
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Theses and Dissertations

5-2020

Built-In Self-Test (BIST) for Multi-Threshold NULL Convention Built-In Self-Test (BIST) for Multi-Threshold NULL Convention

Logic (MTNCL) Circuits Logic (MTNCL) Circuits

Brett Sparkman
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Citation Citation
Sparkman, B. (2020). Built-In Self-Test (BIST) for Multi-Threshold NULL Convention Logic (MTNCL)
Circuits. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3613

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact ccmiddle@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F3613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3613?utm_source=scholarworks.uark.edu%2Fetd%2F3613&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Built-In Self-Test (BIST) for Multi-Threshold

NULL Convention Logic (MTNCL) Circuits

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Engineering

by

Brett Sparkman

University of Arkansas

Bachelor of Science in Electrical Engineering, 2011

University of Arkansas

Master of Science in Electrical Engineering, 2017

May 2020

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

 Scott Smith, Ph.D.

 Dissertation Director

________________________________ ________________________________

 Jia Di, Ph.D. Alan Mantooth, Ph.D.

 Committee Member Committee Member

 Jingxian Wu, Ph.D.

 Committee Member

Abstract

This dissertation proposes a Built-In Self-Test (BIST) hardware implementation for

Multi-Threshold NULL Convention Logic (MTNCL) circuits. Two different methods are

proposed: an area-optimized topology that requires minimal area overhead, and a test-

performance-optimized topology that utilizes parallelism and internal hardware to reduce the

overall test time through additional controllability points. Furthermore, an automated software

flow is proposed to insert, simulate, and analyze an input MTNCL netlist to obtain a desired fault

coverage, if possible, through iterative digital and fault simulations. The proposed automated

flow is capable of producing both area-optimized and test-performance-optimized BIST circuits

and scripts for digital and fault simulation using commercial software that may be utilized to

manually verify or adjust further, if desired.

©2020 by Brett Sparkman

All Rights Reserved

Acknowledgements

This dissertation would not have been completed without the outstanding support from

my wife, parents, and siblings. The greatest thanks of all goes to my wife, Allie, for enduring so

many late nights and busy weekends. I would also like to thank Dr. Scott C. Smith and Dr. Jia

Di, who have provided me with countless learning opportunities and persisted to support me

throughout my various endeavors throughout graduate school. I would also like to thank my

other committee members, Dr. Mantooth and Dr. Wu. Lastly, I would like to thank Wolfspeed

and John Fraley, my manager and friend, for enabling me to continue pursuing higher education

during my employment.

Table of Contents

1 Introduction ... 1

2 Background ... 2

2.1 NULL Convention Logic (NCL) ... 2

2.2 Multi-Threshold NULL Convention Logic (MTNCL) .. 5

2.1 Synchronous Test Methods .. 9

2.2 Asynchronous Test Methods .. 11

3 Built-In Self-Test of MTNCL Circuits .. 14

3.1 Area-Optimized MTNCL BIST Stage Implementation ... 14

3.2 Test-Performance-Optimized MTNCL BIST Implementation 16

3.3 MTNCL BIST Block Implementation ... 18

3.4 MTNCL BIST Top-Level Design .. 25

4 MTNCL BIST Automation .. 27

4.1 Area-Optimized Implementation Automation ... 33

4.2 Test-Performance-Optimized Implementation Automation... 44

5 Experimental Results .. 53

5.1 MTNCL Design Preparation .. 53

5.2 General MTNCL BIST Automation Procedure ... 56

5.3 Area-Optimized MTNCL BIST Results .. 57

5.4 Test-Performance-Optimized MTNCL BIST Results .. 64

5.5 Comparison of Area-Optimized and Test-Performance-Optimized BIST Results 70

5.6 BIST Automation Performance .. 73

5.7 Transistor-Level Simulation ... 83

5.8 FSM and Feedback Compatibility.. 84

5.9 Fault Exclusion Method Based on Operation Principles ... 92

5.10 MTNCL Acknowledge Architecture Fault Improvement .. 93

5.11 Controllability and Observability Improvements ... 93

6 Conclusion ... 98

7 Future Work .. 99

8 References .. 100

List of Figures

Figure 1. NCL Pipeline Architecture [1]. ... 4

Figure 2. THmn Threshold Gate [1]. .. 4

Figure 3. NCL Gate Structure [1]. .. 4

Figure 4. MTCMOS Power Gating [5]. .. 5

Figure 5. MTNCL Gate Structure [5]. .. 6

Figure 6. MTNCL Pipeline Architecture [5]. ... 8

Figure 7. MTNCL Slept Early Completion Component. .. 8

Figure 8. Linear Feedback Shift Register (LFSR). ... 10

Figure 9. Multiple Input Shift Register (MISR). .. 11

Figure 10. Asynchronous DFT MTNCL Scan Chain Design [7]. © 2016 IEEE. 12

Figure 11. IDDQ Test for Semi-Static NCL Gates (right) [8]. © 2016 IEEE. 13

Figure 12. Interleaved Scan Structure for NCL [9]. © 2016 IEEE. .. 13

Figure 13. Advanced Interleaved Scan Architecture for NCL BIST (a) RTS (b) STUMPS [9]. ©

2016 IEEE. .. 14

Figure 14. MTNCL Area-Optimized BIST Stage. .. 15

Figure 15. MTNCL Test-Performance-Optimized BIST Stages. ... 17

Figure 16. Final MTNCL BIST Block Architecture for BIST Stage with Output Register. 19

Figure 17. Completion Tree Component for Five Input Bits. ... 20

Figure 18. Final MTNCL BIST Block Architecture for BIST Stage with Output Combinational

Logic. .. 21

Figure 19. Equivalence Component for Input Pattern of 00101. .. 22

Figure 20. Dual-Rail Gating (DRG) Component. ... 23

Figure 21. MTNCL BIST Top-Level Design for Area-Optimized MTNCL BIST Implementation.

... 25

Figure 22. Top-Level MTNCL BIST Design for Test-Performance-Optimized MTNCL BIST

Implementation for Four-Stage MTNCL Pipeline DUT. ... 27

Figure 23. Flowchart of High-Level Tool Procedure. .. 28

Figure 24. Flowchart for Parsing Netlist... 29

Figure 25. Flowchart for Area-Optimized MTNCL BIST Implementation Automation. 35

Figure 26. Base MTNCL BIST Block Architecture for BIST Stage with Output Register. 37

Figure 27. Module MTNCL BIST Block Architecture for BIST Stage with Output Register. 39

Figure 28. Flowchart for Test-Performance-Optimized MTNCL BIST Implementation

Automation. .. 45

Figure 29. Base MTNCL BIST Block Architecture for BIST Stage with Output Combinational

Logic. .. 47

Figure 30. Module MTNCL BIST Block Architecture for BIST Stage with Output

Combinational Logic. ... 49

Figure 31. Fault Coverage vs. Pattern Count for c1355 Design. .. 74

Figure 32. Fault Simulation Time vs. Pattern Count for c1355 Design. 74

Figure 33. Digital Simulation Time vs. Pattern Count for c1355 Design..................................... 76

Figure 34. Total Run Time vs. Pattern Count for c1355 Design. ... 76

Figure 35. Fault Coverage Distribution for Area-Optimized c1355 Design. 78

Figure 36. Fault Coverage Distribution for Test-Performance-Optimized c1355 Design. 78

Figure 37. Fault Simulation Time Distribution for Area-Optimized c1355 Design. 79

Figure 38. Fault Simulation Time Distribution for Test-Performance-Optimized c1355 Design. 79

Figure 39. Digital Simulation Time Distribution for Area-Optimized c1355 Design. 81

Figure 40. Digital Simulation Time Distribution for Test-Performance-Optimized c1355 Design.

... 81

Figure 41. Total Run Time Distribution for Area-Optimized c1355 Design. 82

Figure 42. Total Run Time Distribution for Test-Performance-Optimized c1355 Design........... 82

Figure 43. Digital Simulation of c17 Design. ... 84

Figure 44. Transistor-Level Simulation of c17 Design. ... 84

Figure 45. FSM Design Structure Block Diagram.. 85

Figure 46. Digital Simulation of scl_c17_fsm Area-Optimized BIST Stage Design. 86

Figure 47. Digital Simulation of scl_c17_fsm Test-Performance-Optimized BIST Stage 0

Design. .. 86

Figure 48. Digital Simulation of scl_c17_fsm Test-Performance-Optimized BIST Stage 1

Design. .. 86

Figure 49. Feedback Design Structure Block Diagram. ... 87

Figure 50. Digital Simulation of simple_fb Area-Optimized BIST Stage Design. 88

Figure 51. Fault Simulation Output Showing Invalid TetraMAX Sequential Simulation. 89

Figure 52. Digital Simulation of simple_adj_fb Area-Optimized BIST Stage Design. 90

Figure 53. Digital Simulation of simple_adj_fb Test-Performance BIST Stage 0 Design. 91

Figure 54. Digital Simulation of simple_adj_fb Test-Performance BIST Stage 1 Design. 91

Figure 55. Fault Simulation Output Showing Valid TetraMAX Sequential Simulation. 91

Figure 56. MTNCL Controllability Hardware. ... 95

Figure 57. MTNCL Observability Probing with Stalled Pipeline. ... 96

Figure 58. MTNCL Architecture Adjustment for Controllability and Observability Improvement.

... 96

List of Tables

Table 1. LFSR State Table. ... 10

Table 2. Truth Table for DRG. ... 23

Table 3. UNCLE Benchmark Synthesis Summary. .. 55

Table 4. MTNCL Designs Evaluated with BIST Automation. ... 55

Table 5. Area-Optimized MTNCL BIST Area Comparison. ... 58

Table 6. Area-Optimized MTNCL BIST Results for First Test Case (75% Fault Coverage, 0

Patterns, 1 Seed).. 60

Table 7. Area-Optimized MTNCL BIST Maximum Results for Second Test Case (100% Fault

Coverage, 1E6 Patterns, 1 Seed). .. 62

Table 8. Area-Optimized MTNCL BIST Relaxed Results for Second Test Case (100% Fault

Coverage, 1E6 Patterns, 1 Seed). .. 62

Table 9. Area-Optimized MTNCL BIST Maximum Results for Third Test Case (100% Fault

Coverage, 1000 Patterns, 1000 Seeds). ... 64

Table 10. Test-Performance-Optimized MTNCL BIST Area Comparison. 65

Table 11. Test-Performance-Optimized MTNCL BIST Results for First Test Case (75% Fault

Coverage, 0 Patterns, 1 Seed). .. 66

Table 12. Test-Performance-Optimized MTNCL BIST Maximum Results for Second Test Case

(100% Fault Coverage, 1E6 Patterns, 1 Seed). ... 68

Table 13. Test-Performance-Optimized MTNCL BIST Relaxed Results for Second Test Case

(100% Fault Coverage, 1E6 Patterns, 1 Seed). ... 68

Table 14. Test-Performance-Optimized MTNCL BIST Maximum Results for Third Test Case

(100% Fault Coverage, 1E3 Patterns, 1E3 Seeds). ... 70

Table 15. Area-Optimized and Test-Performance-Optimized MTNCL BIST Area Comparison

for Second Test Case (100% Fault Coverage, 1E6 Patterns, 1 Seed). .. 72

Table 16. Area-Optimized and Test-Performance-Optimized MTNCL BIST Fault Coverage

Comparison for Second Test Case (100% Fault Coverage, 1E6 Patterns, 1 Seed). 72

Table 17. Controllability and Observability Fault Coverage Improvements. 98

1

1 Introduction

While synchronous circuits have been the dominant architecture in digital systems for

decades, asynchronous designs exhibit several advantages that are becoming more enticing as

fabrication process technology continues to shrink. Several of the primary advantages involve

the lack of a global clock, resulting in reduced power, noise, and electromagnetic interference,

and robustness to PVT (process, voltage, temperature) variations [1]. However, there are several

barriers to adoption of asynchronous design styles, including lack of designer familiarity with

asynchronous architectures, synthesis methods to generate asynchronous circuits from register-

transfer level (RTL) hardware description language (HDL) code, and testing methods to validate

functionality of the resulting asynchronous circuits.

Fortunately, several asynchronous design synthesis systems have been developed [2], [3].

Although these software tools provide the ability to generate designs from RTL, little research

has been done in terms of tools to support the testing of these asynchronous designs. It is

imperative that testing methods are developed to allow the ease of asynchronous design creation

and integration into larger systems.

The final objective of this work is to develop an automated tool to insert built-in self-test

(BIST) functionality [4] into multi-threshold NULL convention logic (MTNCL) designs [5] and

obtain and validate desired fault coverages. An automated tool to perform this task will reduce

the effort required to design self-testing MTNCL circuits. Standard synchronous test software is

leveraged when possible to minimize custom software, while also providing designers with a

sense of familiarity. For a usage scenario, a designer will provide an MTNCL netlist, an area or

performance preference, and the desired fault coverage. The tool will then be able to parse the

netlist, determine register stages within the MTNCL design, insert the BIST structures into the

2

design, create and use simulation macros to both simulate the design in a digital simulation

environment, and evaluate the fault coverage. The final design will be exported and include the

BIST implementation, testbenches, and simulation macros so that the user can manually evaluate

the design, if desired.

2 Background

2.1 NULL Convention Logic (NCL)

NCL is a quasi-delay insensitive (QDI) asynchronous design paradigm that is

symbolically complete [6]. To achieve this, NCL utilizes a 1-hot encoding scheme, wherein any

single one of N wires, called rails, is asserted to represent a DATA value, and all rails are de-

asserted to represent a NULL value, which represents absence of DATA. Only one rail of a

multi-rail signal may be asserted at any given time; if multiple rails are simultaneously asserted,

the state is illegal. The most commonly used encoding scheme is dual-rail logic; in this version

there are two rails, where the D1 rail is asserted to represent a Boolean logic 1, the D0 rail is

asserted to represent a Boolean logic 0, and both rails are de-asserted to represent the NULL

state. For NCL, each DATA wavefront must be followed by a NULL wavefront that resets the

circuit to the NULL state (all gate outputs are logic 0) before the next DATA wavefront can be

processed. The flow of DATA/NULL wavefronts is controlled by handshaking signals [1].

In an NCL pipeline, stages consist of NCL registers, NCL combinational logic (C/L), and

completion detection components, as shown in Figure 1. Each NCL register has a data input port,

a data output port, an acknowledge in (Ki) port, and an acknowledge out (Ko), port. For signals

present on the acknowledge ports, one of two states are possible: request for DATA (RFD) or

request for NULL (RFN). When RFD is present on the Ki port of an NCL register, the register

allows a DATA wavefront to pass and then presents a RFN on its Ko. Likewise, when a RFN is

3

presented to the Ki port, the register allows a NULL wavefront to pass and then presents a RFD

on its Ko. The function of the completion components is to merge the multiple signals at each

register’s Ko into a single signal; RFD or RFN is presented at the completion detection

component’s output when all inputs to the completion detection component are either RFD or

RFN, respectively [1].

The NCL registers, C/L, and completion detection circuits are comprised of NCL

threshold gates. Threshold gates, shown in Figure 2, use a naming convention of THmn, where n

denotes the number of inputs and m denotes the threshold value. The output of a threshold gate is

asserted when at least m of the n inputs are asserted. NCL gates exhibit hysteresis, such that once

the output is asserted, it will remain asserted until all inputs are de-asserted [1].

To enable delay-insensitivity, NCL C/L must be input-complete and observable. Input-

completeness requires that all outputs may not transition from NULL to DATA until all inputs

have transitioned to DATA. Similarly, all outputs may not transition from DATA to NULL until

all inputs have transitioned to NULL. Observability requires that any wires that transition during

a DATA wavefront and do not affect the output may not propagate through a gate [1].

The generic block structure of an NCL threshold gate is shown in Figure 3. It consists of

a pull-down Set block and a pull-up Reset block. When the inputs to complete the logical

function are present, the Set block pulls down the internal node, and the output will rise. The

Hold1 block provides the hysteresis function to hold the output high until all inputs are de-

asserted. Likewise, when a NULL wavefront is passing through the system, the Reset block pulls

the internal node high when all gate inputs are logic 0, such that the output will be de-asserted.

The Hold0 block provides the hysteresis function to keep the output at logic 0 until the set

function is true [1].

Figure 1. NCL Pipeline Architecture [1].

Figure 2. THmn Threshold Gate [1].

