409 4 

adder8 87.017 80 3889 4 

c499 86.563 160 10249 8 

c432 87.424 640 52489 10 

c1908 84.823 640 49929 20 

c880 84.432 640 48009 17 

c1355 84.646 320 24009 15 

mult32x32 91.775 160 20640 506 

c6288 89.390 80 13449 72 
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The results from the third test case with a target of 100% fault coverage and a maximum 

seed count of 1000 seeds are shown in Table 9. For these simulations, all designs used a starting 

and maximum pattern count of 1000, so exactly 1000 sequential input patterns were presented 

for all the various seeds. This may have resulted in slightly larger BIST structures for small-

input-count BIST stages. Like the second test case, none of the designs were able to obtain the 

target fault coverage of 100% within 1000 seeds. The maximum fault coverage obtained through 

any of the 1000 seeds is shown for each design. 

For most of the designs, the test and run times were very similar across all seeds as the 

same number of input patterns was presented. For 1000 patterns, the c499 design actually had a 

maximum fault coverage using the initial seed. Additionally, this design had a slightly lower 

fault coverage than the maximum fault coverage from the second test case. There were only 1000 

patterns simulated here; the second test case required 5120 patterns to obtain the maximum fault 

coverage. All other designs were able to achieve a higher fault coverage using different seeds 

than the initial seed used in the second test case. For all other designs except the c17 and c6288 

designs, the 1000 patterns also had a significantly reduced pattern count compared to the 

maximum fault coverage, and thus test time and run time, compared to the second test case while 

achieving this higher fault coverage. These effects are design dependent, as is the rate of 

increasing fault coverage as pattern counts increase across various seeds. Trade-offs here may 

also be evaluated through iterative simulations and analysis of test logs. 
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Table 9. Area-Optimized MTNCL BIST Maximum Results for Third Test Case 

(100% Fault Coverage, 1000 Patterns, 1000 Seeds). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 

Seed 

Count 
Test Time [ns] 

Run Time 

[s] 

100% Fault 

1000 Patterns 

1000 Seeds 

Maximum 

c17 90.355 120 40009 8 

adder8 88.814 843 48876 9 

c499 86.742 1 64009 19 

c432 88.624 836 82009 14 

c1908 86.679 824 78009 23 

c880 86.226 154 75009 23 

c1355 87.614 940 75009 31 

mult32x32 94.504 721 133790 1183 

c6288 93.250 720 168009 310 

 

5.4 Test-Performance-Optimized MTNCL BIST Results 

All the designs were then run through the test-performance-optimized MTNCL BIST 

automation tool using the first test case of 75% fault coverage. As this provides the minimum 

sized BIST hardware required for automation, the area of the circuits was analyzed and is shown 

in Table 10. As additional BIST hardware is required for each pipeline stage in the design, the 

area impact is more substantial compared to the area-optimized implementation; this is also 

impacted by the number of inputs to each BIST stage. The area overheads for the test-

performance-optimized implementation were a minimum of 27.1% for the c6288 design, the 

largest-area design, and a maximum of 254.9% for c17, the smallest design. Although this 

implementation requires a more significant area overhead, especially for smaller circuits, there 

may be other benefits in terms of circuit performance. 
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Table 10. Test-Performance-Optimized MTNCL BIST Area Comparison. 

Design Area-Optimized BIST 

Name Gates Area Gates Area 
% Area 

Overhead 

c17 38 153 135 543 254.9% 

adder8 177 621 501 1901 206.1% 

c499 676 2200 1605 6873 212.4% 

c432 581 2403 1406 5584 132.4% 

c1908 1018 4471 1906 7985 78.6% 

c880 1030 4502 2208 9079 101.7% 

c1355 1276 5632 2197 9278 64.7% 

mult32x32 7588 21523 9624 29575 37.4% 

c6288 5320 23731 6953 30167 27.1% 

 

The fault coverage results from the test-performance-optimized first test case are shown 

below in Table 11. The fault coverage column lists the fault coverages calculated for all BIST 

stages and the fault simulation results. The patterns column indicates the maximum number of 

input patterns simulated to reach the specific fault coverage. As multiple stages were simulated 

in parallel, this is the maximum of patterns counts for each BIST stage; some stages may be 

limited to fewer patterns due to BIST stage input lengths. The test time represents maximum 

final test time among BIST stages for the circuits to complete the BIST function in the digital 

simulation nanosecond timescale. The run time is the summation of the base and module digital 

test times as well as the fault test time for the current set of fault simulations, in seconds. 
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Table 11. Test-Performance-Optimized MTNCL BIST Results for First Test Case 

(75% Fault Coverage, 0 Patterns, 1 Seed). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 
Patterns Test Time [ns] 

Run Time 

[s] 

75% Fault 

0 Patterns 

1 Seed 

c17 76.519 20 589 8 

adder8 78.636 40 1332 9 

c499 77.771 320 13449 11 

c432 78.883 160 8009 9 

c1908 77.477 320 15689 13 

c880 76.646 160 7369 14 

c1355 78.607 160 7689 13 

mult32x32 92.175 160 12705 588 

c6288 78.619 80 7369 58 

 

All the test-performance-optimized BIST circuits were able to obtain the target fault 

coverage of 75% with input patterns of 320 patterns or fewer. The obtained fault coverage was 

less than 79% for most designs; the mult32x32 obtained a high fault coverage of 92.18%. Most 

of the run times for each specific pattern count were less than 15 seconds except for the large 

designs. 

