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ABSTRACT 

Hybridization as a macroevolutionary mechanism has been historically underappreciated among 

vertebrate biologists. Yet, the advent and subsequent proliferation of next-generation sequencing 

methods has increasingly shown hybridization to be a pervasive agent influencing evolution in 

many branches of the Tree of Life (to include ancestral hominids). Despite this, the dynamics of 

hybridization with regards to speciation and extinction remain poorly understood. To this end, I 

here examine the role of hybridization in the context of historical divergence and contemporary 

decline of several threatened and endangered North American taxa, with the goal to illuminate 

implications of hybridization for promoting—or impeding—population persistence in a shifting 

adaptive landscape.  

Chapter I employed population genomic approaches to examine potential effects of 

habitat modification on species boundary stability in co-occurring endemic fishes of the 

Colorado River basin (Gila robusta and G. cypha). Results showed how one potential outcome 

of hybridization might drive species decline: via a breakdown in selection against interspecific 

heterozygotes and subsequent genetic erosion of parental species.  

Chapter II explored long-term contributions of hybridization in an evolutionarily recent 

species complex (Gila) using a combination of phylogenomic and phylogeographic modelling 

approaches. Massively parallel computational methods were developed (and so deployed) to 

categorize sources of phylogenetic discordance as drivers of systematic bias among a panel of 

species tree inference algorithms. Contrary to past evidence, we found that hypotheses of hybrid 

origin (excluding one notable example) were instead explained by gene-tree discordance driven 

by a rapid radiation.  
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Chapter III examined patterns of local ancestry in the endangered red wolf genome 

(Canis rufus) – a controversial taxon of a long-standing debate about the origin of the species. 

Analyses show how pervasive autosomal introgression served to mask signatures of prior 

isolation—in turn misleading analyses that led the species to be interpreted as of recent hybrid 

origin. Analyses also showed how recombination interacts with selection to create a non-random, 

structured genomic landscape of ancestries with, in the case of the red wolf, the ‘original’ species 

tree being retained only in low-recombination ‘refugia’ of the X chromosome.  

The final three chapters present bioinformatic software that I developed for my 

dissertation research to facilitate molecular approaches and analyses presented in Chapters I–III. 

Chapter IV details an in-silico method for optimizing similar genomic methods as used herein 

(RADseq of reduced representation libraries) for other non-model organisms. Chapter V 

describes a method for parsing genomic datasets for elements of interest, either as a filtering 

mechanism for downstream analysis, or as a precursor to targeted-enrichment reduced-

representation genomic sequencing. Chapter VI presents a rapid algorithm for the definition of a 

‘most parsimonious’ set of recombinational breakpoints in genomic datasets, as a method 

promoting local ancestry analyses as utilized in Chapter III.  

My three case studies and accompanying software promote three trajectories in modern 

hybridization research: How does hybridization impact short-term population persistence? How 

does hybridization drive macroevolutionary trends? and How do outcomes of hybridization vary 

in the genome? In so doing, my research promotes a deeper understanding of the role that 

hybridization has and will continue to play in governing the evolutionary fates of lineages at both 

contemporary and historic timescales. 
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INTRODUCTION 
 
Hybridization (=gene flow between diverged lineages) has classically been considered both rare 

and unimportant as an evolutionary process in vertebrates (Hubbs 1955; Dowling and Secor 

1997). From a biological standpoint, it was often viewed as wasted reproductive effort and thus 

largely antagonistic to speciation (Dobzhansky 1937; Mayr 1963). In recent years, spurned by 

increasing accessibility of genome-scale sequencing, hybridization has been shown to instead be 

relatively common in natural populations (Twyford and Ennos 2012; Abbott et al. 2013; Mallet 

et al. 2016; Taylor and Larson 2019). Despite this paradigm shift, theory defining the importance 

of hybridization as a macroevolutionary process remains under-developed (Folk et al. 2018). To 

this end, several overarching questions define modern trajectories in hybridization research: How 

does hybridization affect species response to environmental change? How does it vary 

phylogenetically, and what are the long-term macroevolutionary implications of this variation? 

and How does the genome shape outcomes of hybridization?  

 

Q1: Hybridization and species persistence  

The first trajectory concerns the role of hybridization in promoting–or impeding–species 

persistence. Under what circumstances is it adaptive versus maladaptive? How do extrinsic 

factors modulate this? These questions are often addressed within the context of 

anthropogenically-mediated hybridization, e.g. with regards to species boundary modulations in 

response to altered or changing environments (Grabenstein and Taylor 2018; Larson et al. 2019). 

Accumulating evidence highlights the role of hybridization in escalating ‘adaptive potential’ by 

expanding the pool of genetic variation from which diversifying lineages can draw (Meier et al. 

2017; Grant and Grant 2019; Marques et al. 2019). Yet, hybridization is often interpreted 
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negatively within the context of species conservation (vonHoldt et al. 2018). This is in large part 

due to substantial uncertainty involving how the interplay between the environment, gene flow, 

and selection defines hybrid outcomes.  

In some circumstances, hybridization can facilitate adaptation faster than ‘conventionally 

accepted' mechanisms (Barton 2001; Orr and Unckless 2014; Kokko et al. 2017; Marques et al. 

2019), and thus an emerging role for introgression is seen as promoting population recovery after 

de-stabilizing events (Kanarek et al. 2014; Stelkens et al. 2014; Stewart et al. 2017). However, 

the capacity for hybridization to drive so-called ‘evolutionary rescue’ is contingent on a limited 

rate of environmental change (Lindsey et al. 2013), and a rate of gene flor which bolsters 

adaptive diversity (Fitzpatrick et al. 2016; Tomasini and Peischl 2020) without leading to total 

demographic replacement (e.g. Mussmann et al. 2017). Likewise, the probability of populations 

benefiting from hybridization depends on the fitness costs of hybridization (Buerkle et al. 2003; 

Owens and Samuk 2020). The outcome of hybridization is clearly context dependent, with 

possible positive (Hamilton and Miller 2016) or negative (Rhymer and Simberloff 1996; 

Muhlfeld et al. 2009) impacts with respect to net diversity.  

 

Q2: Hybridization and macroevolutionary trends 

Another outstanding question in hybridization research regards the manner by which population 

genetic outcomes of reticulation accumulate over phylogenetic timescales. To what degree have 

they contributed to extant biodiversity? Are there traits (e.g., life history) that affect the 

‘propensity’ to hybridize? If so, does one outcome of hybridization (e.g. hybrid speciation) 

overshadow another (e.g. secondary introgression)? Theory again is relatively young [albeit 

notably less so in some taxonomic circles than others (e.g. Anderson 1948; Stebbins 1959)]. 
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Early vertebrate zoologists envisioned two primary outcomes of hybridization as related to 

speciation: Fusion of lineages (e.g. reversing ‘progress’ towards biological speciation); or 

selection against hybridization causing a subsequent reinforcement of reproductive barriers (e.g. 

increasing 'progress'; Mayr 1963). While modern molecular methods have demonstrated cases of 

‘speciation reversal’ by hybridization (Seehausen et al. 2008; Kearns et al. 2018), and offered a 

richer understanding of the process of reinforcement (Servedio and Noor 2003; Servedio et al. 

2013), they have also exposed a more interesting and nuanced role for hybridization in the 

evolutionary theater (e.g. Abbott et al. 2013).  

The view that is emerging instead suggests that ‘partial’ reproductive isolation is itself a 

stable evolutionary outcome (Servedio and Hermisson 2020). To suggest a potentially overly 

simplistic conceptual model of this: If we envision the adaptive landscape as rugged, 

hybridization could be viewed as a ‘query’ between peaks. Here, lineages may borrow elements 

of foreign genomes (e.g., horizontal gene transfer/ introgression), or colonize entirely new 

adaptive optima Logically, a relationship between such outcomes and relative probabilities of 

speciation and/or extinction (=net diversification) can be hypothesized. Maladaptive 

hybridization could be selected against, promoting the solidification of reproductive barriers and 

thereby ‘accelerating’ speciation. Entirely novel lineages may also be formed, having some 

intermediate or recombinant phenotype offering an ability to capitalize in dynamic adaptive 

space (Dittrich-Reed and Fitzpatrick 2013). Over time, this process may increase the speciation 

rate of the encompassing clade. Net diversification may also be guided via a manipulation of 

extinction probabilities: Just as a species merger drives extinction (Rhymer and Simberloff 

1996), adaptive introgression acts to circumvent it (e.g. Oziolor et al. 2019).  



 
 

4 

A major barrier to understanding the prevalence of these outcomes as a large-scale driver 

of macroevolutionary rates, and hence interaction with trait evolution, is two-fold: In itself 

hybridization is difficult to conclusively detect; and the phylogenetic framework on which such 

questions are built generally assume that evolution is by-and-large non-reticulate. Together these 

impediments have not only biased our fundamental understanding of the process of speciation 

but limited our appreciation of what is likely a near-ubiquitous evolutionary force driving 

patterns of diversification throughout the Tree of Life.  

 

Q3: Hybridization in the genome 

Much progress is being made towards the detection of hybridization in phylogenies by 

harvesting phylogenetic signals from different regions in the genome (Payseur and Rieseberg 

2016), although these often tend to overlook important signals in the quest for a ‘resolved’ tree 

or network (e.g. Hahn and Nakhleh 2016). This prompts the final question: Is the accumulation 

of introgression in the genome non-random? Or is retention of alien genetic material instead 

biased towards certain regions or features of the genome? A failure to consider variation in the 

outcomes of hybridization in the genome could be not only misleading, but generate downright 

false conclusions (e.g. Fontaine et al. 2015).  

However, understanding hybrid outcomes along the genomic axis is hampered by 

theoretical and methodological inertia. The most common framework by which introgression is 

localized in the genome is based on the D-statistic (Patterson et al. 2012; Pease and Hahn 2015). 

This method relies on a baseline expectation of species relationships in order to find 

unexpectedly high similarity among lineages as evidence of gene flow. This is done on the basis 

of site-pattern counts, with an expectation that discordant patterns (e.g. those disagreeing with 
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the ‘species tree’) would naturally occur stochastically; an over-abundance of any one pattern 

being then taken as evidence for introgression. Although numerous methods exist [e.g. based on 

ancestry block lengths (Hvala et al. 2018) or hidden Markov models (Liu et al. 2014)], relatively 

simplistic methods such as the D-statistic remain attractive due to their ability to perform with 

relatively information-sparse datasets, such as SNP data that have been widely-adopted for 

population-level studies involving non-model organisms. However, just as genomic 

heterogeneity (e.g. of mutation rates) has been shown to inflate the false positive rate in a similar 

approach for seeking ‘islands’ of divergence (Cruickshank and Hahn 2014), they may serve to 

invalidate this approach for localizing introgression (Blair and Ané 2019). A more appropriate 

framework better leverages the power of modern phylogenetic methods, as is already being done 

in some areas of genomic research (Pease et al. 2016; Smith et al. 2020). This would relax the 

assumption of character independence, and instead recognizes the genome as a series of 

genealogies, within which characters (=nucleotides) are correlated. Although delimiting such 

regions is problematic (Springer and Gatesy 2018), doing so provides a necessary advantage by 

allowing explicit consideration of locus-specific histories that could otherwise serve to confound 

‘genome scanning’ approaches (e.g. Hoban et al. 2016). 

 

Dissertation Objectives 

My dissertation develops empirical systems situated within each of the above trajectories in 

hybridization research. By considering—and adapting as necessary—recent methodological 

advances in population- and phylo-genomics, I attempt to build adoptable analytical frameworks 

to explore similar questions in other empirical systems. Results from my analyses are then 

directly related to the three major themes defined above. Chapter I examines the stability of 
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species boundaries in threatened/ endangered sympatric species of the Colorado River Basin 

(Gila robusta and G. cypha) as a function of anthropogenic habitat degradation in order to 

understand how hybridization and environmental change jointly influence species persistence. 

Chapter II examines how information from ‘non-phylogenetic’ signals (sensu Philippe et 

al. 2011) in the genome can be used to categorize sources of model violation in phylogenies, and 

thereby categorizes hybridization and rapid radiation as major sources of phylogenetic 

discordance in Gila. This provides a necessary framework to explore the broader role of 

hybridization in generating ‘real’—as opposed to artefactual—patterns of diversification in 

phylogenies.  

Chapter III expands on this theme by using sequential patterns of admixture-derived 

ancestry in the genome to distinguish different outcomes of hybridization. Specifically, using the 

genome of the enigmatic (and critically endangered) red wolf (Canis rufus) I discriminate 

between hybrid speciation and secondary (=post-speciation) introgression. Here, I identified the 

manner by which genomes stabilize after a hybridization event to create a non-random 

distribution of ancestries, as structured by recombination.  

Chapters IV–VII describe new computational methods and software for developing or 

analyzing genome-wide SNP datasets. Chapter IV describes FRAGMATIC, a program written in 

Perl which enables the optimization (e.g. for cost-efficiency or throughput) of reduced-

representation projects (ddRADseq) in silico using available genomic references for related 

species. Chapter V describes another method for reduced-representation genomic design, 

MRBAIT, which enables the universal design of targeted-enrichment protocols for non-model 

organisms within a diversity of data contexts. Chapter VI describes FGTPARTITIONER, a rapid 

Python program for delimiting a most-parsimonious set of recombinational breakpoints in 
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genome-wide SNP datasets without requiring complex assumptions or extensive a priori 

genomic resources.  

Combined, these case studies and affiliated methods cumulatively contribute to our 

understanding of the role of hybridization in creating biological diversity, as well as the manner 

by which hybridization might modulate the response of extant diversity to a dynamic future (e.g. 

governed by global-scale anthropogenic processes and climate change). My results show that 

species boundaries are not static, and moreover, that breaches therein have been important 

contributors of adaptive diversity throughout the evolutionary histories of the focal taxa. 

Furthermore, my analyses show how human-mediated dissolution of species boundaries is a non-

trivial threat to extant biodiversity. My research also shows that the accumulation of hybrid 

histories in the genome is non-random, and that assuming otherwise may lead to erroneous 

conclusions both in terms of phylogenetic and demographic inference. These objectives together 

concretize a nuanced role for hybridization as a mediator of lineage evolution on both micro- and 

macro-evolutionary scales.  
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CHAPTER I 

Hybridization drives genetic erosion in sympatric desert fishes of western North America 

Chafin TK, Douglas MR, Martin BT, Douglas ME 

Abstract 

Many species have evolved or currently coexist in sympatry due to differential adaptation in a 

heterogeneous environment. However, anthropogenic habitat modifications can either disrupt 

reproductive barriers or obscure environmental conditions which underlie fitness gradients. In 

this study, we evaluated the potential for an anthropogenically-mediated shift in reproductive 

boundaries that separate two historically sympatric fish species (Gila cypha and G. robusta) 

endemic to the Colorado River Basin using ddRAD sequencing of 368 individuals. We first 

examined the integrity of reproductive isolation while in sympatry and allopatry, then 

characterized hybrid ancestries using genealogical assignment tests. We tested for localized 

erosion of reproductive isolation by comparing site-wise genomic clines against global patterns 

and identified a breakdown in the drainage-wide pattern of selection against interspecific 

heterozygotes. This, in turn, allowed for the formation of a hybrid swarm in one tributary, and 

asymmetric introgression where species co-occur. We also detected a weak but significant 

relationship between genetic purity and degree of consumptive water removal, suggesting a role 

for anthropogenic habitat modifications in undermining species boundaries. In addition, results 

from basin-wide genomic clines suggested that hybrids and parental forms are adaptively non-

equivalent. If so, then a failure to manage for hybridization will exacerbate the long-term 

extinction risk in parental populations. These results reinforce the role of anthropogenic habitat 

modification in promoting interspecific introgression in sympatric species by relaxing divergent 
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selection. This, in turn, underscores a broader role for hybridization in decreasing global 

biodiversity within rapidly deteriorating environments. 

 

Introduction 

Many natural populations respond to anthropogenic change by either shifting geographic 

distributions or adjusting life histories so as to ‘track’ optimal conditions (Hoffmann and Sgrò 

2011; Pecl et al. 2017). However, the ability of organisms to track changing environments is 

conditioned upon the rate of environmental change (Lindsey et al. 2013) and the rate at which 

adaptive machinery can act (Orr and Unckless, 2014). This evolutionary caveat creates an 

incentive for hybridization, in that recombinant genotypes might more rapidly establish in a 

dynamic adaptive landscape (Klonner et al. 2017). Widespread hybridization thus may provide 

an effective mechanism of population persistence in changing or novel conditions (Pease et al. 

2016; Meier et al. 2017). Introgressed alleles that are beneficial under novel conditions can then 

be driven to fixation by the combined action of recombination and selection (Arnold and Martin 

2010).   

 However, the relationship between hybridization and extinction is not well established 

under contemporary timescales. On one hand, hybrid lineages might facilitate adaptation by 

providing access to a greater pool of genetic variation (Dittrich-Reed and Fitzpatrick 2013; 

Schumer et al. 2018), whereas on the other, diversity might diminish as species boundaries 

dissolve (Buerkle et al. 2003; Kearns et al. 2018). Often, results are a combination of the above. 

Introgressed genotypes may initially compensate for erratic conditions and facilitate population 

persistence in the near term, but with lineages eventually merging if environmental change is 

prolonged (Seehausen et al. 2008). This presents an obvious paradox for conservation efforts, in 
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that the permeability of species-boundaries may be seen as promoting both persistence and 

extinction. 

 Hybridization also represents a legacy issue for conservation policy (Allendorf et al. 

2001), due primarily to its conflict with a species-centric management paradigm (Fitzpatrick et 

al. 2015; Hamilton and Miller 2016). Although the reticulate nature of speciation has become a 

contemporary research focus (e.g. Mallet et al. 2016), it has yet to gain consensus among 

managers (vonHoldt et al. 2018). This unanimity is required to understand the manner by which 

anthropogenic modifications disrupt species boundaries (Grabenstein and Taylor 2018; Ryan et 

al. 2018). However, predicting the outcome of hybridization in a changing environment requires 

an understanding of both the temporal and spatial stability of the mechanisms (e.g. intrinsic and 

extrinsic) that are responsible for maintaining species boundaries. In this sense, consistent 

patterns can often be obscured by local context (e.g. individual behaviors, population 

demographics; Klein et al. 2017). Hence, there remains a need to quantify the manner by which 

species boundaries in diverse taxa respond to rapid environmental change. We applied these 

perspectives to endemic, large-bodied and long-lived minnows that exist within the Colorado 

River, one of the most impacted riverine ecosystems of the Anthropocene (Hughes et al. 2007). 

Because of the pervasive human impacts therein, the Colorado River provides a natural 

laboratory within which to examine the stability of species undergoing rapid, anthropogenically-

induced environmental change.  

 

Hybridization in Gila 

Hybridization has long been recognized as an evolutionary process in fishes (Hubbs, 1955), and 

as such, has been hypothesized as a mechanism for native fish diversification in western North 
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America (e.g. DeMarais et al. 1992). An inseparable link also exists between fishes and their 

environment, such that opportunities for migration or hybridization can be substantially 

influenced by characteristics of the riverscape (Hopken et al. 2013; Thomaz et al. 2016). The 

instability produced by modified flows may compromise boundaries between historically 

coexisting species, or provide ecological opportunities within which hybrid lineages might 

capitalize (Dowling and Secor 1997). The fact that habitats in western North America have a 

dynamic history including tectonism and progressive aridity also provides one potential 

causative factor for introgressive hybridization (e.g. Mandeville et al. 2017; Bangs et al. 2018). 

However, more contemporary anthropogenic modifications are also prominent and widespread, 

most apparent in the form of water acquisition and retention (Cayan et al. 2010). As a result, 

niche gradients that historically segregated species are now seriously perturbed. This, in turn, can 

promote hybridization by effectively removing selection against hybrid phenotypes, and by 

disrupting the phenology and reproductive cues that discourage heterospecific mating 

(Grabenstein and Taylor 2018).  

 We applied these perspectives to three species of conservation concern endemic to the 

Colorado River Basin: Humpback chub [Gila cypha (IUCN status=Endangered)], Roundtail 

chub [G. robusta (Near Threatened)], and Bonytail [G. elegans (Critically Endangered)]. All are 

hypothesized as exhibiting various levels of historic hybridization, with contemporary 

populations shaped by geologic processes and anthropogenic interventions. Gila cypha and G. 

robusta, display not only morphological intergradation (McElroy and Douglas 1995) but also 

taxonomic ambiguity (Douglas et al. 1989) and cannot be distinguished on the basis of 

mitochondrial (mt)DNA (Douglas and Douglas 2007; Dowling and DeMarais 1993), despite 

numerous lines of evidence supporting evolutionary independence [genetic structuring in nuclear 
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markers (microsatellites: Douglas and Douglas 2007); discrete persistence in the fossil record 

(e.g. Uyeno and Miller 1963, 1965); pre-mating isolation in the form of exclusive reproductive 

ecology and phenology (Kaeding et al. 1990); and divergent phenotypic evolution (Smith et al. 

1979; Valdez et al. 1990; Portz and Tyus 2004)]. Also, McElroy and Douglas (1995) and 

Douglas et al. (1998) found clear species-level differentiation in discriminant and geometric 

morphometric space, respectively, while the former also reported species-intermediacy at two 

sympatric localities (Desolation and Cataract canyons).  

A likely explanation for this mosaic pattern would invoke historic separation followed by 

hybridization. We examine this possibility herein and framed our results within the context of 

change both on geologic and contemporary timescales.  

 

Methods 

Sampling  

Fin tissue was non-lethally sampled from 368 specimens across three native Gila of the Colorado 

River Basin (G. cypha, G. elegans, and G. robusta; Table 1), collected primarily by state/ federal 

agencies between 1997-2017 (see Acknowledgements). One location, at the San Rafael River 

(hereafter RSRR), was sampled both in 2009 and 2017. Given the conservation status of these 

fishes, we minimized impacts on already-stressed populations by opportunistic sampling which 

took advantage of monitoring activities by agencies. 

  Gila cypha is constrained within five known aggregates associated with specific 

geomorphic features: Black Rocks, Cataract, Desolation, Grand, Westwater, and Yampa canyons 

(Fig. 1; USFWS, 2011), all of which were sampled save Cataract Canyon. Westwater (HWWC) 

and Black Rocks (HBKR) were treated separately, despite their potential for connectivity 
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(Francis et al. 2016). Due to its range-wide extirpation, samples of G. elegans were obtained 

from the Southwestern Native Aquatic Resources and Recovery Center, Dexter, NM (formerly 

the Dexter National Fish Hatchery). Our sampling of G. robusta encompassed its entire range, to 

include pre-defined MUs (=Management Units; Douglas and Douglas 2007) and represented 

wild populations, with the exception the Mancos River (RMCO), which was obtained from the 

Colorado Department of Wildlife Native Aquatic Species Restoration Facility. Gila robusta from 

the lower basin Bill Williams and Gila River drainages was not included, given its known 

polyphyly (Dowling and DeMarais 1993; Chafin et al. unpubl.). 

 

Data collection  

Genomic DNA was extracted using either PureGene® or DNeasy® kits (Qiagen Inc.), with 

electrophoresis (2% agarose gel) confirming presence of sufficiently high molecular weight 

DNA. Our ddRAD library preparations were modified from previous protocols (Peterson et al. 

2012). Restriction enzyme pairings and size-selection ranges were optimized using an in silico 

procedure (FRAGMATIC; Chafin et al. 2018). Samples were digested with MspI (5’-CCGG-3’) 

and PstI (5’-CTGCAG-3’) following manufacturer’s protocols (New England Biosciences). 

