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ABSTRACT 

There are a lack of tools to assess midseason nitrogen (N) status in corn (Zea mays L.) 

production systems and identify the need for additional N fertilization. This study was conducted 

to determine the ability of leaf N concentration (LN) and the Dark Green Color Index (DGCI) at 

the 10th collared leaf stage (V10), the 12th collared leaf stage (V12), and tasseling (VT) to predict 

if midseason N is required to maximize corn grain yield. From 2017 to 2019, eight field studies 

with 11 N treatments ranging from 0 to 258 kg N ha-1 were conducted on silt loam soils in 

Arkansas. Leaf samples and digital images were collected at V10, V12, and VT growth stages. 

Relative grain yield (RGY) was predicted as a function of LN between V10 and VT which was 

described by a linear-plateau regression (R2 = 0.82, P-value < 0.0001). Model predictions 

indicated that RGY increased linearly up to a LN concentration of 30.4 g N kg-1 and there was no 

additional increase when LN was greater than 30.4 g kg-1. Measurements of DGCI from the high 

N treatment (258 kg N ha-1) were included in the regression analysis as a reference DGCI 

(RDGCI) to account for differences in environmental lighting when aerial images were captured. 

A multiple regression equation described the relationship between LN, DGCI, and RDGCI (P-

value <0.0001) with a root mean square error (RMSE) of 3.49 g N kg-1 and a bias of -0.03 g N 

kg-1. Similarly, RGY was predicted as a function of DGCI and RDGCI (P-value < 0.0001) with a 

RMSE o 10.3% and a bias of -0.3%. Both LN and DGCI predicted corn N status accurately, 

demonstrating the ability to implement these tools to improve N management in corn production 

systems.  
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INTRODUCTION 

Corn (Zea mays L.) is one of the primary cereal crops worldwide with more than 183 

million hectares grown annually (USDA-NASS, 2018). The world’s average production is 5,700 

kg ha-1, resulting in approximately 1 billion metric tons of corn harvested yearly. In the United 

States (U.S.), corn is grown on 32 million hectares with yields averaging 10,700 kg ha-1. The 

total production of corn in the U.S. is around 353 million metric tons (USDA-NASS, 2018).  

HISTORICAL AND CURRENT NITROGEN USE 

Among the plant nutrients, nitrogen (N) is usually required in the highest quantities. This 

nutrient is a component of enzymes and storage proteins, photosynthetic pigments, secondary 

metabolites, and defense compounds (Maathuis, 2009).  

Nitrogen management has been a major concern since the domestication of plants and 

animals began. Even without an understanding of the chemical properties of N, over 2500 years 

ago, the Roman civilization used certain agronomic practices to keep the soil fertile (Sinclair & 

Sinclair, 2010). Barley (Hordeum vulgare) and wheat (Triticum spp.) were grown in rotation 

with fallow to give the soil time to mineralize N, so it would be available for the next crop. As 

the population increased in the Roman Empire, this rotation stopped being a priority, giving 

place to continuous crop production, with no fallow period. Uninterrupted crop production mined 

the soil N, and the soil did not have time to mineralize N for the next crop, thus resulting in 

lower yields. A common practice then, was to fertilize crop fields with animal manures. 

Rice (Oryza sativa), corn, and wheat are three of the major global cereal crops and are 

responsible for more than half of the world’s fertilizer consumption (Ladha, Pathak, Krupnik, 

Six, and Kessel, 2005). In 1940, the global consumption of N fertilizer was 3 Mt; by 2017, global 
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N use had soared to 109 Mt (FAO, 2020), showing a substantial increase in the amount of N 

applied to crop fields. Approximately 45% of the global N demand is supplied with synthetic 

fertilizers. The remaining N is supplied by biological N fixation (BNF), crop residues, animal 

manure, atmospheric deposition, and irrigation water (Ladha et al., 2005). Despite the 

importance of N to agriculture, N is used inefficiently in cropping systems. This inefficiency is 

noted by low average values of N use efficiency (NUE), where NUE is the ratio between the 

amount of N from the fertilizer accumulated by the crop and the amount of N applied via 

fertilizer (Raun & Johnson, 1999).  

In a given region, the ratio between the average yield achieved by farmers and the yield 

attainable with optimal crop management practices is defined as the yield gap (Fischer, 2015). 

To date, some production areas still present yield gaps associated with N deficiency (Mueller et 

al., 2012). For instance, Sub-Saharan Africa, Eastern Europe, East and South Asia yield gap 

averages 71, 64 and 57% of the attainable yield, respectively. In contrast, North America 

averages 85%. Solely focusing on fertilizer, the yield gap for the major cereals (corn, wheat, and 

rice) worldwide could be narrowed to 75% of the attainable yield in 73% of the underachieving 

areas by increasing the input of N, P2O5 and K2O by 18, 16, and 35% respectively. On the other 

hand, to narrow the yield gaps to the same level while also eliminating overuse of fertilizer, the 

input variation would be 9 (N), -2 (P2O5) and 34% (K2O) (Lassaletta, Billen, Grizzetti, Anglade, 

and Garnier, 2014). 

DIFFERENCES IN NITROGEN RECOMMENDATIOS AMONG STATES IN THE U.S. 

The recommendation of N for corn production varies greatly among states in the U.S. In 

Arkansas, for instance, the recommendation is to apply 20 to 25% of the total N before planting. 

The remaining 75 to 80% of the N rate should be applied as sidedress, between the V6 and V8 
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growth stages (Ritchie, Hanway, and Benson, 1989) or be split in 50 to 65% of the N rate in 

sidedress between V6 and V8 followed by the remaining 15 to 25% of the total N as a pre-tassel 

application, between V10 and VT (Slaton et al., 2013a; b). The amount of N to be applied is 

defined by soil texture and yield goal. For example, for a loamy soil, and a yield goal up to 

10,900 kg ha-1, the recommended N rate is 179 kg N ha-1. For the same soil, but with the yield 

goal above 10,900 kg ha-1, the recommendation is 246 kg N ha-1. In contrast, for a clayey soil, 

with the yield goal of 10,900 kg ha-1, the recommendation is 258 kg N ha-1, and for the yield goal 

above 10,900 kg ha-1, the recommendation is 325 kg N ha-1 (Slaton et al., 2013a).  

In Nebraska, the recommended N rates are estimated based on expected yield, residual 

soil nitrate (NO3-N), soil organic matter (SOM), timing of application, and fertilizer and corn 

prices.  For example, for a soil with 3% of OM, soil test of 12 mg NO3-N kg-1, and a yield goal 

of 13,200 kg ha-1, the recommended N rate is 118 kg N ha-1. Given the same circumstances, but 

changing the SOM to 1%, the N rate recommended is 180 kg ha-1. The application timing and 

fertilizer prices are taken into account by correction factors (Shapiro, Ferguson, Hergert, 

Wortmann, and Walters, 2008).  

In Iowa, N rates are based on the previous crop, soil texture, and the price ratio between 

N and corn (Sawyer & Lundvall, 2018). The price ratio ranges from 0.00089 to 0.00357 $ kg-1N 

$-1kg corn-1 (0.05 to 0.2 $lb-1 N $-1 bu) and is calculated as the ratio between the cost per unit 

mass of N and the price of the corn commodity. Soil series is taken into account by varying the 

recommended N rate according to the geographical region within the state. For instance, greater 

N rates are recommended in the southeast region of the state when compared to the rest of Iowa. 

The previous crop is taken into account by decreasing the recommended N rate when corn is 

planted in an area where the previous crop was soybean (Glycine max), as opposed to a 
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continuous corn cropping system. The decrease in the N rate ranges from 46 kg N ha-1 to 67 kg N 

ha-1 depending on price ratio and soil texture. For example, in the central part of Iowa with a 

price ratio of 0.00089 $ kg-1N $-1kg corn-1 in a continuous corn system, the recommended rate is 

235 kg N ha-1. However, if the previous crop was soybean, the recommended rate decreases by 

56 kg N-1 to 178 kg N-1. In contrast, in a scenario with either high N prices or low corn prices, 

and where the price ratio is 0.00357 $ kg-1N $-1kg corn-1, N rate recommendations in the central 

area of the state are 172 kg N-1 and 126 kg N-1 for a continuous corn system and corn following 

soybean, respectively. 

MECHANISMS OF NITROGEN LOSS 

The NUE varies greatly worldwide and is strongly influenced by management and 

environmental conditions. For instance, in Brazil and U.S., the NUE in corn averages 65%, while 

NUE in India and China averages 40% (Lassaletta et al., 2014). The remaining N is lost due to 

soil denitrification, surface runoff, leaching and ammonia (NH3) volatilization (Ladha et al., 

2005).  