The results from the second test case with a target of 100% fault coverage and a 

maximum pattern count limit of 1E6 patterns are shown in Table 12. None of the designs were 

able to obtain the target fault coverage of 100% within 1E6 patterns. The maximum fault 

coverage obtained through any of the 1E6 patterns is shown for each design; in many cases, this 

fault coverage may be obtained for numerous consecutive iterations as more patterns are 

presented, so the minimum pattern count wherein this fault coverage was achieved is shown 

along with the test time and run time for that specific run 



67 

 

All the designs were able to obtain a fault coverage of at least 76%, and most fault 

coverages were greater than 81%. The largest design in terms of gate count (but not circuit area), 

mult32x32, took approximately 342.6 hours to run the digital and fault simulation for 655360 

patterns. 

As none of the designs achieved the desired fault coverage and the maximum fault 

coverage generally took a moderate test time to obtain, the same relaxation was applied to the 

test-performance-optimized circuits as with the area-optimized circuits; the lowest fault coverage 

within 2.5% of the maximum fault coverage was identified and is presented in Table 13. 

Although the maximum fault coverage may take a long time to obtain, it may be possible to 

obtain a comparable fault coverage within a much shorter timespan by relaxing the requirements. 

As the fault coverage began to increase for designs with a very large pattern count, 

substantial time savings may be observed for both the test and run time. For the mult32x32 

design, the run time difference to obtain 94.67% fault coverage instead of the 95.330% 

maximum value was approximately 342.3 hours; the slightly lower fault coverage only took 17.5 

minutes at that specific pattern count. Likewise, the BIST digital simulation would also complete 

in a significantly faster time, approximately 26 µs instead of 55 ms. Similarly, the c1908 design 

was able to obtain a fault coverage within a 1% difference of the maximum value using only 

2.6% of the run time and 1.6% of the test time. 



68 

 

Table 12. Test-Performance-Optimized MTNCL BIST Maximum Results for Second Test Case 

(100% Fault Coverage, 1E6 Patterns, 1 Seed). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 
Patterns Test Time [ns] 

Run Time 

[s] 

100% Fault 

1E6 Patterns 

1 Seed 

Maximum 

c17 76.752 160 4649 8 

adder8 79.539 163840 5542128 224 

c499 84.664 2560 107529 30 

c432 83.237 2560 128009 21 

c1908 81.612 81920 4014089 1090 

c880 82.855 5120 235529 99 

c1355 83.848 5120 245769 99 

mult32x32 95.330 655360 54583533 1233222 

c6288 86.509 5120 471049 1544 

 

Table 13. Test-Performance-Optimized MTNCL BIST Relaxed Results for Second Test Case 

(100% Fault Coverage, 1E6 Patterns, 1 Seed). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 
Patterns Test Time [ns] 

Run Time 

[s] 

100% Fault 

1E6 Patterns 

1 Seed 

Relaxed 

c17 76.519 20 589 9 

adder8 78.636 40 1332 8 

c499 83.416 640 26889 15 

c432 83.142 320 16009 13 

c1908 80.879 1280 62729 28 

c880 80.584 320 14729 18 

c1355 81.807 640 30729 22 

mult32x32 94.673 320 26019 1051 

c6288 84.123 640 58889 223 
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The results from the third test case with a target of 100% fault coverage and a maximum 

seed count of 1000 seeds are shown in Table 14. For these simulations, all designs used a starting 

and maximum pattern count of 1000, so exactly 1000 sequential input patterns were presented 

for all the various seeds. This may have resulted in slightly larger BIST structures for small-

input-count BIST stages. Like the second test case, none of the designs were able to obtain the 

target fault coverage of 100% within 1000 seeds. The maximum fault coverage obtained through 

any of the 1000 seeds is shown for each design. 

For most of the designs, the test and run times were very similar across all seeds as the 

same number of input patterns was presented. All the test-performance-optimized designs were 

able to achieve a higher fault coverage with 1000 patterns than the second test case’s maximum 

value using different seeds than the initial seed. For all other designs except the c17 design, the 

1000 patterns also had a significantly reduced pattern count compared to the maximum fault 

coverage, and thus lower test time and run time, compared to the second test case while 

achieving this higher fault coverage. These effects are design dependent, as is the rate of 

increasing fault coverage as pattern counts increase across various seeds. Trade-offs here may 

also be evaluated through iterative simulations and analysis of test logs. 
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Table 14. Test-Performance-Optimized MTNCL BIST Maximum Results for Third Test Case 

(100% Fault Coverage, 1E3 Patterns, 1E3 Seeds). 

Conditions 

Design Area-Optimized 

Name 
Fault 

Coverage [%] 

Seed 

Count 
Test Time [ns] 

Run Time 

[s] 

100% Fault 

1000 Patterns 

1000 Seeds 

Maximum 

c17 80.023 277 29009 15 

adder8 81.670 339 33881 16 

c499 84.814 49 42009 24 

c432 83.637 768 50009 20 

c1908 82.223 520 49009 28 

c880 84.478 630 46009 32 

c1355 84.812 807 48009 31 

mult32x32 95.380 453 83285 2065 

c6288 88.784 688 92009 268 

 

5.5 Comparison of Area-Optimized and Test-Performance-Optimized BIST Results 

To better illustrate some of the trade-offs between the area-optimized and test-

performance-optimized designs, Table 15 and Table 16 compare the two implementations’ area 

and fault coverage information, respectively. Regarding area, all test-performance-optimized 

designs required significant additional area as additional BIST structures are required for each 

pipeline stage in the design instead of only the input BIST stage. For designs with large BIST 

stage input lengths, this can become substantial. The test-performance-optimized implementation 

required up to an additional 135.5% for the c499 design; it was as low as 20.7% more area for 

the c6288 design. 