Fragments were then purified using Ampure XP beads (Beckman-Coulter Inc.) and 

concentrations standardized at 100ng per sample. Custom adapters containing in-line barcodes 

were ligated with T4 Ligase (New England Biosciences), pooled in sets of 48, and size-selected 

with the Pippin Prep (Sage Sciences) at 250-350bp prior to adjusting for adapter length (=gDNA 

length). We then utilized a 12-cycle PCR to extend adapters with indexed Tru-Seq primers and 

Phusion high-fidelity DNA polymerase (manufacturer protocols; New England Biosciences). 

Final libraries were visualized on the Agilent 2200 TapeStation fragment analyzer and pooled for 
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100bp read length single-end sequencing (Illumina HiSeq 2500; University of 

Wisconsin/Madison).  

 

Assembly and filtering of genomic data 

Data assembly was performed using computing resources at the Arkansas High Performance 

Computing Center (AHPCC), and the XSEDE-funded cloud computing resource JetStream (co-

managed by the Pervasive Technology Institute/Indiana University, and the Texas Advanced 

Computing Center/Austin).  

 Raw Illumina reads were demultiplexed and filtered using the PYRAD pipeline (Eaton 

2014). Discarded reads exhibited >1 mismatch in the barcode sequence or >5 nucleotides with 

Phred quality <20. Loci were clustered de novo within and among samples using a distance 

threshold of 80%. We then removed loci with: >5 ambiguous nucleotides; >10 heterozygous 

sites in the consensus sequence; >2 haplotypes per individual; <20X and >500X coverage per 

individual; >70% heterozygosity per-site among individuals; or presence in <50% of individuals. 

Individuals with >50% missing data were also discarded. Scripts for post-assembly filtering and 

file conversion are available as open-source (github.com/tkchafin/scripts).  

 

Estimating population and individual ancestry  

Hypotheses of admixture and hybridization were based on genetic differentiation, as visualized 

using Discriminate Analysis of Principal Components (DAPC; R-package adegenet; Jombart, 

2008). Discriminant functions combine principal components (PCs) so as to maximally separate 

hypothesized groups. Importantly, sufficient PC axes must be retained so as to summarize the 

high-dimensional input, yet also avoid over-fitting. We accomplished this using the following 



 
 

18 

cross-validation procedure: Stratified random sampling defined 80% of samples per population 

as a “training set,” with the remaining 20% then classified. PC retention was optimized by 

minimizing root-mean-square error (RMSE) while maximizing classification success across 

analyses.  

 These results were contrasted with model-based assignment tests (STRUCTURE, Pritchard 

et al. 2000; ADMIXTURE, Alexander and Novembre 2009). A shared assumption is that 

populations can be divided into K-clusters identified by permuting membership so as to 

minimize linkage disequilibrium and departure from Hardy-Weinberg expectations. Given 

excessive runtimes in STRUCTURE, we first applied ADMIXTURE to evaluate a broader range of 

models (i.e., K=1-20, using 20 replicates), followed by STRUCTURE on a reduced range (K=1-10, 

using 10 replicates with 500,000 MCMC iterations following a burn-in period of 200,000). 

Model selection followed a cross-validation procedure in ADMIXTURE where assignment 

error was minimized by optimal choice of K, with results parsed using available pipelines 

(github.com/mussmann82/admixturePipeline). We used the delta K method (Evanno et al. 2005) 

to define the proper model in STRUCTURE (CLUMPAK; Kopelman et al. 2015). 

 We identified putative admixed individuals using Bayesian genealogical assignment 

(NEWHYBRIDS, Anderson and Thompson 2002) that assessed the posterior probability of 

assignment to genealogical classes (e.g. F1, F2), as defined by expected genotype frequency 

distributions. This component is vital, in that mixed probability of assignment in STRUCTURE and 

ADMIXTURE can stem from weakly differentiated gene pools. The MCMC procedure in 

NEWHYBRIDS was run for 4,000,000 iterations following 1,000,000 burn-in, using a panel of 200 

loci containing the highest among-population differentiation (FST) and lowest linkage 

disequilibrium (r2 < 0.2), as calculated in GENEPOPEDIT (Stanley et al. 2017). To ensure 
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accuracy of this method as applied to our data, we performed a power analysis using the 

HYBRIDDETECTIVE workflow (Wringe et al. 2017). We first generated simulated multi-

generational hybrids using 50% as a training dataset, and analyzed classification success across 

replicated simulations using the remaining 50% of samples as a validation set. To examine 

convergence, simulations were run across three replicates, each with three independent MCMC 

chains. Final runs were used to categorize individuals to genealogical class, using a posterior 

probability threshold of 0.90. 

 

Spatial and genomic heterogeneity in introgression 

We tested for signatures of reproductive isolation by examining clinal patterns in locus-specific 

ancestry across hybrid genomes, using multinomial regression to predict genotypes as a function 

of genome-wide ancestry. Analyses were performed in the R-package introgress (Gompert and 

Buerkle 2010). Putatively ‘pure’ populations of G. robusta and G. cypha were diagnosed from 

results generated by NEWHYBRIDS. We first filtered loci to include those with allele frequencies 

that differed in the reference populations (as defined by d >0.8, where d is the allele frequency 

differential at a given locus; Gregorius and Roberds 1986). We generated a null distribution by 

randomly re-assigning genotypes across 1,000 permutations, so as to test for deviations from 

neutral expectations. The significance of locus-specific clines (fit via multinomial regression) 

was then determined by computing a log-likelihood ratio of inferred clinal models versus the null 

model (at P<0.001).    

 To test for localized breakdown in reproductive barriers, we examined congruence of 

locus-specific introgression among sampling localities. We did so by deriving site-wise genomic 

clines within species, then subsequently contrasting the fit of site-wise regression models to the 
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global pattern for each locus. This was accomplished by estimating probabilities of the observed 

genotypes for each site (Xi,j where X=genotypic data over i sites for each locus j) given the site-

specific models (Mi,j) versus the range-wide model (Mglobal,j). Concordance was reported as the 

log-likelihood ratio of L(Mglobal,j | Xi,j) to L(Mi,j | Xi,j) computed per-locus (Gompert and Buerkle 

2009). 

 

Testing effects of anthropogenic pressures 

To test correlations between anthropogenic pressures on rates of hybridization, we parsed 

pressure indices per river reach for four dimensions of human impact from the global stream 

classifications of Grill et al. (2019). These were: 1) River fragmentation (=degree of 

fragmentation; DOF); 2) Flow regulation (=degree of regulation; DOR); 3) Sediment trapping 

(=SED); and 4) Water consumption (=USE), from the global stream classifications of Grill et al. 

(2019). We also tested predictive capacity of an integrated multi-criterion connectivity status 

index (=CSI), also from the free-flowing river assessments of Grill et al. (2019). Briefly, the 

DOF index (from 0 to 100) represents the flow disruption on a reach from dams, while also 

considering natural barriers such as waterfalls. The DOR index is derived from the relationship 

between storage volumes of reservoirs and annual river flows and is expressed as the percentage 

of total river flow that can be withheld in the reservoirs of a river reach. SED and USE quantify 

the potential sediment load trapped by dams, and the long-term average anthropogenic water 

consumption as a percentage of natural flow, respectively. The CSI index is a weighted average 

of these pressure indicators, while also considering road densities and degrees of urbanization 

[see Grill et al. (2019) for details regarding derivation of these indices and their underlying data 

sources].  
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 We assigned pressure index values for all sites containing at least 1 hybrid (as classified 

using a 0.90 posterior probability threshold), and tested the predictive power of each pressure 

dimension on ‘genetic purity’ (calculated via linear regression as the proportion of individuals 

per population assigned to either P0 or P1). 

 

Results 

A mean of 106,061 loci were assembled per sample (s=42,689). Following quality/depth 

filtering, and with mean coverage of 88X, this yielded 16,001 per sample (s=6427). Loci were 

removed if absent in <50% of individuals, with paralog filtering performed on the basis of allele 

count and excess heterozygosity. This resulted in 13,538 loci (µ=10,202; s=3601), and 

1,257,356 nucleotides. Putative orthologs contained 62,552 SNPs, of which 38,750 were 

parsimony-informative, corresponding to 4.9% and 3% of sampled nucleotides. We retained one 

SNP per locus, with a final dataset comprising12,478 unlinked SNPs. 

  

Population structure  

Choice of K varied by assignment test, with K=8 (ADMIXTURE; Fig. S1, S2, and K=5 

(STRUCTURE; Fig. S2). We thus retained K-values from 5-8.  

 The discriminant function axis with the greatest differentiation (DA1) primarily 

segregated G. robusta in the Little Colorado River (RECC) from the remaining G. robusta and 

G. cypha, with DA2 differentiating Upper Colorado G. robusta from G. cypha (Fig. 2A). 

Interestingly, DA3 (Fig. 2B) seemingly identified structure within G. cypha as well as potentially 

admixed populations of G. robusta. Both assignment tests (Fig. 3) differentiated RECC from 

conspecifics, with G. elegans also forming a discrete cluster in all cases.  We interpret neither of 
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these results as surprising, given the substantial anthropogenic (Glen Canyon dam) and natural 

(Little Colorado River Grand Falls) barriers separating the former from conspecifics, and the 

phylogenetic distinction of the former (Chafin et al. 2019). Additionally, no signal of 

contemporary mixture of G. robusta or G. cypha with G. elegans was detected. STRUCTURE 

models with K>8 and ADMIXTURE K>5 showed similar restrictions in gene flow between Grand 

Canyon G. cypha versus upper basin sites. Desolation Canyon (HDES) showed the highest 

probability of assignment to an ‘upper basin’ G. cypha cluster. Within G. robusta, a weak signal 

of differential assignment was apparent when Green River tributaries (RUGR and RMGR) were 

compared with the mainstem Colorado River, suggesting either reduced intraspecific gene flow, 

or an artefact of demographic processes. 

 DAPC and assignment tests each indicated potential hybridization among G. cypha and 

G. robusta, most prominently in regions of sympatry [i.e. Black Rocks (RBKR/HBKR), 

Westwater (RWWC/ HWWC), and Yampa (RYAM/HYAM) canyons; Fig. 3]. Those G. robusta 

sites most ‘distant’ in multivariate space (Fig. 2B) were also those which showed the least 

probability of interspecific assignment (Fig. 3). Signals of asymmetric introgression were 

apparent when sympatric localities were examined, with G. cypha generally having higher levels 

of heterospecific assignment. 

One exception was RDES, where all specimens phenotypically identified as “G. robusta” 

were genetically indistinguishable from those designated as G. cypha. Misidentifications at time 

of capture is a likely cause, owing to the morphological intermediacy of Gila spp. at this site (i.e. 

McElroy and Douglas 1995).  

 Allopatric populations of G. robusta showed less interspecific ancestry, with the 

exception being the San Rafael River (RSSR), where samples had 30-50% assignment to G. 
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cypha ancestry (Fig. 3), a pattern supported by the weak differentiation of RSSR in DAPC 

analyses. Allopatric G. robusta from RNJA also showed mixed probability of assignment to G. 

cypha, albeit with low probability and consistency. 

 

Hybrid detection and genealogical assignment 

Genealogical assignment in NEWHYBRIDS was used to parse STRUCTURE and ADMIXTURE results 

for contemporary hybridization. We first defined a prior probability of genetic purity for G. 

robusta as being the upper-most Little Snake River tributaries (RLSR), and for G. cypha as the 

Little Colorado River confluence in Grand Canyon (HLCR). Both were chosen based on 

STRUCTURE and ADMIXTURE results (Fig. 3), and additionally informed by prior studies of 

natural recruitment (Douglas and Douglas 2010; Kaeding and Zimmerman 1983). Because of the 

lack of any signal of interspecific admixture in G. elegans, they were omitted from these 

analyses. 

 Introgressive hybridization at sympatric locations was found to be asymmetric (Fig. 4). In 

cases of mixed assignment, individuals were classified as either "late-generation hybrid," or "of 

uncertain status" (Table 2). Gila robusta were largely classified as pure in both sympatric and 

allopatric sites, with a few exceptions (outlined below). Samples assigned to hybrid classes 

tended to be robusta-backcrossed (6–12.5%) or late-generation/ uncertain (4.5–37.5%). In 

contrast, G. cypha at sympatric localities had comparatively low purity (0–61%), with most 

hybrids categorized as either F2, cypha-backcrossed, or unclassifiable (Table 2). The genetic 

effects of hybridization are thus inferred as asymmetric, with a greater penetration of G. robusta 

alleles into G. cypha populations. RDES and HDES samples were mostly classified as either 

late-generation or unassignable. F1 hybrids were notably absent at all localities, suggesting 
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hybridization occurred over multiple generations and ongoing introgression (i.e., hybrids fertile 

and reproductively successful).  

 Both species showed little signal of hybridization at allopatric locations, but with notable 

exceptions being the San Rafael River and, to a lesser extent, RMCO. Nearly all RSSR samples 

were assigned with high probability as either F2 or G. robusta-backcrossed hybrids, a pattern 

consistent across years (2009 versus 2017), and regardless of priors used. Samples from 2009 

were mostly classified as F2 (45%) or robusta-backcrosses (45%). However, the greatest 

proportion of 2017 samples were robusta-backcrosses (67%) or late-generation hybrids (25%), 

suggesting an increase of admixture over time (although increased sampling is needed to verify 

this trend; two-tailed Fisher’s exact test p=0.0967; Table 2). The RMCO samples, composed of 

20% hybrids (Table 2), were derived from hatchery stock, not a natural population. Thus, we 

cannot say if our results represent natural or accidental hybridization that coincided with, or was 

subsequent to, stock establishment.  

 

Genomic clines 

We also examined how introgression varied across significantly differentiated genomic SNPs 

and species-diagnostic markers. Here, we considered locus-specific ancestry as the probability of 

sampling a homozygous G. cypha genotype [i.e. P(AA)] as a function of genome-wide ancestry, 

with the expectation that scant bias should occur if fitness is independent of hybrid ancestry. All 

loci exhibited clinal patterns that deviated significantly from neutral expectations (p<0.001, 

estimated via permutation; Fig. 5A). The majority displayed coincident sigmoidal relationships 

between genome-wide ancestry (hybrid index; h) and locus-specific ancestry (f). The dominant 

sigmoidal pattern is suggestive of a deficiency in interspecific heterozygosity, presumably 
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reflecting heterozygote disadvantage (Fitzpatrick 2013). Notably, some locus-specific clines 

deviated from this trend (Fig. 5A), suggesting that underdominance is not ubiquitous. For 

example, many loci show alternative cline shapes suggestive of either over- or under-

representation of parental genotypes in hybrids, suggestive of a selective advantage in these or 

linked genomic regions. However, lacking a suitable genomic reference, the phenotypic 

implications of these alternative cline forms are not explored herein. 

 We also examined the observed genotypes at each locus, given expectations from the 

range-wide model and site-specific regression models. These were reported as a log-likelihood 

ratio per locus and within each sampling locality (Fig. 5B). We found the ‘fit’ of the range-wide 

clinal models was rather variable, although with the majority of loci showing little deviation. 

One notable exception was RSSR, where an exceptionally flattened distribution of the locus-

specific log-likelihood ratios was apparent. This in turn suggested that the global expectation was 

a poor predictor of within-population genotypes. Thus, while most loci reflected patterns 

consistent with selection against hybrids, the same cannot be said for the RSSR population. It 

also displayed a strong signal of interspecific admixture in the Bayesian and ML assignment tests 

(Fig. 3), and variable assignment to >2nd generation hybrid classes in NEWHYBRIDS (Fig. 4), as 

well as greater intermediacy in multivariate genotypic clustering (Fig. 2). Several other sites also 

showed a ‘flattened’ distribution of clinal fit among loci (e.g., HWWC, HBKR, HDES, RDES, 

RUGR, RMCO; see Fig. 5B). This could be a response to elevated introgression and a relative 

breakdown of heterozygote disadvantage in the sympatric localities (HWWC, HBKR, HDES, 

RDES), especially where previous analyses indicated admixture (Fig. 2-4), or as an artefact of 

reduced sampling (RUGR, RMCO).  
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 Although not possible for other localities, our temporal sampling for RSSR allowed us to 

further explore this discrepancy across different time periods: 2009 (N=11) and 2017 (N=12). 

We then fitted locus-specific clines among years (Fig. 5C) and compared those to range-wide 

expectations (Fig. 5B). We found little qualitative change in the overall distribution, save for 

four outliers in 2017, suggesting further breakdown of clinal expectations over time. Even 

though we cannot evaluate this trend range-wide, we suggest that further study examine the 

persistence vs. breakdown of genetic purity by using a consistent genetic assay as a part of 

ongoing monitoring efforts.  

 

Testing dimensions of anthropogenic pressure 

Among sites showing varying levels of hybridization (N=10; Table 2), only the consumptive 

water use (=USE) was significantly corelated with a decline in genetic purity (r2=0.444; adjusted 

r2=0.375; p=0.035; see Fig. S5). The connectivity status index (CSI) showed a weak but non-

significant positive relationship (i.e. increased connectivity = increased genetic purity; r2=0.02; 

adjusted r2=-0.103; p=0.7). However, we caution that sample sizes were notably low (N=10) 

after sites were reduced to those containing hybrids and which could be assigned pressure indices 

(see Fig. S6 for reach assignments), thus urge that these results be interpreted accordingly. 

 

Discussion 

We found strong evidence for contemporary hybridization among G. cypha and G. robusta 

extending beyond their regions of sympatry. These results refine rather than conflict with 

previous studies employing ‘legacy’ genetic markers (Douglas and Douglas 2007; Dowling and 

DeMarais 1993; Gerber et al. 2001), and complement contemporary work (Bohn et al. 2019). In 
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addition, these results broaden our understanding of each species and their evolutionary histories, 

as well as the trajectory of their ongoing evolutionary change in the face of extensive 

anthropogenic modifications.  

 

Species boundaries and reproductive isolation in Gila 

Our survey of the nuclear genome suggested that contemporary hybridization between our study 

species is occurring where sympatric, as interpreted from several lines of evidence: The 

coincidence and shape of our genomic clines; the pervasive signal of genealogical assignment to 

early-generation hybrid classes; and signatures of selection antagonistic to interspecific 

heterozygous genotypes.  

 We interpret this hybridization as following historical isolation, particularly given the 

coexistence of study species since at least the mid-Pliocene (Uyeno and Miller, 1965; Spencer et 

al. 2008). In addition, past studies have shown sustained morphological divergence displayed in 

sympatry (Douglas et al. 1989; McElroy and Douglas 1995), although we note that contemporary 

evaluations are conspicuously absent. This suggests that genetic exchange is ongoing despite, 

rather than in the absence of, reproductive isolation.  

 Dowling and DeMarais (1993) suggested that hybridization between G. cypha and G. 

robusta may have contributed to the evolutionary persistence of each species by providing 

necessary adaptive genetic variation so as to withstand environmental fluctuations. We concur, 

and further note that this exchange is ongoing, with a substantial risk that contemporary habitat 

change will outpace the rate at which introgressed alleles are selectively "filtered."  If so, then 

continued habitat alteration could lead to a scenario in which genetic/demographic swamping 

contributes to local extirpations, or to eventual genetic homogenization of one species by the 
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other (Todesco et al. 2016). This pattern is particularly evident in the asymmetric levels of 

introgression into G. cypha, a species of particular concern given its fragmentary distribution and 

reduced densities within the upper Colorado River Basin (e.g. Badame 2008; Franci et al. 2016; 

USFWS 2017). 

 To consider the plausibility of such a scenario in which environmental change leads to 

the dissolution of a species boundary, we must first consider how this boundary is itself 

structured. We do so by considering results of our genetic data within the context of those 

derived from species-specific morphology and life history. Several morphological evaluations 

have demonstrated that morphological distinctions among species can be blurred in sympatry 

(Douglas and Douglas 2007; Douglas et al. 2001; McElroy and Douglas 1995), although we note 

a need for such evaluations to be revisited, particularly given the contemporary timescale of 

hybridization as documented herein. This is likely the result of secondary admixture, rather than 

a prolonged (i.e., primary) divergence that lead to only weakly-differentiated species. Pliocene 

fossils demonstrate that morphological divergence of G. robusta and G. cypha predates major 

geomorphic and tectonic events that could have triggered secondary contact. For example, the 

Upper Colorado River was segregated from the contemporary lower basin prior to the mid-

Pliocene, (McKee et al. 1967), with the uplifting of the Colorado Plateau diverting its flow into 

one or more Colorado Plateau lakes (Spencer et al. 2008). Flows were subsequently diverted by 

headwater erosion though the Grand Canyon, forming the modern course of the river. Fossil 

evidence implies that ecological divergence occurred during, or prior to this time, and was 

sufficient in strength to generate both morphological forms (Uyeno and Miller 1965). This 

suggests the existence of ecological conditions that reflect those to which the species are now 

adapted. Additionally, numerous perturbations [i.e., tectonism, extreme drought (Meko et al. 
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2007)] also occurred during the interval between divergence and present, yet both species not 

only persisted but did so with some semblance of morphological continuity. Given this, one must 

again assume that an extant blurring of species-boundaries is, at least in part, a contemporary 

occurrence. To test this hypothesis, we considered the ecological dimensions underlying adaptive 

differentiation in these species. 

 

Reproductive barriers in Gila 

Phenotypic and ecological specializations of each species provide potential insights into the 

mechanisms promoting assortative mating. Gila cypha displays phenotypic characteristics 

interpreted as adaptations to the torrential flows of canyon-bound reaches (McElroy and Douglas 

1995; Miller 1946; Valdez and Clemmer 1982). These include a prominent nuchal hump, 

dorsoventrally flattened head, embedded scales, terete body shape, and a very narrow caudal 

peduncle that terminates in a caudal fin with a high aspect ratio, indicative of a hydrodynamic 

shape and powerful propulsion. Its current distribution also reflects association with this type of 

habitat. 

  In contrast, G. robusta has a comparatively more generalized phenotype, characterized 

by a deeper and less streamlined body with non-imbedded scales and larger, more falcate fins 

(Miller 1946). It is found in the upper tributaries of larger rivers (Vanicek and Kramer 1969) 

with moderate flows. It fails to maintain position within the current when subjected to the 

extreme flows associated with G. cypha, and instead becomes benthic so as to avoid being swept 

away (Moran et al. 2018). This suggests a natural history diametrically opposed to that of G. 

cypha, where dynamic flow regimes clearly predominate. Accordingly, radiotelemetric studies 

verified habitat preferences for each species, with G. cypha seldom straying from the deep eddies 
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and turbulent flows of canyon-bound reaches (Douglas and Marsh 1996; Gerig et al. 2014; 

Kaeding et al. 1990). These observations underscore the role that functional morphology plays 

with regards to species boundaries, in that intermediate morphologies would be maladaptive in 

either habitat.  

 However, barriers that sustain reproductive isolation are unclear, in that both species are 

broadcast-spawners (Johnston and Page 1992), with a temporal overlap in spawning period 

(Kaeding et al. 1990). The latter is likely a consequence of shared environmental cues triggering 

reproduction, namely seasonal changes in flow rate and temperature, with spatial segregation 

driven by subsequent alterations in microhabitat and substrate preference (Douglas and Douglas 

2000; Minckley 1996). Widespread movements by G. robusta during the spawning season 

contrast with the relative localized focus found in G. cypha (Kaeding et al. 1990; Tyus et al. 

1982), and again reinforce the restricted habitat requirements of the latter. Additionally, there is a 

stronger ‘homing’ component in the microhabitat preferences of G. cypha (Valdez and Clemmer 

1982). These ecological differences, combined with overall higher abundance of G. robusta in 

most areas (e.g. Francis et al. 2015) likely contribute to the observed asymmetric introgression 

between the two species (Edelaar et al. 2008). Intraspecific recognition as a mate-choice 

mechanism is also an observed behavior that promotes reproductive isolation. Despite congruent 

reproductive condition and the presence of suitable substrate in a brood stock tank, natural 

spawning did not occur between G. robusta x G. elegans and G. elegans x G. cypha (Hamman 

1981). 