DENITRIFICATION 

Denitrification occurs when NO3
-
 is present in an anaerobic environment (Brady & Weil, 

2002). In rice fields, for example, the flooding irrigation system favors the denitrification 

process. Once most of the O2 is eliminated from the soil and the redox potential is reduced, 

microbes use NO3
-
 as a terminal electron acceptor. As a result of this process, N can be lost as 

NO2
-, NO, N2O, and N2. Denitrification is usually evaluated in a soil by measuring the end-

products N2O and N2 (Qian et al., 1997). Rates of N losses via denitrification are variable and 

highly influenced by environmental conditions. According to Patrick and Wyatt (1964), under 
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continuous anaerobic conditions, denitrification is limited to NO3
- and NO2

- that were present in 

the soil when the anaerobic condition was established. Since the conversion of NH4
+ to NO3

- 

(nitrification) is an aerobic process, nitrification would not occur under anaerobic soil conditions. 

In addition, the authors showed that intermittent wetting and drying cycles favored 

denitrification by renewing the NO3
- pool after dry periods, followed then by subsequent 

denitrification. This study also demonstrated that increasing carbon (C) availability in soil by 

adding rice straw to the field favored denitrification.  

LEACHING 

Leaching is the vertical movement of the water in the soil profile beyond the rooting 

depth. This process is mainly determined by soil, crop, and N surplus (Schröder, Assinck, Uenk, 

and Velthof, 2010). According to Karlen et al. (2002), the predominant form of N lost by 

leaching is NO3
- and it is responsible for the degradation of groundwater and, eventually, surface 

water, such as the Mississippi River and its tributaries. In fact, N leaching and runoff from corn 

and soybean fields contribute to 45.6% of NO3
- contamination in the Gulf of Mexico (Alexander 

et al., 2008). To decrease the contamination of surface and ground water, it is necessary to use N 

more efficiently, reducing pollution and increasing profitability. The use of reduced N rates and 

cover crops decreased N loss by 59% (Syswerda, Basso, Hamilton, Tausig, and Robertson, 

2012).  

AMMONIA VOLATILIZATION 

Volatilization is the main N loss mechanism when NH3 based fertilizers are applied to the 

surface of flooded soils (Smil, 1999). This process occurs when N is lost to the atmosphere as 

NH3, being affected by soil moisture, pH, fertilizer placement, and temperature. Ernst and 
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Massey (1960) showed that an increase in soil pH increases NH3 volatilization. Ten days after 

urea application, a soil with a pH of 5 volatilized around 8% of the N applied, while a soil with a 

pH of 7.5 volatilized 50% of the N applied. The same study showed that fertilizer placement also 

affects the losses via volatilization. While urea placed on the soil surface volatilized 18% of the 

N applied in a 13-day period, urea placed 0.04 m below soil surface volatilized 5% of the N 

applied. Ernst and Massey (1960) also showed that when the temperature was 7 °C, 5% of the N 

applied was lost was NH3, when the temperature was 32 °C, 24% of the N applied was 

volatilized. 

Soil moisture also affects NH3 volatilization (Ernst & Massey, 1960). Dry soils had little 

measurable NH3 volatilization, while saturated soils volatilized up to 18% of the N applied. 

Although the losses for NH3 volatilization averaged around 10 to 15%, there can be considerable 

increase in volatilization when the pH exceeds 7 and the temperature exceeds 16 °C. For 

instance, when the temperature is 32 °C and the soil pH is 6.5, the losses for volatilization are 

around 25%, but given the same temperature and a soil pH of 7.5, the losses increase to 45%. In 

contrast, when the pH is 6.5 and the temperatures are 7°C and 16°C, the losses are around 5% 

and 10%, respectively (Franzen, 2004).  

MANAGEMENT STRATEGIES TO IMPROVE NITROGEN USE EFFICIENCY 

Management strategies such as matching crop demand and N fertilizer supply, splitting N 

fertilizer applications, minimizing application during the wet season, and changing fertilizer 

sources to match the environmental conditions can increase NUE (Mosier, Syers, and Freney, 

2004). The majority of N is absorbed by corn after the V8 stage (Russelle, Hauck, and Olson, 

1983), which leaves N applied early in the season exposed to loss mechanisms, lowering overall 

NUE. Thus, synchronizing corn N demand with fertilization through split applications reduces 
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the possibility of losses (Magdoff, 1991), increasing NUE. When N was applied to furrow-

irrigated corn in a two -way split (pre-plant and sidedress application at V6 to V8), 81 to 91% of 

the N fertilizer was effectively absorbed by the crop (Roberts, Slaton, Kelley, Greub, and 

Fulford, 2016). Furthermore, in-season N applications as late as V12 to VT have resulted in no 

significant yield losses (Russelle et al., 1983) indicating a wide window for N midseason 

fertilization.  

Nitrogen fertilizer source is an important management consideration. Low fertilizer 

recovery is frequently observed in production systems in which urea is applied to the soil surface 

resulting in NH3 volatilization (Keller & Mengel, 1986). Urea is highly susceptible to 

volatilization, as it is readily soluble in water and prone to hydrolysis, forming NH4
+ (Ernst & 

Massey, 1960), which can rapidly convert to NH3.  Urea hydrolysis is mediated by the urease 

enzyme, which is pervasive in soils and surface residues (Brady & Weil, 2002). To reduce the 

loss of N, it is necessary to adjust the fertilizer source to the production system. For a surface 

application, prilled ammonium nitrate volatilized 3.7% of the N applied, whereas granular urea 

volatilized 30% of the N applied 5 days after application (Keller & Mengel, 1986). 

Improved efficiency fertilizers were developed to increase the synchrony between crop 

demand and N availability in the soil (Abalos, Jeffery, Sanz-Cobena, Guardia, and Vallejo, 

2014). These can be separated in two different groups: (1) controlled release fertilizers, which 

are coated with inert material and slowly release the fertilizer as the coating material degrades, 

and (2) stabilized fertilizers, which are coated with urease or nitrification inhibitors (Shaviv & 

Mikkelsen, 1993). The use of improved efficiency fertilizers alone has increased the global 

average yield and NUE by 7.5% and 12.9%, respectively. In fact, the use of nitrification or 

urease inhibitors improves NUE in systems with well-drained soils and with high N input. 
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Urease inhibitors are the most appropriate option for systems that favor NH3 volatilization 

(Abalos et al., 2014). 

SOIL ANALYSIS TO DETERMINE CORN NITROGEN NEEDS 

In the U.S. Northwest, the problems with over or under fertilization in silage corn 

production encouraged the development of the Pre-sidedress Nitrate Test (PSNT) (Magdoff, 

Ross, and Amadon, 1984). According to Magdoff (1991), the PSNT was successful in predicting 

the N fertilization needs because of the climate and the production system. The Pacific 

Northwest climate lessens leaching loss potential during the winter and early spring, leaving 

more NO3
-
 for corn uptake and assimilation. Simultaneously, these cropping systems experience 

very little input of N via manure. The PSNT consists of a soil sample from the top 0.3 m of the 

soil, when corn is about 0.24 to 0.30 m tall. This test’s advantages have been reported to increase 

NUE and decrease NO3
- leaching (Jaynes et al., 2004).  

Similar to the PSNT, the Pre-Plant Nitrate Test (PPNT) evaluates residual NO3
- present in 

the soil (Bundy & Malone, 1988). This test uses the profile of NO3
- present in the top 0.9 m of 

the soil to make adjustments to the N rate recommendation. The PPNT reduces the risk of NO3
-
 

leaching by decreasing the amount of NO3
- left in the soil through the recovery of the initial NO3

- 

present in the soil.  However, due to the potential NO3
- leaching between soil sampling and crop 

N uptake, the PPNT has been reported to fail in distinguishing responsive from non-responsive 

soils in humid environments (Spargo, Alley, Thomason, and Nagle, 2009). 

The search for new in-season N status assessment tools led to the development of the 

Illinois Soil Nitrogen Test (ISNT) (Khan, Mulvaney, and Hoeft, 2001; Mulvaney, Khan, Hoef, 

and Brown, 2001). Williams et al. (2007) described that this test is based on an alkaline digestion 
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of a soil sample, followed by colorimetric analysis of the NH3-N released during the digestion. 

The hydrolysates are fractionated in total hydrolyzable N, hydrolyzable NH4-N, amino sugar and 

NH4–N, amino acid–N, and amino sugar-N.  The test was used to classify Illinois soils as 

responsive to N fertilization (ISNT result < 225 mg kg-1) or non-responsive (ISNT result > 235 

mg kg-1) (Khan et al., 2001). Calculations of the economic optimum N rate (EONR) for the 

average fertilizer cost and corn price ratio correlated negatively and strongly with the EONR, 

indicating the ability to predict corn response to N (Williams et al., 2007). In contrast, the results 

from 80 site-years of corn response to N trials found it incapable of distinguishing responsive 

from non-responsive soils in Wisconsin. This study correlated the ISNT values with SOM and 

suggested that the ISNT is measuring a constant fraction of the SOM rather than readily 

mineralizable-N (Osterhaus, Bundy, and Andraski, 2008). 