In all cases except for the mult32x32 circuit, the area-optimized implementation was able 

to achieve a higher fault coverage than the test-performance-optimized implementation. Most 

incurred a 3-5% reduction in fault coverage. Although controllability increases when using 
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multiple BIST stages, total number of faults also increases due to additional nodes being 

evaluated for fault coverage, such as the outputs from the added BIST multiplexers in the data 

path. For the mult32x32 circuit, increased controllability using an internal BIST stage more than 

offset the additional UD and ND faults, such that fault coverage was higher for the test-

performance-optimized version vs. the area-optimized design. Which one yields higher fault 

coverage is circuit dependent. 

For most of the designs, the test-performance-optimized implementation also reached the 

maximum fault coverage in a reduced test time. This would yield faster test times for the final 

circuit. However, it is important to note that the test-performance-optimized fault coverage may 

not be acceptable when compared to the area-optimized fault coverage. The mult32x32 design 

was the largest test time difference, wherein the test-performance-optimized implementation 

reduced the test time by 60 ms while achieving a higher fault coverage. All other tests completed 

within a test time difference of less than 3 ms. The difference in time may also be significant in 

comparison; the c6288 design took approximate 16 times longer to achieve its maximum fault 

coverage for the test-performance-optimized vs. area-optimized implementation. Although a few 

milliseconds may not seem like a large difference, this may significantly impact overall test time 

and cost as significant quantities of a design are placed on a wafer, which all need to be tested. 

Additionally, the run time required for the simulations varies as well. Many design 

simulations reaching maximum fault coverage completed within a half hour for the specific run 

in either direction. For designs that required many runs to obtain this fault coverage, the different 

in test time could be substantial, especially as the maximum fault coverage was obtained 

repeatedly for several runs. 
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Table 15. Area-Optimized and Test-Performance-Optimized MTNCL BIST Area Comparison for 

Second Test Case (100% Fault Coverage, 1E6 Patterns, 1 Seed). 

Design Area-Optimized 
Test-Performance-

Optimized 

Name Area Area 
% Area 

Overhead 
Area 

% Area 

Overhead 

c17 153 355 132.0% 543 254.9% 

adder8 621 1245 100.5% 1901 206.1% 

c499 2200 3891 76.9% 6873 212.4% 

c432 2403 3317 38.0% 5584 132.4% 

c1908 4471 5822 30.2% 7985 78.6% 

c880 4502 6370 41.5% 9079 101.7% 

c1355 5632 7323 30.0% 9278 64.7% 

mult32x32 21523 24513 13.9% 29575 37.4% 

c6288 23731 25260 6.4% 30167 27.1% 

 

Table 16. Area-Optimized and Test-Performance-Optimized MTNCL BIST Fault Coverage 

Comparison for Second Test Case (100% Fault Coverage, 1E6 Patterns, 1 Seed). 

Design Area-Optimized Test-Performance-Optimized 

Name 

Fault 

Coverage 

[%] 

Test Time 

[ns] 

Run 

Time [s] 

Fault 

Coverage 

[%] 

Test Time 

[ns] 

Run 

Time [s] 

c17 86.929 1609 4 76.752 4649 8 

adder8 87.956 7999728 191 79.539 5542128 224 

c499 86.783 327689 55 84.664 107529 30 

c432 87.492 209929 19 83.237 128009 21 

c1908 86.552 1597449 286 81.612 4014089 1090 

c880 86.097 3072009 563 82.855 235529 99 

c1355 86.920 384009 118 83.848 245769 99 

mult32x32 93.396 87679426 828165 95.330 54583533 1233222 

c6288 90.424 26889 92 86.509 471049 1544 
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Overall, the merits of the area overhead, fault coverage, test time, and actual time may 

yield different tradeoffs based on the specific circuit design. Due to this, it is recommended that 

implementing both the area-optimized and test-performance-optimized implementations for a 

design may yield the highest potential benefit by enabling the evaluation of trade-offs. 

5.6 BIST Automation Performance 

To further investigate the performance of the BIST automation, all designs were 

extensively analyzed in terms of their simulation performance across the second and third test 

cases. The information for the c1355 design is detailed below, as it was the largest of the 

medium-sized designs. 

The fault coverage vs. pattern count is shown in Figure 31. Both the area-optimized and 

test-performance-optimized implementations achieved an initial fault coverage around 38%; the 

area-optimized method was slightly higher. As pattern counts increase, the fault coverage 

increases at a similar rate and flattens out once the maximum is obtained for both designs. 

The fault simulation time vs. pattern count is shown in Figure 32. The fault simulation 

time measured the time from the first line until the final line of the script and does not include 

tool start-up time. The initial instability is due to only having a 1-second resolution. As expected, 

the fault simulation time is reduced for the test-performance-optimized implementation. As the 

pattern count increases, the time increases logarithmically at approximately the same rate for 

both designs. To obtain the full sweep of simulations for the second test case, a total time of 

34590 seconds was required for the test-performance-optimized version; 45843 seconds were 

required for the area-optimized version. An increase of over 3 hours is required over the entire 

simulation sweep. 
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Figure 31. Fault Coverage vs. Pattern Count for c1355 Design. 