 Thus, we contend that reproductive isolation in G. robusta and G. cypha is driven by 

extrinsic factors, with pre-mating isolation primarily in the form of microhabitat selection and 

post-mating isolation driven by functional morphological differences. Our data point to selection 
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against hybrids, which may be reflective of either their relatively poor performance in the 

environment, or to a diminished success in mating. However, we noted a possible breakdown of 

this expectation at some localities when genomic clines were fitted to within-site patterns. The 

San Rafael River (RSSR), for example, is one such exception. Fortney (2015) quantified 

anthropogenic changes in this river over the last 100 years, with the channel being extensively 

canalized and diverted, and flows diminished by 83% due to water withdrawals. These 

manipulations yielded a narrower, relatively deeper channel that stands in sharp contrast to an 

historically wider and slower river whose flow regime was governed by geomorphology and 

dominated by flooding. Anthropogenic alterations apparently provided an opportunity for 

adaptive hybridization (e.g. Taylor et al. 2005), an hypothesis consistent with the exclusive 

presence of late-generation hybrids in the RSSR population (Fig. 4). Under this scenario, 

selective advantage would similarly drive outlier loci and the reduced-fit seen in our clinal 

models (Fig. 5). The origin of G. cypha alleles in this population is unclear, although they may 

possible be derived from a remnant population in the upper reaches (e.g., Black Box Gorge; P. 

Badame, pers. comm). 

 An examination of the degree to which anthropogenic pressures drive basin-wide 

hybridization point to a role for consumptive water use in driving a decline in overall genetic 

purity. Consumptive water usage, and the impact of the associated infrastructures (such as 

diversions and reservoirs), are often implicated as detrimental to freshwater fish diversity (e.g. 

Xenopoulos et al. 2005). Insofar as river discharge is one dimension of ecological heterogeneity, 

and given the trend of decreasing species richness as flow declines (Oberdorff et al. 1995), we 

posit that a coincidental relationship is rather extreme in the Colorado River when anthropogenic 

manipulations and extensive hybridization are contrasted. Yet, a test of this hypothesis is 
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difficult without further experimental work (i.e. leveraging hatchery-produced interspecific 

hybrids to test for viability in varying habitats, represented within a series of mesocosms). While 

increased sampling is also necessary, it would be difficult given that we have already sampled 4 

of the 5 extant G. cypha populations.   

 

Modified environments and genetic swamping 

Grabenstein and Taylor (2018) defined mechanisms that drive anthropogenically-mediated 

hybridization in coexisting species: 1) Interspecific contact promoted by habitat homogenization 

or altered phenology; 2) Disruption of mate selection/ choice; and 3) Habitat alteration, such that 

hybrid genotypes are favored (Anderson 1948). All three are plausible for Gila, with the ‘hybrid 

swarm’ of RSSR an extreme case. Asymmetric hybridization was implicated in all extant 

sympatric G. cypha populations, save the Cataract Canyon aggregate not evaluated in this study. 

The latter reflects a more ‘robusta-like’ morphology (McElroy et al. 1997), with low population 

numbers and a slower growth rate relative to other extant populations (Badame 2008). Taken 

together, these suggest an elevated risk for genetic or demographic swamping in Cataract 

Canyon G. cypha (Todesco et al. 2016), and lend urgency to their inclusion in future genetic 

surveys.  

 Such a scenario may also be invoked for G. cypha in the Yampa River (HYAM), 

recognized even prior to our sampling as being of reduced and declining numbers (Tyus 1998). 

The ubiquity of highly-admixed genomes in our sampling (from 1999-2001), coupled with the 

absence of genetically pure individuals in more recent surveys (USFWS 2017), suggest the 

potential for local extirpation. Given the prevalence of asymmetric hybridization in other 

sympatric G. cypha, it is possible that genetic swamping may have also played a role in the 
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decline of the HYAM population (although we cannot test that hypothesis). Of note, a more 

recent genetic survey of HYAM found a further breakdown of genetic purity, with most 

individuals being composed of either pure G. robusta or robusta-backrosses (Bohn et al. 2019). 

Similarly, recent surveys have also documented diminished catch ratios for G. cypha at other 

sympatric localities (Fig. 4; Francis et al. 2016; USFWS 2017). Thus, an elevated risk of genetic 

swamping appears as a strong potential for all G. cypha populations sympatric with G. robusta. 

 

Genetic swamping and Allee effects 

The capacity for populations to track changing conditions is constrained not only by standing 

genetic variation but also complex demographic processes that feed back to reproductive fitness 

(Kokko et al. 2018). As the effective population size (Ne) of a population decreases, so also do 

beneficial variants, primarily due to reduced efficacy of selection relative to genetic drift and 

associated inbreeding depression (i.e., Allee effects; Kramer et al. 2009). This in turn can induce 

a negative feedback that drives local extirpation (Polechová and Barton 2015). Using a similar 

logic, we posit that maladaptive introgression within diminishing populations could also 

synergistically trigger a "runaway" process of genetic swamping (Fig. S7). 

 In this conceptual model, demographically-driven Allee effects weakens purifying 

selection against maladaptive introgressed alleles, whereas their continued influx further reduces 

fitness via outbreeding depression. In this way, maladaptive gene flow can continually depreciate 

Ne and effectively promote an "extinction vortex" (Gilpin and Soulé 1986), and we posit this 

mechanism may contribute to the decline of those G. cypha populations sympatric with G. 

robusta. Although some signal of selection against heterospecific alleles was apparent, another 

manifestation of shrinking Ne is the expansion of genomic linkage disequilibrium (Nachman 
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2002). As a result, purifying selection can actually be counterproductive, wherein beneficial 

genetic variation is lost via selection against linked regions (Nachman and Payseur 2012). 

Under this paradigm, the risk of swamping in G. cypha is elevated by the numerous 

factors that increase the relative impact of genetic drift. These are: Reduced population sizes in 

extant populations (Douglas and Marsh 1996; Tyus 1998); A fragmented distribution (Fagan 

2002); and a "slow" life history (i.e., long generation time and extended lifespans; Olden et al. 

2008), and higher vulnerability to regulated and reduced flows given its habitat preference of 

turbulent rivers (as above). The hybrid swarm in the San Rafael (RSRR), and the suspected 

genetic swamping of G. cypha in the Yampa River (HYAM) are potential harbingers of this 

erosion. Genetic integrity may be preserved in the short term by cultivating "pure" progeny via 

hatchery production, so as to potentially extend existing pure populations, although a 

propogation program risks further reducing Ne (Allendorf et al. 2001). The development of pure 

stock for G. robusta should be relatively easy, whereas upper basin G. cypha are more 

problematic in that they display various levels of hybridization (i.e., Figs. 3-4). In this regard, we 

echo the “producer’s gambit” philosophy (McElroy et al. 1997) where hybrid populations fall 

under an expanded conservation paradigm when genetic purity cannot otherwise be maintained 

(Lind-Riehl et al. 2016). Given apparent ecological non-equivalency of hybrids, we suggest that 

habitat restoration is the only long-term means to resurrect genetic purity in these populations 

(Wayne and Shaffer 2016). Here, restoration re-establishes adaptive gradients favoring specialist 

phenotypes, even so far as to drive their reemergence from hybridized swarms (Gilman and 

Behm 2011), as has been seen in European whitefish following eutrophication-driven 

hybridization (Jacobs et al. 2019). Thus, restoration efforts may be more effectively targeted to 
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areas of already reduced purity, with continued genetic monitoring as a necessary assessment 

tool (e.g. Bohn et al. 2019). 

 

Conclusion 

 A reduced-representation assay of nuclear genomes in G. robusta and G. cypha provided 

evidence of asymmetrical hybridization that is range-wide and spatially heterogeneous (Fig. 3, 

4). We interpreted this as reflecting secondary contact, particularly given the pervasive selection 

we found with regard to genomic clines operating against interspecific heterozygotes (Fig. 5), 

although we do not exclude the potential for historically limited introgression. Although we 

lacked appropriate sampling to adequately test for temporal changes in hybridization rates, we 

did observe the expansion of a hybrid swarm in the San Rafael River (RSSR) over an eight-year 

period, as well as high levels of asymmetric hybridization in all sympatric populations of G. 

cypha (Table 2). This underscores the potential for genetic/demographic swamping by G. 

robusta, as well as exacerbating the extirpation risk for extant populations of G. cypha. We argue 

that conservation plans for G. cypha must consider this possibility. We also suspect the species-

boundary for G. cypha is largely maintained by extrinsic factors (i.e., lower fitness of hybrid 

phenotypes and differential microhabitat preferences). As such, further habitat degradation and 

homogenization may lead to complete genetic erosion, either by contravening habitat selection 

for pure individuals, or by promoting modified anthropogenic riverscapes that serve as habitat 

for novel hybrid lineages/swarms. The scenario playing out in Gila emphasizes a philosophical 

dilemma that conservation policy must confront: Is hybridization antagonistic to the conservation 

of biodiversity or is it instead a natural adaptive mechanism employed routinely by species in 

their evolutionary struggle to persist.  
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Appendix 

Table 1: Sampling locations for Gila robusta, G. cypha and G. elegans. Site=abbreviated 
locality identifier for each species, Major Drainage=River, Location=geographic site, County, 
State=per sampling site, and N=Number of samples excluding those that sequenced with 

sufficient coverage. (*) denotes sympatric localities 

 

Site Major Drainage Location County, State N  
Gila robusta     

*RBKR Colorado Black Rocks Canyon Mesa, CO 11 

*RDES Green  Desolation Canyon Uintah, UT 23 

RC15 Colorado 15-mile reach Mesa, CO 10 

RECC Little Colorado  East Clear Creek Coconino, AZ 16 

RMCO San Juan  Mancos River Montezuma, CO 10 

RMGR Green Middle Green R. tributaries Sweetwater, WY 24 

RNJA San Juan  Navajo R. Rio Arriba, NM 10 

RLSR Yampa Little Snake R. tributaries Carbon, WY 31 

RLYC Yampa Little Yampa Canyon Moffat, CO 11 

RSRR Green  San Rafael R.  Emery, UT 23 

RUGR Green Upper Green R. tributaries Sublette, WY 16 

RWRW White White R. mainstem near Weaver Cn. Uintah, UT 15 

*RWWC Colorado Colorado mainstem near Westwater Cn. Grand, UT 11 

*RYAM Yampa  Yampa R. mainstem Moffat, CO 15 

Gila cypha     

*HBKR Colorado  Black Rocks Canyon Mesa, CO 18 

*HDES Green  Desolation Canyon Uintah, UT 24 

HGCN Colorado  Grand Canyon Coconino, AZ 37 

HLCR Little Colorado  Atomizer Falls and Colorado confluence Coconino, AZ 22 

*HWWC Colorado Westwater Canyon Grand, UT 22 

*HYAM Yampa  Yampa Canyon Moffat, CO 8 

Gila elegans Hatchery stock USFWS Hatchery at Dexter, NM 

 

Chaves, NM 11 
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Table 2: Proportions of Gila robusta and G. cypha assigned genealogically at each sample site. 
Site=abbreviated locality identifier for each species; P0=Pure robusta; P1=Pure cypha; F1=First 
filial hybrid; F2=second filial hybrid; B0=G. robusta-backcrossed hybrid; B1=G. cypha-
backcrossed hybrid; FN=late-generation or uncertain hybrid. Samples were assigned to a 
genealogical class per posterior probability ≥0.80, as assessed using 250,000 post burn-in 
MCMC generations in NEWHYBRIDS.  

  

Site P0 P1 F1 F2 B0 B1 FN 
HLCR - 1.000 - - - - - 

HGCN - 1.000 - - - - - 

HDES - 0.083 - 0.083 - 0.542 0.292 

HWWC - 0.150 - 0.200 - 0.550 0.100 

HBKR - 0.615 - 0.231 - 0.077 0.077 

HYAM - - - 0.667 - 0.333 - 

RDES 0.046 0.046 - 0.136 - 0.364 0.409 

RSRR ’17 - - - 0.083 0.667 - 0.250 

RSRR ’09 - - - 0.455 0.455 - 0.091 

RNJA 1.000 - - - - - - 

RMCO 0.800 - - - 0.100 - 0.100 

RWWC 0.875 - - - 0.125 - 0.375 

RC15 1.000 - - - - - - 

RBKR 0.857 - - - - - 0.143 

RECC 0.938 - - - 0.063 - - 

RWRW 0.875 - - - 0.125 - - 

RUGR 1.000 - - - - - - 

RMGR 0.955 - - - - - 0.045 

RYAM 1.000 - - - - - - 

RLYC 1.000 - - - - - - 

RLSR 1.000 - - - - - - 
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Figure 1: Sampling localities for Gila cypha (blue) and G. robusta (red) within the Colorado 
River Basin, western North America. Locality codes are defined in Table 2. Sympatric locations 
(BKR, DES, WWC, YAM) are slightly offset for visibility purposes. Inset cartoons the 
respective morphologies of each species
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Figure 2: Results of a Discriminate Analysis of Principal Components (DAPC) analysis depicting Gila robusta (red), G. cypha (blue), 
and their respective populations (as colored). (A) discriminant function axes 1 and 2 (=DF1xDF2) showing discrimination among both 
species; (B) axes 2 and 3 (=DF2xDF3) reflecting the manner by which populations of each species (grouped within ellipses) are 
distributed in discriminant space. The relative percent variance captured by each discriminant function is presented in parentheses. 
Sample localities are defined in Table 1. (*) denotes sympatric localities
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Figure 3: Assignment results for ADMIXTURE and STRUCTURE analyses involving Gila robusta, G. cypha, and G. elegans. K-
values range from STRUCTURE optimum K=5 (see Fig. S2) to ADMIXTURE optimum K=8 (see Fig. S3). Locality abbreviations are 
as defined in Table 1. (*) denotes sympatric localities
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Figure 4: Genealogical assignment for individual Gila robusta and G. cypha, as compiled from NEWHYBRIDS analysis. Individuals 
are represented by colored bars, with proportion of color indicating posterior probability of assignment per genealogical class. Prior 
‘parental’ allele frequencies for G. cypha were derived from the Little Colorado River (HLCR) and from the Little Snake River 
(RLSR) for G. robusta (alternative prior assignments had no significant affect; see Fig. S4 and S5). Colors are as follows: Red=pure 
G. robusta; Blue=pure G. cypha; Purple=F1 hybrid; Light purple=F2 hybrid; Light blue=cypha-backcrossed hybrid; Light 
red=robusta-backcrossed hybrid. (*) denotes sympatric localities
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Figure 5: Genomic cline analyses for populations of Gila robusta and G. cypha, presented as: 
(A) Per-locus clinal relationships for 50 SNPs with d  >0.8 (all significantly non-neutral at 
a=0.001) compared to the neutral expectation (shaded gray region); (B) Log-likelihood ratio 
distribution of site-wise per-locus clines compared to the global pattern, where higher log-
likelihood ratio indicates greater discordance; (C) Per-locus incongruence in genomic clines in 
the Gila robusta samples from the San Rafael River, partitioned by year (2009 versus 2017).  
Locality codes for populations of each species are defined in Table 1. 
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CHAPTER II 

Taxonomic uncertainty and the anomaly zone: Phylogenomics resolve rapid radiation and 

hybrid origin in a contentious species complex 

Chafin TK, Douglas MR, Bangs MR, Mussmann SM, Douglas ME 

Abstract  

Species are an indisputable unit for biodiversity conservation, yet their delimitation is fraught 

with both conceptual and methodological difficulties. A classic example is the taxonomic 

controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern 

North America. Nominal species designations were originally defined according to weakly 

diagnostic morphological differences that conflicted with traditional genetic analyses. 

Consequently, the complex was re-defined as a single polytypic unit, with the proposed 

‘threatened’ status of two being withdrawn at the federal level. Here, we utilized dense spatial 

and genomic sampling (N=387 and >22k loci) to re-evaluate the status of the complex, based on 

SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, all three 

species were supported as evolutionarily independent lineages, despite widespread phylogenetic 

discordance. To understand this discrepancy with past studies, we categorized evolutionary 

mechanisms driving discordance. We tested (and subsequently rejected) prior hypotheses 

suggesting that phylogenetic discord in the complex was hybridization-driven. Instead, we found 

the G. robusta complex to have diverged within the ‘anomaly zone’ of tree space and, as such, 

have accumulated inconsistent patterns of diversity which have confounded prior studies. After 

extending these analyses with phylogeographic modeling, we propose that this is reflective of a 

rapid radiation promoted by Plio-Pleistocene tectonism. Our results not only support resurrection 
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of the three species as distinct entities, but also offer an empirical example of how phylogenetic 

discordance can be categorized in other recalcitrant taxa. 

 

Introduction 

Complex evolutionary histories remain consistently difficult to disentangle, despite a recent 

paradigm shift towards the development of increasingly comprehensive datasets (e.g. Edwards 

2009; Giarla and Esselstyn 2015). Regardless of these efforts, phylogenetic uncertainty is still 

prevalent, and with wide-ranging consequences on the study of macroevolutionary patterns 

(Stadler et al. 2016; Pereira and Schrago 2018), trait evolution (Hahn and Nakhleh 2016; Mendes 

et al. 2016; Wu et al. 2018), and ecological and biogeographic processes (Rangel et al. 2015; 

McVay et al. 2017). 

Importantly, phylogenetic uncertainty also translates to taxonomic uncertainty. This is 

because modern systematic taxonomy fundamentally describes homology [i.e. Darwin's (1859) 

‘propinquity of descent’ (Simpson 1961)], which, by definition, requires a phylogenetic context. 

Phylogenetic uncertainty in this sense can manifest itself as a soft polytomy (= ‘honest’ 

uncertainty), the erroneous promotion of non-monophyletic clades, or controversial ‘splitting’ 

versus ‘lumping.’ Incomplete or biased sampling is often a driver of this disparity (Ahrens et al. 

2016; Reddy et al. 2017). Here, narrow taxon sampling may introduce substantial ascertainment 

bias (=systematic deviations due to sampling). On the other hand, a broader yet sparse sampling 

regime often fails to sample cryptic lineages (Heath et al. 2008) — with subsequent impacts on 

both the delimitation of species (Pante et al. 2015; Linck et al. 2019) and study of their traits 

(Beaulieu and O’Meara 2018). 
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These sources of uncertainty culminate in topologies that often fluctuate with regard to 

sampling designs or methodologies, and this results in taxonomic uncertainty [e.g. Ctenophora 

versus Porifera as sister to all other animals (Pisani et al. 2015; Whelan et al. 2015; Simion et al. 

2017)]. Access to genome-scale data has alleviated some of these issues by offering a level of 

precision not possible with single-gene phylogenies (Philippe et al. 2005). However, their 

inherent complexity and heterogeneity introduces new problems, and consequently, additional 

sources of phylogenetic uncertainty. 

 Gene tree heterogeneity is a ubiquitous source of discordance in genomic data, and 

“noise” as a source of this variance must consequently be partitioned from “signal” (where 

“noise” is broadly categorized as systematic or stochastic error). Large genomic datasets can 

reduce stochastic error (Kumar et al. 2012), yet it still remains a prevalent issue when individual 

genes are examined (Springer and Gatesy 2016). On the other hand, systematic error in 

phylogenomics may represent a probabilistic bias towards incongruence that is inherent to the 

evolutionary process itself (Maddison 1997). This, in turn, exemplifies the complications 

introduced by genomic data: As genomic resolution increases, so also does the probability of 

sampling unmodeled processes (Rannala and Yang 2008; Lemmon and Lemmon 2013). This 

potential (i.e., simultaneously decreasing stochastic error as systematic error increases) produces 

the very real possibility of building a highly supported tree that is ultimately incorrect. 

 Certain demographic histories are more predisposed to systematic error than others. For 

instance, when effective population sizes are large and speciation events exceptionally rapid, 

time between divergence events may be insufficient to sort ancestral variation, such that the most 

probable gene topology will conflict with the underlying species branching pattern. This results 

in what has been coined an “anomaly zone” of tree space (i.e., dominated by anomalous gene 
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trees (AGTs); Degnan and Rosenberg 2006). Inferring species trees is demonstrably difficult in 

this region (Liu and Edwards 2009), and exceedingly so if additional sources of phylogenetic 

discordance, such as hybridization, are also apparent (Bangs et al. 2018). 

 In clades with such complex histories, it is often unclear where the source of poor support 

and/or topological conflict resides. Yet, to analytically account for gene tree conflict, it is 

necessary to categorize these sources and select approaches accordingly. Failure to do so 

promotes a false confidence in an erroneous topology, as driven by model misspecification 

(Philippe et al. 2011). The overwhelmingly parametric nature of modern phylogenetics insures 

that imperative issues will revolve around the processes being modeled, and what they actually 

allow us to ask from our data (Sullivan and Joyce 2005). However, the selection of methods that 

model processes of interest requires an a priori hypothesis that delimits which processes are 

involved. Yet, diagnosing prominent processes is difficult in that a phylogenetic context is 

required from which to build hypotheses. Fortunately, a wealth of information can be parsed 

from otherwise “non-phylogenetic” signal (sensu Philippe et al. 2005). For example, many 

statistical tests diagnose hybridization via its characteristic signature on the distribution of 

discordant topologies (e.g. Pease and Hahn 2015). Theoretical predictions regarding AGTs and 

the parameters under which they are generated are also well characterized (Degnan and Salter 

2005; Degnan and Rosenberg 2009). Thus, by applying appropriate analytical approaches that 

sample many independently segregating regions of the genome, empiricists can still derive 

biologically meaningful phylogenies, despite the presence of complicated species-histories 

(McCormack et al. 2009; Kumar et al. 2012).  

 Here, we demonstrate an empirical approach that infers species-histories and sources of 

subtree discordance when conflict originates not only from anomaly zone divergences but also 
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hybridization. To do so, we used SNP-based coalescent and polymorphism-aware phylogenetic 

methods (Chifman and Kubatko 2014; Leache et al. 2014; De Maio et al. 2015) that bypass the 

necessity of fully-resolved gene trees. We combine coalescent predictions, phylogenetic network 

inference (Solís-Lemus and Ané 2016), and novel coalescent phylogeographic methods (Oaks 

2018) to diagnose the sources of phylogenetic discordance and, by so doing, resolve a seemingly 

convoluted complex of study-species (the Gila robusta complex of the lower Colorado River). 

We then contextualize our results to demonstrate the downstream implications of ‘problematic’ 

tree-space for threatened and endangered taxa, as represented by our study complex.  

 

Gila 

Few freshwater taxa have proven as problematic in recent years as the Gila robusta complex 

(Cyprinoidea: Leuciscidae) endemic to the Gila River basin of southwestern North America (Fig. 

1). The taxonomic debate surrounding this complex exemplifies an inherent conflict between the 

traditional rigidity of systematic taxonomy versus the urgency of decision-making for 

conservation and management (Forest et al. 2015). Our study system is the Gila River, a primary 

tributary of the lower basin Colorado River that drains the majority of Arizona and ~11% of New 

Mexico. The critical shortage of water in this region (Sabo et al. 2010) is a major geopolitical 

driver for the taxonomic controversy surrounding the study species. As an example, the lower 

Colorado basin is responsible for approximately half of the total municipal and agricultural water 

requirements of the state of Arizona, and nearly two-thirds of its total gross state product (GSP) 

(Bureau of Reclamation 2012; James et al. 2014). This disproportionate regional reliance creates 

tension between the governance of a resource and its usage (e.g. Huckleberry and Potts 2019) 
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which in turn magnifies the stakes involved in conservation policy (Minckley 1979; Carlson and 

Muth 1989; Minckley et al. 2006).  