The Nitrogen Soil Test for Rice (N-STaR) was developed for silt loam soils in Arkansas 

(Roberts, Norman, Slaton, and Wilson, 2011). The N-STaR method uses direct steam distillation 

(DSD) to quantify amino sugar and alkaline hydrolyzable N (AH-N), predicting potentially 

mineralizable soil N (amino sugars, NH4, and amino acids). This method’s basis is the correlation 

between the AH-N levels and rice response parameters (total N uptake and check plot grain 

yield) and the calibration of N rates needed to reach 90, 95 and 100% of relative grain yield 

(RGY). It has accurately predicted site-specific N rates needed to achieve 95 and 100% RGY in 

silt loam soils in Arkansas. (Roberts, Norman, Fulford, and Slaton, 2013). Developing the same 

prediction system for upland row crops, such as corn, research has met a few challenges 

including: the need to determine the best N application strategy to achieve the highest NUE, how 

to assess NO3-N and to determine a proper soil sampling depth based on the effective rooting 

depth of the crop.  



11 
 

PLANT MEASUREMENTS TO DETERMINE CORN NITROGEN NEEDS 

Several sensors have been used in the field as in-season evaluation tools. Crop N 

concentration directly affects the chlorophyll concentration in the leaf and canopy. Chlorophyll 

concentration affects the balance between absorbance and reflectance of the light spectrum. The 

more chlorophyll that is present in the leaf, relatively more green light is reflected. However, 

chlorophyll meters (CM), such as the SPAD-502 meter (Konica Minolta, Tokyo, Japan), base 

their measurements on the amount of red light absorbed. The more chlorophyll present in the 

leaf, the more red light is absorbed (Samborski, Tremblay, and Fallon, 2009).  

In the North Central area of the USA (Illinois, Kansas, Michigan, Minnesota, Missouri, 

Nebraska and Wisconsin), a cooperative study was conducted to evaluate the accuracy of CM to 

predict corn yield response to N and to assess corn N needs (Scharf, Brouder and Hoeft, 2006). 

The model estimates the EONR based on relative CM readings. High N treatments were chosen 

as references and their CM values were used as standards. The EONR was calculated for every 

location, using regression analysis and an N productivity ratio of 3.4 kg corn grain kg-1 N 

fertilizer, which was representative of the time period that the study was performed. At the 

EONR, the yield averaged 11,000 kg ha-1 and the average response to EONR was an increase of 

3600 kg ha-1. Overall, the study concluded that CM readings were significant (P-value < 0.0001) 

predictors of EONR for corn.  

In a similar study in Nebraska from 1995 to 2004, CM measurements were made at three 

growth stages (V8, V10, and V12) (Varvel, Wilhelm, Shanahan, and Schepers, 2007), and the 

Sufficiency Index (SI) was calculated as the ratio between the CM reading for a given treatment 

or region in the field and the maximum CM reading. A quadratic regression was fit to the 

chlorophyll meter readings (SI) and N fertilizer rates at all growth stages. This method required 
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an area with high N input, and once this area was established this regression could be used to 

estimate the N rate needed to achieve maximum yield.  

The normalized difference vegetation index (NDVI) has also been used to evaluate N 

need in cropping systems. Crop Circle ACS-210 (Holland Scientific, Lincoln, NE) and Green 

Seeker (N Tech Industries, Inc., Ukiah, CA) are examples of NDVI sensors used to evaluate the 

crop N status. These sensors determine NDVI based on red (650 ±10 nm) and near infra-red 

(NIR, 750 ± 15 nm) reflectance from the crop canopy. The NDVI value is calculated according 

to equation (1 and varies from -1 to 1 and the higher the value, the more intense the light 

absorption. The NDVI measurements have been reported to strongly correlate with leaf N 

concentration (LN) (Schlemmer et al., 2013). 

NDVI =  �.� − 0�1
�.� + 0�1 (1) 

In Oklahoma, a Nitrogen Fertilization Optimization Algorithm (NFOA) was developed 

using NDVI measurements (Teal et al., 2006; Tubaña et al., 2008). The algorithm uses NDVI 

values collected between V7 and V9 stages to calculate crop yield potential (YP). N rate is 

calculated as the product of N concentration in the corn grain (0.0125 kg N kg−1) and YP, 

divided by the expected NUE. Using this algorithm, field trials were performed in three locations 

across the state. The N rate calculated with NFOA varied from 39 to 213 kg N ha-1 (35 to 190 lb 

N A-1)  and even the lowest rate did not result in significant yield loss when compared to the 

fixed rate of 171 kg N ha-1  (Tubaña et al., 2008). The use of the NFOA resulted in higher NUE, 

65%, while the fixed rate treatments averaged 56%. Furthermore, it also resulted in higher net 

return, $561 ha-1, in contrast to $425 ha-1 of the fixed rate treatment. 

The Dark Green Color Index (DGCI) has also been a tool to assess corn N status. An 

advantage of DGCI, when compared to NDVI and CM, is that it is measured from digital 
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images, indicating that it can be utilized in aerial platforms without requiring the purchase of 

additional sensors. From an aerial platform, DGCI integrates measurements over an entire 

experimental unit compared with CM which has a sensor that covers approximately 6mm2. This 

method requires the red, green and blue (RGB) values from digital images of the crop to be 

converted to hue, saturation and brightness values. The DGCI value ranges from 0 (very yellow), 

to 1(dark green) and it is calculated according to equation (2) (Karcher & Richardson, 2003). 

DGCI =  
5Hue −  60;

60  + 51 −  Saturation; + 51 −  Brightness;
3  

(2) 

This index has been used in corn with the purpose of assessing LN (Rorie, Purcell, 

Karcher, and King, 2011a). An ear-leaf was photographed with a digital camera against a pink 

board to provide contrast during the image processing phase. The pink board included two 

circular sections, with known DGCI values. These sections served as internal standards and were 

used to correct DGCI values according to different lighting conditions. Yield, LN and 

chlorophyll concentration have been reported to directly correlate with DGCI (Rorie et al., 

2011a; Rorie et al., 2011b). Additionally, DGCI values measured between V6 and V10 on the 

uppermost collared leaf of corn plants were used to adjust the N recommended rate (Purcell, 

Siddons, Karcher, and Rorie, 2015).  

Further research was developed to evaluate the accuracy of the DGCI method proposed 

by Purcell et al. (2015) (Rhezali, Purcell, Roberts, and Greub, 2018). The recommendations were 

checked against the University of Arkansas Extension N rate recommendation, 250 kg N ha-1 

(Slaton et al., 2013a). Overall, N rates recommended with the DGCI method ranged from 92 to 

112 kg N ha-1 less than the recommended Extension rate while maintaining yield in all cases. The 

authors concluded that the DGCI method was capable of predicting in-season N requirement for 
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corn and that future research should focus on simplifying the method and extending it to aerial 

platforms so it can be used directly in the field.  

Although several plant and soil based tests and indirect measurements have been 

developed to fine-tune N rate recommendations in corn production, there is a lack of N 

assessment tools for midseason N fertilizations. Tissue sampling for LN determination has been 

used extensively in plant nutrient monitoring; however, LN is generally determined at the R1 

growth stage, which is past the growth stages for which midseason N applications are 

recommended. This study intended to determine the relationship between final RGY and LN 

determined from leaves collected between V10 and VT, and the adequacy of LN to serve as a 

guideline for midseason N fertilizations. In addition, DGCI shows close relationship with LN 

and RGY, and little is known about the ability of DGCI measured from aerial platforms to 

predict N fertilization needs. The second objective of this study was to determine the 

relationships among DGCI from an aerial platform, LN, and RGY, and to evaluate the adequacy 

of aerial DGCI measurements to guide in-season N fertilizations. 
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CHAPTER TWO 

Leaf Nitrogen Sufficiency Level Guidelines for Midseason Fertilization in Corn  
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ABSTRACT 

Corn (Zea mays L.) is one of the primary cereal crops worldwide with a yearly 

production of approximately one billion metric tons. Corn yield has increased 140% over the last 

four decades in part because of a 40% increase in nitrogen (N) input over the same period. 

However, the excessive application of N for corn production raises environmental and economic 

concerns, emphasizing the need for agricultural practices that lead to an efficient use of N. The 

objective of this study was to develop a prediction system for in-season N application using plant 

tissue analysis. Eight site-years were planted with the hybrid P1197YHR. The treatment structure 

was comprised of 11 N fertilization regimes with season total N rates ranging from 0 to 257 kg N 

ha-1 and with split-applications at preplant, the 10th collared leaf stage (V10), the 12th collared 

leaf stage (V12), and tasseling (VT). The uppermost fully collared leaves were sampled at V10 

and V12, and ear-leaves were sampled at VT. Relative grain yield (RGY) was positively 

associated with leaf N concentration (LN) at V10, V12, and VT. A single regression combining 

data over growth stages was developed between RGY and LN indicating that RGY increased 

linearly as LN increased up to 30.4g N kg-1, between V10 and VT (R2 = 0.82, P-value <0.0001). 