Figure 3. NCL Gate Structure [1].

4

5

2.2 Multi-Threshold NULL Convention Logic (MTNCL)

MTNCL is an adaptation of NCL that is capable of achieving substantially lower leakage

power, lower dynamic power, faster performance, and reduced area. This is accomplished using

multi-threshold CMOS (MTCMOS) and the concept of power gating [5].

In MTCMOS, transistors are utilized that possess different threshold voltages (Vt). High-

Vt transistors are slower than standard-Vt transistors but have lower leakage current. Likewise,

low-Vt transistors are faster than standard-Vt transistors but have higher leakage current. An

example of MTCMOS power gating is shown in Figure 4, where a high-Vt transistor is inserted

as either a header or footer switch between power or ground, respectively, and the low-Vt logic.

The high-Vt transistor is controlled using an external sleep signal that allows the circuit to

function when the sleep signal is de-asserted. The high-Vt transistor has much lower leakage than

other transistors, enabling significant reduction of static power dissipation, since all current flows

through that transistor. Performance is improved by utilizing low-Vt transistors for all other

transistors, as these transistors are faster than standard-Vt or high-Vt transistors [5].

Figure 4. MTCMOS Power Gating [5].

6

To produce an MTNCL gate, the high-Vt (circled) and low-Vt transistors are incorporated

into an NCL gate as shown in Figure 5. The NULL wavefront is forced by the sleep signal, so

the Reset block is not necessary and is removed to save area. For the Early Completion MTNCL

architecture [5], input-completeness is provided by the sleep mechanism; therefore the Hold1

block to provide hysteresis may also be removed. The Hold0 block utilizes all high-Vt

transistors, since these are only turned on when the gate is slept during the NULL wavefront;

therefore, performance is not reduced, but leakage current is reduced during operation. One high-

Vt transistor is implemented in every path to ground in the Set block to provide low-leakage

during NULL wavefronts; all other Set transistors utilize low-Vt for increased speed [5].

Figure 5. MTNCL Gate Structure [5].

In an MTNCL pipeline, stages consist of MTNCL registers, MTNCL combinational

logic, and slept early completion detection components, as shown in Figure 6. Each MTNCL

register only has a data input port, a data output port, and a Boolean sleep input. The

acknowledge RFD and RFN signals are generated and combined in the slept early completion

detection components in a fashion similar to NCL. These signals control the flow of DATA and

NULL through the pipeline and also provide the sleep control mechanism. When DATA input is

7

present for the current pipeline and the following pipeline stage acknowledge is RFD, the current

stage will be unslept to allow the DATA wavefront to pass. When the current stage is slept

during RFN, all MTNCL gates in the stage are reset to 0, which is the NULL state.

The MTNCL slept early completion component is shown in Figure 7, which is comprised

of MTNCL TH12 gates to detect a DATA or NULL for each register input bit, and a tree of

MTNCL THnn gates to combine the multiple TH12 gate outputs into a single signal, which is

then combined with the subsequent stage’s early completion component’s sleep output via a

resettable inverted NCL TH22 gate, to generate the current stage’s early completion

component’s sleep output.

Figure 6. MTNCL Pipeline Architecture [5].

Figure 7. MTNCL Slept Early Completion Component.

8

9

2.1 Synchronous Test Methods

Integrated circuits (ICs) require testing to detect faults that can occur during the

fabrication process, such as a wire being shorted to ground (i.e., stuck-at-0) or shorted to VDD

(i.e., stuck-at-1), to ensure correct operation. Test methods for synchronous circuit designs have

been well-established in both literature and practice. Design For Testability (DFT) methods [4]

are commonly employed to test circuits. This form of testing typically requires external

equipment to both present the input patterns and measure the output patterns. Scan methods are

frequently employed by adjusting the Device Under Test (DUT) to embed serial shift

functionality into the registers of the circuit. By shifting data into a primary input, applying the

appropriate number of clock periods to perform the combinational function, and then shifting

data out of a primary output, it is possible to apply test patterns to numerous circuits inside the

DUT and measure the responses with a low I/O count. To further improve test performance, the

primary scan chain may be broken up into parallel scan chains. Scan chains are common choices

for DFT due to the availability of both DFT insertion and automatic test pattern generation

(ATPG) software [4].

BIST methods incorporate test validation into the DUT so that input patterns may be

presented and outputs validated internally, without requiring external test hardware. To present

input patterns to the DUT, linear feedback shift registers (LFSRs) are regularly used. These are

essentially circular shift registers with XOR elements in various feedback paths to provide the

desired input patterns. An example 3-bit LFSR circuit design is shown in Figure 8. The LFSRs

require a reset to a known seed value and then produce a pseudorandom pattern that is

deterministic. A depiction of the various states for the 3-bit LFSR mentioned above is shown in

Table 1. LFSRs may be designed to present a maximal length 2n-1 test patterns, where n is the

10

number of LFSR bits. The all-0 test pattern is not possible in LFSRs unless the number of bits is

increased and at least one of the LFSR outputs is not utilized; however, this may lead to

additional test time as the number of possible output patterns is increased. Other methods may

implement a larger memory structure such as read-only memory (ROM) to provide several

specific test patterns. Designs including this may utilize DFT scan methods so that overall

pattern counts are low and coverage high, at the expense of additional area requirements for

memory and auxiliary circuits [4].

Figure 8. Linear Feedback Shift Register (LFSR).

Table 1. LFSR State Table.

State Output State Output State Output State Output

0 001 2 100 4 111 6 110

1 010 3 101 5 011 0 001

To measure the outputs, several methods have been developed. Transition counting is one

method wherein the number of transitions on the output, or where the output changes state, is

counted and compared to the correct number of transitions assuming a correctly-functioning

DUT. However, this may provide a false positive diagnosis because the number of transitions for

an invalid DUT could match the number of transitions for a valid DUT. Parity bits are another

output response validation technique in which the parity of each consecutive output is measured,

11

and the final parity of the test patterns is compared to the proper parity. This parity validation

could yield a false diagnosis as each pattern yields a single parity bit, so two bits flipped in the

output response would yield a good result. Multiple input shift registers (MISRs) are frequently

utilized to provide a form of output measurement [4]. MISRs are essentially LFSRs with

additional XOR gates inserted between every stage of the shift register with the second input tied

to an external input. This provides a method for the input to influence the state of the LFSR. An

example MISR is shown in Figure 9.

Figure 9. Multiple Input Shift Register (MISR).

2.2 Asynchronous Test Methods

There are far fewer test methods for asynchronous circuit paradigms, such as NCL or

MTNCL. Hence, traditional synchronous methods are typically modified to work with a specific

asynchronous paradigm. Due to the limited number of asynchronous test methods, tests requiring

additional testing equipment or significant additional on-chip circuitry are frequently used.

DFT techniques involving scan chains have been examined to allow synchronous ATPG

tools to be utilized with MTNCL [7]. This allows standard ATPG tools to generate low numbers

of input vectors that yield high fault coverages. A block diagram of this DFT strategy is shown in

Figure 10. However, this testing methodology requires testing equipment or additional integrated

12

hardware to provide the test patterns. Integrated hardware would likely consist of ROM that

would hold the test patterns and output responses along with a controller to present the inputs,

measure the outputs, and also validate the functionality of the circuit; this would require a large

area overhead, especially for large pattern counts.

Figure 10. Asynchronous DFT MTNCL Scan Chain Design [7]. © 2016 IEEE.

Quiescent current testing, also known as IDDQ testing, has been designed for NCL circuits

[8]. In this test, a number of random inputs are presented to the primary inputs of the DUT, and

the supply current of the DUT is measured. If stuck or bridging faults are present in the circuit,

higher current draws should be observable under certain input conditions, as shown in Figure 11.

This form of testing requires some form of equipment or hardware to present the stimulus to the

circuit and a sensitive measuring device, since supply current draws may be rather low. Testing

13

is slow, as the IDDQ measurements must be taken after the dynamic current draws from the

charging or discharging of internal capacitance occur.

Figure 11. IDDQ Test for Semi-Static NCL Gates (right) [8]. © 2016 IEEE.

BIST methods have also been investigated. An asynchronous interleaved scan

architecture was implemented in [9]. This method implemented two scan paths inside of NCL

circuits that would generate the required alternating DATA and NULL wavefront between

consecutive register stages, as shown in Figure 12. Two versions were designed: one consisted of

a single long scan chain with two test pattern generators (TPGs) and output response analyzers

(ORAs), and a second that had multiple parallel scan chains with two larger TPGs and ORAs.

Block diagrams for these circuits are shown in Figure 13. Detailed descriptions of the TPGs and

ORAs are excluded, but [9] does mention that these exist as external structures. Additionally, a

controller is necessary to facilitate the interleaved nature of DATA and NULL wavefronts.

Figure 12. Interleaved Scan Structure for NCL [9]. © 2016 IEEE.

14

Figure 13. Advanced Interleaved Scan Architecture for NCL BIST (a) RTS (b) STUMPS [9].

© 2016 IEEE.

3 Built-In Self-Test of MTNCL Circuits

Two methods of BIST were implemented for MTNCL circuits. The first implementation

requires less area but may result in a longer test duration; the second utilizes parallelism and

design reuse to increase controllability and reduce test time. In this section, the two methods are

presented, and a common architecture for using them is detailed.

3.1 Area-Optimized MTNCL BIST Stage Implementation

An area-optimized BIST implementation was designed that enables simple functional

BIST with minimal area overhead. The area-optimized BIST stage, indicated by a dashed box in

Figure 14, is essentially the complete MTNCL pipeline from the DUT, and the BIST architecture

functions as a wrapper around the entire DUT. All the input and output ports remain the same for

the BIST stage. Due to this, test patterns can only be applied to primary inputs, and only primary

outputs can be measured. This may limit the controllability and observability of the DUT,

especially as the number of pipeline stages and logic depth increases, similar to synchronous

designs [4]. It is important to note that the DATA output component of this implementation is an

MTNCL register; when the register’s slept early completion component de-asserts the sleep

signal, there will be a delay before the final DATA output appears on the MTNCL register.

Figure 14. MTNCL Area-Optimized BIST Stage.

1
5

16

3.2 Test-Performance-Optimized MTNCL BIST Implementation

A test-performance-optimized BIST implementation was designed, which requires a

larger area overhead compared to the area-optimized BIST implementation but yields higher test

performance through parallelism of multiple BIST stages and design reuse. Contrary to the area-

optimized BIST implementation, the MTNCL DUT is parsed for pipeline stages and broken up

into multiple BIST stages as shown below in Figure 15. Due to the structure of MTNCL pipeline

stages, the initial and final BIST stages are slightly different than the intermediate BIST stages.

Intermediate BIST stages consist of the MTNCL register and combinational logic for a pipeline

stage and the following pipeline stage’s completion detection component. The initial stage also

includes the first input completion detection component; the final stage also includes the final

register. The inputs to each stage consist of a data input and output, ki and slpin inputs, and ko

and slpout outputs. Once again, it is important to note that the DATA output component of the

final stage is an MTNCL register; when the register’s slept early completion component de-

asserts the sleep signal, there will be a delay before the final DATA output appears on the

MTNCL register. For a 2-stage MTNCL pipeline, there will be two BIST stages; intermediate

BIST stages are required for MTNCL pipelines larger than 2-stages deep.

Figure 15. MTNCL Test-Performance-Optimized BIST Stages.

1
7

18

3.3 MTNCL BIST Block Implementation

To implement MTNCL BIST, traditional synchronous BIST methods were adjusted for

compatibility with MTNCL asynchronous systems. As LFSRs are a simple and effective way to

present a large number of input patterns, while requiring minimal additional logic, an LFSR was

utilized to generate the BIST inputs. Since DFFs typically have both a Q and Q’ output with

potentially slightly different timing delays for these signals, a dual-rail gating (DRG) component

was implemented to allow for proper flow of DATA and NULL wavefronts by presenting a

NULL wavefront when its D/N’ control signal is 0 and a DATA wavefront when its D/N’ control

signal is 1. The output response of the BIST stages were measured with an MISR by connecting

both the D0 and D1 rails of the circuit to inputs of the MISR to enable checking both rails

simultaneously. Multiplexers were used to control the flow of data between standard operation

and BIST mode. Additionally, simple Boolean logical equivalence checkers were utilized to

control the number of input patterns presented to the DUT by gating off the LFSR clock once the

final input pattern was presented, and then validating that the final MISR output was the

expected value, meaning that the circuit is functioning correctly.

A schematic of the final MTNCL BIST block architecture is shown in Figure 16 for the

single-BIST-stage area-optimized BIST implementation and the last BIST stage of the test-

performance-optimized BIST implementation. These BIST stages have an MTNCL register for

the data output; they do not have a completion detection component connected to the data output,

so there is no way to ensure that valid DATA is present inherently from the DUT. Thus, a

completion tree component is added to detect when the BIST stage data output has become valid

DATA, and then clock the MISR. This ensures that DATA is stable when the MISR is clocked.

The operation of the circuit is detailed below after Table 2.

Figure 16. Final MTNCL BIST Block Architecture for BIST Stage with Output Register.

1
9

20

A slightly modified MTNCL BIST block architecture is shown in Figure 18. This

architecture is utilized for all BIST stages in the test-performance-optimized BIST

implementation except for the final stage, which requires an added completion tree component as

shown in Figure 17. The test-performance-optimized implementation re-uses the completion

components within the MTNCL pipeline to reduce hardware overhead. Since the internal

completion component is directly connected to the BIST stage data output as shown in Figure 15,

it serves as a valid function for determining when DATA arrives, and can therefore be utilized

with the addition of only a single inverter. The operation of the circuit is detailed below after

Table 2.

The purpose of completion tree component is to produce a Boolean logic 1 output once

all inputs have transitioned from NULL to DATA and to produce a Boolean logic 0 output once

all inputs have transitioned from DATA to NULL. As a valid DATA wavefront must only have

one of the two rails asserted, TH12 gates are utilized to determine when each dual-rail input

signal has become DATA or NULL. A threshold-gate-based AND-tree utilizing TH44, TH33,

and TH22 gates is then appended to merge all the input completion logic into a single final

output that is only asserted once each input is DATA, and only de-asserted once each input is

NULL. A completion tree component for five input bits is shown in Figure 17.

Figure 17. Completion Tree Component for Five Input Bits.

Figure 18. Final MTNCL BIST Block Architecture for BIST Stage with Output Combinational Logic.

2
1

22

Similarly, the purpose of the Boolean equivalence component is to assert its output once

the inputs reach a specific Boolean condition. This component is generated to form a gate-count-

optimized AND-tree using every input bit or its complement so that only one input condition

may assert the output. This component is paired with DFFs from an LFSR or MISR that provide

the input bit and its complement, so no additional hardware is required for any inversions. An

example of an equivalence component with an input pattern of 00101 is shown in Figure 19. The

least significant four input bits are merged using a 4-input AND gate, and the most significant

input bit is merged with this using a 2-input AND gate.

Figure 19. Equivalence Component for Input Pattern of 00101.

The DRG component is combined with the LFSR to produce a valid DATA/NULL

wavefront, essentially enabling a common synchronous design to function with asynchronous

circuits. The schematic of a single bit DRG component is shown in Figure 20, and the truth table

is shown in Table 2. As RFD is Boolean logic 1 and RFN is Boolean logic 0, the D/N’ control

signal could be connected directly to the output of completion detection components, and the Q

and Q’ of a DFF enabled passing the proper DATA and NULL wavefronts from the output of the

LFSR. It is important to note that the DFF should be clocked with the inverse of the D/N’ control

signal to avoid glitches and potential data corruption in the DATA wavefront. If the same

polarity is used, the DATA could transition to an invalid state where both the D0 and D1 rails are

asserted for a brief moment during the shift operation of the LFSR. Using the inverse allows the

23

LFSR to shift only when NULL is present, so the DUT will only receive valid static DATA

wavefronts following NULL wavefronts.

Figure 20. Dual-Rail Gating (DRG) Component.

Table 2. Truth Table for DRG.