We focused on three species (Roundtail chub, G. robusta; Gila chub, G. intermedia; and 

Headwater chub, G. nigra) that comprise a substantial proportion of the endemic ichthyfauna of 

the Gila Basin [=20% of 15 extant native species (excluding extirpated G. elegans and 

Xyrauchen texanus); Minckley and Marsh 2009]. Historically, the focal taxa have been subjected 

to numerous taxonomic rearrangements (Fig. 1). Until recently, the consensus was defined by 

Minckley and DeMarais (2000) on the basis of morphometric and meristic characters. These 

have since proven of limited diagnostic capacity in the field, thus provoking numerous attempts 

to re-define morphological delimitations (Brandenburg et al. 2015; Moran et al. 2017; Carter et 

al. 2018). Genetic evaluations have to date been unproductive (Schwemm 2006; Copus et al. 

2018), leading to a recent taxonomic recommendation that subsequently collapsed the complex 

into a single polytypic species (Page et al. 2016, 2017). 

 

Methods  

Taxonomic Sampling 

A representative panel of N=386 individuals (Table S1; Fig. 2) was chosen from existing 

collections (Douglas et al. 2001; Douglas and Douglas 2007), to include broad geographic 

sampling of the complex as well as congeners. For the sake of clarity, we employ herein the 

nomenclature of Minckley and DeMarais (2000) and retained species-level nomenclature for all 

members of the Gila robusta complex. Additionally, we discriminate between G. robusta from 

the upper and lower basins of the Colorado River ecosystem (Chafin et al. 2019) 
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No self-sustaining populations of wild Gila elegans exist, thus samples were provided by 

the Southwestern Native Aquatic Resources and Recovery Center (Dexter, NM). The genus 

Ptychocheilus served to root the Gila clade within the broader context of western leuciscids 

(Schönhuth et al. 2012, 2014, 2018).  

 

Reduced-Representation Sequencing 

Genomic DNA was extracted using either PureGene® or DNeasy® kits (Qiagen Inc.) and 

quantified via fluorometer (Qubit™; Thermo-Fisher Scientific). Library preparations followed 

the published ddRAD protocol (Peterson et al. 2012). Restriction enzyme and size-selection 

ranges were first screened using an in silico procedure (Chafin et al. 2018), with the target 

fragment sizes further optimized by quantifying digests for 15 representative samples on an 

Agilent 2200 TapeStation. Final library preparations were double-digested using a high-fidelity 

PstI (5’-CTGCAG-3’) and MspI (5’-CCGG-3’) following manufacturer’s protocols (New 

England Biosciences). Digests were purified using bead purification (Ampure XP; Beckman-

Coulter Inc.), and standardized at 100 ng per sample. Samples were then ligated with customized 

adapters containing unique in-line barcodes, pooled in sets of 48, and size-selected at 250-350bp 

(not including adapter length), using a Pippin Prep automated gel extraction instrument (Sage 

Sciences). Adapters were then extended in a 12-cycle PCR using Phusion high-fidelity DNA 

polymerase (New England Biosciences Inc.), completing adapters for Illumina sequencing and 

adding an i7 index. Libraries were pooled to N=96 samples per lane (i.e., 2 sets of 48) for 100bp 

single-end sequencing on an Illumina HiSeq 2500 at the University of Wisconsin Biotechnology 

Center (Madison, WI).  
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Data Processing and Assembly 

Raw Illumina reads were demultiplexed and filtered using the PYRAD pipeline (Eaton 2014). We 

removed reads containing >1 mismatch in the barcode sequence, or >5 low-quality base-calls 

(Phred Q<20). Homologs assembly was then performed using de novo clustering in VSEARCH 

(Rognes et al. 2016) using an 80% mismatch threshold. Loci were excluded according to 

following criteria: >5 ambiguous nucleotides; >10 heterozygous sites in the alignment; >2 

haplotypes per individual; <20X and >500X sequencing depth per individual; >70% 

heterozygosity per-site among individuals.  

Our ddRAD approach generated 22,768 loci containing a total of 173,719 variable sites, 

of which 21,717 were sampled (=1/ locus). Mean per-individual depth of coverage across all 

retained loci was 79X. All relevant scripts for post-assembly filtering and data conversion are 

available as open-source (github.com/tkchafin/scripts). 

 

Phylogenetic Inference 

We formulated two simple hypotheses with regards to independent evolutionary sub-units. If 

populations represented a single polytypic species, then phylogenetic clustering should reflect 

intraspecific processes (e.g. structured according to stream heirarchy; Meffe and Vrijenhoek 

1988). However, if a priori taxon assignments are evolutionarily independent, then they should 

be recapitulated in the phylogeny. Given well-known issues associated with application of 

supermatrix/ concatenation approaches (Degnan and Rosenberg 2006; Edwards et al. 2016) and 

pervasive gene-tree uncertainty associated with short loci (Leaché and Oaks 2017), we also 

employed SNP-based methods that bypassed the derivation of gene trees (Leaché and Oaks 

2017).  
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 We first explored population trees in SVDQUARTETS (Chifman and Kubatko 2014, 2015; 

as implemented in PAUP*, Swofford 2002) across 12 variably filtered datasets using four 

differing occupancy thresholds per SNP locus (i.e., 10, 25, 50, and 75%), along with  three 

differing thresholds per individual (10, 25, and 50%). These filtered datasets ranged from 7357–

21007 SNPs, with 8.48–43.65% missing data and 256–347 individuals. SVDQUARTETS eases 

computation by inferring coalescent trees from randomly sampled quartets of species (i.e. 

optimizing among 3 possible unrooted topologies). It then generates a population tree with 

conflicts among quartet trees minimized via implementation of a quartet-assembly algorithm 

(Snir and Rao 2012). Given run-time constraints (the longest was 180 days on 44 cores), all runs 

sampled !!!"#$" "/2 quartets and were evaluated across 100 bootstrap pseudo-replicates.  

 We also used a polymorphism-aware method (POMO; Schrempf et al. 2016) in IQ-TREE 

(Nguyen et al. 2014). POMO considers allele frequencies rather than single nucleotides, thus 

allowing evaluation of change due to both substitution and drift. To provide POMO with 

empirical estimates of polymorphism, we used the entire alignment, to include non-variable 

sequences. We filtered liberally using individual occupancy thresholds of 10% per-locus so as to 

maximize individual retention and per-population sample sizes. We then deleted populations that 

contained <2 individuals, and loci with >=90% missing data per-population. This yielded a 

dataset of 281,613 nucleotides and 40 tips. Non-focal outgroups were excluded due to their 

disproportionate effect on missing data. 

 We also calculated concordance factors (CFs) using a Bayesian concordance analysis in 

BUCKY (Larget et al. 2010), parallelized across all quartets via an adaptation of the TICR 

pipeline (Stenz et al. 2015). To prepare these data, we sampled all non-monomorphic full gene 

alignments for which at least 1 diploid genotype could be sampled per population. We excluded 
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outgroups and non-focal Gila so as to maximize number of loci retained. This yielded 3,449 

genes across 31 sampled tips. Gene-tree priors were generated using MRBAYES v.3.2.6 (Ronquist 

et al. 2012) with 4 independent chains, each of which was sampled every 10,000 iterations, with 

a total chain length of 100,000,000 iterations and 50% discarded as burn-in. BUCKY was then 

run in parallel to generate quartet CFs across 31,465 quartets, using a chain length of 10,000,000, 

again with 50% burn-in. Quartet topologies were used to generate a population tree using 

QUARTETMAXCUT (Snir and Rao 2012), using the get-pop-tree.pl script from TICR (Stenz et al. 

2015; https://github.com/nstenz/TICR).  

 

Comparing Phylogenies and Estimating Site-wise Conflict 

To evaluate the performance of SVDQUARTETS, TICR, and PoMo, we first computed site-wise 

log-likelihood scores (SLS) for each topology by performing a constrained ML search in IQ-

TREE. For comparison, we also generated an unconstrained concatenated tree. All ML analyses 

employed a GTR model with empirical base frequencies and gamma-distributed rates, and were 

assessed across 1,000 bootstrap pseudoreplicates. Analyses were also reduced to a subset of tips 

common across all variably filtered datasets. We quantified the phylogenetic signal supporting 

each resolution as the difference in site-wise log-likelihood scores (DSLS) between each 

population tree and the concatenation tree (Shen et al. 2017). We then calculated site-wise 

concordance factors (sCF) as an additional support metric (Minh et al. 2018).  

 

Tests of Hybridization and Deep-Time Reticulation 

D-statistics (Green et al. 2010; Eaton and Ree 2013) were calculated using COMP-D (Mussmann 

et al. 2019). To further test hypotheses of reticulation, we used quartet CFs as input for 
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phylogenetic network inference using the SNAQ algorithm in PHYLONETWORKS (Solís-Lemus 

and Ané 2016; Solís-Lemus et al. 2017). The network was estimated under models of 0-5 hybrid 

nodes (h). Models were evaluated using 48 independent replicates, with the best-fit model being 

that which maximized change in pseudolikelihood. Given the computational constraints of 

network inference, we reduced the dataset to N=2 populations per focal species (=12 total tips).   

 

Anomaly Zone Detection 

Coalescent theory characterizes the boundaries of the anomaly zone in terms of branch lengths in 

coalescent units (Degnan and Rosenberg 2006). To test if contentious relationships in our tree 

fell within the anomaly zone, we first transformed branch lengths using quartet CFs (Stenz et al. 

2015, equation 1), then tested if internode branch lengths fell within the theoretical boundary for 

the anomaly zone (Linkem et al. 2016, equation 1). Code for these calculations are modified 

from Linkem et al. (2016) and are available as open-source 

(github.com/tkchafin/anomaly_zone).  

 

Tests of Co-divergence  

The contemporary course of the Colorado River resulted from the Pliocene erosion of the Grand 

Canyon and subsequent connection of the modern-day upper and lower basins, to include stream 

capture of the Gila River (McKee et al. 1967; Minckley et al. 1986). Gila in the lower Colorado 

River basin then differentiated following one or more colonization events (e.g. Rinne 1976). 

Subsequent work (Douglas et al. 1999) supported this conclusion by examining contemporary 

phenotypic variation among all three species as a function of historical drainage connectivity, 

with the conclusion that body shape was most readily explained by Pliocene hydrography.  
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We tested if divergences were best explained by a model of in situ diversification 

following a single colonization event, or instead by multiple, successive colonizations. We 

compared divergence models using a Bayesian approach (program ECOEVOLITY, Oaks 2018) that 

used a coalescent model (Bryant et al. 2012) to update a prior expectation for the number of 

evolutionary events across independent comparisons. Four independent MCMC chains were run 

with recommended settings and a burn-in that maximized effective sample sizes. Event models 

followed a Dirichlet process, with the concentration parameter exploring four alternative gamma 

distributed priors (i.e. a=2.0, b=5.70; a=0.5, b=8.7; a=1.0, b=0.45; and a=2.0, b=2.18).  

We randomly sampled 2,000 full-locus alignments, then examined potential co-

divergences in the lower-basin complex by selecting a series of pairwise comparisons: Gila 

elegans x G. robusta (lower); G. seminuda x G. robusta (lower); G. jordani x G. robusta 

(lower); G. intermedia x G. robusta (lower); and G. intermedia x G. nigra (lower). These 

targeted nodes represent H, G, F, I, and N in the SVDQUARTETS topology (Fig. 3A).  

 

Results  

Phylogenetic Conflict in Gila 

Tree reconstructions across all three population methods were relatively congruent 

(SVDQUARTETS = Fig. 3; TICR, and POMO = Fig. 4). The concatenated supermatrix tree (Fig. 

S1) was also largely congruent with the population trees, but with two major disparities 

(discussed below). Bootstrap support was variable and declined with decreasing nodal depth in 

the SVDQUARTETS analysis (Fig. 3), whereas the vast majority of nodes in POMO were supported 

at 100% (Fig. 4A).  
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All analyses consistently supported the monophyly of a clade consisting of G. intermedia, 

G. nigra, and lower basin G. robusta (hereafter the ‘lower basin complex’). This clade had high 

bootstrap support in both SVDQUARTETS and POMO, and was universally placed as sister to G. 

jordani. Gila robusta was unequivocally polyphyletic in all analyses, forming two distinct 

groups geographically demarcated by the Grand Canyon. The lower basin G. robusta clade was 

monophyletic in all cases, save the concatenated tree, where it was paraphyletic (Fig. S8). It was 

also consistently recovered as sister to a monophyletic G. nigra + G. intermedia, with the 

exclusion of a single sample site (Aravaipa Creek) that nested within G. intermedia in the POMO 

tree. Of note, this population had been previously diagnosed as trending towards G. intermedia 

in terms of morphology (Rinne 1976; DeMarais 1986), although hybridization was not supported 

by D-statistics (Table 1).  

Topology within the G. nigra + G. intermedia clade was less consistent. Both were 

reciprocally monophyletic in the SVDQUARTETS tree (albeit with low support; Fig. 3), whereas 

POMO yielded a monophyletic G. intermedia, with but one population (Spring Creek) contained 

within G. nigra (Fig. 4A). The POMO tree also conflicted with the other methods in its 

paraphyletic placement of upper basin G. robusta. We suspect this represents an artefact of well-

known hybridization with sympatric G. cypha (Dowling and DeMarais 1993; Gerber et al. 2001; 

Douglas and Douglas 2007; Chafin et al. 2019).  

 

Discriminating Among Sources of Phylogenetic Conflict 

Phylogenetic conflict was variably attributable to either hybridization or rapid divergence. We 

found support for a single reticulation event connecting G. seminuda and G. elegans, an 

hypothesis consistent with prior interpretations (DeMarais et al. 1992). This particular model 
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(i.e., h=1) was selected as the one that maximized both the first [L’(h) = L(h) – L(h-1)] and 

second order [L’’(h) = L’(h+1) – L’(h)] rate of change in pseudolikelihood (Fig. S9; following 

Evanno et al. 2005). Of note, introgression between G. elegans and G. seminuda was supported 

by elevated values of h, and by D-statistics (%& = 0.302 across 86,400 tests; Table 1). 

Introgression between upper basin G. robusta and G. cypha was also supported (%& = -0.236 

across 45,056 tests). No other introgressions were noted, thus rejecting the hypothesized hybrid 

origins for both G. jordani (Dowling and DeMarais 1993; Dowling and Secor 1997) and G. 

nigra (Demarais 1986; Minckley and DeMarais 2000).  

 Multiple internode pairs were observed in the anomaly zone (Fig. 5). In all cases, 

internode branches separating G. nigra and G. intermedia, and those separating their constituent 

lineages, reflected coalescent lengths that would yield anomalous gene trees. Not surprisingly, 

the internode separating G. jordani from the lower basin complex, and that of G. robusta from G. 

intermedia/ G. nigra (Fig. 5C; tan branches) also fell within the anomaly zone, per TICR and 

concatenated topology results.  

 

Relative Performance of Species-Tree Methods 

Change in site-likelihoods among constrained and unconstrained IQ-TREE searches in all cases 

suggested that our recovered species-trees were supported by a minority of sites (Fig. S10), an 

observation consistent with tree regions being in the anomaly zone. Several discrepancies also 

reflected idiosyncrasies among the different approaches. For example, the POMO topology has a 

paraphyletic upper basin G. robusta within which G. elegans, G. cypha, G. seminuda, G. jordani, 

and the lower basin complex were subsumed (Fig. 4A). However, only ~10% of SNPs supported 

this resolution (Fig. S11), a value far below the theoretical minimum sCF derived from 
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completely random data (Minh et al. 2018). Of note, hybridization is a well-known artefact when 

a bifurcating tree is inferred from reticulated species (Sosef 1997; Schmidt-Lebuhn 2012), with 

concatenation or binning approaches using genomic data being demonstrably vulnerable (Bangs 

et al. 2018). Thus, we tentatively attribute the observed paraphyly as an artefact of documented 

hybridization between G. cypha and G. robusta (Chafin et al. 2019), and the inability of POMO to 

model hybridization. Hybridization also potentially drives the lack of monophyly in G. 

seminuda, per TICR and the concatenation tree (Fig. S8).  

We also explored the impact of matrix occupancy filters on SVDQUARTETS, and  

bootstrap support and overall topological consistency declining with increasingly stringent filters 

(Fig. 3b). This corroborates prior evaluations with regard to the impacts of over-filtering 

RADseq data (Eaton et al. 2017). In all cases, site-wide concordance was significantly predicted 

by subtending branch lengths, but not by node depths (Fig. S12). This suggests that site-wise 

concordance was unbiased in our analyses at either shallower or deeper timescales but was 

affected instead by the extent of time separating divergences. Some bioinformatic biases such as 

ortholog misidentification or lineage-specific locus dropout will disproportionally affect deeper 

nodes (Eaton 2017). However, we interpret the lack of correlation between node depth and site-

wise concordance as an indication that these processes lack substantial bias.  

 

Biogeographic Hypotheses and Co-divergence 

ECOEVOLITY model selection was not found to be vulnerable to alternative event priors (Fig. 

S13). The best-fitting model across all priors consistently demonstrated co-divergence of G. 

jordani with the lower basin complex (G. robusta x G. intermedia and G. intermedia x G. nigra; 

Fig. 6). The divergence of G. elegans and G. seminuda from a theoretical lower basin ancestor 
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pre-dates this putatively rapid radiation, although it is unclear if these estimates were impacted 

by the aforementioned introgression between G. seminuda and G. elegans.  

Posterior effective population size (Ne) estimates were large (e.g. >20,000) and consistent 

with previous estimates (Garrigan et al. 2002). Gila jordani was an exception, with a mean 

posterior Ne=6,062. This discrepancy is not surprising, given the extremely narrow endemism of 

this species (Tuttle and Scoppettone 1990), and its recent bottleneck (Hardy 1982), although this 

is still a rather large estimate given the latter. Posterior divergence time estimates suggested a 

late-Miocene/ early-Pliocene origin of G. elegans. Results for G. seminuda and the lower basin 

radiation indicated Pliocene and early Pleistocene divergences, respectively. These results are 

supported in the fossil record (Uyeno 1960; Uyeno and Miller 1963), although we note 

paleontological evaluations of Gila have been sparse. Thus, we hesitate to interpret these as 

absolute dates, given our fixed mutation rate for these analyses and an uncertainty regarding the 

capacity of RADseq methods to yield an unbiased sampling of genome-wide mutation rate 

variation (e.g. Cariou et al. 2016).  

 

Discussion 

The goal of our study was to determine if extensive geographic and genomic sampling could 

resolve the taxonomically recalcitrant G. robusta complex. We applied diverse phylogenetic 

models and tests of hybridization and predictions of parameter space within the anomaly zone to 

diagnose sources of subtree discordance. In so doing, we also tested multiple hypothesized 

hybrid speciation events. We detected a single reticulation (G. seminuda), although other events 

with a lower component of genomic introgression may have also occurred. We documented rapid 

co-divergence of lower basin taxa within the anomaly zone and were able to resolve these 
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despite the prevalence of incomplete lineage sorting. This scenario (as outlined below) is 

consistent with the geomorphology of the region and seemingly represents an adaptive radiation 

by our study complex, as facilitated by drainage evolution.  

 

Methodological Artefacts and Conflicting Phylogenetic Hypotheses for Gila 

Increased geographic and genomic sampling revealed the presence of diagnosable lineages 

within the G. robusta complex, with both rapid and reticulate divergences influencing inter-locus 

conflict. Phylogenetic hypotheses for our focal group had previously been generated using 

allozymes (Dowling and DeMarais 1993), Sanger sequencing (Schwemm 2006; Schönhuth et al. 

2014), microsatellites (Dowling et al. 2015), and more recently RADseq (Copus et al. 2018). 

None could resolve relationships within the lower basin complex. To explain these contrasts, we 

argue that prior studies suffered from systematic artefacts and ascertainment biases that were 

overcome, at least in part, by our approach.  

 Incomplete or biased sampling is a familiar problem for biologists (e.g. Hillis 1998; 

Schwartz and McKelvey 2009; Ahrens et al. 2016), and we suggest it served as a major 

stumbling block for delineating the evolutionary history of Gila. Although insufficient sampling 

is common in studies of threatened and endangered species, its repercussions are severe with 

regard to phylogenetic inference (Hillis 1998). This fact is substantiated by the many examples 

in which increasingly comprehensive geographic sampling spurred a revision of phylogenetic 

hypotheses (e.g. Oakey et al. 2004; Linck et al. 2019). Likewise, incomplete sampling of 

genome-wide topological variation (e.g. Maddison 1997; Degnan and Rosenberg 2009) is an 

additional source of bias, especially when a very small number of markers are sampled. These 

issues alone may explain the variation among prior studies. For example, Schwemm (2006) 
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sampled extensively, including nearly all of the sites included in this study, but was only able to 

examine a handful of genes. Because anomalous gene trees are most probable under a scenario of 

rapid radiation (as documented herein), the reduced number of loci used by Schwemm (2006) 

could not recover a consistent species tree. Copus et al. (2016, 2018) examined a dataset 

containing 6,658 genomic SNP loci (across 1,292 RAD contigs), but only did so across a sparse 

sample of 19 individuals. A bioinformatic acquisition bias also likely impacted this study, in the 

form of strict filtering that disproportionately excluded loci with higher mutation rates (Huang 

and Knowles 2016).  

 A necessary consideration when validating phylogenetic hypotheses across methods (and 

datasets) is to gauge compatibility between the underlying evolutionary processes and those 

actually being modeled. In this sense, the consideration of statistical support metrics alone can be 

not only misleading, but also promote false conclusions. For example, bootstrapping is by far the 

most prevalent method of evaluating support in phylogenetic datasets (Felsenstein 1985). While 

bootstrap concordances may be appropriate for moderately-sized sequence alignments (e.g. 

Efron et al. 1996), they can be meaningless when applied to sufficiently large datasets (Gadagkar 

et al. 2005; Kumar et al. 2012). This is apparent in the high bootstrap support displayed for 

anomalous relationships in our own analysis (Fig. S8). Phylogenetic signal also varies among 

loci, such that in many instances, relatively few loci drive contentious relationships (Shen et al. 

2017). Likewise, not all methods are equal with respect to their simplifying assumptions. Given 

this, we deem it imperative to consider the biases and imperfections in both our data, and the 

models we apply.  
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Complex Evolution and Biogeography of the Colorado River 

The taxonomic instability in Gila is not uncommon for fishes of western North America, where 

confusing patterns of diversity were generated by tectonism and vulcanism (Minckley et al. 

1986; Spencer et al. 2008). This issue is particularly emphasized when viewed through the lens 

of modern drainage connections (Douglas et al. 1999). Historic patterns of drainage isolation and 

intermittent fluvial connectivity not only support our genomic conclusions but also summarize 

the paleohistory of the Colorado River over temporal and spatial scales. 

 The earliest record of fossil Gila from the ancestral Colorado River is mid-Miocene 

(Uyeno and Miller 1963), with subsequent Pliocene fossils representing typical ‘big river’ 

morphologies now associated with G. elegans, G. cypha, and G. robusta (Uyeno and Miller 

1965). The modern Grand Canyon region lacked any fluvial connection at the Miocene-Pliocene 

transition, due largely to regional tectonic uplifts that subsequently diverted the Colorado River 

(Spencer et al. 2001; House et al. 2005). Flows initiated in early Pliocene (c.a. 4.9 mya; Sarna-

Wojcicki et al. 2011), and subsequently formed a chain of downstream lakes associated with the 

Bouse Formation (Lucchitta 1972; Spencer and Patchett 2002). Evidence suggests ‘spillover’ by 

a successive string of Bouse Basin paleolakes was episodic, and culminated in mid-Pliocene 

(House et al. 2008), with an eventual marine connection via the Salton Trough to the Gulf of 

California (Dorsey et al. 2007). Prior to this, the Gila River also drained into the Gulf (Eberly 

and Stanley 1978), and sedimentary evidence indicated that it was isolated from the Colorado 

until at least mid-Pliocene by a northward extension of the Gulf (Helenes and Carreno 2014). 