When LN was greater than 30.4 g N kg-1, there was no further increase in RGY. This relationship 

can be used to predict the need of additional midseason N fertilization between the V10 to VT 

growth stages to maximize yield. 
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INTRODUCTION 

Since the Green Revolution, the amount of N fertilizer applied to agricultural soils has 

increased substantially. In 1940, the global consumption of N fertilizer was 3 Mt; by 2017, this 

number had soared to 109 Mt (FAO, 2020). Of the total N used in crops globally, approximately 

45% is derived from synthetic fertilizers. The remaining N is supplied by biological N fixation, 

crop residues, animal manure, atmospheric deposition, and irrigation water (Ladha, Pathak, 

Krupnik, Six, and van Kessel, 2005).  

Despite the importance of N to agriculture, this nutrient has not been used efficiently in 

cropping systems. Nitrogen use efficiency (NUE) is defined as the ratio between the amount of N 

from the fertilizer accumulated by the crop and the amount of N applied via fertilizer (Raun & 

Johnson, 1999). Globally, NUE varies greatly and is strongly affected by management and 

environmental conditions. For instance, in countries such as Brazil and the U.S., the NUE in corn 

is around 65%; India and China present lower NUE values, averaging around 40% (Lassaletta, 

Billen, Grizzetti, Anglade, and Garnier., 2014). The global NUE averages 33% indicating that the 

remaining N is lost due to soil denitrification, surface runoff, leaching and NH3 volatilization 

(Ladha et al., 2005).  

Strategies to improve NUE include matching crop demand and N fertilizer supply, 

splitting N fertilizer applications, minimizing application during the wet season, and changing 

fertilizer sources to match the environmental conditions (Mosier, Syers, and Freney, 2004). The 

majority of N is accumulated by corn after the V8 stage (Russelle, Hauck, and Olson, 1983), and 

N applied before V8 is exposed to potential losses, which lower the overall NUE. Synchronizing 

the crop’s time of greatest N requirement with N fertilization through split applications reduces 

the probability of losses (Magdoff, 1991). In Arkansas, for example, N fertilizer 



22 
 

recommendations for corn are to apply 20 to 25% of the total N before planting. The remaining 

75 to 80% of the N should either be applied as sidedress between the V6 and V8 stages (Ritchie, 

Hanway, and Benson,1989) or should be split in 50 to 65% of the N as sidedress, between V6 

and V8, with the remaining 15 to 25% total N applied as a pre-tassel application (Slaton et al., 

2013a, 2013b). 

In-season N applications as late as V12 to VT have resulted in no significant yield losses, 

indicating that there is a large window of opportunity in-season to apply N to corn, especially in 

irrigated systems (Russelle et al., 1983). Diverging from the global average NUE of 33% (Ladha 

et al., 2005), furrow-irrigated corn in Arkansas has been reported to recover 81% to 91% of the 

N fertilizer when applied at V6 and more than 80% when fertilizer was applied in a two-way 

split (pre-plant and sidedress application at V6 to V8) (Roberts, Slaton, Kelley, Greub, and 

Fulford, 2016).  

Rate and timing of N application recommendations for corn production varies greatly 

among states in the U.S. In Nebraska, for instance, N rate is recommended based on corn and 

fertilizer prices, soil organic matter (SOM), timing of application, expected yield, and residual 

soil nitrate (Shapiro, Ferguson, Hergert, Wortmann, and Walters, 2008). In Iowa, N rate 

recommendations are based on soil regions, previous crop, and a ratio between the cost of N and 

the price of the corn commodity (Sawyer & Lundvall, 2018). In Arkansas, N rate 

recommendations are based on soil texture and yield goal (Slaton et al., 2013a, 2013b).  

Several tests have been developed that can be used before the growing season to assess 

corn N needs, including the Illinois Soil Nitrogen Test (ISNT) (Khan, Mulvaney, and Hoeft, 

2001; Mulvaney, Khan, Hoeft, and Brown, 2001) and the Pre-Plant Nitrate Test (PPNT) (Bundy 

& Malone., 1988). The Pre-sidedress Nitrate Test (PSNT) (Magdoff, Ross, and Amadon, 1984) 
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is designed to determine the amount of N needed for corn sidedress application. Additionally, 

ear-leaf N concentration at the R1 growth stage can be used to monitor crop in-season N status, 

adjust fertilization program, and provide information on the need of a possible late season N 

application, as an attempt to salvage yield (Kovács & Vyn. 2017). Yield increases have been 

reported from late season applications between V10 and late R1 (Binder, Sanders, and Walters, 

2000; Roberts et al., 2016). However, it is important to diagnose the N need early to not lose 

yield potential, especially when N deficiency is severe (Binder et al., 2000).Therefore, it is 

critically important that N fertilizer is applied in a timely fashion so that maximal yields can still 

be achieved.  

Identifying N deficiency earlier than at the R1growth stage would provide valuable 

information for corn producers to adjust N fertilization programs in-season. This information 

could be used to support the decision to adjust a late season N application to corn fields. The 

objective of this research was to determine the relationship between yield and LN and to identify 

the sufficiency level of LN that could serve as a guideline for midseason N fertilization. 

MATERIALS AND METHODS 

Between 2017 and 2019, eight field studies were conducted at three research stations in 

Arkansas which were all situated on loamy textured soils (Table 2.1). Three of these fields were 

located at the Pine Tree Research Station (PTRS), three fields were situated at the Milo J Shult 

Agricultural Research and Extension Center (SAREC), and the remaining two fields were 

located at the Rohwer Research Station (RRS). The experimental design was a randomized 

complete block with four replications and 11 different treatments, which represented different 

timings and rates of N (Table 2.2). Plots were planted with the hybrid P1197YHR (Pioneer, 

Johnston, IA ) at the seeding rate of 98,000 seeds ha-1, and plots consisted of four rows, 9 m in 
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length and with row spacing of 0.76 (PTRS), 0.91(SAREC), and 0.96 m (RRS). Pre-plant N rates 

(33.6 kg N ha-1) were applied to experimental units assigned to treatments 2 through 11 and 

incorporated into the soil prior to sowing. The sidedress treatments were surface applied between 

the stages V6 and V8. The range of sidedress N treatments were meant simulate deficient, 

optimal, and above optimal N nutrition of corn prior to pre-tassel N applications. The pre-tassel 

application was applied to various treatments at V10 or V12. All N fertilizations were made with 

urea (46-00-00) treated with N-(n-butyl)-thiophosphoric triamide (NBPT) (Agrotain Ultra, Koch 

Agronomic Services LLC., Wichita, KS) at the rate of 0.89 g NBPT kg-1 urea. A single 

composite soil sample (four 3-cm diam. cores) was collected from each replication at all 

experimental sites to a depth of 15 cm, soil nutrient analysis was performed (Mehlich-3 

extractable nutrients, Zhang, Hardy, Mylavarapu and Wang, 2014) to confirm nutrients other 

than N were not limiting crop growth. Irrigation and pest management of plots closely followed 

furrow-irrigated corn recommendations established by the University of Arkansas System 

Division of Agriculture Cooperative Extension Service (Espinoza and Ross, 2003). Irrigation 

timing was scheduled according to the Arkansas Irrigation Scheduler set at a 5-cm soil profile 

water deficit. 

The uppermost leaf with a visible collar was collected from five plants in the two middle 

rows of each plot at V10 and V12, and five identifiable ear-leaves were sampled at the VT stage 

prior to N fertilization (Table 2.3). The leaf samples were oven-dried at 70 °C until a constant 

weight, ground and sieved via a 20-mesh screen, and analyzed for total N using the Campbell 

(1992) combustion method at the Soil Test and Plant Diagnostic Laboratory at the University of 

Arkansas (Fayetteville, AR). 
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Plots were trimmed to 6 m in length at maturity, the two center rows were harvested 

using a small plot combine, and yield was corrected to 15.5% moisture. Relative grain yield 

(RGY) was calculated as the ratio between the yield of an individual plot and the maximum yield 

attained within each environment. 

Statistical analysis was conducted in R 3.5.2 (R Core Team, Vienna, Austria). The 

relationship between RGY and LN was investigated by fitting a nonlinear segmented regression 

(Eq.1) using the least squares estimation method where θ0 is the intercept, θ1 is the increment in 

RGY per one unit change in LN, and x1 is the joint point of the regression:  

��� = IJK + J)  × ��, �� < O)
JK + J) × O), �� ≥ O)

 (1) 

An initial model was fit containing different coefficients for each growth stage; this 

model will be referred to as the full model for the remainder of this manuscript. Subsequently, a 

reduced model was fit, containing common coefficients for all three growth stages. The models 

were subjected to an F-test to test the hypothesis that the full model explained better the 

relationship between RGY and LN than the reduced model (Eq. 2) (Archontoulis & Miguez, 

2014). In Equation 2, SSfull is the sum of squares of the full model, SSreduced is the sum of squares 

of the reduced model, dffull is the degrees of freedom of the full model, and dfreduced is the degrees 

of freedom of the reduced model. A nonsignificant F test would indicated that the reduced model 

and the full model did not differ from each other in their descriptive performance of the 

relationship between RGY and LN. 