D/N’ Output Z Z’

0 NULL 0 0

1 DATA A A’

To enter test mode, the circuit must first be reset. Then the test mode may be selected by

asserting the test input. This configures the BIST stage input data multiplexer to provide inputs

from the LFSR and DRG. The BIST stage acknowledge input signal, ki, is configured through a

multiplexer to utilize either an inverted output from the output completion tree component in

Figure 16 or a twice-inverted slpout signal in Figure 18, which produces the same effect. This

enables the circuit to free run as long as valid DATA/NULL wavefronts are continuously

provided at the BIST stage input as they are requested. Once a valid DATA wavefront arrives at

the data output, the ki signal is transitioned to RFN to request a NULL wavefront. Likewise,

once a valid NULL wavefront arrives at the data output, the ki signal will be adjusted to RFD to

request a DATA wavefront. This simple circuit provides the full DATA/NULL flow required

without the use of any actively changing control signals. Similar to how the BIST stage ki is

controlled in an asynchronous fashion using a completion tree component or the internal

completion detection component, the BIST stage sleep in signal, slpin, is primarily controlled by

24

the inverse of the BIST stage acknowledge output, ko. This inverted ko is merged with an OR of

the inverted reset signal to ensure a valid state as the circuit is reset prior to test mode. This

feedback system allows the BIST stage’s input circuitry to be slept and produce the NULL

wavefront when RFN is requested at the BIST stage ko output.

To enable the circuit to halt at a known test input condition, the equivalence component is

configured to assert its output only once the LFSR’s output matches the pattern following the

desired final input pattern. The output from this equivalence component is inverted and fed into a

combinational logic circuit that enables clocking the DRG and LFSR components only during

test mode. Once the pattern following the final input pattern is reached, the combinational logic

circuit freezes the D/N’ control signal to the DRG component, providing the BIST stage with a

static NULL data input. As the BIST stage data input never changes, the LFSR additionally is

never clocked because the BIST stage acknowledge output, ko, is static at RFD; the equivalence

component will never adjust its output. At this point, the inputs to the BIST stage will be frozen

with the desired number of input patterns presented to the BIST stage.

The MISR utilized at the data output of the DUT measures that all the DATA wavefronts

produced from each BIST stage are logically correct. The output of the MISR is also connected

to a Boolean equivalence component to detect that the valid final checksum signature is present

at the output of the MISR after all of the inputs have been presented to the BIST stage from the

LFSR. To achieve this, the LFSR’s equivalence component and MISR’s equivalence component

outputs are ANDed with the test signal; this allows the status output to raise if the circuit is

functional during test mode and prevent variations of the status signal during standard operation

of the DUT. There is a possibility that through a number of potential faults, the MISRs may

evaluate to a known good checksum even if the circuit does not function properly. This is

25

referred to as aliasing and is beyond the scope of this dissertation, but there are methods to

handle such issues [4]. The aliasing probability of the circuit can be calculated so that the

probability of a faulty circuit providing the MISR output pattern indicating a properly

functioning circuit is known [4]; also, MISR length, XOR taps, and both number and order of

LFSR input patterns may be adjusted to reduce the aliasing probability, if needed. For each new

variation of the LFSR inputs, fault analysis must be re-run to ensure that the desired fault

coverage is achieved.

3.4 MTNCL BIST Top-Level Design

For the top-level BIST design for the area-optimized BIST implementation, the circuit is

essentially the same as the schematic shown in Figure 16. The top-level design is shown in

Figure 21. As the area-optimized BIST functions as a wrapper around the MTNCL DUT, one

additional input and one additional output are required. The test port is added as an input to

control when the circuit functions in BIST mode instead of the standard operating mode, and the

status output is added to show if the DUT successfully arrives at the final MISR output,

indicating a good self-test.

Figure 21. MTNCL BIST Top-Level Design for Area-Optimized MTNCL BIST Implementation.

In this configuration, the ko port may be monitored to observe that the DUT is running in

the test mode. As the LFSR continues to provide inputs to the DUT, the ko should alternate

between RFD and RFN as the circuit free-runs, indicating that the circuit is continuing to process

various DATA and NULL wavefronts. Once this signal becomes static, it indicates that the test

26

will either be complete soon once the final input propagates to the output or that the circuit has

locked up, potentially due to a fault in the circuit. In the event of a long-pipelined design, there

may still be a significant period of time until the final DATA wavefront reaches the MISR, as ko

indicates the DUT’s response to inputs.

Likewise, the slpout port may be monitored to observe that the DUT is providing outputs

to the MISR. This signal will de-assert as the final output register of the DUT is unslept to

provide DATA wavefronts to the data output and MISR and assert as the final output register of

the DUT is slept to provide a NULL wavefront to the data output. Note that the MISR doesn’t

validate NULL wavefronts; however, this is not needed, since all NULL wavefronts are the same

(i.e., all rails are logic 0), and the circuit will halt operation if not able to transition back to

NULL after any DATA wavefront. Once the slpout signal is static, the final DATA output has

been clocked into the MISR, and the status signal indicates whether the design’s built-in self-test

has passed.

The top-level BIST design for the test-performance-optimized BIST implementation is

shown in Figure 22. As the test-performance-optimized BIST implementation utilizes parallelism

by breaking up each pipeline stage of the MTNCL design, each pipeline stage is included in its

own BIST block in the top-level design. Additionally, the status of each is merged using an AND

tree to show a final self-test status of all the BIST blocks. As each BIST block is capable of

controlling itself using the BIST circuitry, the controllability and observability of the system is

increased because each of the BIST stage data inputs and outputs are provided by an LFSR and

measured using an MISR, respectively.

Similar to the area-optimized version, the ko of the first pipeline stage BIST block may

be monitored to ensure that DATA/NULL wavefronts are being presented to the pipeline stage,

27

and the slpout of the final pipeline stage BIST block may be monitored to observe that the final

BIST block MISR is receiving DATA/NULL wavefronts. The status of DATA/NULL

wavefronts within internal BIST blocks may be observed by adding additional external outputs

to monitor their ko and slpout signals, but this is not required.

Figure 22. Top-Level MTNCL BIST Design for Test-Performance-Optimized MTNCL BIST

Implementation for Four-Stage MTNCL Pipeline DUT.

4 MTNCL BIST Automation

An automated method was implemented to import an MTNCL DUT Verilog netlist,

automatically insert the required MTNCL BIST logic, simulate digital functionality, evaluate

fault coverage, and iterate , by first increasing the number of test patterns and then trying different

LFSR initial values, until either the desired fault coverage is achieved or the maximum possible

fault coverage is obtained. This automation tool was designed using Python for netlist parsing,

implementing all BIST component netlists and testbenches, creating simulation macros, running

both digital and fault simulations, evaluating simulation results, and iteration to improve fault

coverage. Mentor Graphics ModelSim and Synopsys TetraMAX were utilized for digital

simulation and fault simulation, respectively, as these are industry-standard synchronous

software packages. The developed MTNCL BIST automation procedure was specifically

designed to utilize these commercial tools, although modifications to function with other

simulators would be possible.

28

A generic flowchart outlining the high-level developed procedure is shown in Figure 23

for a design in which the target fault coverage is capable of being obtained using only pattern

count or LFSR seed adjustment. The details of each block are greatly expanded, and additional

information is provided in following subsections. The subsections are broken up: one for area-

optimized mode and one for test-performance-optimized mode.

Figure 23. Flowchart of High-Level Tool Procedure.

A pipelined MTNCL design netlist is provided as input to the automation tool. This file

must first be parsed to determine the input and output bit lengths, the number of pipeline stages,

and what basic function block of an MTNCL pipeline each gate in the netlist belongs to:

registers, completion detection components, or combinational logic. This is done through several

stages of parsing the netlist. A basic flowchart of this algorithm is shown in Figure 24. The input

netlists utilized for tested circuits were synthesized from RTL using the UNCLE toolset [2].

There are some slight nuances to netlists produced using this tool compared to standard MTNCL

pipelines; the Python tool was designed to convert the UNCLE netlists into the standard MTNCL

pipeline format.

Start

Python
Parse Netlist

Implement BIST Hardware
Create Simulation Macros

Simulation
ModelSim Digital Sim
TetraMAX Fault Sim

Fault Coverage Met?

Python
Adjust # Patterns

or adjust LFSR Seed

Outputs
BIST Design

BIST Testbench
Sim Macros

Fault Coverage

End

N

Y

Inputs
Netlist

Fault Coverage
Area/Test Opt?
Patterns/Seeds

29

Figure 24. Flowchart for Parsing Netlist.

Parse Stages

Parse Registers

Parse Acks

Parse LogicReplace Assignments

Start
Inputs
Netlist

Find all instances in netlist that
are th12m, or2, or th33w2 and
have matched logical input net

names excluding t/f prefix

Set instances as
ack type with
input subtype

Find all instances in netlist that
are th22m, th22, th33m, th33,

th44m or th44 with logical
inputs nets starting with acknet

Set instances as
ack type with
tree subtype

Find all instances in netlist that
are inv and has input and
output nets starting with

acknet

Set instances as
ack type with
invert subtype

Find all instances in netlist that
has input and output starting

with acknet

Set instances as
ack type with

output subtype

Find all instances in netlist that
are th22r and have a matched

logical input net name
excluding t/f prefix with

another th22r

Find all instances in netlist that
are drlatnm and have matched

logical input net names
excluding t/f prefix

Set instances as
reg type with

1 subtype

Set instances as
reg type with

2 subtype

Replace nets utilized in
assignment operators with

one of nets
Merge assignment branches

Find all remaining instances in
netlist without a type

association

Set instances as
logic type

Find all assignment operators
in netlist

Find all instances with ack type
and output subtype in reversed

order of pipeline stage

Find all instances with reg or
logic type with slp pin

Create sleep list of pipeline
order from ackout to ackin

Set instances stage equal to
index of slp pin s net in sleep

list

Find all instances with ack type
and input or tree subtype

Set instances stage equal to
index +1 of slp pin s net in

sleep list

Find all instances with ack type
and output subtype

Set instances stage equal to
index of output pin s net in

sleep list

EndConvert to standard MTNCL

30

Once the input netlist is presented to the automation tool, it initially parses the netlist to

find and classify the acknowledge completion detection components, further referred to as acks,

as these control the flow of DATA/NULL wavefronts through the design and are critical to the

proper functionality of the BIST circuitry and DUT itself. This section of parsing is referred to as

parsing acks.

There are several subtypes of these ack type components. Referring back to Figure 7, the

left-most components in which both rails of a dual-rail signal are connected are referred to as

input subtypes. These consist of TH12m gates in standard MTNCL pipelines. However, UNCLE

uses an NCL-based input completion detection circuit composed of OR2 gates (functionally

equivalent to TH12 gates) for the first pipeline stage. UNCLE may also utilize a TH33w2,

classified as an input subtype, to merge a single dangling dual-rail signal into the AND tree to

reduce area. To ensure that none of these gates are actually utilized as combinational logic

components, the inputs of the input subtype must have matched net names after the first

character; UNCLE utilizes a “t_signal” and “f_signal” to denote D1 rail and D0 rail, respectively,

where the “_signal” must be matched and the “signal” is the dual-rail name.

Following these dual-rail detectors is the threshold-based AND trees consisting of

TH22m, TH33m, and TH44m gates, potentially with their NCL equivalents as used by UNCLE

for the first pipeline stage. These gates are assigned a tree subtype.

The primary output stage of handshaking MTNCL completion components is a TH22ir,

or a TH22r for the last stage of an UNCLE design, and is assigned an output subtype. In the gate

name, r refers to the gate including a reset input to initialize the gate output to 0, and i means that

the gate output is inverted. These merge the final output of the threshold-based AND tree, shown

31

in Figure 17, with the output from the following pipeline stage’s acknowledge signal to enable

asynchronous handshaking.

UNCLE additionally uses inverters in certain MTNCL architectures; if the input to an

inverter is the output of a completion detection component, it is classified as an inv subtype.

Once parsing ack structures is complete, the registers of the MTNCL design must then be

parsed for the reg type. UNCLE also utilizes an NCL-based output register comprised of TH22r

gates for the output stage. These are grouped and checked for consistency amongst other TH22r

gates to ensure that a “t_signal” and “f_signal” are present for each dual-rail signal where

“signal” is a common dual-rail net name. As each of these is for a single rail of a dual-rail signal,

these are given a subtype of 1 representing the total signal count of inputs to the register. The

remainder of registers are comprised of drlatnm gates; these are classified as a reg type with a

subtype of 2, as each dual-rail register has both the D1 and D0 inputs.

As a safeguard, the sum of all reg types is compared against the count of all ack types

with input subtypes. This helps ensure that both the acknowledge structure and register structures

were properly parsed; a warning is placed in the log file if these quantities don’t match. Once all

these other classifications have been made, all remaining gates are classified as a logic type.

Due to difficulties managing the large number of assignments produced during synthesis,

all of the assignments found in the netlist are down-selected to a single net name and replaced

throughout the entire design. To further complicate this process, the order of net assignment and

multi-net assignments can cause difficulties; nets may have multiple non-sequential assignments

to other nets. A dictionary is created from each assignment structure, and net name priority is

filtered to register inputs, as these dual-rail net names must match for both rails per the parsing

implementation. The dictionary is iterated upon and restructured until only register input net

32

names, taking priority, or other logical net names are remaining in the design without any

references to any other assignments. The assignment structures are adjusted so that they are

commented out in any future exported netlists, as only the primary assignment net name that had

priority is necessary. Then, all gates are iterated upon to remove any non-primary assignments in

the structural port mapping and replace those net names with primary assignments.

Once the assignments are replaced, the pipeline stages are parsed to determine stage

order. The primary handshaking signals coming from ki backwards towards ko passing through

the ack output subtypes are determined. These are then reversed to present the parsing algorithm

with an index-based sleep list from ack outputs that properly represents the sleep signals

provided to various stages of the pipeline. Index zero would be the first pipeline stage, and index

one would be the second pipeline stage. This would continue for all stages in the pipeline.

All gates are then assigned a stage using this sleep list. Any reg or logic types have a

pipeline stage assigned equal to the matching index in the sleep list of their sleep pin because

these components are slept by their pipeline stage’s early completion component. The output

registers utilized by UNCLE do not have a sleep pin as they are NCL-based; these are

automatically assigned to the last pipeline stage. Any ack types with input or tree subtypes are

assigned an index equal to the matching index plus one in the sleep list of their sleep pin because

these components are slept from the preceding pipeline stage. As UNCLE utilizes an NCL-based

early completion component for the initial pipeline stage, these are assigned a stage of 0 if they

do not have a sleep pin. The ack type output subtypes are assigned a stage equal to the matching

index in the sleep list of their output pin as these components sleep their own pipeline stage.

All UNCLE-based pipeline structures are then converted to the standard MTNCL

pipeline structure shown in Figure 6. The ack type input subtypes OR2 gates are converted to

33

TH12m gates with the sleep pin connected to slpin, as these are only present in the first pipeline

stage. Likewise, the TH33w2 gates are converted into TH33w2m gates. For ack type tree

subtypes with NCL gates, these are adjusted to their MTNCL variation: a TH22m for a TH22, a

TH33m for a TH33, or a TH44m for a TH44. Once again, these will have sleep inputs connected

to the slpin signal. For the final pipeline stage, the ack type output subtype TH22r gate is

replaced with a TH22ir gate to remain consistent in convention, and any inverters in the ack

structures are removed. The output register TH22r gates are replaced with drlatnm gates; each

pair of complimentary TH22r gates for the dual-rail signal are merged into this single

component.

At this point, the function and structure of all components inside the MTNCL design are

known and understood, so the various MTNCL BIST automation flows are possible. Without

this parsing step, potential issues could arise due to the nuances employed by the UNCLE tool

flow.

4.1 Area-Optimized Implementation Automation

A flowchart detailing the automation for the area-optimized MTNCL BIST

implementation is shown in Figure 25. The inputs required are the actual MTNCL netlist, desired

fault coverage, and area-optimized mode selected. Additionally, initial number of test patterns,

maximum number of test patterns, initial LFSR seed, and maximum number of LFSR seeds can

also be specified as optional inputs; otherwise, they default to 5 initial patterns, 2n-2 max

patterns, where n is the number of BIST stage inputs, a starting LFSR seed of binary 1, and 2 for

maximum number of LFSR seeds, such that one additional seed other than the initial binary 1 is

tried. The netlist is then parsed as previously mentioned. An iterative loop is then entered, in

which digital and fault simulations are performed, and the final fault coverage is compared to the

34

desired fault coverage until either the desired fault coverage is achieved or the maximum number

of patterns is reached. If desired fault coverage is not met, another iterative loop is entered that

randomly adjusts the LFSR initial seed until either the desired fault coverage is achieved or the

maximum number of seeds is reached. Once desired fault coverage is achieved, or the maximum

number of patterns and initial seeds are analyzed, the final design is output, along with the

additional hardware, simulation macros, and analysis of fault coverage. If the target fault

coverage was not met, the final design is the last design tested, which may not be the one with

the best fault coverage. In this case, the designer should check the end of the log file to determine

the maximum fault coverage achieved by any of the designs analyzed, and then rerun the tool

with this maximum achievable fault coverage as the desired fault coverage, in order to output the

best design.