This geomorphology is reflected in a broader phylogeographic pattern that underscores marked 

differences between resident fish communities in the upper and lower basins (Hubbs and Miller 

1948). 
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Intra-basin diversification also occurred as an addendum to hydrologic evolution. 

Although the course of the pluvial White River is now generally dry, it may have been a 

Pliocene-early Pleistocene tributary of a paleolake system when the proto-Colorado first 

extended into the modern-day lower basin (Dickinson 2013). This may represent an initial 

colonization opportunity for upper basin fishes, an hypothesis that coincidentally aligns well 

with our rudimentary age estimate for Virgin River chub, G. seminuda (Fig. 6). This early 

isolation, as well as the continued contrast between the spring-fed habitats therein, and the high 

flows of the ancestral Colorado River, provide an explanation for the unique assemblage of Gila 

and other fishes therein (Hubbs and Miller 1948).  

Phylogenetic signatures of the anomaly zone (Fig. 5) coupled with co-divergence 

modeling (Fig. 6) suggest the diversification of lower basin Gila occurred rapidly post-

colonization. Late Pliocene integration of the two basins provided an opportunity for dispersal 

into the lower basin tributaries. The Plio-Pleistocene climate of the region was quite different, 

with a relatively mesic Pliocene as precursor to a protracted monsoonal period extending through 

early Pleistocene (Thompson 1991; Smith et al. 1993). The latter, in turn, may have resulted in 

relatively unstable drainage connections (Huckleberry 1996). The potential for climate-driven 

instability, and the complex history of intra-drainage integration of Gila tributaries during the 

Plio-Pleistocene (Dickinson 2015), lends support to the ‘cyclical-vicariance’ model proposed by 

Douglas et al. (1999). These periods of isolation may have promoted an accumulation of 

ecological divergences that persisted post-contact, and were sufficient to maintain species 

boundaries despite contemporary sympatric distributions and weak morphological 

differentiation. This hypothesis is also supported by the non-random mating found among G. 

robusta and G. nigra, despite anthropogenically-induced contact (Marsh et al. 2017).  
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Management Implications  

A request by the Arizona Game and Fish Department to review the taxonomy of the Gila robusta 

complex prompted the American Fisheries Society (AFS) and the American Society of 

Ichthyology and Herpetology (ASIH) to recommend the synonymization of G. intermedia and G. 

nigra with G. robusta, owing in part to their morphological ambiguity and an imprecise 

taxonomic key (Carter et al. 2018). Given this, a proposal to extend protection to lower basin G. 

robusta and G. nigra at the federal level was subsequently withdrawn (USFWS 2017; Fig. 1). As 

was the case prior to this withdrawal, G. intermedia alone is classified as endangered (USFWS 

2005) under the Endangered Species Act (ESA 1973; 16 U.S.C. § 1531 et seq).  

This study provides a much needed resolution to this debate by defining several aspects: 

First, our study reinforced the recognition of G. robusta as demonstrably polyphyletic, with two 

discrete, allopatric clades corresponding to the upper and lower basins of the Colorado River 

(Dowling and DeMarais 1993; Schönhuth et al. 2014). These data, together with the geomorphic 

history of the region that promoted endemic fish diversification (as above), clearly reject ‘G. 

robusta’ as a descriptor of contemporary diversity. This underscores a major discrepancy in the 

taxonomic recommendations for the lower basin complex (Page et al. 2016). Given that the type 

locality of G. robusta is in the upper basin (i.e., the Little Colorado River), we note a pressing 

need either to determine taxonomic precedence for the lower basin ‘G. robusta,’ or to provide a 

novel designation. The potential resurrection of a synonym is a possibility, necessitating a 

detailed examinations of the type specimens prior to a formal recommendation. This may be 

appropriately adjudicated by the AFS-ASIH Names of Fishes Committee, as a follow-up to their 

earlier involvement.  
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The situation with G. intermedia and G. nigra is slightly more ambiguous. The short 

internodes and anomaly zone divergences identified herein explain previous patterns found in 

population-level studies, with elevated among-population divergence but scant signal uniting 

species (Dowling et al. 2015). We also unequivocally rejected the previous hypothesis of hybrid 

speciation for G. nigra (Minckley and DeMarais 2000; Dowling et al. 2015).  

Rather, intermediacy in the body shape of G. nigra reflects differences accumulated 

during historic isolation (Douglas et al. 1999) and/ or the retention of an adaptive 

ecomorphology (Douglas and Matthews 1992). These hypotheses warrant further exploration, 

with provisional results employed in future management decisions (Forest et al. 2015). With 

regards to taxonomy, we confidently recommend that G. intermedia be resurrected, and that 

additional studies be implemented to dissect the potential distinctiveness of G. nigra. For 

management purposes, we echo a conservative, population-centric approach (previously argued 

for by Dowling et al. 2015; Marsh et al. 2017).  

Three primary components of a ‘Darwinian shortfall’ in biodiversity conservation are 

recognized (Diniz-Filho et al. 2013): (i) The lack of comprehensive phylogenies; (ii) Uncertain 

branch lengths and divergence times; and (iii) insufficient models linking phylogenies with 

ecological and life-history traits. Taxonomic uncertainty in Gila is severely impacted by the first 

two of these, with taxonomic resolution prevented by the comingling of sparse phylogenetic 

coverage with temporal uncertainty. We must now address the relationships between ecology, 

life history, and phylogeny in Gila, so as to understand the manner by which phylogenetic 

groupings (identified herein) are appropriate as a surrogate for adaptive/ functional diversity. For 

example: To what degree are Gila in the lower basin ecologically non-exchangeable? How do 
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they vary in their respective life histories? Is reproductive segregation maintained in sympatry 

(as in Marsh et al. 2018), and if so, by what mechanism?  

 

Conclusion 

The intractable phylogenetic relationships in Gila were resolved herein through improved spatial 

and genomic sampling. Our data, coupled with polymorphism-aware methods and contemporary 

approaches that infer trees, yielded a revised taxonomic hypothesis for Gila in the lower 

Colorado basin. The geomorphic history of the Colorado River explains many anomalous 

patterns seen in this and previous studies, wherein opportunities for contact and colonization 

were driven by the tectonism characteristic for the region. The signal of rapid diversification is 

quite clear in our data, as interpreted from patterns inherent to phylogenetic discord. We 

emphasize that discordance in this sense does not necessarily represent measurement error or 

uncertainty, but rather an intrinsic component of phylogenetic variance that is not only expected 

within genomes (Maddison 1997), but also a necessary component from which to build 

hypotheses regarding the underlying evolutionary process (Hahn and Nakhleh 2016). Ignoring 

this variance in pursuit of a ‘resolved phylogeny’ can lead to incorrect inferences driven by 

systematic error. Similarly, insufficient spatial or genomic sampling may also promote a false 

confidence in anomalous relationships, particularly when character sampling is particularly 

dense, whereas taxon sampling is sparse.  

 We reiterate that phylogenetic hypotheses, by their very nature, cannot exhaustively 

capture the underlying evolutionary process. One approach is to categorize phylogenetic (and 

“non-phylogenetic”) signals in those regions of the tree that are refractive to certain models (as 

done herein). We also acknowledge that attempting to reconstruct the past using contemporary 
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observations is a battle against uncertainty and bias, with the revisions of phylogenetic/ 

taxonomic hypotheses expected as additional data are accrued. As such, we urge empiricists that 

engage in taxonomic controversies (such as this one) to interrogate their results for transparency. 

The task of sorting through conflicting recommendations invariably falls to natural resource 

managers, with unreported biases (be they methodological or geopolitical) only confounding 

those efforts. 
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Appendix 
 
Table 1: Four-taxon D-statistic Tests of Admixture. Tests were performed for quartets sampled 
from N=386 Gila individuals. Results are reported across N separate quartet samples per four-
taxon test, randomly sampled without replacement, with site patterns calculated from 21,717 
unlinked SNPs. Significance is reported as the proportion of tests at p<0.05 (nSig/N) using chi-
squared ('2), Z-test1, and Z-test with Bonferroni correction2. Positive and negative values of D 
suggest introgression of the P3 lineage with either P2 or P1, respectively. Results in bold were 
also supported by the phylogenetic network. See Table S1 for detailed locality information. 

P3 P2 P1 Mean D  N 
nSig/N 

(!2) 
nSig/N 

(Z1) 
nSig/
N (Z2) 

cypha jordani lower basin 0.175 86400 0.033 0.072 0.001 
cypha seminuda lower basin 0.099 86400 0.102 0.130 0.002 
elegans jordani lower basin -0.063 84800 0.029 0.050 0.000 
elegans robusta (lower) nigra/int. -0.026 413600 0.014 0.047 0.001 
elegans robusta (upper) cypha -0.236 45056 0.380 0.415 0.045 
elegans seminuda lower basin 0.302 86400 0.654 0.674 0.251 
jordani robusta (lower) nigra/int. 0.087 601600 0.042 0.072 0.001 
jordani robusta (lower) nigra/int. 0.091 212800 0.041 0.067 0.005 
nigra int. (Salt) int. (Verde) 0.086 126976 0.057 0.082 0.001 
robusta (lower) intermedia nigra   0.041 793600 0.001 0.002 0.000 
robusta (upper) jordani robusta (lower) 0.165 168000 0.050 0.081 0.001 
robusta (upper) robusta (lower) nigra/int. -0.009 601600 0.011 0.031 0.000 
robusta (upper) seminuda lower basin -0.017 180800 0.030 0.053 0.004 
seminuda jordani lower basin -0.204 81920 0.107 0.152 0.000 
seminuda robusta (lower) nigra/int. 0.054 212800 0.011 0.031 0.001 
atraria robusta (upper) cypha 0.082 57344 0.064 0.095 0.033 
nigrescens robusta (lower) nigra/int. -0.075 485472 0.023 0.079 0.002 
nigrescens robusta (upper) cypha -0.039 53248 0.040 0.066 0.005 
pandora robusta (lower) nigra/int. -0.123 225600 0.012 0.105 0.010 
pandora robusta (upper) cypha -0.047 24576 0.031 0.057 0.003 
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Figure 1: Timeline of the conservation status of Gila species endemic to the lower Colorado River basin [*See Copus et al (2018) for 
a detailed overview of taxonomic synonymies; †’The Center’ refers to the Center for Biological Diversity (501c3), Tuscon, AZ;  
‡’DPS’ = Distinct Population Segment as referenced in the Endangered Species Act (ESA 1973; 16 U.S.C. § 1531 et seq), here 
referring specifically to a lower basin sub-unit of G. robusta]. Note that timeline is not to scale. 
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Figure 2: Sampling localities for Gila within the Colorado River Basin, southwestern North America. Locality codes are defined in 
Table S1. Sympatric locations (R14 and C2) are slightly offset for visibility purposes. Map insert increases the viewing scale for 
sampling sites within the lower basin ‘complex’ (Bill Williams and Gila rivers).  
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Figure 3: (A) Majority-rule consensus cladogram of SVDQUARTETS across 12 variably filtered SNP datasets varying from 7,357–
21,007 SNPs and 256–347 individuals. (B) Binned bootstrap concordance values are reported for each dataset, coded by the matrix 
occupancy threshold per individual (“i”) and per column (“c”; e.g. i50_c50 = 50% occupancy required per individual and per column). 
Dashed terminal branches indicate positions for taxa missing from >50% of datasets. For detailed locality information, refer to Table 
S1.  
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Figure 4: (A) POMO phylogram with branch lengths as the number of substitutions and inferred number of drift events per site, with 
branch supports (as values <100%) representing concordance among 1,000 bootstrap replicates, inferred using a dataset consisting of 
281,613 nucleotides and 40 tips; (B) TICR phylogram reporting branch lengths in coalescent units, calculated from 31,465 quartets 
evaluated across 3,449 full alignments of ddRAD loci. For detailed locality information, refer to Table S1. 
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Figure 5: Internode pairs within the anomaly zone, as determined using coalescent-unit transformed branch lengths mapped onto the 
(A) SVDQUARTETS, (B) POMO, (C) TICR, and (D) concatenated trees (displayed here as cladograms). Paired internodes are color-
coded, with those bicolored indicating multiple anomalous divergences. For more detailed representations, refer to Figs. 3 and 4. 
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Figure 6: Posterior estimates for divergences times and effective populations sizes (Ne) derived from ECOEVOLITY and 2,000 
randomly sampled full-length ddRAD locus alignments. Branches are annotated with mean (std. dev.) Ne and posterior probabilities 
for divergence times are plotted on corresponding nodes. Units are in years, using a static mutation rate of 1.2 e-08 substitutions per 
year. Posterior probabilities for divergence models (insert) suggest the co-divergence of Gila jordani, G. robusta, G. nigra, and G. 
intermedia 
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CHAPTER III 

Genome-wide local ancestries discriminate homoploid hybrid speciation from secondary 

introgression in the red wolf (Canidae: Canis rufus) 

Chafin TK, Douglas MR, Douglas ME 

Abstract 

Hybridization is well recognized as a driver of speciation, yet it often remains difficult to parse 

phylogenomically in that post-speciation gene flow frequently supersedes an ancestral signal. 

Here we examined how interactions between recombination and gene flow shaped the 

phylogenomic landscape of red wolf to create non-random retention of introgressed ancestry. 

Our re-analyses of genomic data recapitulate fossil evidence by demonstrating red wolf was 

indeed extant and isolated prior to more recent admixture with other North American canids. Its 

more ancient divergence, now sequestered within low-recombination regions on the X-

chromosome (i.e., chromosomal ‘refugia’), is effectively masked by multiple, successive waves 

of secondary introgression that now dominate its autosomal ancestry. These interpretations are 

congruent with more theoretical explanations that describe the manner by which introgression 

can be localized within the genome through recombination and selection. They also tacitly 

support the large-X effect, i.e., the manner by which loci that contribute to reproductive isolation 

can be enriched on the X-chromosome. By contrast, high recombination regions were enriched 

with very shallow gene trees reflecting compressed divergence estimates to 1/20th of that found 

in recombination ‘cold spots’, a likely product of post-speciation introgression. Our results 

effectively reconcile conflicting hypotheses regarding the impact of hybridization on evolution 

of North American canids and support an emerging framework within which the analysis of a 
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phylogenomic landscape structured by recombination can be used to successfully address the 

macroevolutionary implications of hybridization. 

 

Introduction 

Hybridization was once considered a rare event. However, its adaptive potential as a 

macroevolutionary process (i.e., an unfettered access to an extensive panoply of genetic 

variation; Grant and Grant 2019) has been enhanced by the widespread adoption of genomic 

approaches (Abbott et al. 2013; Twyford and Ennos 2012; Taylor and Larson 2019). As such, 

hybridization has now become one component of a more contemporary approach to species 

diversification. Prior to the onset of genomics, there were few examples of homoploid hybrid 

speciation in animals (Mavarez and Linares 2008), with notable exceptions being the Virgin 

River chub (Gila seminuda; DeMarais et al. 1992; Chafin et al. 2019) and the red wolf (Canis 

rufus; Wayne and Jenks 1991; Reich et al. 1999). Being that hybrid speciation is now becoming 

a common hypothesis (Yakimowski and Rieseberg 2014; Elgvin et al. 2017; Lamichhaney et al. 

2018; Eberlein et al. 2019; Marques et al. 2019), we argue that a framework must now be 

developed so as to discriminate among its alternative outcomes [e.g. a more explicit definition of 

‘homoploid hybrid speciation;’ (Schumer et al. 2014; Nieto Feliner et al. 2017; Schumer et al. 

2018)]. 

Given the inherent difficulties associated with diagnosing hybrid speciation as the basis 

of reproductive isolation, it has often been defined on the basis of genomic mosaicism 

(Blanckaert and Bank 2018; Schumer et al. 2018a). However, doing so risks overlooking a more 

varied evolutionary role for hybridization. A contributory aspect is the recognized difficulty in 

detecting hybridization, for it is but one of several mechanisms driving phylogenetic discordance 
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in the genome (Maddison 1997; Degnan and Rosenberg 2009). Hybridization–speciation 

dynamics are further complicated by the fact that evidence of archaic branching (i.e. those that 

precede introgression) can be depleted, and especially so in those lineages with a history of 

secondary introgression. However, the parsing of genealogical histories is dependent on the 

interactions between recombination, genetic drift, and selection (McGaugh et al. 2012; Schumer 

et al. 2018). As such, branching patterns are often retained non-randomly, with reduced 

permeability to gene flow found in those genomic areas with low recombination, where 

introgression of deleterious alleles is restricted by an increased efficacy of linked selection 

(Payseur and Rieseberg 2016; Runemark et al. 2018; Schumer et al. 2018).  

The interaction between selection and recombination through time allows fundamental 

predictions to be made with regard to the stability of hybrids genomes, and this may promote the 

role that hybridization plays in a given lineage. In the generations following a hybridization 

event, recombination creates junction-points where ancestries transition from one parental 

genome to another (Fisher 1954). Their densities along the length of a chromosome can be used 

to find loci relating to hybrid fitness, because selection against incompatible loci will alter the 

breadth of correlated ancestry, depressing local recombination with proportionately larger 

distances between junctions (Sedghifar et al. 2016; Hvala et al. 2018). 

We thus hypothesized if signatures of archaic introgression are indeed masked by 

secondary introgression, then the probability of observing the ‘original’ ancestry will increase as 

local recombination rates decrease [even when hybrid ancestries dominate, as is sometimes the 

case (Fontaine et al. 2015)]. Thus, our prediction is that patterns of coalescence will be 

multimodal, reflecting the times and manner by which populations have diverged and 

subsequently intermingled (Rosenberg and Feldman 2002). Here we explore how this 
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distribution in the red wolf is shaped by genome structure and recombination rate heterogeneity. 

To do so, we test multiple opposing hypotheses regarding the role hybridization has played in the 

history of this species. 

 

The red wolf as a case study 

Our capacity to more precisely delineate hybridization has precipitated ancillary issues, such as 

the disparity that now exists between evolutionary complexity and species conservation 

(Ellstrand et al. 2010; Fitzpatrick et al. 2015; Supple and Shapiro 2018; vonHoldt et al. 2018). 

The U.S. Endangered Species Act (ESA 1973; 16 U.S.C. § 1531 et seq), as well as similar 

legislations globally, do not protect hybrids (Jackiw et al. 2015), despite scientific support 

(O’Brien and Mayr 1991; Allendorf et al. 2001; Haig and Allendorf 2006; Lind-Riehl et al. 

2016). Few species have been as integral to this debate as red wolf (Canis rufus), fueled in part 

by the long-standing ambiguity surrounding its origins (Gittleman and Pimm 1991; Wayne and 

Jenks 1991; Dowling et al. 1992; Nowak 1992). 

DNA evidence implicates hybridization, which some have attributed to recent coyote (C. 

latrans) and grey wolf (C. lupus) admixture (Wayne and Jenks 1991; Roy et al. 1996; Reich et 

al. 1999; vonHoldt et al. 2011; vonHoldt et al. 2016). Alternatively, others have instead argued 

that data point to an earlier red wolf origin, with introgression occurring as a subsequent 

phenomenon (Nowak 1979; Dowling et al. 1992; Nowak 1992; Wilson et al. 2000; Nowak 2002; 

Hohenlohe et al. 2017). Hypotheses regarding the status of red wolf are as follows (per Waples et 

al. 2018). It is: (1) An evolutionary distinct lineage derived from common ancestry with either C. 

lupus or C. latrans (=secondary introgression); (2) A transient product produced by 

contemporary hybridization (=hybrid swarm), or (3) An admixture subsidiary to a more ancient 
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hybridization (=hybrid speciation). We discriminate among these scenarios by establishing 

predictions with regard to the respective footprint each would leave on the genomic landscape of 

red wolf, then testing each to ascertain which has the greatest probability of occurrence. 

 

Methods 

Read processing, quality filtering, and genotyping 

We used previously published genomes for red wolf (=RW; Canis rufus), North American gray 

wolf (=GW; Canis lupus), and coyote (=COY; Canis latrans), with the red fox (=VUL; Vulpes 

vulpes) serving as an outgroup (vonHoldt et al. 2016a; Kukekova et al. 2018). Paired-end reads 

were downloaded from the NCBI SRA (SRR7107787; SRR7107783; SRR1518489; 

SRR5328101-115) and mapped to the domestic dog assembly (CanFam3.1) using BOWTIE2 

(Langmead and Salzberg 2012) with sensitive settings, and excluding discordant pairs and 

unaligned reads. Further processing, sorting, and indexing was performed in SAMTOOLS (Li et al. 

2009). PCR duplicates were filtered in PICARD (Broad Institute; broadinstitute.github.io/picard), 

followed by indel realignment and base quality recalibration in GATK (McKenna et al. 2010; 

Van der Auwera et al. 2013) as preparation for the HAPLOTYPECALLER pipeline using the ‘Best 

Practices’ workflow. Genotypes were then inferred jointly using GATK GENOTYPEGVCFS, 

followed by post-processing, quality filtering, and merging of variant and indel calls.  

 

Genome-wide phylogenetic patterns 

To examine topological and coalescent patterns, we first delimited ancestry blocks within full 

chromosomal pseudoalignments using a conservative phylogenetic approach, then built 

pseudoalignments from variant data using a custom Python code 

(github.com/tkchafin/vcf2msa.py). One issue with this approach is that one cannot assume the 
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genomic reference state for a given nucleotide position will be consistent across the sampled 

genomes. Thus, within each genome, non-polymorphic bases were treated as un-callable (“N”) 

when local read depth was < 5. A single-pass algorithm was then used to examine variants 

(SNPs) for failure of the four-gamete condition (FGT; Hudson and Kaplan 1985). Given the 

resulting set of incompatible intervals, we then resolved a minimum set of ancestry breakpoints 

for which no FGT incompatibilities persisted (available as open-source; Chafin 2020). 

 Delimited blocks were then assigned ancestry using a phylogenetic method. Here, we 

computed a maximum likelihood estimate (MLE) in IQ-TREE (Nguyen et al. 2014) using 

integrated model selection and optimization of rate parameters. We discriminated weakly 

supported relationships by additionally calculating likelihoods under constrained topology 

searches for each possible quartet resolution, and testing for significant exclusion of alternatives 

from the MLEs by calculating a bootstrap proportion computed using the RELL approximation 

(Kishino et al. 1990). Sources of mixed support as a result of systematic errors were 

differentiated within a given block. For example, the incorrect spanning of recombination events 

(resulting in concatenated ancestry blocks) was separated from that due to unphased hybrid 

diplotypes by measuring interspecific heterozygosity. This was derived as the fraction of fixed 

nucleotide polymorphisms between coyote and gray wolves that were heterozygous for red wolf. 

 

Testing for multiple-pulse and gradual admixture  

Hybrid ancestries are expected to be arranged in large contiguous blocks following an admixture 

event, with the size of linkage blocks subsequently breaking down over time (Baird et al. 2003). 

The distribution of ancestry tracts lengths post-admixture can thus be used to understand the 

timings of genomic contributions (Gravel 2012; Liang and Nielsen 2014), as well as to 
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discriminate multiple-pulse versus continuous admixture models (Zhou et al. 2017; Ni et al. 

2018). 

To explicitly test among these scenarios, we built a custom SNAKEMAKE pipeline 

(github.com/tkchafin/multiwaver_snakemake_workflow) for running MULTIWAVER_2.0 (Ni et 

al. 2018a). To do so, we converted from physical (bp) to genetic (cM) coordinates by utilizing 

the available comprehensive linkage map for the dog genome (Wong and Neff 2009; Wong et al. 

2010). Because the linkage map was built for an earlier version of the assembly (CanFam2), we 

first converted them using a Python wrapper (available as open-source at 

github.com/tkchafin/scripts/liftoverCoords.py) for the UCSC LIFTOVER command-line utility 

(Hinrichs et al. 2006). We then used the LIFTOVER-converted linkage map to construct Marey 

maps (Siberchicot et al. 2017) for each chromosome, and convert junction positions using cubic 

interpolation. Ancestries were then assigned to each block based on the phylogenetic results, 

with blocks having interspecific heterozygosity >0.1 randomly haploidized. We generated 100 

independent replicates for each chromosome so as to quantify stochastic variation caused by 

random ‘pseudo-haploid’ resolution. 