Q = RSSTUVV − SSW�XUY�XZ
R1[TUVV − 1[W�XUY�XZ × SSTUVV

1[TUVV
 (2) 

For each growth stage, only experimental units that had received all of the N determined 

by the treatment structure were included in the regression process. For instance, at the growth 
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stage V10, the observations used in the regression were limited to treatments 1, 2, 5, 8, and 11. 

Likewise, the regression for the V12 growth stage included only observations from treatments 1, 

2, 3, 5, 6, 8, 9 and 11. Similarly, at the VT growth stage, the regression included observations 

from all treatments. 

RESULTS AND DISCUSSION 

Across all environments, yields averaged 12,534 kg ha-1 and ranged from 1,592 to 20,676 

kg ha-1 (Table 2.1). However, yields varied greatly among environments. The most productive 

environment was RRS in 2019, where yields ranged from 8,813 to 20,676 kg ha-1 and, except for 

treatments 1 and 2, all treatments yielded greater than 17,148 kg ha-1. This yield level above the 

maximum yield of all other environments. Conversely, the least productive environment was 

SAREC in 2017, where the maximum yield was 13,131 kg ha-1 and the average yield was 10,807 

kg-1, which is roughly 2,000 kg-1 less than the average yield of the remaining environments.  

The ratio between the yields of the experimental units that received no N fertilization and 

those that received the highest N rate is an indicator of environmental responsiveness to N. The 

most responsive environments were RRS in 2018 and SAREC in 2019, where experimental units 

with no N fertilizer yielded 11% of the yields attained by the experimental units receiving the 

highest N rate (Table 2.1). Conversely, RRS in 2019 was the least responsive environment, 

where experimental units with no N fertilizer yielded 42% of the yields attained by experimental 

units receiving the highest N rate. In the remaining environments, plots receiving no N fertilizer 

yielded on average 28% of those receiving optimum and above optimum N fertilizer.  

Measurements of LN ranged from 10.5 to 36.8 g kg-1 and averaged 28.5 g kg-1. The 

environments with the lowest LN concentrations were SAREC in 2017 and RRS in 2018, which 

coincided with the most responsive environments to N. In these environments, LN averaged 22.2 
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and 22.8 g kg-1, respectively. In contrast, at RRS in 2019, LN concentration averaged 32.3 g kg-1 

and 75% of the experimental units had LN concentrations above 30.9 g kg-1. This high average 

LN concentrations also coincided with the environment that was the least responsive to N and 

had the highest yields. 

The relationship between RGY and LN was characterized by a linear plateau regression. 

Growth stage was tested as a fixed factor to determine a possible change in the optimum LN 

concentration among growth stages. Based on the results of the F-test (Table 2.4), including 

growth stage in the model did not improve statistically the model performance (P-value= 0.30). 

Therefore, data were combined over growth stages and the model with common coefficients for 

all three growth stages was chosen to represent the relationship between RGY and LN.  

The relationship between RGY and LN between V10 and VT was characterized by a 

significant (P-value < 0.0001) (Table 2.5) nonlinear model, where RGY increased linearly 

between LN values of 10.0 g kg-1 and 30.4 g kg-1 and plateaued for LN values between 30.4 g kg-

1 and 36.8 g kg-1 (Fig. 2.1). The model predicted RGY with a root mean square error of 8.6% and 

a bias <0.0001%. The joint point of the regression (30.4 ± 0.8 g kg-1) represents the minimum 

adequate LN concentration between V10 and VT at which no midseason N fertilization would be 

required to produce maximal yields. Conversely, LN levels less than 30.4 ± 0.8 g N kg-1 

represent plants that would be expected to respond to N fertilization.  

The LN sufficiency concentration of 30.4 g kg-1 agrees well with sufficiency 

concentrations previously reported for the Midsouth: between 28.0 g kg-1and 30.0 g kg-1 

(Bennett, Stanford, and Dumeni, 1953), 30 g kg-1 (Melsted, Motto, and Peck, 1969), and 31.0 g 

kg-1 (Greub, Roberts, Slaton, Kelley, and Gbur, 2018). However, these indexes were determined 

for N concentrations analyzed from ear-leaves, at the R1 stage. Normally, the information 
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provided by ear-leaf sampling at the R1 stage is used to adjust N fertilization programs for future 

crops (Kovacs & Vyn, 2017). The present research provides a sufficiency level for earlier growth 

stages, between V10 and VT, widening the window for tissue sampling and nutrient monitoring. 

The fact that the uppermost collared leaf can be used to diagnose crop N status may help 

producers fine tune N fertilization, improve NUE, and avoid unnecessary N applications. While 

N applications between V10 and late R1 can statistically increase crop yield (Binder et al., 2000; 

Roberts et al., 2016), it is important to supply N earlier to maximize yields, as opposed to 

increasing yields, especially in cases of severe N deficiency (Binder et al., 2000). Therefore, a 

test at growth stages earlier than R1 provides valuable information for corn growers. 

CONCLUSIONS 

Current interpretations of LN concentration for corn are restricted to early vegetative 

growth stages (prior to V6) and early reproductive growth stages (R1). In irrigated corn 

production systems where N can be applied and incorporated quickly and efficiently, midseason 

N diagnostic tools could provide valuable information to corn growers looking to maximize 

yield, by helping to identify areas were N is sufficient or lacking. Tissue analysis of the 

uppermost collared leaf at the V10 and the V12 growth stages and of the ear-leaf at the VT 

growth stage demonstrated the ability to identify optimum and suboptimum levels of LN in 

furrow irrigated corn in Arkansas. In our experiments the time between V10 and VT ranged from 

21 to 28 days, providing a wide window for corrective action. The possibility of evaluating corn 

N status during vegetative growth provides an opportunity to growers to determine the potential 

need for a pretassel N application. By providing this information to growers, there is a possibility 

of salvaging yield with a pretassel N application, in cases where N sufficiency levels are below 

optimum (< 30.4 g kg-1). Furthermore, there is also the possibility to prevent N over-fertilization, 
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in cases where N sufficiency levels are equal or above optimum levels (≥ 30.4 g kg-1). The 

development of these LN sufficiency guidelines has greatly increased the interpretation window 

for corn produced in irrigated production systems and when combined with previous research 

identifies critical LN concentrations from V10 through the late R1 growth stage. These LN 

sufficiency guidelines provide research-based tissue N concentration levels that will allow 

producers to better manage N applications to corn increasing NUE and reducing potential for 

negative environmental impacts. 
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Table 2.2. Nitrogen (N) rates and times of application for different treatments 

Treatment 

Nitrogen rates (kg N ha-1) Pre-tassel 

application 

timing 

 
Pre-plant Sidedress Pre-Tassel 

1 0 0 0 - 

2 33.6 56.4 0 - 

3 33.6 56.4 50.4 V10 

4 33.6 56.4 50.4 V12 

5 33.6 112.7 0 - 

6 33.6 112.7 50.4 V10 

7 33.6 112.7 50.4 V12 

8 33.6 169.2 0 - 

9 33.6 169.2 50.4 V10 

10 33.6 169.2 50.4 V12 

11 33.6 212.7 0 - 
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Table 2.3. Dates in which leaf nitrogen (LN) samples were collected at different locations. 
Pretassel applications were made at the V10 and V12 growth stages on the same day that LN 
samples were collected according to the treatment plan. 

Location Year 

Growth stage 

V10 V12 VT 

SAREC1 2017 28, June 05, July 21, July 

PTRS2 2017 08, June 15, June 21, June 

SAREC 2018 11, June -ǂ 29, June 

PTRS 2018 - - 20 July 

RRS3 2018 - 07, July 19, July 

SAREC 2019 10, June 20, June 28, June 

PTRS 2019 18, June 25, June 03, July 

RRS 2019 12, June 18, June 02, July 

ǂCells containing a dash represent missed sampling times 
1JShult Agricultural Research and Extension Center 
2 Pine Tree Research Station 
3 Rohwer Research Station 
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Table 2.4. Analysis of variance comparing full and reduced models based on extra sum of 
squares test. 

Model 
Residual 

DF 

Residual 

SS 
DF SS F-value P-value 

Full 519 38,566 - - - - 

Reduced 513 38,028 6 538 1.21 0.30 

 

  



37 
 

Table 2.5. Regression coefficients for the relationships between relative grain yield (RGY) and 
tissue leaf nitrogen (LN) concentrations between V10 and VT. 