35

Figure 25. Flowchart for Area-Optimized MTNCL BIST Implementation Automation.

Start

Inputs
Netlist

Fault Coverage
Area Opt

Patterns/Seeds

Python
Write Base Stage/Block/TB

Write Base Digital Sim Macro

Python
Good Base

Digital Sim?

Python
Write Module Fault

Sim Macro

Python
Fault Coverage

Met?

Python
Write Module Stage/Block/TB

Write Module Digital
Sim Macro

Python
Good Module
Digital Sim?

Python
Good Module

Fault Sim?

Python
Max Patterns?

Python
Max Seeds?

Y

Y

Y

N
Python

Double Pattern #

Python
Parse Netlist

End

Python
Adjust LFSR Seed

End

N

End

N

Y

N

Y

Y

N

N

Simulation

ModelSim Digital Sim

Simulation

ModelSim Digital Sim

Simulation

TetraMAX Fault Sim

Python
Write Final Stage/Block/TB

Write Top-Level Design

Outputs
BIST Design

BIST Testbench
Sim Macros

Fault Coverage

End

36

To create the various equivalence hardware, the LFSR and MISR outputs of a golden

simulation must be run for the desired number of patterns. As digital simulation is an efficient

manner of calculating theses values, a base BIST stage, block, and testbench is initially created.

The architecture for a base BIST block is shown in Figure 26 for the area-optimized

implementation where the output of the BIST stage wrapper is always a register. Although it

appears similar to the final BIST block shown in Figure 16, there are several key differences.

Primarily, the equivalence circuits do not yet exist for these designs, as the final LFSR and MISR

output patterns are currently unknown. Although the MISR outputs are not connected to any

hardware, they are monitored during the simulation.

Since TetraMAX is a cyclic fault simulator, it is incapable of properly handling the

asynchronous DATA and NULL wavefronts unless both the changing inputs and outputs occur

in the same cycle; additionally, the DATA wavefront must be provided last so that the simulator

may settle on the proper outputs. To enable this, the base BIST block requires both the input and

output to transition only once during a cycle through the use of the added TH22 threshold gate

that conjoins the BIST block’s completion tree component’s inverted output with the ko output

from the BIST stage and feeds this back into the ki for the BIST stage. Essentially, this ensures

that the BIST block will not request a NULL wavefront until after a valid DATA wavefront has

appeared at the output, propagating from the static DATA input. To further constrain the system

with a static DATA input per cycle, the DRG D/N’ control signal is taken from this ki as well

and inverted for the LFSR clock. If multiple DATA transitions occur in a single cycle, as in the

case where inputs are provided as soon as requested, the TetraMAX functional simulator may

produce invalid results compared to the golden simulation; this results in an invalid fault grading

result.

Figure 26. Base MTNCL BIST Block Architecture for BIST Stage with Output Register.

3
7

38

Additionally, a simulation macro for digital simulation is written, which includes

measuring the outputs of the LFSR and MISR at the desired input and output pattern count along

with the test time at which these outputs occur. However, this test time is not utilized by the tool.

Once the final output count is reached, the simulation is stopped. This macro is run in the digital

simulator, and the simulation log is checked once the simulation process closes to validate that

the simulation completed successfully and to ensure that the LFSR pattern and MISR pattern are

present in the log.

Once the LFSR and MISR pattern are known, the equivalence modules are created during

the process of writing the module BIST stage, block, and testbench. The architecture for the

module BIST block produced during the area-optimized implementation is shown in Figure 27.

This architecture is a fusion of the Base and Final MTNCL BIST Block architectures. The LFSR

equivalence circuit is produced to match the input pattern following the desired final input count

so that the inputs will be frozen at a NULL wavefront between these two patterns, presenting the

desired number of inputs to the BIST stage. The two inverters, AND, and OR gates connected to

LFSR equivalence component enable this function; once the final pattern is reached, the LFSR is

no longer clocked. Additionally, the D/N’ DRG control signal remains low, providing a static

NULL wavefront at the BIST stage input.

As the module BIST block architecture will be utilized for fault simulation by

TetraMAX, it includes the constrained acknowledge signals merged with the TH22 gate and

utilizes the BIST stage ki for the gating mechanism for the LFSR and DRG control signals. This

ensures that only one DATA input will be presented to the BIST stage during each fault

simulation cycle, as required by TetraMAX for fault simulation.

Figure 27. Module MTNCL BIST Block Architecture for BIST Stage with Output Register.

3
9

40

A macro, similar to the initial base BIST block simulation macro, is created for the

module digital simulation. Instead of outputting the LFSR and MISR patterns at a specified input

or output count, they are measured and recorded once the simulation has completed. This occurs

once the final input DATA and NULL wavefronts are presented to the BIST stage, and once the

circuit has reached a steady state after the final DATA and NULL wavefronts appear at the

output. Additionally, all ports of the BIST stage are monitored, using a vcd dumpports command,

and output to a VCD file. This creates a file structure that is checked prior to fault simulation to

ensure that the digital simulation, referred to as the golden simulation, and functional fault

simulation match. If the golden simulation and functional fault simulation do not match, any

fault analysis may be invalid because nets may not transition as expected, and therefore any

faults may not propagate correctly. Essentially, this file includes the entire set of results of the

BIST stage during digital simulation; input value states, output value states, and all state

transition times are recorded for all ports of the BIST stage. This macro is run in the digital

simulator, and the simulation log is checked once the simulation process closes to validate that

the simulation completed successfully, and to ensure that the final LFSR pattern and MISR

pattern match the desired values that were previously generated during the base BIST block

simulation.

Now that the MTNCL BIST block architecture including the equivalence circuitry is

implemented and simulated digitally, a TetraMAX fault simulation macro is written. The models

and netlists are read into the simulator. It is important to note that the version of TetraMAX

simulator utilized was not capable of simulating behavioral models in Verilog. Thus, any

behavioral models provided in the UNCLE toolset and utilized for MTNCL synthesis were

adjusted to use a dataflow representation utilizing assignments. The fault models are built, and a

41

digital simulation is run inside TetraMAX and compared to the ModelSim digital simulation’s

VCD file. The fault grading simulation is then run, and the fault summary is recorded.

Although the fault simulation may have run, several things must be checked to ensure

that it is valid. If the TetraMAX digital simulation matches with the ModelSim digital

simulation, then the actual fault analysis should be valid since the circuits’ behaviors match. If

there is a mismatch between simulations, the fault simulation is disregarded, and the algorithm

stops; additional fault simulations will incur the same issues. This should only happen if either

model is not valid for use with the TetraMAX digital simulator, as mentioned above, or if there

is an error in the DUT or BIST circuitry that does not follow standard MTNCL conventions.

If the fault simulation validly completes, then all fault summary information is parsed and

utilized to calculate fault coverage. This includes the detected faults (DT), possibly detected

faults (PT), undetectable faults (UD), ATPG untestable faults (AU), not detected faults (ND),

and total faults. DT faults include faults that TetraMAX was able to completely evaluate as being

detected with the present set of inputs. PT faults are evaluated when the good digital simulation

values are known, but the faulty machine simulation resulted in an unknown state (X). UD faults

are faults that cannot be tested and may be due to unused outputs, pins that are statically tied to 0

or 1, may have controllability or observability limitations, or may have redundant logic that

would mask the actual fault. AU faults are faults that cannot be controlled or observed due to

constraints utilized during fault simulation or faults regarding non-scan sequential devices. As

these constraints and devices that would incur this are not utilized with this tool or MTNCL,

faults of this type have not been observed. ND faults are faults that were not detected during fault

simulation and may occur due to a lack of controllability or observability based on the current

input pattern set. Total faults represent the total number of faults simulated.

42

The fault coverage is then calculated using the same method that TetraMAX uses, as

shown in Eq. 1. As PT faults have a 50% chance of being detected in a binary system, they are

assigned a weight of 0.5. None of the other fault types are utilized in this calculation, although

they are recorded in the simulation log for preservation. Although TetraMAX directly outputs

this fault coverage, additional calculation is necessary for the test-performance-optimized

implementation, so the calculation is performed for the area-optimized implementation as well.

𝐹𝑎𝑢𝑙𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠 + 0.5 ∗ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠
 (1)

If the calculated fault coverage meets or exceeds the desired fault coverage, the tool

proceeds to write the final BIST stage, block, and testbench, and the top-level design. If the

desired fault coverage is not met, then the tool checks to see if the maximum number of patterns

has been reached. If this number of patterns is not yet reached, the tool doubles the pattern count

and repeats the entire process. By default, the maximum number of patterns is equal to 2n-2,

where n is the number of inputs bits to the BIST stage. For a simple feed-forward design with no

feedback or state memory, this will practically produce the maximum fault coverage possible

with the BIST architecture. For a design that may include a state machine or has internal

feedback, additional input patterns could potentially increase fault coverage. If a maximum

pattern count parameter is specified in the tool, then this number may be increased to allow

repeated iterations of the LFSR patterns presented to the circuit; however, it will be limited to the

maximum of the two values because the LFSR must be at least as long as the number of input

bits for the BIST stage for the circuit to function. This allows the output length of the LFSR to be

larger than the number of input bits; the upper bits of the LFSR are only utilized by the

equivalence hardware and do not pass through the DRG or multiplexers to the BIST stage.

43

If the tool has reached the maximum number of patterns and the desired fault coverage

still hasn’t been achieved, then the tool checks to see if the maximum number of LFSR seeds has

been reached. The LFSR seed is the starting LFSR value. Until this condition check is reached,

0x1 is utilized for the LFSR seed value when the pattern numbers are increased. When the LFSR

seed is adjusted, a random number is generated based upon the current number of seeds utilized

and the length of input bits to the stage. This random number must be an integer between one

and 2n-1, where n is the number of output bits of the LFSR. This ensures that a non-zero value is

utilized to satisfy the requirements of the LFSR. Like the maximum number of LFSR patterns,

the maximum number of seeds is an additional input parameter that may be adjusted; a default of

two seeds is utilized to allow for one seed change, which may enable the user to determine if the

fault coverage is significantly impacted by the order of patterns presented to the inputs. Both the

initial pattern count and initial seed may also be specified in the software. This enables the

control of both the starting and ending points of the fault simulation for greater control.

Regardless of the status of the fault coverage once the maximum number of seeds has

been reached, the tool proceeds to write the final BIST stage, block, and testbench and the top-

level design. These files are considered the primary outputs of the tool, as these files include the

design of the area-optimized MTNCL BIST implementation. The obtained fault coverage of the

MTNCL BIST design is recorded in the output log; in the event the desired fault coverage was

not obtained, the MTNCL BIST design still reaches some level of fault coverage. If this is near

the desired fault coverage, the user may find this number acceptable. Alternatively, all the output

files may continue to be adjusted for manual tuning by the user, if desired. To aid in this task, the

various simulation macros for both digital and fault simulation are maintained to allow for

alterations and validation of the results.

44

4.2 Test-Performance-Optimized Implementation Automation

A flowchart detailing the automation for the test-performance-optimized MTNCL BIST

implementation is shown in Figure 28. This algorithm is similar to the algorithm utilized for the

area-optimized MTNCL BIST implementation. However, several key differences exist; the

pipeline of the MTNCL DUT is parsed and separated to form multiple BIST stages; these BIST

stages are iterated over for the digital and fault simulations. Additionally, each BIST stage except

for the final BIST stage will utilize a variant of the MTNCL BIST block architecture to reduce

component count by reusing the internal completion detection component. The calculation of

fault coverage is adjusted, as shown in Eq. 2, to account for all stages in parallel.

The required inputs to the tool are the MTNCL netlist, desired fault coverage, and test-

performance-optimized mode selection. Additionally, initial number of test patterns, maximum

number of test patterns, initial LFSR seed, and maximum number of LFSR seeds can also be

specified as optional inputs; otherwise, they default to 5 initial patterns, 2n-2 max patterns, where

n is the number of BIST stage inputs, a starting LFSR seed of binary 1, and 2 for maximum

number of LFSR seeds, such that one additional seed other than the initial binary 1 is tried . The

netlist is then parsed as previously detailed. The original MTNCL design is then split into

multiple stages where BIST stages are formed from the original MTNCL pipeline structure as

shown in Figure 15. As previously mentioned, all BIST stages between the first and last BIST

stage include the current pipeline stage’s register and combinational logic and the following

pipeline stage’s slept early completion component. The first and last BIST stages are slightly

different – the first BIST stage includes these components in addition to the input slept early

completion component, and the last BIST stage includes these components in addition to the

output register.

45

Figure 28. Flowchart for Test-Performance-Optimized MTNCL BIST Implementation

Automation.

For Each Stage in Pipeline

Start

Inputs
Netlist

Fault Coverage
Test Opt

Patterns/Seeds

Python
Write Base Stage/Block/TB

Write Base Digital Sim Macro

Python
Good Base
Digital Sim?

Python
Write Module Fault

Sim Macro

Python
Fault Coverage

Met?

Python
Write Module Stage/Block/TB

Write Module Digital
Sim Macro

Python
Good Module
Digital Sim?

Python
Good Module

Fault Sim?

Python
Max Patterns?

Python
Max Seeds?

Y

Y

Y

N
Python

Double Pattern #

Python
Parse Netlist

Split Pipeline into Stages

End

Python
Adjust LFSR Seed

End

N

End

N

Y

N

Y

Y

N

N

Simulation

ModelSim Digital Sim

Simulation

ModelSim Digital Sim

Simulation

TetraMAX Fault Sim

Python
Write Final Stage/Block/TB

Write Top-Level Design

Outputs
BIST Design

BIST Testbench
Sim Macros

Fault Coverage

End

46

From the MTNCL pipeline structure in the MTNCL DUT, a base BIST stage, block, and

testbench are created along with a macro to enable the digital simulation of this design for each

BIST stage in the design. In the test-performance-optimized MTNCL BIST implementation, two

varieties of BIST block architectures exist to utilize three types of BIST stages. The final BIST

stage includes an output register and thus utilizes the base MTNCL BIST block architecture for

BIST stages including output registers, shown in Figure 26.

However, the first and all other BIST stages output combinational logic and a slept early

completion component and thus utilize the base MTNCL BIST block architecture for BIST

stages including output combinational logic shown in Figure 29. The primary difference in this

architecture is that the BIST stage slpout signal is inverted once to clock the MISR instead of

adding an additional completion tree component with inputs connected to the BIST stage data

output. As with the area-optimized MTNCL BIST implementation, the base MTNCL BIST block

architecture for BIST stages including output combinational logic, includes a BIST stage

acknowledge input from a TH22 threshold gate with inputs coming from the BIST stage ko and

twice-inverted slpout to constrain the system so that only one DATA wavefront is presented to

the BIST stage. Essentially, this ensures that the BIST block will not request a NULL wavefront

until after a valid DATA wavefront has appeared at the output, propagating from the static

DATA input. This acknowledge input is also utilized by the DRG and LFSR gating components

to further constrain the system. If multiple DATA transitions occur in a single cycle, as in the

case where inputs are provided once requested, the TetraMAX functional simulator may produce

invalid results compared to the golden simulation; this results in an invalid fault grading result.

Figure 29. Base MTNCL BIST Block Architecture for BIST Stage with Output Combinational Logic.

4
7

48

The digital simulation macro is then run to digitally simulate the design. The digital

simulation output log is parsed and validated to ensure that it ran properly; the LFSR and MISR

patterns for the final input and output patterns presented to the BIST stage are included in this

log.

The module BIST stage, block, and testbench are then created, including the necessary

equivalence modules for the parsed LFSR and MISR patterns, along with a module digital

simulation macro. Once again, two types of architectures are utilized with the test-performance-

optimized implementation. For the final BIST stage, the module MTNCL BIST block

architecture for BIST stage with output register, shown in Figure 27, is utilized. The module

MTNCL BIST block architecture for BIST stages with output combinational logic, shown in

Figure 30, is utilized for all other BIST stages in the design. Once again, the key difference

between these two architectures is that the additional completion tree component is replaced with

an inverter as the internal BIST stage slept early completion detection component fulfills the

completion detection purpose.