 

Figure 32. Fault Simulation Time vs. Pattern Count for c1355 Design. 
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Although the fault simulation time was reduced for the test-performance-optimized 

version, digital simulations required longer to complete, as shown in Figure 33. The area-

optimized digital simulations required 1833 seconds, whereas the test-performance-optimized 

digital simulations required 3149 seconds. Some of the initial instability may be due to server 

loading. Although this is a substantial difference between the two designs, the fault simulation 

total time is an order of magnitude larger. Perhaps this difference in digital simulation totals 

could be reduced by only reading the gate models once at the beginning of the simulation loop 

instead of at the start of every simulation. This could affect both implementations; it would affect 

the test-performance-optimized simulations more because the test-performance-optimized 

implementation required two reads for all designs due to the two BIST stages in each design. 

A plot indicating total run time vs. pattern count is shown in Figure 34. This time was 

calculated from the automation logs by comparing the time difference between the final fault 

coverage output of each run; due to this, this time indicates the complete run time per setpoint 

including any parsing, file I/O, software startup, and digital/fault simulation time, and is a good 

overall indicator of performance. The five-pattern count value is excluded due to no previous 

time stamp. For lower pattern counts with this design, the digital simulations took a longer time 

to complete than the fault simulations. However, the fault simulations began to take more time 

starting just before 1000 patterns, and then increased faster. Due to this, the test-performance-

optimized implementation required additional overall run time to complete, as pattern counts 

increased. The percentages of total run time for the fault simulation, digital simulation, and other 

processing accounted for 96.04%, 3.84%, and 0.12%, respectively, for the area-optimized 

method; for the test-performance-optimized method, this was 91.37%, 8.32%, and 0.31%, 

respectively. The fault simulation was the dominant time factor in both implementations. 
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Figure 33. Digital Simulation Time vs. Pattern Count for c1355 Design. 

 

Figure 34. Total Run Time vs. Pattern Count for c1355 Design. 
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During analysis of the third test case, histograms showing the distributions are utilized to 

observe differences using a static 1000 pattern count as the starting LFSR seed is adjusted for 

1000 different seeds. The fault coverage distributions for the c1355 design are shown in Figure 

35 and Figure 36 for the two implementations. The average fault coverage was 85.6% and 83.6% 

for the area-optimized and test-performance-optimized implementation, respectively. As seen in 

the second case testing, the area-optimized implementation was able to achieve a higher fault 

coverage reaching a maximum of 87.6%. The test-performance-optimized method only reached a 

maximum of 84.8%. Additionally, the minimum fault coverage of the area-optimized version is 

within 1% of the maximum value for the test-performance-optimized version. Although the 

distribution of the test-performance-optimized version appears wider, the bins are smaller; the 

max is within 0.8% of the average as opposed to 2% for the area-optimized version. This may be 

due to the increased controllability. 

The fault simulation time distributions for the c1355 design are shown in Figure 37 and 

Figure 38 for the two implementations. Two of the area-optimized runs took 30-31 seconds; the 

plot was adjusted to improve bins. The average fault simulation time was 23.97 seconds and 

15.81 seconds for the area-optimized and test-performance-optimized implementation, 

respectively. The minimum fault simulation time for the area-optimized versions is over 20% 

longer than the maximum of the test-performance-optimized version. This occurs due to the 

increased fault coverage simulation requirements for the area-optimized design. Although the 

overall area is smaller, the fault simulator must simulate the entire design at once; the faults that 

are harder to determine due to longer paths taking a longer time to simulate. In the test-

performance-optimized version, the design is broken up into two simulations and thus has a 

reduced fault simulation time because controllability is improved, and fault paths are shorter. 
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Figure 35. Fault Coverage Distribution for Area-Optimized c1355 Design. 

 

Figure 36. Fault Coverage Distribution for Test-Performance-Optimized c1355 Design. 
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Figure 37. Fault Simulation Time Distribution for Area-Optimized c1355 Design. 

 

Figure 38. Fault Simulation Time Distribution for Test-Performance-Optimized c1355 Design. 
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The digital simulation time distributions for the c1355 design are shown in Figure 39 and 

Figure 40. Unlike the fault simulations, the area-optimized version is significantly shorter than 

the test-performance-optimized version for all cases. The average digital simulation time was 5.3 

seconds and 9.9 seconds for the area-optimized and test-performance-optimized implementation, 

respectively; this was an 87% increase for the test-performance-optimized version. As previously 

mentioned, this may be due to re-reading the gate models during the digital simulation of each 

BIST stage. 

The total run time distributions for the c1355 design are shown in Figure 41 and Figure 

42. The average digital simulation time was 32.6 seconds and 32.2 seconds for the area-

optimized and test-performance-optimized implementation, respectively. This is a small 

difference and equates to a time savings of approximately 6.7 minutes for the test-performance-

optimized design using 1000 patterns over 1000 seeds. The percentages of total run time for the 

fault simulation, digital simulation, and other processing accounted for 73.59%, 16.20%, and 

10.21%, respectively, for the area-optimized method; for the test-performance-optimized 

method, this was 49.14%, 30.61%, and 20.26%, respectively. Although the fault simulation 

dominates both designs in terms of percentages, it is a significantly higher portion of the area-

optimized version. Time savings are balanced for this design due to the lower digital simulation 

and processing time. The other processing times are small portions but still can impact the 

overall simulation time. Opening of the digital and fault simulators is likely a significant portion 

of this extra time. 
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Figure 39. Digital Simulation Time Distribution for Area-Optimized c1355 Design. 

 

Figure 40. Digital Simulation Time Distribution for Test-Performance-Optimized c1355 Design. 
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Figure 41. Total Run Time Distribution for Area-Optimized c1355 Design. 