 

Fitting full-genome admixture histories using coalHMMs 

We inferred divergence time parameters using an MCMC (Markov Chain Monte Carlo) sampler 

for an admixture coalescent HMM (hidden Markov model). HMMs provide a means to 

probabilistically model transitions along serial or sequential datasets, and are employed widely in 

genomics and phylogenetics (gene prediction, Stanke and Waack 2003; nucleotide evolution, 

Yang 1995; Felsenstein and Churchill 1996; and patterns of phylogenetic and geographic 

diversification, Beaulieu and O’Meara 2016; Caetano et al. 2018). Coalescent HMMs 
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(=coalHMMs) construct a Markov model along a sequence alignment, with ‘hidden’ states as 

features to reconstruct (Dutheil et al. 2009; Li and Durbin 2011). Hidden states that represent 

genealogies or coalescent histories are themselves unobservable yet can be predicted from the 

observed states (=sequence data). Parameters involve processes controlling transitions among 

hidden states, such as recombination rates (r), effective population sizes (Ne), and speciation 

times (τ)(Dutheil et al. 2009). Often (as herein) the primary objective is to infer those 

demographic parameters from which transition rates are derived (Mailund et al. 2011). In the 

case of the admixture coalHMM (Cheng and Mailund 2015, 2020), HMMs implementing 

isolation-with-migration models (Mailund et al. 2012) are combined to generate a 

pseudolikelihood (or ‘composite’ likelihood) of more complex models that involve multiple 

lineages. Here we specified priors for the MCMC optimization using demographic estimates 

from vonHoldt et al. (2016).  

Due to the computational complexity of the coalHMM approach (Cheng and Mailund 

2015, 2020), the analysis was run separately in 1-million base blocks in two independent 

replicates per block. We then determined optimal burn-in values using an iterative approach 

(removing 5% of samples per iteration) using the Geweke diagnostic (Geweke 1992). We also 

computed effective sample sizes (ESS) for all parameters and assessed convergence of 

independent chains using the Gelman-Rubin convergence test (Gelman and Rubin 1992; Brooks 

and Gelman 1998) in the R package CODA (Plummer et al. 2006), removing any blocks for which 

any parameter-wise ESS fell below 100 or having a Gelman-Rubin statistic <1.01.  
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Coalescent demographic modeling  

As in vonHoldt et al. (2016), we employed a protocol (Freedman et al. 2014) that targeted a 

reduced set of putatively neutral loci (1kb in length) for demographic modelling (via G-PHOCS; 

Gronau et al. 2011). We first excluded regions within a 10kb flanking distance of coding genes 

(Hoeppner et al. 2014), or conserved non-coding elements (CNEs). The latter were annotated 

using PHASTCONS scores (Siepel et al. 2005) provided for the Euarchontoglires clade, as mapped 

to the mouse genome (mm9) on UCSC (Freedman et al. 2014). CNEs were then defined as 

contiguous (over 50bp in length) PHASTCONS scores >0.7 (per Freedman et al. 2014). Interval 

coordinates for both CNEs and coding genes were converted to the CANFAM3.1 coordinate 

system (Hinrichs et al. 2006). Our filtered VCF, with reference genome and BED file defining 

excluded regions, were input to a generalized pipeline (Chafin et al. 2018) that allows for 

discovery of targeted sub-alignments in genomic datasets. Additional constraints targeted sub-

alignments with a maximum proportion of 0.5 uncalled (N) or gap bases. We then subtracted 

regions from this which were identified as having heterozygous ancestry, and further sampled 

regions which were at least 100kb apart, truncating regions greater than 5kb in length. Resulting 

intervals were then extracted as full pseudo-alignments using custom Python code 

(github.com/tkchafin/vcf2msa.py), with an additional constraint that invariant bases for each 

species retain the reference base only where >5 reads present; lower-coverage bases were treated 

as un-callable (“N”). These were then divided into ‘sub-genomes’ by querying dominant 

phylogenetic ancestry assignments, removing alignments shorter than 500bp, resulting in 

N=6,100 and 6,255 for gray wolf and coyote sub-genomes (N=12225 loci in total). These served 

as input for demographic inference in G-PHOCS following the same protocol used in prior studies 

(Freedman et al. 2014; vonHoldt et al. 2016a).  
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Results  

From prior publications (vonHoldt et al. 2016; Kukekova et al. 2018), we obtained whole-

genome sequences for the red wolf (Canis rufus) and its putative progenitor species [the North 

American gray wolf (C. lupus) and coyote (C. latrans)], as well as an outgroup species (red fox; 

Vulpes vulpes). We aligned these data against the domestic dog genome (Kirkness et al. 2003; 

Lindblad-Toh et al. 2005; Hoeppner et al. 2014), then extracted full chromosome-length 

‘pseudoalignments’ from all nucleotide positions having sufficient sequencing depth. This 

resulted in an average of 95.5% of the genome having called bases across species.  

To identify sub-genomic ancestry blocks, we partitioned the 38 autosomes and the X 

chromosome into 913,849 non-overlapping windows by using an algorithm that defined a ‘most 

parsimonious’ set of hypothesized ancestry breakpoints, given a four-gamete assumption (Chafin 

2020). This provided data with an average length of 2.2 kb (10.3 kb if merging consecutive 

ancestry blocks; see Fig. S14). We then analyzed each chromosome separately, and additionally 

partitioned regions by recombination rate, as inferred using an existing high-density linkage map 

(Fig. S15)(Wong and Neff 2009; Wong et al. 2010).  

Our analyses are presented in two stages: The first examines the distribution of 

phylogenies across the genome. Here, we reasoned that sub-genomes from the putative parental 

lineages could be assigned via Maximum Likelihood (ML) estimates of the local branching 

order. We then identified heterozygous ancestry blocks by calculating the interspecific 

heterozygosity of red wolf sequence within each sub-alignment. We established relatively simple 

predictions for these early analyses: If indeed hybridization is recent (per Wayne and Jenks 1991; 

vonHoldt et al. 2016), then ancestry blocks will be large, given scant time for linkage blocks to 

be broken up by recombination (Falush et al. 2003; Pool and Nielsen 2009)]. Also, interspecific 
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heterozygosity should be high (Rieseberg and Linder 1999; Anderson and Thompson 2002), 

whereas raw divergence will be low (vonHoldt et al. 2017). Likewise, we also expect an 

enrichment of introgressed histories in regions with higher recombination (Schumer et al. 2018; 

Li et al. 2019). We then used a model of linkage block decay to test several alternative models of 

hybridization, with gene flow either being gradual (e.g. declining through time from an initial 

event), continuous, or have occurred in multiple independent waves (Ni et al. 2018). However, 

when gene flow is high, signals of more ancient divergence could be ‘masked.’ 

To untangle this, our second approach employed local phylogenetic signals as latent 

variables within a hidden Markov model [=coalHMMs (Dutheil et al. 2009; Spence et al. 2018)]. 

It allowed us to extract parameter estimates (e.g. divergence times) by integrating results from 

coalescent theory, despite the fact that the ‘true’ history at each nucleotide is masked (Hobolth et 

al. 2007; Dutheil et al. 2009). We then contrasted this approach with a second coalescent-based 

method [g-PhoCS; (Gronau et al. 2011)] that replicates the analyses of vonHoldt et al. (2016) 

with the exception that inputs were additionally partitioned by their respective sub-genomic 

histories. 

 

Representation and divergence of parental genomes 

Phylogenetic estimation and interspecific heterozygosity revealed that 26.8–36.5% of ancestral 

blocks were heterozygous (Fig. S16), with per-base gray wolf ancestry representing 23.2–41.7% 

(depending on measurement; Table S2). These results are congruent with previous studies that 

estimated 20–25% from SNP data (vonHoldt et al. 2011), and ~17–33% using microsatellite data 

(Roy et al. 1994; Bertorelle and Excoffier 1998). Of note, an anomalous sister-relationship of red 

wolf to red fox (as outgroup) was supported by 17.9% of the data, a likely result of direct 
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introgression between coyote and gray wolf (Lehman et al. 1991; Gopalakrishnan et al. 2018; 

Pilot et al. 2019), and/ or inflated discordance due to bottlenecks in contemporary red wolf 

populations (Brzeski et al. 2014; Waples et al. 2018). Divergence from source genomes was 

remarkably low, with homozygous ancestry blocks across all chromosomes with DXY=0 

identified as 49.3% coyote and 54.5% gray wolf.  

 The distribution of ancestries was notably non-random (Fig. S17-S18), with a substantial 

enrichment of coyote ancestry on the X-chromosome (Fig. 1A). This was most pronounced in 

regions of low recombination (<0.5 cM/Mb). It thus comes as no surprise that a significantly 

higher mean recombination rate was found when gray wolf ancestry blocks were compared 

between autosomes and X-chromosome (where it is enriched at higher recombination rates; 

Table 1). 

 

Testing the hybrid origin hypothesis 

Given the observed distribution of recombination-structured ancestries, two questions emerge 

with regard to hybridization: (1) Did the temporal context of hybridization contribute to the non-

random representation of ancestries? (2) Did hybridization occur as a ‘homoploid hybrid 

speciation’ event? or (3) Did admixture occur subsequent to a pre-existing isolation? To address 

these questions, we developed several predictions as a test mechanism in the context of a 

discriminative framework. 

We first recognized the positive relationship between the efficacy of linked selection and 

the size of linkage blocks in the genome (Nachman and Payseur 2012). Given this, should there 

be signatures of isolation that pre-date admixture? If so, they would then be expected to occur 

with highest probability in those regions with low recombination. Likewise, introgressed 
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ancestries are more probable within high-recombination regions where deleterious alleles can be 

more readily decoupled from neutral or beneficial surroundings (Schumer et al. 2018). 

We found positive results in the non-random distribution of ancestries, where a more 

pronounced occurrence of enriched coyote ancestry was seen within low-recombination regions 

of the X-chromosome. To expand on this, we also predicted if introgression does indeed mask 

prior isolation, then those affected genomic regions would display a more shallow coalescence 

with respect to divergence events (Rosenberg and Feldman 2002; Leache et al. 2014). 

Juxtaposition of these predictions allowed us to test the hypothesis of hybrid origin versus 

secondary admixture: If older divergences predominate in areas of low recombination, then the 

‘original’ branching pattern is retained (e.g. Fontaine et al. 2015). By partitioning divergence 

according to recombination rate, we can then unmask ancestral divergence previously obscured.   

 We fitted a coalescent hidden Markov model (coalHMM) implementing admixture 

(Cheng and Mailund 2020) to 1Mb blocks of the red wolf genome. We did so to obtain local 

estimates for red wolf divergence times with regard to coyote (τCOY) and gray wolf (τWOLF) 

progenitors, as well as putative estimates of post-gene flow isolation (τH). In so doing, we 

uncovered a marked disparity in the range of these estimates between autosomes and the X-

chromosome (Fig. 1B and S19–S21). The autosomal estimates were reasonably homogenous 

across recombination rate bins. This was not so on the X-chromosome: While τWOLF and τH were 

relatively consistent among recombination rate bins, τCOY suggested 20-times older divergence in 

regions where cM/Mb < 0.5 than in regions where cM/Mb > 2.0 (μ=0.004 versus μ=0.0002). 

Thus, divergence was found to be substantially higher in low-recombination regions of the X-

chromosome, with younger branching times instead dominating high-recombination regions and 

the autosomal genome.  
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We then sampled ~6000 putatively neutral regions from each parental red wolf sub-

genome (following Freedman et al. 2014; vonHoldt et al. 2016) as a means of applying the same 

demographic modelling approach used in previous studies (i.e. g-PhoCS; Gronau et al. 2011). 

Results indicated much younger age estimates than those from the COALHMM approach (Fig. 2 

and S22), with a mean posterior mutation-scaled divergence time τCOY=3.8x10-5 and 

τWOLF=5.9x10-6 (Table S3). Assuming a generation time of three years and an average per-

generation mutation rate of 4x10-9 (vonHoldt et al. 2016), these correspond to ~28,500 and 

~4,425 years, respectively. These are congruent with COALHMM estimates taken from high 

recombination regions of the X chromosome. Interestingly, these results echo a known effect 

wherein the inclusion of introgressed gene histories promotes ‘tree compression,’ or an 

underestimation of divergence times (Leache et al. 2014). We also noted several long contiguous 

blocks showing complete loss of heterozygosity (LOH), in some cases stretching >25Mb (Fig. 

3). However, there was no difference in branching time estimates among LOH and non-LOH 

segments (Fig. 3).  

 The observed multi-modality estimates in divergence time suggest multiple separate 

exchanges between red wolf and putative progenitors (Fig. 1B and S8). To assess this, we took 

advantage of another prediction: The expected decline in lengths of ancestry blocks over time, as 

a product of meiotic recombination (Gravel 2012; Ni et al. 2018). Here, the distribution of 

ancestry-tract lengths in each chromosome was best explained by either two- or three- pulse 

admixture models (Fig. S23-S25), with the exception of chr9, chr13, and chr37 which fit more 

appropriately with a gradual admixture model (e.g. with the rate of gene flow continually 

declining with time since an initial event). The timing of the most recent admixture among those 

displaying multiple waves (N=36/39) was estimated to be within the last few hundred 
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generations. Older admixtures had a more diffuse distribution, ranging from ~250–2000 

generations (Fig. 4). Mean admixture proportions for distinct pulses ranged from 0.286–0.533 for 

coyote, and 0.367–0.557 for gray wolf, although the estimated variance in older events was 

elevated (Fig. S24). 

  

Discussion 

Our findings suggest that extensive secondary introgression, as facilitated by increased 

permeability of autosomes relative to the X-chromosome, effectively obscured the pre-existing 

divergence of red wolf. In this sense, the autosomal genome is comparatively homogenous (Fig. 

1A), with a low raw divergence and a systematic under-estimation of divergence times stemming 

from the predominance of introgressed ancestry (Fig. 1B). These results provide quantitative data 

in support of previous studies that found disproportionate retention of ancient branching patterns 

in low-recombining regions of sex chromosomes (Fontaine et al. 2015; Schumer et al. 2018; 

Edelman et al. 2019). This stems from a simultaneous reduction in the rate at which contiguous 

phylogenetic histories are degraded by linkage, as well as the bolstered efficacy of selection in 

purging deleterious introgressed elements (Nachman and Payseur 2012; Martin et al. 2019). 

Moreover, our replication of previous studies (Fig. 2) yielded substantially younger divergence 

estimates than those from previous studies partitioned by chromosome and recombination rate 

(Fig. 1B). Our observations agree with prior studies in underscoring the presence of ‘tree 

compression,’ or a branch lengths reduced/ distorted due to an inability to partition introgressed 

fron non-introgressed ancestries (Leache et al. 2014; Bangs et al. 2018).  

The disparity between autosomes and the X-chromosome reiterates an established 

phenomenon found in those taxa exhibiting XY and ZW sex determination systems (Fontaine et 

al. 2015; Seixas et al. 2018; Martin et al. 2019). It is consistent with a ‘large-X effect’ that 
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predicts loci contributing to reproductive isolation accumulate disproportionately on the X- (or 

Z-) chromosome (Coyne and Orr 1989; Van Belleghem et al. 2018; Presgraves 2018; Runemark 

et al. 2018). Our results also demonstrated an enrichment of coyote ancestry in low-

recombination regions of the X-chromosome, whereas shallower divergence was found within 

high-recombination regions. A similar logic was presented in Fontaine et al. (2015), wherein a 

phylogenomic study of Anopholes mosquitos also revealed extensive conflict between autosomes 

and the X-chromosome in the locally dominant branching pattern. They reasoned that gene trees 

whose branching patterns reflect that of speciation rather than secondary introgression should 

exhibit deeper coalescence (Fontaine et al. 2015). Such a scenario would similarly explain the 

patterns of divergence observed in red wolf. Thus, we posit that while masked by secondary 

introgression in the majority of the genome, lower X-permeability acts as a barrier to exchange, 

effectively preserving those coalescent patterns established during a more ancient divergence of 

the red wolf with a coyote-like ancestor.  

 

Reconciling conflict among genetic and morphological hypotheses 

Previous analyses employing these data sparked considerable disagreement, primarily with 

regards to the timing of gene flow (vonHoldt et al. 2016; Hohenlohe et al. 2017; vonHoldt et al. 

2017). The discrepancy between our results and prior studies stems from the predominance of 

shallow coalescence throughout most of the genome, with scant regions retaining signatures of 

prior ancestry. These results are instead most consistent with an older divergence between coyote 

and red wolf, an occurrence which has since been obscured by multiple pulses of contemporary 

admixture (Fig. 4 and S11). 



 
 

106 

 We interpret our results as reconciling the conflict between inferences based on recent 

molecular work, and those stemming from analyses of modern and historical skeletal remains 

(e.g. Nowak, 1992). Indeed, the genome does indeed harbor signals of recent and ancient 

divergences, as established from multiple waves of admixture that successively degraded archaic 

branching patterns. The most recent admixture event is potentially associated with contemporary 

anthropogenic change. In this sense, morphological studies could not demonstrate hybridization 

until the early 1900s, when specimens began trending towards coyote morphologies (Nowak 

1979; Nowak 1992; Nowak 2002). 

 One prevailing question is the status of red wolf prior to modern admixture. Our data 

suggests its earlier origin, although an absolute estimate is difficult to establish in that effective 

population sizes, mutation rates, and generation times are all indeterminate (Hohenlohe et al. 

2017). Haplotype block lengths suggest admixture as old as ~1500–2000 generations (Fig. 4), 

which would place an upper bound extending into the early Holocene, depending on how 

generation time is defined. Fossil evidence suggests an ecological niche shift in coyote 

corresponding to megafaunal extinctions at the Pleistocene-Holocene boundary (Meachen and 

Samuels 2012). Individual body size during the transition period were intermediate between 

large Pleistocene individuals and more contemporary counterparts that were comparatively 

diminutive (Meachen et al. 2014). Response of canids to dietary shifts, demographic instability at 

the glacial-interglacial interface, and wide-spread shuffling of distributions (Pardi and Smith 

2016; Loog et al. 2019) may have promoted interspecific contact. We suggest this scenario has 

plausibility, given the emerging adaptive role for hybridization now commonly evoked in diverse 

taxa (Lewontin and Birch 2006; Meier et al. 2017; Jones et al. 2018), to include canids (Kays et 

al. 2010; vonHoldt et al. 2016). 
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Conclusion 

We employed a fine-scaled, partitioned analysis of genome-wide phylogenetic patterns in red 

wolf to show that branching patterns reflecting secondary introgression dominate. We also 

discovered that the presence of introgression varies throughout the genome, as a product of 

genomic context (e.g. local recombination rates). Because of this, evidence of older divergence 

was retained by only a fraction of the historically reduced recombination. These findings 

highlight the difficulties in studying the prevalence of hybridization within the broader Tree of 

Life, where a sufficiently large numbers of loci can presumably render a singular species history 

as transparent (Philippe et al. 2011; Hahn and Nakhleh 2016). 

However, two biases hinder this approach: (1) The magnitude of signal among loci is 

clearly disproportionate (Arcila et al. 2017; Shen et al. 2017); and (2) signatures in the genome 

are deposited by different processes in a heterogeneous manner (as herein). Methods to correct 

for these biases must explicitly consider the rate of recombination that effectively drives this 

discrepancy (Payseur and Rieseberg 2016). A failure to do so with regard to red wolf yielded 

divergence estimates orders of magnitude less than those suggested by fossil evidence (Nowak 

1992; Nowak 2002). We reconciled this discrepancy herein by employing estimates based solely 

on low recombinant regions of the X chromosome. Given this, a failure to partition distinct 

coalescent histories (e.g. Springer and Gatesy 2018) may result in some phylogenomic studies 

being interpreted as an artefact of substantial branch length distortion (Leache et al. 2014).  The 

solution is to reconsider the non-random manner by which phylogenetic signal is retained in the 

genome. This was possible in our red wolf study due to the presence of substantial a priori data, 

to include chromosomal reference assemblies and high-density linkage maps. There are two 

stumbling blocks to the widespread application of this approach: Resource-limitations and 
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methodological-deficiencies. Both are crucially important if we are to develop a more mature 

theory of hybridization as a macroevolution process (per Folk et al. 2018). 
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Appendix 

 
Table 1: Recombination rate differences between homozygous and heterozygous ancestry blocks 
in autosomes versus the X-chromosome. Recombination rate is reported as the ratio of 
centimorgan (cM) per Mb and partitioned into homozygous coyote and gray wolf ancestry and 
heterozygous ancestry (=HET). Significance is reported for Mann-Whitney U test comparing X-
chromosome and autosome cM/Mb within each partition. 
 

 AUTOSOMES X-ONLY  
 cM/Mb N cM/Mb N P-value 

PHY subset      

Coyote 1.00 22996 0.97 2087  

Gray Wolf 1.01 16648 1.15 940 <0.0001 

Het. 1.14 3859 1.03 43 <0.0001 
All blocks      

Coyote 1.07 90978 1.05 4477  

Gray Wolf 1.07 101999 1.13 3158 <0.0001 

Het. 1.06 106550 1.03 509  
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Figure 1: Effect of recombination rate on genomic ancestry proportions (A) and absolute 
divergence times (B) in the red wolf genome, partitioned among autosomes and X-chromosome. 
Percent ancestry is computed among genomic ancestry blocks which could be assigned as 
heterozygous (green), homozygous gray-wolf (blue), or homozygous coyote (red). Genomic 
representation is reported both as percentage of ancestry blocks (solid) and percentage of base-
pairs (bp; dashed). Divergence times (τ) measured in expected substitutions were estimated using 
coalescent hidden Markov models (coalHMM) applied to 1Mb blocks. Results are further 
partitioned by local recombination rate (cM/Mb) binned as ‘high’ (>=2.0), ‘moderate’ (0.5–2.0), 
and ‘low’ (<=0.5), and show posterior estimates of: 1) red wolf–coyote divergence (τCOY; red); 2) 
red wolf–gray wolf divergence (τWOLF; blue); and 3) the time of post-hybridization isolation (τH; 
green).
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Figure 2: Divergence times estimated using g-PhoCS applied to parental sub-genomes of the red 
wolf. Divergence times (τ) measured in expected substitutions are shown for the red wolf–coyote 
divergence (τCOY; red) and red wolf–gray wolf divergence (τWOLF; blue). Values are scaled up by 
a factor of 10,000 (left y-axis) and also provided in calibrated form (right y-axis) in thousands of 
years, assuming a generation time of three years and an average per-generation mutation rate of 
µ=4x10-9 / base pair. 
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Figure 3: bution of interspecific heterozygosity in the red wolf genome, and inferred divergence 
ages (inset) within low (<0.1 mean interspecific heterozygosity) and high (>=0.1) regions of 
autosomes. Interspecific heterozygosity was computed as a weighted mean among delimited 
ancestry blocks encompassed by 1Mb non-overlapping sliding windows. 
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Figure 4: Times of inferred admixture events from coyote (above) and gray wolf (below) into 
the red wolf genome, measured in generations before the present. Results are shown aggregated 
from all chromosomes, excluding N=3 chromosomes for which a single-pulse gradual admixture 
model was selected. 
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CHAPTER IV 

FRAGMATIC: in silico locus prediction and its utility in optimizing ddRADseq projects 

Chafin TK, Martin BT, Mussmann SM, Douglas MR, Douglas ME 

Abstract 

Reduced-representation genomic methods are an invaluable data acquisition tool for 

conservation geneticists, yet a priori estimates of locus recovery are difficult for non-model 

organisms. We present a simple in silico approach (FRAGMATIC) that predicts locus recovery 

in ddRAD sequencing which utilizes genomic data for related organisms. Its applicability was 

tested by quantifying prediction accuracy versus genetic distances across five non-model 

organisms and reference genomes for related organisms of varying phylogenetic distance. We 

additionally examined sensitivity of the method using one organism (Danio rerio) with an 

available genome. FRAGMATIC supports population genomic projects in non-model species by 

providing a priori estimates of targeted ddRAD loci that, in turn, will curb wasted sequencing 

effort and optimize cost-efficiency. Validation shows that while predictive error is minimized 

when applied to a closely related reference genome, in silico estimates may also be robust to 

deeper (e.g. within-family) relationships, although weak correlation suggests that specific 

characteristics of genome architecture may be more predictive than genetic distance. This 

indicates that a more extensive exploration of genomes, including a broader taxonomic scope 

(e.g. beyond vertebrates), may be informative. All code is freely available at: 

https://github.com/tkchafin/fragmatic. 
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Introduction 

Extending next-generation sequencing to non-model organisms often require reduction of 

genomic complexity that is replicable across related individuals (Edwards et al. 2015; Andrews 

et al. 2016). This can be accomplished by “targeted” fragmentation of DNA via restriction 

digest. Such reduced-representation genomic approaches that utilize restriction-site associated 

DNA (RAD) have been used widely (Baird et al. 2008), and promote the study of species for 

which few genomic resources exist.   