The module BIST block architecture is a fusion of the base and final BIST block

architectures; the added combinational logic connected to the LFSR equivalence components

prevents the LFSR from being clocked and freezes the DRG output to the NULL state once the

LFSR reaches the input pattern following the final desired input to the BIST stage. Additionally,

the MISR equivalence component asserts its output once the valid MISR output is produced. The

outputs of the two equivalence circuits are ANDed together with the test mode, so that the final

status output will assert once the final input pattern has been presented, if the valid MISR output

is obtained during test mode.

Figure 30. Module MTNCL BIST Block Architecture for BIST Stage with Output Combinational Logic.

4
9

50

The module digital simulation macro created includes measurements to ensure that at the

end of the simulation, once all inputs and outputs are static, the LFSR and MISR patterns are

equivalent to the base digital simulation, indicating that the equivalence component generation

was correct and circuit functionality is valid. Additionally, all ports of the BIST stage are

monitored using a vcd dumpports command and output to a VCD file. This creates a file

structure that is checked prior to fault simulation to ensure that the digital simulation, referred to

as the golden simulation, and functional fault simulation match.

The module digital simulation is run, and the simulation log output is parsed to ensure

that the simulation successfully completed. If the LFSR and MISR patterns match the previous

digital simulation, then a TetraMAX fault simulation macro is written; this macro reads in the

modules and netlists into the simulator. The fault models are built, and a digital simulation is run

inside TetraMAX and compared to the ModelSim digital simulation’s VCD file. The fault

grading simulation is then run, and the fault summary is recorded. It was noted that for large

designs, fault simulation may take less time for the test-performance-optimized MTNCL BIST

implementation as less memory is necessary because the design size in each simulation is

reduced. However, more fault simulations may be necessary because fault simulations must be

run for each BIST stage. Once again, the fault simulation output log is parsed to ensure that the

fault simulation successfully completed and yielded valid fault information for the BIST stage.

This includes the detected faults (DT), possibly detected faults (PT), undetectable faults (UD),

ATPG untestable faults (AU), not detected faults (ND), and total faults for each BIST stage.

The above process is repeated for each BIST stage in the design. The fault coverage is

then calculated using the same method that TetraMAX uses; the formula is shown below. As PT

faults have a 50% chance of being detected in a binary system, they are assigned a weight of 0.5.

51

However, for the test-performance-optimized MTNCL BIST implementation, the entire design is

considered as a single entity; all BIST stages are included together as one complete design. All

detected faults are summed together from each BIST stage and added to the half-weighted

summation of possibly detected from each BIST stage, and then this value is divided by the

summation of the total faults of each BIST stage. This is not output from TetraMAX, although it

does output the individual fault coverage of each BIST stage separately.

𝐹𝑎𝑢𝑙𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠 + 0.5 ∗ ∑ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠

∑ 𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑢𝑙𝑡𝑠
 (2)

If the calculated fault coverage meets or exceeds the desired fault coverage, the tool

proceeds to write the final BIST stage, block, and testbench for each BIST stage and the top-

level design. If the desired fault coverage is not met, then the tool checks to see if the maximum

number of patterns has been reached. This occurs for each of the BIST stages. If this number of

patterns is not yet reached, the tool doubles the specific BIST stage pattern count and repeats the

entire process. By default, the maximum number of patterns for each BIST stage is equal to 2n-2,

where n is the number of input bits to that specific BIST stage. If maximum pattern count

parameter is specified in the tool, then this number may be increased to allow repeated iterations

of the LFSR patterns presented to the circuit; however, it will be limited to the maximum of the

two values because the LFSR must be at least as long as the number of inputs bits for the BIST

stage for the circuit to function. This allows the output length of the LFSR to be larger than the

number of inputs bits; the upper bits of the LFSR are only utilized by the equivalence hardware

and do not pass through the DRG or multiplexers to the BIST stage.

If the tool has reached the maximum number of patterns for a BIST stage, and the desired

fault coverage still hasn’t been achieved, then the tool checks to see if the maximum number of

LFSR seeds has been reached. The LFSR seed is the starting LFSR value. Until this condition

52

check is reached, 0x1 is utilized for the LFSR seed value while the pattern numbers are

increased. When the LFSR seed is adjusted, a random number is generated based upon the

current number of seeds utilized and the length of input bits to the stage. This random number

must be an integer between one and 2n-1, where n is the number of output bits of the LFSR for

the BIST stage. This ensures that a non-zero value is utilized to satisfy the requirements of the

LFSR. Like the maximum number of LFSR patterns, the maximum number of seeds is an

additional input parameter that may be adjusted; a default of two seeds is utilized to allow for

one seed change, which may enable the user to determine if the fault coverage is significantly

impacted by the order of patterns presented to the inputs. Both the initial pattern count and initial

seed may also be specified in the software. This enables the adjustment of both the starting and

ending points of the fault simulation for greater control.

For the test-performance-optimized MTNCL BIST implementation, each BIST stage will

continue to simulate in an iterative loop until all BIST stages have reached their maximum

pattern and seed count, or if the calculated fault coverage met or exceeded the desired fault

coverage. This allows some stages to improve the fault coverage above the desired fault

coverage if other BIST stages have a harder time achieving the desired fault coverage due to

limited controllability or observability.

Regardless of the status of the fault coverage once the maximum number of seeds has

been reached, the tool proceeds to write the final BIST stage, block, and testbench and the top-

level design. These files are considered the primary outputs of the tool, as these files include the

design of the test-performance-optimized MTNCL BIST implementation. The obtained fault

coverage of the MTNCL BIST design is recorded in the output log; in the event the desired fault

coverage was not obtained, the MTNCL BIST design still reaches some level of fault coverage.

53

If this is near the desired fault coverage, the user may find this number acceptable. Alternatively,

all the output files may continue to be adjusted for manual tuning by the user, if desired. To aid

in this task, the various simulation macros for both digital and fault simulation are maintained to

allow for alterations and validation of the results.

5 Experimental Results

5.1 MTNCL Design Preparation

A number of circuit netlists were used to evaluate the developed automation flow.

UNCLE [2] was utilized to synthesize the MTNCL circuits from synchronous RTL.

To select the designs for evaluation, the ISCAS ‘85 combinational logic circuits [10]

were selected. These circuits are available as structural Verilog netlists. UNCLE requires a linear

pipeline design with a minimum of two C/L stages so that an MTNCL pipeline, such as one

shown in Figure 6, may be created. To implement this linear pipeline functionality into these

purely combinational circuits, a clk input port was added to enable a synchronous design, an

input register was added before the combinational logic, and two registers connected in series

were added to the output of the combinational logic. The default flow of UNCLE synthesis was

adjusted to further balance these pipelines; Synopsys Design Vision was utilized in the UNCLE

toolflow, and the synthesis template scripts used by Design Vision within UNCLE were

adjusted. The input and output register stages are still required, so the set_dont_retime command

was used on all registers that have net names matching the top-level design input or output ports,

excluding the clock signal. The register stage immediately following the combinational logic is

allowed to be adjusted in the design; the optimize_registers command with a

minimum_period_only option was utilized to appropriately balance the pipeline. This would

yield a 2-stage pipeline design with input and output registers, and one internal register. Aside

54

from this optimization, all standard synthesis requirements of UNCLE were left intact to avoid

breaking the UNCLE tool during fast MTNCL synthesis.

During UNCLE synthesis, the majority of the ISCAS ‘85 benchmark pipelined

combinational logic designs were able to synthesize into functional MTNCL designs. However,

some warnings and errors were observed during UNCLE synthesis; these are shown in Table 3.

The c17 design had a complete synthesis without any warnings. After synthesis, UNCLE runs a

simulation to validate that the design possesses basic functionality and looks for issues within the

simulation. Six of the ten synthesis attempts resulted in warnings for input transition values or

output capacitive loads during simulation; these warnings are related to a lack of buffering. In

MTNCL, the sleep nets of the MTNCL pipeline stages may have large capacitive loads as the

number of gates in that pipeline stage increase. For UNCLE fast MTNCL synthesis, the net

buffering option must be disabled. However, these designs still properly simulate in a digital

simulator such as ModelSim. Additional buffering could be added to the design if slow

performance is observed during transistor-level simulation. Three designs failed UNCLE

synthesis, as shown in Table 3, since UNCLE detected a non-linear pipeline inside the design.

These designs were excluded from the evaluation.

Additionally, a few other designs were evaluated. An 8-bit adder and a 32-bit multiplier

were selected as generic circuits. These two designs were implemented as 2-stage pipelines using

behavioral RTL. UNCLE was utilized to synthesize the designs into MTNCL. Pipeline balancing

was not implemented for these designs. Table 4 provides area measures for all designs, where

gates are the number of MTNCL gates in the design, and area is calculated using the UNCLE

library’s gate information. Although c6288 is a 16-bit multiplier, the 32-bit multiplier has a

slightly smaller area due to optimization enabled by RTL versus the structural c6288 netlist (i.e.,

55

the 32-bit multiplier uses optimized 4-gate full adders [1], whereas c6288 full adders are

decomposed into basic logic functions, such as AND and NOR, each requiring at least 2

MTNCL gates).

Table 3. UNCLE Benchmark Synthesis Summary.

ISCAS ‘85 Design UNCLE Status Notes

c17 Pass Success

c432 Warning Input transition value

c499 Warning Input transition value

c880 Warning Input transition value, output capacitive load

c1355 Warning Input transition value

c1908 Warning Input transition value

c2670 Error Non-linear pipeline detected

c3540 Error Non-linear pipeline detected

c5315 Error Non-linear pipeline detected

c6288 Warning Input transition value, output capacitive load

Table 4. MTNCL Designs Evaluated with BIST Automation.

Design Gates Area

c17 38 153

c432 581 2403

c499 676 2200

c880 1030 4502

c1355 1276 5632

c1908 1018 4471

c6288 5320 23731

adder8 177 621

mult32x32 7588 21523

56

5.2 General MTNCL BIST Automation Procedure

For both the area-optimized and test-performance-optimized implementations, three test

cases of the MTNCL BIST automation were performed for each design. The initial test case had

a target fault coverage of 75%, no maximum pattern count (the default), and no additional seeds

besides the initial one. The number of input patterns was initialized to 5. This would enable the

circuit to utilize the maximum number of patterns for each BIST stage, 2n-2 patterns, where n is

the number of input bits to that specific BIST stage, provided the target fault coverage was not

reached first. This run was primarily performed to ensure that the fault simulation would

complete in a short amount of time.

For the second test case, a target fault coverage of 100% was utilized. The number of

patterns was initialized to 5, while the maximum number of input patterns was set to 1E6

patterns. For any BIST stage with fewer than 20 input bits, this would utilize all possible input

patterns, with some patterns repeated. For BIST stages with 20 input bits or more, only 1E6

patterns would be tested. Similar to the previous test case, the number of seeds was limited to

one and would thus use only the initial seed pattern. This test case was utilized to obtain a

maximal fault coverage obtainable by each design within 1E6 patterns and using only the initial

seed. This was used to evaluate performance as the number of input patterns increases. The test

time increases significantly as the design size and pattern count increases; a maximum pattern

count was set to essentially limit the test time required for the large designs, specifically c6288

and mult32x32.

The third test case had a target fault coverage of 100%, a pattern count set to exactly

1000 patterns (i.e., 1000 starting pattern count and 1000 maximum pattern count), and a

maximum seed count set to 1000 seeds. The seed was initialized to the default initial seed. The

57

1000 static pattern count was selected after reviewing results from the other two test cases; most

designs converged to a moderately high fault coverage within 1000 patterns. Although this does

not run an exhaustive simulation for all possible LFSR seeds, this does give insight into how

fault coverage and test time may vary across different seeds; an untested seed could potentially

produce better fault coverage.

All designs were able to run until successful completion, either obtaining the desired fault

coverage or iterating through all patterns and seeds. For the 75% fault coverage simulations, the

desired fault coverage was obtained by all designs. During the 100% fault coverage simulations

with pattern count variations, none of the designs were able to obtain target fault coverage, as

expected; TetraMAX identified ND faults in all designs. Likewise, none of the designs were able

to achieve 100% fault coverage by varying the initial seed using 1000 patterns. The large

designs, consisting of thousands of gates, took a significantly longer time to run than the small

designs.

5.3 Area-Optimized MTNCL BIST Results

All of the designs were initially run through the area-optimized MTNCL BIST

automation tool using the first test case of 75% fault coverage. Since this test case had a

maximum pattern count set to 0, only LFSR lengths up to the BIST stage input length would be

generated. This would provide the minimum sized BIST hardware required for this automation

task; increased pattern counts could yield slightly larger designs as the LFSR length and

equivalence circuits would increase in size. The output BIST designs were imported into

Synopsys Design Vision, ungrouped, and analyzed for area. Libraries utilized were generated

from the information provided in the UNCLE toolset. The default non-BIST designs were also

58

run through the same procedure so that the BIST insertion area impact could be determined; the

comparison is shown in Table 5. These and all further results are arranged by design area.

For the small designs consisting of less than 200 gates, a large area impact was observed

of 100% or greater. This occurs because the ratio of BIST stage input bits to logic is rather high,

and a significant area is required to generate the additional BIST hardware compared to the

combinational logic. For the medium-sized designs of 200-1300 gates, an area impact of

approximately 30-40% was generally observed. The c499 design had a significantly larger area

overhead due to an increased ratio of BIST stage inputs to actual combinational hardware. For

large designs greater than 1300 gates, area overheads ranging from 14% down to 6.4% were

realized. Overall, the area overhead is dependent on the ratio of BIST stage input length to

combinational logic. For a coarsely pipelined design with few BIST stage inputs, the area

overhead will generally be low. Likewise, designs with a small combinational logic to BIST

stage inputs ratio will incur large area penalties.

Table 5. Area-Optimized MTNCL BIST Area Comparison.

Design Area-Optimized BIST

Name Gates Area Gates Area
% Area

Overhead

c17 38 153 90 355 132.0%

adder8 177 621 336 1245 100.5%

c499 676 2200 1100 3891 76.9%

c432 581 2403 829 3317 38.0%

c1908 1018 4471 1358 5822 30.2%

c880 1030 4502 1520 6370 41.5%

c1355 1276 5632 1700 7323 30.0%

mult32x32 7588 21523 8328 24513 13.9%

c6288 5320 23731 5698 25260 6.4%

59

The fault coverage results from the area-optimized first test case are shown below in

Table 6. In the table, the fault coverage column lists the fault coverages obtained from fault

simulation as a percentage. The patterns column indicates the number of input patterns simulated

to reach the specific fault coverage. The test time represents the final test time for the circuits to

complete the BIST function in the digital simulation nanosecond timescale. The run time is the

summation of the base and module digital simulation time as well as the fault simulation time for

the current set of fault simulations, in seconds. This includes time for the tools to read in netlists,

run the simulations, and produce the output logs, but it excludes any delay from the Python’s

parsing, file I/O, and process calls to open simulation software. During the short simulations of

the 75% test case, file I/O and process calls are actually a large portion of the overall tool time;

however, each run was generally in the range of tens to hundreds of seconds, so the additional

time is somewhat negligible in the sense that waiting a few extra seconds does not have a large

impact; all designs are also similarly affected.

All the area-optimized BIST circuits were able to obtain a fault coverage of at least 75%

with input pattern counts of 160 or fewer. In some cases, the obtained fault coverage was

significantly higher than the target fault coverage. Most of the run times for each specific pattern

count were less than 15 seconds, except for the large designs. For the mult32x32 design, 80 input

patterns produced a fault coverage of only 40.88%. This is one case where a different starting

seed may have drastically increased the fault coverage; 65 input patterns are required before the

output is non-zero due to the initial LFSR seed. However, this simulation did take significantly

longer than any of the other simulations, likely due to the large area count and lengthy fault

simulations.