Parameter R2 N Estimate St. Error t-value P-value 

Confidence 

interval at 95% 

Lower Upper 

Intercept 

0.82 522 

-26.7 2.41 11.06 <0.0001 -33.4 -20.4 

Slope 3.8 0.09 39.9 <0.0001 3.56 4.08 

Joint point 30.4 0.24 125 <0.001 29.6 31.1 
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Figure 2.1. Relationship between relative grain yield (%) and leaf nitrogen concentration between 
V10 and VT (%). The red dotted line represents the joint point (30.4 g N kg-1) and the grey shaded 
area represents the confidence intervals at α= 0.05. 
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CHAPTER THREE 

The Dark Green Color Index as a Midseason Nitrogen Management Tool in Corn Production 

Systems 
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ABSTRACT 

The use of an in-season nitrogen (N) assessment tool, such as the Dark Green Color 

Index (DGCI), can improve N management. This study was conducted to determine the ability of 

DGCI measured from aerial digital images to provide in-season information on corn (Zea mays 

L.) N status, serving as a guideline for in-season N management. Measurements of DGCI from 

high N (258 kg N ha-1) experimental units were used as a reference DGCI (RDGCI) to correct 

for variable lighting conditions. Ability of DGCI to assess in-season N status was investigated by 

predicting leaf N concentration (LN) and relative grain yield (RGY) as functions of DGCI and 

RDGCI. A total of eight field-studies were conducted on silt loam soils in Arkansas. Digital 

images and leaf samples were collected at the 10th collared leaf stage (V10), the 12th collared leaf 

stage (V12), and tasseling (VT). Across a wide range of environmental lighting conditions, LN 

was described by a regression (P-value < 0.0001) as a function of DGCI and RDGCI with a root 

mean square error of 3.49 g N kg-1 and a bias of -0.03 g N kg-1. Likewise, RGY was regressed 

against DGCI and RDGCI (P-value < 0.0001) and predicted RGY with a RMSE of 10.3% and a 

bias of -0.3%. Measurements of DGCI and RDGCI predicted LN and RGY accurately, 

demonstrating the potential to assess N status and improve N management in corn fields. These 

relationships provide reliable N status during late vegetative and early reproductive growth using 

aerial images.  
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INTRODUCTION 

Of the total N used in crops globally, approximately 45% is derived from synthetic 

fertilizers (Ladha, Pathak, Krupnik, Six, and van Kessel, 2005). Despite the massive amount of N 

used in agriculture every year, N fertilizer is not being used efficiently in agricultural systems. 

This inefficiency is noted by the low global average N use efficiency (NUE), where NUE is the 

ratio between the amount of N from the fertilizer accumulated by the crop and the amount of N 

applied via fertilizer (Raun & Johnson., 1999). The global NUE averages around 33% (Ladha et 

al., 2005), which indicates that approximately 67% of the N is not effectively used by the crop to 

which it was applied.  

Several agronomic practices can minimize N losses. For example, matching crop demand 

with N fertilizer supply, splitting N fertilizer applications, minimizing application during the wet 

season, and changing fertilizer sources to match the environmental conditions (Mosier, Syers, 

and Freney, 2004). In a corn production system specifically, fertilizer applications near the V8 

growth stage (Ritchie, Hanway, and Benson,1989) are an effective practice to decrease N losses. 

The majority of N uptake by corn occurs after the V8 growth stage (Russelle, Hauck, and Olson 

1983), which exposes N applied before V8 to potential loss mechanisms. Thus, synchronizing 

the time of greatest N requirement by the corn crop with the timing of N fertilization application 

reduces the possibility of losses (Magdoff, 1991). 

In Arkansas, recommendations are that the N rate should be split into two or three 

applications. In a two-way split strategy, 20 to 25% of the recommended N is applied preplant 

and the remaining 75 to 80% is applied as a sidedress application between V6 and V8. In the 

three-way split, 20 to 25% of the N recommended is applied preplant, and 50 to 65% should be 

applied between V6 and V8 as a sidedress application, and 15 to 25% of the N is applied 
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between V10 and VT (Slaton et al., 2013a). Corn grown using these split-applications have 

achieved NUE levels of 80% (Roberts, Slaton, Kelley, Greub, and Fulford, 2016), which 

diverges greatly from the global average of 33%. In addition to matching corn N demand and 

supply, splitting the N rate allows in-season implementation of N-status assessment tools 

(Scharf, Wiebold, and Lory, 2002b). 

Nitrogen rate recommendations for corn production systems vary greatly among states in 

the U.S. For instance, in Arkansas, N is recommended based on soil texture and yield goal 

(Slaton et al., 2013a; Slaton et al., 2013b). In Nebraska, N rates are estimated based on 

anticipated yield, residual soil nitrate (NO3-N), soil organic matter (SOM), timing of application, 

as well as fertilizer and corn prices (Shapiro, Ferguson, Hergert, Wortmann, and Walters, 2008). 

In Iowa, N rates are based on the previous crop, soil series, and on the price ratio between N and 

corn (Sawyer & Lundvall, 2018).  

Numerous tests based on soil and plant chemical analysis or on indirect indicators have 

been intended to predict optimum N rates in corn production (Miller, Bushong, Raun, Abit, and 

Arnall, 2017). Among the chemical tests, the Pre-sidedress Nitrate Test (PSNT) (Magdoff, Ross, 

and Amadon, 1984), the Pre-Plant Nitrate Test (PPNT) (Bundy & Malone., 1988), and the 

Illinois Soil Nitrogen Test (ISNT) (Khan, Mulvaney, and Hoeft., 2001; Mulvaney, Khan, Hoeft, 

and Brown, 2001) have been extensively used in corn production. An example of an indirect 

measurement of corn N status is the chlorophyll meter (CM), such as the SPAD-502 meter 

(Konica Minolta, Tokyo, Japan). The more chlorophyll that is present in the leaf, the higher the 

leaf-N concentration, which can be related to potential late-season N applications to corn 

(Samborski, Tremblay, and Fallon, 2009).  Sufficiency indexes based on CM measurements have 
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been used in several states across the U.S. to predict corn yield response to N fertilization and 

assess N status (Scharf & Brouder, 2006).  

In addition to chlorophyll concentration, the normalized difference vegetation index 

(NDVI) has also been used to evaluate corn N status using sensors such as the Crop Circle ACS-

210 (Holland Scientific, Lincoln, NE) and Green Seeker (N Tech Industries, Inc., Ukiah, CA). 

These sensors determine NDVI based on red (650 ±10 nm) and near infra-red (NIR, 750 ± 15 

nm) reflectance from the crop canopy. The NDVI value ranges between -1 and 1, with higher 

values indicating sufficient leaf-N concentrations (LN) (Schlemmer et al., 2013). This index has 

been successfully used in Oklahoma to develop a Nitrogen Fertilization Optimization Algorithm 

for corn based on NDVI measurements made between the V7 and V9 growth stages (Teal et al., 

2006; Tubaña et al., 2008).  

The dark green color index (DGCI) has also been utilized to assess the plant N status. 

The DGCI is determined from the red, green and blue (RGB) channels of a standard digital 

camera, after conversion to hue, saturation and brightness values. The DGCI value ranges from 0 

(yellow) to 1 (dark green) as shown in Eq. 3.1 (Karcher & Richardson, 2003). 

DGCI =  
5Hue −  60;

60  +  51 −  Saturation; +  51 −  Brightness;
3  

(3.1) 

Rorie, Purcell, Karcher, and King (2011) found that yield, leaf-N concentration and 

chlorophyll concentration were directly correlated with DGCI values from the ear leaf. Purcell, 

Siddons, Karcher, and Rorie (2015) developed calibration curves for the amount of N to apply 

that would recover 90 to 95% RGY from DGCI values measured between V6 and V10 on the 

uppermost collared leaf. Rhezali, Purcell, Roberts, and Greub (2018) compared grain yield 

resulting from N application based on DGCI calibration curves from the uppermost collared leaf 

of plants between the V6 and V10 growth stages (Purcell et al., 2015) with the University of 
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Arkansas Cooperative Extension Service N rate recommendations (Slaton et al., 2013a). Overall, 

N rates recommended with the DGCI method ranged from 92 to 112 kg N ha-1 less than the 

recommended Extension rate while maintaining yield in all cases. The authors concluded that the 

DGCI method was capable of predicting the in-season N requirement for corn and future 

research should focus on simplifying the method and extending it to aerial platforms so it can be 

used directly in the field. The objectives of this study were to (i) determine the relationship 

between LN and  DGCI across a wide range of environments, (ii) determine the ability of in-

season DGCI measurements to predict final RGY, (iii) determine the applicability of DGCI 

measurements as a midseason N management tool in corn production systems. 