 

Figure 42. Total Run Time Distribution for Test-Performance-Optimized c1355 Design. 
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5.7 Transistor-Level Simulation 

To confirm that this BIST testing methodology performs as desired using actual 

transistors and not high-level digital models, transistor-level transient simulations using a 130 

nm CMOS process in Cadence Virtuoso were performed on the smallest design, c17. The 

maximum pattern count was set to 5 so that the waveforms remain legible in the time domain. 

The digital simulation performed in ModelSim is shown in Figure 43, and the transistor-level 

simulation using Virtuoso ADE XL with Spectre is shown in Figure 44 for comparison.  

Inputs presented to the DUT from the BIST hardware are 0x03E, 0x05D, 0x09B, 0x117, 

and 0x20F, respectively, in the time domain. The outputs of both designs are 0x3, 0xC, 0x3, 0x3, 

and 0x9. Once the final input is presented, no further inputs are presented to the DUT as the 

LFSR is no longer clocked from the other BIST hardware. Additionally, the lfsr_equiv and 

misr_equiv signals both rise at the end of the simulation, showing that the desired number of 

inputs has been provided and that the MISR has reached the correct final value. The status signal 

also rises at the end of the simulation, indicating a good self-test. The dut_ack_out signal has a 

slow transition compared to the rest of the signals; some buffering may be necessary for an 

actual hardware implementation. This would require some adjustment of the parsing mechanisms 

to accommodate and thus is not implemented here. 

The only main difference is in the actual overall test time; the digital simulation has a 

slower response than the transistor-level simulation. The models used for digital simulation 

utilize unit delays; all gates provide one timescale delay for the digital simulation. As the design 

is asynchronous, this simple timing difference does not affect the overall functionality of the 

design. The digital models could be updated to provide accurate timings provided by the 
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transistor-level design gates, but this would require additional control mechanisms during BIST 

automation to ensure that the proper library models were utilized. 

 

Figure 43. Digital Simulation of c17 Design. 

 

Figure 44. Transistor-Level Simulation of c17 Design. 

5.8 FSM and Feedback Compatibility 

As Finite State Machines (FSMs) are common in digital design for control circuitry, 

compatibility with FSMs is required. As UNCLE is incapable of synthesizing designs that 

include feedback, the c17 design was manually adjusted to include a small pipeline that toggles 

its output between DATA1 and DATA0 every DATA/NULL cycle and provides this signal as an 
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input to the final register. The register and acknowledge structures were adjusted to 

accommodate this. A high-level block diagram to represent this structure is shown in Figure 45. 

 

Figure 45. FSM Design Structure Block Diagram. 

Some manual adjustments were performed to separate FSMs during parsing, but were not 

included in the testing previously performed; the delay impact would be minimal as none of the 

benchmark designs incorporated FSMs, and thus the vast majority of the FSM handling would be 

skipped. 

The BIST automation was run for both the area-optimized and test-performance-

optimized methods; the design was capable of digital simulation for each of these. The digital 

simulation of the scl_c17_fsm design is shown in Figure 46 for the area-optimized method; and 

Figure 47 and Figure 48 present the digital simulation for the test-performance-optimized BIST 

stage 0 and BIST stage 1, respectively. The maximum pattern count was set to 5 so that the 

waveforms remain legible in the time domain. In all the simulations, the status signal rises near 

the end of the simulation to represent the LFSR reaching its final input pattern and the MISR 

having a good signature at the end of the simulation. This shows that the actual hardware 

methodology is capable of supporting BIST where FSM structures are utilized. 
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Figure 46. Digital Simulation of scl_c17_fsm Area-Optimized BIST Stage Design. 

 

Figure 47. Digital Simulation of scl_c17_fsm Test-Performance-Optimized BIST Stage 0 Design. 

 

Figure 48. Digital Simulation of scl_c17_fsm Test-Performance-Optimized BIST Stage 1 Design. 

Like FSMs, designs incorporating data feedback in the primary data path are common in 

digital design and must be capable of utilizing BIST functionality. A design with a feedback path 

from the final output register to the first input register, similar to a multiply and accumulate 

(MAC) circuit, was implemented to validate this functionality. A high-level block diagram to 

represent this structure is shown in Figure 49. The first input register was initialized using TH22s 

and TH22r gates to provide a valid DATA0 wavefront at the start of the simulation, and to 

provide the required three asynchronous latches in the feedback loop. One input from each gate 
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was connected directly to one of the final output register’s data rails. The remaining input was 

connected to the following stage’s ko signal to ensure valid DATA is held until it reaches the 

next pipeline stage. 

Some manual adjustments to parsing were required. This included setting the 

initialization TH22s and TH22r gates and related completion logic to be utilized by the first 

stage. As the input register was connected to the output of these initialization gates, the register 

input nets also had to be removed from the BIST stage input list; these nets are connected 

internally and do not require an input provided by the LFSR. They are identified as BIST stage 

inputs during netlist parsing because they are inputs to the pipeline register. The input 

completion component also required adjustment to determine the correct stage due to register 

adjustments. 

 

Figure 49. Feedback Design Structure Block Diagram. 

The BIST automation was then run for the area-optimized method. As the feedback spans 

multiple pipeline stages, the test-performance-optimized version is not inherently capable of 

supporting this type of design. It could be adapted to handle these types of circuits by 

representing all pipeline stages containing the feedback loop as a single BIST stage. In the tested 
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design, the feedback loop is the entire pipeline, and this would result in the same circuity as the 

area-optimized version. 

The digital simulation of the simple_fb design is shown in Figure 50 for the area-

optimized method. The maximum pattern count was set to 5 so that the waveforms remain 

legible in the time domain. The status signal rises near the end of the simulation, indicating the 

LFSR reached its final input pattern and the MISR contained a good signature at the end of the 

simulation. This shows that the area-optimized hardware methodology is capable of supporting 

BIST where feedback structures in the data path are utilized. 