60

Table 6. Area-Optimized MTNCL BIST Results for First Test Case

(75% Fault Coverage, 0 Patterns, 1 Seed).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]
Patterns

Test Time

[ns]

Run Time

[s]

75% Fault

0 Patterns

1 Seed

c17 86.168 10 409 12

adder8 80.338 40 1932 10

c499 84.120 80 5129 7

c432 75.287 160 13129 6

c1908 77.298 80 6249 13

c880 77.452 160 12009 11

c1355 77.716 80 6009 8

mult32x32 91.775 160 20640 501

c6288 89.390 80 13449 64

The results from the second test case with a target of 100% fault coverage and a

maximum pattern count limit of 1E6 patterns are shown in Table 7. None of the designs were

able to obtain the target fault coverage of 100% within 1E6 patterns. The maximum fault

coverage obtained through any of the 1E6 patterns is shown for each design; in many cases, this

fault coverage may be obtained for numerous consecutive iterations as more patterns are

presented, so the minimum pattern count wherein this fault coverage was achieved is shown

along with the test time and run time for that specific run.

All the designs were able to obtain a fault coverage of at least 86%, which may be an

acceptable fault coverage depending upon user requirements. For all but one design, the

maximum fault coverage took less than 10 minutes to simulate at that specific scenario. The run

time does not represent the summation of all the simulations, which may still be substantial. The

largest design in terms of gate count (but not circuit area), mult32x32, took approximately 230

61

hours to run the digital and fault simulations for 655360 patterns. The only remaining pattern

count for this design, 1E6 patterns, took over 346 hours to run while achieving the exact same

fault coverage. Thus, large designs using the area-optimized mode could become a burden in

terms of both CPU resources and available time for high pattern counts. Tradeoffs of computing

run time, circuit area, and fault coverage between area-optimized and test-performance-

optimized mode will be discussed in a later section; the test-performance-optimized mode was

able to achieve a higher fault coverage while having a significantly reduced test time. Test Time,

listed as the time required to perform a complete BIST of the DUT, approximated by the digital

simulator, may also be significant to the user. The mult32x32 design required approximately 88

ms to test using the digital models. Depending upon the cost associated with test equipment, the

tradeoff of a lower fault coverage may be enticing to reduce testing time and associated costs.

Since none of the designs achieved the desired fault coverage and the maximum fault

coverage generally took a moderate test time to obtain, the lowest fault coverage within 2.5% of

the maximum fault coverage was identified. The results from this relaxation are shown in Table

8 and demonstrate that although the maximum fault coverage may take a long time to obtain, it

may be possible to obtain an acceptable fault coverage within a much shorter timespan by

relaxing the requirements. In some cases, the fault coverage penalty was small.

As the fault coverage began to increase for designs with a very large pattern count,

substantial time savings may be observed for both the test and run time. For the mult32x32

design, the run time difference to obtain 91.78% fault coverage instead of the 93.40% maximum

value was approximately 230 hours; the slightly lower fault coverage only took 8.4 minutes at

that specific pattern count. Likewise, the BIST digital simulation would also complete in a

significantly faster time, approximately 21 µs instead of 88 ms.

62

Table 7. Area-Optimized MTNCL BIST Maximum Results for Second Test Case

(100% Fault Coverage, 1E6 Patterns, 1 Seed).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]
Patterns

Test Time

[ns]

Run Time

[s]

100% Fault

1E6 Patterns

1 Seed

Maximum

c17 86.929 40 1609 4

adder8 87.956 163840 7999728 191

c499 86.783 5120 327689 55

c432 87.492 2560 209929 19

c1908 86.552 20480 1597449 286

c880 86.097 40960 3072009 563

c1355 86.920 5120 384009 118

mult32x32 93.396 655360 87679426 828165

c6288 90.424 160 26889 92

Table 8. Area-Optimized MTNCL BIST Relaxed Results for Second Test Case

(100% Fault Coverage, 1E6 Patterns, 1 Seed).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]
Patterns

Test Time

[ns]

Run Time

[s]

100% Fault

1E6 Patterns

1 Seed

Relaxed

c17 86.168 10 409 4

adder8 87.017 80 3889 4

c499 86.563 160 10249 8

c432 87.424 640 52489 10

c1908 84.823 640 49929 20

c880 84.432 640 48009 17

c1355 84.646 320 24009 15

mult32x32 91.775 160 20640 506

c6288 89.390 80 13449 72

63

The results from the third test case with a target of 100% fault coverage and a maximum

seed count of 1000 seeds are shown in Table 9. For these simulations, all designs used a starting

and maximum pattern count of 1000, so exactly 1000 sequential input patterns were presented

for all the various seeds. This may have resulted in slightly larger BIST structures for small-

input-count BIST stages. Like the second test case, none of the designs were able to obtain the

target fault coverage of 100% within 1000 seeds. The maximum fault coverage obtained through

any of the 1000 seeds is shown for each design.

For most of the designs, the test and run times were very similar across all seeds as the

same number of input patterns was presented. For 1000 patterns, the c499 design actually had a

maximum fault coverage using the initial seed. Additionally, this design had a slightly lower

fault coverage than the maximum fault coverage from the second test case. There were only 1000

patterns simulated here; the second test case required 5120 patterns to obtain the maximum fault

coverage. All other designs were able to achieve a higher fault coverage using different seeds

than the initial seed used in the second test case. For all other designs except the c17 and c6288

designs, the 1000 patterns also had a significantly reduced pattern count compared to the

maximum fault coverage, and thus test time and run time, compared to the second test case while

achieving this higher fault coverage. These effects are design dependent, as is the rate of

increasing fault coverage as pattern counts increase across various seeds. Trade-offs here may

also be evaluated through iterative simulations and analysis of test logs.

64

Table 9. Area-Optimized MTNCL BIST Maximum Results for Third Test Case

(100% Fault Coverage, 1000 Patterns, 1000 Seeds).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]

Seed

Count
Test Time [ns]

Run Time

[s]

100% Fault

1000 Patterns

1000 Seeds

Maximum

c17 90.355 120 40009 8

adder8 88.814 843 48876 9

c499 86.742 1 64009 19

c432 88.624 836 82009 14

c1908 86.679 824 78009 23

c880 86.226 154 75009 23

c1355 87.614 940 75009 31

mult32x32 94.504 721 133790 1183

c6288 93.250 720 168009 310

5.4 Test-Performance-Optimized MTNCL BIST Results

All the designs were then run through the test-performance-optimized MTNCL BIST

automation tool using the first test case of 75% fault coverage. As this provides the minimum

sized BIST hardware required for automation, the area of the circuits was analyzed and is shown

in Table 10. As additional BIST hardware is required for each pipeline stage in the design, the

area impact is more substantial compared to the area-optimized implementation; this is also

impacted by the number of inputs to each BIST stage. The area overheads for the test-

performance-optimized implementation were a minimum of 27.1% for the c6288 design, the

largest-area design, and a maximum of 254.9% for c17, the smallest design. Although this

implementation requires a more significant area overhead, especially for smaller circuits, there

may be other benefits in terms of circuit performance.

65

Table 10. Test-Performance-Optimized MTNCL BIST Area Comparison.

Design Area-Optimized BIST

Name Gates Area Gates Area
% Area

Overhead

c17 38 153 135 543 254.9%

adder8 177 621 501 1901 206.1%

c499 676 2200 1605 6873 212.4%

c432 581 2403 1406 5584 132.4%

c1908 1018 4471 1906 7985 78.6%

c880 1030 4502 2208 9079 101.7%

c1355 1276 5632 2197 9278 64.7%

mult32x32 7588 21523 9624 29575 37.4%

c6288 5320 23731 6953 30167 27.1%

The fault coverage results from the test-performance-optimized first test case are shown

below in Table 11. The fault coverage column lists the fault coverages calculated for all BIST

stages and the fault simulation results. The patterns column indicates the maximum number of

input patterns simulated to reach the specific fault coverage. As multiple stages were simulated

in parallel, this is the maximum of patterns counts for each BIST stage; some stages may be

limited to fewer patterns due to BIST stage input lengths. The test time represents maximum

final test time among BIST stages for the circuits to complete the BIST function in the digital

simulation nanosecond timescale. The run time is the summation of the base and module digital

test times as well as the fault test time for the current set of fault simulations, in seconds.

66

Table 11. Test-Performance-Optimized MTNCL BIST Results for First Test Case

(75% Fault Coverage, 0 Patterns, 1 Seed).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]
Patterns Test Time [ns]

Run Time

[s]

75% Fault

0 Patterns

1 Seed

c17 76.519 20 589 8

adder8 78.636 40 1332 9

c499 77.771 320 13449 11

c432 78.883 160 8009 9

c1908 77.477 320 15689 13

c880 76.646 160 7369 14

c1355 78.607 160 7689 13

mult32x32 92.175 160 12705 588

c6288 78.619 80 7369 58

All the test-performance-optimized BIST circuits were able to obtain the target fault

coverage of 75% with input patterns of 320 patterns or fewer. The obtained fault coverage was

less than 79% for most designs; the mult32x32 obtained a high fault coverage of 92.18%. Most

of the run times for each specific pattern count were less than 15 seconds except for the large

designs.

The results from the second test case with a target of 100% fault coverage and a

maximum pattern count limit of 1E6 patterns are shown in Table 12. None of the designs were

able to obtain the target fault coverage of 100% within 1E6 patterns. The maximum fault

coverage obtained through any of the 1E6 patterns is shown for each design; in many cases, this

fault coverage may be obtained for numerous consecutive iterations as more patterns are

presented, so the minimum pattern count wherein this fault coverage was achieved is shown

along with the test time and run time for that specific run

67

All the designs were able to obtain a fault coverage of at least 76%, and most fault

coverages were greater than 81%. The largest design in terms of gate count (but not circuit area),

mult32x32, took approximately 342.6 hours to run the digital and fault simulation for 655360

patterns.

As none of the designs achieved the desired fault coverage and the maximum fault

coverage generally took a moderate test time to obtain, the same relaxation was applied to the

test-performance-optimized circuits as with the area-optimized circuits; the lowest fault coverage

within 2.5% of the maximum fault coverage was identified and is presented in Table 13.

Although the maximum fault coverage may take a long time to obtain, it may be possible to

obtain a comparable fault coverage within a much shorter timespan by relaxing the requirements.

As the fault coverage began to increase for designs with a very large pattern count,

substantial time savings may be observed for both the test and run time. For the mult32x32

design, the run time difference to obtain 94.67% fault coverage instead of the 95.330%

maximum value was approximately 342.3 hours; the slightly lower fault coverage only took 17.5

minutes at that specific pattern count. Likewise, the BIST digital simulation would also complete

in a significantly faster time, approximately 26 µs instead of 55 ms. Similarly, the c1908 design

was able to obtain a fault coverage within a 1% difference of the maximum value using only

2.6% of the run time and 1.6% of the test time.

68

Table 12. Test-Performance-Optimized MTNCL BIST Maximum Results for Second Test Case

(100% Fault Coverage, 1E6 Patterns, 1 Seed).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]
Patterns Test Time [ns]

Run Time

[s]

100% Fault

1E6 Patterns

1 Seed

Maximum

c17 76.752 160 4649 8

adder8 79.539 163840 5542128 224

c499 84.664 2560 107529 30

c432 83.237 2560 128009 21

c1908 81.612 81920 4014089 1090

c880 82.855 5120 235529 99

c1355 83.848 5120 245769 99

mult32x32 95.330 655360 54583533 1233222

c6288 86.509 5120 471049 1544

Table 13. Test-Performance-Optimized MTNCL BIST Relaxed Results for Second Test Case

(100% Fault Coverage, 1E6 Patterns, 1 Seed).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]
Patterns Test Time [ns]

Run Time

[s]

100% Fault

1E6 Patterns

1 Seed

Relaxed

c17 76.519 20 589 9

adder8 78.636 40 1332 8

c499 83.416 640 26889 15

c432 83.142 320 16009 13

c1908 80.879 1280 62729 28

c880 80.584 320 14729 18

c1355 81.807 640 30729 22

mult32x32 94.673 320 26019 1051

c6288 84.123 640 58889 223

69

The results from the third test case with a target of 100% fault coverage and a maximum

seed count of 1000 seeds are shown in Table 14. For these simulations, all designs used a starting

and maximum pattern count of 1000, so exactly 1000 sequential input patterns were presented

for all the various seeds. This may have resulted in slightly larger BIST structures for small-

input-count BIST stages. Like the second test case, none of the designs were able to obtain the

target fault coverage of 100% within 1000 seeds. The maximum fault coverage obtained through

any of the 1000 seeds is shown for each design.

For most of the designs, the test and run times were very similar across all seeds as the

same number of input patterns was presented. All the test-performance-optimized designs were

able to achieve a higher fault coverage with 1000 patterns than the second test case’s maximum

value using different seeds than the initial seed. For all other designs except the c17 design, the

1000 patterns also had a significantly reduced pattern count compared to the maximum fault

coverage, and thus lower test time and run time, compared to the second test case while

achieving this higher fault coverage. These effects are design dependent, as is the rate of

increasing fault coverage as pattern counts increase across various seeds. Trade-offs here may

also be evaluated through iterative simulations and analysis of test logs.

70

Table 14. Test-Performance-Optimized MTNCL BIST Maximum Results for Third Test Case

(100% Fault Coverage, 1E3 Patterns, 1E3 Seeds).

Conditions

Design Area-Optimized

Name
Fault

Coverage [%]

Seed

Count
Test Time [ns]

Run Time

[s]

100% Fault

1000 Patterns

1000 Seeds

Maximum

c17 80.023 277 29009 15

adder8 81.670 339 33881 16

c499 84.814 49 42009 24

c432 83.637 768 50009 20

c1908 82.223 520 49009 28

c880 84.478 630 46009 32

c1355 84.812 807 48009 31

mult32x32 95.380 453 83285 2065

c6288 88.784 688 92009 268

5.5 Comparison of Area-Optimized and Test-Performance-Optimized BIST Results

To better illustrate some of the trade-offs between the area-optimized and test-

performance-optimized designs, Table 15 and Table 16 compare the two implementations’ area

and fault coverage information, respectively. Regarding area, all test-performance-optimized

designs required significant additional area as additional BIST structures are required for each

pipeline stage in the design instead of only the input BIST stage. For designs with large BIST

stage input lengths, this can become substantial. The test-performance-optimized implementation

required up to an additional 135.5% for the c499 design; it was as low as 20.7% more area for

the c6288 design.

In all cases except for the mult32x32 circuit, the area-optimized implementation was able

to achieve a higher fault coverage than the test-performance-optimized implementation. Most

incurred a 3-5% reduction in fault coverage. Although controllability increases when using

71

multiple BIST stages, total number of faults also increases due to additional nodes being

evaluated for fault coverage, such as the outputs from the added BIST multiplexers in the data

path. For the mult32x32 circuit, increased controllability using an internal BIST stage more than

offset the additional UD and ND faults, such that fault coverage was higher for the test-

performance-optimized version vs. the area-optimized design. Which one yields higher fault

coverage is circuit dependent.

For most of the designs, the test-performance-optimized implementation also reached the

maximum fault coverage in a reduced test time. This would yield faster test times for the final

circuit. However, it is important to note that the test-performance-optimized fault coverage may

not be acceptable when compared to the area-optimized fault coverage. The mult32x32 design

was the largest test time difference, wherein the test-performance-optimized implementation

reduced the test time by 60 ms while achieving a higher fault coverage. All other tests completed

within a test time difference of less than 3 ms. The difference in time may also be significant in

comparison; the c6288 design took approximate 16 times longer to achieve its maximum fault

coverage for the test-performance-optimized vs. area-optimized implementation. Although a few

milliseconds may not seem like a large difference, this may significantly impact overall test time

and cost as significant quantities of a design are placed on a wafer, which all need to be tested.

Additionally, the run time required for the simulations varies as well. Many design

simulations reaching maximum fault coverage completed within a half hour for the specific run

in either direction. For designs that required many runs to obtain this fault coverage, the different

in test time could be substantial, especially as the maximum fault coverage was obtained

repeatedly for several runs.

72

Table 15. Area-Optimized and Test-Performance-Optimized MTNCL BIST Area Comparison for

Second Test Case (100% Fault Coverage, 1E6 Patterns, 1 Seed).

Design Area-Optimized
Test-Performance-

Optimized

Name Area Area
% Area

Overhead
Area

% Area

Overhead

c17 153 355 132.0% 543 254.9%

adder8 621 1245 100.5% 1901 206.1%

c499 2200 3891 76.9% 6873 212.4%

c432 2403 3317 38.0% 5584 132.4%

c1908 4471 5822 30.2% 7985 78.6%

c880 4502 6370 41.5% 9079 101.7%

c1355 5632 7323 30.0% 9278 64.7%

mult32x32 21523 24513 13.9% 29575 37.4%

c6288 23731 25260 6.4% 30167 27.1%

Table 16. Area-Optimized and Test-Performance-Optimized MTNCL BIST Fault Coverage

Comparison for Second Test Case (100% Fault Coverage, 1E6 Patterns, 1 Seed).