MATERIALS AND METHODS 

Between 2017 and 2019, eight field studies were conducted on silt-loam soils at three 

University of Arkansas Research Stations (Table 3.1): the Pine Tree Research Station (PTRS), 

Milo J. Shult Agricultural Research and Extension Center (SAREC), and the Rohwer Research 

Station (RRS). The PTRS and SAREC stations contained field studies in all three years, while 

the RRS did not have a field study in 2017.  The experimental design was a randomized 

complete block with four replications and 11 different combinations of N rate and time of 

application, aiming to generate different levels of N sufficiency (Table 3.1). Experimental units 

were planted with the hybrid P1197YHR (Pioneer, Johnston, IA) at the seeding rate of 98,000 

seeds ha-1. Each experimental unit was 9 m long with four rows that were spaced 0.76 (PTRS), 

0.91 (SAREC), and 0.96 (RRS) m apart. For treatments 2 through 11, the preplant N rate (33.6 

kg N ha-1) was applied to the field and incorporated into the soil prior to planting. Sidedress N 

rates were applied to experimental units when the crop was between the V6 and V8 growth 

stages.  The different sidedress rates were meant to mimic sub-optimal, optimal, and above-



45 
 

optimal N rates prior to pretassel fertilization. Pretassel fertilization (51.5 kg N ha-1) was applied 

to experimental units between V10 and VT according to the treatment plan (Table 3.2). All N 

fertilizer was applied as urea (46-00-00) treated with N-(n-butyl)-thiophosphoric triamide 

(NBPT) (Agrotain Ultra, Koch Agronomic Services LLC., Wichita, KS) at the rate of 0.89 g 

NBPT kg-1 urea. A single composite soil sample (four 3-cm diam. cores) was collected from 

each replication at all experimental sites to a depth of 15 cm, soil nutrient analysis was 

performed (Mehlich-3 extractable nutrients, Zhang, Hardy, Mylavarapu and Wang, 2014) to 

confirm nutrients other than N were not limiting crop growth. Irrigation and pest management of 

plots closely followed furrow-irrigated corn recommendations established by the University of 

Arkansas System Division of Agriculture Cooperative Extension Service (Espinoza and Ross, 

2003). Irrigation timing was scheduled according to the Arkansas Irrigation Scheduler set at a 5-

cm soil profile water deficit. 

The uppermost fully developed leaf blade from five corn plants were sampled from the 

two middle rows of each plot at V10, and V12, and five identifiable ear-leaves were sampled at 

the VT stage prior to N fertilization (Table 3). The samples were oven-dried at 70 °C until 

constant weight, ground and sieved via a 20-mesh screen, and analyzed for total N using 

combustion (Campbell, 1992) at the Fayetteville Agricultural Diagnostic Laboratory at the 

University of Arkansas (Fayetteville, AR). 

The RGB images were collected immediately prior to or following (same day) pre-tassel 

fertilization (Table 3.3) at V10, V12, and VT with a Phantom 4 Pro ( DJI, Shenzen, China) using 

the camera that comes as standard equipment on the UAS (25.4-mm 20-megapixel CMOS 

sensor). Images were collected at 30.5 m above ground level and with 80% front and side 

overlap between the pictures. An orthomosaic of the individual images was built using 
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MetaShape Professional© (Agisoft LLC, St. Petesburg, Russia). The DGCI values of individual 

plots were determined from orthomosaic images using Field Analyzer© 

(http://www.turfanalyzer.com/field-analyzer) software. 

Experimental units were trimmed to 6 m in length at maturity, the two center rows were 

harvested using a small plot combine, and yield was corrected to 15.5% moisture. Relative grain 

yield was calculated as the ratio between the yield of an individual plot and the maximum yield 

attained within each environment (Eq. 3.2). 

RGY = 100 ×  Y^_
max. Y_

 (3.2) 

where Yij is the yield of experimental unit “i” in environment “j” and max. Yj is the 

maximum yield attained within environment “j”. 

To account for the differences in exposure that could affect DGCI, previous research 

(Rorie et al., 2011a; Purcell et al., 2015; Rhezali et al., 2018) used color standards with known 

DGCI values in each image. In the current research, DGCI values from experimental units with 

high N were used as a reference or high N check. The Reference DGCI (RDGCI) value was 

calculated for each location and growth stage as the average DGCI for treatment 11 (33.6 kg N 

ha-1 at preplant, and 212 kg N ha-1 at sidedress) within a combination of growth stage, location, 

and year. 

Statistical analysis was conducted in R 3.5.2. (R Core Team, Vienna, Austria) and the 

combination of year and location was considered as an environment. The relationship between 

DGCI, RDGCI, and LN was investigated by fitting a generalized linear model (GLMM), in 

which DGCI was the response variable, and LN and RDGCI were predictors. Since LN is a 

continuous non-negative response variable, a Gamma distribution was assumed for the GLMM 

fitting, using a log link function (Gbur et al., 2012).Observations from all treatments were 
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included in the regression analysis. Environment and growth stage were considered as random 

effects. Similarly, the relationship between RGY, DGCI, and RDGCI was investigated by fitting 

a GLMM, in which RGY was the response variable, and DGCI and RDGCI were predictors. The 

GLMM was fitted assuming a beta distribution for RGY using a logit link function because RGY 

is a continuous proportion response variable (Gbur et al., 2012). As certain treatments received N 

fertilization at different growth stages, when measurements were made at V10, only observations 

from treatments 1, 2, 5, 8, and 11 were included in the regression analysis. For measurements 

made at the V12 growth stage, the regression analysis was restricted to observations from 

treatments 1, 2, 3, 5, 6, 8, 9 and 11. Finally, when DGCI measurements were made at VT, 

regression analysis included observations from all treatments. 

RESULTS AND DISCUSSION 

Yields varied greatly among environments with a maximum yield of 20,676 kg ha-1 

recorded in 2019 at RRS, the minimum yield of 1,592 kg ha-1 also occurred at RRS, but in 2018 

(Table 3.1). The ratio between yields attained in experimental units assigned to treatments with 

the lowest N rate and the highest N rate can be used as a metric to assess how responsive to N 

application the corn was across varying environments. Using this ratio, RRS in 2018 and SAREC 

in 2019 were categorized as the most responsive environments, as experimental units with no N 

fertilization yielded 11% of the highest yielding experimental units in those environments. 

Furthermore, RRS in 2019 was the least responsive environment, in which experimental units 

with no N fertilization yielded 42% of the highest yielding experimental unit. Additionally, RRS 

in 2019 also had the highest yielding levels of all environments, with the yields ranging from 

8,813 to 20,676 kg ha-1, and a median yield of 18,654 kg ha-1. In the remaining environments, the 
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ratio between the yields of experimental units that received no N and the experimental units that 

received the highest rate of N averaged 28%. 

Measurements of DGCI ranged from 0.44 to 0.83 and were highly influenced by LN 

concentration and ambient environmental lighting conditions at the time images were collected. 

Greater values of RDGCI were associated with images taken on overcast days, while lower 

values of RDGCI were associated with brighter pictures and days with full sunlight. Previous 

research reported that different lighting conditions result in variable values of DGCI (Rorie et al., 

2011a). To account for the effect that environmental lighting has on DGCI measurements in the 

current research, RDGCI values were included as a factor in the regression analysis. 

Except for RRS in 2019, LN concentrations were consistent across environments and 

ranged from 10.54 to 36.79 g kg-1
. At RRS in 2019 LN values ranged from 20.89 to 36.65 g N 

kg-1, which was also the highest overall yielding environment across all N treatments (Table 3.1). 

These high LN levels indicate that there was more N available in the soil in this environment 

than in the remaining environments.  

An initial regression predicting LN as a function of DGCI and RDGCI found that the 

interaction between DGCI and RDGCI was nonsignificant. Therefore, the interaction term was 

removed from the analysis and the model was refit. The final model was significant (F= 274, p-

value < 0.0001) and described adequately LN as a function of DGCI and RDGCI (Fig. 1). 

Additionally, the model predicted LN concentration with a root mean square error (RMSE) of 

3.49 g N kg-1 and with a bias of -0.03 g N kg-1. Predicted values of LN varied as a function of the 

combined effects of the linear coefficients. As DGCI values increased between 0.44 and 0.83, 

predicted values of LN increased. Conversely, as RDGCI increased, predicted values of LN 

decreased. The regression coefficients indicate that the relationship between LN and DGCI was 
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maintained for RDGCI values between 0.60 and 0.79. However, the inverse relationship between 

LN and RDGCI indicates that the model predicts smaller values of LN as RDGCI increases. 

Greater values of RDGCI were associated with overcast days, and smaller values of RDGCI 

were associated with clear sky days. Because LN was predicted as the combined effects of DGCI 

and RDGCI, a given DGCI measurement can predict different LN levels, depending on RDGCI. 

For instance, with a DGCI of 0.65 and a RDGCI of 0.63, LN is predicted to be of 34.5 g N kg-1. 

This LN would represent a plant with sufficient N to achieve optimal yield, as the sufficient LN 

has been reported to be between 28 and 31 g N kg-1 (Bennett, Stanford, and Dumeni, 1953; 

Melsted, Motto, and Peck, 1969; Greub, Roberts, Slaton, Kelley, and Gbur, 2018).  In contrast, 

when the DGCI value is 0.65 and RDGCI is 0.80, LN is predicted to be 13.2 g N kg-1, 

representing a plant that is deficient in N. The ability of DGCI to predict LN agrees with 

previous research showing that DGCI was closely associated with LN and N fertilization 

treatments in corn (Rorie et al., 2011a) and turfgrass (Karcher & Richardson, 2003). 