 

Figure 50. Digital Simulation of simple_fb Area-Optimized BIST Stage Design. 

Although the hardware implementations support the digital simulation of these designs, 

the fault simulation is incapable of directly supporting fault simulation when these FSM and data 

path feedback structures are incorporated. Since TetraMAX is a cyclic fault simulator, internal 

datapath feedback (e.g., FSMs, MAC) for MTNCL asynchronous circuits causes significant 

issues due to multiple internal transitions occurring during a single cycle. Additionally, 

TetraMAX has issues properly simulating the initialization of specific gates, such as the TH22s, 

when hysteresis after a reset is required for proper logical evaluation. It was observed that 

following a reset, the output of a TH22s gate transitioned to low when one of the inputs remained 

high; the TH22s output should remain high until both inputs are de-asserted. This resulted in no 

DATA wavefront propagating through the design after circuit reset. Due to these issues, the 
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TetraMAX sequential simulation does not match the ModelSim digital simulation, and therefore 

the fault simulation results in an invalid calculation. When this occurs, output occurs on the 

terminal and in the fault simulation log as shown in Figure 51. It details which patterns the errors 

occurred on, what the expected value from the digital simulation is, and what the fault sequential 

simulation obtained. The number of failed patterns is displayed after this command. The 

automated tool halts and shows a warning if any failed patterns are found in the fault simulation 

log. 

 

Figure 51. Fault Simulation Output Showing Invalid TetraMAX Sequential Simulation. 

Although exact simulation including these types of feedback is not possible, several 

alternative solutions exist to address these limitations and provide MTNCL BIST functionality. 

For designs with FSMs, the FSM circuitry may be excluded from the design, and these FSM nets 

that are utilized by main pipeline logic can be added as BIST stage inputs. Similarly, feedback 

loops in the data path may be disconnected and set as BIST stage inputs. In both cases, any 

excluded circuitry must be added back into the design at the top level, and multiplexers must be 

inserted to include the original desired functionality while adding in BIST functionality. 
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To validate this solution, the simple_adj_fb design was tested. This design is an exact 

copy of the simple_fb design but renamed to simple_adj_fb, both for the module and file name. 

It was separated so both examples would be preserved in the tool. The input completion 

component required adjustment to determine the correct stage, and the initialization gates were 

manually removed using the automation tool during parsing. This resulted in the feedback 

register being controlled by the LFSR, although adding external initialization gates is also 

possible. As this broke the feedback loop, no additional modification was necessary. 

The BIST automation was then run for both the area-optimized and test-performance-

optimized methods. The digital simulation of the simple_adj_fb design is shown in Figure 52 for 

the area-optimized method; and Figure 53 and Figure 54 present the digital simulation for the 

test-performance-optimized BIST stage 0 and BIST stage 1, respectively. The maximum pattern 

count was set to 5 so that the waveforms remain legible in the time domain. In all the 

simulations, the status signal rises near the end of the simulation to represent the LFSR reaching 

its final input pattern and the MISR having a good signature at the end of the simulation. 

Additionally, the fault sequential simulation properly completes, as shown in Figure 55. No 

patterns were recognized as discrepancies between the two simulations, so the fault analysis is 

valid. As this was merely a functional test, only 5 inputs patterns were presented to the design; 

this resulted in a fault coverage of 72.23%. 

 

Figure 52. Digital Simulation of simple_adj_fb Area-Optimized BIST Stage Design. 
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Figure 53. Digital Simulation of simple_adj_fb Test-Performance BIST Stage 0 Design. 

 

Figure 54. Digital Simulation of simple_adj_fb Test-Performance BIST Stage 1 Design. 

 

Figure 55. Fault Simulation Output Showing Valid TetraMAX Sequential Simulation. 

It is important to note that both the area-optimized and test-performance-optimized 

implementations are possible for this specific design, with manual adjustments, because the 

feedback loop feeds back into the first pipeline stage in the design. If the design includes a 

feedback loop that directly feeds into any pipeline stage other than the first stage, only the test-

performance-optimized is suitable to handle this. 

These modifications were completed using the automation tool; FSM structures and 

feedback loops could be automatically detected in the tool and excluded for BIST purposes. 

Although excluded in the BIST designs, the structures could be incorporated at the top-level 

design to preserve the desired functionality. As UNCLE is incapable of exporting designs 

including feedback, automation of these tasks was not included in the developed BIST tool. 

Alternatively, asynchronous circuit specific fault simulation software could be implemented to 
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evaluate the fault coverage. However, this is beyond the scope of this dissertation and conflicts 

with the goal of using industry-standard software. 

5.9 Fault Exclusion Method Based on Operation Principles 

As MTNCL circuits operate in an asynchronous fashion with local handshaking, specific 

combinations of stuck-at fault type and asynchronous gate function can be applied to the 

TetraMAX verbose fault list to better depict actual fault coverage. For example, if one of the 

BIST stage sleep nets is stuck-at-1, then that entire stage will always be slept, such that it will 

never transition to DATA. Likewise, if one of the BIST stage sleep nets is stuck-at-0, that would 

cause the previous stage’s sleep net to be stuck-at-1 (i.e., the previous stage’s slept early 

completion component final TH22 NCL gate, shown in Figure 7, would be stuck-at-0 due its Ki 

input, which is the stuck-at-0 sleep net; and this TH22 NCL gate output is inverted to generate 

the previous stage sleep net, which would therefore be stuck-at-1), which would cause the circuit 

to deadlock as mentioned above. Furthermore, any slept early completion component gate output 

(except for the final inverter, which is already considered in the previous case) that is stuck-at-0 

will cause the sleep net generated by that component to be stuck-at-1, which would cause the 

circuit to deadlock as mentioned above. Since these scenarios would cause the circuit to 

immediately deadlock, any undetected faults on any of these nets flagged by TetraMAX can be 

ignored, since they would be immediately detected, in either test mode or normal operation, due 

to circuit deadlock. A summary of these rules is provided below. Applying these exclusion rules 

to the c17 circuit increases fault coverage from the original 86.93% to 90.74%. 