A modification of RAD (i.e., ddRAD) employs a second restriction enzyme that provides 

greater uniformity in the fragments produced (Peterson et al. 2012). Subsequent size selection of 

these fragments, often via gel-excision, then reduces genomic complexity. Homologous and 

randomly interspersed sequences are recovered across closely related populations or species 

(Davey et al. 2011), under the assumption that shared restriction sites are distributed equitably 

across shallow phylogenetic scales. Adopting this strategy, a targeted number of loci can be 

obtained with great flexibility in economy and scale (Puritz et al. 2014).  

A major consideration when designing ddRAD projects is to reduce sequencing of non-

informative, over-redundant regions common in eukaryotic genomes (de Koning et al. 2011). 

Enrichment of repetitive elements limits cost efficiency and biases library composition, yet these 

can be minimized when enzyme selection is informed by genomic data (Heffelfinger et al. 2014). 

In the case of traditional RADseq, locus recovery may be predicted on a probabilistic basis, 

although Herrera et al. (2014) pointed out that these estimates are sensitive to a priori estimates 

of genome size and composition. Simulation has also been presented as a potential means to 

predict loci when more complicated RAD-protocols are involved [e.g. digestion with multiple 

enzymes (Lepais and Weir 2014)]. We developed a custom in silico utility for locus prediction 
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with a primary focus on simplicity of use, termed FRAGMATIC, and evaluated its applicability 

for non-model organisms.  

 

Methods 

Locus Prediction 

FRAGMATIC estimates all possible ddRAD fragments by partitioning input sequences at user-

specified restriction sites. When a fully assembled reference genome is available, FRAGMATIC 

will predict a very accurate number of loci. It can also digest a contig-level assembly, although 

the already fragmentary input may result in a bias favoring small loci. Contig-level assemblies 

can be randomly concatenated as a potential solution, yet with spurious fragments produced that 

may traverse artificially manufactured contig boundaries. If one lacks a scaffold-level assembly 

containing estimated gaps, a resampling method could be implemented to iteratively rearrange 

contigs into replicates and to assess variance induced by arbitrary contig splicing. FRAGMATIC 

is extensible to any number of restriction sites, including those with degenerate bases. Fragments 

are categorized by flanking restriction sites, with output tabulated as fragment length frequencies 

or sequences. For example, an in silico digest with two enzymes, such as PstI (CTGCAG) and 

MspI (CCGG), will yield fragments flanked b: two PstI sites; two MspI sites; a PstI and MspI 

site (the target of in vitro sequencing in a ddRAD study); as well as fragments lacking a 

restriction site at one or either end (‘Missing_sites’ in the FRAGMATIC output). The latter is 

more frequent with incomplete assemblies, and represents fragments prematurely terminated by 

contig boundaries. A similar pattern would occur in vitro by digesting highly-degraded DNA. In 

practice, recovered loci can be skewed by “small fragment carryover” (DaCosta and Sorenson 

2014) and non-canonical enzyme activity (Kamps-Hughes et al. 2013). Recovery is also affected 
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by methylation, restriction site mutations [allelic drop-out (Gautier et al. 2013)], and variance in 

library preparation.  

 

Validation 

Given the above, FRAGMATIC might be expected to over predict loci. To test this prediction, 

we generated fragment distributions for 16 reference genomes from NCBI for comparison with 

in vitro digests of five related non-model organisms. To evaluate accuracy, we also compared in 

vitro digests of Danio rerio versus in silico FRAGMATIC results derived from its genome 

(Howe et al. 2013). Sample preparation followed a standard ddRAD protocol and samples were 

sequenced in a multiplexed lane with other projects (Peterson et al. 2012) with sequences 

processed using pyRAD (Eaton 2014).  

For Danio, we compared locus recovery among in vitro and in silico digests using PstI 

and MspI, with a size selection of 250 – 350 bp (excluding adaptor sequences). FRAGMATIC 

predicted 57,688 loci, whereas clustering raw Illumina reads (N=888,260) using VSEARCH 

(Rognes et al. 2016) with a similarity threshold of 95% and minimum alignment length of 90% 

produced 49,813 presumptive loci excluding singletons (<10% of sequences). Of the recovered 

raw Illumina reads, 97.7% overall mapped to predicted PstI-MspI loci (using BBmap; Bushnell, 

2014), however only 78.69% mapped to in silico loci in the targeted size range, presumably a 

result of non-specific fragment carryover in size selection. When sequencing depth is not 

considered, 79.86% of clustered loci align to valid PstI-MspI in silico loci, with only 58.96% 

mapping to loci expected within the target size range. However, when loci with low depth (<10 

reads per locus) are removed, these numbers increase to 91.67% and 83.77% respectively, 

suggesting that inclusion of spurious fragments during library prep (e.g. those introduced via 
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contamination) is a notable source of wasted sequencing effort. Additionally, when mapping raw 

sequences to the Danio rerio genome, we find disproportionate sequencing depth at some loci, 

likely reflecting inclusion of restriction sites within repetitive elements. Sequence effort must be 

adjusted to compensate and allow for exclusion of loci with insufficient (e.g., <10 reads/locus) or 

disproportionate read-depth. Insufficient coverage will reduce percentage of predicted loci 

actually being recovered in vitro.  

To assess extensibility for non-model organisms, we also compared the number of in 

vitro sequenced loci to in silico predictions from reference genomes available at varying genetic 

divergences to 5 non-model organisms sequenced following a standard ddRAD protocol. Genetic 

distances were HKY corrected, and estimated using available mtDAN sequences from NCBI 

GenBank. As expected, a positive correlation between prediction error (i.e. difference in number 

of loci predicted per million bases) and genetic distance was the result (Fig 1), although 

correlation was notably weak (Pearson’s r = 0.325; or 0.271 with removal of outlier). Factors 

other than genetic distance are likely more predictive of similarity in RAD locus recovery (e.g. 

genome architecture or assembly quality) and selection of optimal ‘reference’ genomes for in 

silico predictions may not always be reliable when considering genetic distance alone.  

To quantify variance in locus recovery among individuals, we compared predicted locus 

yields for several ongoing studies with in silico estimates based on an appropriate within-family 

genome (if such a genome was available), corrected for artificially terminated fragments (e.g. 

resulting from a fragmentary assembly) by multiplying the number of these observed in the 

desired size range by the observed proportion of sequence-able fragments (e.g. PstI – MspI). 

Predicted locus yields were within 1 standard deviation of the mean observed recovery in all 

cases (see Table 1).   
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Conclusion 

In silico digestion is useful for ddRAD projects in predicting the expected number of loci post-

sequencing. The a priori estimates from FRAGMATIC may reduce wasted sequencing effort by 

optimizing size selection and enzyme choice. This is because coverage (i.e., sequencing depth) is 

substantially impacted by the number of simultaneously sequenced ddRAD loci. FRAGMATIC 

produces accurate predictions based on reference genomes that are relatively complete and 

closely related to the study species, however genetic distance (as estimated here) correlates only 

weakly with error in in silico estimates. A potential solution could involve a statistical correction 

based on genetic distances and genome sizes, however we suspect that additional aspects of 

genome architecture and quality of the reference assembly used are likely important in predicting 

the distribution of RAD sites. FRAGMATIC may be useful in exploring these effects by 

considering the placement of RAD sites relative to other genomic features such as repetitive 

elements.  

FRAGMATIC can be easily applied to non-model organisms using an appropriate 

genome (e.g. most “phylogenetically-near” reference available), although a highly fragmentary 

input would potentially skew predictions. Based on the result of the Danio rerio sequencing, we 

suspect that spurious fragments represent a significant portion of wasted sequencing effort, and 

as such the bioinformatic treatment of the data post-sequencing should include stringent filtering 

loci by recovery depth to minimize the impact of fragments sequenced in error.  

To minimize issues with coverage and repetitive content disproportionally affecting 

sequencing effort, the recommended usage of FRAGMATIC with non-model organisms and an 

appropriate reference genome (or ideally, multiple genomes) would involve: 1) Optimization of 

enzyme choice using in silico digests and inspection of FRAGMATIC output for locus yield and 
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repetitive “peaks”; and 2) Comparison of candidate size selection ranges for the enzyme pair of 

choice to target a specific number of loci, scaling for differences in genome size and accounting 

for quality of genome assembly used. As aforementioned, a statistical correction involving 

genetic distance or some aspect of genome architecture may emerge in future study which could 

improve in silico estimates. 
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Appendix 

Table 1:Comparison of locus yield for 4 ongoing studies involving non-model organisms with 
the in silico estimates calculated as s + (s/t)*m, where t is the total number of observed 
sequence-able fragments (flanked by both restriction sites), t is the total number of observed 
fragments in the target size range, and m is the number of fragments which are artificially 
terminated by contig boundaries resulting from incomplete genome assembly.    
 
 

Study taxon Reference taxon N 
samples 

Size selection 
width 

Predicted 
loci 

Mean 
observed 

loci 

s2 observed 
loci 

Crotalus viridis Crotalus mitchelli 289 100bp 34527 34527 10625 

Gila spp. Pimephales 
promelas 

236 100bp 28226 28226 8826 

Rhinichthys 
spp. 

Pimephales 
promelas 

319 50bp 14475 14824 4330 

Terrapene spp. Chrysemys picta 116 55bp 38969 25555 15840 

 

 

Figure 1: Relation between genetic distance and prediction error (the difference in number of 
average loci predicted vs observed, per megabase, based on a single sample of each sequenced in 
vitro). Linear model in R fitted as: E = 0.8159 + 84.501(GD), where E = predictive error and 
GD= mtDNA genetic distance   
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CHAPTER V 

MRBAIT: Universal identification and design of targeted-enrichment capture probes 

Chafin TK, Douglas MR, Douglas ME 

Abstract 

It is a non-trivial task to identify and design capture probes (“baits”) for the diverse array of 

targeted-enrichment methods now available (e.g. ultra-conserved elements, anchored hybrid 

enrichment, RAD-capture). This often involves parsing large genomic alignments, followed by 

multiple steps of curating candidate genomic regions to optimize targeted information content 

(e.g. genetic variation), and to minimize potential probe dimerization and non-target enrichment. 

In this context, we developed MRBAIT, a user-friendly, generalized software pipeline for 

identification, design, and optimization of targeted-enrichment probes across a range of target-

capture paradigms. MRBAIT is an open-source codebase that leverages native parallelization 

capabilities in Python and mitigates memory usage via a relational-database back-end. Numerous 

filtering methods allow comprehensive optimization of designed probes, including built-in 

functionality that employs BLAST, similarity-based clustering, and a graph-based algorithm that 

‘rescues’ failed probes. Complete code for MRBAIT is available on GitHub 

(https://github.com/tkchafin/mrbait), and is also available with all dependencies via one-line 

installation using the conda package manager. Online documentation describing installation and 

runtime instructions can be found at: https://mrbait.readthedocs.io 

 

Introduction 

The application of next-generation sequencing methods to non-model organisms has been 

facilitated by a diverse array of novel ‘reduced-representation’ methods, whereby a consistent 
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subset of the genome is targeted for sequencing across hundreds or thousands of individuals 

(Davey et al. 2011). One major trajectory for these methods is to target specific regions for 

sequencing, by utilizing the hybridization of oligonucleotide probes (or ‘baits’) to DNA 

fragments containing complementary sequences, followed by the subsequent separation of these 

target molecules (Mamanova et al. 2010). Although target-enrichment methods share this general 

design, numerous derivative methods have been developed and optimized for specific 

applications. For example, one commonly-applied paradigm is the enrichment of ultra-conserved 

genomic elements (UCEs), by identifying regions in divergent lineages with extremely low 

mutation accumulation, with the assay of genetic variation flanking these UCEs as the ultimate 

goal (e.g. Gnirke et al. 2009). Another popular approach is to specifically anchor probes to 

coding sequences (e.g. exon capture; Bi et al. 2012). Similarly, targeted fragmentation using 

restriction enzymes (per RADcap, Rapture) is also utilized, followed by a more specific 

reduction using capture probes (Ali et al. 2016; Hoffberg et al. 2016).  

 A universal requirement for these methods is that genomic resources be available a 

priori, or at least developed as a prerequisite to application, and from which probe sequences can 

then be designed. Transparent workflows are not always available (but see Faircloth, 2017 for 

such a treatment for UCEs), and are thus counter-productive to this endeavor. Some software 

does exist, but is often designed for a specific targeted-enrichment approach (Johnson et al. 

2016; Faircloth 2017; Anil et al. 2018). One recently published option (BAITSTOOLS; Campana, 

2017) is flexible enough to allow multiple inputs and enrichment schemes, yet does not natively 

incorporate post-processing steps to optimize bait-specificity. Here, we provide a flexible, user-

friendly software, MRBAIT, that can be generalized to any targeted-enrichment paradigm. 

MRBAIT is not only open-source but also employs native Python parallelization.  In addition, its 
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memory usage, data management, portability, and iterative probe design are efficiently promoted 

through a relational database back-end using SQLITE.  

 

Methods 
Features and user interface 

MRBAIT stores genomic regions or alignments, candidate target regions, and candidate probe 

sequences as an SQLITE relational-database with a Python wrapper and command-line interface 

(CLI). The database can be efficiently parsed then successively re-parsed, so as to allow fast 

exploration of numerous bait-design and filtering schemes. The general process is as follows:  

(1) Build a consensus catalog of genomic regions by parsing alignments (as .xmfa, .maf, or 

.loci output of PYRAD) or genomes (as .fasta, annotated optionally with .vcf or .gff).  

(2) Apply a sliding window along each consensus locus to find candidate target regions 

(depending on user specifications, e.g. indels allowed, frequency of flanking SNPs, etc.). 

(3) Target filtering of regions (e.g. by GC content, maximum allowable pairwise identities, 

BLAST identity to potential contaminant genome), and resolve conflicts (if targets are 

within specified proximity along a scaffold or chromosome) 

(4) Design a prospective bait set from passing target regions based on user-specified schema: 

tiling, or positional anchoring (e.g. centered or terminal within target region). If baits will 

be used for more distantly related taxa, polymorphism can be included to mitigate 

systematic bias in downstream molecular application 

(5) Filtering and selection criteria (as in 3) are then applied to baits  

(6) The pipeline can be resumed and any steps iteratively re-visited by providing the SQLITE 

database file (resulting in a significant reduction in runtime for successive runs) 
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 Data are input in a variety of configurations: 1) Whole genomes (.fasta), with optional 

accompanying structural elements (as .gff) or variant information (.vcf); 2) multiple-genome 

alignment using the .maf output of MAFFT (Katoh and Standley 2013) or the .xmfa format of 

PROGRESSIVEMAUVE (Darling et al. 2010); or 3) reduced-representation alignments using the 

.loci format of PYRAD (Eaton 2014). Numerous filtering criteria are employed natively within 

MRBAIT and specified using the CLI, which allows target regions or designed probe sequences to 

be constrained in a variety of ways: with masking information from programs such as 

REPEATMASKER (Smit et al. 2013), via coordinates within a full genome to approximate all or a 

subset of specific genomic elements, by number of variant sites assayed (e.g. only retaining baits 

flanking known SNPs), or through other criteria (e.g. GC content, ambiguity or gap content). 

Targets or probes can be also filtered inclusively by optimizing specificity to a target genome, or 

exclusively by minimizing hits to a non-target (e.g. contaminant) genome  using an internal call 

to NCBI-BLAST+ with a user-provided genome or database (Altschul et al. 1990).  Probe-probe 

hybridization in downstream molecular application can also be circumvented using built-in 

clustering in MRBAIT via the VSEARCH algorithm (Rognes et al. 2016). Clustering results are 

used to build an undirected graph, with nodes as target regions (or baits), and edges representing 

pairwise alignments greater than some threshold identity and alignment length (user-provided). 

MRBAIT employs a naïve approach to identify the maximal independent set within this graph, 

optionally weighting nodes according to several user options so as to ‘rescue’ optimal targets 

without retaining edges. The motivation behind this approach is to retain a maximal number of 

baits without duplication. If undesired, this behavior can be easily disabled (or modified) using 

the CLI.  
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Benchmarking 

Runtime and memory-usage were gauged using a ddRAD dataset generated for Whitetail deer 

(Odocoileus virginianus) from Arkansas. Samples (N=48) were digested with PstI and MspI 

restriction enzymes, size selected between ~375-525bp, and sequenced on an Illumina HiSeq 

2500 with paired-end 150bp reads. Resulting data were assembled in pyRAD with 51,931 loci 

post-filtering. MRBAIT then processed these data. Requirements were as follows: A minimum 

per locus coverage of 25% for individuals; target regions with 1-10 flanking SNPs; and baits 

60bp in length tiled across target regions at 1.5X coverage. These yielded 44,808 loci with a 

conserved region sufficient for bait design, with 27,102 candidate target regions flanking a 

sufficient number of SNPs. From these, a total of 43,342 baits were output in 392s across 4 

threads on a 2014 iMac desktop. Identical runs with 1, 2 and 3 threads took 1182, 591, and 399 

seconds, respectively, with a greater-than-linear speedup as core number increased. Peak 

memory usage increased sub-linearly with core count, at 120Mb for 1 thread and 300Mb for 4 

threads on this dataset. For comparison, BAITSTOOLS (Campana 2017), with approximately 

comparable parameter settings, ran in 750 seconds using the ‘SNP-targeting’ strategy for 

PYRAD2BAITS (single-threaded) with no post-processing. The time discrepancy results from the 

initial setup of the relational database back-end (Step 1), which is the largest overhead for 

MRBAIT. Subsequent runs with re-parameterization for target selection, filtering, and bait design 

ran comparatively quickly. For example, the existing SQLITE database was passed to MRBAIT, 

with additional filtering on GC content for targets (between 0.3 and 0.7) and a new bait length of 

80, in just 12 seconds (and resulted in 20,023 passed baits). This demonstrates the utility of the 

database approach in facilitating iterative probe design and exploring parameter values.  
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Comparison with existing methods 

We parsed the existing Whitetail Deer ddRAD dataset so as to compare performance of bait 

design by MRBAIT versus BAITSTOOLS and did so by maintaining maximum consistency in 

parameter settings between the two programs. We ran the ‘PYRAD2BAITS’ program in 

BAITSTOOLS with bait length of 80, a minimum of 20 individuals per locus, 50% overlap 

between tiled baits, and with baits containing gaps or ambiguous (N) characters excluded. These 

settings were replicated in MRBAIT, with no additional filtering to make comparison more 

appropriate. We also filtered the resulting bait sets by eliminating baits containing SNPs. This 

was accomplished natively within MRBAIT, and by using custom post-processing scripts for the 

BAITSTOOLS output. The capacity of MRBAIT to filter targeted regions by ‘informativeness’ was 

not implemented, nor was BLAST-filtering for specificity. BAITSTOOLS identified 14,276 non-

variable bait sequences after manual post-processing in Python (successfully targeting 41.5% of 

the 20,912 loci with sufficient coverage), whereas MRBAIT found 12,084 baits, targeting 44% of 

loci. This demonstrates that both softwares can discover roughly equivalent sets of bait 

sequences, although in this case BAITSTOOLS output required additional manual filtering while 

these steps were integrated in MRBAIT.   

 To compare accuracy of our bait design, we examined the data for 964 RAD loci from 

Wisteria, curated and assembled from paired-end sequencing data by Hoffberg et al. (2016). In 

parsing these loci, we excluded most of the native filtering methods in MRBAIT to keep results 

comparable. MRBAIT identified 1924 conservative 90-mer baits targeting all 964 loci, compared 

to the 1928 identified by Hoffberg et al. again indicating that MRBAIT will produce bait sets 

comparable to those from other existing methods.  
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 However, users may find the additional utilities included natively in MRBAIT useful for 

reducing size of the total bait set, for example to improve specificity of the candidate baits (e.g. 

to reduce non-target enrichment), to reduce potential for ascertainment bias, or to reduce the 

overall number of sequences for synthesis (e.g. to meet budgetary requirements). For example, 

users may desire to remove baits which align to one another, as these can be non-specific to the 

intended locus (Faircloth 2017), or remove baits with extreme GC content which may show a 

phylogenetic bias when applied to broader taxa (Bossert et al. 2017). When applying a GC 

content filter (GC% >70 or <30), to the Wisteria dataset, 475 baits failed, while 25 failed when a 

conservative duplicate filter was applied (pairwise alignment of >80% identity over >80% of the 

bait length). Hoffberg et al. reported very high matrix occupancy with the designed bait set 

(99.8% of loci for 90% of samples, with a 4X coverage cutoff), however application of the 

uncurated bait set at a deeper phylogenetic scale could expose systematic bias associated with 

GC heterogeneity (e.g. Bossert et al. 2017), or with phylogenetic information content targeted by 

each bait, depending on the phylogenetic scale and intended method of downstream analysis 

(Meiklejohn et al. 2016). An additional major consideration is the potential for non-target 

capture from vastly different sources (e.g. bacterial contaminants), however extensive 

bioinformatic processing such as via native BLAST filtering in MRBAIT can significantly 

mitigate this (Bossert and Danforth 2018). Users are cautioned to consider any ascertainment 

biases which may be introduced, particularly when designing bait sets for a different 

phylogenetic scale than is available (e.g. as reference genomes) for bait design.  
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Conclusion 

We provide a customizable and extensible open-source software (MRBAIT) that facilitates rapid 

and user-friendly bait development for an array of molecular applications (e.g. ultra-conserved 

elements, RAD-capture). It simultaneously identifies conservative ‘target’ regions in user-

provided sequence data, designs probes to enrich them, and curates the resulting bait set. It also 

incorporates an array of native filtering strategies to help minimize downstream synthesis of 

problematic baits (e.g. duplicates), and to maximize specificity of baits to a target genome or 

desirable elements within them (e.g. known SNPs, or genomic features such as exons). MRBAIT 

adopts an SQL relational database back-end to minimize the problem of data files that necessitate 

high memory loads as well as significant I/O computational time. This allows users to rapidly re-

parse the database with multiple different filtering criteria and promotes efficient exploration of 

parameter space and optimal bait sets for bait specificity and number (which affects synthesis 

cost). Comparisons with existing methods indicate that MRBAIT is similar in terms of quantity of 

targets discovered and runtime efficiency. Documentation and a full description of runtime 

options can be found at: https://mrbait.readthedocs.io 
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CHAPTER VI 

FGTPARTITIONER: A rapid method for parsimonious delimitation of ancestry breakpoints 

in large genome-wide SNP datasets 

Chafin TK 

Software Description 

Partitioning large (e.g. chromosomal) alignments into ancestry blocks is a common step in 

phylogenomic analyses (Springer and Gatesy 2018). However, current solutions require 

complicated analytical assumptions, or are difficult to implement due to excessive runtimes. 