Design Area-Optimized Test-Performance-Optimized

Name

Fault

Coverage

[%]

Test Time

[ns]

Run

Time [s]

Fault

Coverage

[%]

Test Time

[ns]

Run

Time [s]

c17 86.929 1609 4 76.752 4649 8

adder8 87.956 7999728 191 79.539 5542128 224

c499 86.783 327689 55 84.664 107529 30

c432 87.492 209929 19 83.237 128009 21

c1908 86.552 1597449 286 81.612 4014089 1090

c880 86.097 3072009 563 82.855 235529 99

c1355 86.920 384009 118 83.848 245769 99

mult32x32 93.396 87679426 828165 95.330 54583533 1233222

c6288 90.424 26889 92 86.509 471049 1544

73

Overall, the merits of the area overhead, fault coverage, test time, and actual time may

yield different tradeoffs based on the specific circuit design. Due to this, it is recommended that

implementing both the area-optimized and test-performance-optimized implementations for a

design may yield the highest potential benefit by enabling the evaluation of trade-offs.

5.6 BIST Automation Performance

To further investigate the performance of the BIST automation, all designs were

extensively analyzed in terms of their simulation performance across the second and third test

cases. The information for the c1355 design is detailed below, as it was the largest of the

medium-sized designs.

The fault coverage vs. pattern count is shown in Figure 31. Both the area-optimized and

test-performance-optimized implementations achieved an initial fault coverage around 38%; the

area-optimized method was slightly higher. As pattern counts increase, the fault coverage

increases at a similar rate and flattens out once the maximum is obtained for both designs.

The fault simulation time vs. pattern count is shown in Figure 32. The fault simulation

time measured the time from the first line until the final line of the script and does not include

tool start-up time. The initial instability is due to only having a 1-second resolution. As expected,

the fault simulation time is reduced for the test-performance-optimized implementation. As the

pattern count increases, the time increases logarithmically at approximately the same rate for

both designs. To obtain the full sweep of simulations for the second test case, a total time of

34590 seconds was required for the test-performance-optimized version; 45843 seconds were

required for the area-optimized version. An increase of over 3 hours is required over the entire

simulation sweep.

74

Figure 31. Fault Coverage vs. Pattern Count for c1355 Design.

Figure 32. Fault Simulation Time vs. Pattern Count for c1355 Design.

75

Although the fault simulation time was reduced for the test-performance-optimized

version, digital simulations required longer to complete, as shown in Figure 33. The area-

optimized digital simulations required 1833 seconds, whereas the test-performance-optimized

digital simulations required 3149 seconds. Some of the initial instability may be due to server

loading. Although this is a substantial difference between the two designs, the fault simulation

total time is an order of magnitude larger. Perhaps this difference in digital simulation totals

could be reduced by only reading the gate models once at the beginning of the simulation loop

instead of at the start of every simulation. This could affect both implementations; it would affect

the test-performance-optimized simulations more because the test-performance-optimized

implementation required two reads for all designs due to the two BIST stages in each design.

A plot indicating total run time vs. pattern count is shown in Figure 34. This time was

calculated from the automation logs by comparing the time difference between the final fault

coverage output of each run; due to this, this time indicates the complete run time per setpoint

including any parsing, file I/O, software startup, and digital/fault simulation time, and is a good

overall indicator of performance. The five-pattern count value is excluded due to no previous

time stamp. For lower pattern counts with this design, the digital simulations took a longer time

to complete than the fault simulations. However, the fault simulations began to take more time

starting just before 1000 patterns, and then increased faster. Due to this, the test-performance-

optimized implementation required additional overall run time to complete, as pattern counts

increased. The percentages of total run time for the fault simulation, digital simulation, and other

processing accounted for 96.04%, 3.84%, and 0.12%, respectively, for the area-optimized

method; for the test-performance-optimized method, this was 91.37%, 8.32%, and 0.31%,

respectively. The fault simulation was the dominant time factor in both implementations.

76

Figure 33. Digital Simulation Time vs. Pattern Count for c1355 Design.

Figure 34. Total Run Time vs. Pattern Count for c1355 Design.

77

During analysis of the third test case, histograms showing the distributions are utilized to

observe differences using a static 1000 pattern count as the starting LFSR seed is adjusted for

1000 different seeds. The fault coverage distributions for the c1355 design are shown in Figure

35 and Figure 36 for the two implementations. The average fault coverage was 85.6% and 83.6%

for the area-optimized and test-performance-optimized implementation, respectively. As seen in

the second case testing, the area-optimized implementation was able to achieve a higher fault

coverage reaching a maximum of 87.6%. The test-performance-optimized method only reached a

maximum of 84.8%. Additionally, the minimum fault coverage of the area-optimized version is

within 1% of the maximum value for the test-performance-optimized version. Although the

distribution of the test-performance-optimized version appears wider, the bins are smaller; the

max is within 0.8% of the average as opposed to 2% for the area-optimized version. This may be

due to the increased controllability.

The fault simulation time distributions for the c1355 design are shown in Figure 37 and

Figure 38 for the two implementations. Two of the area-optimized runs took 30-31 seconds; the

plot was adjusted to improve bins. The average fault simulation time was 23.97 seconds and

15.81 seconds for the area-optimized and test-performance-optimized implementation,

respectively. The minimum fault simulation time for the area-optimized versions is over 20%

longer than the maximum of the test-performance-optimized version. This occurs due to the

increased fault coverage simulation requirements for the area-optimized design. Although the

overall area is smaller, the fault simulator must simulate the entire design at once; the faults that

are harder to determine due to longer paths taking a longer time to simulate. In the test-

performance-optimized version, the design is broken up into two simulations and thus has a

reduced fault simulation time because controllability is improved, and fault paths are shorter.

78

Figure 35. Fault Coverage Distribution for Area-Optimized c1355 Design.

Figure 36. Fault Coverage Distribution for Test-Performance-Optimized c1355 Design.

79

Figure 37. Fault Simulation Time Distribution for Area-Optimized c1355 Design.

Figure 38. Fault Simulation Time Distribution for Test-Performance-Optimized c1355 Design.

80

The digital simulation time distributions for the c1355 design are shown in Figure 39 and

Figure 40. Unlike the fault simulations, the area-optimized version is significantly shorter than

the test-performance-optimized version for all cases. The average digital simulation time was 5.3

seconds and 9.9 seconds for the area-optimized and test-performance-optimized implementation,

respectively; this was an 87% increase for the test-performance-optimized version. As previously

mentioned, this may be due to re-reading the gate models during the digital simulation of each

BIST stage.

The total run time distributions for the c1355 design are shown in Figure 41 and Figure

42. The average digital simulation time was 32.6 seconds and 32.2 seconds for the area-

optimized and test-performance-optimized implementation, respectively. This is a small

difference and equates to a time savings of approximately 6.7 minutes for the test-performance-

optimized design using 1000 patterns over 1000 seeds. The percentages of total run time for the

fault simulation, digital simulation, and other processing accounted for 73.59%, 16.20%, and

10.21%, respectively, for the area-optimized method; for the test-performance-optimized

method, this was 49.14%, 30.61%, and 20.26%, respectively. Although the fault simulation

dominates both designs in terms of percentages, it is a significantly higher portion of the area-

optimized version. Time savings are balanced for this design due to the lower digital simulation

and processing time. The other processing times are small portions but still can impact the

overall simulation time. Opening of the digital and fault simulators is likely a significant portion

of this extra time.

81

Figure 39. Digital Simulation Time Distribution for Area-Optimized c1355 Design.

Figure 40. Digital Simulation Time Distribution for Test-Performance-Optimized c1355 Design.

82

Figure 41. Total Run Time Distribution for Area-Optimized c1355 Design.

Figure 42. Total Run Time Distribution for Test-Performance-Optimized c1355 Design.

83

5.7 Transistor-Level Simulation

To confirm that this BIST testing methodology performs as desired using actual

transistors and not high-level digital models, transistor-level transient simulations using a 130

nm CMOS process in Cadence Virtuoso were performed on the smallest design, c17. The

maximum pattern count was set to 5 so that the waveforms remain legible in the time domain.

The digital simulation performed in ModelSim is shown in Figure 43, and the transistor-level

simulation using Virtuoso ADE XL with Spectre is shown in Figure 44 for comparison.

Inputs presented to the DUT from the BIST hardware are 0x03E, 0x05D, 0x09B, 0x117,

and 0x20F, respectively, in the time domain. The outputs of both designs are 0x3, 0xC, 0x3, 0x3,

and 0x9. Once the final input is presented, no further inputs are presented to the DUT as the

LFSR is no longer clocked from the other BIST hardware. Additionally, the lfsr_equiv and

misr_equiv signals both rise at the end of the simulation, showing that the desired number of

inputs has been provided and that the MISR has reached the correct final value. The status signal

also rises at the end of the simulation, indicating a good self-test. The dut_ack_out signal has a

slow transition compared to the rest of the signals; some buffering may be necessary for an

actual hardware implementation. This would require some adjustment of the parsing mechanisms

to accommodate and thus is not implemented here.

The only main difference is in the actual overall test time; the digital simulation has a

slower response than the transistor-level simulation. The models used for digital simulation

utilize unit delays; all gates provide one timescale delay for the digital simulation. As the design

is asynchronous, this simple timing difference does not affect the overall functionality of the

design. The digital models could be updated to provide accurate timings provided by the

84

transistor-level design gates, but this would require additional control mechanisms during BIST

automation to ensure that the proper library models were utilized.

Figure 43. Digital Simulation of c17 Design.

Figure 44. Transistor-Level Simulation of c17 Design.

5.8 FSM and Feedback Compatibility

As Finite State Machines (FSMs) are common in digital design for control circuitry,

compatibility with FSMs is required. As UNCLE is incapable of synthesizing designs that

include feedback, the c17 design was manually adjusted to include a small pipeline that toggles

its output between DATA1 and DATA0 every DATA/NULL cycle and provides this signal as an

85

input to the final register. The register and acknowledge structures were adjusted to

accommodate this. A high-level block diagram to represent this structure is shown in Figure 45.

Figure 45. FSM Design Structure Block Diagram.

Some manual adjustments were performed to separate FSMs during parsing, but were not

included in the testing previously performed; the delay impact would be minimal as none of the

benchmark designs incorporated FSMs, and thus the vast majority of the FSM handling would be

skipped.

The BIST automation was run for both the area-optimized and test-performance-

optimized methods; the design was capable of digital simulation for each of these. The digital

simulation of the scl_c17_fsm design is shown in Figure 46 for the area-optimized method; and

Figure 47 and Figure 48 present the digital simulation for the test-performance-optimized BIST

stage 0 and BIST stage 1, respectively. The maximum pattern count was set to 5 so that the

waveforms remain legible in the time domain. In all the simulations, the status signal rises near

the end of the simulation to represent the LFSR reaching its final input pattern and the MISR

having a good signature at the end of the simulation. This shows that the actual hardware

methodology is capable of supporting BIST where FSM structures are utilized.

86

Figure 46. Digital Simulation of scl_c17_fsm Area-Optimized BIST Stage Design.

Figure 47. Digital Simulation of scl_c17_fsm Test-Performance-Optimized BIST Stage 0 Design.

Figure 48. Digital Simulation of scl_c17_fsm Test-Performance-Optimized BIST Stage 1 Design.

Like FSMs, designs incorporating data feedback in the primary data path are common in

digital design and must be capable of utilizing BIST functionality. A design with a feedback path

from the final output register to the first input register, similar to a multiply and accumulate

(MAC) circuit, was implemented to validate this functionality. A high-level block diagram to

represent this structure is shown in Figure 49. The first input register was initialized using TH22s

and TH22r gates to provide a valid DATA0 wavefront at the start of the simulation, and to

provide the required three asynchronous latches in the feedback loop. One input from each gate

87

was connected directly to one of the final output register’s data rails. The remaining input was

connected to the following stage’s ko signal to ensure valid DATA is held until it reaches the

next pipeline stage.

Some manual adjustments to parsing were required. This included setting the

initialization TH22s and TH22r gates and related completion logic to be utilized by the first

stage. As the input register was connected to the output of these initialization gates, the register

input nets also had to be removed from the BIST stage input list; these nets are connected

internally and do not require an input provided by the LFSR. They are identified as BIST stage

inputs during netlist parsing because they are inputs to the pipeline register. The input

completion component also required adjustment to determine the correct stage due to register

adjustments.

Figure 49. Feedback Design Structure Block Diagram.

The BIST automation was then run for the area-optimized method. As the feedback spans

multiple pipeline stages, the test-performance-optimized version is not inherently capable of

supporting this type of design. It could be adapted to handle these types of circuits by

representing all pipeline stages containing the feedback loop as a single BIST stage. In the tested

88

design, the feedback loop is the entire pipeline, and this would result in the same circuity as the

area-optimized version.

The digital simulation of the simple_fb design is shown in Figure 50 for the area-

optimized method. The maximum pattern count was set to 5 so that the waveforms remain

legible in the time domain. The status signal rises near the end of the simulation, indicating the

LFSR reached its final input pattern and the MISR contained a good signature at the end of the

simulation. This shows that the area-optimized hardware methodology is capable of supporting

BIST where feedback structures in the data path are utilized.

Figure 50. Digital Simulation of simple_fb Area-Optimized BIST Stage Design.

Although the hardware implementations support the digital simulation of these designs,

the fault simulation is incapable of directly supporting fault simulation when these FSM and data

path feedback structures are incorporated. Since TetraMAX is a cyclic fault simulator, internal

datapath feedback (e.g., FSMs, MAC) for MTNCL asynchronous circuits causes significant

issues due to multiple internal transitions occurring during a single cycle. Additionally,

TetraMAX has issues properly simulating the initialization of specific gates, such as the TH22s,

when hysteresis after a reset is required for proper logical evaluation. It was observed that

following a reset, the output of a TH22s gate transitioned to low when one of the inputs remained

high; the TH22s output should remain high until both inputs are de-asserted. This resulted in no

DATA wavefront propagating through the design after circuit reset. Due to these issues, the

89

TetraMAX sequential simulation does not match the ModelSim digital simulation, and therefore

the fault simulation results in an invalid calculation. When this occurs, output occurs on the

terminal and in the fault simulation log as shown in Figure 51. It details which patterns the errors

occurred on, what the expected value from the digital simulation is, and what the fault sequential

simulation obtained. The number of failed patterns is displayed after this command. The

automated tool halts and shows a warning if any failed patterns are found in the fault simulation

log.

Figure 51. Fault Simulation Output Showing Invalid TetraMAX Sequential Simulation.

Although exact simulation including these types of feedback is not possible, several

alternative solutions exist to address these limitations and provide MTNCL BIST functionality.

For designs with FSMs, the FSM circuitry may be excluded from the design, and these FSM nets

that are utilized by main pipeline logic can be added as BIST stage inputs. Similarly, feedback

loops in the data path may be disconnected and set as BIST stage inputs. In both cases, any

excluded circuitry must be added back into the design at the top level, and multiplexers must be

inserted to include the original desired functionality while adding in BIST functionality.

90

To validate this solution, the simple_adj_fb design was tested. This design is an exact

copy of the simple_fb design but renamed to simple_adj_fb, both for the module and file name.

It was separated so both examples would be preserved in the tool. The input completion

component required adjustment to determine the correct stage, and the initialization gates were

manually removed using the automation tool during parsing. This resulted in the feedback

register being controlled by the LFSR, although adding external initialization gates is also

possible. As this broke the feedback loop, no additional modification was necessary.

The BIST automation was then run for both the area-optimized and test-performance-

optimized methods. The digital simulation of the simple_adj_fb design is shown in Figure 52 for

the area-optimized method; and Figure 53 and Figure 54 present the digital simulation for the

test-performance-optimized BIST stage 0 and BIST stage 1, respectively. The maximum pattern

count was set to 5 so that the waveforms remain legible in the time domain. In all the

simulations, the status signal rises near the end of the simulation to represent the LFSR reaching

its final input pattern and the MISR having a good signature at the end of the simulation.

Additionally, the fault sequential simulation properly completes, as shown in Figure 55. No

patterns were recognized as discrepancies between the two simulations, so the fault analysis is

valid. As this was merely a functional test, only 5 inputs patterns were presented to the design;

this resulted in a fault coverage of 72.23%.