1. Stuck-at faults on sleep nets can be excluded. 

2. Stuck-at-0 faults on slept early completion component gate outputs can be excluded. 
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5.10 MTNCL Acknowledge Architecture Fault Improvement 

Through review of verbose fault lists produced by TetraMAX for several designs, it was 

determined that many undetectable faults were located in the slept early completion logic. When 

slept early completion components are designed using MTNCL threshold gates (with sleep 

input), stuck-at-1 faults can be masked by the sleep mechanism, and therefore cannot be 

excluded. However, if NCL gates (with hysteresis) are used to implement the early completion 

logic instead of MTNCL gates (i.e., replace the MTNCL gates in Figure 7 with NCL gates), then 

any stuck-at-1 fault in this logic will result in a stuck-at-0 fault on its corresponding generated 

sleep net, and can therefore be excluded as discussed in Section 5.9. A summary of these rules is 

provided below. Applying these additional exclusion rules to the c17 circuit increases fault 

coverage from the previous 90.74% to 98.10%. The tradeoff for using this method to increase 

fault coverage is a decrease in performance and an increase in area, energy/operation, and 

leakage power, as NCL gates are larger, with increased leakage power and energy per transition, 

compared to their MTNCL equivalent, and this requires a NULL input to flow through the non-

slept early completion logic instead of all gates being simultaneously slept to 0 [5].  

3. Stuck-at-1 faults on early completion component gate outputs can be excluded, when 

designed using NCL gates. 

4. Stuck-at-1 faults on any input to an early completion component can be excluded, 

when designed using NCL gates. 

5.11 Controllability and Observability Improvements 

Since reported fault coverages are slightly lower than current industry-standard 

requirements, the ability to add controllability and observability points in asynchronous dual-rail 

logic was investigated. To improve controllability, the designer must have the capability to inject 
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a specific signal at a desired net in the circuit to control hard-to-reach faults. In a synchronous 

design, this is primarily done on a net-by-net basis by inserting C/L or multiplexers to enable 

internal control of nets during the testing sequence [4]. For MTNCL circuits based upon the 

proposed BIST topology, this cannot be done for signals in the early completion logic, as 

injecting signals into this handshaking control logic could adversely affect circuit operation. 

However, undetectable faults in the early completion logic can be dealt with in other ways, as 

detailed in the previous two sections. 

Controllability points can be added to dual-rail nets to inject a DATA value in order to 

improve fault coverage, using the hardware shown in Figure 56; a NULL value should not be 

injected, as this may cause the pipeline to deadlock. Furthermore, each dual-rail signal transitions 

to NULL after every DATA value, so there would be no need to inject a NULL value. When Ctrl 

Sel is asserted, the Ctrl D0 and Ctrl D1 inputs replace D0 and D1 generated by the preceding C/L, 

respectively, allowing for injection of a DATA0 (D0 asserted, D1 de-asserted), a DATA1 (D0 de-

asserted, D1 asserted), or even an INVALID (both D0 and D1 asserted) value, as desired. An 

INVALID value should only be injected if not part of a feedback loop; otherwise, this could 

result in perpetual INVALID values in the feedback loop until the circuit is reset. C/L could also 

be utilized instead of two multiplexers; however, multiplexers offer a higher level of control, 

with increased area as the tradeoff. 
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Figure 56. MTNCL Controllability Hardware. 

It may also be desirable to increase observability separately, or in addition to 

controllability techniques. As DATA/NULL wavefronts propagate through a pipeline in the final 

output design but the MISR only reads from the final pipeline stage, it may not be possible to 

read the value of internal pipeline nets without modification. To view any signal, the pipeline 

may be stalled so that a DATA wavefront exists on all pipeline stages. This is exactly the same 

methodology used to enable the asynchronous fault simulation; instead of utilizing the final 

designs shown in Figure 16 and Figure 18, the module BIST blocks shown in Figure 27 and 

Figure 30 could be utilized instead. The additional TH22 gate that ties the BIST stage ko and 

slpout or external completion tree component together forces pipeline stalls. 

Any net, whether dual-rail, a single rail of a dual-rail signal, or an acknowledge net, 

inside the design may be probed for improved observability when the pipeline is stalled, as 

shown in Figure 57. Although the area overhead required to stall the pipeline is small, each 

additional bit probed requires one additional MISR bit. These observability nets may bypass the 

external completion tree component if the design has a BIST stage with output register. This is 

shown in Figure 58; the BIST stage has added controllability and observability ports. 

 



96 

 

 

Figure 57. MTNCL Observability Probing with Stalled Pipeline. 

 

Figure 58. MTNCL Architecture Adjustment for Controllability and Observability Improvement. 