Multiple approaches have been proposed for delimiting ancestry blocks in genomes (i.e. 

establishing recombination breakpoints), which generally fall into one of two categories: those 

which require dense or phased genotypic data (Liu et al. 2013); and those with complex 

analytical assumptions which require the definition of informative prior probability distributions 

and are computationally intensive (Dutheil et al. 2009). Both conditions are problematic for 

genome-scale studies of non-model species, where large-scale resequencing and phased 

reference data are unavailable, and genomes are often sequenced at low coverage. 

I here describe a solution, FGTPARTITIONER, which is specifically designed for use with 

non-model genomic data without the need for high-quality phased reference data or dense 

population-scale sampling. FGTPARTITIONER delimits chromosome scale alignments using a fast 

interval-tree approach which detects pairwise variants which violate the four-gametes 

assumption (Hudson and Kaplan 1985), and rapidly resolves a most parsimonious set of 

recombination events to yield non-overlapping intervals which are both unambiguously defined 

and consistent regardless of processing order. These sub-alignments are then suitable for separate 
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phylogenetic analysis, or as a ‘first pass’ which may facilitate parallel application of finer-

resolution (yet more computationally intensive) methods. 

After parsing user-inputs, the workflow of FGTPARTITIONER is as follows: 

(1) For each SNP, perform four-gamete tests sequentially for rightward neighboring records, 

up to a maximal physical distance (if defined) and stopping when a conflict (=’interval’) 

is found. Intervals are stored in a self-balancing tree. When using multiprocessing, 

daughter processes are each provided an offset which guarantees a unique pairwise SNP 

comparison for each iteration  

(2) Merge interval trees of daughter processes (if using optional parallel computation)  

(3) Assign rank k per-interval, defined as the number of SNP records (indexed by position) 

spanned by each interval 

(4) Order intervals by k; starting at min(k), resolve conflicts as follows: For each candidate 

recombination site (defined as the mid-point between SNPs), compute the depth d of 

spanning intervals. The most parsimonious breakpoint is that which maximizes d 

 

 These algorithm choices have several implications: indexing SNPs by physical position 

guarantees that the same recombination sites will be chosen given any arbitrary ordering of 

SNPs; and defining breakpoints as physical centerpoints between nodes means that 

monomorphic sites will be evenly divided on either side of a recombination event. Because 

monomorphic sites by definition lack phylogenetic information, they cannot be unambiguously 

assigned to any particular ancestry block, thus my solution is to evenly divide them. 

Heterozygous sites in diploid genomes are dealt with in multiple ways. By 

default, FGTPARTITIONER will randomly resolve haplotypes. The user can select an alternate 
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resolution strategy which will either treat a SNP pair as failing if any resolution meets the four-

gamete condition, or as passing if any possible resolution passes [i.e. the 'pessimistic' and 

'optimistic' strategies (Wang et al. 2010)]. 

In conclusion, FGTPARTITIONER has several advantages over similar methods: 1) 

algorithmic and performance enhancements allow it to perform orders of magnitude faster, thus 

extending application to larger genomes; and 2) the flexibility of diploid resolution strategies 

precludes the need for haplotype phasing a priori. Validation using empirical data indicated the 

suitability of FGTPARTITIONER for highly distributed work on high-performance computing 

clusters, with parallelization easily facilitated by built-in options in the command-line interface. 

Additionally, runtime and memory profiling indicate its applicability on modern desktop 

workstations as well, when applied to moderately sized datasets. Thus, it provides an efficient 

and under-friendly solution to alignment pre-processing for phylogenomic studies, or as a 

method of breaking up large alignments in order to efficiently distribute computation for more 

rigorous recombination tests.  
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CONCLUSION 

A pervasive notion in the history of speciation research is the assumption that the solidification 

of reproductive boundaries between species is the focal benchmark in the evolutionary process. 

This is apparent in the pursuit of taxonomists to delimit discrete species, of phylogenetics to 

build bifurcating trees, and of evolutionary theory to define units of biodiversity. A shared aspect 

of these lofty ideals is the reverence with which reproductive isolation is held as a fundamental 

axis defining the ‘speciation continuum’. This focus on reproductive isolation as the sole rate-

limiting control on diversification is myopic, in that it relegates the role of gene flow to one that 

is primarily antagonistic to the proliferation of species [e.g. as a constraint on adaptive 

divergence (Futuyma 2010)].  

Nature is rather more complex, with numerous controls on the accumulation of 

biodiversity over time (Dynesius and Jansson 2014; Rabosky 2016; Singhal et al. 2018; Harvey 

et al. 2019), to include pre- and post-speciation gene flow. In this dissertation I have 

demonstrated a variety of outcomes for post-speciation gene flow in species for which 

persistence in the Anthropocene is tenuous. I here discuss the implications of these outcomes 

with regards to hypothesized ‘controls’ of macroevolutionary patterns and how these contribute 

to iterative progress towards three primary trajectories in hybridization research (see 

Introduction).  

Chapter I used a molecular assay—facilitated by the work presented in Chapter IV—to 

examine an empirical case wherein anthropogenic habitat alteration has been the driver for a 

local breakdown of reproductive isolation, resulting in either asymmetric introgression or hybrid 

swarm formation, depending on local context. In one case, a population facing intense genetic 

degradation was completely absent in more recent genetic surveys (Chafin et al. 2019), 
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presumably as a result of continued admixture. The suggested mechanism involved a coupling 

between extrinsically-driven population decline and deleterious input of alleles, creating a 

negative fitness feedback, or ‘extinction vortex’ (Gilpin and Soulé 1986).  

Yet, hybridization is also often implicated as a mechanism promoting evolutionary rescue 

(Stelkens et al. 2014; Fitzpatrick et al. 2016). I suggest the discrepancy lies in context-dependent 

details, and the interplay between rates of environmental change, gene flow, and reproductive 

isolation. Firstly, the probability of rescue is contingent on a sufficiently low rate of 

environmental change to allow adaptation (Lindsey et al. 2013), with gene flow having either a 

dampening or amplifying effect depending on the degree of extrinsic reproductive isolation. 

Secondly, although hybridization might supply beneficial adaptive variants under certain 

circumstances, it may also lead to a weakening of reproductive isolation and eventual 

assimilation of one species into another (Owens and Samuk 2020). I suggest that the case seen in 

Gila robusta and G. cypha (Chapter I) represents the early stages of this outcome. Studying cases 

such as Gila, where it is possible to directly sample a temporal transect through the active 

modulation of population persistence by hybridization, is a necessary step in understanding how 

outcomes play at the macroevolutionary scale. 

In Chapter II I examined the outcomes of hybridization in Gila over such timescales and 

used a combination of phylogenetic approaches to quantify the degree to which hybridization (as 

opposed to alternate sources) drove patterns of discordance therein. I also substantiated methods 

by which empirical divergence in the ‘anomaly zone’ (see Degnan and Rosenberg 2009) can be 

detected. The implications for the study of hybridization at the macroevolutionary scale are two-

fold. First, I used a scalable method for detecting phylogenetic reticulation in large-scale datasets 

by using low-resolution methods (e.g. D-statistic) as a ‘first pass’ to generate hypotheses, 
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followed by computationally expensive network inference (see Solís-Lemus and Ané 2016) with 

massively parallel gene tree inference on HPC (high performance computing) systems. Secondly, 

I provided user-friendly means to explicitly assign the cause of ‘star-like’ phylogenies to 

divergence in the anomaly zone, where rapid speciation generates high discordance—as opposed 

to weak resolution caused by low differentiation. The latter is important because it aids in the 

unbiased discrimination of intraspecific lineages from poorly resolved interspecific lineages, 

while the former is a critical framework for inferring large-scale phylogenetic networks.  

Finally, I used a novel method described in Chapter VI to delimit ancestry blocks in the 

genome of the endangered red wolf in order to understand how local genome structure biases 

retention of introgressed alleles. I showed how recombination interacts with selection to create 

‘refugia’ on the X-chromosome which retained a species tree pattern reflecting more ancient 

divergence despite a genomic mosaic reflecting hybridity. This confirmed expectations of the so-

called 'large-X' effect (Coyne and Orr 1989) and also served to reject an hypothesized hybrid 

origin of the red wolf in favor of one in which secondary introgression masked signatures of 

prior isolation. I then showed how this process of ‘ancestry swamping’ in the autosomes misled 

prior analyses (aided in part by a method described in Chapter V).  

Together, these chapters create a framework to discriminate phylogenetic patterns of 

hybridization in a scalable manner (Chapters I, II, VI, V), and to further categorize different 

outcomes of hybridization (Chapters III and VI). Moving forward, my research offers a blueprint 

to synthesize modern trajectories in hybridization research into a broader, comparative fabric. 

First, in order to assess rates of hybridization, and the respective fates of hybrid lineages, a 

targeted molecular approach is required (e.g. as facilitated by Chapters IV and V) that 

circumvents cost limitations of sequencing full genomes of non-model organisms. Second, 
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hybridization must be categorized into components that distinguish ancient versus contemporary 

(Chapter I and III), and generative versus introgressive (Chapter III). Finally, large-scale 

networks (e.g. hundreds or thousands of taxa) can be constructed using the approach of Chapter 

II, wherein hybridization was explicitly separated from alternative sources of phylogenetic 

variation in a massively parallel computational pipeline. Because this framework facilitates the 

broad-scale quantification of hybridization (e.g. across large complete clades), it directly 

contributes to future work aiming to test the role of hybridization in mediating 

macroevolutionary patterns of diversification and trait evolution (e.g. Maddison et al. 2007; 

Fitzjohn 2010; Rabosky 2014; Beaulieu and O’Meara 2016; Bastide et al. 2018; Harvey and 

Rabosky 2018). This approach can best be contrasted with phylogenetic comparative methods 

for identifying correlations between species traits and diversification; for example, if 

hybridization generally promotes adaptive variation (as in Meier et al. 2017), then lineages 

having an increased rate of hybridization should show either lower extinction rates or higher 

speciation rates. Herein lies the general framework from which the role of hybridization as a 

large-scale driver of biodiversity can be parsed (e.g. Folk et al. 2018).  
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Appendix – Supplementary Tables and Figures 

Table S1: Sampling Locations and Drainages for N=386 Gila Individuals and Outgroups.  
 

Site Major Drainage Location N  
Gila atraria Bonneville, Snake Multiple localities 14 

Gila cypha    

C1 Yampa Yampa Canyon, Moffat Co., CO 1 

C2 Colorado Black Rocks & Westwater Canyons, Colorado  2 

C3 Colorado Grand Canyon, Coconino Co., AZ 9 

C4 Little Colorado Little Colorado R. mainstem, Coconino Co., AZ 4 

Gila ditaenia de la Concepcion Rio Magdalena, Sonora, MX 2 

Gila elegans Hatchery  SNARRC, Dexter, NM 11 

Gila eremica Rio Sonora Rio Sonora, Sonora, MX 2 

Gila intermedia    

I1 Verde Spring Creek, Yavapai Co., AZ 10 

I2 Agua Fria Silver Creek, Yavapai Co., AZ 8 

I3 Agua Fria Indian Creek, Yavapai Co., AZ 9 

I4 Agua Fria Sycamore Creek, Yavapai Co., AZ 10 

I5 Gila Mineral Creek, Pinal Co., AZ 10 

I6 Gila Eagle Creek, Greenlee Co., AZ 10 

I7 Gila Hardin-Cienega Creek, Greenlee Co., AZ 10 

I8 San Pedro Turkey Creek, Santa Cruz Co., AZ 10 

Gila jordani Pahranagat/ White Key-Pittman WMA refuge population (brood stock 

sourced from Ash Springs), NV 

21 

Gila minacae Rio Yaqui Rio Bavispe, Chihuahua, MX 7 

Gila nigra    

N1 Verde Fossil Creek, Yavapai Co., AZ 11 

N2 Verde Weber Creek, Gila Co., AZ 8 

N3 Verde Verde River headwaters, Gila Co., AZ 5 

N4 Salt Gordon Creek, Gila Co., AZ 10 

N5 Salt Gun Creek, Gila Co., AZ 11 

N6 Salt Marsh Creek, Gila Co., AZ 10 

Gila nigrescens Multiple Multiple localities 5 

Gila pandora Rio Grande Palomas Creek, Sierra Co., NM 6 

Gila pulchra Rio Yaqui Rio Tomochic, Chihuahua, MX 5 

Gila purpurea Rio Yaqui San Bernadino NWR, Cochise Co., AZ 2 

Gila robusta    

R1† Bill Williams Trout Creek, Mohave Co., AZ 9 

R2† Bill Williams Francis Creek, Yavapai Co., AZ 8 

R3† Verde Verde River mainstem, Yavapai Co., AZ 8 

R4† Verde Verde River mainstem, Yavapai Co., AZ 4 

R5† Verde Verde River mainstem, Yavapai Co., AZ 3 

R6† Verde West Clear Creek, Yavapai Co., AZ 5 

R7† Salt Salt River mainstem, Maricopa Co., AZ 5 

R8† Salt Cherry Creek, Gila Co., AZ 8 

R9† San Pedro Aravaipa Creek, Pinal Co., AZ 10 

R10‡ Green Upper Green River tributaries, Wyoming 21 

R11‡ Yampa Little Snake River, Wyoming 5 

R12‡ Yampa Upper Yampa River tributaries, Moffat Co., CO 5 

R13‡ Green San Rafael River, Utah 4 

R14‡ Colorado Upper Colorado River mainstem, Colorado 4 

R15‡ San Juan Navajo River, Colorado 2 

R16‡ Little Colorado East Clear Creek, Coconino Co., AZ 16 

V1 Virgin Muddy (Moapa) River, Clark Co., NV 19 

V2 Virgin Virgin River mainstem, Washington Co., UT 17 

Ptychocheilus    

P. grandis Eel River South Fork Eel River, Humboldt Co., CA 2 

P. lucius Colorado Yampa River, Moffat Co., Colorado 8 
†Lower Colorado River basin (below Grand Canyon)    ‡Upper Colorado River basin (above Grand Canyon) 
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Table S2: Ancestry proportions of the red wolf genome at varying filtering thresholds and 
metrics of inclusion. Values are reported as proportion of bases, with proportion of blocks in 
parentheses. Note that here, ‘Unassigned’ reflects regions in which neither ancestries could be 
assigned (e.g. red wolf sister to outgroup).  
 
 

 

Filtering criterion Coyote Gray Wolf Heterozygous Unassigned 

No filters 0.252 (0.204) 0.232 (0.365) 0.337 (0.365) 0.179 (0.214) 

Exc. unassigned blocks  0.311 (0.262) 0.417 (0.470) 0.272 (0.268) - 

+ 0.9 > int.het < 0.1 0.426 (0.310) 0.376 (0.341) 0.198 (0.349) - 

+ bp.RELL < 0.10  0.511 (0.390) 0.280 (0.284) 0.208 (0.326) - 

Exc. heterozygous 0.437 (0.377) 0.386 (0.415) - 0.177 (0.207) 
+ bp.RELL < 0.10 0.431(0.264) 0.234 (0.185) - 0.335 (0.550) 

Exc. unassigned and heterozygous 0.531 (0.476) 0.469 (0.524) - - 

+ bp.RELL < 0.10 0.648 (0.588) 0.352 (0.412) - - 

 

 

 
 
 
 
 
 
Table S3: Mutation-scaled and absolute divergence time estimates from g-PhoCS. Parameters 
are as follows: population divergence time for red wolf and coyote (tCOY); divergence time for 
red wolf and gray wolf (tWOLF); divergence time for all Canis species (tCANIS); and the 
divergence time for the root (tALL). Values shown are the raw arithmetic mean estimates, with 
calibrated estimates in years in parentheses, assuming a generation time of three years and an 
average per-generation mutation rate of µ=4x10-9 / base pair. 
 
 
 

Analysis τCOY τWOLF τCANIS τALL 
Coyote subset 3.8x10-5 

(28,500) 

- 7.3x10-4 

(547,500) 

2.5x10-3 

(1,875,000) 

Gray wolf subset - 5.9x10-6 (4,425) 7.6x10-4 
(570,000) 

2.9x10-3 
(2,175,000) 
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Figure S1: Cross-validation error analysis for ADMIXTURE, as represented by number of clusters 
(K) 
 

 
 
Figure S2: Change in model likelihood by K derived from a STRUCTURE analysis.
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Figure S3: Results of cross-validation analysis in Discriminant Analysis of Principal Components (DAPC), depicting (A) root-mean-
square error (RMSE) for classifications under varying number of Principal Component axes (PC’s) retained, and (B) proportion of 
successful classifications for 20 replicates with varying number of PC’s retained.  
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Figure S4: Plot of statistical power of assignment for each of six genotype frequency classes. 
NewHybrids of simulated hybrid genotypes in HybridDetective, using various critical thresholds 
(from 0.5 to 1.0) for posterior assignment probabilities. Solid lines indicate mean power, while 
dashed lines are standard deviations across replicates. Note that accuracy of assignment is 100% 
in all cases (not shown).
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Figure S5: Relationships between five indices of anthropogenic pressure on stream reaches, and the proportion of genetically pure 
individuals sampled therein. DOF=Degree of fragmentation; DOR=degree of regulation; SED=degree of sediment trapping; 
USE=percent consumptive water use; CSI=connectivity status index. Scales for DOF, DOR, SED, and USE reflect a proportion of 
effect, with 100 = 100% impact. CSI scales from 0 to 100, with 100 being full connectivity (i.e. not detectable human impact). 
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Figure S6: Human pressure indices plotted onto stream reaches in the Colorado River. DOF=Degree of fragmentation; DOR=degree 
of regulation; SED=degree of sediment trapping; USE=percent consumptive water use; CSI=connectivity status index. Scales for 
DOF, DOR, SED, and USE reflect a proportion of effect, with 100 = 100% impact. CSI scales from 0 to 100, with 100 being full 
connectivity (i.e. not detectable human impact).  
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Figure S7: Extinction vortex via negative feedback of inbreeding and outbreeding depression. Shown is the population mean fitness 
(!"; red dot) and variance (red ellipse) within a fitness gradient from low (purple) to high (white), as a function of two arbitrary 
phenotypic axes (PA1, PA2). (A) Decreasing effective populations size (Ne) lowers the strength of selection (s) and reduces both !" 
and genetic variance (=inbreeding depression). (B) When introgression is maladaptive, increased gene flow (m) bolsters maladaptive 
genetic variance while driving a further reduction in !" (=outbreeding depression). This, in turn, prompts further depreciation in Ne, 
with weakened purifying selection and a relatively greater influence of maladaptive m as a consequence. Persistent coupling of these 
processes can then drive population extirpation, especially given extrinsic effects on !", such as rapid environmental change. 
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Figure S8: Phylogram showing results from an unconstrained search using 21,717 concatenated 
SNPs in IQ-TREE. Focal nodes are annotated with bootstrap support (values for shallow nodes 
omitted for clarity). For specific locality information, refer to Table S1. 
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Figure S9: Model selection results for SNAQ/ PHYLONETWORKS; h=maximum number of hybrid 
edges allowed per model; (A) L(h) = -log likelihood for the best network of N=48 replicate runs 
per value of h; (B) L’(h) = 1st order change in L(h) = L(h) – L(h-1); (C) L’’(h) = 2nd order change 
in L(h) =  L’(h+1) – L’(h); and (D) Dh = L’’(h) / s(h) where s(h) is the standard deviation in L(h) 
among replicates.  
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Figure S10: Site-wise log-likelihood differences (DSLS ) for (A) SVDQUARTETS, (B) POMO, and (C) TICR topologies as compared to 

an unconstrained concatenated tree. DSLS values are transformed as signed square-roots, with positive values indicating increased site-

likelihood under the constrained model, and negative values having increased likelihood under the unconstrained concatenated model.   
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Figure S11: Site-wise concordance factors (sCF) for lineage trees produced in IQ-TREE under topological constraints for the (A) 

SVDQUARTETS, (B) POMO, and (C) TICR results. For details, see Methods. 
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Figure S12: Characterization of site-wise concordance (sCF) factors for SVDQUARTETS, POMO, and TICR phylogenies. Panels show 

(left to right): Linear regression of subtending branch lengths (log-transformed) with sCF; node height (cumulative branch lengths 

from root to focal node); and densities of sCF across nodes as compared to the discordance factors for the two conflicting quartet 

resolutions (sDF1 and sDF2). 
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Figure S13: Prior and posterior probabilities for number of independent divergence events in 
ECOEVOLITY co-divergence models for Gila. Parameters across all runs were identical, except 
for the shape (a) and scale (b) of the gamma-distributed prior on the Dirichlet process 
concentration. 
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Figure S14: Ancestry block lengths in the red wolf genome before (A) and after (B) merging 
consecutive blocks of the same ancestry. Note truncation of the x-axis for interpretability. 
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Figure S15: Cubic interpolation models for red wolf chromosomes (black) with points depicting data points from the genetic map 

(red)  1
6
5
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Figure S16: Densitree plot (A) of gene trees and distribution of interspecific heterozygosity (B) among sampled genomic ancestry 

blocks in the red wolf genome. Gene trees are restricted to those which were significantly supported by approximated bootstrap 

proportions (e.g. <10% of trees supporting an alternate topology), whereas interspecific heterozygosity is reported for all blocks.  
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Figure S17: Dominant ancestries summarized along red wolf chromosomes, as determined via 
‘majority-rule’ among delimited ancestry blocks merged into 500kb segments, excluding blocks 
for which ancestry could not be decisively determined.   
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Figure S18: Proportion of assigned ancestries in the red wolf genome in 1 megabase blocks per chromosome, with blocks that could 
not be conclusively called as heterozygous or parental-homozygous excluded.  
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Figure S19: Histogram of Gelman convergence diagnostics across MCMC chains (each having 
two replicates), showing a cutoff threshold (red) of 1.05. Values shown are post burn-in, 
following an automated iterative procedure testing burn-in values according to the Geweke 
diagnostic. 

 
Figure S20: Effective sample sizes summarized across coalHMM MCMC chains passing 
Gelman-Rubin convergence threshold of 1.05. The minimum ESS threshold (red) of 100 was 
used to filter coalHMM results.  
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Figure S21: Posterior distributions of coalescent times inferred using coalHMM within 1Mb 
blocks of the red wolf genome (A) and the ratios among dates (B)  

 
Figure S22: Full set of parameter estimates from g-PhoCS. Results are grouped by putative sub-
genomes, showing mutation-scaled effective population size (Q) and divergence times (t). 
Parameters are displayed on a log scale, as follows: Effective size per subset (QSISTER); red wolf 
(QRW); non-source (QALT); red wolf and source (QANC); all Canis (QCANIS); and root (QALL), as 
well as divergence time for red wolf and sister (tANC); all Canis (tCANIS); and root (tALL). 
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Figure S23: Total count of chromosomes choosing categories of admixture models, where 
GA=gradual admixture; and Multi_x-y represents multiple-pulse admixture models where 
x=number of inferred coyote admixture events and y=number of gray wolf events.  
 

 
Figure S24: Admixture proportion for inferred admixture events inferred at different times 
(measured in generations before the present). The left axis (=points) show the measured 
admixture times as a function of admixture proportions, which the right axis (=histogram) shows 
frequency of admixture proportions across all events.
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Figure S25: Admixture times inferred from ancestry block lengths in a multiple-pulse 
hybridization model. Time is shown in generations before the present, with the y-axis depicting 
densities based on 100 replicate datasets per chromosome, wherein heterozygous blocks were 
randomly assigned ancestry. Note that chromosomes best fitting a single-pulse model (*) depict 
the inferred start time for a gradual admixture (GA) scenario in which migration rates thereafter 
towards the present.   
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