Figure 52. Digital Simulation of simple_adj_fb Area-Optimized BIST Stage Design.

91

Figure 53. Digital Simulation of simple_adj_fb Test-Performance BIST Stage 0 Design.

Figure 54. Digital Simulation of simple_adj_fb Test-Performance BIST Stage 1 Design.

Figure 55. Fault Simulation Output Showing Valid TetraMAX Sequential Simulation.

It is important to note that both the area-optimized and test-performance-optimized

implementations are possible for this specific design, with manual adjustments, because the

feedback loop feeds back into the first pipeline stage in the design. If the design includes a

feedback loop that directly feeds into any pipeline stage other than the first stage, only the test-

performance-optimized is suitable to handle this.

These modifications were completed using the automation tool; FSM structures and

feedback loops could be automatically detected in the tool and excluded for BIST purposes.

Although excluded in the BIST designs, the structures could be incorporated at the top-level

design to preserve the desired functionality. As UNCLE is incapable of exporting designs

including feedback, automation of these tasks was not included in the developed BIST tool.

Alternatively, asynchronous circuit specific fault simulation software could be implemented to

92

evaluate the fault coverage. However, this is beyond the scope of this dissertation and conflicts

with the goal of using industry-standard software.

5.9 Fault Exclusion Method Based on Operation Principles

As MTNCL circuits operate in an asynchronous fashion with local handshaking, specific

combinations of stuck-at fault type and asynchronous gate function can be applied to the

TetraMAX verbose fault list to better depict actual fault coverage. For example, if one of the

BIST stage sleep nets is stuck-at-1, then that entire stage will always be slept, such that it will

never transition to DATA. Likewise, if one of the BIST stage sleep nets is stuck-at-0, that would

cause the previous stage’s sleep net to be stuck-at-1 (i.e., the previous stage’s slept early

completion component final TH22 NCL gate, shown in Figure 7, would be stuck-at-0 due its Ki

input, which is the stuck-at-0 sleep net; and this TH22 NCL gate output is inverted to generate

the previous stage sleep net, which would therefore be stuck-at-1), which would cause the circuit

to deadlock as mentioned above. Furthermore, any slept early completion component gate output

(except for the final inverter, which is already considered in the previous case) that is stuck-at-0

will cause the sleep net generated by that component to be stuck-at-1, which would cause the

circuit to deadlock as mentioned above. Since these scenarios would cause the circuit to

immediately deadlock, any undetected faults on any of these nets flagged by TetraMAX can be

ignored, since they would be immediately detected, in either test mode or normal operation, due

to circuit deadlock. A summary of these rules is provided below. Applying these exclusion rules

to the c17 circuit increases fault coverage from the original 86.93% to 90.74%.

1. Stuck-at faults on sleep nets can be excluded.

2. Stuck-at-0 faults on slept early completion component gate outputs can be excluded.

93

5.10 MTNCL Acknowledge Architecture Fault Improvement

Through review of verbose fault lists produced by TetraMAX for several designs, it was

determined that many undetectable faults were located in the slept early completion logic. When

slept early completion components are designed using MTNCL threshold gates (with sleep

input), stuck-at-1 faults can be masked by the sleep mechanism, and therefore cannot be

excluded. However, if NCL gates (with hysteresis) are used to implement the early completion

logic instead of MTNCL gates (i.e., replace the MTNCL gates in Figure 7 with NCL gates), then

any stuck-at-1 fault in this logic will result in a stuck-at-0 fault on its corresponding generated

sleep net, and can therefore be excluded as discussed in Section 5.9. A summary of these rules is

provided below. Applying these additional exclusion rules to the c17 circuit increases fault

coverage from the previous 90.74% to 98.10%. The tradeoff for using this method to increase

fault coverage is a decrease in performance and an increase in area, energy/operation, and

leakage power, as NCL gates are larger, with increased leakage power and energy per transition,

compared to their MTNCL equivalent, and this requires a NULL input to flow through the non-

slept early completion logic instead of all gates being simultaneously slept to 0 [5].

3. Stuck-at-1 faults on early completion component gate outputs can be excluded, when

designed using NCL gates.

4. Stuck-at-1 faults on any input to an early completion component can be excluded,

when designed using NCL gates.

5.11 Controllability and Observability Improvements

Since reported fault coverages are slightly lower than current industry-standard

requirements, the ability to add controllability and observability points in asynchronous dual-rail

logic was investigated. To improve controllability, the designer must have the capability to inject

94

a specific signal at a desired net in the circuit to control hard-to-reach faults. In a synchronous

design, this is primarily done on a net-by-net basis by inserting C/L or multiplexers to enable

internal control of nets during the testing sequence [4]. For MTNCL circuits based upon the

proposed BIST topology, this cannot be done for signals in the early completion logic, as

injecting signals into this handshaking control logic could adversely affect circuit operation.

However, undetectable faults in the early completion logic can be dealt with in other ways, as

detailed in the previous two sections.

Controllability points can be added to dual-rail nets to inject a DATA value in order to

improve fault coverage, using the hardware shown in Figure 56; a NULL value should not be

injected, as this may cause the pipeline to deadlock. Furthermore, each dual-rail signal transitions

to NULL after every DATA value, so there would be no need to inject a NULL value. When Ctrl

Sel is asserted, the Ctrl D0 and Ctrl D1 inputs replace D0 and D1 generated by the preceding C/L,

respectively, allowing for injection of a DATA0 (D0 asserted, D1 de-asserted), a DATA1 (D0 de-

asserted, D1 asserted), or even an INVALID (both D0 and D1 asserted) value, as desired. An

INVALID value should only be injected if not part of a feedback loop; otherwise, this could

result in perpetual INVALID values in the feedback loop until the circuit is reset. C/L could also

be utilized instead of two multiplexers; however, multiplexers offer a higher level of control,

with increased area as the tradeoff.

95

Figure 56. MTNCL Controllability Hardware.

It may also be desirable to increase observability separately, or in addition to

controllability techniques. As DATA/NULL wavefronts propagate through a pipeline in the final

output design but the MISR only reads from the final pipeline stage, it may not be possible to

read the value of internal pipeline nets without modification. To view any signal, the pipeline

may be stalled so that a DATA wavefront exists on all pipeline stages. This is exactly the same

methodology used to enable the asynchronous fault simulation; instead of utilizing the final

designs shown in Figure 16 and Figure 18, the module BIST blocks shown in Figure 27 and

Figure 30 could be utilized instead. The additional TH22 gate that ties the BIST stage ko and

slpout or external completion tree component together forces pipeline stalls.

Any net, whether dual-rail, a single rail of a dual-rail signal, or an acknowledge net,

inside the design may be probed for improved observability when the pipeline is stalled, as

shown in Figure 57. Although the area overhead required to stall the pipeline is small, each

additional bit probed requires one additional MISR bit. These observability nets may bypass the

external completion tree component if the design has a BIST stage with output register. This is

shown in Figure 58; the BIST stage has added controllability and observability ports.

96

Figure 57. MTNCL Observability Probing with Stalled Pipeline.

Figure 58. MTNCL Architecture Adjustment for Controllability and Observability Improvement.

The controllability and observability improvements were applied to the c17 design to

increase fault coverage further. For observability, three single rail nets from the data pipeline and

the output of a subsequent gate were manually added to the obsrv output and connected to

additional MISR inputs, but not to the completion tree. For controllability, three dual-rail faulty

nets had multiplexers inserted in-line along with the associated ctrl signals. The original 40

LFSR patterns were presented, as with the original design. Instead of inserting additional

hardware for extra control, behavioral control was implemented inside the design testbench by

adjusting the ctrl signals based on the current input pattern count. For each of the three

controllability nets, a DATA0, DATA1, and INVALID wavefront was presented sequentially

after the original 40 patterns (e.g., the first controllability net was forced to DATA0 on pattern

97

41 and DATA1 on pattern 42, and the second controllability net was forced to DATA0 on

pattern 44). Therefore, 49 patterns were needed for the first attempt. After seeing some fault

coverage improvement based upon the insertion of these, the number of pattern counts was

increased to 64 so that the controllability nets would have eight additional wavefronts each

wherein a fault may be detected instead of only three, as with the first test using 49 input

patterns. The results are shown in Table 17.

Using NCL early completion logic with fault exclusion rules and the controllability and

observability improvements, a maximum fault coverage of 98.54% was obtained. This fault

coverage is approaching acceptable industry levels. Applying only the controllability and

observability methods to the base c17 without any additional fault exclusion methods improved

the fault coverage from 86.93% to 91.17%. Similarly, applying the MTNCL early completion

fault exclusions results in an increased fault coverage of 94.79%, up from 90.74%. The NCL

early completion fault exclusion increase was much less significant, rising only to 98.54% from

98.10%. However, there were only a few faults that could be improved upon, and manual

determination of valid controllability states is not a trivial matter. It is worth noting that the

addition of controllability hardware does result in an increased number of total faults, area, and

test time, as applied. However, this may be required to achieve specific fault coverage targets.

98

Table 17. Controllability and Observability Fault Coverage Improvements.

Fault

Exclusion

Method

Total

Faults
Faults

Fault

Coverage

c17

original

40 patterns

Original 394 51.5 86.93%

MTNCL EC 394 36.5 90.74%

NCL EC 368 7 98.10%

c17

obsrv/ctrl

49 patterns

Original 470 44 90.64%

MTNCL EC 470 31.5 93.30%

NCL EC 444 8.5 98.09%

c17

obsrv/ctrl

64 patterns

Original 470 41.5 91.17%

MTNCL EC 470 24.5 94.79%

NCL EC 444 6.5 98.54%

6 Conclusion

In this dissertation, a method of BIST for MTNCL circuits was designed, automated, and

validated. Two hardware implementations were detailed in Section 3; the area-optimized version

required a reduced area while still maintaining testability, whereas the test-performance-

optimized version increases controllability, potentially reducing testing time and increasing fault

coverage for the actual hardware, at the expense of additional area. Note that the test-

performance-optimized version sometimes increased test time and decreased fault coverage due

to additional nodes being evaluated, such as the outputs from the added BIST multiplexers;

hence, which method is better is circuit dependent. A tool was developed that parses MTNCL

circuits, inserts the appropriate BIST hardware, and evaluates possible fault coverages with

minimal user input, as explained in Section 4. The results from this tool were analyzed in

Section 5, using several circuits as input, to demonstrate that the automation tool is functional

and enables the evaluation of tradeoffs for the two BIST implementations. Although not

automated, this method is capable of analyzing circuits that include internal feedback through

minor manual adjustments that enable it to break any feedback loops, provide LFSR-controlled

inputs to these nets, and include the original functionality at the top-level design. Additionally,

99

several operation-principle-based fault exclusion methods were determined, and controllability

and observability improvements were manually implemented to yield higher fault coverages.

7 Future Work

Although this dissertation presented two methods of successful BIST implementation for

MTNCL circuits, there are still many topics that can be expanded upon from this work. As many

iterative simulations must be performed to obtain the results, potentially across the entire

selection of LFSR seeds, a method to calculate the optimal seed pattern for the LFSR could yield

reduced run time and actual test time in hardware, by isolating hard-to-detect faults earlier in the

BIST automation flow. Additionally, if a specific pattern of inputs can obtain the desired fault

coverage with a non-maximal-length LFSR, these could be utilized. Currently, the pattern count

only grows in increasingly large steps (i.e., doubles each iteration); hence, once the desired fault

coverage is obtained, the pattern count could then be decremented to reduce pattern overhead

while maintaining the target fault coverage. This would result in an overall longer run time, as

additional simulation iterations would be required. Potentially, other methods of pattern

generation may function with the MTNCL design, provided the DRG component is utilized as an

asynchronous interface with the pattern generator.

Aliasing verification should be investigated for the MISR outputs. Although the MISR

output could have the correct final output, multiple offsetting faults inside the design could

potentially produce this valid final signature. Although intensive, it should be possible to

calculate this so that the MISR taps could be adjusted to minimize the chance of a faulty circuit

producing a valid final signature. A comprehensive study of the trade-offs discussed could be

beneficial for test designers to better understand the benefits of the area-optimized vs. test-

performance-optimized implementations for various design types. Additionally, if UNCLE was

100

updated to synthesize sequential MTNCL circuits, the proposed test-performance-optimized

method to insert BIST stages so that no BIST stage contains a feedback loop, could be

automated, such that the automated MTNCL BIST method would be applicable to both

feedforward circuits as well as those containing feedback loops. Currently, some manual

manipulation is required, as discussed in Section 5.8.

8 References

[1] S. C. Smith and J. Di, "Designing Asynchronous Circuits using NULL Convention Logic

(NCL)," Synthesis Lectures on Digital Circuits and Systems, vol. 4, no. 1, p. 96, July 2009.

[2] R. B. Reese, S. C. Smith and M. A. Thornton, "Uncle - An RTL Approach to

Asynchronous Design," IEEE International Symposium on Asynchronous Circuits and

Systems, pp. 65-72, May 2012.

[3] P. Palangpour, "CAD Tools for Synthesis of Sleep Convention Logic," Theses and

Dissertations, 2013. [Online]. Available: https://scholarworks.uark.edu/etd/755.

[4] H. T. Nagle, S. C. Roy, C. F. Hawkins, M. G. McNamer and R. R. Fritzemeier, "Design for

Testability and Built-In Self Test: A Review," IEEE Transactions on Industrial

Electronics, vol. 36, no. 2, pp. 129-140, 1989.

[5] L. Zhou, R. Parameswaran, F. A. Parsan, S. C. Smith and J. Di, "Multi-Threshold NULL

Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design

Methodology," Journal of Low Power Electronics and Applications, vol. 5, no. 2, pp. 81-

100, May 2015.

[6] K. M. Fant and S. A. Brandt, "NULL Convention Logic: A Complete And Consistent

Logic For Asynchronous Digital Circuit Synthesis," in International Conference on

Application Specific Systems, Architectures and Processors, Chicago, 1996.

[7] F. A. Parsan, S. C. Smith and W. K. Al-Assadi, "Design for Testability of Sleep

Convention Logic," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 24, no. 2, February 2016.

[8] N. Nemati, P. Beckett, M. C. Reed and K. Fant, "Clock-less DFT-less Test Strategy for

Null Convention Logic," IEEE Transactions on Emerging Topics in Computing, vol. PP,

no. 99, 2016.

101

[9] N. Nemati, M. C. Reed, K. Fant and P. Beckett, "Asynchronous Interleaved Scan

Architecture for On-line Built-in Self-test of Null Convention Logic," 2016 IEEE

International Symposium on Circuits and Systems (ISCAS), pp. 746 - 749, 2016.

[10] P. Fišer, "Collection of Digital Design Benchmarks," Czech Technical University in

Prague, [Online]. Available:

https://ddd.fit.cvut.cz/prj/Benchmarks/index.php?page=download.

	Built-In Self-Test (BIST) for Multi-Threshold NULL Convention Logic (MTNCL) Circuits
	Citation

	1 Introduction
	2 Background
	2.1 NULL Convention Logic (NCL)
	2.2 Multi-Threshold NULL Convention Logic (MTNCL)
	2.1 Synchronous Test Methods
	2.2 Asynchronous Test Methods

	3 Built-In Self-Test of MTNCL Circuits
	3.1 Area-Optimized MTNCL BIST Stage Implementation
	3.2 Test-Performance-Optimized MTNCL BIST Implementation
	3.3 MTNCL BIST Block Implementation
	3.4 MTNCL BIST Top-Level Design

	4 MTNCL BIST Automation
	4.1 Area-Optimized Implementation Automation
	4.2 Test-Performance-Optimized Implementation Automation

	5 Experimental Results
	5.1 MTNCL Design Preparation
	5.2 General MTNCL BIST Automation Procedure
	5.3 Area-Optimized MTNCL BIST Results
	5.4 Test-Performance-Optimized MTNCL BIST Results
	5.5 Comparison of Area-Optimized and Test-Performance-Optimized BIST Results
	5.6 BIST Automation Performance
	5.7 Transistor-Level Simulation
	5.8 FSM and Feedback Compatibility
	5.9 Fault Exclusion Method Based on Operation Principles
	5.10 MTNCL Acknowledge Architecture Fault Improvement
	5.11 Controllability and Observability Improvements

	6 Conclusion
	7 Future Work
	8 References