The controllability and observability improvements were applied to the c17 design to 

increase fault coverage further. For observability, three single rail nets from the data pipeline and 

the output of a subsequent gate were manually added to the obsrv output and connected to 

additional MISR inputs, but not to the completion tree. For controllability, three dual-rail faulty 

nets had multiplexers inserted in-line along with the associated ctrl signals. The original 40 

LFSR patterns were presented, as with the original design. Instead of inserting additional 

hardware for extra control, behavioral control was implemented inside the design testbench by 

adjusting the ctrl signals based on the current input pattern count. For each of the three 

controllability nets, a DATA0, DATA1, and INVALID wavefront was presented sequentially 

after the original 40 patterns (e.g., the first controllability net was forced to DATA0 on pattern 
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41 and DATA1 on pattern 42, and the second controllability net was forced to DATA0 on 

pattern 44). Therefore, 49 patterns were needed for the first attempt. After seeing some fault 

coverage improvement based upon the insertion of these, the number of pattern counts was 

increased to 64 so that the controllability nets would have eight additional wavefronts each 

wherein a fault may be detected instead of only three, as with the first test using 49 input 

patterns. The results are shown in Table 17. 

Using NCL early completion logic with fault exclusion rules and the controllability and 

observability improvements, a maximum fault coverage of 98.54% was obtained. This fault 

coverage is approaching acceptable industry levels. Applying only the controllability and 

observability methods to the base c17 without any additional fault exclusion methods improved 

the fault coverage from 86.93% to 91.17%. Similarly, applying the MTNCL early completion 

fault exclusions results in an increased fault coverage of 94.79%, up from 90.74%. The NCL 

early completion fault exclusion increase was much less significant, rising only to 98.54% from 

98.10%. However, there were only a few faults that could be improved upon, and manual 

determination of valid controllability states is not a trivial matter. It is worth noting that the 

addition of controllability hardware does result in an increased number of total faults, area, and 

test time, as applied. However, this may be required to achieve specific fault coverage targets. 
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Table 17. Controllability and Observability Fault Coverage Improvements. 

 
Fault 

Exclusion 

Method 

Total 

Faults 
Faults 

Fault 

Coverage 

c17 

original 

40 patterns 

Original 394 51.5 86.93% 

MTNCL EC 394 36.5 90.74% 

NCL EC 368 7 98.10% 

c17 

obsrv/ctrl 

49 patterns 

Original 470 44 90.64% 

MTNCL EC 470 31.5 93.30% 

NCL EC 444 8.5 98.09% 

c17 

obsrv/ctrl 

64 patterns 

Original 470 41.5 91.17% 

MTNCL EC 470 24.5 94.79% 

NCL EC 444 6.5 98.54% 

6 Conclusion 

In this dissertation, a method of BIST for MTNCL circuits was designed, automated, and 

validated. Two hardware implementations were detailed in Section 3; the area-optimized version 

required a reduced area while still maintaining testability, whereas the test-performance-

optimized version increases controllability, potentially reducing testing time and increasing fault 

coverage for the actual hardware, at the expense of additional area. Note that the test-

performance-optimized version sometimes increased test time and decreased fault coverage due 

to additional nodes being evaluated, such as the outputs from the added BIST multiplexers; 

hence, which method is better is circuit dependent. A tool was developed that parses MTNCL 

circuits, inserts the appropriate BIST hardware, and evaluates possible fault coverages with 

minimal user input, as explained in Section 4. The results from this tool were analyzed in  

Section 5, using several circuits as input, to demonstrate that the automation tool is functional 

and enables the evaluation of tradeoffs for the two BIST implementations. Although not 

automated, this method is capable of analyzing circuits that include internal feedback through 

minor manual adjustments that enable it to break any feedback loops, provide LFSR-controlled 

inputs to these nets, and include the original functionality at the top-level design. Additionally, 
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several operation-principle-based fault exclusion methods were determined, and controllability 

and observability improvements were manually implemented to yield higher fault coverages. 

7 Future Work 

Although this dissertation presented two methods of successful BIST implementation for 

MTNCL circuits, there are still many topics that can be expanded upon from this work. As many 

iterative simulations must be performed to obtain the results, potentially across the entire 

selection of LFSR seeds, a method to calculate the optimal seed pattern for the LFSR could yield 

reduced run time and actual test time in hardware, by isolating hard-to-detect faults earlier in the 

BIST automation flow. Additionally, if a specific pattern of inputs can obtain the desired fault 

coverage with a non-maximal-length LFSR, these could be utilized. Currently, the pattern count 

only grows in increasingly large steps (i.e., doubles each iteration); hence, once the desired fault 

coverage is obtained, the pattern count could then be decremented to reduce pattern overhead 

while maintaining the target fault coverage. This would result in an overall longer run time, as 

additional simulation iterations would be required. Potentially, other methods of pattern 

generation may function with the MTNCL design, provided the DRG component is utilized as an 

asynchronous interface with the pattern generator. 

Aliasing verification should be investigated for the MISR outputs. Although the MISR 

output could have the correct final output, multiple offsetting faults inside the design could 

potentially produce this valid final signature. Although intensive, it should be possible to 

calculate this so that the MISR taps could be adjusted to minimize the chance of a faulty circuit 

producing a valid final signature. A comprehensive study of the trade-offs discussed could be 

beneficial for test designers to better understand the benefits of the area-optimized vs. test-

performance-optimized implementations for various design types. Additionally, if UNCLE was 
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updated to synthesize sequential MTNCL circuits, the proposed test-performance-optimized 

method to insert BIST stages so that no BIST stage contains a feedback loop, could be 

automated, such that the automated MTNCL BIST method would be applicable to both 

feedforward circuits as well as those containing feedback loops. Currently, some manual 

manipulation is required, as discussed in Section 5.8. 
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