An initial regression was fit in which RGY was predicted as a function of  DGCI and 

RDGCI, but this initial model found that the interaction term between DGCI and RDGCI was not 

significant. The model was refit without the interaction term, and the final model was significant 

(F-value = 399, P-value < 0.0001) with a RMSE =10.3% and bias = -0.3% (Fig. 3.2). The 

analysis indicated that RGY increased as DGCI values increased between 0.44 and 0.83. 

Likewise, the regression indicated an inverse relationship between RGY and RDGCI. For 

example, a DGCI value of 0.65 predicts a RGY of 25.4% when the RDGCI is 0.80, but RGY is 

predicted to be 95.5% with a RDGCI of 0.63.  

Figure 3.3 presents the same relationship shown in Figure 3.2 as a two-dimensional graph 

in which the diagonal isolines represent RGY as a function of DGCI and RDGCI. Using the 
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example discussed previously, the open circle in Figure 3.3 shows a RGY of 95.5% when DGCI 

is 0.65 and RDGCI is 0.63; the closed rectangle shows a RGY of 25.4% when DGCI is 0.65 and 

RDGCI is 0.80. The capability of DGCI to predict RGY agrees with previous research where an 

exponential increase in RGY was reported as a function of the increase in DGCI (Rorie et al., 

2011a).  

Previous research using DGCI on individual leaves to predict corn N needs and the 

relationship of DGCI to RGY has indicated that several factors can affect DGCI measurements; 

these factors include environmental lighting conditions, corn hybrid, diseases, and nutrient 

deficiencies besides N (Rorie et al., 2011b). To account for these cofounding factors, researchers 

have included internal standards in the digital images (Rorie et al., 2011a; Rhezali et al., 2018). 

Rorie et al. (2011b) also normalized DGCI for individual treatments relative to the highest DGCI 

value in a given environment; normalized DGCI values were closely associated with relative 

SPAD values, relative leaf N concentration, and RGY when combined over 10 different 

environments and with seven different hybrids. In the current research we used the DGCI 

measurement of a high N area in the same field to adjust for variable ambient lighting conditions 

and differences among corn hybrids (i.e., RDGCI). Implementing a well fertilized area as a 

standard or reference for improved N management can be used to adjust N rates based on 

hyperspectral indices, such as with NDVI (Raun et al., 2010), and has been suggested when 

using color bands (Scharf & Lory, 2002). This method of accounting for different light 

conditions facilitates the use of this tool in large scale fields, as it is important that the standards 

and the crop being assessed for N status are exposed to the same light conditions. One important 

assumption of using this method is that the high N area will be fertilized with a N rate that is not 

limiting for corn production (Raun et al., 2010).  
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CONCLUSIONS 

The present research has shown that DGCI measured from aerial digital images can be 

useful in determining the need for midseason N applications. The inclusion of RDGCI in the 

model allows for DGCI to be used across a wide range of environmental lighting conditions with 

out the need for color standards to be included in each image. The strong relationship between 

LN and DGCI shows that DGCI measurements can be used as an indirect N sufficiency 

assessment tool for corn. This tool has advantages over tissue sampling because it provides 

immediate results and allows for N monitoring across large areas, provided that there is an area 

within the field where N supply is nonlimiting for the crop (i.e. high N reference strip or area). 

Additionally, DGCI measurements taken between V10 and VT growth stages were closely 

associated with RGY. The assessment of N sufficiency using DGCI can help growers salvage 

corn yield in cases where the predicted RGY is low. Use of the DGCI to predict N sufficiency 

can also avoid unnecessary application of N in corn fields, ultimately reducing the risk of N 

movement into the landscape and decreasing overall production costs. The relationship between 

DGCI and RGY between V10 and VT provides a relatively quick, non-destructive, and simple 

tool to determine if corn RGY would respond (increase) with additional fertilizer N additions. 

The research presented here highlights a new approach that when coupled with a high N 

reference plot will allow producers to quickly and easily assess corn N status over a wide range 

of growth stages where corrective N applications can be made.  
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Table 3.2. Nitrogen (N) rates and time of application for different treatments used in eight field 
trials. 

Treatment 

Nitrogen rates (kg N ha-1) Pre-tassel 

application 

timing 

 

Pre-plant † Sidedress Pre-Tassel 

1 0 0 0 - 

2 33.6 56.4 0 - 

3 33.6 56.4 50.4 V10 

4 33.6 56.4 50.4 V12 

5 33.6 112.7 0 - 

6 33.6 112.7 50.4 V10 

7 33.6 112.7 50.4 V12 

8 33.6 169.2 0 - 

9 33.6 169.2 50.4 V10 

10 33.6 169.2 50.4 V12 

11 33.6 212.7 0 - 

† Sidedress N applied between the V6 and V8 growth stages. 
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Table 3.3. Dates in which leaf nitrogen (LN) samples and digital images were collected at 
different locations. Pretassel applications were made at the V10 and V12 growth stages on the 
same day that LN samples were collected according to the treatment plan. 

Location Year 

Growth stage 

V10 V12 VT 

SAREC1 2017 28, June 05, July 21, July 

PTRS2 2017 08, June 15, June 21, June 

SAREC 2018 11, June -† 29, June 

PTRS 2018 - - 20 July 

RRS3 2018 - 07, July 19, July 

SAREC 2019 10, June 20, June 28, June 

PTRS 2019 18, June 25, June 03, July 

RRS 2019 12, June 18, June 02, July 

†Cells containing a dash represent missed sampling times 
1Shult Agricultural Research and Extension Center 
2 Pine Tree Research Station 
3 Rohwer Research Station 
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Figure 3.1. Relationship between Leaf Nitrogen Concentration (LN), Dark Green Color Index 
(DGCI), and Reference Dark Green Color Index (RDGCI) 

(�� = ��.��	.
��
����.����
��  , bias = -0.03 g N kg-1, RMSE = 3.49 g N kg-1, AIC= 1301).  
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Figure 3.2. Relationship between Relative Grain Yield (%), Dark Green Color Index (DGCI), 

and Reference Dark Green Color Index (RDGCI) (��� = ��.�����.�∗!"#$ %�&.'∗(!"#$
)���.�����.�∗!"#$ %�&.'∗(!"#$, bias = -0.3 

%, RMSE=10.3 %, AIC=-457). 
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Figure 3.3. Relationship between Relative Grain Yield (%, RGY), Dark Green Color Index, and 

Reference Dark Green Color Index (��� = ��.�����.�∗!"#$ %�&.'∗(!"#$
)���.�����.�∗!"#$ %�&.'∗(!"#$, bias = -0.3 %, 

RMSE=10.3 %, AIC= -457). The grey shaded area represents areas for which no predictions 
were made because it is outside of the range of the observations. The isolines represent RGY. 
Open circle shows a predicted RGY= 86.0% when DGCI is 0.65 and RDGCI is 0.63; the closed 
rectangle shows a predicted RGY= 22.3% when DGCI is 0.65 and RDGCI is 0.80. 
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CHAPTER FOUR 

Conclusions 
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The purpose of this study was to evaluate the adequacy of leaf nitrogen (N) concentration 

(LN) and the Dark Green Color Index (DGCI) as in-season N status tools. The results indicate 

that LN from the uppermost fully collared leaf at the V10 and V12 (Ritchie, Hanway, and 

Benson,1989), and from the ear-leaf at VT can accurately predict final relative grain yield 

(RGY). This tool can assist corn producers when considering a midseason N application. 

Between the V10 and VT growth stages when LN is greater than 30.4 g N kg-1 no yield increase 

is expected from additional fertilization. At the same time, when LN is less than 30.4 g N kg-1 

plants are deficient and an additional N fertilization could be used to maximize RGY, especially 

in cases of severe N deficiency. 

The use of the Dark Green Color Index (DGCI) measured from digital aerial images 

associated with a high N area (reference strip) within the corn field accurately predicted LN and 

RGY. The close relationship between DGCI measurements and LN indicate that DGCI can be 

used as an indirect N assessment tool. Greater values of DGCI from the target area associated 

with smaller DGCI values from the reference area predicted greater LN and RGY values. 

Concurrently, when the DGCI value of the reference area was large but the DGCI of the target 

area was small, LN and RGY were predicted to be small, indicating N deficiency. When LN and 

RGY are predicted to be low, additional N fertilization can be used as a strategy to salvage yield. 

The advantage of assessing N status with DGCI measurements is that this tool provides 

immediate results and can be used across a wide range of ambient lighting conditions.  

Both LN and DGCI showed potential to be used as midseason N guidelines. The main 

contributions of this study are: (i) to provide information on N sufficiency between the V10 and 

VT growth stages, allowing producers to monitor corn N status for a wide period of the growing 
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season, (ii) to demonstrate that DGCI from aerial platforms can be used as an indirect assessment 

tool for midseason N status in corn production systems. 
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